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Abstract Spacecraft equipped with gecko-inspired dry adhesive grippers can
dynamically grasp objects having a wide variety of featureless surfaces. In this paper
we propose an optimization-based control strategy to exploit the dynamic robust-
ness of such grippers for the task of grasping a free-floating, spinning object. First,
we extend previous work characterizing the dynamic grasping capabilities of these
grippers to the case where both object and spacecraft are free-floating and compa-
rably sized. We then formulate the acquisition problem as a two-phase optimization
problem, which is amenable to real time implementation and can handle constraints
on velocity, control, as well as integer timing constraints for grasping a specific
target location on the surface of a spinning object. Conservative analytical bounds
for the set of initial states that guarantee feasible grasping solutions are derived.
Finally, we validate this control architecture on the Stanford free-flyer test bed—a
2D microgravity test bed for emulating drift dynamics of spacecraft.
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1 Introduction

Recently, in an effort to alleviate some of the tasks performed by astronauts, there
has been increased interest in the use of small assistive free-flying robots (AFF) for
grasping andmanipulating objects inside and outside spacecraft. One such example is
the Smart SPHERES teleoperated test bed, which was developed to perform various
intra-vehicular activities aboard the International Space Station (e.g., camera work
and environmental monitoring), as well as to serve as a robotics research platform in
microgravity [1]. Enabling AFFs to autonomously grasp and manipulate objects has
the potential to make many human operations safer and more efficient by reducing
time spent performing repetitive tasks and on EVAs (see Fig. 1). Autonomous object
manipulation may also enable a wide range of new applications that are too danger-
ous, complex, or expensive for astronauts, such as the assembly of large-scale space
structures or the removal of space debris [2].

Traditionally, most grasping devices, especially in space, have relied on robotic
hands that either pinchopposing faces of the target (“force closure”) or grapple around
its features to secure it (“caging grasp”). The precision of this operation typically
requires that the target be stationary relative to the gripper for successful acquisition.
For example, in [3, 4], the authors assume that target objects have a grappling fixture
for caging [3] or pinching [4] and plan the spacecraft’s trajectory such that its end
effector velocity matches that of the grappling feature. However, velocity matching
often imposes a heavy burden on control precision and fuel expenditure.

Grippers that utilize dry surface adhesion represent a promising alternative.
Inspired by the adhesive properties of geckos’ feet, several grippers have been devel-
oped using gecko-like materials that can adhere to any smooth, flat or curved surface

Fig. 1 Autonomous free flying spacecraft equipped with dry adhesion surface grippers may assist
astronauts inside and outside the space station. This paper investigates optimal control strategies
for autonomous perching and acquisition of free-floating, tumbling objects



Trajectory Optimization for Dynamic Grasping in Space Using Adhesive Grippers 51

Fig. 2 A curved-surface gripper utilizes gecko-inspired adhesive materials to robustly grasp a
variety of objects. Two opposing fingers passively collapse onto any curved smooth surface upon
contact, by triggering a bistable mechanism. The gripper is mounted on a passive compliant wrist
that allows it to absorb impact energy. See [8] for details

simply by touching them [5, 6]—thus, broadening the class of possible grasp locations
from a small set of features to a larger (continuous) space of feature-less surfaces.
Furthermore, when paired with a compliant wrist mechanism, these grippers can
dynamically engage objects with high relative velocity—a key advantage for cap-
turing drifting objects in space [7]. Previous work by the authors investigated the
performance of one such gripper designed to grasp a translating and rotating object
[6] (see Fig. 2). A passive cylindrical object, free-floating on frictionless air bearings,
was thrown at a stationary gripper on Stanford’s planar microgravity test bed (see
Fig. 4). The gripper, fixed to the inertial frame, was able to catch the object over
a wide range of contact velocities. By systematically probing the dynamic limita-
tions of the gripper in simulations and experiments, an envelope of contact states
amenable for reliable grasping was empirically constructed—henceforth referred to
as the “grasping envelope”. In this paper, we investigate how such dynamic surface
grasping can be leveraged to develop robust control laws for grasping objects in
space.

