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Abstract The reduced operational cost and increased robustness of unmanned aerial
vehicles has made them a ubiquitous tool in the commercial, industrial and scientific
sector. Especially the ability to map and surveil a large area in a short amount of time
makes them interesting for various applications. Generating a map in real-time is es-
sential for first response teams in disaster scenarios such as, e.g. earthquakes, floods,
or avalanches or may help other UAVs to localize without the need of Global Naviga-
tion Satellite Systems. For this application, we implemented a mapping framework
that incrementally generates a dense georeferenced 3D point cloud, a digital surface
model, and an orthomosaic and we support our design choices with respect to com-
putational costs and its performance in diverse terrain. For accurate estimation of
the camera poses, we employ a cost-efficient sensor setup consisting of a monocular
visual-inertial camera rig as well as a Global Positioning System receiver, which
we fuse using an incremental smoothing algorithm. We validate our mapping frame-
work on a synthetic dataset embedded in a hardware-in-the-loop environment and in a
real-world experiment using a fixed-wing UAV. Finally, we show that our framework
outperforms existing orthomosaic generation methods by an order of magnitude in
terms of timing, making real-time reconstruction and orthomosaic generation feasi-
ble onboard of unmanned aerial vehicles.
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1 Introduction

A fast and precise overview of an area is important for first aid teams in disaster
scenarios such as earthquakes, floods, or avalanches. In particular, digital surface
models (DSM) and orthomosaics are essential tools to support the human operator in
quick decision-making. An orthomosaic gives a broad overview of the surroundings
and helps the human operator to find regions of interest. Furthermore, orthomosaics
enable every agent with a camera to infer its own absolute pose by employing feature
extraction or image matching. The orthomosaic can therefore be used to localize
the robot and other unmanned aerial vehicles (UAVs) while solely relying on an
image stream [1]. An orthomosaic image is obtained by correcting aerial images for
perspective and camera distortion using the information about the camera intrinsics
and camera poses such that the generated image is true to scale and corresponds to a
map projection throughout the image. The task of true orthorectification requires a
three-dimensional model of the scenery. This is necessary in order to appropriately
map intensities observed by the perspective camera to their location with respect to
the orthographic camera. The DSM represents the three-dimensional model in form
of a height map and furthermore helps to detect changes in elevation or to plan robot
or human missions. The literature distinguishes between a DSM and a digital terrain
model (DTM). The DSM includes the earth’s surface and all objects such as buildings
and trees on top of it. In contrast, the DTM models the bare earth’s surface. In this
publication, we are only interested in generating DSMs.

2 Related Work

The literature for creating overview images can be roughly categorized into panorama
and mosaic generation where we utilize the distinction from [2, p. 12]: “Panorama
is an extension of field of view (FOV) while mosaic is an extension of point of view
(POV)”. The mosaic generation can be divided into forward projection, using e.g.
homographies or dense point clouds, and backward projection, using e.g. ray tracing
in combination with grids or triangle meshes. An overview of the categories is given
in Fig. 1. In this publication, we describe and compare a homography-based and
point cloud-based forward projection, as well as a batch, and incremental grid-based
backward projection approach by analyzing the advantages and disadvantages in
particular with respect to their real-time capabilities.

All of the approaches above are incorporated in our end-to-end mapping frame-
work (cf. Fig.2) that tightly couples IMU odometry, GPS position and visual cues
in a smoothing-based estimator and thus does not detach state estimation from or-
thomosaic generation. In summary, we claim the following contributions:

e A real-time incremental end-to-end dense reconstruction and orthomosaic gen-
eration framework for UAVs that tightly couples state estimation and seamless
mosaic generation.
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Fig.1 Categories for generating an overview image. In this paper, we analyze a homography-based
and point cloud-based forward projection, as well as a batch and incremental grid-based backward
projection approach
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Fig.2 Systemoverview: The IMU, camera, and GPS measurements are fused in a smoothing-based
optimizer. The optimized camera poses and images are used as input for the dense reconstruction
and orthomosaic generation. The DSM is updated incrementally from the 3D dense georeferenced
point cloud. The orthomosaic is computed via an incremental backward grid-based approach while
employing the DSM or a planar assumption and considering the optimal viewing angle

e Most importantly, we propose an incremental grid-based orthomosaic generation
algorithm that is suitable for real-time applications in arbitrary terrain by con-
sidering the surface model and best viewing angle. We validate its performance
on a synthetic and real-world dataset with respect to homography-based, point
cloud-based, and batch alternatives.

