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Foreword

Robots! Robots on Mars and in oceans, in hospitals and homes, in factories and
schools; robots fighting fires, making goods and products, saving time and lives.
Robots today are making a considerable impact from industrial manufacturing to
healthcare, transportation, and exploration of the deep space and sea. Tomorrow,
robots will become pervasive and touch upon many aspects of modern life.

The Springer Tracts in Advanced Robotics (STAR) was launched in 2002 with
the goal of bringing to the research community the latest advances in the robotics
field based on their significance and quality. During the latest 15 years, the STAR
series has featured publication of both monographs and edited collections. Among
the latter, the proceedings of thematic symposia devoted to excellence in robotics
research, such as ISRR, ISER, FSR and WAFR, have been regularly included in
STAR.

The expansion of our field as well as the emergence of new research areas has
motivated us to enlarge the pool of proceedings in the STAR series in the past few
years. This has ultimately led to launching a sister series in parallel to STAR. The
Springer Proceedings in Advanced Robotics (SPAR) is dedicated to the timely
dissemination of the latest research results presented in selected symposia and
workshops.

The Eleventh edition of Field and Service Robotics edited by Marco Hutter and
Roland Siegwart offers in its seven-part volume a collection of a broad range of
topics clustered in control, computer vision, inspection, machine learning, mapping,
navigation and planning, systems and tools. The contents of the forty-five contri-
butions represent a cross section of the current state of robotics research from one
particular aspect: field and service applications, and how they reflect on the theo-
retical basis of subsequent developments. Pursuing technologies aimed at field
robots that operate in complex and dynamic environments, as well as at service
robots that work closely with humans to help them with their lives, is the big
challenge running throughout this focused collection.
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Rich by topics and authoritative contributors, FSR culminates with this unique
reference on the current developments and new directions in field and service
robotics. A fine addition to the series!

Naples, Italy
Stanford, USA
July 2017

Bruno Siciliano
Oussama Khatib
SPAR Editors
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Preface

Field and Service Robotics (FSR) is the leading single-track conference on appli-
cations of robotics in challenging environments. Its goal is to report and encourage
the development and experimental evaluation of field and service robots, and to
generate a vibrant exchange and discussion in the community. Field robots are
non-factory robots, typically mobile, that operate in complex and dynamic envi-
ronments: on the ground (Earth or other planets), under the ground, underwater, in
the air or in space. Service robots are those that work closely with humans to help
them with their lives. The first FSR was held in Canberra, Australia, in 1997. Since
that first meeting, FSR has been held roughly every 2 years, cycling through Asia,
the Americas and Europe. This book presents the results of the 11th edition of Field
and Service Robotics, FSR 2017, held in Zurich, Switzerland, from 12 to 16 June
2017. This was the first time it has been held in Canada. This year we had 74
submitted papers from which we accepted 21 for oral presentations and 24 for
interactive presentations. FSR 2017 was organized by Marco Hutter and Roland
Siegwart, ETH Zurich, together with the regional chairs Tim Barfoot, Cedric
Pradalier and Kazuya Yoshida. The organizers would like to thank the International
Program Committee that generously provided their time to carry out detailed
reviews of all the papers, namely Peter Corke, Carrick Dettweiler, Philippe Giguere,
Genya Ishigami, Michael Jakub, Alonzo Kelly, Jonathan Kelly, Ross Knepper,
Simon Lacroix, Christian Laugier, Josh Marshall, David P. Miller, Keiji Nagatani,
Juan Nieto, Steve Nuske, François Pomerleau, Cédric Pradalier, Jonathan Roberts,
Miguel Angel Salichs, Sanjiv Singh, Gaurav Sukhatme, Salah Sukkarieh, Takashi
Tsubouchi, Arto Visala, Kazuya Yoshida and Uwe Zimmer. Additional thanks go
to the keynote speakers Salah Sukkarieh, Terry Fong, Jean-Christophe Zufferey and
Aparna Rao.
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FSR 2015 would not have been possible without the generous support of our
sponsors ETH Zurich, Maxon Motors AG, ABB, Wyss Zurich, NCCR robotics,
NCCR digital fabrication and Wyss Zurich.

Zürich, Switzerland Marco Hutter
Roland Siegwart
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About the Book

This book contains the proceedings of the 11th FSR (Field and Service Robotics),
which is the leading single-track conference on applications of robotics in chal-
lenging environments. This conference was held in Zurich, Switzerland, from 12 to
15 September 2017. The book contains 45 full-length, peer-reviewed papers
organized into a variety of topics: control, computer vision, inspection, machine
learning, mapping, navigation and planning, systems and tools.

The goal of the book and the conference is to report and encourage the devel-
opment and experimental evaluation of field and service robots, and to generate a
vibrant exchange and discussion in the community. Field robots are non-factory
robots, typically mobile, that operate in complex and dynamic environments: on the
ground (Earth or other planets), under the ground, underwater, in the air or in space.
Service robots are those that work closely with humans to help them with their
lives. The first FSR was held in Canberra, Australia, in 1997. Since that first
meeting, FSR has been held roughly every two years, cycling through Asia,
Americas and Europe.
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Controlling Ocean One

Gerald Brantner and Oussama Khatib

Abstract Using robots to explore venues that are beyond human reach has been a
longstanding aspiration of scientists and expeditionists alike. The deep sea exem-
plifies such an unchartered environment that is currently inaccessible to humans.
Ocean One (O2) is an anthropomorphic underwater robot, designed to operate in
deep aquatic conditions and equipped with an array of sensor modalities. Central
to the O2 concept is a human interface that connects the robot and human opera-
tor through haptics and vision. In this paper, we focus on O2’s control architecture
and show how it enables an avatar-like synergy between the robot and human pilot.
We establish functional autonomy by resolving kinematic and actuation redundancy,
allowing the pilot to control O2 in a lower-dimensional space. We illustrate O2’s
hierarchical whole-body control tasks including manipulation and posture tasks,
feed-forward compensation as well as constraint handling. We also describe how
to coordinate the dynamics of body and arms to achieve superior performance in
contact and demonstrate O2’s capabilities in simulation, experiments in the pool as
well as deployment to its archeological maiden mission to the ‘Lune’, a French naval
vessel that sunk to 91m depth in 1664 in the mediterranean sea.

1 Introduction

Over the past decades, advances in automation have enabled robots to replace humans
in performingmanual labor [1, 2]. This was possible because themanufacturing floor
is tightly structured and tasks are highly repetitive. The next evolution for robots is

G. Brantner (B) · O. Khatib
Stanford Robotics Laboratory, 353 Serra Mall, Gates Computer Science,
Stanford, CA 94305, USA
e-mail: geraldb@cs.stanford.edu

O. Khatib
e-mail: ok@cs.stanford.edu
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M. Hutter and R. Siegwart (eds.), Field and Service Robotics, Springer Proceedings
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4 G. Brantner and O. Khatib

to proxy for humans in unstructured, inhospitable environments and advancing the
boundaries of human exploration by entering places that are currently inaccessible.
The deep sea exemplifies an environment that is inhospitable and largely inacces-
sible to humans. The field of ROVs has recently brought major advancements to
underwater robots that can navigate, observe and map [3–5] and the need for under-
water operations has led to the development of submersible manipulators [6, 7]. The
O2 concept offers the capability to perform operations typical for human divers by
synthesizing a humanoid robot that is functionally autonomous with a human pilot,
who provides higher-lever cognitive abilities, perception and decisionmaking. In this
paper, we focus on O2’s control architecture. We illustrate how the robot acquires
functional autonomy in coordinatingmanipulation tasks with posture and constraints
in a hierarchical manner. Subsequently we establish an avatar-like synergy by inter-
facing the human pilot with the robot through vision and bimanual haptic devices.We
demonstrate O2’s capabilities in simulation, experiments at the pool and eventually
its maiden deployment, where it explored a french naval vessel that sank to 91m
depth in the Mediterranean sea, and retrieved archeological artifacts (Fig. 1).

Fig. 1 Left: Ocean One interacting with a human diver. The human pilot—located on the research
vessel AndreMalraux—interfaces with the robot through bimanual haptic devices and direct stereo-
scopic vision from the cameras mounted in its head. The robot mimics the pilot’s hands while the
pilot feels the forces perceived at the robot’s hands. Right: Ocean One System Components. O2 is
a humanoid underwater robot with a body, two arms and a head. The series elastic arms are torque
controlled and oil-filled. Each hand has three under-actuated tendon-driven fingers. O2 has a pair
of stereo cameras in the head and a wide-angle camera on the chest. The body is actuated by eight
thrusters
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2 Robot

Ocean One is a humanoid underwater robot of approximately adult-human dimen-
sions and 200 kg overall weight. Its body is conceived in an anthropomorphic shape
with shoulders, two arms and a head. Each arm has 7-DoF with electrically driven,
torque-controlled joints adapted from the original Meka arm design. The arms are
fitted with series elastic actuators that provide torque feedback to enhance compliant
motion as well as force control, and safety. In order to withstand the pressure at
oceanic depths, the arms are oil-filled and positively pressurized by spring-loaded
compensators. Each hand has three fingers with three phalanges per finger that are
driven with a tendon, which attaches to the distal finger phalanx, passes through the
medial and proximal phalanges and loops around an axis driven by the single actu-
ator [8]. The head contains a pair of high-definition cameras with global shutters.
Pan and tilt actuation at the neck is currently being implemented. Another camera
is attached on O2’s chest, offering a wide-angle perspective on the surroundings in
front and below. The body is actuated by eight thrusters. More details on hardware
components can be reviewed in [9].

3 Pilot Interface

The O2 concept is not only the underwater robot itself but a distributed system of
hardware and software components. The surface station allows the human pilot to
connect to a set of interfaces: Haptic devices, GUI, live vision, and world display.
These interfaces play different roles in different modes of operation. In Avatar-mode,
the haptic devices and live vision are central, while GUI and virtualization are more
predominant in autonomous modes (Fig. 2).

Fig. 2 Pilot Interface. The
pilot’s interaction with O2 is
established through an
immersive interface
consisting of bimanual
haptic devices, stereoscopic
live vision, GUI and a world
display giving a global
perspective of the scene
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4 Modeling

O2 ismodeled as a tree-like structure, with two arms branching out from the body.We
model its kinematics using generalized coordinates, with 6 virtual DoF for the body
and 7 DoF for each arm. Each link is a rigid body with associated mass properties.
This leads us to a multi-body dynamic system represented by twenty-dimensional
equations of motion

A(q)q̈ + b(q, q̇) + g(q) + h = Γ, (1)

where q is the vector of generalized coordinates, A(q) is the kinetic energy matrix,
b(q, q̇) is the vector of centrifugal and coriolis forces, g(q) the gravitational forces, h
the hydrodynamic contribution and Γ is the vector of generalized forces. We extract
the mass properties of the body and arms from the CAD models and experimental
inspection.

5 Control

O2 is a force controlled robot, which allows us to take advantage of the robot’s
dynamics at a global level, coordinating the slow dynamics of the body with the fast
dynamics of the arms in order to achieve superior performance in motion and force
control.

5.1 Whole Body Architecture

The objective behind O2’s control architecture is to enable a connection to the human
interface, where a small set of control inputs is sufficient to pilot the entire robot,
while achieving a high degree of autonomy already at the controller level. Because
the interaction between robot and environment happens primarily through physical
contact, we directly control the two hands while the body autonomously follows the
hands. Beyond this, the controller monitors the pilot, the robot and its environment,
and overrides actions that would lead to constraint violations, such as collisions with
obstacles or joint limits. The remaining null-space is used to optimize arm and body
posture for a given task. This behavior is realized by the control law

Γ = (Jᵀ
c Fc)

︸ ︷︷ ︸

Constraints

+ (Jᵀ
t|cFt|c)

︸ ︷︷ ︸

Manipulation

+ (Jᵀ
p|t|cFp|t|c)

︸ ︷︷ ︸

Posture

+ (Jᵀ
h Fh)

︸ ︷︷ ︸

Compensation

, (2)

a hierarchical architecture comprised of tasks. The four additive terms in (2) are
associated with the contributions of Constraints, Manipulation Task, Posture and
feed-forward compensation, respectively. The controller coordinates these tasks in
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Fig. 3 Whole-Body control
architecture. A hierarchical
structure allows for
prioritization of
manipulation task, posture
and constraints. The only
control inputs are motion and
forces of the left and right
hand. Joint-limit,
self-collision and
obstacle-avoidance have
highest priority. Posture is
defined as the remaining
controllable sub-space after
constraints and
manipulation-task. For
gravitational and
hydrodynamic
compensation, the controller
has an additional
feed-forward term

a prioritized manner. The notation t |c, for instance, reads Task t consistent with
Task c. In case tasks are not simultaneously feasible, a lower-priority task will only
be executed to the extent that is does not interfere with a higher-priority task. For
instance, a new position goal at the hands might lead the body to collide with a rock.
In such a case the constraint task will engage, and make the body evade the obstacle
while still performing the task (Fig. 3).

For each task t , we specify an operational-space ϑt and a control force Ft . The
task Jacobian Jt , establishes a dual velocity-force mapping between generalized
coordinate space q to operational space ϑ with

ϑt = Jt q̇ (3)

Γ = Jᵀ
t Ft . (4)
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To prevent a lower-priority task from interfering with a higher-priority task, we
filter Jacobians and control forces through null-space projections. Details on this
implementation can be seen in [10].

5.2 Manipulation Task

The central element of the controller is theManipulation Task, directly programming
the hands. It is the only task that takes direct control inputs. These inputs are specified
by six-dimensional operational space coordinates for each arm.

ϑ
ᵀ
t = [vᵀ

Left, ω
ᵀ
Left, v

ᵀ
Right, ω

ᵀ
Right] (5)

ϑt = Jt q̇ (6)

v and ω represent the linear and angular velocities of O2’s hands. In this space
we implement unified motion and force control laws expressed in Ft [11]. This
abstraction also allows us to specify the manipulation task in a way that is agnostic
of the robot’s morphology.

5.3 Posture Task

After specifying the twelve-dimensional manipulation task, there are (in general) 8
uncontrolled DoF left. This remaining null-space (Fig. 4) is occupied by the posture
task, which consists of two sub-tasks Body Posture and Arm Posture. Body Posture
positions the body relative to the hands. Its goal is to align the body’s coronal plane
with the horizontal plane while aligning its longitudinal axis with the horizontal
perpendicular to the axis connecting the twooperational points andkeeping a constant
linear offset to the mid-point of the hands. This sub-task occupies 6 DoF.

ϑ
ᵀ
p,Body = [vᵀ

Body, ω
ᵀ
Body] (7)

ϑp,Body = Jp,Bodyq̇ (8)

Finally, there is 1 DoF of null-space left in each of the arms, which is controlled
by the Arm Posture sub-task.

ϑ
ᵀ
p,Arms = [q̇ᵀ

Left, q̇
ᵀ
Right] (9)

ϑp,Arms = Jp,Armsq̇ (10)
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Fig. 4 Left: Task specification. Every task is associated with an operational-space ϑTask, illustrated
by the cartesian coordinate frames. Themanipulation task consists ofϑL andϑR, the six-dimensional
spaces of the left and right hand—three coordinates for the frame origin (purple sphere) and three
for the frame’s orientation. These spaces are controlled directly by the manipulation task, which is
the only task receiving control inputs. This abstraction allows for unified motion and force control
that is agnostic of the robot’s morphology. The body’s operational space ϑBody is controlled by the
Posture task such that it autonomously follows the hands. Right: Null-space of the manipulation
task. The kinematics of O2 are modeled with 20 DoF. The manipulation task occupies 6 DoF for
each of the two arms. The remaining eight are controlled by the posture tasks. Here, O2 performs
a manipulation task on a red valve. The null-space is illustrated by various postures that leave
the manipulation task variables (position and orientation of the white hands) undisturbed. This
eight-dimensional posture can be used to execute the task in an optimized manner

In order to merge the two sub-tasks into a combined posture task, we stack the
Jacobians Jp,Body and Jp,Arms and receive

ϑᵀ
p = [ϑᵀ

p,Body, ϑ
ᵀ
p,Arms] (11)

ϑp = Jpq̇. (12)

5.4 Constraints Task

To prevent the robot from damaging itself or obstacles in the environment, we insert
a constraint task to which we assign the highest priority. These constraints consist
of joint limit avoidance, self collision avoidance and obstacle avoidance. Any action
arising from the manipulation and posture tasks that would violate these constraints
are filtered directly in the control loop. All three constraints rely on artificial potential
fields [12] and use efficient distance computation using capsules. An example is given
in Sect. 7.3.
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5.5 Hydrodynamic Feed-Forward Compensation

O2 experiences hydrodynamic effects when operating in an underwater environment,
which is captured by the last term in (1). In order to compensate for these forces, we
add a feed-forward term (Jᵀ

h Fh) to the controller in (2). Because this computation is
part of the controller, we need to rely on models that are executable in real-time. For
this purpose, we model O2’s body, upper arms, lower arms, and hands as rigid links.
For each link, we compute two forces: Viscous Damping and Buoyancy. Buoyancy
is computed using each link’s volume and center-of-buoyancy extracted from the
CAD files. For viscous damping, we use the standard model of a cylinder

BFD = −1

2
ρ

⎡

⎣

Cxr̄2π | Bẋ | Bẋ
Cy2r̄ L̄| Bẏ| Bẏ
Cz2r̄ L̄| Bż| Bż

⎤

⎦ . (13)

We assume a local coordinate system in each link, originating at the center and x̂
along the cylinder axis. Cx , Cy and Cz are constant parameters, m̄, L̄ and r̄ are
cylinder parameters. The combined hydrodynamic force on each link is computed
with

0Fh,i = 0RB
BFD + 0FB . (14)

With the associated Jacobians we can now compute the total hydrodynamic com-
pensation

Γh = (Jᵀ
h Fh) =

∑

i

Jᵀ
i

0Fh,i . (15)

5.6 Thruster/Body Control

Ocean One has eight thrusters, four horizontal thrusters arranged in diamond-shape
to control yaw and planar translates, four vertical thrusters arranged in square-shape
to control roll, pitch and vertical translation. This redundancy allows for holonomic
actuation and full maneuverability in case of a thruster failure. The mapping from
the eight-dimensional thruster force vector T to six-dimensional generalized force
vector Γ acting on the body is given by Γ = Jᵀ

ThrusterT , more specifically

Γ = [

Jᵀ
1 n1 Jᵀ

2 n2 . . . Jᵀ
8 n8

]

⎡

⎢

⎢

⎢

⎣

T1
T2
...

T8

⎤

⎥

⎥

⎥

⎦

, (16)

where Jᵀ
i is the Jacobian of the i th thruster and ni its associated unit thrust vector.

The robot is controlled in terms of generalized coordinates thus the inversion of (16)
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is needed. Because Jᵀ
Thruster is a wide matrix, it is not immediately invertible but two

more constraints are required. These constraints arise from the elimination of internal
forces and moments given in

T1 + T2 + T3 + T4 = 0 (17)

T5 + T7 − T6 − T8 = 0. (18)

Inverting this system of equations is equivalent to solving the optimization problem

minimize T ᵀT (19)

s.t. Γ = Jᵀ
ThrusterT .

The thrusters are limited by their force capacity Tmax. This limit is imposed by
proportionally scaling back all thruster forces until none exceeds this limit.

6 Teleoperation and Haptic Interaction

The pilot and robot are directly coupled at their hands via bimanual haptic devices.
The robot mimics the pilot’s movements and the pilot receives force feedback that is
perceived through the robot’s 6D force sensors at the wrists. We refer to this mode
of collaboration as Avatar-mode. The pilot is stationary at the console while the
robot is navigating through space in a holonomic manner. To achieve this mapping,
we superimpose position and rate control to compute goal position and orientation
of the two hands. For this purpose we introduce an intermediary coordinate frame
referred to asManipulation-Frame orMframe. This frame is responsible for the rate
contribution, it drifts in translation and yaw in proportion to the sum and difference to
the haptic devices’ linear positions. The position contributions are hand translations
and orientations, directly mapped from the haptic devices’ positions and orientations
(Fig. 5).