From a control standpoint, adhesive grippers eliminate the need to deliberately
coordinate finger contact forces, allowing the precision grasping task to be simplified
to a rendezvous and docking problem—awell-studied problem having a rich body of
literature. Specifically, a variety of optimization-based approaches have been devised
for the problem of spacecraft rendezvous and docking, including [9], which treats
some of the constraints as soft penalties in the cost function. This allows the problem
to be formulated as a Quadratic Program (QP), thus enabling real-time implemen-
tation. Similarly, [10] restricts each phase of the problem (long-range rendezvous,
short-range docking, etc.) to be formulated as either a Linear Program (LP) or a QP
for fast, online execution. In [11], the authors applied MPC to the rendezvous and
docking of a spacecraftwith a non-rotating platform in circular orbit around theEarth.
They extended this work in [12] to the case of a rotating/tumbling object, imposing
state constraints to avoid debris. In a similar vein, we propose an optimization-based
approach to the related problem of dynamic grasping, consisting of a two-phase
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optimal control architecture that is amenable to the complex dynamics and termi-
nal constraints characterizing adhesive grippers, and integer timing constraints for
grasping a specific location on a spinning body.

Specifically, the contribution of this paper is threefold. First, in Sect. 2, we extend
our previous work in [6] on characterizing the grasping envelope of a curved surface
gripper to the case where both spacecraft and object are free floating and in relative
motion. Second, in Sect. 3we formulate the problemof grasping spinning, featureless
objects as a two-phase optimal control problem and derive conservative analytical
bounds for the set of initial states that guarantee feasible grasping solutions. Finally,
we validate the controller in simulation and through a variety of experiments on a
custom free-floating spacecraft test bed (Sect. 4).

2 Grasping Envelope

In order to leverage the dynamic grasping capabilities of adhesive grippers for robust
object acquisition, some model of the set of “graspable” contact states is required.
This grasping envelope is a complex function of the gripper design, object shape and
surface, and the highly nonlinear behavior of the dry adhesives. First order insights for
defining this envelope can be derived from analytical models and simulations (as was
done in [6]), but a more complete characterization relies on systematically probing
the boundaries experimentally. In previous work, Estrada et al. [6] characterized the
envelope of a gripper fixed to the inertial frame through a passive compliant wrist,
which is akin to the case in which the target object is significantly less massive than
the spacecraft. However, for small AFFs that often perch or grasp larger objects, this
is often not the case. Accordingly, our first step is to extend those results to the more
general case in which both object and spacecraft are floating and of comparable
mass.

For planar motion, the contact state can be uniquely described by four parameters,
namely, the offset of the contact from the center of the gripper (d), and the relative
velocity, decomposed as the linear (v) and angular (Ω) speeds and angle of attack (φ)
(see Fig. 3). Thus, the grasping envelop can be viewed as a closed set (v,Ω, φ, d) ∈
R

4 centered at (μv, 0, 0, 0) and symmetric about d = 0.
For imposing terminal velocity constraints in the grasping problem, it is most

important to characterize the relationship between speed and angle of attack, which
can then be translated into normal and lateral velocity constraints. In other words, by
varying v and φ and holding d and Ω constant, one can experimentally construct a
2D slice within the 4D grasping envelope by observing successful and unsuccessful
grasps.

All experiments were conducted on the Stanford free-flyer test bed—a 3× 4m
granite table calibrated to be extremely flat and level—on which robotic platforms
can float using frictionless air bearings, simulating a 2D microgravity environment
(See Fig. 4). In nearly the exact same setup as in [6], a smooth cylindrical object
(1.6kg, 11cm radius) was fixed to a floating platform such that it could be spun
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Fig. 3 The contact state between the spinning cylindrical object and free-flyer is parameterized
with four variables as show in this top-down view: relative speed (v), angular velocity (Ω), angle
of attack (φ), and offset (d). Note that these parameters are defined with respect to the free-flyer,
which may also be moving

Fig. 4 Grasping experiment on the Stanford free-flyer test bed. A cylindrical object mounted on
a frictionless air-bearing platform collides and attaches to another free floating platform equipped
with a curved surface gripper. The dry adhesive fingers and compliant wrist are able to reliably
secure the object over a wide range of dynamic contacts

and launched towards a gripper, which was also mounted on a floating platform. An
OptiTrack motion capture system was used to measure the trajectories of the object,
free-flyer robot, and its attached gripper to sub-millimeter precision at 120Hz.

