Sensing Water Properties at Precise Depths
from the Air

John-Paul Ore and Carrick Detweiler

Abstract Water properties critical to our understanding and managing of freshwater
systems change rapidly with depth. This work presents an Unmanned Aerial Vehicle
(UAV) based method of keeping a passive, cable-suspended sensor payload at a
precise depth, with 95% of submerged sensor readings within 8.4 cm of the target
depth, helping dramatically increase the spatiotemporal resolution of water science
datasets. We use a submerged depth altimeter attached at the terminus of a 3.5m
semi-rigid cable as the sole input to a depth controller actuated by the UAV’s motors.
First, we simulate the system and common environmental disturbances of wind,
water, and GPS drift and then use parameters discovered during simulation to guide
implementation. In field experiments, we compare the depth precision of our new
method to previous methods that used the UAV’s altitude as a proxy for submerged
sensor depth, specifically: (1) only using the UAV’s air-pressure altimeter; and (2)
fusing UAV-mounted ultrasonic sensors with the air-pressure altimeter. Our new
method reduces the standard deviation of depth readings by 75% in winds up to
8 m/s. We show the step response of the depth-altimeter method when transitioning
between target depths and show that it meets the precision requirements. Finally,
we explore a longer, 8.0m cable and show that our depth-altimeter method still
outperforms previous methods and allows scientists to increase the spatiotemporal
resolution of water property datasets.

1 Introduction

Monitoring shallow surface water systems (<10 m) can be a deep challenge for
environmental and water scientists. Hampered by limited boat access, scientists are
further constrained because boating and wading mix the water, disturbing the water
properties under investigation. These water properties include temperature, conduc-
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tivity, dissolved oxygen, and photosynthetically active radiation—all these vary sen-
sitively with small changes in water depth [1]. These stratified properties are linked to
ecosystem health and can predict imminent toxic algae blooms that threaten drinking
water and fisheries and cost billions of dollars worldwide [2, 3].

Currently, scientists deploy static sensor arrays, often a collection of data-loggers
vertically arranged underwater at a static position, and left for days or weeks. Some
sensors used by water scientists requiring settling time (often >3s), and existing
water science datasets from static sensors have ~0.25 m resolution in depth [4].
These static sensors yield datasets with good temporal resolution, but are limited by
poor spatial resolution because they have to be installed separately at each location.
To increase the spatiotemporal resolution, our prior work presented the first UAV-
based water sampler [5], followed subsequently by several efforts [6—12]. The UAV
flies above water while connected by cable to a sensor payload below water, as shown
in Fig. 1. Our follow-on work [13] explored in-situ water sensing at different depths
with a UAV-based submerged sensor payload, and found it does not cause mixing
for temperature. However, in this follow-on work the UAV’s air pressure altimeter
caused the submerged sensor to wander up and down around the target depth, limiting
precision.

Fig.1 UAV-system with a
passive cable and sensors for
measuring water properties
at precise depths
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To increase the depth precision of water science datasets, this paper proposes and
experimentally evaluates using a depth altimeter as input to a controller that seeks to
minimize the target depth error using only the UAV's motors. We assume calm waters
(‘lentic’, not flowing) and that the UAV is stationary. This is challenging because
the semi-rigid cable between the UAV and the submerged depth altimeter exhibits
non-linear dynamics when bending and descending in water. Fortunately, these depth
sensors are fast (50 Hz), light (<5 g), and precise (££3 mm), and are already included
in many underwater sensor payloads. We first explore the feasibility of this approach
in simulation including wind and water, then use parameters discovered in simulation
to guide implementation, and finally test the implementation of our method in field
experiments.

Our contributions are:

e A new method to maintain a precise depth for a submerged sensor payload while
passively connected by cable to a UAV. We use only a lightweight submerged
depth altimeter, reducing the standard deviation of target depth errors from 16.1
to 4.2 cm compared with the next best method. This method enables increased
spatiotemporal resolution of water science datasets without additional payload.

e Field tests of this depth-altimeter method, with comparisons to two previous meth-
ods: (1) air pressure altimeter alone; and, (2) air pressure fused with ultrasonic
rangefinders. We compare these approaches using a 3.5 m cable for water depths
down to 2.5 m, showing an reduction of target depth error by 75%.

e An initial exploration of using an 8.0 m cable, showing sufficient precision for
sensing at greater depths.