e We open-source our framework aerial_mapper consisting of all described
DSM and orthomosaic generation approaches. Our framework augments the effi-
cient and modular grid_map library [3] with utilities for georeferenced mapping
from aerial views.

2.1 Panorama Generation

Many approaches exist to generate a panoramic view given a set of images by ap-
plying a homography. Brown et al. presents in [4] an approach to robustly stitch a
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set of unordered images to a seamless panorama assuming rotations only around the
optical axis. The main steps consist of feature extraction, matching in feature space,
applying RANSAC and then computing the homography and applying bundle ad-
justment. Steedly et al. [5] build up on [4] and predict overlapping images more
efficiently by utilizing the fact that the video stream is not unordered. Agarwala et
al. [6] generate a multi-viewpoint panorama of a street using a homography and
Markov Random Field (MRF) optimization. Laganiere et al. [7] use homographies
to generate bird-eye views for teleoperation of a robot. All of the approaches have in
common that they focus on obtaining seamless and visually appealing panoramas or
bird-eye views and are not concerned about georeferencing or georeferencing errors.
However, stitching using only feature correspondences leads to error accumulation
and distorted maps when directly applied to UAVs as demonstrated e.g. in [8, p.
20]. The same is true when only the first image is georeferenced and the subsequent
images are incrementally stitched to this reference image.

2.2 Mosaic Generation

2.2.1 Forward Projection

In UAV applications, where we are rather interested in generating a seamless and
georeferenced mosaic, additional sensor measurements are used to obtain camera
pose measurements or estimates: Hemerly et al. [9] describe the process of obtaining
a single georeferenced image using a UAV. Olawale et al. [10] recover the camera
intrinsics and extrinsics using GPS and manually collected ground control points in
combination with the commercial photogrammetric software (Agisoft) and generate
an orthomosaic. Yahyanejad et al. present in [2, 8] the results of homography-based
image mosaicing from sensor data recorded on board of a rotary-wing UAV with a
down-looking camera.

As presented, many approaches use a camera pose estimate and an image as in-
put and then apply a robust but costly feature detection and matching algorithm.
For instance, [2, 8] assume noisy IMU and GPS measurements and deal with this
by designing a quality function that finds a trade-off between geo-referencing error
and seamless stitching. In contrast, we do not detach state estimation and ortho-
mosaic generation but fuse GPS and IMU measurements as well as feature tracks
in a consistent smoothing-based state estimation. The small offset between images
in combination with gyroscope measurements enables fast and subpixel-accurate
Lucas-Kanade feature tracking (KLT) [11]. The use of KLT is also supported by
the findings in [12] claiming that KLT achieves the best quantitative results in the
context of orthomosaic generation. Our philosophy is that accurate and efficient es-
timation of the camera poses is the backbone of consistent dense 3D reconstruction
and seamless orthomosaic generation. Furthermore, the literature was previously not
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concerned about presenting runtime results and [2, 12] deplore lack of quantitative
performance measures. We tackle this absence of information by presenting the run-
time of all methods and an open-source Gazebo-based HIL environment [13] capable
of generating synthetic datasets.

2.2.2 Backward Projection

Note that none of the homography-based forward projection approaches presented
in the previous section employ a DSM as input. In contrast, in order to generate
true orthomosaics, [14] employ triangle-based backprojection, also known as ray
tracing, in combination with a DSM. Our backprojection approach is very similar to
[14] but we utilize a grid of squares to simplify the raytracing process. Furthermore,
we present a novel incremental grid-based orthomosaic generation approach to speed
up the computation.

