
Learning Models for Predictive Adaptation
in State Lattices

Michael E. Napoli, Harel Biggie and Thomas M. Howard

Abstract Approaches to autonomous navigation for unmanned ground vehicles rely
on motion planning algorithms that optimize maneuvers under kinematic and envi-
ronmental constraints. Algorithms that combine heuristic search with local opti-
mization are well suited to domains where solution optimality is favored over speed
and memory resources are limited as they often improve the optimality of solutions
without increasing the sampling density. To address the runtime performance limita-
tions of such algorithms, this paper introduces Predictively Adapted State Lattices,
an extension of recombinant motion planning search space construction that adapts
the representation by selecting regions to optimize using a learned model trained
to predict the expected improvement. The model aids in prioritizing computations
that optimize regions where significant improvement is anticipated. We evaluate the
performance of the proposed method through statistical and qualitative comparisons
to alternative State Lattice approaches for a simulated mobile robot with nonholo-
nomic constraints. Results demonstrate an advance in the ability of recombinant
motion planning search spaces to improve relative optimality at reduced runtime in
varyingly complex environments.

1 Introduction

Recent advances in sensors, computing, and algorithms for perception, planning, and
control have allowed unmanned ground vehicles (UGVs) to be deployed in increas-
ingly challenging and harsh conditions. Applications such as planetary exploration,
nuclear inspection, and resource extraction could require robots to traverse envi-
ronments that are dangerous or difficult for human operators and situations where

M. E. Napoli (B) · H. Biggie · T. M. Howard
University of Rochester, Rochester, NY 14627, USA
e-mail: mnapoli@ur.rochester.edu

H. Biggie
e-mail: hbiggie@u.rochester.edu

T. M. Howard
e-mail: thomas.howard@rochester.edu

© Springer International Publishing AG 2018
M. Hutter and R. Siegwart (eds.), Field and Service Robotics, Springer Proceedings
in Advanced Robotics 5, https://doi.org/10.1007/978-3-319-67361-5_19

285



286 M. E. Napoli et al.

assistance (if at all available) may be limited to remote teleoperation of the platform.
In these situations, the UGV is dependent on its own autonomy to reliably balance
the minimization of vehicle risk with energy consumption and achieve mission suc-
cess. Often, risk avoidance in these fields is paramount and optimality of achieved
planning solutions is strongly desired. In environments with many homotopically
distinct classes, graph and sampling approaches have been employed successfully to
find near optimal solutions. However, these algorithms provide higher fidelity plans
often at the expense of computational runtime. This compromise between optimality
and efficiency is fundamental to mobile robot motion planning and many algorithms
feature a balance between the two.

Fig. 1 An illustration of
optimized and unoptimized
nodes expanded during
heuristic search (above) and
the path generated by the
PASL algorithm (below)

start generated path (magenta) goal

unoptimized node (red) optimized node (green)

high cost (light) low cost (dark)



Learning Models for Predictive Adaptation in State Lattices 287

An approach to motion planning that considers memory, differential, and envi-
ronmental constraints involves modeling the continuum of actions and states in a
recombinant search space graph structure known as a State Lattice (SL) [1]. Such
a formulation converts the motion planning problem into a graph search which can
be solved using a variety of existing algorithms. It has also been shown that, in suf-
ficiently complex environments, applying local optimization can improve the opti-
mality of generated solutions [2]. A limitation of this approach, referred to as the
Adaptive State Lattice (ASL), is that it indiscriminately optimizes every node that
is encountered in the search space. This paradigm results in cycles spent optimiz-
ing regions that are not complex or for which optimization is too difficult and are
unlikely to impact the resulting trajectory. This paper introduces a novel extension of
the ASL, referred to as the Predictively Adapted State Lattice (PASL) which exploits
a learned predictive model to adapt the representation of the search space by antici-
pating the amount of improvement to be obtained when applying optimization over
local regions (Fig. 1). The addition of this model allows the PASL to focus optimiza-
tion on regions where sufficient improvement is expected. The result from the PASL
is a feasible solution with comparable optimality and memory requirements to the
ASL approach, but with reduced computational runtime.