Fig. 5 Four planar thrusters
(green T1–T4) and four
vertical thrusters (magenta
T5–T8) enable holonomic
actuation with 2◦ of
redundancy. Three linear and
three angular forces acting
on a body-fixed coordinate
system (yellow) are mapped
to thruster forces (T1–T8)
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Fig. 6 Haptic teleoperation. The operational-space goals of the manipulation task are computed
by a hybrid rate and position signal. The rate contribution is applied to a virtual coordinate frame
(Mframe), and the position contribution is expressed in this frame. The controller enforces these
goals. The raw force signals, measured at the wrists are filtered to remove very high frequency noise
and forwarded and superimposed with a local haptic device controller, which allows the pilot to
perform guided motions

These goals are then forwarded and enforced by the Manipulation task. O2’s
contact forces are measured by force sensors located at the wrists. The raw signals
are passed throughfilters in order to eliminate high frequencynoisewhilemaintaining
haptic transparency. The haptic devices do not only reflect the filtered contact forces
but are actively controlled. This allows the pilot to perform guided motions, which
simplifies the teleoperation task for the pilot by reducing its dimensionality. For
instance, certain fetching tasks only require 1 activeDoF in orientation, and a docking
maneuver only requires 1 linear DoF (Fig. 6).

7 Simulation

Simulation played an integral part throughout the development of O2. Most impor-
tantly, it enabled us to develop and test O2’s software stack prior to fabrication and
deployment on the physical robot. It also informed mechanical design choices and
allowed us to train the pilots and practice entire missions. SAI2 is a real-time inter-
active simulation environment comprised of a collection of libraries that include the
simulation of multi-body dynamic systems, contact and collision resolution. In addi-
tion, we utilized the Chai3D [13] libraries to facilitate haptic and visual rendering.
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Fig. 7 A square wave goal position input is applied to the hands’ operational points. We observe
that the hands’ dynamic responses are much faster than the body’s alone. The combinedmacro-mini
dynamics of slow body and fast arms allows for fast overall dynamics. The body is limited by its
large inertia and comparatively low actuation capabilities

7.1 Step Response in Operational Space

O2’s kinematic structure can be decomposed into three parts. The body, referred to
as macro-manipulator with 6 DoF and two arms referred to as mini-manipulators
with 7 DoF each. This is a valid decomposition because the minis have full range
in operational space and the macro has at least 1 DoF [14]. The serial combination
of macro and mini offers two advantages. First, the effective inertias of the macro-
mini combination is upper bounded by the effective inertias of the mini-manipulator
alone. Second, the dynamic performance of the macro-mini can be made comparable
to that of the mini.

This behavior is illustrated in Fig. 7. A squarewave function is applied as position-
goal for both hands in forward-direction, while lateral and vertical position-goals
remain constant. The step-response of the body alone (bottom) shows slow dynamics
with large overshoot, oscillation and long duration for convergence. This behavior
is due to the body’s large inertia, and comparatively weak actuation capabilities due
to thruster force limitations. The step-responses of the hands’ combined macro-mini
dynamics display fast response with small rise-time and critical convergence. Hence,
the fast, lightweight arms compensate for the slower body and overall response is
fast and accurate.

7.2 Docking Maneuver with Force Control

To illustrate the advantages of whole-body coordination in force control mode, we
perform a docking maneuver, where both hands apply andmaintain a force normal to
a given plane. Themaneuver initiates at close proximity to the contact surface, where
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Fig. 8 We compare a docking maneuver with and without whole-body control. The hands initialize
at close proximity to the red container. The collision plane is indicated by the yellow rectangle. We
apply force control in forward-direction and position control in the orthogonal plane, on both hands,
the desired force is 10N. The forces are rendered by the blue vectors. We observe that whole-body
control leads to superior transitions (reduced spikes) and steady state behavior (faster convergence,
smaller errors)

force control is activated in the forward-direction and position control is maintained
in the orthogonal sub-space. Figure8 shows the results comparing force control with
and without whole-body coordination. We see that whole-body coordination leads
to superior transitional and steady state behavior. The spikes during transition are
greatly reduced, convergence is faster, and steady state errors are smaller.

7.3 Obstacle Avoidance

We simulate a scenario, where O2 manipulates a container while avoiding local
obstacles. To do this, we enclose O2 in five (green) collider capsules and the obstacle
in a (red) collision capsule (Fig. 9). In every servo loop, we monitor the distances
between colliders and obstacles. In case a distance is smaller than the specified
activation distance ρ0, the constraint task is activated and an artificial potential field
is applied to avoid the collision. In the given scenario, we program O2 to unscrew
the container’s lid by specifying circle-segment trajectories at its hands. Without
obstacle avoidance, O2’s body would be sweeping through the obstacle during this
motion. The smallest distance between the obstacle and O2’s body is rendered by
the red line segment between the blue and red spheres. Instead of colliding with the
obstacle, the artificial potential field leads the body to glide over the barrel while
the trajectory of the hands remains unaltered. The comparison between active and
inactive obstacle avoidance is given in Fig. 9.
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Fig. 9 Left: O2 performs a manipulation task on the red container, while avoiding obstacles. In this
scenario, O2 unscrews the black lid of the red container. The manipulation task is programmed by
applying a circular trajectory to the hands, which leads the body to rotate along. Without avoidance,
this specification would lead to a collision between the tail and the rusty barrel. In order to complete
the task without collision, we model the robot’s body and arms collider hulls with green capsules,
and the obstacle with a red capsule. The red line between the smaller red and blue sphere indicates
the smallest distance between the body-collider and the obstacle. We see that as the lid is rotated,
the body sweeps above the barrel while maintaining a safety margin. Right: On the left column
we plot the obstacle distance (red line) and task position error (sum of the two hands’ error, blue
line). We see that with deactivated avoidance, the distance becomes negative, indicating collision
and intersection. With activated avoidance, the constraint task triggers when ρ < ρ0 (yellow line),
avoiding the obstacle. The right column shows the hands’ goal (thick red line) and state (slim blue
line) trajectories sweep. We observe that in both cases the task is performed with the same precision

8 Deployment and Experimental Results

After O2’s hardware components were assembled, we deployed it in shallow depth
at the Stanford Aquatic Center. We experimentally tuned parameters for buoyancy
compensation and validated the kinematic and dynamicmodels as well as the sensors
and communication protocols. The pool also offered the first opportunity to practice
piloting the robot during navigation, grasping, and docking operations. In Fig. 10
(left) we compare the body’s dynamic responses between simulated and physical
robot by applying sinusoidal trajectories at 0.05Hz and 45◦ amplitude to yaw and
0.3m to depth. The responses align well with the exception of some coupling that is
likely due to unmodeled hydrodynamic contributions. In Fig. 10 (right) we compare
the hands’ responses in operational-space position control by applying sinusoidal tra-
jectories at 0.1Hz to all three cartesian directions. Again, we observe good alignment
between simulation and physical robot with additional coupling. The physical robot
exhibits slightly decreased amplitudes, which is likely a result of under-estimated
hydrodynamics and friction in the arm joints.

O2’s maiden mission took place at an archeological site in the mediterranean sea
near the coast of Toulon, France. The Lune is a two-decked, fifty-four-gun french
naval vessel of Lois XIV’s that sunk in 1664 with nearly a thousand men on board
to 91m of depth, where it was discovered in 1993 by Nautile, a submarine of the
French Oceanographic Institute. The mission was executed from the Andre Malraux,
a research vessel operated by DRASSM [15]. After initial tests at 15m depth, col-
laborating with a human diver, O2 descended to a 4 h long mission to the Lune,



16 G. Brantner and O. Khatib

−60

−40

−20

0

20

40

60
Y
aw

[D
eg
]

Body Tracking
Goal
Real State
Sim State

0 20 40 60 80 100 120 140 160

Time [s]
−0.80
−0.75
−0.70
−0.65
−0.60
−0.55
−0.50
−0.45
−0.40
−0.35

D
ep
th

[m
]

−0.05

0.05

Le
ft

x
[m

]

Hands Operational Space Tracking

−0.1

0.1

Le
ft

y
[m

]

−0.1

0.1

Le
ft

z
[m

]

−0.05

0.05

R
ig
ht

x
[m

]

−0.1

0.1

R
ig
ht

y
[m

]

0 20 40 60 80 100 120
Time [s]

−0.1

0.1

R
ig
ht

z
[m

]

Goal Real State Sim State

Fig. 10 Simulation Versus Real robot. Left: Dynamic Body Tracking. Sinusoidal trajectories at
0.05Hz are consecutively tracked in yaw and depth coordinates. Simulation and real robot responses
are well aligned with the exception of some coupling that is likely due to unmodeled hydrody-
namic components. Right: Dynamic Operational-Space tracking. Sinusoidal trajectories at 0.1Hz
are tracked in forward (x), lateral (y), and vertical (z) directions, consecutively. Simulation and real
robot are well aligned, there is more dynamic coupling and a decreased amplitude at the real robot,
which is likely due to underestimated hydrodynamics and friction in the joints

Fig. 11 Ocean one deployed in Toulon, France. Left: collaboration with a diver at 15m depth.
top center/right: O2 fetching a vase and dropping it into the collection basket. bottom center/right:
researchers collecting the floated basket, Catalan vase on deck showing its acquired biofilm. (Photos
courtesy of Frederic Osada and Teddy Seguin, DRASSM/stanford university

where it explored the site, fetched a vase and deposited it in a collection box that was
subsequently floated to the surface.
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9 Conclusion

In this paper, we focussed onO2’s control architecture.We illustrated the hierarchical
implementation of whole-body control and showed how to create an immersive inter-
face with a human pilot that enabled an avatar-like collaboration. We demonstrated
the system’s capabilities in simulated whole-body control, force-controlled docking
maneuvers as well as a manipulation task involving autonomous obstacle avoidance.
We validated the dynamic models and controller with experiments in the pool and
finally established O2’s effectiveness with its deployment to its maiden mission in
the mediterranean sea (Fig. 11).
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Safe Self-collision Avoidance for Versatile
Robots Based on Bounded Potentials

David Gonon, Dominic Jud, Péter Fankhauser and Marco Hutter

Abstract We present a novel and intrinsically safe collision avoidance method for
torque- or force-controlled robots. We propose to insert a dedicated module after the
nominal controller into the existing feedback loop to blend the nominal control signal
with repulsive forces derived from an artificial potential. This blending is regulated
by the system’s mechanical energy in a way that guarantees collision avoidance
and at the same time allows navigating close to collisions. Although using well-
known ingredients from previous reactive methods, our approach overcomes their
limitations in respect of achieving reliabilitywithout significantly restricting the set of
reachable configurations. We demonstrate the fitness of our approach by comparing
it to a standard potential-based method in simulated experiments with a walking
excavator.

1 Introduction

When deploying robots in the field instead of factories, new challenges arise in the
design of safety systems that are able to cope with the varying modes of operation.
This particularly applies to forestry, agriculture and construction, where research is
focusing on (semi-)automation and teleoperation of the involved heavy machinery
[4, 5, 13]. These machines are especially prone to colliding with themselves due to
their high versatility, which is essential for tasks in unstructured environments. A
prime example are walking excavators such as the M545 developed by Menzi Muck
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Fig. 1 Top row: The M545 (on the left), its CAD model with joint labels (in the middle) and the
approximate geometric model we use for collision avoidance (on the right). Bottom: Schematic
view of the control loop with our collision avoidance module inserted. It modifies the force/torque
commands fo, which the nominal controllerC generates from the reference r and the state feedback
(q, q̇), to steer the mechanical system P with the resulting commands f

AG1 (depicted in Fig. 1), which motivated our development of a suitable collision
avoidance method.

In order to be generally applicable, amethod should be (a) usable both for assisting
humanoperators and for supervising autonomousmaneuvers and (b) easily integrable
into an existing control system. Probably the most straightforward way to meet these
requirements is to base collision avoidance on insertion of a dedicated module into
the existing control loop. In this work, we focus on such a designwhere the respective
module is inserted after the nominal controller (as shown in Fig. 1). We present a
corresponding solution, which is applicable to any fully actuated robotic systemwith
a controller producing force or torque commands utilizing full state feedback.

Our approach builds up on artificial potentials, which have been used by previous
works to plan a path and at the same time obtain a corresponding feedback law [6, 9,
10]. When using artificial potentials for robot control, one can elegantly guarantee
collision avoidance via energy considerations. One possibility is to let the potential
function approach infinity towards the boundary of the set of collision-free config-
urations [6]. However, this is impractical as it requires unbounded joint torques.
Conversely, it has been suggested to use finite potential functions and to confine
the robot to states whose (artificial) energy is lower than the value of the potential
function for any collision configuration [9]. Our method employs the same reason-
ing and similarly guarantees collision avoidance based on the principle of energy
conservation.

1http://www.menzimuck.com.

http://www.menzimuck.com
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On the other hand, our approach implements a form of reactive control, which
denotes a generic class of methods that are designed to react spontaneously to events
(such as the robot getting close to an obstacle) and typically integrate collision
avoidance into a hierarchy or “stack” of tasks [2, 8]. In contrast, other reactive colli-
sion avoidance approaches [1, 10] simply add repulsive forces to the nominal com-
mands and therefore exhibit the modularity we desire. They also derive the repulsive
actions from artificial potentials, as it is common for reactivemethods. Consequently,
they inherit the well-known properties of artificial potentials to prohibit navigation
through narrow passages and to trap the robot in local minima [7]. Our method over-
comes these limitations to a large extent by applying the potential force only when
it is found to be necessary to ensure collision avoidance (again employing the same
energy consideration).

However, the most significant improvement is the guarantee for collision avoid-
ance (provided that the required forces or torques are feasible), which additive meth-
ods [1, 10] cannot have by design. With them, reliability at best results from a proper
tuning of the potential height and needs to be verified by extensive testing. Note that
for reactive methods based on velocity commands [8, 11, 12] such a theoretical guar-
antee is not attainable either, as they do not take into account the robot’s dynamics,
which are formulated on the force level. To the best of our knowledge, our way to
incorporate artificial potentials into reactive control is novel, especially as it achieves
safe collision avoidance while largely preserving workspace accessibility.

The remainder of this article is organized as follows: Sect. 2 introduces the pre-
liminary notations and results as well as an additive reactive collision avoidance
method, which will serve as a baseline for comparison with our approach. Then, in
Sect. 3 we describe our method and in Sect. 4 we experimentally compare it to the
baseline method. Finally, Sect. 5 gives a conclusion.

2 Preliminaries

Notation: We denote column vectors by bold face lower-case letters. Then, for a
scalar a and two vectors b, c, let ∂a/∂b and ∂c/∂b denote the row vector and the
matrix having the entries ∂a/∂b j and ∂ci/∂b j , respectively. Further, we use dots to
indicate differentiation with respect to time (e.g. ȧ ≡ d

dta).

2.1 Artificial Potentials and Energy Conservation

We consider mechanical systems subject to holonomic constraints whose equations
of motion take the form

d

dt

∂T

∂q̇
− ∂T

∂q
+ ∂Vg

∂q
= fT , (1)
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with the kinetic energy T , the gravitational potential Vg , the generalized coordinates
q ∈ R

N and the generalized forces f ∈ R
N . We let q represent the joint variables

(angles) and f the joint forces or torques, which constitute the control vector, as we
focus on fixed-base robotic systems.2 With this particular choice of q, the kinetic
energy is not explicitly dependent on time and takes the form T = 1

2 q̇
TM(q)q̇, where

M is the mass matrix.
We then consider a control vector of the form f = ∂(Vg − VA)/∂qT + f̃ , where

VA(q) is an artificial potential field and f̃ is a new (yet unspecified) control vector.
Substituting this in (1) and rearranging terms yields

d

dt

∂T

∂q̇
− ∂T

∂q
+ ∂VA

∂q
= f̃T . (2)

Then, given the functional forms of T = T (q, q̇) and VA = VA(q), one can derive
from (2) the rate of change of the (artificial) energy EA := T + VA as

ĖA = q̇T f̃, (3)

implying ĖA = 0 for f̃ = 0, which is the principle of energy conservation [3].

2.2 Obstacles, Closest Points and Collisions

A scene consisting of a robotic system and its static environment can be seen as a
collection of rigid bodies, and we define that a collision occurs if for any pair of
bodies (i, j) ∈ Pc the mutual distance di j equals zero. Here, Pc denotes a subset of
all possible body pairs, and di j is defined as the shortest distance two points can
have when one is chosen on body i and the other on body j . We denote a pair of
such points that have this distance and lie on body i, j , respectively, by (pi j ,p j i ).
We further define the corresponding unit vectors ei j and Jacobian matrices Ji j as

ei j := (pi j − p j i )/|pi j − p j i |, Ji j := (
∂pi j/∂q

)
body-point, (4)

where pi j is regarded as a fixed body point during differentiation (according to the
standard definition of the Jacobian).

Defining that only certain body pairs can produce a collision is useful in practice,
since some bodies are normally in contact (e.g. adjacent links) and others need not to
be taken into account because they can never collide. Observe that for static obstacles
the di j are continuous functions in q only.

2We argue that they are an accurate approximation of the M545 and similar machines with a heavy
and sufficiently stiff base. In the remainder of this article, we therefore make this simplifying
assumption. However, in general it is not necessary for our method, which only requires that all
degrees of freedom are actuated.
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Further, we define the globally shortest distance d∗ as

d∗(q) := min
(i, j)∈Pc

di j (q) (5)

and let (p ∗
1 ,p ∗

2 ), (e ∗
1 , e ∗

2 ) and (J∗1, J
∗
2) denote the corresponding pairs of globally

closest points, unit vectors and Jacobian matrices, respectively (as defined above).
Then, let Qc := {q ∈ R

N |d∗(q) > 0} denote the set of collision-free configurations.

2.3 Classic Collision Avoidance with Artificial Potentials

As a baseline to compare our method to in Sect. 4, we briefly introduce a standard
approach to collision avoidance presented in textbooks [10]. It is a straightforward
implementation of additive potential-based reactive control (see Sect. 1).

The control vector takes the form f = fo + fA + fD , where we add to the nominal
control fo the artificial potential force fA and somedamping fD . Let fA := −∂VA/∂qT ,
and we define the artificial potential VA using the terminology introduced in Sect.
2.2 as

VA(q) =
∑

(i, j)∈Pc

U (di j (q)), (6)

with the unilateral spring potential U being defined as

U (d) =
{

α
2 (d0 − d)2 d ≤ d0
0 d > d0,

(7)

where d0 > 0 is the range of repulsion and α > 0 is the spring stiffness. Then, fA
takes the explicit form

fA =
∑

{(i, j)∈Pc |di j≤d0}
α(d0 − di j )

(
JTi jei j + JTjie j i

)
. (8)

Further, we define fD such that it is equivalent to the forces of viscous dampers
attached to the closest points. Let

FD,i j := −κ(1 − di j/d0)(ei j · Ji j q̇)ei j , di j ≤ d0 (9)

denote such a force with a damping factor increasing linearly up to κ > 0 with
decreasing distance. Then, we define the corresponding generalized forces as
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fD :=
∑

{(i, j)∈Pc|di j≤d0}

(
JTi jFD,i j + JTjiFD, j i

)
. (10)

3 Method

Before describing our method, we outline the underlying generic idea (Sect. 3.1),
which allows it to guarantee collision avoidance while preserving workspace acces-
sibility. The subsequent sections then describe several extensions we make to derive
our method from this idea.