About fifty trials were run, varying the object’s speed and angle of attack for each
of two scenarios: (1) a high-mass free-flyer (4.2kgor roughly 2.5 times themass of the
object), and (2) a low-mass free-flyer (1.7kg or roughly the samemass as the object).
The results in Fig. 5 show the data for both of these scenarios compared with data for
a fixed gripper from [6]. Two analytical bounds were proposed in [6] to segment the
successful and unsuccessful grasps and correlate them to the two dominant failure
modes, which were: (A) a minimum normal impulse that was required to depress
the gripper’s passive trigger mechanism,1 and (B) a maximum angular impulse that
the gripper’s compliant wrist could absorb after attaching. These bounds are still
good predictors of failure for a floating free-flyer, however the normal and angular
impulse must now also account for the movement of the free-flyer after collision.

1Future gripper designs will incorporate an automatic trigger, eliminating the minimum normal
impulse requirement.
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Fig. 5 Grasping envelopes relating speed (v) and angle of attack (φ) for a non-spinning object
contacting the gripperwith zero offset (d). The left three plots showdata collected for a light (1.7kg),
heavy (4.2kg), and fixed free-flyer, respectively. The green o’s and red x’s depict successful and
unsuccessful trials. The right plot overlays the approximate envelope bounds for each of the three
cases, indicating generally tighter bounds for lighter free-flyers

Thus, as the mass of the free-flyer is reduced, the minimum speed needed for the
object to passively engage the gripper increases, the tolerable angular momentum of
the object decreases, and overall, the grasping envelope shrinks.

For high-speed collisions, an additional failure mode was observed, whereby the
floating free-flyer rebounds before the gripper can fully close around the object.
This phenomenon involves the mechanical response of gripper’s compliant mount
and the response time of the bistable closing mechanism. In [13], Yoshida discusses
the contact dynamics between a robotic arm and a floating satellite and shows that
appropriate impedance matching can mitigate this effect. Future work will consider
similar methods of impedancematching using tunable wrist compliance [8] to reduce
this rebound effect. For the grasping controller discussed in Sect. 3, we will simply
enforce a constraint on the maximum speed.

3 Autonomous Grasping

In this section we formally state the control problem we wish to address, devise a
two phase formulation for its solution using optimal control techniques, and discuss
feasibility guarantees and implementation details. We highlight that our problem
formulation and tests are limited to planarmotion; the generalization to 3D is possible
and will be addressed in future work. Furthermore, we make two key assumptions:
(1) the environment is obstacle-free, and (2) orbital dynamics can be ignored. In
practice, the full motion planning problem for grasping would be decoupled into an
initial rendezvous phase using a kinodynamic motion planner (e.g., [14]) to negotiate
obstacles over an arbitrary distance, which transitions to this final controller within a
close, obstacle-free vicinity. Similarly, the short timescales for this grasping problem
make higher-order effects due to orbital dynamics negligible. Section3.1 states the
dynamics of the problem, Sect. 3.2 discusses the decoupled control architecture and
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desired contact geometry, Sect. 3.3 derives the control law for phase 1, Sect. 3.4
derives the control law for phase 2, and Sect. 3.5 derives conservative analytical
bounds for the region of attraction.

3.1 System Dynamics

We consider an autonomous docking between a target object (T) and a spacecraft
(S) equipped with a dry adhesive gripper. The target object has a circular shape of
radius rT , mass mT , and rotates with constant angular velocity ωT. The spacecraft
has a gripper located distance lS from its center of mass Scm, and rotates with angular
velocityωS(t).We define a point Tg on the surface of T that represents the target point
for contact (e.g., a part of the target surface that is particularly suitable for grasping).
Right-handed orthogonal bases, n, t , and s are fixed in the inertial frame, target object,
and spacecraft, respectively, rotated by angles θS and θT . The position vector fromTcm

to Scm can be written as rS = xn̂x + yn̂y and its derivative, vS = ẋ n̂x + ẏn̂ y . This
notation is summarized in Fig. 6. The double-integrator dynamics of the spacecraft
are simply,

ẍ = ux , ÿ = uy, θ̈S = uθS , (1)

where ux and uy represent the translational control inputs (actuated, e.g., via
thrusters), and uθS represents the independent angular control input (actuated, e.g.,
via a reaction wheel). For convenience, we can rewrite the dynamics with respect to
a new basis, e, as

v̇r − v2θ
r

= ur , v̇θ + vr vθ

r
= uθ , (2)

