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Abstract Autonomous path-following systems based on the Teach and Repeat par-
adigm allow robots to traverse extensive networks of manually driven paths using
on-board sensors. Thesemethods arewell suited for applications that involve repeated
traversals of constrained paths such as factory floors, orchards, and mines. In order
for path-following systems to be viable for these applications they must be able
to navigate large distances over long time periods, a challenging task for vision-
based systems that are susceptible to appearance change. This paper details Visual
Teach and Repeat 2.0, a vision-based path-following system capable of safe, long-
term navigation over large-scale networks of connected paths in unstructured, out-
door environments. These tasks are achieved through the use of a suite of novel,
multi-experience, vision-based navigation algorithms. We have validated our system
experimentally through an eleven-day field test in an untended gravel pit in Sudbury,
Canada, where we incrementally built and autonomously traversed a 5Km network
of paths. Over the span of the field test, the robot logged over 140Km of autonomous
driving with an autonomy rate of 99.6%, despite experiencing significant appearance
change due to lighting and weather, including driving at night using headlights.

1 Introduction

Autonomous path-following algorithms based on the Teach and Repeat paradigm
allow robots to repeat networks of connected paths previously driven by human
operators using only on-board sensors.

The unique task of autonomously traversing a human-taught path gives a robot a
strong prior on where it is safe to drive [2]. This allows for confident, autonomous
navigation through rough, outdoor terrain that would otherwise be inaccessible or
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require complex, generic, and potentially risky terrain-assessment algorithms. Fur-
thermore, thesemethods can be implemented to have bounded computation costs and
minimal map sizes [7], making them well suited for long-range navigation. These
benefits make autonomous path following appealing for industrial applications that
consist of repeated traversals over constrained paths, such as factory floors, orchards,
andmines. They are alsowell suited to applications that consist of autonomous explo-
ration and retrotraverse such as search-and-rescue and hazardous-exploration robots.
However, autonomous path-following systems suited for these applications need the
ability to navigate large-scale environments over long time periods. Furthermore,
they require constant metric localization to the manually driven path as input to a
path-tracking controller to ensure minimal drift, and the ability to recognize and cope
with obstacles blocking the path. These requirements pose a serious challenge for
vision-based systems whose advantages of cost and commercial ubiquity come at the
expense of robustness to appearance change. This paper presents Visual Teach and
Repeat (VT&R) 2.0, a path-following system capable of long-term, navigation on
large-scale networks of paths using only a stereo camera through the integration of
a suite of recently published navigation algorithms [2, 14, 19, 21]. Furthermore, we
present results from an extensive outdoor field test, illustrated in Fig. 1, that consisted
of incrementally building and autonomously traversing a 5km network of connected
paths over the span of eleven days at an untended gravel pit in Sudbury, Canada.
Over these eleven days, the robot traversed over 140km with an autonomy rate of
99.6% of distance traveled while experiencing significant appearance change due to
lighting, weather, and terrain modification.

The remainder of this paper is outlined as follows. Work related to VT&R 2.0
is summarized in Sect. 2. Details of the VT&R 2.0 system are presented in Sect. 3.

Fig. 1 A Grizzly RUV deployed with an autonomous path-following algorithm navigating a 5km
network of manually taught paths. Applications that rely on repeated traversals of constrained paths
will greatly benefit from such algorithms: such as mining, agriculture, and patrol robots. In order
to be useful for such applications, autonomous path-following algorithms will need to be able to
cope with large-scale maps, and appearance change over long periods of time. Using a novel multi-
experience localization andmappingmethod, the robot pictured above autonomously traversed over
140km over two weeks, experiencing significant appearance changes in the environment
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Section4 provides information on the experimental set up of the field test with results
presented in Sect. 5. Failure conditions of VT&R 2.0 and lessons learned from the
field are presented in Sect. 6 with a conclusion in Sect. 7.