This paper presents three contributions, the first of which is the algorithm that
incorporates a learned model for predictive adaptation in adaptive state lattices
(PASL). The second is a statistical evaluation of the performance of PASL in both
runtime and relative optimality, a metric which refers to the nearness of a solution to
the global optimum, in a selection of randomly generated obstacle fields. This study
assesses the PASL against a comparative baseline of SL, ASL and a heuristic based
approach to selective adaptation referred to as the Selectively Adaptive State Lattice
(SASL) [3]. The final contribution is a qualitative comparison between the solutions
obtained with all four algorithms, which visualizes their performance in a random
world of nominal complexity.

2 Related Works

Decades of research and advancements have led to a myriad of algorithms which
address the motion planning problem in a variety of ways. These algorithms are
often classified by the mechanism they exploit to sample the continuum of states
and actions. One such classification are probabilistic approaches which leverage
iterative random sampling and are often probabilistically complete. The Probabilis-
tic Roadmap (PRM) is a probabilistic approach which randomly samples points in
the admissible robot configuration space [4]. Subsequently, the sampled points are
connected using a fast local planner. Rapidly-exploring Random Trees (RRTs) are
another probabilistic sampling approach, which iteratively sample the state space
continuum and expand a tree structure towards these sampled points until a con-
nection to a goal region is made [5]. Extensions of this algorithm that bias sampling
towards the goal region and utilize a bidirectional variant were shown to lead to faster



288 M. E. Napoli et al.

convergence. Further research has been explored to extend the representation within
the RRT from a binary (admissible/inadmissable) to continuous representationwhich
considers path optimality [6, 7]. It was proven that the RRT algorithm converges to a
suboptimal solution and a new extension was proposed (called RRT*) which almost
surely converges to the optimum [8]. Additional methods have been developed to
include homotopy aware approaches, bi-directional RRT* variants and application
of local optimization techniques which improve global optimality [9–11].

A limitation of approaches based on probabilistic sampling is the memory effi-
ciency of the resulting search space. Another family of motion planning algorithms,
referred to as the State Lattice (SL), is a recombinant search space approach that con-
structs a graph structure by regularly sampling the mobile robot state-action space
[1]. These algorithms, which have been applied for navigation in autonomous auto-
mobiles [12] and planetary rovers [13], represent samples in the state space as nodes
on the recombinant lattice and the edges between them are described by feasible
actions that pre-encode system dynamics. The state space utilized in the original SL
work consists of position, heading and curvature such that the state vector may be
represented as x = [

x y θ k
]
. Actions used in this work are parameterized functions

(such as clothoids or polynomial spirals) of curvature and linear velocity and are
generated using constrained optimization techniques [14, 15]. The state lattice is
stored compactly in a structure referred to as the control set which contains a pre-
selected sampling of states and actions describing the transitions from each node.
An advantage of the SL is that nodes do not need to be allocated until their parent
node is expanded (placed on the closed list) during the graph search. This feature
reduces the memory requirements to be predominantly the storage of instantiated
nodes. Further memory reduction can be obtained while maintaining optimality by
utilizing an admissible heuristic in a search algorithm. SLs are resolution complete,
meaning that all possible solutions will be considered within the sampling density
of the state-action space.

3 Technical Approach

One of the primary limitations of the SL is the rigidity imposed by the regular sam-
pling of the control set, where nodes are chosen irrespective of their associated cost
in the robot’s environment, resulting in many unused or unexpanded nodes sampled
in high cost regions. To alleviate this limitation, an approach called the Adaptive
State Lattice (ASL) was developed to optimize the sampled values of the state space
before nodes are represented in an open list during heuristic search [2]. Adaptation
of the representation within search has been shown to improve the performance of
heuristic search in a State Lattice (shorter trajectories, faster runtime, lower mem-
ory utilization) over fixed search with a finer resolution SL in sufficiently complex
environments. However, the ASL applies optimization to all nodes regardless of the
potential for improvement. This can result in wasteful computations spent attempting
to optimize regions where little gain is obtainable. An outline of the general search



