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Abstract With recent technological breakthroughs bringing fully autonomous
inspection using small Unmanned Aerial Vehicles (UAVs) closer to reality, the com-
munity of Robotics has actively been developing the real-time perception capabili-
ties able to run onboard such constraint platforms. Despite good progress, realistic
deployment of autonomous UAVs in GPS-denied environments is still rudimentary.
In this work, we propose a novel system to generate a collision-free path towards a
user-specified inspection direction for a small UAV using monocular-inertial sens-
ing only and performing all computation onboard. Estimating both the previously
unknown scene and the UAV’s trajectory on the fly, this system is evaluated on real
experiments outdoors in the presence of wind and poorly structured environments.
Our analysis reveals the shortcomings of using sparse feature maps for planning,
highlighting the importance of robust dense scene estimation proposed here.

1 Introduction

The remarkable agility of small UnmannedAerial Vehicles (UAVs) has been drawing
growing interest in tasks, such as aerial surveying and industrial inspection (e.g.
of wind turbines1). Their employment in open fields can be automated using pre-
defined GPS waypoints. However, such methods do not only assume the absence of
any obstacles at the pre-specified flight altitude, but also the availability of reliable
GPS signals, restricting their applicability. As a result, most missions employing
UAVs today, resort to manually driven flights around the structures of interest, albeit
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limiting dramatically the inherent agility of UAVs to the pilot’s field of view and
judgement of clearance to structures.

Combining promising state-of-the-art building blocks, in this paper, we present a
novel system capable of generating autonomously collision-free trajectories for aer-
ial inspection in potentially GPS-denied environments. Despite the ability of stereo
image processing in providing reliable scene depth estimates, monocular sensing in
preferred onboard small UAVs as the stereo baselinemost often proves too small to be
effective in general missions, such as to provide clearance from structures. Factoring
in the possibility of external disturbances, such as wind gusts, a clearance range of
10–20m is recommended. As a result, the minimal setup of monocular-inertial sens-
ing is typical for Simultaneous Localization And Mapping (SLAM) onboard small
UAVs, respecting the platform’s constraining payload and computational capabili-
ties.

Starting off without any prior knowledge of the scene, the proposed system builds
on monocular-inertial SLAM to obtain a sparse map of the UAV’s surroundings and
estimate a denser scene representation as in [18]. Employing the Monocular-Inertial
SLAM based Planner (MISP) [2], demonstrated to be suitable for aerial inspection
in simulation, our system plans the UAV’s path to a pre-specified inspection direc-
tion using its current estimate of the scene, as shown in Fig. 1. The structure to
be inspected is assumed to be a static manifold with enough free space around to
safely fly. Exploiting the power of MISP to generate a collision-free path via contin-
uous re-planning, any structures encountered are inspected and used as a source of
localization cues. Evaluating MISP in real experiments for the first time, we demon-
strate that our denser scene representation provides a far more practical alternative
to feature-based maps used in [2].

2 Related Work

The complex task of automating inspection requires that the robot’s spatial perception
and path-planning capabilities are synchronized and able to cope with the uncertain-
ties arising in a real mission. While there is a vast body of literature addressing
either robotic perception or planning, it is due to the inherent difficulty in dealing
with uncertainties in both processes at the same time, that there is only a handful
of works addressing their combination and employment in real scenarios. On of the
first works to demonstrate successful path-planning for UAVs was the framework of
[1], which used Rapidly-exploring Random Belief Trees [6] on a pre-acquired map
of visual features to predict subsequent scene measurements. The prohibitive cost of
this approach, however, requires a base station for off-board computations, while its
employment of known maps limits its applicability to general tasks. Tackling path-
planning for an incrementally built map using SLAM, the monocular setup of [15]
employed a set of heuristic rules to indirectly evaluate the quality of the generated
paths, leading to an improvement in performance of the SLAM system in small scale
scenarios.
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In the most naive approach for collision avoidance, ultrasound range finders are
typically used as a last-minute resort to avoid obstacles (e.g. in parking guidance
for cars applications). However, it is depth and/or stereo cameras that are mostly
often employed to enable more sophisticated obstacle avoidance strategies, as they
provide denser scene information. Nonetheless, the limited range of both ultrasound
or RGBD sensors as well as their sensitivity to the environment renders them often
impractical in general scenarios.