2 Related Work

Previous efforts relate to our current work in several ways: either a UAV is used to
measure water properties, or autonomous surface/underwater vehicles (ASVs and
AUVs) are used to measure water properties, or a UAV makes a pose and altitude
estimation in unknown environments, or a UAV has a cable-suspended load.

Several efforts seek to use UAVs to monitor water properties [6—10, 12]. These
systems use air pressure altimeters to estimate altitude, and like these efforts we seek
to sense water properties with a cable-connected payload, but unlike these works
we focus on precisely controlling the depth of the sensor payload. Systems like the
fixed-wing Flying Fish [14] maintain persistent observation of surface properties,
but cannot detect subsurface properties. Some efforts seek an amphibious UAV [15],
and like this work we are interested in the advantages offered by UAVs to water
monitoring, but unlike this work we seek to minimize water column mixing, that can
take hours to settle. Our previous work presents evidence that sensing by a small,
submerged sensor payload (=2 cm diameter sensor, 1 cm cable) does not cause a
mixing disturbance that impacts water temperature measurements [13].
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In environmental monitoring, Dunbabin [16] uses multiple ASVs to sample green-
house gasses, while underwater the MARES AUV system samples water quality for
long duration at depths up to 100 m [17]. Zhang et al. [18] explore water columns
with a gliding, fish-like robot, and Higgins and Detweiler [1] WaterBug descends
passively in a water column to collect a single water sample at a target depth. Unlike
these systems, we want to quickly deploy and redeploy to disconnected or difficult
to reach water bodies.

Several approaches seek to estimate altitude for micro UAVs in unstructured
outdoor environments, including Jain et al. [19], who autonomously explored rivers
using specular laser returns to estimate the plane of the river surface. Unlike this
work we seek a method that minimizes the payload devoted to non-water-property
sensing. Burri et al. [20] use a stereo camera and IMU to map and estimate a pose in
a previously unknown environment, but these methods have not been demonstrated
over water, to our knowledge. Our previous work [7] explores the use of fusing
downward-facing ultrasonic sensors with an air pressure altimeter, and we use this
method for comparison in the current work.

Several efforts model and control cable-suspended payloads from a UAV [21,
22], and assume that the cable can be observed. We likewise use a cable-suspended
payload, but do not attempt to observe the cable during flight.

3 Technical Approach

This section describes our approach to the problem of obtaining precise depth control
of a submerged sensor payload with minimal system complexity while retaining
the benefits of monitoring water properties by UAV. Based on our experience, we
assumed that the biggest obstacles would be non-linear dynamics of the partially
submerged cable and transient lateral disturbances from wind and GPS drift. But we
also wondered about the impact of signal delay in measuring and transmitting depth
readings before the controller can use them. We start by developing a model for how
the cable-connected sensor moves in the water, and then explore the feasibility and
initial parameters in simulation.

3.1 System Model and Simulation to Explore Feasibility

Figure?2 shows the UAV modeled as a point mass and the cable as a series of rigid
links, following the approach in [22]. We use Simulink for two configurations, a ideal
and perfectly vertical case, and a laterally disturbed case to model wind and GPS
drift.

Modeling the Ideal Case. In the ideal case, the cable is vertical and all forces are
parallel to gravity, as the UAV, cable, and depth altimeter move up and down. When
the UAV moves up, the sensor payload is directly coupled. When the UAV moves
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down, the only forces acting on the payload are gravity and resistance from water.
The resistance from water limits the sensor’s descent rate to slower than the UAV.
To model the descent rate, we started by experimentally determining the terminal
velocity of the sensor in water. We released the sensor at the top of a translucent 3 m
vertical water test tank (=25 cm radius by 4 m tall) and measured the time at which
the sensor reached markings of depth 1 and 2 m. Using six observations, we estimate
the average terminal velocity, v;, to be 0.54 m/s. Then, using the terminal velocity

equation:
2m
y= | =8 (1
PACy

we calculate the constant pACy, where p is the density of water, A is the area in the
direction of the movement, and C, is the drag co-efficient. Using this constant with
the mass of the sensor, m, and gravity, g, we solve for the resistive force as a function
of velocity:

1
Flriction = EpACdv2 2)

We use Fjiciion from Eq.2 to model how the sensor will descend in water. In
simulation, Ffcion limits the descent velocity of the senor payload as well as making
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it drag against lateral disturbances. Decreasing the target depth by <1 m allows the
submerged sensor to descend fast enough to match the descent of the UAV. Decreasing
the target depth by > 1 m requires limiting the descent velocity of the UAV to avoid
the UAV outpacing the submerged sensor.

Modeling Lateral Disturbances. Figure2 also shows the lateral disturbance case
from wind or GPS drift. We want to model wind and GPS drift because we believed
lateral disturbances could be a critical impediment to our approach.

To model lateral disturbances, we are inspired by the U.S. Military Wind Gust

Model [23], that uses a sigmoid function that ‘ramps up’ a gust over time. We
model wind as the sum of two smoothed random number sequences that are directly
added to the forces exerted on the UAV in x and y. The two sequences operate at
different time scales, one changing every second and at a small scale, and the other
changing every 155 at a larger scale. Overall, a maximum force of 0.08 N tends to
‘blow the system off course’ by about 1-2m, consistent with field observation. Note
that during lateral disturbances, Fficiion acts on the submerged sensor payload and
opposes the translation. The simulation indicates that the UAV-cable-sensor system
remains stable in response to lateral disturbance while controlling depth using the
depth altimeter with the UAV motors. We leave the detailed discussion and analysis
of this for future work.
Modeling Signal Delay and Sampling Frequency. We model signal delay because
of the multiple network hops for depth readings: from depth altimeter to embedded
system to control computer and back to the UAV (as shown in Fig. 3). In simulation,
a signal delay of less than 100 ms was required to ensure that the system converges
smoothly to changes in target depth of ~1 m, with smaller signal delay yielding only
modest improvements.

We model the sampling rate of the depth altimeter to find a baseline requirement,
and find that at least 10 Hz is required. During simulation, the system could still
converge to a target depth with a slow sampling rate of 1.25 Hz and a long delay of
700 ms, but with significant oscillations.

Key simulation results:

Depth altimeter sampling frequency >10 Hz.

Signal delay from the depth altimeter to UAV control input <100 ms.

Small transient lateral disturbances do not cause the system to become unstable.
Limit UAV descent velocity or limit change in target depths to <1 m.

We now use these simulation results to guide our implementation.

4 Implementation Details

This section describes the system architecture, depth altimeter characterization, and
descriptions of the three flight modes under test.
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4.1 System Architecture

Figure 3 shows the system architecture used during experiments, consisting of: (1)
AscTec Firefly hexrotor UAV; (2) two embedded systems; and, (3) a control computer.

The Firefly includes a GPS and air pressure altimeter as well as an on-board
controller for attitude and position. We chose the Firefly for overwater experiments
because it can return to shore even after one motor fails. It has a payload capacity of
600 g, flies for 15-20 min per battery, and tolerates winds up to 10 m/s.

The sensor payload installed on the Firefly consists of two embedded systems, the
first installed on the vehicle and the second waterproof system attached to the end
of the cable that dangles below the UAV. The first embedded system has an NXP-
LPC2368 (ARM7TDMI) microprocessor running a control loop at 50 Hz, and has
inputs for a variety of water sensors and is used to log and transmit real-time readings
over radio. The submerged embedded system contains an ATmega-1284pb micro-
processor that reads the depth altimeter at 50 Hz. The embedded system installed on
the UAV receives the depth readings and re-transmits them to the control computer.
The control computer is an Apple Macbook “Early 2015 running Ubuntu 14.04
with ROS Jade for control and logging.
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In this architecture, we estimate the complete signal delay from the depth altimeter
to the UAV control input to be 45 ms worst case, within the 100 ms bound identified
during simulation and described in Sect.3.1.