Learning Models for Predictive Adaptation in State Lattices 289

process is shown in Algorithm 1 for the PASL and the three variants explored later
in Sect. 4. Similarly to traditional graph search, expansion is performed on the top
node in the open list generating child (L1) nodes. Instead of directly adding these
nodes to the open list, a function is evaluated to predict which L1 nodes may benefit
from adaptation. For each of the L1 nodes that exceed a particular threshold, their
children (L2) nodes are generated and optimization is performed over that L1 parent.
The prediction process for the SL always returns a false and conversely a true for the
ASL. For completeness, the prediction step for the heuristic based SASL is outlined
in Algorithm 2. The PASL prediction step is shown in Algorithm 3.

Algorithm 1: Predictive Graph Search
Input : Start node xs , goal node xg , step length α, line search parameter β, finite difference

step Δ, predictive threshold (if applicable) cthresh , predictive model (if applicable)
net , training data mean (if applicable) X̂, training data standard deviation (if
applicable) σ

Output: Trajectory of nodes x(t)
1 Main
2 OPEN ← xs
3 CLOSED ← ∅
4 while OPEN �= ∅ do
5 xnext ← get top from OPEN
6 if xnext == xg then
7 return xg
8 end
9 XL1 ← EXPAND(xnext )

10 foreach xL1 in XL1 do
11 if xL1 is not in OPEN then
12 if predict (xp, x1:N ,m, cthresh , net, X̂, σ ) then
13 XL2 ← EXPAND(xL1)
14 adapt(xL1,XL2, α, β, h)
15 end
16 OPEN ← xL1
17 end
18 end
19 closed ← xnext
20 sort( OPEN )
21 end
22 end

3.1 Local Optimization in State Lattices

The ASL algorithm applies optimization of every instantiated node’s state vector [2],
where the values of the sampled state space are optimized but trajectories subject to



290 M. E. Napoli et al.

boundary state constraints of other nodes expressed in the state lattice. This procedure
is described mathematically in Eq.1, where xp represents the current (later referred
to as the parent) node’s state vector containing position, heading, curvature, linear
velocity, and/or other quantities of interest. The objective being minimized, denoted
as Jagg(xp) is the aggregate control set cost of the current node expansion.

minimize
xp

Jagg(xp) (1)

The aggregate control set cost is the sum of each of the edges connecting the current
(parent) node to each of its child nodes as shown in Eq.2 where xn denotes the nth
child node’s state vector and J (xp, xn) represents the cost of the edge between the
parent and the nth child node.

Jagg(xp) =
N∑

n=1

J (xp, xn) (2)

The cost of a single edge is the sum of the nth child node’s total edge path traversal
time s f,n and integrated path cost denoted asL (xp, xn, s), as shown in Eq.3 where
s0,n and s f,n represent the nth child node’s starting and final time respectively. The
integrated path cost represents the cost of traversing a particular region in the robot’s
environment. In practice, the environment representation is usually defined using a
discrete pixel approximation such as a cost map. Consequently, the integration in
Eq.3 is approximated numerically using the cost of pixels intersected by the edge.

J (xp, xn) = s f,n +
∫ s f,n

s0,n

L (xp, xs, s)ds (3)

The optimization of the state vector adapts the parent node’s edges to adjust the
shape of the control set to conform to features in the local environment, which (in
terms of the graph search) reduces the edge’s cost and reflects a more optimal set
of routes that would be represented by a finer representation of the search space. A
visualization of the iterative optimization process applied to a simple cost map is
shown in Fig. 2, highlighting how edges no longer cross high risk regions and are
therefore better suited to the proximate environment.

The optimization technique in Fig. 2 is gradient descent which uses forward dif-
ferencing to numerically estimate the aggregate control set cost objective gradient.
Numerical estimates of the gradient are performed to enable evaluation of vehicle
models that may contain complex models of dynamics and wheel-terrain interac-
tion. When the state-action space is densely sampled, the computational overhead
required to compute the gradient is consequential resulting in increased runtime of
large searches. For further details about implementation and performance of the ASL
method is presented in [2].



