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Abstract This paper reports field tests of autonomous inspection in an industrial
indoor facility by a Micro-Air Vehicle (MAV) with no prior knowledge on the
environment. Localization, mapping and safe navigation is achieved using only the
embedded sensors (stereo-vision, IMU, laser altimeter) and with the entire percep-
tion and control loop running on-board of the MAV. An overview of the algorithmic
architecture and design choices is provided and the focus is put on mission and safety
capabilities that have been demonstrated via several flight tests defined in association
with SNCF (French Railways) in one of their train storage warehouse.

1 Introduction

Building inspection and surveillance can benefit from the use of Micro Air Vehicles
(MAVs) to provide additional or complementary data (in terms of nature or point
of views) that can be used for diagnosis and maintenance. If outdoor inspection of
buildings involves taking measurements at high altitudes, for which the use of MAVs
can be helpful, this is also the case for indoor inspection of industrial warehouses.
In this case, MAVs can be used to perform autonomous and repeatable inspections
inside the warehouse to assess the state of the building (walls, pillars, high altitude
structures, ceiling, etc.) or provide information on objects of interest stored or located
inside (number and location of goods, for example).
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This paper considers autonomous inspection by a multi-rotor MAV inside a ware-
house owned by SNCF (national French railway company) where maintenance of
trains and storage of spare parts are performed. Several major issues arise regarding
such a task. First the MAV should be able to localize itself in an indoor environment
(no GPS) while taking into account possible changes in this environment (stored items
moved between two flights). The flight and inspection should be fully automatic,
from take-off to landing, to lessen the dependence on a human telepilot and increase
repeatability. In addition, robustness with respect to signal loss must be ensured as the
vehicles evolve over long distances in a potentially electro-magnetically perturbed
environment (motor coils, etc.). Finally, safety must be guaranteed with respect to
possible workers entering the area of inspection.

Related work
In [13], Shen et al. present a MAV system able to navigate indoor, inside a multi-
floor building. They use a setup composed of one lidar, one camera and an IMU
to demonstrate self-localization, mapping, path planning and autonomous control
functionalities. In [3], Fraundorfer et al. propose to use a MAV for autonomous
exploration and mapping in GPS-denied environment. The MAV is equipped with
a stereo camera, an optical flow camera looking downward and an ultrasonic range
sensor. The MAV achieves visual odometry using the stereo camera which is fused
with the attitude estimated from IMU, the optical flow of the third camera and the
ultrasonic range measurement. The system computes a 3D occupancy grid that is
used to make a frontier-base exploration of the area. In [11] Omari et al. propose to
use a remotely operated MAV for industrial inspection applications. Their platform
is equipped with a stereo camera sensor that is used to compute visual odometry and
state estimation tightly coupled with an IMU. The MAV also computes an Octomap
representation of the environment which helps the pilot by preventing collisions.
In [1], Beul et al. use an hexarotor MAV controlled by a 3DR Pixhawk Autopilot.
The perception stack uses an omni-directional and heterogeneous sensor system
composed of three stereo cameras and two Hokuyo lidar sensors mounted on a
moving plate. They achieve localization by combining visual odometry and lidar, as
well as environment modeling in order to avoid obstacles.

In [2], Fang et al. address the problem of robust autonomous navigation in difficult
environments like inside a ship. Their work propose a robust pose estimation system
based on the fusion of RBG-D sensor, downward optical flow camera, downward
lidar punctual sensor and an IMU using a Monte Carlo approach. This is coupled
with a path planning system based on Receding Horizon Control to navigate between
way-points.