2 Related Work

VT&R 2.0 is an evolution of our previous system that provides short-term, vision-
based path following on large-scale tree structures, VT&R 1.0 [6, 7]. While effective
at long-range navigation, the system is highly susceptible to lighting change while
operating outdoors, limiting successful operation to a window of only a few hours.
This method was extended to multi-day operation through the use of color-constant
images andmultiple stereo cameras [18], but is still susceptible to longer-termappear-
ance change due to weather and seasons. Apart from VT&R 1.0, short-term, vision-
based path-following systems have been demonstrated using heading-only naviga-
tion [4, 10]. Despite the fusion of wheel odometry, the lack of a reliable translation
estimate makes navigation in constrained environments unsafe. Path-following sys-
tems that rely on active sensors provide long-term, lighting-invariant navigation and
have been demonstrated using appearance-based methods on lidar-generated inten-
sity images [15] and point-cloud registration on dense 3D scans [11]. However, these
systems struggle with motion distortion issues and rely on expensive and sometimes
commercially unavailable sensors.

It iswell known that constant-time localization andmapping can be achieved using
globally inconsistent, topometric pose graphs [20], even with loop closures. Long-
range navigation with VT&R 2.0 is possible through the use of this representation,
allowing the system to build large-scale networks of paths with smooth path tracking
across loop closures [21]. Long-term navigation with VT&R 2.0 is achieved through
the use of the Multi-Experience Localization (MEL) algorithm [19]. This method is
inspired by the Experience-Based Navigation (EBN) framework [5], which localizes
against a number of past experiences, providingmetric localization to themost similar
experience. In contrast,MEL provides localization to the singlemanually taught path
using experiences gathered during autonomous operation. Due to their reliance on
multiple experiences, both EBN andMEL are inherently computationally intractable
if left unbounded. A viable strategy to overcome this issue is to select a fixed-
size subset of experiences for the localizer. [12] use past localization success to
recommend experiencesmost likely to localize well in the future for the EBN system.
In contrast, our system selects experiences most similar visually to the live view [14].
Another work closely related to MEL is the ‘Summary Maps’ method [16]. This
method provides metric localization across seasonal appearance change through a
multi-experience map that is pruned and curated offline. This method is successful,
but requires downtime between traverses to performmapping on an offline server—a
constraint which restricts use for some applications.

Safe navigation with VT&R 2.0 is achieved through a place-dependent, multi-
experience terrain-assessment algorithm [2]. Traditional terrain-assessment methods
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are limited by the ability to label the terrain in a human-interpretable way, often
resulting in conservative estimates [8]. More recent methods alleviate these issues
through the use of previous experiences to learn traversability [3, 9], but still lead
to conservative estimates in difficult environments. In contrast, our system learns a
separate classifier at every place on the path [2], achieving better performance than
a single general classifier applied to every place.

3 System Overview

This section provides an overview of the following components ofVT&R2.0: (i)map
structure, (ii) network construction, (iii) route planning, (iv) autonomous path follow-
ing, (v) multi-experience localization, (vi) appearance-based experience selection,
and vii) place-dependent terrain assessment.

The Spatio-Temporal Pose Graph: Our system stores the map in a database
indexed by a Spatio-Temporal Pose Graph (STPG). Depicted in Fig. 2, the graph
structure contains vertices, temporal edges, and spatial edges. Vertices, each with a
reference frame, F−→, store raw sensor observations and triangulated 3D landmarks
with associated covariances and descriptors.1 The edges link vertices with uncertain,
relative SE(3) transformations. Temporal edges (blue lines) connect temporally adja-
cent vertices, while spatial edges (green lines) connect those that are spatially close
(but may be temporally distant). Edges are considered privileged (solid lines) if the
robot was being manually driven, or autonomous (dashed lines) if the robot was
autonomously repeating a route. VT&R 2.0 uses the STPG to represent a multi-
experience network of connected paths, where each experience is a collection of ver-
tices linked by temporal edges. The subgraph containing all privileged experiences
represents the collection of safe, drivable paths. Autonomous experiences linked to
this privileged subgraph are used to aid the navigation algorithms, by providing a
wealth of place-specific information.