4.2 Depth Altimeter Characterization

For the depth altimeter, we use a Measurement Specialties MS5803-01BA [24]
installed on an embedded system, and shown in Fig. 4. By the datasheet, this sensor
is water resistant to 100 m with a built-in 24-bit ADC and a 10 ms response time,
plus an additional 10 ms to read the onboard thermometer to correct for temperature
variation. The 20 ms total means a maximum sampling frequency of 50 Hz, well
above the baseline 10 Hz indicated by simulation.

To characterize the depth altimeter’s steady-state error, we placed it at a fixed depth
in a bucket of 22 °C water. Figure 5 depicts 10 s of readings, and shows steady-state
error of £3 mm. We characterized and corrected for the depth sensor’s bias using the
vertical tank described in Sect. 3.1. Because of the MS5803’s fast response, accuracy
to depths of 10 m, and small steady-state error, we use this sensor for comparison
during our field experiments.

Note that changes to ambient air pressure causes pressure changes in water,
impacting depth readings. For example, an air pressure difference of 100 mbar across
a strong weather front results in 0.6 m pressure difference measured in water depth.
In practice, the depth altimeter must be calibrated for the current air pressure every
few hours by submerging the sensor to a known depth (we used 5 cm). However,
during a 20 min flight, the total air pressure change is likely small, and transient air
pressure fluctuations like wind that cause an air altimeter change of 2 m cause a

Fig. 4 The waterproof
embedded system and sensor
payload
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depth altimeter change of only £3 mm. This makes sense since water is 800 times
denser than air.

4.3 Flight Modes: Depth, Air Pressure, Ultrasonic + Air
Pressure

We implement three flight modes: depth altimeter, air pressure altimeter, and ultra-
sonic altimeter. The depth altimeter mode is the new method proposed and imple-
mented in this work, and the air pressure and ultrasonic modes are alternative methods
for comparison during experiments. Note that the depth altimeter method controls
depth while air pressure and ultrasonic methods control the UAV’s altitude as a proxy
for sensor depth.

Depth altimeter mode controls only thrust, while the UAV controls roll, pitch,
and yaw. On the control computer, the stream of depth readings is passed through a
Kalman filter assuming Gaussian noise (characterized in Sect. 4.2), and we assume a
linear state transition function during hover. The filtered readings are used in a S0 Hz
PID position controller for depth that commands thrust.

Air pressure altimeter mode uses the UAV’s onboard controller for everything:
roll, pitch, thrust, and yaw. Air pressure mode uses the UAV’s air pressure altimeter,
GPS, and an onboard IMU together to create a fused pose estimate. This is the basic
‘out-of-the-box’ controller.

Ultrasonic altimeter mode fuses downward-facing ultrasonic sensors with the
air-pressure altimeter to form an altitude estimate. To prevent the ultrasonic sensors
from seeing the cable, the readings from each of the two ultrasonic sensors are pre-
filtered based on both the variance of recent readings and the proximity of readings
to the current altitude estimate, before being passed through a Kalman filter. The
details of this pre-filtering are described in previous work [7].

Now that we have an implementation guided by simulation, we discuss experi-
mental validation in the field.

5 Field Experiments

This section describes the setup of field experiments and presents results. To test our
approach, we designed three field experiments: (1) a comparison of depth precision
for three flight modes with a 3.5 m cable and submerged sensor payload; (2) step
responses to changes in target depth for the proposed depth altimeter method; and,
(3) an initial exploration of the depth altimeter method using a longer, 8.0 m cable,
measuring precision and step response.

All field experiments were conducted during March 2017 at Wildwood Lake
near Lincoln, Nebraska, USA, as shown in Fig. 6. In total, we flew 33 missions.
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Fig. 6 Wildwood Lake near
Lincoln, Nebraska, USA,
shown with depth contours.
The yellow arrow indicates
location of field experiments.
Map courtesy of Nebraska
Game and Parks

The comparison dataset was collected during three days and the wind average speeds
were 3.5m/s, 2.0m/s, and 1.3 m/s, respectively with maximum 5 s wind speed of
8.5m/s, 7.2m/s, and 7.9m/s, respectively, indicating occasional strong gusts. We
measured wind speed and direction using a weather station recording into a time-
synced computer log.