In line with these research efforts, the proposed solution is based on the devel-
opment of a fully embedded software architecture exploiting a stereo-vision system
(in association with an IMU and a laser telemeter) which performs on-board all the
functionalities required for safety and mission fulfillment: localization and mapping,
planning, control, obstacle detection and avoidance, safety supervision. This paper
presents this on-board architecture and its validation through field flight experiments
in a large-scale indoor facility with operational interest for industrial End-Users.
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The paper is organized as follows. In the next Section, a description of the indus-
trial warehouse, of the MAV platform and of the scenarios of inspection are pro-
posed. The overall on-board architecture and the associated algorithms are described
in Sect. 3. Section 4 addresses the supervision of the flight and the safety functional-
ities. Finally, before concluding remarks, results of flight validation experiments are
proposed in Sect. 5 for the considered scenarios of inspection.

2 Environment, MAV Platform and Scenarios Descriptions

2.1 Industrial Warehouse

The industrial warehouse in which inspections have to be performed belongs to the
French national railway company (SNCF) and is located in Sotteville-lès-Rouen. It is
used as a maintenance workshop for trains and as a storage place for spare parts (see
Fig. 1). The part of the warehouse dedicated to storage has been used for the flight
experiments presented in this paper. The corresponding flight volume is defined by
a ground area of 25 m by 50 m with an altitude of 10 m under ceiling.

2.2 MAV Platform

The flight experiments described here are conducted on a Pelican quadrotor base
from Asctec (Fig. 2). The proprietary Flight Control Unit (FCU) includes IMU,
3D-magnetometer and processors dedicated to low-level control (attitude stabiliza-
tion). The FCU is linked to an embedded computer containing an Intel i7 quadcore
(2.1 GHz) which handles the complete perception and control chain presented in

Fig. 1 Industrial environment: SNCF infrastructure warehouse in Sotteville, France
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Fig. 2 ONERA MAV (based on an Asctec platform) with stereo-vision sensors, lidar altimeter
(right) and embedded processing capabilities

Fig. 3. All processing is achieved on-board so the MAV is fully autonomous and
robust to communication loss during the execution of the mission. In addition to
the IMU, the sensor setup includes a 22 cm-baseline stereo-rig composed of two
USB2 cameras, electronically synchronized, offering a 100◦ field of view and a laser
telemeter pointing downward for altitude measurement (for take-off and landing).

2.3 Inspection Scenarios

Typical scenarios of inspection in the warehouse consist in recording pictures or
measurements provided by additional on-board sensors (e.g. FLIR camera) of dif-
ferent objects of interest: walls, high altitude structures, spare parts stored in the
warehouse. This requires to automatically take-off, fly over long distances to reach
areas of inspection, perform the inspection and fly back for automatic landing. Dur-
ing the flight, obstacle avoidance can be performed in case of trajectories conflicting
with detected static or dynamic obstacles. The trajectories of inspection are defined
by way-points or trajectory coordinates given either in the global frame associated
to the warehouse or in the local frame associated to a specific point whose global
location is known or detected during flight. In addition, sensor characteristics (range,
field of view, orientation) must be taken into account for the inspection as the mis-
sion performance is directly impacted by the MAV trajectory (measurement overlap
between two parts of the trajectory, relative distance and/or line-of-sight constraints
to the object to be inspected, etc.).

Two scenarios representative of realistic inspection tasks have been defined. The
first one consists in inspecting objects of interest defined by global coordinates in
the warehouse. More precisely, we chose two elements to be inspected, a metallic
structure located at an altitude of 7 m that the MAV must follow and inspect and
a load located over a platform around which the MAV must turn in order to take
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pictures. The second scenario consists in performing the inspection of a wall section
whose location is not a priori precisely known, but which can be detected by some
specific characteristic (e.g. visual tag). To also validate safety requirements, avoid-
ance situations with respect to static and mobile obstacles are considered in a third
scenario.

3 On-Board Navigation System

The embedded navigation system uses ROS to link together the numerous software
components of the global architecture from Fig. 3. Besides hardware related compo-
nents (interface with sensors or other computers), we distinguish 3 main functional
blocks described in the following subsections: multi-sensor state estimation, envi-
ronment modeling and control.