Network Construction: VT&R 2.0 is operated through the user interface shown
in Fig. 3, which provides an intuitive means to construct networks of paths, and com-
mand autonomous traversal to goals on the networks. A network is built by adding
a teach goal (left panel) and manually driving the robot; this adds privileged experi-
ences to the STPG. If the network exists prior to the teach, then a localization search
centered around the robot’s topological state estimate is performed. Upon successful
localization, a privileged spatial edge is created, branching the new experience off
the existing network. The robot will then add vertices and temporal edges to this
new experience through our stereo VO pipeline [19] as it drives. Live experiences
can be merged back into the network through loop closures initiated through the UI.
The operator selects a region for the merge, and the system attempts to localize the

1We use SURF features triangulated from greyscale and color-constant stereo measurements in our
implementation, but the overall system is generic to any point-based, sparse visual feature.
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Fig. 2 Overview of the STPG data structure used to represent our multi-experience network of
paths. Experiences are shown as rows of vertices (black triangles) connected metrically through
blue temporal edges calculated via VO while the robot is either being manually driven (solid) or
autonomously repeating (dashed). Experiences are related metrically through green, spatial edges,
calculated through localization and can either be added autonomously while driving (dashed) or
manually while adding a branch or loop closure (solid)

Fig. 3 Overview of the
VT&R 2.0 user interface
used to build networks of
connected paths and
command the rover to
autonomously traverse the
network

live view to the privileged vertices in this selection. Upon successful localization,
the operator can confirm the result, adding a privileged spatial edge from the live
vertex to the target. Otherwise, the user may continue driving to improve alignment,
or cancel the merge.

Route Planning: Autonomous traversal begins with planning a route in the UI
by adding a repeat goal (active in Fig. 3) to the queue, and selecting a sequence
of waypoints for the robot. To plan the path, the system uses the safe, privileged
subgraph of the network, including privileged experiences, and privileged spatial
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edges from branching and merging. Given the robot’s current topological position
in the network and a set of waypoints, the planner finds the minimum-cost path that
covers all selected waypoints in sequential order. Two edge costs we find useful are
the path distance, and the temporal age between the live experience and the most
recent traversal of the edge (combining absolute time and time-of-day). Since our
system localizes against multiple autonomous experiences, planning over recently
traversed edges is a heuristic to improve the likelihood of successful localization.

PathFollowing: Given a planned route through the privileged network, the system
creates a new autonomous experience in the network, and attempts to localize the
live view to a vertex in the privileged path. This process is identical to the first step of
teaching, except the added spatial edge is flagged as autonomous. Once connected to
the privileged experience, the system propagates the position estimate using stereo
VO, which is sent to a model-predictive-control path tracker [17]. When a new
keyframe is added as a vertex in the live run, it is localized to the closest vertex
in the privileged path using MEL, detailed in the next subsection. Upon successful
localization, an autonomous spatial edge is added between the two vertices.

Multi-Experience Localization: VT&R 2.0 provides metric localization with
respect to the privileged path through the Multi-Experience Localization (MEL)
algorithm [19]. Illustrated in Fig. 4, MEL estimates the uncertain transformation,
{T̂bd , �̂bd} (purple, dashed line), between the live vertex, Vb, and the estimated clos-
est privileged vertex, Vd . This process takes a window of recommended experiences
(green rectangles) as input, and transforms their landmarks to the coordinate frame

Fig. 4 An overview of the MEL algorithm. Given a selection of experiences to localize against
(green rectangles), The algorithm solves for the transformation between the vertex in the live
experience, Vb, and the vertex in the map experience, Vd , by transforming all landmarks in the
localizationwindow into the coordinate frame of Vd and performing a simple keyframe-to-keyframe
bundle adjustment problem
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of the target privileged vertex, Vd , using the temporal and spatial edges. The uncer-
tainty of the transformed landmarks includes that from the source landmark and the
transform itself. Landmarks originating from the live vertex, Vb, are then matched
against these consolidated map landmarks. Matching consists of checking the sim-
ilarity of unmatched, live landmarks to landmarks at each map vertex, starting at
Vd , and expanding in a breadth-first search. Similarity is determined by the key-
point Laplacian sign, feature descriptor distance, and a weak check on projected
landmark position in image space using the prior. The process continues until one
of the following exit conditions is met: (i) enough matches are found, (ii) the time
limit has expired, or (iii) the map window is exhausted. The matches are first verified
to remove outliers and initialize Tbd , and a motion prior is built by compounding
VO transforms and the most recent successful localization. The uncertain transform,
{Tbd ,�bd}, is iteratively refined in a robust, nonlinear, least-squares optimization
using our Simultaneous Trajectory Estimation and Mapping (STEAM) engine [1].