Investigating the applicability of high performing real-time stereo matching algo-
rithms, we tested ELAS [9] and SGBM [10] to estimate a stereo-based scene recon-
struction. However, as predicted theoretically, the stereo baseline is relatively too
small with respect to the depth of the scene in the mid-range inspection addressed
here, producing poor scene estimates, thus rendering such systems unsuitable. As
aforementioned, the monocular-inertial setup employed in this work is typical in
UAV navigation, however, it poses great challenges in robust and denser scene esti-
mation. The most recent works of monocular ORB-SLAM [16], and monocular-
inertial ROVIO [5] and OKVIS [13], demonstrated that robust robot localization
using a sparse set of visual landmarks can be performed in real-time even without
using cues from a secondary (stereo) camera. ROVIO, for instance, tracks only about
20 visual features per frame, while OKVIS can track about 200.While ROVIO’smap
is clearly too sparse for meaningful use during path-planning, OKVIS’s map often
provides a more preferable (i.e. denser) distribution features in space. Denser real-
time monocular scene estimation approaches, such as LSD-SLAM [8] offer more
complete scene representations, but are too noisy to use for path-planning.

In this work, we employ the low-cost approach for denser scene representation
from monocular views of [18]. The outlier removal, smoothing and interpolation of
the SLAM landmarks performed by this algorithm overcome the problem of uneven
distribution of landmarks and noisy measurements, resulting to a favourable map
for path planning. Employing MISP [2], the generated UAV trajectory explicitly
considers the motion constraints of a robot with a monocular setup, improving the
overall performance of the SLAM system.

3 System

Our system for aerial inspection using visual and inertial sensing cues builds on top
of the open-source ETHZ-ASL ROS stack for visual-inertial autonomous flights.2

This framework permits the use of the three sensors that we have onboard our UAV;
a monocular camera with an Inertial Measurement Unit (IMU) attached to it and
another IMU inside the body of the UAV (at its center). The former IMU and the
camera are embedded in the same circuit for time-synchronization as in the Intel
RealSense ZR300 Camera. The latter IMU is used by the UAV’s autopilot system
inside the Attitude Controller.

2http://wiki.ros.org/asctec_mav_framework.
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Fig. 1 The top view (top) and the side view (bottom) of a successful run from the start position
towards the inspection direction, until the pilot decides to take over (labelled as “end”). Note that
the planner chooses to follow the structure, while planning the robot’s path towards the inspection
direction as the structure is a rich source of visual cues, and thus ensures the system’s robustness.
The color of the trajectory represents the time. The platform used for all the experiments in this
paper is the AscTec Neo, shown in the inset

Using the sensor information from all onboard sensors, the proposed system,
illustrated in Fig. 2, is able to accurately estimate on the fly and in real-time the
UAV’s motion while building a map of the environment. Using such information,
the system plans and executes a collision-free path to the user-defined inspection
direction, while following closely the structure in front of the UAV (i.e. any structure
with visual features).

To this end, the autonomousflight stack, depicted in gray inFig. 2, is composed of a
visual-inertial SLAM system, the keyframe-based odometry algorithm OKVIS [13],
the EKF-based Multi-Sensor Fusion algorithm [14], and the linear model-predictive
position controller of [12]. This stack is well tested and used in several works, such
as [3, 17]. Employing a variant of MISP [2], here we modified the original path-
planning algorithm to enable its practicality and feasibility in real-life experiments.
Having been only illustrated in simulation so far, the original MISP uses directly the
landmarks provided by the visual-inertial SLAM (OKVIS), as illustrated by the red
dashed arrow. In this work, we propose to use a robust scene depth estimationmodule
as we demonstrate that the naive use of the pure visual-inertial SLAM landmarks
does not provide an accurate enough scene representation in real missions. All of the
components of the proposed pipeline run in the onboard UAV’s CPU.
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Fig. 2 The architecture of our system. Using both the feeds from the external IMU and monocular
camera, and the autopilot’s IMU, the UAV’s onboard computer runs the autonomous flight stack
(gray blocks), which estimates the UAV’s pose and a map of landmarks of the UAV’s surroundings.
Instead of naively using the landmarks to plan the UAV’s path to the goal (using the red-dashed
arrow), our experiments demonstrate that introducing a denser scene estimation module (green
block) results to more robust and accurate performance for aerial inspection

In the rest of this section, a brief description of the MISP algorithm is presented,
together with our strategy for real-time and robust depth estimation and their inte-
gration within the proposed pipeline.