3.1 Multi-sensor State Estimation

The low-level controller provides a reliable estimate of the orientation. Therefore,
the vehicle state vector contains only the position and linear velocity in the reference
frame aligned with gravity and centered on the IMU-frame origin at the beginning
of the mission. The state is estimated by a linear Kalman filter as in [8]. Given the
initial pose, the state is predicted by integration of accelerometer and attitude mea-
surements at 100 Hz. The correction is performed at video-rate (20 Hz) thanks to the
pose computed from stereo-images by eVO [12], a keyframe-based visual odometry
algorithm. eVO builds a map of isolated landmarks automatically initialized from
images (no prior map) as in Visual-SLAM. Compared to state-of-the-art SLAM
and other odometry algorithms, eVO is oriented towards low computational cost and
includes some simplifications concerning the map updates: the landmarks are pruned
when they leave the sensor field of view and the landmarks localization is not refined
in a multi-view optimization scheme. Nevertheless, the drift on the localization is
of the class 1% of the traveled distance. A detection of outliers is performed on the
innovation of the Kalman filter which compares the state predicted using only the
IMU with the position computed by visual odometry. If this difference is larger than
the expected MAV velocity, an alarm is raised and the emergency mode activated
(see Sect. 4). A second Kalman filter estimates independently the ground height and
vertical velocity from the laser telemeter measurements and IMU attitude. It is only
used during automatic take-off and landing or emergency stabilization.
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Fig. 3 Perception-control loop for autonomous navigation with obstacle avoidance

3.2 Environment Modeling

In order to be able to avoid collision in such a cluttered environment, mapping
is performed on board. To handle both static and mobile objects, we consider a
dual model representation. An occupancy grid approach is used to model the static
environment while a feature-based (bounding box) approach is used for mobile object
detection.

The static mapping module is composed of 3 subtasks as shown in Fig. 3. First, a
stereo matching algorithm is used to compute a dense disparity map from a rectified
pair of stereo images. Here, we used the ELAS (Efficient Large-scale Stereo Match-
ing) algorithm [4]. This disparity map is used to triangulate a dense point-cloud that
is integrated in a well known Octree-based occupancy grid representation named
Octomap [6]. This approach models the space with a set of voxels organized into an
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Octree structure where each voxel can be either occupied or free. A Bayesian estima-
tion is performed, so each voxel stores its probability to be occupied and the cell then
a MAP decision rule is taken when needed. Note that this probabilistic framework
ensures that mobile obstacles are not included in this map, since several successive
observations of the same point are mandatory. Finally, with the resolution of the map
used (0.1 m), an Octomap representation for checking collisions over each potential
trajectory would be inefficient, because of the large number of voxels to be tested.
A solution to this problem is to additionally compute a distance-field to the closest
obstacle during the map update. For this purpose, we apply an Euclidean Distance
Transform (EDT) [7] to the Octomap. This mapping updating process is performed
at each keyframe.

The detection of mobile objects is based on the analysis of sparse optical flow
computed on Harris corners, which are located in 3D by stereo. We assume here that
mobile objects are clusters of features which violate two-views and three-views geo-
metrical constraints between two successive stereo-images and spatially consistent
with the dimensions of a pedestrian. The first step consists in classifying into moving
and static features. The classification is done in a two-tests cascade, firstly by the
OpenCV robust RANSAC-based fundamental matrix estimator then, for the inliers,
by the robust pose estimator implemented in eVO [12]. In a second step, the can-
didate moving image features are clustered. A Delaunay triangulation gives access
to the rough 3D structure localized in inertial frame thanks to the pose estimated
by the multi-sensor state estimator (cf. Sect. 3.1). Triangles are pruned according to
their size and orientation (only the most vertical ones are retained). The remaining
connected triangles form candidate objects. We finally compute 3D bounding cylin-
ders and select those whose width is inside a specified range. The mobile object
raw detection is fed into a Kalman filter tracker in order to remove false alarms
and to make prediction of the obstacle position in the next steps. The state vector is
composed of the object position, its height and radius. A constant velocity model is
used to predict the future positions of the object for avoidance purpose. The entire
processing takes less than 100 milliseconds on the MAV embedded CPU.