Appearance-Based Experience Selection: Matching against all intermediate
landmarks in theMEL algorithm becomes computationally intractable as the number
of experiences grows. Only a subset of these are actually required to localize the live
vertex—if we restrict our localization problem to the most relevant, we maintain
real-time performance. To determine a relevant subset of experiences, we would like
to find those with similar appearance to the live view. To this end, we have devel-
oped an algorithm [14], that selects a small subset of experiences based on a BoW
appearance summary, illustrated in Fig. 5.

Each vertex in the STPG contains a BoW descriptor, quantized from the sta-
ble (tracked by VO) features in the keyframe against a local visual vocabulary. To
improve robustness to viewpoint and signal-to-noise ratio, a grouped descriptor is

Fig. 5 An overview of the experience selection algorithm using BoW. 1. Given the VO feature
matches for the live frame, a sliding-window BoW descriptor is constructed. 2. The BoW descriptor
is compared against those for past experiences, centered on the coarse localization. Themost similar
experiences are selected for use in the remainder of the localization problem
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formed by summing the descriptors from a local group of vertices, ψ , from the same
experience [13]. At the start of each MEL problem, the local BoW descriptor (green
rectangle) around the live vertex (white triangle) is compared to those of each past
experience (lower green rectangles) using the cosine similarity. The N experiences
with the highest similarity to the live experience are selected for MEL, where N is
chosen to maintain real-time performance (5–10). Since this comparison is very fast,
this method allows us to triage a large number (100s) of experiences very quickly.

Place-Dependent Terrain Assessment: We exploit the fact that during VT&R,
the robot only needs to assess the traversability of terrain that it has already seen and
driven.All of the drivable pathswere at one pointmanually taught, andweassume that
they were safe at that point in time. Traversability of the terrain ahead of the robot is
determined by comparing it to known safe examples from previous experiences, and
labeling any terrain that is sufficiently different as unsafe. This reduces the problem
of terrain assessment to the simpler problem of change detection—allowing slow,
gradual change over the lifetime of the path (such as growing grass), and stopping for
large, sudden changes (such as a fallen tree). This place-dependent terrain-assessment
algorithm first appeared in [2], and an overview of the pipeline is shown in Fig. 6.
Patches are compared by taking the absolute difference of individual cell heights
between the lookahead patches and each training patch individually. The patch cost
is defined as the worst of these cell differences for each lookahead-training pair, and
the traversability of the terrain is determined based on the lowest cost to previous
experiences.

Fig. 6 An overview of the place-dependent terrain assessment. 1. Patches are computed at the
robot location using recent data in the underfoot set (purple). 2. Patches are computed ahead of the
robot at vertices in the lookahead set (green). 3. Lookahead patches are compared to previously
computed underfoot patches from a spatially local training set (blue). The traversability ahead of
the robot is based on its similarity to previous experiences
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Fig. 7 Orthomosaic imagery
of the 5km network of paths
at the Ethier Sand and Gravel
in Sudbury, Ontario, Canada

4 Experimental Setup

Between the dates of 10/06/2016 and 16/06/2016, an extended field test of VT&R
2.0 was conducted at an untended gravel pit in Sudbury, Canada. Illustrated in Fig. 7,
this field test was designed to stress test our system’s ability to traverse a large-
scale network of paths, in an unstructured environment, for an extended period of
time, over significant appearance change. This location was selected for its variety
of challenging environments, including rich vegetation and shifting sand with little
visual texture.

The hardware configuration for the this field test consisted of a Clearpath Robotics
Grizzly RUV, shown in Figs. 7 and 7, equipped with a Point Grey Research (PGR)
Bumblebee XB3 stereo camera, and a pair of 9-watt LED headlights for nighttime
operation. All of our VT&R 2.0 code ran on a Lenovo P50 laptop with a Intel®
CoreTM i7-6820HQ CPU equipped with a Quadro M2000 GPU.