Fig. 6 Geometry of the grasping problem. The initial alignment phase (left) steers the spacecraft
towards some desired approach trajectory, defined by β, at which point the final approach phase
(right) tracks a straight-line to ensure proper timing and contact geometry



56 R. MacPherson et al.

where rS = r êr , and vS = vθ êθ + vr êr . This form will be useful for deriving the
alignment controller in Sect. 3.3. Note that thruster arrangements on spacecraft typ-
ically yield nonuniform maximum thrust capabilities in the body frame. Thus, most
generally, ur,max and uθ,max are functions of θS. However, for simplicity, we will
impose a conservative inner approximation on the control constraints:

u2r + u2θ ≤ u2max, umax = min[umax(θS)], (3)

which allows the exact mapping to thruster firings to be abstracted as a lower level
controller.

3.2 Control Architecture

The grasping problem is constrained in three fundamental ways: (1) constraints on
the control input, (2) a constraint on the contact location on the surface of the rotating
target, and (3) dynamic contact constraints imposed by the gripper, as characterized
in [6] and Sect. 2. For a spinning object, the constraint on the contact location imposes
a coupled relationship on the pose and timing of contact, according to t f = θTg+2πn

ωT
,

where n is an integer number of rotations before collision, and θTg encodes the
contact pose. This integer constraint on the final time, combined with the complex
4Dgrasping envelope,makes this problem challenging to solve end-to-end as a single
optimal control problem. We note that for ωT → 0, wehave t f → ∞, which leads
to prohibitively slow solutions. Indeed this control approach is tailored for the case in
which the target’s angular velocity is faster than a simpler linear controller can handle
(e.g., by “chasing” the target point). In other words, our control approach should be
considered complimentary to a controller that can handle static or quasi-static cases.

Accordingly, we decompose the grasping problem into two phases. Phase 1 aligns
the spacecraft’s velocity vector with the desired approach vector (Fig. 6, left) and
phase 2 simply tracks this straight line trajectory and ensures proper contact timing
(Fig. 6, right). Importantly, the phase switch is assumed to occur sufficiently far
from the target as to guarantee a feasible, time-optimal solution—thus imposing
constraints on initial conditions, as discussed in Sect. 3.5.

To define this switching condition, we must work backwards from the desired
contact state within the grasping envelope. In principle, an appropriate selection of
approach trajectory canmap toany desired point in the grasping envelope. Practically,
however, the spacecraft cannot spin arbitrarily fast to match the object. In fact, it is
often desired for the spacecraft to have zero angular velocity for robust trajectory
tracking (i.e., so that thrusters are not spinning). Therefore, by forcing ωS = 0, the
relative angular velocity at contact is simply that of the target object, ωT.

There are many ways in which the remaining contact states (v∗, φ∗, d∗) may
be chosen. Given some estimate of the grasping envelope, one strategy would be
to inscribe a maximum radius sphere within the (3D) slice defined by Ω = ωT.
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The center of this sphere is one measure of the most robust target point. Therefore,
given some appropriate selection of contact state (v∗, ωT, φ

∗, d∗), the geometry of
the approach trajectory in phase 2 (see Fig. 6, right) can be uniquely defined as:

v = v∗, φ = φ∗, ωS = 0, β = sin−1

(
d∗ cosφ∗ + (lS + rT) sin φ∗

R

)
, (4)

where R is the distance of the spacecraft at the beginning of phase 2. Interestingly,
as discussed in [6], this optimal target point often corresponds to a non-zero offset
and angle of attack for spinning objects—a key difference from traditional grippers.

Note that this paper does not address attitude control, which is a function of the
specific arrangement of actuators for a given spacecraft. For the planar motion with
a reaction wheel considered here, the (1D) solution is trivial. We simply assume that
the spacecraft is able to rotate to the desired heading for grasping within t f .

3.3 Phase 1: Alignment

The goal of the initial alignment phase is to drive the spacecraft to the desired
approach vector computed by (4) in minimum time. Specifically, the final switching
condition is met at ts when,

vθ (ts)

−vr (ts)
= tan β. (5)

Intuitively, this canbe thought of as applying somecontrol input to effectively “rotate”
the velocity vector until it points at the desired contact location. Note from Eq. (4)
that β is a function of R, which is time-varying. Thus, while β cannot be computed
exactly a priori, Eq. (5) can easily be evaluated at each time step to check for the
switching condition.

