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Abstract Many robotic applications that involve relocalization or 3D scene recon-
struction, have a need of finding geometry between camera images captured from
widely different viewpoints. Computing epipolar geometry between wide baseline
image pairs is difficult because often there are many more outliers than inliers
computed at the feature correspondence stage. Abundant outliers require the naive
approach to compute a huge number of random solutions to give a suitable proba-
bility that the correct solution is found. Furthermore, large numbers of outliers can
also cause false solutions to appear like true solutions. We present a new method
called UNIQSAC for ng weights for features to guide the random solutions towards
high quality features, helping find good solutions. We also present a new method to
evaluate geometry solutions that is more likely to find correct solutions. We demon-
strate in a variety of different outdoor environments using both monocular and stereo
image-pairs that our method produces better estimates than existing robust estimation
approaches.

1 Introduction

Computing the relative geometry between a wide-baseline camera pair is an important
task for many robotics problems such as loop-closure in SLAM systems or 3D
reconstructions. The task can be difficult in challenging real-world scenes, mainly
because it is hard to determine which point correspondences are correct (inliers)
among a set containing many incorrect correspondences (outliers).

The standard approach, RANSAC [7], is to robustly estimate an epipolar geom-
etry between the pair by testing multiple geometry hypotheses. RANSAC and its
improved variants [2, 3, 6, 13, 16], are impressive in their ability to correctly estimate
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geometry given small percentages of true correspondences and large percentages of
false point correspondences. However, when the percentages of inliers and outliers
are pushed further out of favor then even these robust approaches struggle to find the
correct geometry. To that end, we propose a new metric for the quality of the features,
which is their uniqueness amongst all other features in the image. We use this metric
to weight the sampling of correspondences to help find good solutions, and we also
present a new method to evaluate solutions that can better differentiate between true
and false solutions. Figure 1 shows an example of our algorithm’s functioning.

Our sampling approach is different to existing weighted sampling strategies in
that we first robustly quantize each feature and then calculate its uniqueness among
all other features in the image, as opposed to just a feature correlation score to the
nearest neighbor or a ratio of correlation scores to the second nearest neighbor.

We also propose to use feature quality to evaluate geometry solutions. The tra-
ditional approach to evaluate solutions is to just use the count of supporting cor-
respondences that pass an epiline distance threshold. With many outliers present,
many false correspondences can pass the inlier test causing bad solutions to appear
as good solutions. Our approach is more likely to find correct solutions because we
have down weighted low-quality features whereas the traditional approach treat all
features equal.

We first test our approach on a number of challenging outdoor monocular image-
pairs, each with a very small fraction of inliers in the set of correspondences. The
results are evaluated against manual ground-truth and compared against other robust
estimation algorithms. The result is that, in comparison to the commonly used
approaches, our approach finds more accurate solutions.

Secondly, we apply our uniqueness weighting approach for faster and accurate
estimations in wide-baseline stereo visual odometry. Finally, the paper is organized
by presenting the methodology, following which the results for monocular and stereo
image-data are described in consecutive sections.

2 Related Work

Here we present an overview of state of the art in estimation of wide baseline geome-
try. The task ultimately requires correlating some type of visual information between
the image-pair. In the literature there are a number of different categories of informa-
tion that are used for wide baseline; region based [12], edge/line based methods [9],
but by far the most prevalent methods used are those using point features such as
SIFT [10]. Appearance based methods, such as [8] learn to predict matchable descrip-
tors, attaining faster geometry computation with high success rates of matching. The
point-based methods are popular because firstly they have algorithms to repeatedly
find the same image keypoints in a scene even when the viewing pose changes, and
secondly they can form descriptions of the area surrounding the keypoints that have
a reasonable level of robustness to viewing changes.
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(a) Point correspondences