Daily field test activities are outlined in Table1. The majority of the network was
taught on the first three days of testing during overcast conditions. During the first
five days, the network was traversed from day to night, accumulating over 95km
of driving. On each of the remaining six days, the robot autonomously traversed
between 5 and 10km a day. For each day, the autonomy rate remained above 99%. It
is interesting to note that the majority of manual interventions occurred on the first
two sunny days. Details on the causes of manual interventions are left for Sect. 6.
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Table 1 Overview of the 2016 Sudbury Field Test

Date Start
(hh:mm)

End
(hh:mm)

Weather Teach
Dist. (km)

Auto.
Dist. (km)

Intervention
Dist. (m)

Auto.
Rate

2016/06/06 11:15 21:19 Rainy 1.56 13.45 12.56 99.91

2016/06/07 05:42 20:42 Overcast 1.88 17.61 8.74 99.95

2016/06/08 07:21 21:10 Rainy 0.83 23.95 72.66 99.70

2016/06/09 06:25 21:23 Sunny 0.03 19.10 148.69 99.22

2016/06/10 07:13 21:17 Sunny 0.33 20.76 171.62 99.17

2016/06/11 07:40 20:46 Sunny 0.22 09.64 41.49 99.57

2016/06/12 09:59 22:35 Sunny 0.20 08.95 20.04 99.78

2016/06/13 10:38 22:45 Sunny 0.00 07.87 27.65 99.65

2016/06/14 07:33 22:50 Sunny 0.00 07.63 53.42 99.30

2016/06/15 12:16 17:57 Sunny 0.00 07.37 2.27 99.97

2016/06/16 09:16 14:57 Sunny 0.00 04.15 2.85 99.93

Total – – – 5.0 140.5 561.99 99.60

5 Results

This section presents the results of our field test. We begin with a detailed look
at localization performance for a 240m section of the network whose appearance is
shown in Fig. 8 and path is highlighted in the top half of Fig. 1 as a blue line. The path
begins in a meadow with tall grass and rapidly inclines up to a ridge containing thick
vegetation bordered by a tree line, finishing with a steep descent into a sandy gravel
pit. During the field test, this stretch of the network was autonomously traversed
109 times with only two manual interventions required. We chose to highlight the
performance results of this section of the network in particular because it showcases
every variety of appearance change seen during this field test and the rich vegetation
and tree line make the environment challenging for vision-based navigation.

Figure9 shows the relationship between the similarity score usedby the experience
selector to recommended experiences and feature inlier matches for all autonomous
traverses of the example path. The plot shows that experiences with higher scores
(>0.6) in general have higher feature match counts to each other, validating the
selector’s ability to select experiences that will provide more matches.

Figure10 shows localization results for all 109 autonomous traverses of the path.
The left- and right- hand plots show the Cumulative Distribution Function (CDF) of
the cross-track uncertainty and inlier feature matches, respectively. We define cross-
track uncertainty as the one-standard-deviation uncertainty of our lateral translation
estimate relative to the privileged path. The plot can be read as “for y%of the traverse,
the localizer reported less than xm of cross-track uncertainty”. For the majority of
traverses, the cross-track uncertainty stayed below 10cm. The exceptions are three
traverses where the uncertainty rose to 5, 10, and 15cm at the 80% mark. This same
trend can be seen in the right-hand feature inlier CDF, which shows that for all but
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Fig. 8 The changing appearance of the 240m example path. The top-left image was taken during
network construction (no tire tracks), and all subsequent images were successfully localized to it
using MEL. This section of the network is challenging for vision-based navigation due to strong
shadows cast by a tree line and tall vegetation that moves in the wind
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Fig. 9 Experience selector results: Normalized cosine similarity versus feature inlier matches for
the vegetation-rich area
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Fig. 10 Localization results for a 240m section of the network, highlighted in Figs. 1 and 8. left:
CDF of the 1 − σ localization uncertainty for all auotnomous traverses on this path. right: CDF of
the inlier feature matches for all autonomous traverses on this path. note: log scale on x-axis
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Fig. 11 Localization performance over the entire 11day field trial with the daylight cycle colored.
For each plot the dark line shows the median, the dark shaded area shows the interquartile region,
and the light shaded area shows the mini/max extents. top: localization computation time of MEL
including experience selection. bottom: inlier localization feature matches. note: log scale on y axis

three runs the localizer had more than 20–30 matches at the 80% mark. This high
uncertainty and low match count can be correlated to traverses during sun glare and
highwinds, causing poor localization performance.More details on these localization
failure cases is discussed in Sect. 6.