The control input to achieve this in minimum time is simply a maximum thrust
normal to the approach vector, specifically:

u∗
θ (t) = umax cosβ

−vθ (t)

|vθ (t)| , u∗
r (t) = umax sin β

vr (t)

|vr (t)| . (6)

Since β is often small (within 10o for typical parameters and zero in the nominal
case), the dominant component of thrust is normal to the spacecraft’s position vector
(rS), effectively arresting the spacecraft’s angular momentum about the target. Fur-
thermore, the geometry of this thrust is such that the spacecraft’s speed will always
decelerate. Thus, a total speed constraint (that is not initially violated) will remain
obeyed. An apparent drawback of this approach is the inability to directly consider
position constraints, which may arise due to, e.g., narrow corridors within the ISS.
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However, as a last stage in a higher level planning framework, this controller canmake
some assumptions about the allowable set of initial states (e.g., from a kinodynamic
planner) that guarantee a collision-free “approach corridor”.

3.4 Phase 2: Final Approach

After aligning the velocity vector (along êβ ) in phase 1, the goal for phase 2 (starting at
t0) is to track this straight-line trajectory to intercept the target object at state (v∗, φ∗)
and location Tg using minimum fuel. Indeed, a periodic constraint is imposed on the
final time:

t f =
{

θTg (t0)+2πn
ωT

, ωT < 0
2π(1+n)−θTg (t0)

ωT
, ωT > 0

, θTg (t0) = θT(t0) − θ(t0) − φ∗ + β + d∗

rT
, (7)

where n is the integer number of full revolutions of the target object before contact.
The minimum feasible n also corresponds to the minimum time solution. For some
choice of n, we can formally state the 1D input-constrained minimum fuel optimal
control problem:

min
∫ t f

0
|u(t)|dt

s.t. Ẋ = AX + Bu

X (0) = [r, v0]T
X (t f ) = [D, v f ]T
umin ≤ u(t) ≤ umax

(8)

where X = [r, v], ṙ = v, D = 1
cosβ

[R − rT cos(φ − β) − lS cos(β − φ) − d
sin(β − φ)], and A and B represent the dynamics of a 1D double integrator. It
is known that the solution to an input constrained minimum-fuel optimal control
problem (where the system is controllable) will have a bang-off-bang form [15].
Additionally, for our specific problem, there are a family of fuel-optimal solutions
corresponding to the choice of n. For an initial radius (D) sufficiently large, an opti-
mal solution is to fire the thrusters one time in an off-bang-off regime, whereby the
timing and duration of the firing determines the impact speed (v f ) and time (t f ). The
total time is given by the sum of the initial coast phase (τ1), acceleration phase (τ2),
and final coast phase (τ3). Similarly, the total distance traveled (D) can be decom-
posed into three phases. With appropriate manipulation, this allows the timing to be
computed as:

τ1 = D + v f (τ2 − t f ) − |v2f −v20 |
2umax

|v f − v0| , τ2 = |v f − v0|
umax

. (9)



Trajectory Optimization for Dynamic Grasping in Space Using Adhesive Grippers 59

Note that this solution is only valid for 0 ≤ τ1 ≤ t f − τ2 and τ2 < t f . In other words,
a single-fire solution may not exist for spacecraft that starts too far away, approaches
too fast, too slow, or when v0 ≈ v f . For this case when τ1 ≥ t f − τ2, a two-fire,
bang-off-bang control is optimal, whereby the spacecraft immediately thrusts for
duration τ ∗

1 , coasts for τ ∗
2 at speed v2, and thrusts for the remaining τ ∗

3 . Similar to
(9), the timing of the firing can be computed as:

τ ∗
1 = |v2 − v0|

umax
, τ ∗

3 = |v f − v2|
umax

, v2 = Dumax − 1
2 |v22 − v20| − 1

2 |v2f − v22|
umaxt f − |v2 − v0| − |v f − v2| .

(10)
This solution is also only valid for τ ∗

1 + τ ∗
3 ≤ t f . Otherwise, the timing mismatch at

t0 is too large for a bang-off-bang regime to compensate. However, an appropriate
constraint on the initial state (discussed in Sect. 3.5), can guarantee that either a
single-fire solution (Eq. (9)) or two-fire solution (Eq. (10)) exists.