(b) Uniqueness left image (c) Uniqueness right image

(d) Inliers

Fig. 1 Example of weighted epipolar geometry estimation: Campus Scene. The feature uniqueness
coloring ranges from unique to repetitive as follows; red, orange, green, light-blue, blue. The low-
quality repetitive foliage and many repetitive building features are downweighted
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However, even though the process is comparatively robust, there are often more
outliers correspondences between a wide baseline image pair than inliers. The most
prevalent and successful approaches to dealing with cases where the outliers are
above 50% of all correspondences is RANSAC [7] and its variants. The RANSAC
process is to form a hypothesized solution to the geometry from a randomly selected
minimal sample of point correspondences and evaluate the hypothesis by counting
correspondences in agreement. The process is repeated with different samples until
a good solution is found. To achieve higher accuracy, Locally Optimized RANSAC
(LoRANSAC) [3] locally improves the estimated model hypothesis when the best
model so far is found. For faster convergence, [15] precludes computation of incorrect
feature matches using spatial order information in images.

There are approaches to improve RANSAC at the sampling step, where each
correspondence is weighted and the likelihood of it being chosen in the sampling
is adjusted [2, 6, 13, 16]. SCRAMSAC [13] achieves this by ranking correspon-
dences based on the spatial consistency of neighboring correspondences. USAC [2]
combines [2, 3, 11] into a single comprehensive pipeline.

The work in [16] replaces random sampling by guided sampling, computing a
weight for every correspondence based on an image correlation score. PROSAC [2]
uses correspondence quality measures to speed up RANSAC based on the correlation
score of keypoints. In EVSAC [4], hypothesis generation is accelerated by computing
confidence values by modelling the matching scores. BEEM [6] presents another
method of weighting correspondences by a correlation quality score determined by
the ratio of distance of nearest to second nearest feature in the descriptor-space.

A majority of these existing approaches calculate weights from the correlation
score between two features or the ratio of correlation scores to the next best corre-
spondence. These existing weighting metrics are formed considering just one or two
correspondences. This will result in a low weighting for semi-distinct features, and
this weighting will be as low as the weighting for very non-distinct features. Whereas
our approach is different in that it calculates the uniqueness score of a feature against
all other features in the image, and will provide an appropriate weight for semi-
distinct features that are similar to only a few other features. Thus our uniqueness
weighting is less susceptible to the case of semi-distinct features in the scene, which
are features that are similar to a small number of other features.

Furthermore the convention in these approaches is to use the number of correspon-
dences in the consensus set that have passed an epiline distance threshold. However,
when there are many outliers, many false correspondences can mistakenly pass the
inlier test causing bad solutions to appear as good solutions. In our work we evaluate
solutions based of the feature quality in the consensus set, which is more likely to
find correct solutions because we have down weighted low-quality features whereas
the traditional approach treat all features equal.
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3 Sampling Using Feature Uniqueness: UNIQSAC

We first detail our approach to weight the sampling of correspondence subsets for
the RANSAC procedure. We reiterate the necessity for weighting the sampling of
correspondences to achieve timely convergence in difficult image pairs as previously
demonstrated in [2, 6, 16] and propose an alternative strategy for determining the
weights. The first step is to quantize the feature descriptors into distinct labels, similar
to the bag-of-words approach [14], We count how many times each type of feature
appears in an image, giving us an estimate of that feature’s uniqueness. The bag-of-
words approach requires a large prior database relevant to the current scene at hand
and a large amount of preprocessing to cluster the database of features. We propose
an alternative feature-quantization approach that requires no learning and is efficient.

Our approach is to first take a N -dimensional feature descriptor and randomly
sample M-dimensional sub-features from it K times. Then, we quantize these K
sub-features into K integers. The reason for a set of identifiers for each feature is
that quantizing large N -dimensional features is difficult and error prone, because if
any one dimension is disrupted (from any number of potential viewing disruptions;
lighting, sensor noise, viewing pose changes, non-planarity, partial-occlusions etc.)
then the resulting integer identifier will be wrong. So by choosing an appropriate
value for M and K , the resulting set of K integers will still each on their own be a
reasonable means for identifying a feature, and even though it is still likely that a
number of the K integer identifiers will be erroneous because of viewing disruptions,
it is likely that there will be enough identifiers for each feature that are still valid.