Figure11 shows localization computation times and inlier feature matches for
every autonomous traverse in the field test. For both plots, the dark-purple line shows
the median values of the traverses, the dark-green, shaded area shows the upper (Q2)
and lower (Q1) quartile, and the light-green, shaded area shows the min/max inlier
values. The background of the plots are colored with respect to daylight conditions.
Note the three instances of night driving on the far right. Timing results (top plot)
show that the median localization computation time for most traverses is below or
near the 100ms mark. This value is safely within the tolerance for online driving for
the VT&R 2.0 system, whose parallelization allows for VO at the frame rate of the
sensor and localization at the rate of keyframe creation which is between 2 and 4Hz.

Feature matches (bottom plot) show that the median and Q1match count typically
stayed between 100 and 30 inlier matches for the majority of traverses. However,
there are instances of median values dropping to single digits with Q1 values of zero.
These cases can be attributed to navigation in environments challenging for vision-
based navigation during difficult weather conditions. These include high winds in
vegetation-rich areas, sunshine and terrain modification in open desert areas, strong
shadows on tree-lined roads, and glarewhen the elevation of the sun is low.A detailed
analysis of these corner cases can be found in Sect. 6.

During the field tests, the VT&R 2.0 system ensured safe driving through the
place-dependent terrain-assessment algorithm. A qualitative example of the algo-
rithm is illustrated in Fig. 12, in which a human blocked the path on the vegetation-
rich ridge area illustrated in Figs. 1 and 8. The robot was able to identify a
change in the environment caused by the human obstacle and decided to stop. The
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Fig. 12 Example of the
place-dependent
terrain-assessment algorithm
correctly classifiying a
human in the path as unsafe

Table 2 Accuracy results for the place-dependent terrain-assessment algorithm.

Obstacles No obstacles

True Positives False Negatives True negatives False positives FPR

Count 29 0 20120 56

Percentage (%) 0.14 0 99.58 0.28 0.28

quantitative performance of the algorithm is measured using the number of true
positives (TP) (obstacles correctly identified), false positives (FP) (obstacle detected
when no obstacle present), true negatives (TN) (safe terrain correctly identified), false
negatives (FN) (missed obstacles), and false-positive rate (FPR), defined as FP

FP+TN .
which can give more insight into the performance of the system since the nature of
the terrain-assessment problem results in many more examples of safe terrain than
examples of obstacles.

The terrain-assessment results are shown in Table2. Notably, there are no false
negatives, meaning that all obstacles were identified on the path (100% recall). In
the absence of obstacles, only 56 false positives occurred in over 20000 estimates
which translates to a false-positive rate of 0.28%. This is extremely low, and is
a better indicator of algorithm performance than the typically reported precision
(34%) because of the large imbalance of obstacle to obstacle-free examples. The
results show that the algorithm is able to safely navigate in challenging environments
with very few false positives per distance traveled.

6 Challenges/Lessons Learned

Difficult Conditions: For the majority of the 140km of autonomous driving, the
median inlier match count was at or above a safe value of 50, as shown in Fig. 11.