3.1 Path Planning Based on MISP

MISP [2] is a path planning algorithm specially designed for small UAVs with lim-
ited computational capacity using monocular-inertial localization and mapping. The
algorithm exploits the structure of an a priori unknownmap to guide the robot towards
a known goal position, adapting the navigation as new areas are explored by means
of an quick re-planning policy. The efficiency of the algorithm relies on the reuse
of most of the underlying information between consecutive planning iterations by
limiting its reaction to only local changes in the map.

MISP facilitates the monocular localization by planning around the obstacles in
the map, while tracking and orienting the robot towards the visual features on them.
This path planning leads to a tangential navigation with respect to the local obstacles
that is most suitable for the inspection task proposed in this work. The algorithm
is originally designed as point-to-point planner, whereas the mission proposed in
this work does not consist of reaching a specific location, but rather inspecting the
structure that the UAV is facing at the time that MISP gets initialized. For this
reason, here we adapt the original algorithm to be guided by a generic and user-
defined inspection direction instead of a goal location as depicted in Fig. 3. In [2],
MISP achieves good results in an inspection task in a simulated environment. Here,
we address in detail the limitations of original algorithm when it is applied to real
scenarios in the following sections.

MISP employs a probabilistic 3D grid map representation [11] to register the
obstacles in the map on-the-fly. The obstacles in the map are considered sources of
visual features and thus, the accurate tracking of such features has critical impact
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Fig. 3 In an inspection task, theMISP segments part of the inspected structure at a given segmenting
altitude hseg . The segmented part of the structure, in green, is then used to generate paths keeping
a constant clearance at navigation altitude hnav . On the right, the MISP computes the best path
towards the inspection direction. The structure of the environment in the unknown map areas is
inferred based on the current map, relying on the efficient re-planning policy to adapt the navigation
to upcoming changes

in the performance of the employed vision-based SLAM system. Inspired by Cover
et al. [7], MISP generates position samples around to the map obstacles at a given
clearance distance ρ enforcing a collision-free navigation.

In this work, we restrict the algorithm to plan in a plane at a fixed navigation
altitude hnav , as proposed originally in [2]. For the proposed inspection task, we
also define the segmenting altitude hseg at which the structure of the environment is
considered of interest and thus any obstacles at this altitude are used to generate the
position samples as previously described (See Fig. 3).

The position samples surrounding the obstacles of interest are connected to other
neighbouring position samples via collision-free paths generating a graph in which
the current robot and goal position are also included. The graph is then searched for
the best path connecting the current position to the goal. The weights of the graph
are designed so that the resulting best path favours the robot to navigate close to
the obstacles at the given predefined clearance distance ρ, even if it implies a larger
overall travelled distance towards the goal.

We redefine the “goal” in the original MISP implementation to use an inspection
direction instead, guiding the navigation of the robot while avoiding any obstacles
in the way. We implement this modification by setting the goal location beyond
the reach of the inspection area. The mission is considered completed as soon as
the robot leaves the inspection area guided by the inspection direction while flying
autonomously.