Learning Models for Predictive Adaptation in State Lattices 291

(a) Initial control set (b) First step of optimization

(c) Adapted state vector

Fig. 2 State vector adaptation using gradient descent. The edges from the center parent node
intersect high cost (dark) regions in the cost map. Iterative optimization adjusts the parent node’s
state vector until all edges traverse safer low cost regions

3.2 Heuristic Based Selective Adaptation

The application of local optimization allows the ASL to achieve higher relative
optimality in many cases over the SL [2]. However, a major limitation is the indis-
criminate optimization of nodes. In a statistical study, it was shown that a heuristic
could be applied to selectively perform adaptation resulting in reduced runtimewhile
providing solutions in the same homotopic class as the ASL [3]. The proposed algo-
rithm, known as the SASL, computes the Normalized Mean Cell Cost (NMCC) of
the environment patch spanned by the current node’s expansion as a heuristic. This
approach is outlined in Algorithm 2 and is included in the experiments discussed in
Sect. 4. A threshold was chosen based on statistics collected over training data shown
in Fig. 3.



292 M. E. Napoli et al.

(a) Histogram of negligible improvement (b) Histogram of moderate improvement

(c) Histogram of significant improvement

Fig. 3 Histograms of improvement vs NMCC for threshold selection. A large amount of the
improvement in class 2 (significant) occurs below NMCC = 0.6. Additionally, this is the case for
moderate and negligible (class 1 and 0 respectively) improvement. A threshold of NMCC = 0.6
was chosen for the SASL based on these statistics

3.3 Predictive Adaptation of Search Space Representations

The SASL approach attempts to alleviate some of the computations wasted by the
application of optimization to all nodes with the ASL, however experiments demon-
strate that it is difficult to design an heuristic that is both accurate and efficient.
Instead, we propose the use of a predictive model learned over a selection of training
data to serve as the arbiter for predictive adaptation of state vectors in the search
space. The model utilized in our proposed PASL method is an artificial neural net-
work [16] where the input layer consists of the vectorized local region pixel values
augmented with the parent node’s orientation (θp) and the free function parameters
used to describe all exiting edge curvature profiles. For consistency of the evaluation
presented later in Sect. 4, the pixel region is identical to the patch utilized by SASL
in Sect. 3.2. An example of the feature vector is shown in Eq.4 where mi represents
the i th cost map patch index, k j,n the j th parameter of the curvature function for



Learning Models for Predictive Adaptation in State Lattices 293

Algorithm 2: Prediction for Selectively Adaptive State Lattice
Input : Parent node xp , child nodes x1:N , costmap m, heuristic threshold h
Output: Boolean prediction

1 Predict (xp, x1:N ,m, h)
2 c ← 0
3 for i in patch m(xp) do
4 c ← c + mi
5 end
6 c ← c

Ncells∗MAXCOST

7 if c ≤ h then
8 return true
9 end

10 else
11 return false
12 end
13 end

nth child node, and s f,n the path length of the curvature profile for the nth child
node. The local regions are 41 × 41 pixel patches which, when augmented with the
additional features, results in an input layer of 1724 features. For every node during
planning, the PASL collects all appropriate features and performs adaptation only
if the model output is above a chosen threshold. Algorithm 3 outlines the PASL
prediction procedure.

Algorithm 3: Prediction for Predictively Adapted State Lattice
Input : Parent node xp , child nodes x1:N , costmap m, improvement threshold h, trained

artificial neural network net , mean of training data X̂ , standard deviation of training
data σ

Output: Boolean prediction
1 Predict (xp, x1:N ,m, h)
2 θp ← orientation(xp)
3 U ← parameters(xp, x1:N )

4 X ← [
m θp U

]

5 X ← X − X̂

6 X ← X
σ

7 ŷ ← f orward(net, X)

8 if ŷ ≥ h then
9 return true

10 end
11 else
12 return false
13 end
14 end



294 M. E. Napoli et al.

x = [
m1 m2 . . .mn θp k1,1 . . . s1, f k2,1 . . . sn, f

]T
(4)

All inputs are zero centered and normalized to unit variance (calculated exclusively
over training data) prior to applying the network with an architecture containing two
hidden layers of 50 and 200 nodes respectively and hyperbolic tangent sigmoid acti-
vation functions. An output layer consisting of a single node and a linear activation
function is used to represent the predicted improvement in objective. All training data
was collected over a series of worlds generated using the random process discussed
in Sect. 4 and the resulting data was binned into improvement intervals of 50. Sub-
sequently, the data was sub-selected for training using stratified random sampling to
prevent overfitting the model. All training targets were scaled by a factor of 10 as
it was empirically determined that the model was overfitting to outputs of smaller
magnitude.