The procedure is as follows. Let f i be the value of the i th dimension of feature, f ,
which is a normalized value between 0 and 1. Then let r(k,m, N ) be a function that
returns a random hasher between 1 and N , which will return the same random hasher
for specific k and m values (i.e. it will pick the same dimensions to sample for each
feature we are quantizing). Given a feature, f , we randomly generate a sub-feature,
s, several times to form the set of sub-features, S, where s j is the j th sub-feature.
We then quantize the sub-features into an integer identifier, d, with the quantization
function q(v, p, z), which takes a feature value v between 0 and 1, an exponent value,
p, and the number of quantizations for each dimension, z;

q(v, p, z) = �vpz� (1)

Combining the sub-features we form a set of integer identifiers, D, for each feature.
Here Dl is the lth integer identifier. This process is defined as the QUANTIZE()
function, given in Algorithm 1. Therefore by creating K integer identifiers for each
feature descriptor, f , we can count each time one of these identifiers appears in an
image, C(d), compute the most commonly appearing feature identifier, CMAX, and
then compute an average over all K identifiers to compute a score of how unique
that type of feature is amongst the other features in that image, Uf . This details our
method for calculating the uniqueness scores of a set of feature descriptors.
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(a) Airport

(b) Building 1

(c) Building 2

Fig. 2 Visualization of Uniqueness Computation. The calculated uniqueness are colored for the
features detected in a set of challenging outdoor image pairs. Coloring ranges from unique to
repetitive as follows; red, orange, green, light-blue, blue. The airport scene noticeably has many
low-quality ground features downweighted by our technique. Building scenes have many repetitive
low-quality features from brickwork and foliage. Whereas most of the high-quality features have
been correctly identified and given higher weights
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Figure 2 provides a visualization of uniqueness computation in three monocular
wide-baseline settings. The coloring follows a heat-map color scheme, where from
red is a unique feature and blue is a frequently occurring feature. Here it is clearly
identified the features are that are unique and which are low-quality. In the airport
scene it is noticeable that most of the ground features have been correctly down-
weighted as they are low-quality features, and many of the features on the hangers
and tower have correctly been identified as the useful unique features. In the building
scenes, most of the foliage features and many of the features on the brickwork,
repeated windows have been suitably down-weighted.

4 Evaluating Hypotheses Using Feature Uniqueness

The previous section described the sampling stage of geometry estimation, the next
stage of the RANSAC framework is to evaluate the resulting model hypothesis.
Traditionally, almost all methods use the cardinality of the consensus set [7] (inlier
set), c, as the metric to decide the quality of the model, which has limitations in being
able to determine good hypotheses from bad.

The common approach is to test if a feature correspondence, i , is in consensus
and therefore an inlier, is if its distance, ε, away from the epipolar line computed
from the nth model is less than the threshold, τ :

cn = ∀c(i) ∈ C, εi < τ (2)

Then given N RANSAC iterations, the final estimated model, m̂, is simply the
model with the largest consensus set as follows:

m̂ = arg max
n

(|cn|) (3)
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where cn is the consensus set from the nth RANSAC iteration. However, there can
be many correspondences that pass the inlier test that are in fact outliers. Therefore,
there can be poor geometry hypotheses that appear good because of many false
correspondences in the consensus set.

As a result of the limitations of using just the cardinality of the consensus set as the
evaluation metric, we have developed a new metric to evaluate RANSAC hypotheses,
that is a measure of the quality of the features in the consensus set. Our approach
is less likely to find false solutions because we down-weight low-quality features in
the evaluation process, whereas the traditional approach treats all features as equal.
We propose to use feature weighting approach described in the previous section as a
measure of quality, and use the sum of the inliers’ feature weights as the metric for
hypothesis evaluation. So our formulation for the best model becomes:

m̂ = arg max
n

(
∑

∀f i∈cn
w(f i )) (4)

Now we plot two graphs comparing our new metric against conventional inlier
count as shown in the Fig. 3. The first graph Fig. 3a, shows the correlation between size
of the consensus set (inliers) and the actual true inliers (validated inliers), recorded for
1,000,000 iterations of RANSAC (computing 1,000,000 iterations would most likely
take too long in practice, but used here to give a clear picture of the relationship to the
true number of inliers) on the wide baseline image pair seen in Fig. 2a. Similarly, the
second graph in Fig. 2b shows the correlation between summation of inlier weights
and validated inliers.