3 Methodology

The methodology section follows the data flow illustrated in Fig. 2: Sect. 3.1 presents
the smoothing-based GPS-IMU-Vision fusion. Given the input images and corre-
sponding optimized camera poses, a dense georeferenced point cloud can be gen-
erated using planar rectification, as demonstrated in Sect.3.2. Section 3.3 presents
how this dense point cloud can be used to generate a DSM by employing inverse
distance weighting (IDW). Finally, Sect. 3.4 presents our approaches to generate an
orthomosaic from a stream of images, optimized camera poses, and DSM using (a)
forward projection and (b) backward projection.

3.1 Multi-Sensor Fusion

In this section, we present the core elements of our proposed multi-sensor fusion
framework. We distinguish three coordinate systems: the global frame .%, the cam-
era frame .%¢, and the body frame .%#5. To avoid unnecessary conversions due to
the vision-based fusion, we choose the Universal Transverse Mercator (UTM) co-
ordinate system where pg expresses easting, northing, and elevation. We seek to
estimate the robot states x; as well as the set of landmarks x; . We define the robot
state as: Xg = [pg qg vg b, bg] where the orientation, position and velocity of the
body frame expressed in global coordinates are denoted with qg, pg and vg. The
remaining state vector consists of accelerometer bias b, and gyroscope bias b,.
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3.1.1 Vision Front-End

FAST features [15] are extracted from every input image and tracked from frame to
frame using KLT with subpixel refinement. To speed up the tracking process and to
avoid outliers, we use the gyroscope of the IMU to predict the location of the pixel
in the subsequent image. Furthermore, we employ feature bucketing to guarantee
uniformly distributed features across the image for improved vision-based motion
estimation.

3.1.2 Smoothing-Based State Estimation

For sensor fusion and pose estimation we use the incremental smoothing and mapping
algorithm iSAM?2 [16]. For the employed reprojection residual, we refer to [17].
Every reprojection factor has a Cauchy M-Estimator associated with it to reduce the
influence of outliers.! The IMU measurements are preintegrated and summarized in a
single relative motion constraint connecting two time-consecutive poses as described
in [18]. The residual and Jacobian of the GNSS position factor is calculated by
“lifting” the residual: e = fg - tg, % = —% (tg + Rg&) = —Rg where fg is the
measured position transformed to UTM coordinates.” All measurements are inserted
into the factor graph once they become available. For every measurement, the factor
graph is augmented by a state node. To estimate the initial position, orientation as
well as accelerometer biases, at the beginning of every experiment, the plane is kept
level for few seconds. During this time, the GPS position measurements are averaged
to determine the initial position. The averaged accelerometer readings are used for
coarse gravity alignment and bias estimation. After take-off is detected, the vision
measurements are incorporated into the factor graph. Note that in this publication only
open-loop SLAM was employed, i.e. no loop closures or inter-matches were included
in the factor graph. Albeit we did not experience any inconsistencies in the generated
dense reconstruction or orthomosaics we consider to integrate an online loop-closure
or map-tracking module in future work to guarantee the global consistency of the map.

3.2 Dense Reconstruction

Given the optimized camera poses of our monocular camera rig, a virtual stereo-pair
is generated using planar rectification [19]. The dense point cloud is then computed
by applying efficient stereo block matching. Note that planar rectification assumes
that the epipoles of a virtual stereo-pair are outside the field of view which is fulfilled
for our fixed-wing UAV with down-looking camera due to the approximately fronto-
parallel motion with respect to the ground.

IThe Cauchy weight is k% /(k? 4 ¢%), where e is the residual and k is a constant set to 3.0.

2Note that we neglect the translational offset between GNSS antenna and IMU since for our setup
this corresponds to few centimeters.
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3.3 Digital Surface Map Generation

The georeferenced dense point cloud serves as input for the digital surface map. The
algorithm consists of a for-loop that iterates over all affected cells in the grid.

Algorithm 1 Grid-Based DSM

pr + Radius of the kd-tree used for interpolation.
A : Factor to increase the interpolation radius.