However, there were a select few traverses with median values near 10 matches,
with a Q1 value of zero. This poor localization performance can be attributed to
traversing in conditions that are difficult for vision-based navigation. The conditions
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open desert windy vegetation tree lined road sun glare

Fig. 13 Example images of areas that remain difficult for vision-based navigation. from left to right:
i open desert areas with heavy vehicle traffic, ii lush vegetation during high winds, iii tree-lined
corridors with strong shadows, and iv sun glare

that were encountered during the field test are highlighted in Fig. 13. Open, desert
areas contain few features that persist over time with vehicles, wind, and weather
changing the shape of the sand on a daily basis, which causes any stable features to
be limited to the horizon. Vegetation-rich areas are typically not a problem for the
VT&R 2.0 system, except when high winds are present, which causes the vegetation
to rapidly sway back and forth, causing issues for outlier rejection for both localiza-
tion and VO. Tree-lined corridors cast strong shadows on the road on sunny days.
In these conditions, the majority of inlier matches originate from these ephemeral
features. With multi-experience systems, this can lead to incorrect state estimates
if the majority of inlier matches arise from features that have all moved with the
elevation of the sun. The final difficult condition encountered during the field trial is
glare from when the sun is low on the horizon, causing images to be oversaturated.
It was in these conditions on the sunniest days of the field test where the majority of
manual interventions occurred.

Manual Interventions: Figure14 displays the manual interventions encountered
due to localization failures. Trivial interventions were manifestations of a software
bug that occurred when the system experienced a VO error, which would stop the
robot until the operator drove it forward approximately 0.3m to trigger a new vertex
in the graph. As the nature of this error is somewhat random, the distribution of trivial
interventions is nearly uniform across the network. This bugwas aminor issue related
to the logic of switching between states after a VO error and was resolved after the
conclusion of this field test.

Minor interventions were the result of the robot being slightly out of its tracks,
which required a small course correction to continue autonomous operation. Thiswas
a result of poor localization for short distances, which corresponded to the difficult
conditions previously mentioned. Major interventions (yellow lines) occurred when
the robot was significantly off course and could not recover. These are a result of
extended localization failures without the ability to recover. During the field test the
robot experienced interventions in the following areas: i) the tree-lined road when it
was sunny and windy (top left), ii) the vegetation-rich area during high winds (mid
right), and iii) the open desert area in sunny conditions after heavy vehicle traffic.

A more detailed look at localization performance in this desert area is displayed
in Fig. 15. This 50m path was the most difficult to localize against, running through
flat, sandy ground with daily vehicle traffic. After the fifth day of testing, a new path
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Trivial
Minor
Major

Fig. 14 Manual interventions during the 140km field trial due to localization issues
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Fig. 15 Localization results a 50m, open desert section of the network, highlighted in Fig. 13. left:
CDF of the 1 − σ localization uncertainty for all auotnomous traverses on this path. right: CDF of
the inlier feature matches for all autonomous traverses on this path. note: log scale on x-axis

was rerouted around the trouble area. It can be seen in the figure that the uncertainty
is much higher than the vegetation-rich ridge area highlighted in Sect. 5, with 1 − σ

cross-track uncertainty between 5 and 10cm for the majority of the traverses. for
three traverses, the maximum uncertainty was as high as 1m. This corresponds with
the feature inlier count, where 40% of the traverse had less than 10 inlier feature
matches, for traverses older than 2days since map creation.
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7 Conclusion/Future-Work

This paper presents the long-term, long-range autonomous path-following system,
Visual Teach and Repeat (VT&R) 2.0. We present results from an extended field test
demonstrating our system’s ability to safely traverse large-scale networks of paths
across appearance change as different as night-vs-day in challenging, unstructured
environments.Over an elevendayperiodour system traversed a5kmnetworkof paths
accumulating over 140km of autonomous driving with an autonomy rate of 99.6%.
However, there remain challenges for vision-based, autonomous path-following sys-
tems related to difficult outdoor conditions that must be addressed. Chief amongst
them are environments and conditions with ephemeral ground features such as open
deserts, tree-lined roads, and high winds.

Future work on the VT&R 2.0 system will be focused on quantifying the scale
of our uncertainty, which is calculated at every stage of the localization process,
but has not undergone a rigorous evaluation with respect to ground truth to ensure
consistency. Once this process is undertaken, the uncertainty can be used to inform
the robot to abandon an autonomous traversal before it is too far off the path. Because
the VT&R 2.0 system is always adding a new experience into the map, in the event of
localization failure, it should be possible to use the current experience to backtrack
to a safe area and replan or reattempt the traversal.
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