It is obvious from Fig. 3b, that the new metric produces a far better correlation
to true inliers when compared to the conventional inlier count. Although we see an
upwards trend in Fig. 3a, relating number of inliers to number of validated inliers,

Fig. 3 Hypothesis Evaluation and Accuracy score for a million iterations. Left: At higher inlier
counts, RANSAC is inaccurate with few validated inliers. Right: Feature Uniqueness provides a
linear correlation between summation of inlier weights and validated inliers
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there is an alarming variance in this distribution, where some hypotheses with many
overall inliers have very few validated inliers. This illustrates, that our new metric is
far less likely at wrongly selecting a poor hypothesis.

5 Monocular Wide-Baseline Geometry Estimation

In this section, we provide a detailed description of implementing feature uniqueness
weighting for sampling correspondences in a RANSAC-type geometry estimation for
wide-baseline monocular images. The correspondence set, C, is the set of matched
features between F1 and F2, the two features sets from the image pair. From this
correspondence set, we take a minimal subset, s, of the entire correspondence set
using a weighting function that computes the likelihood of f being sampled, w(f);

w(f) = U2
f (5)

The minimal sample set is used to estimate our hypothesized model which for us
estimating epipolar geometry is the fundamental matrix. The cardinality of s being
8, because we are using the 8-point algorithm [7]. When selecting the 8 point-
correspondences of s from C we use a Monte-Carlo sampling strategy based on
the weights of the two features f1(i) and f2(i) of a specific correspondence, i :

p(C(i)) = w(f1(i))w(f2(i)) (6)

6 Experimental Results: Monocular Image-Data

We collected a variety of particularly challenging wide baseline image pairs in a
number of different outdoor settings to evaluate our approach. Here we present results
collected from four different scenes, shown previously in Figs. 1 and 2.

We evaluate our UNIQSAC approach against three standard epipolar geometry
estimation methods; RANSAC [7], LoRANSAC [2] and BEEM [6]. All these meth-
ods sample a small number of sparse feature point correspondences, fit a epipolar
geometry model, evaluate the model, store if it is the best found and iterate. As
an input, we use the SIFT features [10] for keypoint detection and SIFT feature
descriptor for each of these keypoints.

The parameters for feature quantization, given in Eq. 1, are set as per the following:
Dimension of sub-feature M as 6, Number of sub-features K as 6, Dimension of
feature N as 128, Exponent p as 1, Number of quantization z as 2. These parameters
are set for a coarse quantization making it suitable to distinguish frequent features
from the more unique features. Taking the quantizations and computing a uniqueness
for each feature according to Algorithm 1, yields a visualization of uniqueness shown
in Fig. 2.
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Table 1 Epipolar geometry estimation results