5.1 Comparison of Flight Modes for Maintaining Constant
Depth

The purpose of this experiment is to compare three flight modes and quantify how
precisely we can maintain the depth of a sensor payload. The three modes are detailed
in Sect.4.3.

We launched the vehicle from a jetty to a sampling location 10 m from shore,
indicated in Fig. 6. For these experiments we used a 3.5 m cable affixed below the
UAV’s center of mass. For each mission, we flew to the sampling location by human
pilot, descended until the depth altimeter was at least 1 m deep, then switched to one
of the computer controlled flight modes. Once in computer control mode, the system
attempts to remain stationary in x and y while recording depth. We flew two modes per
flight, each for ~4 min. It can be difficult to compare the results of different outdoor
trials, so within a single flight we tested different flight modes successively, and
recalibrated the depth altimeter every few hours to adjust for changing air pressure.
We swapped the flight mode sequence between trials to ensure that no mode benefited
from fresher batteries. In total, we flew 12 min maintaining a specified depth for each
mode. We use the depth altimeter reading for comparison, as it is accurate and fast as
described in Sect. 4.2, and use this as a basis for evaluating the target depth precision.

Figure7 show the results of comparing depth precision during the three flight
modes. The data are collated from 3—4 flights per mode. We assume a Gaussian
distribution of target depth errors and estimate the standard deviation o with Matlab’s
normfit function. As shown in the figure, the depth altimeter mode is significantly
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Fig. 8 Comparison of depth precision using three different flight modes with 5-second-average
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more precise than either ultrasonic or air pressure modes. Specifically, the statistical
dispersion of depth readings in depth altimeter mode keeps 95% of readings within
+8.4cm(o = 4.2 cm), two standard deviations from the target depth. This is within
our goal of being able to obtain readings with a resolution of at least ~25 cm. The
ultrasonic-pressure altimeter mode shows o = 16.1 cm, or 95% of readings within
+32.2 cm of the target depth, while the air altimeter has the largest dispersion, with
95% of readings within £60.2 cm(c = 30.1 cm).

To better show the variation of depth readings in each mode, Fig. 8 shows examples
of 4 min of continuous flight for each mode along with the 5-second-average wind
speeds. As shown in Fig. 8a, depth altimeter mode stays closest to the target depth
with almost no drift and small disturbances, and note than it maintained this target
depth during 5 m/s wind gusts. Also note in Fig. 8b how ultrasonic altimeter mode
is not as precise and occasionally deviates almost a meter even with calmer winds,
but does not drift significantly over time, unlike the air pressure altimeter mode.
During the ultrasonic altimeter test, we moved the UAV closer to the water so that the
ultrasonic rangefinders could get better readings, resulting in greater depth compared
to the other two methods. In Fig. 8c, the air altimeter mode depth readings change
by 30—40cm in a small amount of time, but that within 2 min the depth readings
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Fig. 9 Step response of depth altimeter mode at 0.5 m increments for a 3.5 m cable
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Fig. 10 Step response of air pressure altimeter mode at 0.5 m increments for a 3.5 m cable

can be off by +0.75 m. The large drift in air pressure mode is likely caused by larger
changes in ambient air pressure, like wind.

5.2 Step Response of Depth Altimeter Mode for a 3.5 m Cable

To determine if the system under depth altimeter control could transition between
target depth reference points, we conduct ‘step response’ maneuvers. Figure 9 shows
the step responses under depth altimeter control. For each reference depth, we set the
system to hold a particular target depth, then adjust the target by 0.5 m. Notice how
the reference depths are repeatable both ascending and descending and the depth
quickly settles to within £5 cm of the target depth. For comparison, Fig. 10 shows
the step response for air pressure altimeter mode. We do not show the step response
for ultrasonic altimeter mode because it only works well when close to the water.
We use 0.5 m changes to avoid the UAV outpacing the submerged sensor toward the
target depth, until we implement a descent velocity limit, reserved for future work.