3.1 Energy Bounding Control Strategy

We guarantee collision avoidance based on energy considerations [9]. Namely, we
employ an artificial potential VA, which reaches its supremum over Qc, denoted by

V̂c := sup
q∈Qc

VA(q), (11)

everywhere on the boundary of Qc, denoted by ∂Qc, i.e.

∀q ∈ ∂Qc, VA(q) = V̂c. (12)

Then, a way to ensure collision avoidance is to control the (artificial) energy EA

to stay below V̂c, since this implies VA(q(t)) < V̂c (as T ≥ 0), which implies that
q(t) cannot cross ∂Qc. A suitable control law would be e.g.

f =
{
fo EA ≤ EA,max

(∂Vg/∂q − ∂VA/∂q)T + fD EA > EA,max,
(13)

where EA,max < V̂c and the damping fD(q, q̇) fulfills fTD q̇ < 0. Then, as soon as
EA > EA,max, this control law causes Ė A < 0 (according to Sect. 2.1) and therefore
EA can never reach V̂c.

3.2 Artificial Potential Force

Using the terminology introduced in Sect. 2.2, we define our particular choice of
artificial potential as
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VA(q) := max{0, α(d0 − d∗(q))}, (14)

where d0 > 0 is the range and α > 0 the strength of the potential force. The negative
gradient of VA yields the generalized artificial potential force as

fA =
{

α
(
J∗T1 e ∗

1 + J∗T2 e ∗
2

)
d∗ ≤ d0

0 d∗ > d0.
(15)

3.3 Dissipative Repulsion and Damping

The control law (13) disables any nominal control if we assume that the robot is in a
state with EA > EA,max. However, this situation is only temporary due to damping.
Additionally, in order to assist the process of energy dissipation,we partially suppress
the artificial potential force when its effect would be to increase the system’s kinetic
energy. To this end, we scale the contribution of fA to the control vector f by the
factor ωA ∈ [0, 1] defined as

ωA := max{0,min{1, 1 − εḋ∗}}, (16)

where ε > 0 and ḋ∗ is the rate of change of the globally shortest distance, given as
ḋ∗ = e ∗T

1 (J∗1 − J∗2)q̇. Observe that ωA vanishes as soon as the globally closest points
are moving away from each other with a speed greater than 1/ε. Conversely, the
absorption of energy due to fA is undiminished, as ωA = 1 for ḋ∗ < 0.

The particular damping term we use corresponds to viscous forces acting on the
pair of globally closest points. With the damping constant κ > 0, we define fD as

fD := −κ
(
J∗T1 J∗1 + J∗T2 J∗2

)
q̇. (17)

3.4 Transitional Switching

We define a transitional zone between some energy level EA,trans < EA,max and
EA,max, where both nominal control and collision avoidance forces are applied to
some extent. This replaces the switching behavior from (13), where always exclu-
sively one of the two can be active. How this relates to our energy considerations
(Sect. 3.1) and the potential function (Sect. 3.2) is illustrated in Fig. 2.

Now, let f L
o denote the limited nominal control, which is the contribution of fo to

the actual control signal. If the robot is in a state with EA > EA,trans, we restrict this
contribution by demanding that

||f L
o || ≤ λE fmax, if EA ≥ EA,trans, (18)
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Fig. 2 Zones in the d∗-EA-diagram with different associated modes of blending nominal control
and collision avoidance. Note that the blending is regulated exclusively by the globally shortest
distance d∗ and the (artificial) energy EA that the robot exhibits. The zones’ shapes depend on the
artificial potential function VA(d∗) as well as the parameters EA,max, EA,trans, d0, dstart and dend

where || · || denotes the euclidean norm, fmax > 0 and λE is defined as

λE (EA) := max

{
0,

EA,max − EA

EA,max − EA,trans

}
. (19)

How we actually compute f L
o from fo such that it respects this limit is the subject of

the next section.
Also, λE regulates the extent to which damping and artificial potential forces

are applied. Mainly for the sake of a cleaner notation, we define two corresponding
scaling factors, which we derive from λE , as

λD(λE ) := max{0, 1 − λE }, (20)

λA(λE ) := max{0, 1 − γ λE }, (21)

where γ > 1 (we consistently use γ = 8). We then state the transitional control law

f = f L
o + g + λAωAfA + λDfD, (22)

where g := ∂Vg/∂qT denotes gravity compensation.
For EA > EA,max, we have again ĖA < 0 since then f L

o = 0 (according to (18)
and (19)) while the damping force fD and the “dissipative potential force” ωAfA
are fully active (according to (20) and (21)). Therefore, (22) guarantees collision
avoidance in the same way as (13).

3.5 Limiting of Nominal Control

Our method computes the limited nominal control f L
o in two stages. Beforehand, we

subtract the gravity compensation term g from fo as it is already present in (22).
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3.5.1 Limiting the Collision Acceleration

The first limit only applies if d∗ is smaller than some threshold dstart > 0. Then,
this step computes a modification of its input f̃o := fo − g, whose contribution to
the relative acceleration of the globally closest points towards each other does not
exceed a certain bound. This bound is proportional to

λd(d
∗) := max

{
0,

d∗ − dend
dstart − dend

}
, (23)

with dstart and dend specifying where limiting starts and where it reaches its full effect,
respectively. They are to be chosen such that 0 < dend < dstart.

We first compute the joint accelerations that f̃o would contribute according to

q̈o = M−1 f̃o. (24)

Then, we compute a new acceleration vector q̈′
o, which differs from q̈o only in its

component along the steepest descent of shortest distance −∂d∗/∂qT , according to

q̈′
o = q̈o − μ

( − J∗T1 e ∗
1 − J∗T2 e ∗

2

)
, (25)

with μ ≥ 0 being chosen as small as possible such that

a′
c := ( − J∗T1 e ∗

1 − J∗T2 e ∗
2

)T
q̈′
o ≤ λdamax, (26)

where a′
c is the acceleration of the closest points towards each other due to q̈′

o and
amax > 0 specifies the maximum value of the bound on a′

c. The μ satisfying this is
given by

μ = max

{
0,

( − J∗T1 e ∗
1 − J∗T2 e ∗

2

)T
q̈o − λdamax

(
J∗T1 e ∗

1 + J∗T2 e ∗
2

)T (
J∗T1 e ∗

1 + J∗T2 e ∗
2

)

}
.

With it, we compute q̈′
o from (25), andmultiplication with the mass matrix then gives

the corresponding generalized forces achieving this acceleration. The output of this
step is therefore

f ′
o =

{
Mq̈′

o d∗ ≤ dstart
f̃o d∗ > dstart.

(27)

3.5.2 Limiting the Nominal Control’s Norm

Next, only if EA ≥ EA,trans, we enforce a limit on the norm of f ′
o, which is the output

of the first limiting procedure described above. To be specific, we compute the limited
nominal control f L

o according to
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f L
o =

{
ν f ′

o EA ≥ EA,trans

f ′
o EA < EA,trans,

(28)

with ν ∈ [0, 1] in the first case being chosen as large as possible such that the limit
(18) is respected. The value of ν then follows as ν = min{1, λE fmax/||f ′

o||}.

3.6 Summary

The final transitional control law (22) adds several new features to the basic variant
(13). First of all, it increases energy dissipation via the factor ωA, which partially
hinders fA to feed back the energy stored in VA. Next, we introduced a blending
zone, where both collision avoidance and nominal control are active, to prevent
high-frequency oscillations due to switching (“jittering”). The latter would occur in
the control signal e.g. when EA reaches EA,max due to acceleration by the nominal
control. The limiting procedure (Sect. 3.5) implements a measure to prevent oscillat-
ing motions when fo actively pushes the robot into an obstacle. Namely, it selectively
and rigorously reduces the ability of fo to accelerate the robot towards an obstacle
whenever it is near one (i.e. d∗ < dstart, also marked in Fig. 2).

Regarding workspace accessibility, the transitional control lawmakes only a little
restriction, as it only enforces slower motions near obstacles (as visible in Fig. 2,
where the white space above VA(d∗) corresponds to the allowed kinetic energies).
Particularly, the robot can take any path through the configuration space along which
d∗ > dend and VA < EA,trans, provided that one can arbitrarily slow down the motion
on this path in order to respect the kinetic energy and acceleration limits. Excavators
and manipulators typically comply with this condition as they are strong enough to
continuously compensate gravity. Thus, they do not need to exploit their dynamics
as they can perform every motion in a quasi-static fashion.

4 Experiments

We compare our method to a standard approach based on artificial potentials (Sect.
2.3) in experiments with a simulation of the walking excavator M545. In this section,
we refer to the standard approach as AP and to our method as AP+.

When applying the geometric considerations described in Sect. 2.2, we represent
the excavator’s links by simplistic triangular meshes (depicted in Fig. 1). Note that
the shapes are not strictly convex [11] and consequently the closest points (pi j ,p j i )

are not uniquely defined for certain parallel configurations. However, these are not
important in practice since they only occur in infinitely short time intervals.
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4.1 Experimental Design

We compare both methods in three experiments testing different requirements:

1. Driving with full force into a collision: In this safety check, the excavator’s shovel
is pushed down into one of its wheels (as shown in Fig. 3) to test the methods’
ability to prevent a collision even if the operator deliberately tries to cause one.

2. Steering through a narrow passage: Here, the excavator’s shovel is steered into
the space between its front legs (as illustrated by Fig. 4) in order to examine how
workspace accessibility and versatility are affected.

3. “Scratching” collision: In this experiment, the excavator turns while the boom is
not sufficiently extended such that a small avoiding motion is needed to prevent
the shovel from colliding with a wheel (as depicted in Fig. 5). Here, we test the
usefulness in a practical situation, when slight mistakes need to be corrected.

Throughout the experiments, the methods’ parameters remain the same (as given in
Table1), and this also holds for the nominal controller. It tracks a shovel position
reference trajectory, and it composes fo from a PD-feedback term and a feedforward
term encompassing inverse dynamics.

4.2 Results and Discussion

The results of the three experiments are presented in Figs. 3, 4 and 5, respectively.
Consistently, the top right plot shows for a selected joint the nominal and mod-
ified actuator forces/torques (which are related to the joint forces/torques by a

Fig. 3 Experiment 1: The left and the middle image show simulation snapshots for AP (classic
method) and AP+ (our method), respectively, where the curved arrows mark the path of the shovel
joint. The plots show the nominal (- -) and the actual (—) boom joint force FB(t) (top) and the
globally shortest distance d∗(t) (bottom) for both AP (black) and AP+ (red)
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Fig. 4 Experiment 2: The left and the middle image show simulation snapshots for AP (classic
method) and AP+ (our method), respectively, where the curved arrows mark the path of the shovel
joint. The plots show the nominal (- -) and the actual (—) turn joint torque τT (t) (top) and the
shovel extension xs(t) (bottom) for both AP (black) and AP+ (red). The bottom plot also shows
the reference for the nominal controller (green). The left image also shows exS as the direction of
increasing xS

Fig. 5 Experiment 3: The left and the middle image show simulation snapshots for AP (classic
method) and AP+ (our method), respectively, where the curved arrows mark the path of the shovel
joint. The plots show the nominal (- -) and the actual (—) dipper joint force FD(t) (top) and the
shovel extension xs(t) (bottom) for both AP (black) and AP+ (red). The bottom plot also shows
the reference for the nominal controller (green). In left image, the exS indicate the local directions
of increasing xS

configuration-dependent scaling factor). See Fig. 1 for the names given to the exca-
vator’s joints.

The upper plot in Fig. 3 shows that in the first experiment, AP+ starts pulling back
the shovel earlier and thereby avoids the collision, whereas AP fails to do so, as
shown by the shortest distance d∗(t) reaching zero in the bottom plot. The collision
for AP is also visible in the respective simulation snapshots, in contrast to the smooth
deflection for AP+ (also shown in Fig. 3).
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Table 1 Parameters for both methods AP and AP+

d0, dstart,
dend (m)

α κ (kNs/m) ε (m/s) EA,trans,
EA,max (J)

amax
(m/s2)

fmax (–)

AP 0.8, –, – 25 kN/m 10 – – – –

AP+ 0.8, 0.2,
0.144

10 kN 2.5 10 4800,
6800

5 50000

In Figs. 4 and 5, the bottom right plots show the shovel extension xS(t), which is
the coordinate of the shovel’s center point with respect to an axis that lies within the
boom’s plane of motion and points to where the excavator is facing (as illustrated
in the left images). The plots also show the reference for xS that is tracked by the
nominal controller and one clearly sees that it cannot be followed with AP in the
second experiment, at least not beyond a certain proximity to the passage (also shown
by simulation snapshots on the left of Fig. 4). With AP+ on the other hand, entering
the narrow space is possible (as shown by the middle image). The top plot in Fig. 4
shows for AP+ oscillations of τT , which occur within the narrow passage and are
caused by the switching direction of repulsion as the shovel is closer to either one or
the other leg.

In the third experiment, the avoiding motion is larger with AP than with AP+,
as the higher peak in the bottom plot in Fig. 5 shows. On the other hand, it shows a
“sticky” behavior of AP+ near to the obstacle, as towards the end the reference is not
reached for awhile. This is explained by the limiting, which is applied to fo if EA is
high (according to Sect. 3.5).

In summary, AP+ outperforms AP regarding both safety and versatility or
workspace accessibility as the first and second experiment demonstrate. In the third
experiment, both AP and AP+ perform well in the sense that they can successfully
deflect the dangerous motion allowing to resume tracking of the original trajectory.
However, we argue that from a safety point of view AP+ appears superior since a
slower behavior close to collisions is preferable over large unexpected deflections.

5 Conclusion

We presented a novel collision avoidance method (Sect. 3) and compared it to a
standard approach based on artificial potentials (Sect. 2.3) in simulated experiments
with a walking excavator (Sect. 4). The experiments demonstrate that our method is
superior due to its intrinsic safety and the significantly smaller restriction it imposes
on the robot’s accessible workspace. Also, our method performswell in transforming
slightly colliding (“scratching”) motions into harmless ones, allowing to quickly
resume the original task.

Primarily for conceptual simplicity, we used a potential that only depends on
the shortest distance, which however may cause oscillations in enclosures. As the
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class of suitable potential functions is very broad, the best choice remains yet to be
determined.

On the other hand, our method is very general as it is applicable to a very generic
type of torque- or force-controlled robots. Further, due to itsmodular design, it is easy
to integrate our method into existing control systems. In future work, we consider
it worthwhile to explore e.g. the insertion of a second control module before the
nominal controller. This would provide another means apart from the transitional
blending we use to achieve a good interplay of collision avoidance with nominal
control.

Finally, we have validated our approach as a way to overcome the limitations of
standard reactive methods based on artificial potentials. Most importantly, provided
that the required finite forces or torques are feasible, our method guarantees collision
avoidance for any nominal control signal.
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Towards Controlling Bucket Fill Factor in
Robotic Excavation by Learning Admittance
Control Setpoints

Heshan A. Fernando, Joshua A. Marshall, Håkan Almqvist
and Johan Larsson

Abstract This paper investigates the extension of an admittance control scheme
toward learning and adaptation of its setpoints to achieve controllable bucket fill factor
for robotic excavation of fragmented rock. A previously developed Dig Admittance
Controller (DAC) is deployed on a 14-tonne capacity robotic load-haul-dump (LHD)
machine, and full-scale excavation experiments are conducted with a rock pile at
an underground mine to determine how varying DAC setpoints affect bucket fill
factor. Results show that increasing the throttle setpoint increases the bucket fill
factor and increasing the bucket’s reference velocity setpoint decreases the bucket
fill factor. Further, the bucket fill factor is consistent for different setpoint values.
Based on these findings, a learning framework is postulated to learn DAC setpoint
values for a desired bucket fill factor over successive excavation iterations. Practical
implementation problems such as bucket stall and wheel-slip are also addressed, and
improvements to the DAC design are suggested to mitigate these problems.

1 Introduction

In underground mining, articulated wheel loaders known as load-haul-dump (LHD)
machines are utilized to excavate blasted rock from muck piles (i.e., piles of blasted
rock, sometimes mixed with water and fine particles) at draw-points and haul this
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Bucket

Boom

Interaction 
force (     )fr

Bucket position (     )xa

Throttle (     )ut

Loading
motion

Dumping
motion

Fig. 1 A boom and bucket manipulator commonly found on mobile wheel loaders. The boom link
and bucket end-effector are actuated by hydraulic cylinders. The Dig Admittance Controller (DAC)
requires measurement of the bucket cylinder position (xa) and measurement of the interaction force
( fr ) at the boom cylinders

material to dump locations. Automating LHDs can improve safety and productivity
of underground mining operations by removing operators from these hazardous and
repetitive tasks. State-of-the-art technologies now offer autonomous tramming and
dumping for LHDs, but commercially viable technologies for robotic excavation
(i.e., loading) of fragmented rock are still in early stages of development.

The main challenge in developing a successful robotic system for excavating
fragmented rock is designing a controller that can effectively regulate the motion
of an excavator bucket (e.g., Fig. 1) to dig through a rock pile and fill the bucket
with material to a desired level at each excavation iteration (i.e., does not over-
fill or under-fill). For excavating homogeneous media such as a sand and gravel
piles, it is possible to use stereo-vision cameras or laser scanners to first scan the
pile profile, plan a path trajectory to excavate a volume of material equivalent to
the excavator’s bucket, and apply robot motion control strategies to track the path
with the bucket [8]. However, pure motion control strategies are ineffective when
excavating fragmented rock because subsurface obstacles can cause large position
errors that result in saturated actuation [2, 12]. Further, cameras and laser scanners
are not practical to implement in dark and dusty underground mining environments.

We believe that the path to successful excavation of fragmented rock is through
“feel”, rather than through “sight”. Specifically, we believe that feedback of measured
bucket-rock interaction forces to an admittance control scheme is effective for regu-
lating an excavator’s bucket motion to dig through a rock pile and fill the bucket with
material [13]. Further, we hypothesize that the bucket fill factor (or payload weight)
can be controlled by varying the setpoint parameters of an admittance control scheme
for robotic excavation of fragmented rock. In this paper, we present results of full-
scale experiments with a 14-tonne capacity LHD machine and an underground muck
pile that support our hypothesis.
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1.1 Related Work

Admittance control for robotic excavation of fragmented rock was initially postu-
lated by Marshall et al. [13] based on results of full-scale excavation experiments
with expert operators and an instrumented wheel loader. Analysis of the force and
motion data at the loader’s bucket hydraulic cylinder showed that during excavation,
operators controlled the bucket motion in an attempt to maintain a level of interac-
tion force-though the operators were not conscious of this underlying fact. This led
Marshall et al. [13] to postulate an admittance control scheme for robotic excavation
of fragmented rock that regulates bucket motion based on feedback of interaction
forces. Compared to intelligence-based approaches to robotic excavation [3] that
require substantial training data and exhibit unpredictable behaviour in untrained
situations, the admittance control scheme proposed by Marshall et al. [13] provides
an effective framework for use in practical implementations.

Recent research work [5, 6] has developed a Dig Admittance Controller (DAC)
for robotic excavation based on the admittance control scheme proposed by Marshall
et al. [13]. The DAC was tested in full-scale robotic excavation experiments, which
showed that a 14-tonne capacity LHD that was robotically controlled using the DAC
excavated larger payloads of fragmented rock, more consistently, compared to an
expert operator excavating the same rock pile using the same machine [5]. However,
a challenge in implementing the DAC was selecting the proper control parameters for
a desired bucket fill factor; parameter tuning was unintuitive due to lack of an explicit
model for bucket-rock interaction. Manually tuning the DAC parameters worked well
for a rock pile with particular characteristics (e.g., bulk density, fragmentation size
and cohesion), but the control parameters required re-tuning to excavate a desired
bucket fill factor from a pile with different characteristics.