3.3 Safe Way-Point Navigation and Trajectory Tracking

The control algorithm is designed to track a reference trajectory or to reach a way-
point defined by the user (in the way-point case, a straight-line trajectory at constant
velocity is generated). Since the environment can be highly cluttered and no prior
assumption is made, an avoidance module for static or mobile obstacles has been
defined. It relies on a model predictive control (MPC) algorithm which exploits the
perception information from the previous subsection. A MPC scheme relies on a
prediction of the dynamical model on a time horizon to take into account future
MAV behavior and interaction with the environment. The design of the controller
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relies on a simplified linear acceleration model, for which an analytical MPC linear
quadratic solution has been obtained for trajectory tracking in the nominal case.

To guarantee the safety of the vehicle and the operators, the MPC algorithm is
adapted to avoid any obstacle that can be found on the reference trajectory. The
distance map information on the static environment and the future mobile object
positions are combined to obtain a single distance to the closest obstacle at each
position of the MAV predicted trajectory. If there is a risk of collision on the nomi-
nal predicted trajectory, an additional control input is then selected in a predefined
discretized set so as to optimize a cost function on the prediction horizon which is a
weighted sum between tracking the reference trajectory and respecting a parameter-
ized safety distance from any obstacle [9]. The resulting acceleration control input,
which is equal to the sum of the nominal and avoidance inputs, is then translated into
thrust, roll angle, pitch angle and yaw rate and forwarded to the low-level Asctec
controller.

4 Flight Management and Safety Functions

We have implemented a flight manager which supervises the execution of the auto-
matic mission. It includes a mission scheduling editor, a mission scheduler associated
to a state machine, the supervision of critical functions and an emergency manager.
All of these features contribute to make MAV operation easier and more robust to
sensors or software failures, which is of tremendous importance when such auto-
matic functionalities are deployed on the field (where no motion capture system is
available, unlike in laboratory).

4.1 Mission Planning and Execution

A mission scheduler allows the operator to define the content of the mission and to
configure and execute each task during the mission. The plan is built from a combi-
nation of simple tasks such as: way-point goto, viewpoint constraints, waiting steps,
user confirmation and more high level tasks like: take-off, land, start wall inspection.
A 3D representation of the plan allows an easy mission planning, verification and
visualization of the execution (Fig. 7).

The autonomous mission execution is managed by the state machine depicted in
Fig. 4. The automatic take-off is triggered by the safety pilot who starts the engine
and pushes the thrust stick up to a predefined level, settled near the stability thrust
level for easier manual recovery action. It should be noted that after these basic
human tasks all the missions are carried out in full autonomy. After the take-off,
an on-line calibration permits to adjust some controller parameters. The mission
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Fig. 4 State machine for flight management

starts and the predefined plan is executed after the MAV reaches and keeps hovering
around a target point at a given altitude above the starting point. The landing mode
is activated either when the MAV reaches the landing way-point or if the ground
station operator triggers an emergency landing. In the nominal case, the landing is
done autonomously thanks to relative altitude measurements from laser telemeter. In
the emergency case, depending of the state of the MAV, the emergency landing can
be fully autonomous or semi-autonomous.