Image-pair Statistic RANSAC LoRANSAC BEEM UNIQSAC

Airport Correspondences 1237 1237 1237 1237

Inliers 82.5 98.0 102.4 96.66

Validated inliers 22.3 29.9 36.4 43.2
Epiline error (pix) 20.0 11.4 4.7 4.1

Building 1 Correspondences 1204 1204 1204 1204

Inliers 187.7 214.5 216.9 217.0

Validated inliers 88.9 113.1 124.5 125.8
Epiline error (pix) 7.9 5.4 5.2 3.6

Building 2 Correspondences 1192 1192 1192 1192

Inliers 146.6 181.3 177.7 182.5

Validated inliers 87.8 116.0 115.3 125.0
Epiline error (pix) 4.1 2.8 2.3 1.7

Campus Correspondences 1451 1451 1451 1451

Inliers 143.7 157.2 162.8 175.7

Validated inliers 103.3 121.6 130.7 128.7

Epiline error (pix) 14.9 5.9 8.0 4.5

Once uniqueness has been computed, the next step is to find point correspon-
dences. We compute the correspondences between the pair using a KD-tree [1] (using
250 as the maximum number of leaves to visit). In each of the image pairs the number
of inliers is low, somewhere between 10 and 15%. We evaluate the performance of
the algorithm by manually designating a set of groundtruth correspondences (usu-
ally around 30) between image pairs. We compute a groundtruth fundamental matrix
using the standard 8-point algorithm and use this fundamental matrix to validate how
many of the inliers found also agree with the groundtruth fundamental matrix (we call
these the validated inliers). We also compute an epipolar line from the estimated fun-
damental matrix and compute the mean distance of the groundtruth correspondences
to this line (we call this the epiline error).

To maintain a fair comparison we fix the number of iterations for all algorithms to
the same number: 50,000. For LoRANSAC we use an inner loop of 5,000 iterations,
where each inner iteration contributes to 50,000 iterations in total. We run 50,000
iterations for each algorithm, 10 times on each image-pair, compute the mean and
present these in Table 1.

We highlight in bold the best performing algorithm for the number of validated
inliers and the groundtruth epiline error. Overall our uniqueness approach to weighted
sampling performs better than all other algorithms, as it provides more accuracy in
terms of epiline distance and has more validated inliers.

We can see that in some of the tests that some of the algorithms produce more
inliers, however as we have discussed throughout this paper, the number of inliers
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does not necessarily mean a better solution (as false correspondences can be counted
as inliers). The important statistics are the number of validated inliers and the epiline
distance.

7 Wide-Baseline Stereo Camera Pose Estimation

In this section we extend the monocular method to solve geometry between sets of
stereo pairs. The results presented in previous section provides significant motivation
to apply our Uniqueness Sampling and Consensus (UNIQSAC) technique to compute
a 6 Degree-of-Freedom pose for a wide-baseline stereo camera.

Our Stereo image dataset comprises of plant images captured in a wide-baseline
stereo setup from Grape Vineyards, Sorghum Fields and Apple Orchards. Due to
repetitive features present in plant foliage and background clutter, sampling unique
features becomes essential in computing motion estimates accurately within a fea-
sible number of iterations. To compute a complete 6 DoF motion, we implement a
stereo visual odometry pipeline consisting of three stages: Feature Extraction and
Matching, Uniqueness score computation and Geometry estimation.

7.1 Feature Extraction and Matching

With a moving stereo camera setup, we obtain four images at any given time:
left and right images of two consecutive frames. To compute camera transforma-
tion, we require feature matches between all four images. Starting from Previous
Left image, we look for correspondences in Current Left Image. After establishing
correspondences between Previous and Current Left image pair, we utilize these
matched features as templates to search for corresponding features in the Previous
and Current right images along the epipolar scanlines. The template image matching
uses a Normalized Cross Correlation Score. For feature matching process, keypoints
are detected using SIFT features. Subsequently, SIFT descriptors are extracted and
matched using K-nearest neighbor technique.

7.2 Uniqueness Score Computation

Before computing the uniqueness score, features are quantized keeping the same
parameters as described in the earlier section. In addition to the Uniqueness score
Uscore, we also consider depth consistency and distance-ratio of matched features
in form of a new hybrid score Tscore. This hybrid score is used to assign weights to
all the matched features as given in the Eq. 7. Depth consistency Dscore is computed
by calculating the differences in depth values from Previous Left- Current Left and
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Current Left- Previous Left, and then normalizing the difference values. The distance-
ratio Rscore of matched features is determined by a process described in [6].

Tscore = Uscore + Dscore + Rscore (7)

7.3 Geometry Estimation

Once we have pixel coordinates of all matched features, we can apply triangulation
to acquire two sets of 3D coordinates. The camera motion (r,t) can be computed by
minimizing the sum of reprojection errors using a Gaussian-Newtonian optimization.
Our motion estimation scheme from sparse feature matches is similar to the method
presented by Geiger et. al [5]. Instead of randomly drawing 3 correspondences, we
replace RANSAC with our Uniqueness sampling technique to increase the proba-
bility of selecting high quality features. For testing model hypothesis, we use our
metric given in Eq. 4 to obtain the final inlier set.