In practice, pile characteristics are difficult to model explicitly, and these charac-
teristics can evolve throughout the life of an excavation operation. Thus, for practical
implementation in robotic excavation, the DAC requires extension by learning and
adaptation so that optimal parameters for a desired bucket fill factor are automatically
learned and adapted at each excavation iteration.

Research in learning-based interaction control has developed in recent years due
to increased interest in emerging field and service robot applications such as human-
robot collaboration [7] and robot-assisted surgery [9]. A fundamental requirement
for robots in these applications is to maintain desired performance of a particular task
while physically interacting with unstructured and evolving environments. Due to
their robustness and stability in compliant manipulation tasks, interaction controllers
based on the impedance and admittance control paradigms [14] are often chosen for
extension by learning and adaptation in these emerging applications.

Much of the research for learning-based interaction control has focused on
extension of impedance controllers toward adaptive controllers through learning of
impedance parameters or desired trajectories [7]. Many of these “variable impedance”
control approaches are based on iterative learning strategies where the objec-
tive is to learn the optimal impedance/admittance parameters through successive
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interaction with the environment in repetitive tasks. Applications have mainly
focused on human-robot collaboration [1, 4, 11, 15, 16]. Typically, a cost func-
tion is defined using interaction force and/or trajectory tracking error. Impedance
parameters, such as a virtual damping coefficient, are then updated over a trajectory
(i.e., gain scheduling) by minimizing the cost function. Stability of these methods
have been analyzed by Kronander and Billard [10], and it was found that vary-
ing impedance control parameters can lead to instability. Impedance control with
constant gains are typically stable when interacting with passive environments, but
instability can occur when the gains are varying throughout the task.

1.2 About This Paper

In this paper, through full-scale field experiments, we investigate learning and adap-
tation of Dig Admittance Control (DAC) setpoints in order to achieve controllable
bucket fill factor in robotic excavation of unstructured and evolving media, such as
fragmented rock. First, the DAC scheme is presented in Sect. 2. Details of the LHD,
muck pile and experiment procedure are provided in Sect. 3. Experiment results for
varying DAC setpoints on bucket fill factor are presented and analyzed in Sect. 4.
These results are further discussed in Sect. 5 in order to suggest improvements, and
to postulate a learning framework for adapting the DAC setpoints. Finally, future
directions and upcoming experimental work for continuation of this research are
presented in Sect. 6.

2 Approach to Robotic Excavation: The Dig Admittance
Controller

A block diagram of the Dig Admittance Controller (DAC), which was postulated by
Marshall et al. [13] and tested by Dobson et al. [6] for robotic excavation of frag-
mented rock using wheel loaders, is shown in Fig. 2. In this scheme, the admittance
controller Y (s) attempts to comply the wheel loader’s bucket motion with the rock
pile interaction and react to measured interaction forces by modifying the reference
motion trajectory xc to a position-controlled bucket actuator (i.e., hydraulic cylinder).
Thus, in a discrete-time implementation with a constant period T and a proportional
admittance Y (s) = KA (as used by Dobson et al. [6]), the reference motion command
to the bucket hydraulic cylinder at a time-step k becomes

xc,k = xc,k−1 + T (v f,k + vd), (1)

where vd , is a constant nominal velocity setpoint for the bucket curl rate, and
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Fig. 2 A block diagram of the Dig Admittance Controller (DAC) for robotic excavation of frag-
mented rock postulated by Marshall et al. [13] and tested by Dobson et al. [6] in full-scale experi-
ments

v f,k = KA( fd − f̂r,k) (2)

is a computed velocity change that is proportional to the error between a constant
target force setpoint fd and the measured interaction force f̂r,k . The interaction force
f̂r,k is calculated from pressure measurements at the boom cylinders as the boom is
not actuated during excavation. Thus, the boom pressures measure only interaction
forces and are not contaminated by other forces due to input signals. A constant
forward throttle percent ut is applied to the loader during excavation in order for the
bucket to maintain contact with the pile.

The challenge in implementing the DAC in practice is determining how to best
select control setpoints fd and vd , and throttle setpoint ut to achieve desired bucket
fill factor (typically measured as payload in tonnes) at each excavation iteration.
The values of these parameters are dependent on the physical characteristics of the
excavation media (e.g., bulk density, fragmentation and cohesion), which are difficult
to model prior to excavation and typically evolve throughout the life of the excavation
operation.

In their experiments, Dobson et al. [6] manually tuned the setpoints until a desired
bucket fill factor was achieved. Once tuned, the DAC performed well in excavating
consistent payloads from a particular rock pile, but the parameters required retuning
when the pile characteristics changed. In our investigation, we are interested in deter-
mining the effects of varying the DAC setpoints on the bucket fill factor. If trends can
be observed in the fill factor for varying setpoint values, then a learning framework
can be developed to automatically learn and adapt the parameters for a desired fill
factor over successive excavation iterations.

3 Experiment Apparatus and Methodology

Full-scale robotic excavation experiments described in this paper were conducted
using an automation-ready Atlas Copco ST14 load-haul-dump (LHD) machine and
a muck pile located at an underground mining test-facility at Kvarntorp, Sweden.
Figure 3 shows images of the ST14 and muck pile.
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(a) ST14 LHD and muck pile (b) Sample of rocks in muck pile

Fig. 3 Images of the ST14 LHD machine and muck pile used for experiments described in this
paper. A 1 m long rod is placed on a sample of rocks as a length reference

3.1 ST14 LHD Specifications

The Atlas Copco ST14 LHD machine is an articulated, low-profile, wheel loader that
is designed for loading, hauling and dumping blasted rock in underground mining
operations. This LHD has a 14-tonne payload capacity and a loading mechanism with
a boom and bucket linkage as shown in Fig. 1. Two parallel hydraulic cylinders actuate
the boom, and a single hydraulic cylinder, connected via a Z-bar linkage, actuates
the bucket. As depicted in Fig. 1, bucket cylinder extension corresponds to bucket
curlingmotion and bucket cylinder retraction corresponds to bucket dumpingmotion.
The ST14 transmission is powered by a 335 HP diesel engine, and the hydraulic
actuators (i.e., for boom, bucket and steering) are powered by two load-sensing
variable displacement pumps. The hydraulic system is designed in a closed-centre
configuration, so all hydraulic actuators receive maximum power from the variable
displacement pumps. Electrohydraulic servo valves control flow to the hydraulic
cylinders for actuation.

3.2 Sensors and Data Acquisition

Automation-ready ST14 LHD machines are equipped with programmable control
systems and sensors that provide information about the machine’s status. These
sensors include pressure transducers that measure the boom cylinders’ base and
rod-side hydraulic pressures, a linear position transducer that measures the bucket
cylinder extension length, an absolute encoder that measures the boom angle, and a
cogwheel that measures the transmission speed. Thus, no additional hardware was
required to implement the admittance controller on the ST14.

The ST14 control system operates in real-time at a frequency of 20 Hz for read-
ing sensor measurements, sending actuator commands and logging data. This control
frequency is adequate for implementing the admittance controller because bucket-
rock interaction dynamics typically have very low bandwidth [12]. To conduct the
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robotic excavation experiments, the admittance control scheme described in Fig. 2
was programmed onto the ST14’s control system. The interaction force f̂r was cal-
culated from hydraulic pressure measurements at the base and rod sides of the boom
cylinders as f̂r = P1A1 − P2A2 where P1 and A1 are the boom cylinders’ base pres-
sure and cross-sectional area, respectively, and P2 and A2 are the boom cylinders’
rod-side pressure and cross-sectional area, respectively.

Actuator commands to the bucket cylinder’s servo valve are sent as digital sig-
nals that correspond to the valve’s spool displacement. These command signals are
normalized between−1 and+1, where negative values correspond to cylinder retrac-
tion and positive commands correspond to cylinder extension. Valve dead-bands are
reduced in the control software so that the valve commands correspond to a near-
linear response from the cylinder.

Payload weight W is calculated using a static load analysis with the boom raised
to a specified angle. Boom cylinder pressure measurements are used to obtain the
forces required for the analysis. We were unable to rigorously test the accuracy of the
load weighing system due to lack of a calibration weight, but the system’s precision
was determined by raising and lowering the boom five times with a filled bucket.
The largest absolute deviation (i.e., the largest difference between a measurement
and the sample mean) was determined to be 0.2 tonnes.

3.3 Excavation Media

A muck pile, shown in Fig. 3, was used for all robotic excavation trials presented in
this paper. The back of the pile was confined to a wall in a test area of an underground
mine at Kvarntorp, Sweden. This muck pile consisted of a mixture of clay, fine
gravel and large fragments of blasted rock (30–70 cm in nominal diameter), which is
representative of a real muck pile found in underground mining. However, real muck
piles are typically larger and more confined with a continuous flow of material from
a blasted stope above the muck pile.

3.4 Robotic Excavation Trials Procedure

Robotic excavation trials followed a procedure of manually positioning the loader
in front of the pile, executing the excavation algorithm, manually backing out of the
pile, weighing the excavated payload and dumping the excavated material back on
to the pile. At the start of each excavation trial, the admittance controller’s throttle
parameters ut and reference velocity setpoint vd were set in the ST14 control system,
and the excavation algorithm was executed to automate the following steps:
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1. Use position controllers to move boom and bucket to entry positions.
2. Apply throttle ut to drive the LHD forward into the pile and penetrate the pile

with the bucket.
3. When measured force f̂r exceeds an entry force threshold, fentr y , execute the

admittance controller to dig through the pile and fill the bucket.
4. When bucket is fully curled, deactivate the admittance controller and return throt-

tle to zero.

The lack of overhead confinement on our muck pile resulted in material build-up
at the tip of the bucket at the end of excavation. Thus, at the end of each dig, an
operator manually shook the bucket to allow this material to fall back into the bucket
prior to load weighing.

4 Experiments and Analysis

Robotic excavation experiments were conducted to determine the effects of changing
the Dig Admittance Controller’s (DAC) target force setpoint fd , throttle setpoint ut
and reference velocity setpoint vd on excavated payloads W . Results and analysis
from these experiments are presented in the following subsections.

4.1 Preliminary Experiments

In preliminary robotic excavation experiments that varied the constant target force
setpoint fd , it was determined that setting a low fd can lead to bucket stall during
excavation. Measured force and motion data from a stalled trial is shown in Fig. 4.
It can be seen that as the bucket curls, the measured interaction force f̂r continues
to increase. Eventually, f̂r increases beyond the target force fd , causing the velocity
change v f to negate the reference velocity vd to the bucket. This effectively stalls
bucket motion and prevents the LHD from moving into the pile.

4.1.1 Target Force Adaptation

To prevent bucket stall situations from degrading the performance of a setpoint
learning framework, we implemented an averaging filter to adapt the target force
setpoint fd to be a moving average of the measured interaction force

f̄d,k = f̄d,k−1
n − 1

n
+ f̂r,k

n
, (3)
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Fig. 4 Force and motion data from excavation trials with a constant target force setpoint fd = 7.0
MN, reference velocity setpoint vd = 0.040 m/s and throttle setpoint ut = 50%. Setting a low,
constant, fd can result in bucket stall during excavation

where f̄d,k is the new average target force setpoint at the current timestep k, f̄d,k−1

is the average target sepoint from the previous timestep, n is the averaging window
size, and f̂r,k is the measured interaction force at the current time step. This averaging
algorithm is computationally more efficient than calculating the true moving average.

The target force adaptation scheme proposed above is based on analysis of data
from 25 robotic excavation trials with different, constant, fd values. Analysis of the
force signals from these consistently showed that the measured interaction forces
always increase as the bucket curls, but the magnitude and profile of the force signal
is dependent on many factors (e.g., material accumulated in the bucket, contact with
the pile, throttle, etc.), so it is difficult to predetermine a suitable profile for the target
force setpoint at each excavation iteration.

Ideally, the target force should follow the nominal level of interaction forces,
so that changes in the interaction forces beyond this level correspond to appropriate
velocity changes v f by the admittance controller. We believe that the moving average
technique achieves this, although a lag is present due to averaging. Preliminary testing
found that n = 20 provides a suitable averaging window size.
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4.2 Robotic Excavation Trials for Varying ut and vd

The excavation experiments were conducted by deploying the DAC, described in
Sect. 2 (with the target force setpoint adaptation modification described in Sect. 4.1.1),
on the ST14 LHD machine, and following the excavation procedure outlined in
Sect. 3.4. The experiment variables are the DAC throttle setpoint ut and reference
velocity setpoint vd . All other control parameters: admittance controller gain KA,
pre-entry boom and bucket positions, entry force threshold fentr y , and target force
setpoint moving average window size n were manually tuned at the start and kept
constant throughout the trials.

The uncontrollable variables in these trials are pile shape and pile consistency,
which introduce some variation in the payload results. Because the muck pile used in
these experiments did not have a continuous flow of material, the excavated payloads
were dumped back onto the pile after each excavation trial. The pile shape was
adjusted twice during the trials as a lack of confinement at the sides caused the pile
to push out and decrease in depth. We are not concerned with pile changes between
trials in this experiment as the DAC should be robust to pile variations.

The experiment matrix for the excavation trials is given in Table 1. Combinations
of four different vd values and three different ut values were tested. A vd value of
0.100 m/s was tested because this results in saturation of the bucket command during
digging; these trials provide reference payloads for simply curling the bucket at
maximum speed after pile penetration. The initial plan was to conduct four trials for
each parameter combination; however, significant wheel slip at 70% throttle setpoint
created deep trenches in roadway at the tip of the muck pile. Wheel slip can also cause
the LHD’s tires to heat and possibly burst, so we did not pursue many excavation
trials at high throttle values. In the end, we were able to conduct five excavation trials
at ut = 70%, which gave 37 successful trials for results and analysis. All trials were
conducted in a random order to avoid pile variations from biasing payload results.

Table 1 Experiment matrix showing the number of excavation trials completed for different com-
binations of throttle setpoint ut and reference velocity setpoint vd in the DAC

vd (m/s) ut (%)

30 50 70

0.020 4 4 0

0.040 4 4 1

0.060 4 4 2

0.100 4 4 2
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Fig. 5 Payload results from
robotic excavation trials for
varying throttle parameter ut
and reference velocity vd in
the Dig Admittance
Controller. Data points show
the average values from all
trials for a each parameter
combination (see Table 1 for
trial information); error bars
indicate the standard
deviations
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4.2.1 Results and Analysis

The DAC, modified with target force setpoint adaptation, worked well in our robotic
excavation experiments–there were no bucket stall problems. Thus, the ST14 LHD
was able to autonomously excavate the muck pile and load the bucket in all excava-
tion trials. Trials with ut = 70% were deactivated when significant wheel slip was
observed; however, we expect that these trials would also have had successful exca-
vation results if wheel slip had not occurred. The issue of wheel slip is addressed
after presenting the payload results for the successful excavation trials below.

Figure 5 shows plots of average payloads from robotic excavation trials with dif-
ferent DAC setpoints, ut and vd . This plot shows that increasing ut increases payload,
and increasing vd decreases payload. Despite pile variations, the excavated payloads
for each parameter combination are consistent. These results affirm our hypothesis
that controllable bucket fill factor can be achieved by controlling the admittance
of the bucket rock interaction. For the trial sets with ut = 30% and ut = 50%, the
maximum standard deviation for payloads from was 0.6 tonnes (recall that the load
weighing system’s precision is 0.2 tonnes). Thus, the minimum controllability of
bucket payloads that we would be able to achieve with this robotic excavation sys-
tem is approximately 0.6 tonnes.

Wheel slip was observed for trials with low vd and high ut . Based on observations
during the excavation trials, we believe that this is due to slow bucket curl rate at
the start of the dig. Slow bucket curl rate suggests low admittance in the control
scheme, which means that the controller is not reacting quickly enough to increasing
forces. Figure 6 shows measured force and motion data from a trial with ut = 50%
and vd = 0.020 m/s. The force data shows that the moving average force target lags
behind the measured force when forces are increasing. Because the force error is
always negative, the velocity change v f acts to reduce the reference velocity vc,
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Fig. 6 Force and motion data from a robotic excavation trial using the Dig Admittance Controller
modified with the moving average target force setpoint ( f̄d ). This data is from a trial with throttle
setpoint ut = 50% and reference velocity setpoint vd = 0.020 m/s

resulting in slow curl rate at the start of the dig cycle. Slow bucket curl rate causes
the LHD to become stalled by the pile, which results in small amounts of wheel slip.
Analysis of the force error signal indicates sharp increases in forces at the start of
the dig, which should correspond to increases in bucket curl rate to admit the LHD
into the pile. We believe that introducing a derivative control action to the admittance
controller could address this issue.

5 Setpoint Learning for Controllable Bucket Fill:
Discussion

Results from robotic excavation trials suggest that controlling the admittance of the
excavation process by changing the throttle setpoint ut and reference velocity setpoint
vd allow controllable bucket fill. Based on these results and subsequent analysis of
data, the following discussion proposes improvements to the admittance controller
design and postulates a learning framework for adapting these two setpoints over
excavation iterations.
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The moving average target force setpoint f̄d modification to the Dig Admittance
Controller (DAC) worked well in eliminating bucket stall situations during excava-
tion; however, lag in target-force adaptation results in slow bucket curl at the dig
start, which leads to wheel slip. Increasing the admittance gain KA would increase
the response of the velocity change v f resulting in oscillatory behaviour for the
bucket, which is not ideal. Analysis of the force error signals from excavation tri-
als suggest that adding a derivative control action to the admittance controller as
Y (s) = KA fe + BA ḟe might improve the reaction of the velocity change for greater
rates of change in the interaction forces. Consideration will need to be given to fil-
ter the significant amount of noise present in the force measurement signal prior to
calculating its derivative.

There remains the question of how to best learn ut and vd to control bucket fill-
factor. Both setpoints contribute to bucket payload, so it might be possible to learn
both by using a simple gradient following algorithm at each excavation iteration, j :

ut, j+1 = ut, j + α(Wd −Wj ) (4)

vd, j+1 = vd, j − β(Wd −Wj ), (5)

where Wd is the desired bucket fill factor (or payload) and α, β > 0 are learning
rates that must be tuned. Updating both setpoints at each excavation iteration may
cause oscillations in the learning, so it might be better to give a fixed value to one
setpoint and learn the remaining setpoint as per above learning laws. More excavation
experiments are required to test these hypotheses.

6 Conclusions and Future Work

Results of full-scale robotic excavation experiments with a 14-tonne capacity load-
haul-dump vehicle and an underground muck pile show that varying the throttle and
reference velocity setpoints of a previously developed Dig Admittance Controller
(DAC) for robotic excavation of fragmented rock allows controllable bucket fill factor
(i.e., payload). Based on these results, we postulate a learning algorithm that learns
the DAC throttle and velocity setpoints based on a performance metric of payload
error at each excavation iteration. Further, we suggest improvements to the DAC for
adapting the target force set-point and introducing derivative action in the control
law for better reaction to large increases in measured interaction forces. Future work
proposes to test the proposed learning scheme with full-scale excavation experiments
on different types of excavation media such as a gravel pile and a fragmented rock
pile.
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Trajectory Optimization for Dynamic
Grasping in Space Using Adhesive Grippers

Roshena MacPherson, Benjamin Hockman, Andrew Bylard,
Matthew A. Estrada, Mark R. Cutkosky and Marco Pavone

Abstract Spacecraft equipped with gecko-inspired dry adhesive grippers can
dynamically grasp objects having a wide variety of featureless surfaces. In this paper
we propose an optimization-based control strategy to exploit the dynamic robust-
ness of such grippers for the task of grasping a free-floating, spinning object. First,
we extend previous work characterizing the dynamic grasping capabilities of these
grippers to the case where both object and spacecraft are free-floating and compa-
rably sized. We then formulate the acquisition problem as a two-phase optimization
problem, which is amenable to real time implementation and can handle constraints
on velocity, control, as well as integer timing constraints for grasping a specific
target location on the surface of a spinning object. Conservative analytical bounds
for the set of initial states that guarantee feasible grasping solutions are derived.
Finally, we validate this control architecture on the Stanford free-flyer test bed—a
2D microgravity test bed for emulating drift dynamics of spacecraft.
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1 Introduction

Recently, in an effort to alleviate some of the tasks performed by astronauts, there
has been increased interest in the use of small assistive free-flying robots (AFF) for
grasping andmanipulating objects inside and outside spacecraft. One such example is
the Smart SPHERES teleoperated test bed, which was developed to perform various
intra-vehicular activities aboard the International Space Station (e.g., camera work
and environmental monitoring), as well as to serve as a robotics research platform in
microgravity [1]. Enabling AFFs to autonomously grasp and manipulate objects has
the potential to make many human operations safer and more efficient by reducing
time spent performing repetitive tasks and on EVAs (see Fig. 1). Autonomous object
manipulation may also enable a wide range of new applications that are too danger-
ous, complex, or expensive for astronauts, such as the assembly of large-scale space
structures or the removal of space debris [2].