5.3 Longer 8.0 m Cable: Target Error and Step Response

As an additional experiment, we extended the cable length to 8.0 m. The reason we
are interested in a longer cable is that in some applications we want to be able to
measure water properties across a range of depths, nearly all <10m, and we also
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wanted to see what impact a longer cable would have on the ability to control the
depth. Therefore, we field tested the depth altimeter flight mode with the 8.0 m cable.
The experimental setup is identical to the depth altimeter mode tests in Sects.5.1-5.2
other than the longer cable length. We were only able to test the 8.0 m cable down
to a depth of ~4 m, due to depth limitations at our field location.

Figure 11 shows the results for holding a target depth, and for comparison the
figure shows the distribution of target errors for the 3.5m cable depth altimeter
experiments of Sect.5.1. As shown in the figure, the 8.0 m cable is less precise than
the 3.5 m cable, with 95% of readings within +14 cm(c = 7.0 cm), still close to the
desired 20.25 m resolution. The dispersion of target errors for the 8.0 m cable still
improves on the ultrasonic and air-pressure altimeter modes, even when those modes
use the shorter 3.5 m cable.

Figure 12 shows the step response between target depths at 0.5 m increments. Like
the system with the 3.5 m cable under depth altimeter control, the configuration with
an 8.0 m cable can transition precisely between target depths.

Because the 8.0 m cable allows the sensor payload to remain within £14 cm for
nearly all readings, this means an 8.0 m cable might be viable for monitoring water
properties down to a depth of 7 m, and we intend to explore this in future work.
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6 Discussion and Future Work

The precision for the depth altimeter flight mode exceeded our expectations, espe-
cially while flying in wind gusts at 80% of the manufacturer’s limit of 10 m/s. We
believe that controlling depth with a depth altimeter and the UAVs motors will enable
dramatically better vertical resolution with the advantages of quick deployment and
redeployment by UAV without additional sensors.

One future challenge includes integrating sensor payloads requested by water
scientists. The challenge is that the irregular shapes and configurations of sensors
might result in different drag and terminal velocities.

Fusing altitude and depth data might appear to be natural course, but we see little
advantage in fusing because other sensors measure the UAV’s altitude, not the depth
of the sensor payload. A hybrid controller could switch between flight modes based
on violations of invariants inferred during successful flights [25] (like hitting the bed
below the water, becoming entangled, or getting encased in muck).

We examined the depth error as a function of lateral disturbance (error in x and
y position), like when wind or GPS drift pushes the UAV out of position. However,
we saw no relationship between lateral error and depth error. We plan to explore this
in flowing water (‘lotic systems’) or while the UAV is translating.

Flying over water with micro UAVs that are not waterproof is inherently risky, and
there are a number of ways to increase the reliability of this kind of system: (1) better
protection from unsafe descent, including conductivity sensors on the cable near the
UAV, and at least one ultrasonic sensor for redundant backup; (2) break-away cable
with a buoy; (3) a protective cover for the depth altimeter to prevent fouling; and,
(4) buoyancy of the UAV.

7 Conclusions

This work explores a novel method for precisely maintaining the target of a sub-
merged sensor payload passively cabled to a UAV. Our method enables 95% of
sensor payload readings within £8.2 cm of the target depth, increasing the depth
resolution of UAV-based water property datasets. We tested our method in the field
moderately windy conditions (4—8 m/s) and the system still quickly and accurately
reached and maintained target depths. The non-linear dynamics of a system with a
semi-rigid cable are challenging to model as it interacts with wind and water. Still,
we used simulation to guide and refine our approach before implementation. We con-
ducted field experiments that validate the approach, resulting in a 75% reduction in
standard deviation from a target depth when compared to the previous best method.
We also presented initial results for a longer, 8.0 m cable, the longest cabled sensor
system yet attempted in UAV-based sub-surface water monitoring, and demonstrated
that even an this length the approach allows water monitoring at precise depths from
the air.
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