3.5 Approximate Region of Attraction

In summary, given some initial state, the two-phase control proceeds as follows:

1. Select a desired location on the surface of the target to grasp, Tg .
2. Using some model for the grasping envelope, select a robust target point (v∗, ωT,

φ∗, d∗) as the desired contact state.
3. Execute the control for phase 1 according to (6).
4. Watch for terminal condition given by (5) and switch to phase 2 when triggered.
5. Compute optimal single-fire control inputs according to (9).
6. If infeasible, compute the two-fire optimal control solution according to (10).
7. Execute phase 2 controller, optionally with a closed-loop tracking controller (e.g.,

LQR), to drive the spacecraft to the desired contact state.

In order to stitch this controller to a preceding planner, we would like to formally
characterize the set of initial states from which a feasible solution is guaranteed—
corresponding to, for example, the goal region of a kinodynamic planner. First,
Eqs. (9) and (10) will be used to derive a minimum distance, Dmin at which phase
2 must begin to guarantee a feasible solution for any possible target point. Then, a
conservative linearizion of the dynamics given by Eqs. (2) and (6) will provide an
inner approximation of the backwards reachable set to achieve this transition.

3.5.1 Region of Attraction for Phase 2

To derive theminimumdistance Dmin for phase 2, we start by realizing that in order to
guarantee feasibility for any choice of Tg (i.e., at least one feasible choice of n), then
it is sufficient to guarantee that a solution exists for all t f,min ≤ t f ≤ t f,min + 2π/ωT

(i.e., the time the target takes to complete one full rotation).
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For the single-fire solution given by Eq. (9), the minimum distance Dmin can be
derived be setting the difference in timing between the slowest solution and fastest
solution exactly equal to one rotation period: t f,max − t f,min = 2π

ωT
. For example, in

the case when the spacecraft needs to slow down (i.e., v f < v0), the slowest solution
is to apply umax immediately and coast at v f until impact, and the fastest solution is
to wait until just before impact to apply umax. Substituting this into (9) and (10) and
solving for Dmin, we have

Dmin = 2πv0v f

ωT|v f − v0| + |v2f − v20|
2umax

. (11)

The second term corresponds to the distance traveled during thrusting, and the first
term represents the distance required to adjust phasing of contact by up to 2π .

For a two-fire solution, we can take the same approach by computing t f,max −
t f,min = 2π

ωT
. In this regime, t f,min is achieved by accelerating as long as possible

before immediately decelerating to hit T at v f (i.e., τ ∗
2 = 0), and t f,max is the exact

opposite. However, in some cases t f,max = ∞, corresponding to the case when the
spacecraft can fully stop before accelerating. Thus Eq. (10) can be manipulated in
a similar way to solve for D∗

min, the minimum distance required for a guaranteed
solution in a two-fire regime:

D∗
min = min

{
v20 + v2f
2umax

,

∣∣∣∣ π

2ωT
− v0 + v f

2umax

∣∣∣∣
√

(v0 − v f )2 + 2πumax(v0 + v f )

ωT
− π2u2max

ω2
T

}
.

(12)

3.5.2 Region of Attraction for Phase 1

Now that we have characterized the minimum distance required at the phase 2 tran-
sition, we would like to compute the backwards reachable set through the control
input during phase 1 to find a set of initial states for which a solution is guaranteed.
However, the coupled, second order nonlinear dynamics fromEqs. (2) and (6) cannot
be solved in closed form. Instead, we can solve for a conservative approximation of
the minimum time, t̂s ≥ ts by linearizing the dynamics:

v̇r = ur + v2θ
r

≈ 0, (13)

v̇θ = uθ − vr vθ

r
≈ uθ,eff = uθ − vr (0)vθ (0)

r(0)
, (14)

where uθ,eff represents the reduced effective control in the êθ direction. For vr (0) < 0
(i.e., moving towards the target), uθ and C(t) = vr (t)vθ (t)/r(t) always have the
same sign. Furthermore, it can be shown that sgn( dCdt ) = −sgn(C(t)) ∀ t ∈ (0, ts),
if (v2θ + 2|vr vθ |)/r ≤ umax. In other words, the magnitude of C is monotonically
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decreasing, and |v̇θ | ≥ |uθ,eff| ∀ t ∈ (0, ts). Thus, v̇θ ≈ uθ,eff will serve as a conser-
vative approximation for computing t̂s .