Traditionally, most grasping devices, especially in space, have relied on robotic
hands that either pinchopposing faces of the target (“force closure”) or grapple around
its features to secure it (“caging grasp”). The precision of this operation typically
requires that the target be stationary relative to the gripper for successful acquisition.
For example, in [3, 4], the authors assume that target objects have a grappling fixture
for caging [3] or pinching [4] and plan the spacecraft’s trajectory such that its end
effector velocity matches that of the grappling feature. However, velocity matching
often imposes a heavy burden on control precision and fuel expenditure.

Grippers that utilize dry surface adhesion represent a promising alternative.
Inspired by the adhesive properties of geckos’ feet, several grippers have been devel-
oped using gecko-like materials that can adhere to any smooth, flat or curved surface

Fig. 1 Autonomous free flying spacecraft equipped with dry adhesion surface grippers may assist
astronauts inside and outside the space station. This paper investigates optimal control strategies
for autonomous perching and acquisition of free-floating, tumbling objects
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Fig. 2 A curved-surface gripper utilizes gecko-inspired adhesive materials to robustly grasp a
variety of objects. Two opposing fingers passively collapse onto any curved smooth surface upon
contact, by triggering a bistable mechanism. The gripper is mounted on a passive compliant wrist
that allows it to absorb impact energy. See [8] for details

simply by touching them [5, 6]—thus, broadening the class of possible grasp locations
from a small set of features to a larger (continuous) space of feature-less surfaces.
Furthermore, when paired with a compliant wrist mechanism, these grippers can
dynamically engage objects with high relative velocity—a key advantage for cap-
turing drifting objects in space [7]. Previous work by the authors investigated the
performance of one such gripper designed to grasp a translating and rotating object
[6] (see Fig. 2). A passive cylindrical object, free-floating on frictionless air bearings,
was thrown at a stationary gripper on Stanford’s planar microgravity test bed (see
Fig. 4). The gripper, fixed to the inertial frame, was able to catch the object over
a wide range of contact velocities. By systematically probing the dynamic limita-
tions of the gripper in simulations and experiments, an envelope of contact states
amenable for reliable grasping was empirically constructed—henceforth referred to
as the “grasping envelope”. In this paper, we investigate how such dynamic surface
grasping can be leveraged to develop robust control laws for grasping objects in
space.

From a control standpoint, adhesive grippers eliminate the need to deliberately
coordinate finger contact forces, allowing the precision grasping task to be simplified
to a rendezvous and docking problem—awell-studied problem having a rich body of
literature. Specifically, a variety of optimization-based approaches have been devised
for the problem of spacecraft rendezvous and docking, including [9], which treats
some of the constraints as soft penalties in the cost function. This allows the problem
to be formulated as a Quadratic Program (QP), thus enabling real-time implemen-
tation. Similarly, [10] restricts each phase of the problem (long-range rendezvous,
short-range docking, etc.) to be formulated as either a Linear Program (LP) or a QP
for fast, online execution. In [11], the authors applied MPC to the rendezvous and
docking of a spacecraftwith a non-rotating platform in circular orbit around theEarth.
They extended this work in [12] to the case of a rotating/tumbling object, imposing
state constraints to avoid debris. In a similar vein, we propose an optimization-based
approach to the related problem of dynamic grasping, consisting of a two-phase
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optimal control architecture that is amenable to the complex dynamics and termi-
nal constraints characterizing adhesive grippers, and integer timing constraints for
grasping a specific location on a spinning body.

Specifically, the contribution of this paper is threefold. First, in Sect. 2, we extend
our previous work in [6] on characterizing the grasping envelope of a curved surface
gripper to the case where both spacecraft and object are free floating and in relative
motion. Second, in Sect. 3we formulate the problemof grasping spinning, featureless
objects as a two-phase optimal control problem and derive conservative analytical
bounds for the set of initial states that guarantee feasible grasping solutions. Finally,
we validate the controller in simulation and through a variety of experiments on a
custom free-floating spacecraft test bed (Sect. 4).

2 Grasping Envelope

In order to leverage the dynamic grasping capabilities of adhesive grippers for robust
object acquisition, some model of the set of “graspable” contact states is required.
This grasping envelope is a complex function of the gripper design, object shape and
surface, and the highly nonlinear behavior of the dry adhesives. First order insights for
defining this envelope can be derived from analytical models and simulations (as was
done in [6]), but a more complete characterization relies on systematically probing
the boundaries experimentally. In previous work, Estrada et al. [6] characterized the
envelope of a gripper fixed to the inertial frame through a passive compliant wrist,
which is akin to the case in which the target object is significantly less massive than
the spacecraft. However, for small AFFs that often perch or grasp larger objects, this
is often not the case. Accordingly, our first step is to extend those results to the more
general case in which both object and spacecraft are floating and of comparable
mass.

For planar motion, the contact state can be uniquely described by four parameters,
namely, the offset of the contact from the center of the gripper (d), and the relative
velocity, decomposed as the linear (v) and angular (Ω) speeds and angle of attack (φ)
(see Fig. 3). Thus, the grasping envelop can be viewed as a closed set (v,Ω, φ, d) ∈
R

4 centered at (μv, 0, 0, 0) and symmetric about d = 0.
For imposing terminal velocity constraints in the grasping problem, it is most

important to characterize the relationship between speed and angle of attack, which
can then be translated into normal and lateral velocity constraints. In other words, by
varying v and φ and holding d and Ω constant, one can experimentally construct a
2D slice within the 4D grasping envelope by observing successful and unsuccessful
grasps.

All experiments were conducted on the Stanford free-flyer test bed—a 3× 4m
granite table calibrated to be extremely flat and level—on which robotic platforms
can float using frictionless air bearings, simulating a 2D microgravity environment
(See Fig. 4). In nearly the exact same setup as in [6], a smooth cylindrical object
(1.6kg, 11cm radius) was fixed to a floating platform such that it could be spun
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Fig. 3 The contact state between the spinning cylindrical object and free-flyer is parameterized
with four variables as show in this top-down view: relative speed (v), angular velocity (Ω), angle
of attack (φ), and offset (d). Note that these parameters are defined with respect to the free-flyer,
which may also be moving

Fig. 4 Grasping experiment on the Stanford free-flyer test bed. A cylindrical object mounted on
a frictionless air-bearing platform collides and attaches to another free floating platform equipped
with a curved surface gripper. The dry adhesive fingers and compliant wrist are able to reliably
secure the object over a wide range of dynamic contacts

and launched towards a gripper, which was also mounted on a floating platform. An
OptiTrack motion capture system was used to measure the trajectories of the object,
free-flyer robot, and its attached gripper to sub-millimeter precision at 120Hz.

About fifty trials were run, varying the object’s speed and angle of attack for each
of two scenarios: (1) a high-mass free-flyer (4.2kgor roughly 2.5 times themass of the
object), and (2) a low-mass free-flyer (1.7kg or roughly the samemass as the object).
The results in Fig. 5 show the data for both of these scenarios compared with data for
a fixed gripper from [6]. Two analytical bounds were proposed in [6] to segment the
successful and unsuccessful grasps and correlate them to the two dominant failure
modes, which were: (A) a minimum normal impulse that was required to depress
the gripper’s passive trigger mechanism,1 and (B) a maximum angular impulse that
the gripper’s compliant wrist could absorb after attaching. These bounds are still
good predictors of failure for a floating free-flyer, however the normal and angular
impulse must now also account for the movement of the free-flyer after collision.

1Future gripper designs will incorporate an automatic trigger, eliminating the minimum normal
impulse requirement.
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Fig. 5 Grasping envelopes relating speed (v) and angle of attack (φ) for a non-spinning object
contacting the gripperwith zero offset (d). The left three plots showdata collected for a light (1.7kg),
heavy (4.2kg), and fixed free-flyer, respectively. The green o’s and red x’s depict successful and
unsuccessful trials. The right plot overlays the approximate envelope bounds for each of the three
cases, indicating generally tighter bounds for lighter free-flyers

Thus, as the mass of the free-flyer is reduced, the minimum speed needed for the
object to passively engage the gripper increases, the tolerable angular momentum of
the object decreases, and overall, the grasping envelope shrinks.

For high-speed collisions, an additional failure mode was observed, whereby the
floating free-flyer rebounds before the gripper can fully close around the object.
This phenomenon involves the mechanical response of gripper’s compliant mount
and the response time of the bistable closing mechanism. In [13], Yoshida discusses
the contact dynamics between a robotic arm and a floating satellite and shows that
appropriate impedance matching can mitigate this effect. Future work will consider
similar methods of impedancematching using tunable wrist compliance [8] to reduce
this rebound effect. For the grasping controller discussed in Sect. 3, we will simply
enforce a constraint on the maximum speed.

3 Autonomous Grasping

In this section we formally state the control problem we wish to address, devise a
two phase formulation for its solution using optimal control techniques, and discuss
feasibility guarantees and implementation details. We highlight that our problem
formulation and tests are limited to planarmotion; the generalization to 3D is possible
and will be addressed in future work. Furthermore, we make two key assumptions:
(1) the environment is obstacle-free, and (2) orbital dynamics can be ignored. In
practice, the full motion planning problem for grasping would be decoupled into an
initial rendezvous phase using a kinodynamic motion planner (e.g., [14]) to negotiate
obstacles over an arbitrary distance, which transitions to this final controller within a
close, obstacle-free vicinity. Similarly, the short timescales for this grasping problem
make higher-order effects due to orbital dynamics negligible. Section3.1 states the
dynamics of the problem, Sect. 3.2 discusses the decoupled control architecture and
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desired contact geometry, Sect. 3.3 derives the control law for phase 1, Sect. 3.4
derives the control law for phase 2, and Sect. 3.5 derives conservative analytical
bounds for the region of attraction.

3.1 System Dynamics

We consider an autonomous docking between a target object (T) and a spacecraft
(S) equipped with a dry adhesive gripper. The target object has a circular shape of
radius rT , mass mT , and rotates with constant angular velocity ωT. The spacecraft
has a gripper located distance lS from its center of mass Scm, and rotates with angular
velocityωS(t).We define a point Tg on the surface of T that represents the target point
for contact (e.g., a part of the target surface that is particularly suitable for grasping).
Right-handed orthogonal bases, n, t , and s are fixed in the inertial frame, target object,
and spacecraft, respectively, rotated by angles θS and θT . The position vector fromTcm

to Scm can be written as rS = xn̂x + yn̂y and its derivative, vS = ẋ n̂x + ẏn̂ y . This
notation is summarized in Fig. 6. The double-integrator dynamics of the spacecraft
are simply,

ẍ = ux , ÿ = uy, θ̈S = uθS , (1)

where ux and uy represent the translational control inputs (actuated, e.g., via
thrusters), and uθS represents the independent angular control input (actuated, e.g.,
via a reaction wheel). For convenience, we can rewrite the dynamics with respect to
a new basis, e, as

v̇r − v2θ
r

= ur , v̇θ + vr vθ

r
= uθ , (2)

Fig. 6 Geometry of the grasping problem. The initial alignment phase (left) steers the spacecraft
towards some desired approach trajectory, defined by β, at which point the final approach phase
(right) tracks a straight-line to ensure proper timing and contact geometry
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where rS = r êr , and vS = vθ êθ + vr êr . This form will be useful for deriving the
alignment controller in Sect. 3.3. Note that thruster arrangements on spacecraft typ-
ically yield nonuniform maximum thrust capabilities in the body frame. Thus, most
generally, ur,max and uθ,max are functions of θS. However, for simplicity, we will
impose a conservative inner approximation on the control constraints:

u2r + u2θ ≤ u2max, umax = min[umax(θS)], (3)

which allows the exact mapping to thruster firings to be abstracted as a lower level
controller.

3.2 Control Architecture

The grasping problem is constrained in three fundamental ways: (1) constraints on
the control input, (2) a constraint on the contact location on the surface of the rotating
target, and (3) dynamic contact constraints imposed by the gripper, as characterized
in [6] and Sect. 2. For a spinning object, the constraint on the contact location imposes
a coupled relationship on the pose and timing of contact, according to t f = θTg+2πn

ωT
,

where n is an integer number of rotations before collision, and θTg encodes the
contact pose. This integer constraint on the final time, combined with the complex
4Dgrasping envelope,makes this problem challenging to solve end-to-end as a single
optimal control problem. We note that for ωT → 0, wehave t f → ∞, which leads
to prohibitively slow solutions. Indeed this control approach is tailored for the case in
which the target’s angular velocity is faster than a simpler linear controller can handle
(e.g., by “chasing” the target point). In other words, our control approach should be
considered complimentary to a controller that can handle static or quasi-static cases.

Accordingly, we decompose the grasping problem into two phases. Phase 1 aligns
the spacecraft’s velocity vector with the desired approach vector (Fig. 6, left) and
phase 2 simply tracks this straight line trajectory and ensures proper contact timing
(Fig. 6, right). Importantly, the phase switch is assumed to occur sufficiently far
from the target as to guarantee a feasible, time-optimal solution—thus imposing
constraints on initial conditions, as discussed in Sect. 3.5.

To define this switching condition, we must work backwards from the desired
contact state within the grasping envelope. In principle, an appropriate selection of
approach trajectory canmap toany desired point in the grasping envelope. Practically,
however, the spacecraft cannot spin arbitrarily fast to match the object. In fact, it is
often desired for the spacecraft to have zero angular velocity for robust trajectory
tracking (i.e., so that thrusters are not spinning). Therefore, by forcing ωS = 0, the
relative angular velocity at contact is simply that of the target object, ωT.

There are many ways in which the remaining contact states (v∗, φ∗, d∗) may
be chosen. Given some estimate of the grasping envelope, one strategy would be
to inscribe a maximum radius sphere within the (3D) slice defined by Ω = ωT.
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The center of this sphere is one measure of the most robust target point. Therefore,
given some appropriate selection of contact state (v∗, ωT, φ

∗, d∗), the geometry of
the approach trajectory in phase 2 (see Fig. 6, right) can be uniquely defined as:

v = v∗, φ = φ∗, ωS = 0, β = sin−1

(
d∗ cosφ∗ + (lS + rT) sin φ∗

R

)
, (4)

where R is the distance of the spacecraft at the beginning of phase 2. Interestingly,
as discussed in [6], this optimal target point often corresponds to a non-zero offset
and angle of attack for spinning objects—a key difference from traditional grippers.

Note that this paper does not address attitude control, which is a function of the
specific arrangement of actuators for a given spacecraft. For the planar motion with
a reaction wheel considered here, the (1D) solution is trivial. We simply assume that
the spacecraft is able to rotate to the desired heading for grasping within t f .

3.3 Phase 1: Alignment

The goal of the initial alignment phase is to drive the spacecraft to the desired
approach vector computed by (4) in minimum time. Specifically, the final switching
condition is met at ts when,

vθ (ts)

−vr (ts)
= tan β. (5)

Intuitively, this canbe thought of as applying somecontrol input to effectively “rotate”
the velocity vector until it points at the desired contact location. Note from Eq. (4)
that β is a function of R, which is time-varying. Thus, while β cannot be computed
exactly a priori, Eq. (5) can easily be evaluated at each time step to check for the
switching condition.

The control input to achieve this in minimum time is simply a maximum thrust
normal to the approach vector, specifically:

u∗
θ (t) = umax cosβ

−vθ (t)

|vθ (t)| , u∗
r (t) = umax sin β

vr (t)

|vr (t)| . (6)

Since β is often small (within 10o for typical parameters and zero in the nominal
case), the dominant component of thrust is normal to the spacecraft’s position vector
(rS), effectively arresting the spacecraft’s angular momentum about the target. Fur-
thermore, the geometry of this thrust is such that the spacecraft’s speed will always
decelerate. Thus, a total speed constraint (that is not initially violated) will remain
obeyed. An apparent drawback of this approach is the inability to directly consider
position constraints, which may arise due to, e.g., narrow corridors within the ISS.
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However, as a last stage in a higher level planning framework, this controller canmake
some assumptions about the allowable set of initial states (e.g., from a kinodynamic
planner) that guarantee a collision-free “approach corridor”.

3.4 Phase 2: Final Approach

After aligning the velocity vector (along êβ ) in phase 1, the goal for phase 2 (starting at
t0) is to track this straight-line trajectory to intercept the target object at state (v∗, φ∗)
and location Tg using minimum fuel. Indeed, a periodic constraint is imposed on the
final time:

t f =
{

θTg (t0)+2πn
ωT

, ωT < 0
2π(1+n)−θTg (t0)

ωT
, ωT > 0

, θTg (t0) = θT(t0) − θ(t0) − φ∗ + β + d∗

rT
, (7)

where n is the integer number of full revolutions of the target object before contact.
The minimum feasible n also corresponds to the minimum time solution. For some
choice of n, we can formally state the 1D input-constrained minimum fuel optimal
control problem:

min
∫ t f

0
|u(t)|dt

s.t. Ẋ = AX + Bu

X (0) = [r, v0]T
X (t f ) = [D, v f ]T
umin ≤ u(t) ≤ umax

(8)

where X = [r, v], ṙ = v, D = 1
cosβ

[R − rT cos(φ − β) − lS cos(β − φ) − d
sin(β − φ)], and A and B represent the dynamics of a 1D double integrator. It
is known that the solution to an input constrained minimum-fuel optimal control
problem (where the system is controllable) will have a bang-off-bang form [15].
Additionally, for our specific problem, there are a family of fuel-optimal solutions
corresponding to the choice of n. For an initial radius (D) sufficiently large, an opti-
mal solution is to fire the thrusters one time in an off-bang-off regime, whereby the
timing and duration of the firing determines the impact speed (v f ) and time (t f ). The
total time is given by the sum of the initial coast phase (τ1), acceleration phase (τ2),
and final coast phase (τ3). Similarly, the total distance traveled (D) can be decom-
posed into three phases. With appropriate manipulation, this allows the timing to be
computed as:

τ1 = D + v f (τ2 − t f ) − |v2f −v20 |
2umax

|v f − v0| , τ2 = |v f − v0|
umax

. (9)
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Note that this solution is only valid for 0 ≤ τ1 ≤ t f − τ2 and τ2 < t f . In other words,
a single-fire solution may not exist for spacecraft that starts too far away, approaches
too fast, too slow, or when v0 ≈ v f . For this case when τ1 ≥ t f − τ2, a two-fire,
bang-off-bang control is optimal, whereby the spacecraft immediately thrusts for
duration τ ∗

1 , coasts for τ ∗
2 at speed v2, and thrusts for the remaining τ ∗

3 . Similar to
(9), the timing of the firing can be computed as:

τ ∗
1 = |v2 − v0|

umax
, τ ∗

3 = |v f − v2|
umax

, v2 = Dumax − 1
2 |v22 − v20| − 1

2 |v2f − v22|
umaxt f − |v2 − v0| − |v f − v2| .