In each planning iteration, the segments of the best path closer to the current robot
position are determined by the known local map, whereas any segments further away
are generated by inferring the structure of the unknownmap areas subject to changes.
As a result, we only execute the path up to a given short travelled distance, usually
a couple of meters, and subsequently repeat a planning iteration including any new
updates of the map. This receding horizon strategy, inspired by Bircher et al. [4],
allows the robot to re-plan its path and adapt its navigation as new areas in the map
are explored.
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The heading of the robot is defined to be almost perpendicular to the inspected
structure’s surface tomaximize the parallax of the perceived visual features, ensuring
this way to boost the robustness of the SLAM system during the mission. The head-
ing direction deviates slightly (e.g. ∼15◦) from the nominal perpendicular heading
towards the navigation direction in order to safely detect upcoming changes in the
structure. The original MISP implementation defines an additional set of so-called
“recovery behaviours” to overcome other endangering situations when navigating
close to the obstacles. Since this work focuses on medium-large range inspection,
we do not consider such heuristics. Although the structure is assumed to be a mani-
fold, small gaps can be effectively handled byMISP, since it allows the robot to move
from one obstacle to another inside of the inspection area, as well as the dense depth
estimation, that is able to fill small areas without visual information in the map.

3.2 Robust and Dense Depth Estimation

The original MISP implementation [2] naively assumes that the raw landmarks esti-
mated during SLAM are outlier-free, well distributed across the scene, and dense
enough to allow a good enough estimate of the world using a probabilistic 3D voxel
grid map at a coarse resolution. While these assumptions may hold in simulated
environments, in real scenarios noisy scene estimates and textureless areas are com-
mon enough to cause large deviations of the resulting behaviour from the nominal
expected performance, as illustrated in the experimental results presented in Sect. 4.

Considering the limited computational capacity and payload restrictions onboard
a small UAV, in this work we focus on the already available monocular and iner-
tial sensing cues to generate a denser scene representation, making the most of the
onboard sensor suite. Inspired by the mesh-based scene representation of [18], we
employ this method, which was specifically designed for aerial inspection to create
a mesh out of the landmarks estimated by SLAM and then perform an outlier elimi-
nation and smoothing of this mesh. This system assumes that the area in the field of
view is a continuous surface without small or thin objects protruding, although the
surface can be non-planar and have small discontinuities, which most often holds in
reality (see experimental setup of Sect. 4). Note that, although this mesh-based scene
representation is also capable of providing surface normals, this feature is not used
in this work.

As depicted in Fig. 8, the difference of the map estimation when using only raw
landmarks as opposed to the mesh-based depth estimation pipeline [18] is clearly
noticeable. Thismesh is computed using only the raw landmarks and the camera pose
estimates fromSLAM.Firstly, the 3D landmarks are checked for neighbourhood sup-
port (in their depth estimates) in order to filter out unreliable landmarks, i.e. the ones
with much larger uncertainty within their surroundings. The remaining landmarks
are projected onto the image plane corresponding to the current viewpoint and amesh
is constructed via a 2D Delaunay Triangulation. An outlier detection algorithm then
removes any triangles that do not fulfil the algorithm’s smoothness criteria; very
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oblique mesh-triangles and spikes in the mesh are rejected. The remaining mesh-
vertices are smoothed with respect to their depth using a Laplacian filter, before
interpolation is applied by a rasterization algorithm. The outcome of this pipeline is
a smooth mesh representation of the scene, providing one depth measurement per
pixel in the image space and resulting into a depth map with the same resolution as
the camera image. For all our tests, we use the default parameters provided in the
open source implementation of the authors.3 Please refer to the original paper [18]
for detailed explanation.

4 Experiments

In order to evaluate the proposed system, we carried experiments out in the ruins of
the Hardturm Stadium in Zurich visible in Fig. 4. We choose to inspect the largest
structure of the stadium’s stands (aka bleachers). This structure is about 8m tall and
forms an almost continuous surface covering a 100m × 100m area. Ground-truth
data was recorded for the test site by capturing a laser point cloud of the scene using
the Leica MS50 Station Theodolite. The ground-truth for the UAV’s trajectory in
each run, was generated by post-processing each sequence with OKVIS [13] using
unbounded optimization times and extended optimization windows.

During the experiments the algorithms face additional challenges, such as light
wind gusts. The wind does not only interfere with the UAV’s trajectory, but also with
the environment due to the fact that trees and bushes cover a large area in front of
the structure. Additionally, there is a featureless white tent in the area which adds
difficulty in performing SLAM robustly as this can occupy a large portion of the
UAV’s field of view at times.