Similarly, since it is assumed that vr < 0, the approximation that v̇r ≈ 0 yields a
conservative approximation of the inward radial distance traveled (	rmin) if v̇r ≥ 0,
which is true for β ≤ sin−1(v2θ /(rumax)). Finally, we can use the linearized dynamics
given by (13) and (14) to compute t̂s and 	rmin:

t̂s = vθ (0) + vr (0) tan β

uθ,eff
, 	rmin = vr (0)t̂s . (15)

Combining Eqs. (11), (12), and (15), we can express the total initial distance the
spacecraft must be from the target as:

r ≥ min(Dmin, D∗
min) + 	rmin. (16)

Note that the initial velocity in phase 2 (v0 in Eqs. (11) and (12)) is now approximated
by |vr (0)|. In summary, the set of initial states for persistent feasibility is defined by
(16) and the following assumptions:

vr < 0,
v2θ + 2|vr vθ |

r
≤ umax, β ≤ sin−1

(
v2θ

rumax

)
. (17)

While these are complicated, interdependent expressions, in the context of a sampling-
based motion planner, they are cheap to evaluate (i.e., query the goal state).

4 Experimental Results

The two-phase grasping controller developed in Sect. 3 was implemented on the
Stanford free-flyer test bed (see Fig. 7). A simple PD controller was used to control
free-flyer attitude in Phase 2. A passive target object was manually spun and pushed
at some initial coasting velocity. The free-flying robot equipped with eight thrusters
and a reaction wheel was pushed at varying initial velocities (within the region
of attraction), immediately executing the grasping controller. Figure8 displays five
(of 16) example trajectories overlaid on the (ideal) simulated trajectory. A video
of one example trajectory can be found at: https://www.youtube.com/playlist?list=
PL8-2mtIlFIJrHMGNeKmHnkB1XBD0iKvto.

Overall, there is good agreement between themeasured and simulated trajectories.
Most of the deviation canbe attributed tomodeling errors—inparticular, the changing
mass of the free-flyers as the CO2 tanks drain (to be addressed with online system
identification in futurework).We also observed some timing errors during the second
approach phasewhich caused the free-flyer to occasionallymiss the target point. This
is because the reference trajectory for the second phase was computed immediately
after phase one, which can result in mis-timed grasps when unanticipated modeling

https://www.youtube.com/playlist?list=PL8-2mtIlFIJrHMGNeKmHnkB1XBD0iKvto
https://www.youtube.com/playlist?list=PL8-2mtIlFIJrHMGNeKmHnkB1XBD0iKvto
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Fig. 7 Autonomous grasping experiments on the Stanford free-flyer test bed. a A free-flying robot
floats on frictionless air bearings and is equippedwith eight compressed gas thrusters and a flywheel.
b The trajectory controller developed in Sect. 3 is executed on-board to dynamically grasp c a
translating and spinning target

Fig. 8 Measured motion capture data for three example trajectories (solid lines) of a free-flying
robot grasping a spinning target (black) overlaid with simulated predictions (dashed lines). The
points on the surface of the target represent the locations of the target point (Tg) upon impact for
the corresponding color. Gripper orientation is indicated by a straight line

errors such as table friction are present. Future experiments will incorporate an
MPC-style implementation of the phase two controller that constantly recomputes
the reference trajectory for more robust grasping.

5 Conclusions

In this paper we presented an optimal control approach for the problem of dynamic
grasping of tumbling objects in space using gecko-inspired adhesive grippers. We
extended the characterized grasping envelope for a curved surface gripper to the
case when both the spacecraft and target object are free floating and of comparable
mass. We developed a two-phase control architecture that decomposes the grasping
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problem into an initial alignment phase and final approach phase, each of which
with time optimal solutions. A conservative inner approximation of the region of
attraction for initial states was derived analytically to serve as a terminal goal region
for a preceding motion planner. Experimentation is ongoing, but the preliminary
results constitute one of the first successful demonstrations of autonomous surface
grasping in a high-fidelity spacecraft analog test bed.

This paper leaves numerous important extensions open for future research. First,
it is important to extend the controller to handle non-cylindrical objects, whereby
surface target selection should be addressed in a more principled way. Second, we
plan to introduce an actuated arm that allows for more robust acquisition through
active damping and impedance matching, and also for manipulation tasks. Third, we
plan to extend this controller and gripper design to allow for out-of-plane motion.
Finally, future experiments will be integrated with a preceding kinodynamic motion
planner to negotiate obstacle-rich environments.
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