(10)
This solution is also only valid for τ ∗

1 + τ ∗
3 ≤ t f . Otherwise, the timing mismatch at

t0 is too large for a bang-off-bang regime to compensate. However, an appropriate
constraint on the initial state (discussed in Sect. 3.5), can guarantee that either a
single-fire solution (Eq. (9)) or two-fire solution (Eq. (10)) exists.

3.5 Approximate Region of Attraction

In summary, given some initial state, the two-phase control proceeds as follows:

1. Select a desired location on the surface of the target to grasp, Tg .
2. Using some model for the grasping envelope, select a robust target point (v∗, ωT,

φ∗, d∗) as the desired contact state.
3. Execute the control for phase 1 according to (6).
4. Watch for terminal condition given by (5) and switch to phase 2 when triggered.
5. Compute optimal single-fire control inputs according to (9).
6. If infeasible, compute the two-fire optimal control solution according to (10).
7. Execute phase 2 controller, optionally with a closed-loop tracking controller (e.g.,

LQR), to drive the spacecraft to the desired contact state.

In order to stitch this controller to a preceding planner, we would like to formally
characterize the set of initial states from which a feasible solution is guaranteed—
corresponding to, for example, the goal region of a kinodynamic planner. First,
Eqs. (9) and (10) will be used to derive a minimum distance, Dmin at which phase
2 must begin to guarantee a feasible solution for any possible target point. Then, a
conservative linearizion of the dynamics given by Eqs. (2) and (6) will provide an
inner approximation of the backwards reachable set to achieve this transition.

3.5.1 Region of Attraction for Phase 2

To derive theminimumdistance Dmin for phase 2, we start by realizing that in order to
guarantee feasibility for any choice of Tg (i.e., at least one feasible choice of n), then
it is sufficient to guarantee that a solution exists for all t f,min ≤ t f ≤ t f,min + 2π/ωT

(i.e., the time the target takes to complete one full rotation).
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For the single-fire solution given by Eq. (9), the minimum distance Dmin can be
derived be setting the difference in timing between the slowest solution and fastest
solution exactly equal to one rotation period: t f,max − t f,min = 2π

ωT
. For example, in

the case when the spacecraft needs to slow down (i.e., v f < v0), the slowest solution
is to apply umax immediately and coast at v f until impact, and the fastest solution is
to wait until just before impact to apply umax. Substituting this into (9) and (10) and
solving for Dmin, we have

Dmin = 2πv0v f

ωT|v f − v0| + |v2f − v20|
2umax

. (11)

The second term corresponds to the distance traveled during thrusting, and the first
term represents the distance required to adjust phasing of contact by up to 2π .

For a two-fire solution, we can take the same approach by computing t f,max −
t f,min = 2π

ωT
. In this regime, t f,min is achieved by accelerating as long as possible

before immediately decelerating to hit T at v f (i.e., τ ∗
2 = 0), and t f,max is the exact

opposite. However, in some cases t f,max = ∞, corresponding to the case when the
spacecraft can fully stop before accelerating. Thus Eq. (10) can be manipulated in
a similar way to solve for D∗

min, the minimum distance required for a guaranteed
solution in a two-fire regime:

D∗
min = min

{
v20 + v2f
2umax

,

∣∣∣∣ π

2ωT
− v0 + v f

2umax

∣∣∣∣
√

(v0 − v f )2 + 2πumax(v0 + v f )

ωT
− π2u2max

ω2
T

}
.

(12)

3.5.2 Region of Attraction for Phase 1

Now that we have characterized the minimum distance required at the phase 2 tran-
sition, we would like to compute the backwards reachable set through the control
input during phase 1 to find a set of initial states for which a solution is guaranteed.
However, the coupled, second order nonlinear dynamics fromEqs. (2) and (6) cannot
be solved in closed form. Instead, we can solve for a conservative approximation of
the minimum time, t̂s ≥ ts by linearizing the dynamics:

v̇r = ur + v2θ
r

≈ 0, (13)

v̇θ = uθ − vr vθ

r
≈ uθ,eff = uθ − vr (0)vθ (0)

r(0)
, (14)

where uθ,eff represents the reduced effective control in the êθ direction. For vr (0) < 0
(i.e., moving towards the target), uθ and C(t) = vr (t)vθ (t)/r(t) always have the
same sign. Furthermore, it can be shown that sgn( dCdt ) = −sgn(C(t)) ∀ t ∈ (0, ts),
if (v2θ + 2|vr vθ |)/r ≤ umax. In other words, the magnitude of C is monotonically
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decreasing, and |v̇θ | ≥ |uθ,eff| ∀ t ∈ (0, ts). Thus, v̇θ ≈ uθ,eff will serve as a conser-
vative approximation for computing t̂s .

Similarly, since it is assumed that vr < 0, the approximation that v̇r ≈ 0 yields a
conservative approximation of the inward radial distance traveled (	rmin) if v̇r ≥ 0,
which is true for β ≤ sin−1(v2θ /(rumax)). Finally, we can use the linearized dynamics
given by (13) and (14) to compute t̂s and 	rmin:

t̂s = vθ (0) + vr (0) tan β

uθ,eff
, 	rmin = vr (0)t̂s . (15)

Combining Eqs. (11), (12), and (15), we can express the total initial distance the
spacecraft must be from the target as:

r ≥ min(Dmin, D∗
min) + 	rmin. (16)

Note that the initial velocity in phase 2 (v0 in Eqs. (11) and (12)) is now approximated
by |vr (0)|. In summary, the set of initial states for persistent feasibility is defined by
(16) and the following assumptions:

vr < 0,
v2θ + 2|vr vθ |

r
≤ umax, β ≤ sin−1

(
v2θ

rumax

)
. (17)

While these are complicated, interdependent expressions, in the context of a sampling-
based motion planner, they are cheap to evaluate (i.e., query the goal state).

4 Experimental Results

The two-phase grasping controller developed in Sect. 3 was implemented on the
Stanford free-flyer test bed (see Fig. 7). A simple PD controller was used to control
free-flyer attitude in Phase 2. A passive target object was manually spun and pushed
at some initial coasting velocity. The free-flying robot equipped with eight thrusters
and a reaction wheel was pushed at varying initial velocities (within the region
of attraction), immediately executing the grasping controller. Figure8 displays five
(of 16) example trajectories overlaid on the (ideal) simulated trajectory. A video
of one example trajectory can be found at: https://www.youtube.com/playlist?list=
PL8-2mtIlFIJrHMGNeKmHnkB1XBD0iKvto.

Overall, there is good agreement between themeasured and simulated trajectories.
Most of the deviation canbe attributed tomodeling errors—inparticular, the changing
mass of the free-flyers as the CO2 tanks drain (to be addressed with online system
identification in futurework).We also observed some timing errors during the second
approach phasewhich caused the free-flyer to occasionallymiss the target point. This
is because the reference trajectory for the second phase was computed immediately
after phase one, which can result in mis-timed grasps when unanticipated modeling

https://www.youtube.com/playlist?list=PL8-2mtIlFIJrHMGNeKmHnkB1XBD0iKvto
https://www.youtube.com/playlist?list=PL8-2mtIlFIJrHMGNeKmHnkB1XBD0iKvto
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Fig. 7 Autonomous grasping experiments on the Stanford free-flyer test bed. a A free-flying robot
floats on frictionless air bearings and is equippedwith eight compressed gas thrusters and a flywheel.
b The trajectory controller developed in Sect. 3 is executed on-board to dynamically grasp c a
translating and spinning target

Fig. 8 Measured motion capture data for three example trajectories (solid lines) of a free-flying
robot grasping a spinning target (black) overlaid with simulated predictions (dashed lines). The
points on the surface of the target represent the locations of the target point (Tg) upon impact for
the corresponding color. Gripper orientation is indicated by a straight line

errors such as table friction are present. Future experiments will incorporate an
MPC-style implementation of the phase two controller that constantly recomputes
the reference trajectory for more robust grasping.

5 Conclusions

In this paper we presented an optimal control approach for the problem of dynamic
grasping of tumbling objects in space using gecko-inspired adhesive grippers. We
extended the characterized grasping envelope for a curved surface gripper to the
case when both the spacecraft and target object are free floating and of comparable
mass. We developed a two-phase control architecture that decomposes the grasping
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problem into an initial alignment phase and final approach phase, each of which
with time optimal solutions. A conservative inner approximation of the region of
attraction for initial states was derived analytically to serve as a terminal goal region
for a preceding motion planner. Experimentation is ongoing, but the preliminary
results constitute one of the first successful demonstrations of autonomous surface
grasping in a high-fidelity spacecraft analog test bed.

This paper leaves numerous important extensions open for future research. First,
it is important to extend the controller to handle non-cylindrical objects, whereby
surface target selection should be addressed in a more principled way. Second, we
plan to introduce an actuated arm that allows for more robust acquisition through
active damping and impedance matching, and also for manipulation tasks. Third, we
plan to extend this controller and gripper design to allow for out-of-plane motion.
Finally, future experiments will be integrated with a preceding kinodynamic motion
planner to negotiate obstacle-rich environments.
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Generation of Turning Motion
for Tracked Vehicles Using Reaction
Force of Stairs’ Handrail

Yuto Ohashi, Shotaro Kojima, Kazunori Ohno, Yoshito Okada,
Ryunosuke Hamada, Takahiro Suzuki and Satoshi Tadokoro

Abstract Inspections by mobile robots are required in chemical and steel plants.
The robots are required to ascend and descend stairs because equipment components
are installed on different-level floors. This paper proposes turning motion for tracked
vehicles on stairs. A characteristic of the proposed turning motion is that it is gener-
ated using the reaction force from the safety wall of the stairs’ handrail. The safety
wall is commonly used in plants because it prevents objects from dropping down
and damaging equipments. Proper turning motion is generated based on the motion
model of the tracked vehicle. Experimental results show that the proposed turning
motion can change the heading direction on the stairs. In addition, the proposed
turning motion enables the vehicle to run with less slippage, as compared to other
turning motions. The proposed method can reduce slippage by 88% while climbing
up the stairs and by 44% while climbing down the stairs. The proposed method is
more effective on the upward stairs than on the downward stairs. An autonomous
turning motion control is implemented on the tracked vehicle, and it is evaluated on
the upward stairs.

1 Introduction

Inspection using robot technologies is required to prevent accidents caused by equip-
ment issues or deterioration in chemical and steel plants. It is considerably risky for
human workers to inspect dangerous equipment components, such as blast furnace,
during operation. The use of robot technologies can reduce the risk involved in the
inspection of equipment during operation.

Tracked vehicles, which can climb up and down on stairs, are suitable for inspec-
tion because equipment components are installed on different-level floors. Therefore,
we propose an inspection method using a tracked vehicle with sub-tracks, which is
shown in Fig. 1 [1]. This vehicle can climb up and down on stairs. Instead of human
workers, the vehicle can inspect equipments on different-level floors.
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Fig. 1 Tracked vehicle “Quince” (a) and target stairs with safety walls (b)

An important function of tracked vehicles is to change the heading direction on
the stairs. A track is a mechanism in which slippage occurs in principle on the ground
and stairs. During the climbing up/down motion on the stairs, the heading direction
changes because of slippage and gravity. Therefore, it is necessary to adjust the
heading direction to the upward/downward direction on the stairs.

This paper proposes turning motion using the reaction force from the safety wall
of the stairs’ handrail, which prevents objects from dropping down. This is a new
approach for changing the heading direction on the stairs. A characteristic of the
proposed method is to generate the turning motion using the turning moment caused
by the reaction force from the safety wall of the stairs’ handrail. In general, tracked
vehicles change heading directions using the difference between the velocities of
the left and right tracks. The proposed method generates turning motion using the
turning moment caused by the reaction force, in addition to the velocity difference.
Experimental results show that the proposed method can reduce slippage on stairs,
as compared to the turning motion based on the velocity difference.

The remaining part of the paper is organized as follows: Related works are ex-
plained in Sect. 2. The turning motion using the reaction force is proposed in Sect. 3.
Proper velocity is derived from kinematics constraints. The proposed method is eval-
uated on the upward and downward stairs, and the results are provided in Sect. 4. The
results show that the proposed method is effective on the upward stairs. Autonomous
turning motion control is implemented on the tracked vehicle, and its evaluation on
the upward stairs is described in Sect. 5. The paper is concluded in Sect. 6.

2 Related Works

Collisions with obstacles and the environment prevents proper motion of mobile
robots because the reaction force caused the collision can damage the robot. There-
fore, collision avoidance is an important research topic in the case of mobile robots.
Several studies have been conducted on collision avoidance [2–6]. We consider that
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the reaction force can be used to control motion. In this paper, the tracked vehicle
does not prevent collision and positively uses the reaction force to change the heading
direction on the stairs.

Motion control based on the reaction force is an important research topic in the
case of mobile robots. Compliance control is a widely used technique. Compliance
control enabled mobile robots or robotics arms can reduce the reaction force caused
by a collision and move along the surface of objects or an environment [7–9]. Rude
proposed a compliance control method using mechanical dampers and springs [10].
The proposed method could change the heading direction of mobile robots using the
reaction force caused by collisions in a clutter environment. However, compliance
control cannotmove a vehicle in the appropriate direction. The purpose of compliance
control is to reduce the reaction force. Themotiongenerated using compliance control
does not ensure that a mobile robot will face the target direction. This paper proposes
turning motion using the reaction force. A kinematic model is used to determine the
proper motion.

The reaction force from walls prevents mobile robots from generating proper
turning motion. Kojima et al. proposed a control method to prevent this problem
[11]. The study suggests that the proper control rule enables to generates turning
motion by using the reaction force. Additionally, the method did not require direct
measurement of the reaction force, and it generated proper turning motion. The
approach proposed in this paper is based on the same perspective as that of the
previously mentioned research, and it can generate proper turning motion on the
stairs.

3 Turning Motion Using Reaction Force

This paper proposes a new method for generating turning motion on the stairs. The
proposed method uses the difference between the speeds of left and right tracks and
the reaction force to generate turning motion. In general, turning motion is generated
using the difference between the speeds of the left and right tracks. Turning moment
is generated using only the difference between these speeds. The turning moment
generated using the reaction force is larger than that generated using the difference
between the speeds of the left and right tracks. We consider that a combination of the
speed difference and the reaction force can generate an even larger turning moment.

The safety wall of the stairs’ handrail is used to generate the reaction force. The
safety wall is commonly used in chemical and steel plants because it prevents objects
from dropping down and damaging equipment.

Passivewheels are attached to the side of the sub-tracks, which is shown in Figs. 1a
and 2. These wheels can reduce the friction force between the safety wall and wheels.
Without passive wheels, the friction force prevents the tracked vehicle from turning
on the stairs. In addition, the use of passive wheels reduces the damage to the safety
wall and tracked vehicle.
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Fig. 2 Passive wheel
attached to sub-track

Fig. 3 Proposed turning
motion and and its trajectory
for the tracked vehicle on
stairs

Fig. 4 Kinematic model of
the tracked vehicle that
contacts the stairs’ handrail

The tracked vehicle moves as shown in Fig. 3; it moves and turns along the safety
wall using the reaction force. To generate this turning motion, we need to consider
how to derive the proper torque and speed of the left and right tracks. This paper
proposes a speed control method based on the kinematic model of the turning motion
of the tracked vehicle shown in Fig. 4. A coordinate frame is attached to the center
of the vehicle body, in which the x-axis faces the vehicle’s front and the y-axis faces
its left. The turning center is O . Table1 defines the parameters of this kinematic
model. It is possible to derive the velocity condition using the kinematic model even
if contact state varies.
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Table 1 Parameters of the kinematic model

vc Peripheral velocity of contact side track

vnc Peripheral velocity of non-contact side track

vw Actual velocity vector of contact point with the
wall

vw_ref Commanded velocity vector of contact point
with the wall

2d Tread

Lx Distance between center of gravity and contact
point on x-axis

Ly Distance between center of gravity and contact
point on y-axis

θ Angle between wall and robot

α Angle between line segment from contact point
to axis of rotation and the line segment from
axis of rotation to center of gravity

ρ Turning radius

To generate the reaction force, it is necessary for the tracked vehicle to move
toward the wall direction that is represented by velocity vw_ref at contact point A in
Fig. 4. This is the commanded velocity at contact point A. When the tracked vehicle
moves along the wall because of the reaction force, the actual velocity, vw, is parallel
to the safety wall at point A. In this case, the center of the turning motion exists on
the line that is perpendicular to the wall at contact point A. When the tracked vehicle
does not contact the wall, the center of the turning motion does not exist on the line.

The condition under which the robot maintains contact with the wall is derived
using the kinematic model as

θ + (90◦ − α) ≥ 90◦ (1)

Angle α is

α = arctan

(
Lx

Ly + ρ

)
(2)

Based on Eqs. (1) and (2), the condition of contact with the wall is

tan θ ≥ Lx

Ly + ρ
(3)
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Velocity v and angular velocity ω are given by

v = vc + vnc
2

(4)

ω = vc − vnc
2d

(5)

Therefore, turning radius ρ is

ρ = v

ω
= d (vc + vnc)

vc − vnc
(6)

As the robot wishes to turn around turning center O clockwise, the following rela-
tionship is obtained:

vc > vnc > 0 (7)

The condition under which the robot maintains contact with the wall can be obtained
using Eqs. (3), (6), and (7) as follows:

vnc ≥
(
Lx − (

d + Ly
)
tan θ

Lx + (
d − Ly

)
tan θ

)
vc (8)

By moving such that this condition is satisfied, it is possible to perform a turn along
the wall while continuously obtaining the moment due to the wall reaction force, as
shown in Fig. 3.

4 Evaluation of Turning Motion Generated Using Reaction
Force from Safety Wall of Stairs’ Handrail

4.1 Evaluation Method

The following three turning methods are implemented on the tracked vehicle and
compared on the stairs:

A: Reaction force based turning motion (reaction force) The tracked vehicle
moves forward, without turning motion. The heading direction is changed by
the reaction force caused by the forward motion.

B: Turning motion based on differential between left and right track speeds
(differential) The tracked vehicle turns when it contacts the wall. The turning
motion is generated using only the difference between the speeds of the left and
right tracks.

C: Proposed turning motion (reaction force + differential) The tracked vehicle
turnswhen it contacts thewall. The turningmotion is generated using the reaction
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force from the wall and the difference between the speeds of the left and right
tracks.

The same initial conditions and pose were used for these evaluations. The vehicle
started the motion upon contact with the wall, and its angle, θ , was 15◦. The vehicle
climbed the stairs, which were at an inclination of 40◦, as shown in Fig. 1b. Typically,
the tracked vehicle stretches the front and rear sub-tracks when it climbs the stairs for
stabilizing itself. In motions B and C, the robot started turning from the beginning,
and after completing the turn, it proceeded straight at the rotational velocity of the
main tracks’ motor, which was 2000 rpm. Each running test was performed three
times.

The rotational speed of the motor at the contact side was set at 2000 rpm. The
velocity of the track at the contact side was obtained using the gear ratio from the
motor to the output shaft, n, and the pulley diameter, D, using the following equation:

vc = 2000 nD [m/s]. (9)

The velocity of the track at the non-contact side, vnc, can be obtained from the Eqs.
(8) and (9). Therefore, the track velocity on the non-contact side was determined
such that it satisfied. Here, 2d = 0.37 m, Lx = 0.41 m, and Ly = 0.28 m. Therefore,
vnc is derived as follows:

vnc ≥ 1485 nD [m/s]. (10)

The velocity which is used in Eqs. (4)–(8) can be used with the actual track veloc-
ity or the approximated value of the commanded track velocity. Here, we use the
command velocity. Table2 shows the track speeds at the contact and non-contact
sides for each type of motion. The rotational speed of the motor at the non-contact
side was derived using Eq. (10) for motions B and C. vnc of motion C is 1500 nD,
which satisfies the condition of the robot maintaining contact with the wall as shown
in Eq. (10). Turning time, which is the time required by the robot to directly face the
stairs, was determined empirically based on the result of a preliminary experiment.