4.2 Supervision and Emergency Manager

In order to handle any issues occurring during the mission, an emergency stack
is running on board. This stack is composed of a supervisor monitoring different
parameters (module status, sensor activity, etc.). An emergency event is triggered
when some parameters are abnormal: loss of a software node, inconsistency between
vision and IMU, no safe trajectory found by the MPC module. An emergency event
can also be triggered when the ground station operator activates the emergency switch
or when the safety pilot pushes any stick outside of a dead zone. Figure 5 presents the
different states of the emergency stack. The event sets the MAV in Emergency Stop
mode. In this mode the MAV suspends its mission and holds its position using all
functional sensors and modules. In the case where all critical functions are faulty, the
MAV sends a warning signal to the safety pilot and falls back inManual control mode.
When the MAV is in Emergency Stop, the ground station operator can evaluate the
situation in order to check what triggered the emergency event. Finally, he can decide
to go out of emergency mode and continue the mission, to activate an emergency
landing or to ask the safety pilot to recover the MAV in manual mode.
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Fig. 5 Emergency management

5 Flight Experiments

Scenario 1
In this first scenario, we demonstrated inspection tasks planned before the mission.

This type of mission definition is especially useful for periodic inspection. Different
types of trajectory are provided to allow an easy and efficient planning (example in
Fig. 6). Figure 7 shows the inspection plan of a bridge and two pillars which is very

Fig. 6 3D model autonomously built on-board by the MAV while following a long-distance refer-
ence trajectory (in red) composed of portions of ellipses and lines
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Fig. 7 Trajectory and 3D model built during the inspection scenario. The mission scheduling
appears as white text indications over the map

difficult to execute by a human pilot due to height and visibility conditions. We also
added the possibility to define a viewpoint function. When this function is active, the
yaw is controlled to ensure that a target point is always kept in the field of view. This
allows the operator to define trajectories that automatically observe an object from
multiple points of view (Fig. 8).

Scenario 2
An automatic wall inspection task has been developed. This task consists in scan-

ning a wall and ensuring its complete coverage by a dedicated sensor. The wall scan-
ning zone is defined by an AprilTag [10] located at the center, predefined dimensions
(height and width) and a desired scanning distance. The execution of the task is
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(a) ViewPoint Snapshots

(b) ViewPoint Trajectory

Fig. 8 Action of the viewpoint constraint on a L-shape trajectory. The targeted point is located
behind the trolley
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(a) Tag detection (embedded view) and
trajectory planning

(b) Trajectory tracking for wall scanning
(external view)

Fig. 9 Automatic wall inspection modus operandi

(a) Collision detection and control
input computation

(b) Final avoidance trajectory

Fig. 10 MPC static obstacle avoidance

carried out as follows. When the tag is detected, the MAV is guided to a position
in front of the wall to be able to correctly estimate the AprilTag orientation. The
orientation of the wall plane is then refined robustly from the point-cloud computed
by ELAS [5]. Assuming this model, the desired scanning distance and the field of
view of the payload sensor, a trajectory that covers the wall with the given field of
view is planned as a succession of linear segments that are then tracked by MPC
(Fig. 9).

Scenario 3
To tackle inaccuracies or mistakes during preflight mission planning, changes in

the environment or presence of mobile obstacles, the internal MPC algorithm ensures
collision avoidance during the plan execution. Figure 10 shows an example where
the original plan (in thin red) passes through a pole. During the execution, the safety
distance constraints were not satisfied and the MPC planned reactively an avoidance
trajectory (final trajectory in bold red). Figure 11 illustrates the successful avoidance
of a mobile obstacle with the same algorithm. These safety situations have been
successfully repeated several times.
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(a) Detection, estimation and motion prediction of mobile obstacle

(b) Mobile obstacle avoidance (external view)

Fig. 11 Detection, localization and avoidance of mobile obstacle

6 Conclusion

In this work, we demonstrated the capability for a MAV to navigate autonomously
in an unknown GPS-denied environment in order to achieve different missions in an
industrial context. The system presented relies on advanced embedded functional-
ities such as visual odometry, multi-sensor fusion, environment modeling and path
planning and control. The complexity and diversity of the different scenarios tested
on the field led us to add a flexible mission manager and several safety functionalities
in order to increase the reliability of the system. Field experiments in an industrial
facility have shown the soundness of the proposed approach. This is an important
step towards the operational deployment of such autonomous MAV solutions for
inspection, which will make it possible to relax the constraints on human operators.
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