Prior to employing the model in planning, a five fold cross validation experiment
was performed using 70, 15, 15% for training, validation, and testing data respec-
tively to evaluate the chosen network architecture. A series of threshold values were
selected and binary classification (adaptation/no adaptation) was performed on each
data point using the model’s predicted improvement. The True Positive Rate (TPR)
of correct classifications for each threshold value was averaged over five folds and
are shown in Fig. 4. The results illustrate the model’s classification performance of
approximately 93–100% over the spanned threshold range.

Fig. 4 Five-fold cross validation evaluation of neural network with 95% confidence



Learning Models for Predictive Adaptation in State Lattices 295

4 Experimental Design and Evaluation

Our proposed approach is focused on improving upon the performance of SL and as
such, we restrict the scope of our subsequent analysis to variants of this search space
representation. A statistical study was performed to evaluate the PASL and compare
its performance with the SL, ASL, and SASL. All four algorithmswere assessed over
simulated random worlds with varying degrees of entropy, representing a mobile
robot’s environment. Each world contained specified regions where start and goal
points were selected. These areas were common for all worlds and each algorithm
was tasked with planning for every combination of world, start and goal point. The
total number of plans solved for each algorithm was 32100. The simulations used in
this evaluation do not include the separate set of random worlds generated strictly
for model training from Sect. 3.3.

(a) λ = 10 (b) λ = 50

(c) λ = 100

Fig. 5 Sample of random worlds generated for simulation experiments. The number of obstacles
(dark regions) increases with the Poisson expected rate of occurrence (λ). The start region for the
planners is in the unoccupied space on the left, whereas the goal regions are on the right



296 M. E. Napoli et al.

Random worlds were created using a Poisson forest procedure similar to the
approach described in [17]. The number obstacles were chosen using a Poisson
distribution for ten levels of expected rate of occurrence (λ). These ranged from
λ = 10 − 100 and also the free space world λ = 0. To model a penalty function of
proximity to obstacles, the map was blurred using a Gaussian kernel and cropped
by half a meter on all sides to avoid edge effects. Each map ranged from (−10, 10)
meters in x, y and was sampled at a resolution of 5 centimeters. The search algorithm
was forbidden from expanding into regions with maximum cost. A consequence of
this is that some worlds do not have solutions in the continuum and the planning
algorithms will fail. A small selection of random worlds are shown in Fig. 5 to
provide a qualitative representation of the planning difficulty for a range of λ.

4.1 Statistical Results

The relative optimality is defined as the ratio of the free space solution cost obtained
with SL and the solution cost obtained by a planner for a world with a particular
λ. Relative optimality and runtime results for all algorithms are shown in Fig. 6.
Runtime results were obtained using an Intel Xeon(R) CPU E5-2520 v3 2.40GHz
processor.

The trends in Fig. 6 indicate that the ASL tends to outperform the other algorithms
in terms of relative optimality, but also requires themost runtime.Anotable exception
to this is for SASL with a heuristic threshold of 0.7. Since the adaptation only
considers local regions, there is no guarantee that it will improve the global objective.
Therefore, performing optimization does not always result in a better solution. For
this data point, it is believed that the SASL actually benefited from not performing
optimizations in some instances.