Once the algorithm is initialized, the pilot hands over all control of the UAV’s
motion to the proposed system and takes back the control either at the end of the
route or if the pilot judges that the UAV enters a dangerous situation (e.g. flies too
close to a structure). The inspection direction is set as shown in Fig. 7.

Following a few test-flights, we set the clearance to 10m for this setup and the
current wind conditions. Making sure that the UAV is facing the structure to be
inspected at the beginning of eachmission, the origin of theUAV’s coordinate system
is set at the position where the SLAMmodule is initialized. This initial position also
determines the segmenting altitude, while the navigation altitude is set at 2m higher
due to the sensor’s slightly downward-tilted configuration as illustrated in Fig. 3. For
fairness of comparisons amongst different experiments, the segmenting altitude is
set to 2m measured by the UAV’s barometer and the navigation altitude at 4mm
high. Note that the barometer readings can by affected by the wind, so these settings
can only be approximate. In this setup, the rest of this section analyses the capability
of our system in respecting the navigating altitude and the clearance. Further on, the
quality of the generated map and the UAV trajectories are discussed, on the basis of

3https://github.com/VIS4ROB-lab/mesh_based_mapping.

https://github.com/VIS4ROB-lab/mesh_based_mapping


Autonomous Aerial Inspection Using Visual-Inertial Robust … 199

Fig. 4 Aerial (top) and groundphotos (bottom) of the test site.Aerial image source: Swiss Panorama

five different flights with the same starting pose and inspection direction; three of
these using the mesh-based robust dense depth estimation and two using only the
SLAM sparse landmark map as a representation of the scene.

4.1 Navigation Altitude

Aconstant navigation altitude is important not only for collision avoidance during the
navigation, but also for acquiring images with sufficient overlap, crucial for robust
navigation and effective inspection. Figure5 illustrates the altitude measured during
each of the five flights. There is a clear drift tendency of descending UAV altitude,
from the SLAM origin and increasing with respect to the travelled distance and the
experiment’s duration. As a result, the mesh-based flights have similar descent rate,
but larger absolute drift than the sparse-based flights, because the travelled distance
is also longer (see Table1).

4.2 Clearance

Although MISP aims to maintain a constant clearance to the structure, in practice it
is a difficult task for the position controller to stabilize the UAV in presence of wind,
specially when all computations are based on noisy pose and map estimates. As a
result, some variance on the actual clearance is expected in real experiments, but the
average clearance achieved should be similar to the specified. Most importantly, the
UAV should never fly too close to the structure for safety reasons.

Extracting the same segmented region from the scene ground truth and in order
to evaluate the actual clearance during flights, we build a 2D map (i.e. top view)
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Fig. 5 The ground-truth of the navigation altitude throughout each flight, revealing drift in all trials
increasing with travelled distance and flight duration

Table 1 Duration and travelled distance for all five flights used in this analysis. Note that the
sparse-based flights are aborted prematurely as they are unable to safely complete the mission

Flight-label Mesh #1 Mesh #2 Mesh #3 Sparse #1 Sparse #2

Duration (s) 103 137 90 53 74

Distance (m) 120 125 102 62 77

Fig. 6 Distance between the actual UAV’s position and the desired clearance set for the trajectory
generation. While sometimes this error is large, in the mesh-based flights on average it approaches
zero. During flight Sparse #2, the UAV gets too close from the structure and the safety pilot took
over

with the same 1m-resolution as the probabilistic 3D voxel grid representation used
in the planner, essentially constructing a binary image. Using this image we calculate
the distance field to estimate the actual distance of the UAV (from the trajectory’s
ground truth) to the closest part of the structure. Figure6 plots the distance of the
actual position of the UAV to the desired clearance (here, set to 10m). The mesh-
and the sparse-based approaches exhibit comparable performance, probably due to
the fact that the test site was overall sufficiently textured, except the tent region.
Self-similar structure, however, e.g. arising from the vegetation around the structure
of interest, generates erroneous feature matches. While these can be filtered out to
a certain degree during mesh-based flights, for both sparse-based flights this proves
fatal as discussed in Sect. 4.3.
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Fig. 7 All the runs of the proposed pipeline with either options of using the sparse landmark map
or the mesh-based scene representation, shown in the top view (top) and a side view (bottom).
All experiments start from roughly the same position (marked with the square) and have the same
inspection direction. All mesh-based runs autonomously reach the boundaries of the experimental
area (marked with a disc), while both sparse-based runs end prematurely (marked with a star)