8 Experimental Results: Stereo Image-Data

To test the performance in grape and sorghum image dataset, we consider both time-
efficiency and accuracy for evaluation. Since the run-time for execution of one cycle
of an algorithm can be relative, a good way to measure the time-efficiency is to check
the number of iterations the algorithm takes to converge.

In our setup, the robot is equipped with a stereo camera moving at an average
velocity of 0.45 m/s, capturing images at 5 frames/sec facing a plantation wall at a
distance of 3 feet. Figure 4 illustrates our complete Stereo Visual Odometry pipeline
for the grape dataset Fig. 4a and sorghum image dataset Fig. 4b. We can see that the
raw images have considerable portions that will yield low quality features—ground,
sky and plant foliage. As a result, many feature correspondences are incorrect. Com-
puting a hybrid Uniqueness score downweighs a majority of features extracted from
ground and plant foliage. Only a tiny fraction of these correspondences are correctly
identified as inliers (inlier ratio <9%). Similar results from Apple orchard dataset
are illustrated in Fig. 5.

Our algorithm UNIQSAC is tested against the three standard methods: RANSAC,
LoRANSAC and BEEM. The metric for evaluation is the validated inlier score (total
validated inliers), and computed for 1000 and 10,000 iterations. To ensure robustness
and repeatability, the scores are averaged over 1000 times. The results presented in
Fig. 6 show that our proposed technique provides 25% (Grape) and 80% (Sorghum)
improvement in Accuracy-Time Efficiency as compared to RANSAC.
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(a) Grape Dataset (b) Sorghum Dataset

Fig. 4 Wide-baseline stereo geometry estimation. An example of wide-baseline geometry estima-
tion on stereo image-pairs. Illustrations on the left column are obtained from the Grape dataset and
right column from the Sorghum dataset. First Row: Raw image-pairs as captured from the Stereo
Camera. Second Row: Correspondence Matching using K-nearest neighbors, between Previous
Left and Current Left Image. Third Row: Feature uniqueness computation and colored heat map
for Previous Left and Current Left Image. Fourth Row: Plotted Inliers are obtained using our
Uniqueness sampling technique
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Fig. 5 Apple Orchard Dataset.FirstRow-Left toRight: Raw image-pairs, Correspondence Match-
ing using K-nearest neighbors. Second Row-Left to Right: Uniqueness computation as colored
heat maps, plotted inliers using UNIQSAC, between Previous Left and Current Left Image
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Fig. 6 Time Efficiency-Accuracy Score. Each figure in top row left-to-right are results acquired
from the Grape Dataset. Left: Comparison for 1000 iterations. Centre: Comparison for RANSAC
versus UNIQSAC, with standard deviation from the mean validated inlier score.Right: Comparison
for 10,000 iterations. Similarly, each figure in the bottom row left-to-right, are results obtained from
the Sorghum Dataset
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9 Conclusion

This paper presented a new weighted sampling method called UNIQSAC, based
on feature quality for computing epipolar geometry between wide baseline image
pairs. Also presented is a new metric for evaluating model hypothesis based on the
feature quality of the consensus set that performs better than simply counting the
cardinality of the consensus set. Together, these two methods were demonstrated in
a variety of different outdoor environments, where the low-quality repetitive features
are correctly down-weighted and the more unique structural features are correctly
up-weighted, resulting in more accurate solutions.

To evaluate the performance of our methods, a set of monocular and stereo image-
pairs was ground-truthed and the results were compared against standard robust
estimation approaches like RANSAC, LoRANSAC, and BEEM. It was demonstrated
in monocular settings, that our methods produces in all but one case the most accurate
estimates. These results are further validated in the stereo settings, where we acquire
the most accurate and time-efficient estimates while operating at very low inlier
ratios (<9%). Utilizing feature quality to guide random samples, opens up several
possibilities for future work. In particular, we are interested to extend our methods
to obtain faster and accurate registration of dense 3D point clouds.
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