The PASL performance is relatively consistent. As the improvement threshold
increases, the quality of the solution degrades, however a decrease in runtime is
obtained. With an improvement threshold of 200, the PASL runtime is consistently
lower than SASL with a heuristic of 0.7. Furthermore, the relative optimalities of
the two algorithms are comparable in the more cluttered obstacle fields. At less
cluttered obstacle densities, the SASL tends to outperform the pasl in terms of relative
optimality, however at significantly increased runtime. The increased runtime for the
SASL algorithm is likely due to the difficulty of setting a good threshold when using
a simple heuristic. An interesting comparison is between the SASL with a threshold
of 0.6 and the PASL with a threshold of 300. Although the runtime is comparable
between the two algorithms in the higher obstacle density worlds, the PASL is able to
maintain higher relative optimality. In this domain, it appears that the PASLpredictive
model outperforms the SASL at selecting nodes to optimize given the higher relative
optimality. Due to the challenging nature of the planning problems for higher λ,
in many domains it is worthwhile to spend computational resources to improve the
solution.



Learning Models for Predictive Adaptation in State Lattices 297

Fig. 6 Simulated random world study results for relative optimality a and runtime b versus λ

presented with 95% confidence intervals



298 M. E. Napoli et al.

4.2 Comparative Results

To examine the qualitative differences between the four algorithms a sample world is
chosen with a nominal amount of clutter and the path representations are visualized
in Fig. 7. The map in Fig. 7 is hand selected to represent planning in a moderately
complex environment. The solution obtained with the SL is the fastest with a total
runtime of 1.07 s, however it has the highest path cost at J = 37.63. Due to the
regular sampling resolution, the unadapted search is unable to cut through the clutter
to reach the goal. The ASL obtains the lowest path cost at J = 28.00, but with the
highest runtime at 30.08 s. This search is able to optimize to the cost map and weave
through obstacles allowing it to achieve a lower cost solution. Similarly to the ASL,
the SASL is also able to apply some amount of optimization and achieves a path cost
of J = 33.33 with a runtime of 15.69 s. The PASL performs similarly but with a
lower path cost at J = 28.54 and faster runtime at 11.67 s. For this sample, the PASL

(a) State Lattice Path Visualization (cost =
37.63, runtime = 1.07 seconds)

(b) Adaptive State Lattice Path Visualization
(cost = 28.00, runtime = 30.08 seconds)

(c) Selectively Adaptive State Lattice Path Vi-
sualization (cost = 33.33, runtime = 15.69 sec-
onds, threshold = 0.7)

(d) Predictively Adapted State Lattice Path Vi-
sualization (cost = 28.54, runtime = 11.67 sec-
onds, threshold = 200)

Fig. 7 Qualitative comparison between the solutions obtained by each algorithm tasked with plan-
ning from the start node (cyan) to the goal (red) in a randomly generated world with λ = 60



Learning Models for Predictive Adaptation in State Lattices 299

was able to produce a result comparable to the ASL, with a significantly reduced
runtime. An interesting note here is that the ASL, SASL, and PASL solutions all
belong to the same homotopic class whereas the SL solution does not. This seems to
indicate that the application of predictive adaption can result in solutions of similar
quality to fully adapted search spaces, but with large reductions in runtime.

5 Conclusions and Future Work

As the prevalence ofUGVs increases, computationally efficient and safemotion plan-
ning algorithms become evermore crucial. For applicationswherememory resources
are limited and risk mitigation is paramount, the SL and its extensions are well suited
due to their ability to obtain deterministic, resolution optimal solutions that inherently
satisfy nonholonomic constraints. Improvements over resolution optimality of the SL
is shown to be possible by applying local optimization over samples in the graph.
In this paper, we have shown that a learned predictive model can achieve nearly
the same optimality as the ASL with significantly reduced runtime requirements
and outperform simple hand-coded thresholds for selective adaptation. Statistically
significant results are obtained using simulations in random worlds which show an
improvement over the SASL and the SL in relative optimality and the SASL and
ASL in runtime.

Future work involving the presented algorithm includes optimizations for improv-
ing the runtime performance, field experiments in partially observed environments,
and adaptation of richer spatial-semantic models of the underlying representation.
Although thorough assessment of the algorithm requires examining the performance
over many planning scenarios, implementation and validation of these experiments
using a physical platform is valuable. The scope of this paper is to improve the per-
formance this particular class of motion planning algorithms, however future work
involves comparisons between probabilistic sampling approaches such as RRTss and
PRMs.