1: function DSM(POINT CLOUD,
CAMERA POSES)

2 cells HidentifyAffectedCells(TCG )

3 for c : cells do

4 while N = {} do

5 PreA-pr

6: N «— kd-tree(x;,yc, pr)

7 end while -

8 Apply interpolation methods

9 (Optional:) Height-to-color mapping

0 end for

1: end function

A fast kd-tree’ implementation returns the set of nearest points N found within
the interpolation radius p,. Next, inverse distance weighting (IDW) is applied as
interpolation method. IDW intuitively determines the cell’s height by using a linearly
weighted combination of the nearest neighbors, where the weight corresponds to the
inverse distance to the cell center, thus giving higher weight to points that are closer
to the cell center. An adaptive interpolation radius is utilized (cf. Algorithm 1) that
is guaranteed to return an interpolated height value in sparse regions and still keeps
a high level of detail in dense regions.

3.4 (Ortho-)Mosaic Generation

In this section, we present the implemented approaches for computing an (ortho-)
mosaic while focusing on the proposed incremental grid-based orthomosaic gener-
ation.

3.4.1 Homography-Based Mosaic (Forward Projection)

A perspective homography H is computed which relates the border pixel coordinates
of the image to points on the ground surface.

3nanoflann: nano fast library for approximate nearest neighbors.
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Algorithm 2 Homography-Based Mosaic

w : Image width in pixel. 4 : Image height in pixel.

1: function MOSAICHOMOGRAPHY(IMAGE, CAMERA

Raw input image

POSE, CAMERA INTRINSICS)

2 pP1— (070)9 P2 — (W70), p3 — (Wyh),IM - (0 h)

3: undistort(image)

4: // Obtain ground points. Rectified image

5: fori=1:4do

6: // Computing the scale. )

7: Ai — _(Zg - hgmund)/(Rgtf)z)

8: /I Computing the ground position [UTM].

o: pj— ¢+ MRET Satellite image overlay
10: end for )
11: H «computeHomography(p, p’) y
12: imageansf. < applyHomography(H ,image) 2

13: mosaic «— iterativeBlending(image;ansf.)
14: end function

The homography is then applied to the undistorted input image and the trans-
formed single rectified image is blended with the overall mosaic using feathering.
The pseudo code of the algorithm and the results are presented in Algorithm 2 and
Fig. 6, respectively.

34.2 Grid-Based Orthomosaic (Backward Projection)

The grid-based orthomosaic generation in batch formulation iterates over all cells
and, for every cell, queries the corresponding height from the DSM layer. An addi-
tional for-loop iterates over all images and, given the corresponding camera pose and
camera intrinsics, checks if the cell is within the visible camera cone. Since every cell
is usually observed from several camera frames, the question poses which is the ideal
pixel intensity value to be assigned to the cell of the orthomosaic. Various mosaic
strategies exist [14]. We propose to extract the pixel intensity from the image where
the corresponding camera pose is the closest to nadir. This elevation angle is defined
as the observation vector from the camera to the cell center. Instead of performing
these operations on all cells in the grid, our proposed incremental formulation (Al-
gorithm 3) identifies the subset of cells that needs to be updated, as illustrated in
green in Fig. 6. The cells are identified by projecting the border-pixels of the cur-
rent image onto the plane defined by the minimal elevation obtained from the DSM.
All cells which are potentially visible given the current camera pose are obtained
by min/max operation. Depending on the image distortion, a tighter approximation
could be achieved using e.g. the Bresenham algorithm [20]. Only those cells which
show a higher elevation angle than currently stored and which are visible from the
current camera configuration are updated.
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Algorithm 3 Incremental Grid-Based Orthom.

1: function INCREMENTALORTHOMOSAIC-
GRID(IMAGE, CAMERA POSE, CAMERA INTRINSICS) >~
cells «identifyAffectedCells(79) &
for ¢ : cells do
ze < dsm(c)
if visibility(x., e, ze, TCG ) then
score «— computeScore(X¢, Ve, Ze, TCG )
if score > score(c) then
(u,v) < backproject(x;, ye, zc, TCG ,image)

visible?