The above threemotions are evaluated usingmovie andmotion capture data. Turn-
ing angular velocity is calculated using the motion capture data during the turning
motion. For motion A, turning time is the time required to climb the first step. For
motions B and C, turning times are provided in Table2. In addition, moving speed
and slippage of robot are evaluated using the motion capture data because slippage
is an important factor for turning motion on the stairs.

Slippage is evaluated using a vertical velocity ratio as shown in Eq. (11).

Vertical veloci ty ratio =
∣∣∣∣vz_ref − vz

vz_ref

∣∣∣∣ . (11)

where vz is the current vertical velocity and vz_ref is the commanded vertical velocity.
If the vertical velocity ratio is larger than 1, it can be judged that slippage occurs in
the z direction. This equation is determined in reference to slip ratio. Slip distance is



72 Y. Ohashi et al.

Table 2 Rotational speed and turning time

Motion Rotational speed of
contact side [rpm]

Rotational speed of
non-contact side [rpm]

Turning time [s]

A: Reaction force 2000 2000 –

B: Differential 2000 1000 1.8

C: Reaction force +
differential

2000 1500 2.0

Fig. 5 Proposed turning motion, which uses reaction force from the wall while climbing

Fig. 6 Turning angular
velocities while climbing; A:
Reaction force, B:
Differential, C: Reaction
force + differential

derived by integrating the velocity in the vertical direction while slipping. The slip
and the time required to run the stairswas evaluated as the time overwhich the vertical
displacement changed by one step,which is at a height of 0.21m from the start of trial.
These two parameters were evaluated using tracking software (Tracker3.3, Vicon),
based on with the images obtained using a motion capture camera (VANTAGE V5,
5 million pixels, Vicon). The sampling frequency of the motion capture camera was
100 [Hz]. Motion capture is used only to evaluate the motions.
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Fig. 7 Number of slips, and slip distance, and time required to run while climbing. A: Reaction
force, B: Differential, C: Reaction force + differential

4.2 Evaluation of the Turning Motion on the Upward Stairs

Movie and motion capture data were recorded during the evaluations. The recorded
movies showed that motions A, B, and C generated the turning motion on the stairs.
Even though these behaviors were different, it was difficult to observe the difference
in the movies. Figure5 shows the turning motion generated by motion C (reaction
force + differential).

Motion data were used to analyze the difference between these turning motions
on the upward stairs. The angular velocity of each motion while commanding the
turn is shown in Fig. 6. The figure shows that turning is the fastest in motion B at an
angular velocity of 6.4◦/s and the second fastest in proposed motion C at 3.2◦/s. In
motion A, turning is at 2.4◦/s.

The number of slips, slip distance, and time required to run are shown in Fig. 7. It
can be seen from Fig. 7a that the number of slips is 0.33 times for proposed motion
C, which is the smallest value, 2.3 times for motion A, and 2.7 times for motion
B. Figure7b shows that the slip distance is 2.97mm for proposed motion C, which
is the smallest value, 5.90mm for motion B, and 8.51mm for motion A. It can be
observed from Fig. 7c that the time required to run 2.74 s for motion A and proposed
motion C, which is shorter than that for motion B, i.e., 2.96 s. Based on these results,
proposed motion C (reaction force + difference) was determined to be the turning
motion with the least slip and the fastest speed of climbing the stairs.

4.3 Evaluation of the Turning Motion on the Downward
Stairs

The recorded movie and motion capture data were used to analyze the difference
between the turning motions generated by motions A, B, and C on the downward
stairs. Figure8 shows the turning motion generated by motion C (reaction force +
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Fig. 8 Proposed turning motion, which uses reaction force from the wall while descending

Fig. 9 Turning angular
velocities while descending;
A: Reaction force, B:
Differential, C: Reaction
force + differential

differential). The angular velocity of each motion while commanding the turn is
shown in Fig. 9. The figure shows that the angular velocity is 4.8◦/s for motion B,
which is highest value, 3.9◦/s for proposed motion C, which is the second highest
value, and 3.4◦/s for motion A.

The, number of slips, slip distance, and time required to run are shown in Fig. 10.
It can be seen from Fig. 10a that the number of slips is 5 times for proposed motion
C, which is the smallest value, 6 times for motion A, and 9 times for motion B.
Figure10b shows that slip distance is 38.9mm for proposed motion C, which is the
smallest value, 71.1mm for motion A, and 82.7mm for motion B. Figure10c shows
that the time required to run is 1.99 s for motion A, which is shorter than motion
B and proposed motion C, i.e., 2.39 s. Based on these results, proposed motion C
(reaction force+ differential) was determined to be the turning motion with the least
slip while descending.

4.4 Discussion

The results show that the proposed method (motion C: reaction force + differential)
generated proper turning motion and reduced the number of slips and slip distance
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Fig. 10 Number of slips, slip distance, and time required to run while descending. A: Reaction
force, B: Differential, C: Reaction force + differential

Fig. 11 Rotational characteristic of the caster: robotmoving forward (a),moment atwhich direction
of progression changes (b), robot moving backward (c)

while climbing up/down the stairs. A combination of reaction force and differential
speed is a suitable solution for generating turning motion on the stairs.

There was considerable difference between the number of slips and total slip
distance while climbing up and down the stairs. We analyzed the reason for this
difference. We consider that the passive wheel attached to the sub-tracks causes this
difference. The passive wheel consists of one wheel and one rotational axis, which is
offset between the wheel and rotational axis. The rotational direction of the passive
wheel changes depending on the motion of the tracked vehicle, as shown in Fig. 11.
When the tracked vehicle slips while ascending, the direction of the wheel changes
as Figs. 11a and b. At that instant, friction force is generated between the passive
wheel and wall. This friction prevents the vehicle from slipping down on the stairs.

On contrary, when the tracked vehicle climbs down the stairs, the direction of the
vehicle and slip is the same, and the direction of the passive wheel does not change.
Therefore, friction force is not generated.
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Based on these observations, it can be said that the passive wheel reduces the
friction force between the sub-track and wall, and increases the friction during slip-
page when climbing up the stairs. This characteristic is considerably important for
improving the turning motion when climbing up the stairs.

5 Autonomous Turning Motion on the Stiars

5.1 Implementation Method

To use the proposed motion for plant inspection or pilot assistance, turning motion is
implemented on the tracked vehicle. To automate turning control, the control method
requires the detection of contact and the measurement of the angle, θ , between the
wall and the vehicle. The control flow, which decides velocity from detection of the
contact and contact angle, θ , is shown in Algorithm 1.

Contact with the wall is detected using the roll angle of the main body and the
electrical current value difference between the left and right main tracks’ motors.
It was experimentally determined that the current value of the main motor on the
non-contact side increases and that on the contact side decreases upon contact with
the wall during forward motion. Therefore, contact with the wall is detected when
the current value difference is more than 4.5 A. This value is decided empirically.
When running in a diagonal direction on the stairs, the roll angle of the robot is used
to judge whether the robot is facing left or right with respect to the stairs (positive
or negative roll angle). This can prevent the misjudgment of contact.

The contact angle is detected using a 2D LIDAR(HOKUYO: UTM-30LX)
attached to top of the vehicle (Fig. 1a). The point cloud data on the wall are extracted
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from scan data, and the wall is detected using liner approximation. To reduce false
detection, the point cloud data that are located between 0.3 and 1.0m from the vehicle
are used for wall detection. The contact angle, θ , is obtained from the wall detected
using the point cloud data and the heading direction of the vehicle. Then, proper track
velocity is obtained from the Eqs. (7) and (8). The rotational speed of the motor at
the contact side is set as 2000 rpm. The track velocity at the non-contact side can
be obtained. In addition, when the contact angle is less than 5◦ or the wall is not
detected, the velocity at the non-contact side is not updated using Eqs. (7) and (8).
This can reduce the improper turning motion.

5.2 Evaluation Method

Autonomous turning control is evaluated based on the comparison between the fol-
lowing two methods:

Reaction force based turning motion The tracked vehicle moves forward, with-
out turning motion. The heading direction is changed by the reaction force caused
by the forward motion.
Proposed turning motion The tracked vehicle turns when it detects contact with
the wall. Turning motion is generated using the reaction force from the wall and
the difference between the speeds of the left and right tracks.

During the evaluation, the vehicle starts running without contact with the wall.
The running distance is three steps, which is equal to a height of 0.63m from the
start. Other conditions are the same as those described in Sect. 4. A slip is counted
when the slip distance exceeds approximately 2.4mm, which is 10% of the interval
of the grossers in the vertical direction of the stairs.

5.3 Evaluation Result

Figure12 shows the images of the motion generated by the proposed control method.
The vehicle turns left using the reaction force from the wall. Figure13 shows the
rotational velocity of the motor at the third trial of the proposed control method.
Figure13 shows that the rotational velocity of the motor at the non-contact side
automatically changes at 2.2 s. Turning motion is automatically generated by the
proposed method based on the detection of contact and the contact angle.

Figure14 shows the number of slips, slip distance, and time required to climb
the stairs for both turning control methods. The proposed turning control method
reduces slippage during autonomous control. The number of slips for the proposed
method is 1.76 times smaller than that for the other controlmethod (Fig. 14a). The slip
distance for the proposed method is 2.31 times smaller than that for the other method
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Fig. 12 Proposed automatic turningmotion, which uses reaction force from thewall while climbing

Fig. 13 Motor rotational velocity during the proposed turning motion which uses reaction force
from the wall while climbing

Fig. 14 Number of slips, slip distance, and time required to run while climbing. R: Reaction force
based turning motion, P: Proposed turning motion
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(Fig. 14b). The time required to climb the stairs is almost the same for both methods
(Fig. 14c). These results show that proposed motion C (reaction force + differential)
can generate proper turning motion and reduce slippage during the upward motion.

6 Conclusion

This paper proposed turning motion for a tracked vehicle on stairs. This turning
motion was generated using the difference between the speeds of the left and right
tracks and the reaction force from the safety wall. Movie and motion capture data
were used to confirm that the proposed method generated proper turning motion
on the stairs. In addition, the occurrence of slippage during the turning motion was
evaluated. The results showed that the proposed method enables the vehicle to turn
with less slippage compared to other methods (differential speed based, reaction
force based). The proposed turning motion was more effective on the upward stairs
than on the downward stairs. The passive-wheel caused less slippage during the
upward motion because of the friction force between the passive-wheel and safety
wall. Autonomous turning motion control was implemented on the tracked vehicle,
and it was tested during the upwardmotion. It was observed that the proposedmethod
enabled the vehicle to runwith less slippage, as compared to the case inwhich turning
motion was generated using only the reaction force from the wall.
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Finding Better Wide Baseline Stereo
Solutions Using Feature Quality

Stephen Nuske and Jay Patravali

Abstract Many robotic applications that involve relocalization or 3D scene recon-
struction, have a need of finding geometry between camera images captured from
widely different viewpoints. Computing epipolar geometry between wide baseline
image pairs is difficult because often there are many more outliers than inliers
computed at the feature correspondence stage. Abundant outliers require the naive
approach to compute a huge number of random solutions to give a suitable proba-
bility that the correct solution is found. Furthermore, large numbers of outliers can
also cause false solutions to appear like true solutions. We present a new method
called UNIQSAC for ng weights for features to guide the random solutions towards
high quality features, helping find good solutions. We also present a new method to
evaluate geometry solutions that is more likely to find correct solutions. We demon-
strate in a variety of different outdoor environments using both monocular and stereo
image-pairs that our method produces better estimates than existing robust estimation
approaches.

1 Introduction

Computing the relative geometry between a wide-baseline camera pair is an important
task for many robotics problems such as loop-closure in SLAM systems or 3D
reconstructions. The task can be difficult in challenging real-world scenes, mainly
because it is hard to determine which point correspondences are correct (inliers)
among a set containing many incorrect correspondences (outliers).

The standard approach, RANSAC [7], is to robustly estimate an epipolar geom-
etry between the pair by testing multiple geometry hypotheses. RANSAC and its
improved variants [2, 3, 6, 13, 16], are impressive in their ability to correctly estimate
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geometry given small percentages of true correspondences and large percentages of
false point correspondences. However, when the percentages of inliers and outliers
are pushed further out of favor then even these robust approaches struggle to find the
correct geometry. To that end, we propose a new metric for the quality of the features,
which is their uniqueness amongst all other features in the image. We use this metric
to weight the sampling of correspondences to help find good solutions, and we also
present a new method to evaluate solutions that can better differentiate between true
and false solutions. Figure 1 shows an example of our algorithm’s functioning.

Our sampling approach is different to existing weighted sampling strategies in
that we first robustly quantize each feature and then calculate its uniqueness among
all other features in the image, as opposed to just a feature correlation score to the
nearest neighbor or a ratio of correlation scores to the second nearest neighbor.

We also propose to use feature quality to evaluate geometry solutions. The tra-
ditional approach to evaluate solutions is to just use the count of supporting cor-
respondences that pass an epiline distance threshold. With many outliers present,
many false correspondences can pass the inlier test causing bad solutions to appear
as good solutions. Our approach is more likely to find correct solutions because we
have down weighted low-quality features whereas the traditional approach treat all
features equal.

We first test our approach on a number of challenging outdoor monocular image-
pairs, each with a very small fraction of inliers in the set of correspondences. The
results are evaluated against manual ground-truth and compared against other robust
estimation algorithms. The result is that, in comparison to the commonly used
approaches, our approach finds more accurate solutions.

Secondly, we apply our uniqueness weighting approach for faster and accurate
estimations in wide-baseline stereo visual odometry. Finally, the paper is organized
by presenting the methodology, following which the results for monocular and stereo
image-data are described in consecutive sections.

2 Related Work

Here we present an overview of state of the art in estimation of wide baseline geome-
try. The task ultimately requires correlating some type of visual information between
the image-pair. In the literature there are a number of different categories of informa-
tion that are used for wide baseline; region based [12], edge/line based methods [9],
but by far the most prevalent methods used are those using point features such as
SIFT [10]. Appearance based methods, such as [8] learn to predict matchable descrip-
tors, attaining faster geometry computation with high success rates of matching. The
point-based methods are popular because firstly they have algorithms to repeatedly
find the same image keypoints in a scene even when the viewing pose changes, and
secondly they can form descriptions of the area surrounding the keypoints that have
a reasonable level of robustness to viewing changes.
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(a) Point correspondences

(b) Uniqueness left image (c) Uniqueness right image

(d) Inliers

Fig. 1 Example of weighted epipolar geometry estimation: Campus Scene. The feature uniqueness
coloring ranges from unique to repetitive as follows; red, orange, green, light-blue, blue. The low-
quality repetitive foliage and many repetitive building features are downweighted
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However, even though the process is comparatively robust, there are often more
outliers correspondences between a wide baseline image pair than inliers. The most
prevalent and successful approaches to dealing with cases where the outliers are
above 50% of all correspondences is RANSAC [7] and its variants. The RANSAC
process is to form a hypothesized solution to the geometry from a randomly selected
minimal sample of point correspondences and evaluate the hypothesis by counting
correspondences in agreement. The process is repeated with different samples until
a good solution is found. To achieve higher accuracy, Locally Optimized RANSAC
(LoRANSAC) [3] locally improves the estimated model hypothesis when the best
model so far is found. For faster convergence, [15] precludes computation of incorrect
feature matches using spatial order information in images.

There are approaches to improve RANSAC at the sampling step, where each
correspondence is weighted and the likelihood of it being chosen in the sampling
is adjusted [2, 6, 13, 16]. SCRAMSAC [13] achieves this by ranking correspon-
dences based on the spatial consistency of neighboring correspondences. USAC [2]
combines [2, 3, 11] into a single comprehensive pipeline.

The work in [16] replaces random sampling by guided sampling, computing a
weight for every correspondence based on an image correlation score. PROSAC [2]
uses correspondence quality measures to speed up RANSAC based on the correlation
score of keypoints. In EVSAC [4], hypothesis generation is accelerated by computing
confidence values by modelling the matching scores. BEEM [6] presents another
method of weighting correspondences by a correlation quality score determined by
the ratio of distance of nearest to second nearest feature in the descriptor-space.

A majority of these existing approaches calculate weights from the correlation
score between two features or the ratio of correlation scores to the next best corre-
spondence. These existing weighting metrics are formed considering just one or two
correspondences. This will result in a low weighting for semi-distinct features, and
this weighting will be as low as the weighting for very non-distinct features. Whereas
our approach is different in that it calculates the uniqueness score of a feature against
all other features in the image, and will provide an appropriate weight for semi-
distinct features that are similar to only a few other features. Thus our uniqueness
weighting is less susceptible to the case of semi-distinct features in the scene, which
are features that are similar to a small number of other features.

Furthermore the convention in these approaches is to use the number of correspon-
dences in the consensus set that have passed an epiline distance threshold. However,
when there are many outliers, many false correspondences can mistakenly pass the
inlier test causing bad solutions to appear as good solutions. In our work we evaluate
solutions based of the feature quality in the consensus set, which is more likely to
find correct solutions because we have down weighted low-quality features whereas
the traditional approach treat all features equal.
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3 Sampling Using Feature Uniqueness: UNIQSAC

We first detail our approach to weight the sampling of correspondence subsets for
the RANSAC procedure. We reiterate the necessity for weighting the sampling of
correspondences to achieve timely convergence in difficult image pairs as previously
demonstrated in [2, 6, 16] and propose an alternative strategy for determining the
weights. The first step is to quantize the feature descriptors into distinct labels, similar
to the bag-of-words approach [14], We count how many times each type of feature
appears in an image, giving us an estimate of that feature’s uniqueness. The bag-of-
words approach requires a large prior database relevant to the current scene at hand
and a large amount of preprocessing to cluster the database of features. We propose
an alternative feature-quantization approach that requires no learning and is efficient.

Our approach is to first take a N -dimensional feature descriptor and randomly
sample M-dimensional sub-features from it K times. Then, we quantize these K
sub-features into K integers. The reason for a set of identifiers for each feature is
that quantizing large N -dimensional features is difficult and error prone, because if
any one dimension is disrupted (from any number of potential viewing disruptions;
lighting, sensor noise, viewing pose changes, non-planarity, partial-occlusions etc.)
then the resulting integer identifier will be wrong. So by choosing an appropriate
value for M and K , the resulting set of K integers will still each on their own be a
reasonable means for identifying a feature, and even though it is still likely that a
number of the K integer identifiers will be erroneous because of viewing disruptions,
it is likely that there will be enough identifiers for each feature that are still valid.

The procedure is as follows. Let f i be the value of the i th dimension of feature, f ,
which is a normalized value between 0 and 1. Then let r(k,m, N ) be a function that
returns a random hasher between 1 and N , which will return the same random hasher
for specific k and m values (i.e. it will pick the same dimensions to sample for each
feature we are quantizing). Given a feature, f , we randomly generate a sub-feature,
s, several times to form the set of sub-features, S, where s j is the j th sub-feature.
We then quantize the sub-features into an integer identifier, d, with the quantization
function q(v, p, z), which takes a feature value v between 0 and 1, an exponent value,
p, and the number of quantizations for each dimension, z;

q(v, p, z) = �vpz� (1)

Combining the sub-features we form a set of integer identifiers, D, for each feature.
Here Dl is the lth integer identifier. This process is defined as the QUANTIZE()
function, given in Algorithm 1. Therefore by creating K integer identifiers for each
feature descriptor, f , we can count each time one of these identifiers appears in an
image, C(d), compute the most commonly appearing feature identifier, CMAX, and
then compute an average over all K identifiers to compute a score of how unique
that type of feature is amongst the other features in that image, Uf . This details our
method for calculating the uniqueness scores of a set of feature descriptors.
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(a) Airport

(b) Building 1

(c) Building 2

Fig. 2 Visualization of Uniqueness Computation. The calculated uniqueness are colored for the
features detected in a set of challenging outdoor image pairs. Coloring ranges from unique to
repetitive as follows; red, orange, green, light-blue, blue. The airport scene noticeably has many
low-quality ground features downweighted by our technique. Building scenes have many repetitive
low-quality features from brickwork and foliage. Whereas most of the high-quality features have
been correctly identified and given higher weights
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Figure 2 provides a visualization of uniqueness computation in three monocular
wide-baseline settings. The coloring follows a heat-map color scheme, where from
red is a unique feature and blue is a frequently occurring feature. Here it is clearly
identified the features are that are unique and which are low-quality. In the airport
scene it is noticeable that most of the ground features have been correctly down-
weighted as they are low-quality features, and many of the features on the hangers
and tower have correctly been identified as the useful unique features. In the building
scenes, most of the foliage features and many of the features on the brickwork,
repeated windows have been suitably down-weighted.