Acknowledgements This work was supported in part by the National Science Foundation under
grant IIS-1637813.

References

1. Pivtoraiko, M., Knepper, R.A., Kelly, A.: Differentially constrained mobile robot motion plan-
ning in state lattices. J. Field Robot. 26, 308–333 (2009)

2. Howard, T.: Adaptive Model-Predictive Motion Planning for Navigation in Complex Envi-
ronments. Ph.D. thesis, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, Aug
2009

3. Napoli, M., Biggie, H., Howard, T.M.: On the performance of selective adaptation in state
lattices for mobile robot motion planning. In: Proceedings of the IEEE/RSJ International Con-



300 M. E. Napoli et al.

ference on Intelligent Robots and Systems, Sept 2017
4. Kavraki, L.E., Svestka, P., Latombe, J.C., Overmars, M.H.: Probabilistic roadmaps for path

planning in high-dimensional configuration spaces. IEEE Trans. Robot. Autom. 12, 566–580
(1996)

5. LaValle, S.M., Kuffner, J.J.: Randomized kinodynamic planning. In: Proceedings 1999 IEEE
International Conference onRobotics andAutomation (Cat. No.99CH36288C), vol. 1, pp. 473–
479 (1999)

6. Urmson, C., Simmons, R.: Approaches for heuristically biasing rrt growth. IEEE/RSJ Int. Conf.
Intell. Robot. Syst. 2, 1178–1183 (2003)

7. Jaillet, L., Cortes, J., Simeon, T.: Transition-based rrt for path planning in continuous cost
spaces. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2145–
2150, Sept 2008

8. Karaman, S., Frazzoli, E.: Sampling-based algorithms for optimal motion planning. Int. J.
Robot. Res. 30, 846–894 (2011)

9. Yi, D., Goodrich, M.A., Seppi, K.D.: Homotopy-aware rrt*: Toward human-robot topological
path-planning. In: 2016 11th ACM/IEEE International Conference on Human-Robot Interac-
tion (HRI), pp. 279–286. IEEE (2016)

10. Starek, J., Schmerling, E., Janson, L., Pavone, M.: Bidirectional fast marching trees: an optimal
sampling-based algorithm for bidirectional motion planning. In: Workshop on Algorithmic
Foundations of Robotics (2014)

11. Choudhury, S., Gammell, J.D., Barfoot, T.D., Srinivasa, S., Scherer, S.: Regionally accelerated
batch informed trees (rabit*): a framework to integrate local information into optimal path
planning. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), May
2016

12. Likhachev, M., Ferguson, D.: Planning long dynamically feasible maneuvers for autonomous
vehicles. Int. J. Robot. Res. 28, 933–935 (2009)

13. Pivtoraiko, M., Kelly, A.: Differentially constrained motion replanning using state lattices with
graduated fidelity. In: Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 2611–2616 (2008)

14. Kelly, A., Nagy, B.: Reactive nonholonomic trajectory generation via parametric optimal con-
trol. Int. J. Robot. Res. 22, 583–601 (2003)

15. Howard, T.M.,Kelly,A.:Optimal rough terrain trajectory generation forwheeledmobile robots.
Int. J. Robot. Res. 26(2), 141–166 (2007)

16. Lippmann, R.P.: An introduction to computing with neural nets. SIGARCH Comput. Archit.
News 16, 7–25 (1988)

17. Karaman, S., Frazzoli, E.: High-speed flight in an ergodic forest. CoRR (2012).
arXiv:1202.0253

http://arxiv.org/abs/1202.0253

	Learning Models for Predictive Adaptation in State Lattices
	1 Introduction
	2 Related Works
	3 Technical Approach
	3.1 Local Optimization in State Lattices
	3.2 Heuristic Based Selective Adaptation
	3.3 Predictive Adaptation of Search Space Representations

	4 Experimental Design and Evaluation
	4.1 Statistical Results
	4.2 Comparative Results

	5 Conclusions and Future Work
	References