S A A ol

9: ortho(c) «—pixellntensity(u, v, image) Query height
: i yay/
10: end if Assign pixel W.
11: end if intensity Q2 2/ ’ Orthomosaic
T ] ] layer
12: end for /7
13: end function Lo Score

3.4.3 Point Cloud-Based Orthomosaic (Forward Projection)

In contrast to the approach described in Sect.3.4.2 one can directly use the dense
3D reconstruction of the environment (cf. Sect. 3.2) to generate an orthomosaic view
and hence avoid the costly backprojection step. The proposed point cloud-based
orthomosaic generation approach closely follows Algorithm 2 but instead of the
height we compute the IDW of the pixel intensity.

4 Platform and Sensors

For our experiments, we use Techpod (cf. Fig.2), a small unmanned research plane
with a wingspan of 2.60 m. The IMU ADIS16448, and the grayscale camera Aptina
MT9V034 of the sensor pod are hardware-synchronized using a VI-Sensor [21] and
run at 200 Hz and 25 Hz, respectively. The camera Aptina MT9V034 has a focal length
of 2.8 mm, a sensor diagonal of 1/3inch, and a resolution of 752 x 480 pixels. The
ublox LEA-6H GPS receiver and the pressure sensors are connected to the Pixhawk
autopilot running a real-time EKF [22].

S Simulation Experiments

The Gazebo-based HIL environment was used to validate the DSM and orthomosaic
generation is illustrated in Fig. 3. The aerodynamic coefficients and mounted sensors
closely model our UAV Techpod. Figure 4 shows the results from a simulated single
scan line at a relatively low altitude of 50 m above the mesh of Pix4D’s cadastre [23]
dataset. For this experiment, 429 images are rendered at a frame rate of 20Hz and
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(a) Fixed-wing UAV and synthetic image. (b) Output of QGroundControl in HIL mode.

Fig. 3 Gazebo-based HIL environment for fixed-wing UAVs

each image is associated with the ground truth pose. Figure 4a shows the coordinate
system of the last camera pose and the point cloud generated by the planar rectification
algorithm using every 10th image. In this experiment, we deliberately do not use every
frame for the dense reconstruction to underline the framework’s potential to handle
sparse regions or holes in the point cloud. The DSM layer, which is given in Fig. 4b,
is generated by applying IDW with an initial radius of 5m to the dense point cloud.
Figure 4c depicts the incremental grid-based orthomosaic in which the pixel intensity
is queried from the first camera that is in line of sight of the respective cell. In contrast,
Fig. 4d shows the incremental grid-based orthomosaic where the pixel intensities are
obtained from the camera frame with the view closest to nadir. The corresponding
elevation angles between selected camera pose and orthomosaic cell are shown in
Fig.4f, g. In particular in regions with a small altitude to terrain height ratio (e.g.
tree in center) one can observe that the nadir-view approach renders an improved
orthorectified view and avoids double object mapping. As Fig.4e illustrates, the
result of our nadir-view approach is in accordance with the orthomosaic generated by
Pix4D, for which we used the same georeferenced images as input. The homography
approach is not shown since the underlying flat plane assumption results in the
predicted large orthomosaic distortions.

6 Real-World Experiments

In this section, we present the results obtained from the semi-autonomous flight at an
altitude of 100 m above ground (cf. Fig. 5). The dense point cloud and orthomosaics
are presented in Fig. 6. In contrast to the previous experiment, we present the output
of the incremental grid based on a flat DSM. Due to the high altitude to terrain height
ratio in this experiment, the assumption does not introduce measurable orthomosaic
inconsistencies with respect to Google imagery (cf. Fig. 6b). The homography-based
orthomosaic with applied feathering, shown in Fig. 6a, can handle an image stream
of up to 57Hz. Given the measured runtime in Table 1, the combination of dense
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Fig. 4 Simulation results for dataset cadastre [23]
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Fig. 5 Comparison of Pix4D, Pixhawk-EKF [22] and iSAM2-based estimation