4.3 Trajectory Generation and Scene Estimation

Figure7 depicts the 3D trajectories of all five flights, as MISP plans a path, such
that the UAV inspects and follows the structure in the field of view. Each experiment
started at the square marker. An experiment is finished either when the UAV reaches
the boundaries of the experimental area marked with a disc in Fig. 7 or when the
UAV’s trajectory reveals large errors in the estimation processes and the pilot decides
to take over (marked with a star) for safety reasons. More specifically, when the UAV
loses the structure of interest from its field of view, it is a point of no return revealing
that a path is planned on an invalidmap containing toomany outliers, and this leads to



202 L. Teixeira et al.

Fig. 8 The sparse scene estimation (top) at the moment when flight Sparse #1 fails due to the
falsely perceived outlier very close to the UAV (yellow arrow is UAV’s pose at that moment). As
soon as the outlier is encountered a new path is planned (green nodes) around the erroneous obstacle
estimate, causing the UAV to lose track of the structure of interest. For comparison, the denser map
estimated during the successful flight Mesh #3 is superimposed in the bottom image

the decision of ending the experimental flight prematurely. Another case that leads
to premature take-over by the pilot is the segmentation of the ground plane (i.e.
containing no free space) due to vertical drift. This is very problematic situation that
can be more common in our test setup, where we fly close to the ground, however
typically aerial inspection is conducted at high altitudes practically eliminating this
failure case.

As clearly depicted in Fig. 7, both experiments relying on the sparse scene estima-
tion have to be interrupted by the pilot, while all flights employing the mesh-based
alternative are able to reach the boundaries of the flying area. In fact, mesh-based
dense depth estimation exploits the advantage of accessibility to a denser scene esti-
mation accumulated over time (i.e. multiple views of the same area), outliers can be
removed effectively resulting to a far less noisy scene estimation than the sparse coun-
terpart. Generally, most of the outliers in the scene estimation arise during inaccurate
registration of the current view to themap, following inaccurate pose estimation from
SLAM. Such outliers are very unlikely to be replaced by correct measurements later
on in the trajectory, when employing sparse depth estimation traditionally used in
SLAM.
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Fig. 9 The final 3D octomaps retrieved during different flights

Figure8 shows the probabilistic 3D grid map at the moment of the failure of flight
Sparse #1. During navigation, an outlier landmark suddenly gets estimated to be very
close to the current UAV position. As a result, the UAV is forced to move away from
it to maintain the nominal clearance, rotating during this manoeuvre to face to the
direction of this new obstacle that does not really exist, losing in the way the track of
the actual structure to be inspected. In the bottom image of Fig. 8, the dramatically
improved quality of the map when using the mesh-based map is evident.

The top-left image of Fig. 9 illustrates the sparse SLAM map as estimated at the
moment of the failure of flight Sparse #2. In this case, this sparse estimation of
the test site does not provide enough information to permit continuing the SLAM
estimation during the UAV’s rotation necessary for turning at the corner visible also
in Fig. 7, with the planned trajectory expanding through the white tent—hence if the
pilot would not take over, the UAV would collide with the tent.

5 Conclusion

This paper proposes a novel system composed of state-of-the-art vision-based per-
ception and planning able to run onboard a small UAV to perform autonomous aerial
inspection. Without any a priori knowledge of the environment, the UAV’s surround-
ings are estimated in real-time and the UAV’s trajectory to inspect the structure of
interest is constantly re-planned as newly perceived scene information enters the
system. The evaluation of this system on real and challenging experiments outdoors
reveals the power of the proposed method to deal with noisy estimates in the percep-
tion of the UAV’s motion and the scene.
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