AB(satellite) = 401.28 m Dense Reconstruction
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Top view  Side

Orthomosaic

(a) Homography-based or- (b) Incr. grid orthomosaic (c) Point cloud-based ortho-
thomosaic (Section 3.4.1) (Section 3.4.2, first view) mosaic (Section 3.4.3)

Fig. 6 Mapping results based on the iSAM? state estimates using a fixed-wing UAV

reconstruction and point cloud-based orthomosaic is even slightly faster than the
homography-based approach. The caveat of the former is that, due to image distor-
tions at the outer regions, a smaller field of view will be covered by the virtual stereo
pair (cf. Fig. 6¢). Both the homography- and point cloud-based approach outperform
the methods presented in [2] by an order of magnitude. Note that the variants pro-
posed in [2] do not generate a DSM and thus visual artifacts are introduced into the
orthomosaic when the planar assumption is violated. The proposed incremental grid-
based approach speeds up the computation by a factor of 10 compared to the batch
variant. Both, the batch and incremental grid approach are several magnitudes faster
than the triangle mesh implementation [14]. However, the implementation in [14]
also performs color matching and identifies obscured pixels during the ray casting
process adding up to a runtime of 62 min per image.
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Table 1 Runtime results for dense reconstruction and orthomosaic generation

Time/image | Total time |# images|Resol. | CPU Type |Impl.
Homography (Sec. 3.4.1)(17.4ms 4.33s 249 - 2.8GHz (Forw. [C++
Dense rec. (Sec. 3.2) 16.7ms 0.384s 23/249 |- 2.8GHz |[Forw. [C++
Point cloud (Sec. 3.4.3) [0.2ms 0.51s 249 10m [2.8GHz |Forw. |C++
Point cloud (Sec. 3.4.3) (0.79ms 1.97s 249 Im [2.8GHz |Forw. |C++
Point cloud (Sec. 3.4.3) |31 ms 7.72s 249 0.lm |2.8GHz |Forw. [C++
“Position” [2] 0.47s 17.31s 37 n/a 2.66 GHz|Forw. |Matlab
“Pose” [2] 0.5s 18.33s 37 n/a 2.66 GHz|Forw. |[Matlab
“Image” [2] 12.41s 459.2s 37 n/a 2.66 GHz|Forw. |Matlab
“Hybrid” [2] 3.68s 136.28s |37 n/a 2.66 GHz|Forw. |Matlab
Grid (batch) (Sec. 3.4.2) [0.43s 107.41s (249 10m |2.8GHz |Backw.|C++
Grid (batch) (Sec. 3.4.2) |1.73s 430.27s |249 1m 2.8GHz [Backw.|C++
Grid (incr.) (Sec. 3.4.2) (171 ms 42.6s 249 Im [2.8GHz |Backw.|C++
Triangle Mesh [14] 62min 620min |10 0.15m|2.8 GHz |Backw.|C#, Matl.

[ ] Implemented [ 1 Proposed

7 Conclusion

In this publication, we demonstrated that incremental end-to-end dense reconstruc-
tion and orthomosaic generation for UAVs is feasible in real-time allowing, for in-
stance, advanced autonomous missions of UAV fleets by relying on orthomosaic-
based localization only. We highlight the characteristics of our implemented ortho-
mosaic generation approaches in particular with respect to runtime and the influence
of the flight altitude to terrain height ratio: The advantage of homography-based
orthomosaic generation is the seamless blending, the fast computation and the op-
timal integration of all pixels but is only suited for planar scenery or, alternatively,
high flight altitudes. The benefit of the point cloud-based orthomosaic is the low-
est computation time among the evaluated methods, the seamless blending and the
direct way of considering the surface elevation. However, depending on the dense
reconstruction algorithm the area of coverage is smaller and sparse regions can only
be overcome by interpolating nearby point intensities potentially leading to incorrect
orthomosaics. Our proposed backward incremental grid-based orthomosaic is suited
for arbitrary terrain, renders a true orthomosaic by considering the surface model
and optimal viewing angle and still achieves real-time performance.
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