4 Evaluating Hypotheses Using Feature Uniqueness

The previous section described the sampling stage of geometry estimation, the next
stage of the RANSAC framework is to evaluate the resulting model hypothesis.
Traditionally, almost all methods use the cardinality of the consensus set [7] (inlier
set), c, as the metric to decide the quality of the model, which has limitations in being
able to determine good hypotheses from bad.

The common approach is to test if a feature correspondence, i , is in consensus
and therefore an inlier, is if its distance, ε, away from the epipolar line computed
from the nth model is less than the threshold, τ :

cn = ∀c(i) ∈ C, εi < τ (2)

Then given N RANSAC iterations, the final estimated model, m̂, is simply the
model with the largest consensus set as follows:

m̂ = arg max
n

(|cn|) (3)
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where cn is the consensus set from the nth RANSAC iteration. However, there can
be many correspondences that pass the inlier test that are in fact outliers. Therefore,
there can be poor geometry hypotheses that appear good because of many false
correspondences in the consensus set.

As a result of the limitations of using just the cardinality of the consensus set as the
evaluation metric, we have developed a new metric to evaluate RANSAC hypotheses,
that is a measure of the quality of the features in the consensus set. Our approach
is less likely to find false solutions because we down-weight low-quality features in
the evaluation process, whereas the traditional approach treats all features as equal.
We propose to use feature weighting approach described in the previous section as a
measure of quality, and use the sum of the inliers’ feature weights as the metric for
hypothesis evaluation. So our formulation for the best model becomes:

m̂ = arg max
n

(
∑

∀f i∈cn
w(f i )) (4)

Now we plot two graphs comparing our new metric against conventional inlier
count as shown in the Fig. 3. The first graph Fig. 3a, shows the correlation between size
of the consensus set (inliers) and the actual true inliers (validated inliers), recorded for
1,000,000 iterations of RANSAC (computing 1,000,000 iterations would most likely
take too long in practice, but used here to give a clear picture of the relationship to the
true number of inliers) on the wide baseline image pair seen in Fig. 2a. Similarly, the
second graph in Fig. 2b shows the correlation between summation of inlier weights
and validated inliers.

It is obvious from Fig. 3b, that the new metric produces a far better correlation
to true inliers when compared to the conventional inlier count. Although we see an
upwards trend in Fig. 3a, relating number of inliers to number of validated inliers,

Fig. 3 Hypothesis Evaluation and Accuracy score for a million iterations. Left: At higher inlier
counts, RANSAC is inaccurate with few validated inliers. Right: Feature Uniqueness provides a
linear correlation between summation of inlier weights and validated inliers
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there is an alarming variance in this distribution, where some hypotheses with many
overall inliers have very few validated inliers. This illustrates, that our new metric is
far less likely at wrongly selecting a poor hypothesis.

5 Monocular Wide-Baseline Geometry Estimation

In this section, we provide a detailed description of implementing feature uniqueness
weighting for sampling correspondences in a RANSAC-type geometry estimation for
wide-baseline monocular images. The correspondence set, C, is the set of matched
features between F1 and F2, the two features sets from the image pair. From this
correspondence set, we take a minimal subset, s, of the entire correspondence set
using a weighting function that computes the likelihood of f being sampled, w(f);

w(f) = U2
f (5)

The minimal sample set is used to estimate our hypothesized model which for us
estimating epipolar geometry is the fundamental matrix. The cardinality of s being
8, because we are using the 8-point algorithm [7]. When selecting the 8 point-
correspondences of s from C we use a Monte-Carlo sampling strategy based on
the weights of the two features f1(i) and f2(i) of a specific correspondence, i :

p(C(i)) = w(f1(i))w(f2(i)) (6)

6 Experimental Results: Monocular Image-Data

We collected a variety of particularly challenging wide baseline image pairs in a
number of different outdoor settings to evaluate our approach. Here we present results
collected from four different scenes, shown previously in Figs. 1 and 2.

We evaluate our UNIQSAC approach against three standard epipolar geometry
estimation methods; RANSAC [7], LoRANSAC [2] and BEEM [6]. All these meth-
ods sample a small number of sparse feature point correspondences, fit a epipolar
geometry model, evaluate the model, store if it is the best found and iterate. As
an input, we use the SIFT features [10] for keypoint detection and SIFT feature
descriptor for each of these keypoints.

The parameters for feature quantization, given in Eq. 1, are set as per the following:
Dimension of sub-feature M as 6, Number of sub-features K as 6, Dimension of
feature N as 128, Exponent p as 1, Number of quantization z as 2. These parameters
are set for a coarse quantization making it suitable to distinguish frequent features
from the more unique features. Taking the quantizations and computing a uniqueness
for each feature according to Algorithm 1, yields a visualization of uniqueness shown
in Fig. 2.
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Table 1 Epipolar geometry estimation results

Image-pair Statistic RANSAC LoRANSAC BEEM UNIQSAC

Airport Correspondences 1237 1237 1237 1237

Inliers 82.5 98.0 102.4 96.66

Validated inliers 22.3 29.9 36.4 43.2
Epiline error (pix) 20.0 11.4 4.7 4.1

Building 1 Correspondences 1204 1204 1204 1204

Inliers 187.7 214.5 216.9 217.0

Validated inliers 88.9 113.1 124.5 125.8
Epiline error (pix) 7.9 5.4 5.2 3.6

Building 2 Correspondences 1192 1192 1192 1192

Inliers 146.6 181.3 177.7 182.5

Validated inliers 87.8 116.0 115.3 125.0
Epiline error (pix) 4.1 2.8 2.3 1.7

Campus Correspondences 1451 1451 1451 1451

Inliers 143.7 157.2 162.8 175.7

Validated inliers 103.3 121.6 130.7 128.7

Epiline error (pix) 14.9 5.9 8.0 4.5

Once uniqueness has been computed, the next step is to find point correspon-
dences. We compute the correspondences between the pair using a KD-tree [1] (using
250 as the maximum number of leaves to visit). In each of the image pairs the number
of inliers is low, somewhere between 10 and 15%. We evaluate the performance of
the algorithm by manually designating a set of groundtruth correspondences (usu-
ally around 30) between image pairs. We compute a groundtruth fundamental matrix
using the standard 8-point algorithm and use this fundamental matrix to validate how
many of the inliers found also agree with the groundtruth fundamental matrix (we call
these the validated inliers). We also compute an epipolar line from the estimated fun-
damental matrix and compute the mean distance of the groundtruth correspondences
to this line (we call this the epiline error).

To maintain a fair comparison we fix the number of iterations for all algorithms to
the same number: 50,000. For LoRANSAC we use an inner loop of 5,000 iterations,
where each inner iteration contributes to 50,000 iterations in total. We run 50,000
iterations for each algorithm, 10 times on each image-pair, compute the mean and
present these in Table 1.

We highlight in bold the best performing algorithm for the number of validated
inliers and the groundtruth epiline error. Overall our uniqueness approach to weighted
sampling performs better than all other algorithms, as it provides more accuracy in
terms of epiline distance and has more validated inliers.

We can see that in some of the tests that some of the algorithms produce more
inliers, however as we have discussed throughout this paper, the number of inliers
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does not necessarily mean a better solution (as false correspondences can be counted
as inliers). The important statistics are the number of validated inliers and the epiline
distance.

7 Wide-Baseline Stereo Camera Pose Estimation

In this section we extend the monocular method to solve geometry between sets of
stereo pairs. The results presented in previous section provides significant motivation
to apply our Uniqueness Sampling and Consensus (UNIQSAC) technique to compute
a 6 Degree-of-Freedom pose for a wide-baseline stereo camera.

Our Stereo image dataset comprises of plant images captured in a wide-baseline
stereo setup from Grape Vineyards, Sorghum Fields and Apple Orchards. Due to
repetitive features present in plant foliage and background clutter, sampling unique
features becomes essential in computing motion estimates accurately within a fea-
sible number of iterations. To compute a complete 6 DoF motion, we implement a
stereo visual odometry pipeline consisting of three stages: Feature Extraction and
Matching, Uniqueness score computation and Geometry estimation.

7.1 Feature Extraction and Matching

With a moving stereo camera setup, we obtain four images at any given time:
left and right images of two consecutive frames. To compute camera transforma-
tion, we require feature matches between all four images. Starting from Previous
Left image, we look for correspondences in Current Left Image. After establishing
correspondences between Previous and Current Left image pair, we utilize these
matched features as templates to search for corresponding features in the Previous
and Current right images along the epipolar scanlines. The template image matching
uses a Normalized Cross Correlation Score. For feature matching process, keypoints
are detected using SIFT features. Subsequently, SIFT descriptors are extracted and
matched using K-nearest neighbor technique.

7.2 Uniqueness Score Computation

Before computing the uniqueness score, features are quantized keeping the same
parameters as described in the earlier section. In addition to the Uniqueness score
Uscore, we also consider depth consistency and distance-ratio of matched features
in form of a new hybrid score Tscore. This hybrid score is used to assign weights to
all the matched features as given in the Eq. 7. Depth consistency Dscore is computed
by calculating the differences in depth values from Previous Left- Current Left and
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Current Left- Previous Left, and then normalizing the difference values. The distance-
ratio Rscore of matched features is determined by a process described in [6].

Tscore = Uscore + Dscore + Rscore (7)

7.3 Geometry Estimation

Once we have pixel coordinates of all matched features, we can apply triangulation
to acquire two sets of 3D coordinates. The camera motion (r,t) can be computed by
minimizing the sum of reprojection errors using a Gaussian-Newtonian optimization.
Our motion estimation scheme from sparse feature matches is similar to the method
presented by Geiger et. al [5]. Instead of randomly drawing 3 correspondences, we
replace RANSAC with our Uniqueness sampling technique to increase the proba-
bility of selecting high quality features. For testing model hypothesis, we use our
metric given in Eq. 4 to obtain the final inlier set.

8 Experimental Results: Stereo Image-Data

To test the performance in grape and sorghum image dataset, we consider both time-
efficiency and accuracy for evaluation. Since the run-time for execution of one cycle
of an algorithm can be relative, a good way to measure the time-efficiency is to check
the number of iterations the algorithm takes to converge.

In our setup, the robot is equipped with a stereo camera moving at an average
velocity of 0.45 m/s, capturing images at 5 frames/sec facing a plantation wall at a
distance of 3 feet. Figure 4 illustrates our complete Stereo Visual Odometry pipeline
for the grape dataset Fig. 4a and sorghum image dataset Fig. 4b. We can see that the
raw images have considerable portions that will yield low quality features—ground,
sky and plant foliage. As a result, many feature correspondences are incorrect. Com-
puting a hybrid Uniqueness score downweighs a majority of features extracted from
ground and plant foliage. Only a tiny fraction of these correspondences are correctly
identified as inliers (inlier ratio <9%). Similar results from Apple orchard dataset
are illustrated in Fig. 5.

Our algorithm UNIQSAC is tested against the three standard methods: RANSAC,
LoRANSAC and BEEM. The metric for evaluation is the validated inlier score (total
validated inliers), and computed for 1000 and 10,000 iterations. To ensure robustness
and repeatability, the scores are averaged over 1000 times. The results presented in
Fig. 6 show that our proposed technique provides 25% (Grape) and 80% (Sorghum)
improvement in Accuracy-Time Efficiency as compared to RANSAC.
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(a) Grape Dataset (b) Sorghum Dataset

Fig. 4 Wide-baseline stereo geometry estimation. An example of wide-baseline geometry estima-
tion on stereo image-pairs. Illustrations on the left column are obtained from the Grape dataset and
right column from the Sorghum dataset. First Row: Raw image-pairs as captured from the Stereo
Camera. Second Row: Correspondence Matching using K-nearest neighbors, between Previous
Left and Current Left Image. Third Row: Feature uniqueness computation and colored heat map
for Previous Left and Current Left Image. Fourth Row: Plotted Inliers are obtained using our
Uniqueness sampling technique
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Fig. 5 Apple Orchard Dataset.FirstRow-Left toRight: Raw image-pairs, Correspondence Match-
ing using K-nearest neighbors. Second Row-Left to Right: Uniqueness computation as colored
heat maps, plotted inliers using UNIQSAC, between Previous Left and Current Left Image
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Fig. 6 Time Efficiency-Accuracy Score. Each figure in top row left-to-right are results acquired
from the Grape Dataset. Left: Comparison for 1000 iterations. Centre: Comparison for RANSAC
versus UNIQSAC, with standard deviation from the mean validated inlier score.Right: Comparison
for 10,000 iterations. Similarly, each figure in the bottom row left-to-right, are results obtained from
the Sorghum Dataset
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9 Conclusion

This paper presented a new weighted sampling method called UNIQSAC, based
on feature quality for computing epipolar geometry between wide baseline image
pairs. Also presented is a new metric for evaluating model hypothesis based on the
feature quality of the consensus set that performs better than simply counting the
cardinality of the consensus set. Together, these two methods were demonstrated in
a variety of different outdoor environments, where the low-quality repetitive features
are correctly down-weighted and the more unique structural features are correctly
up-weighted, resulting in more accurate solutions.

To evaluate the performance of our methods, a set of monocular and stereo image-
pairs was ground-truthed and the results were compared against standard robust
estimation approaches like RANSAC, LoRANSAC, and BEEM. It was demonstrated
in monocular settings, that our methods produces in all but one case the most accurate
estimates. These results are further validated in the stereo settings, where we acquire
the most accurate and time-efficient estimates while operating at very low inlier
ratios (<9%). Utilizing feature quality to guide random samples, opens up several
possibilities for future work. In particular, we are interested to extend our methods
to obtain faster and accurate registration of dense 3D point clouds.
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1 Introduction

Biofuels are a significant source of renewable energy. However, only limited amounts
of biofuels are produced from non-grain feedstocks because production costs are not
competitive. Increased yield of bioenergy crops would mitigate this barrier to uti-
lization. While crop breeding and improved management practices have increased
productivity, the rate of yield gain in most crops is 1–2% per year with very signifi-
cant investment. The ability to correlate phenotypic traits with their genotypes plays
a crucial role in improving plant breeding techniques. Phenotyping is the bottleneck
in the plant breeding pipeline and high throughput automated methods are crucial
to improved production [1, 2]. We have created our high-throughput robotic phe-
notyping system which is capable of measuring a comprehensive set of phenotypes
associated with traits that impact biomass yield with high accuracy and repeatability
(Fig. 1).

Plant phenotyping is the quantitative assessment of plant traits like physiology,
yield, etc. Currently, plant phenotyping is a manually intensive, slow, error prone

Fig. 1 High-throughput phenotyping robot in a sorghum field in Weslaco, Texas. Sorghum grows
6m tall in 4 months
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process which involves humans making measurements in the field or greenhouse. In
most cases, the phenotyped data is analyzed post-season. However with our high-
throughput system, we can collect plant phenotype data much faster and accurately.
We can also collect more measurements compared to the current manual methods,
which helps to increase the accuracy and completeness of the estimates. Unlike some
manual methods, our system is non intrusive which means we can scan the plant
multiple times during its life cycle and not affect its development. Energy sorghum
is used in this program because it is a highly productive, annual, drought tolerant C4
grass with an excellent genetic (diploid, inbreeding) and genomics platform [3, 4].

Our main contribution is the design and development of a high throughput plant
phenotyping robot which was deployed in the field to measure phenotype traits
associated with energy crop traits that impact biomass yield, with high precision and
reproducibility. Its novel properties are:

1. Capable of plunging its sensor boom into the plant canopy to measure traits not
visible from above or below without damaging the plants which enables multiple
measurement during the life-cycle of the plant.

2. A system capable of handling the large-scale data processing, feature extraction,
plant modeling and phenotype estimation.

2 Related Work

2.1 High-Throughput Phenotyping Platforms

Field phenotyping platforms include ground-based and aerial-based methods [5].
Aerial-based platforms enable greater coverage and rapid characterization of field
plots, but are limited in spatial resolution andpayload capacity. They aremore suitable
for estimating macro-phenotypic traits like plant location and densities [6].

Ground-based platforms can yield more detailed phenotypic information at the
cost of relatively lower coverage rates. Lemnatec is one of the leaders in auto-
mated phenotyping with in-field platforms like Bonirob [7] and Scanalyzer Field [8].
Bonirob is an autonomous field robot designed to be a reusable platform for multi-
ple agricultural applications like phenotyping, precision spraying and penetrometer
measurement [7]. The Scanalyzer Field is an overhead gantry system with a sensor
payload constituting imaging systems like fluroscence imaging, multi-spectral cam-
eras and LiDAR [8]. While the Bonirob is a mobile platform capable of navigating
between crop rows, the Scanalyzer Field is a gantry system on rails limited to small
sites in which it can operate. Both platforms, however, are overhead phenotyping
systems limited to top-down views of the plant and unable to see into closed canopy.
This paper describes a mobile tractor-based phenotyping platform capable of col-
lecting plant images at multiple vertical and horizontal viewpoints inside the closed
plant canopy.
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2.2 Plant Imaging and Phenotype Estimation

High-throughput phenotyping platforms deploy a variety of imaging modalities like
2D visible imaging, 3D imaging, multispectral imaging, thermal infrared imaging
and fluorescence imaging [5]. Given its low cost and ease of operation, 2D/3D visible
imaging has been commonly used for applications like plant mapping and detection
[9], weed control [10], fruit counting and yield estimation [11]. For the purpose
of phenotyping, the use of 3D visible imaging is important in order to be able to
make ground truth metric measurements purely from imaging. However, most of the
current state-of-the-art in 3D plant reconstruction, segmentation and phenotyping is
in controlled greenhouse environments [12–14]. This paper demonstrates results for
in-field 3D reconstruction and segmentation of plant structures from imaging data
collected by the phenotyping platform. It compares these against reconstructions
obtained from a greenhouse environment, and also proposes preliminary phenotype
estimation methods on the greenhouse data.

3 High-Throughput Phenotyping Robot

The robot resides on a trailer system that provides an inexpensive support and trans-
port system for the sensor boom and mast. The trailer will move in the alley ways
between sub plots and once in position, drop leveling legs to stabilize the mast so
that the sensor boom can be deployed reliably.

The trailer is a six-wheeled vehiclewith bogie suspension. This type of suspension
provides for a certain amount of terrain averagingwithout requiring a spring/damper-
type suspension system.Hubs, axles, tires, wheels, trailer coupler and stabilizing jack
(auto leveling) system are all commercial off- the-shelf items. The total weight of the
system is∼1000kg including the mast and sensor boom. The overall footprint of the
trailer is 1.5m wide by 3m long. The solid front axle pivots for steering, providing
an approximate 2.5m turning radius. This vehicle requires an alley way of 1.8m.

The system consists of a vertical column carrying opposing sensor booms as
shown in Fig. 2a. Sensor pods are arranged along each of the sensor booms. The
booms are mounted to a moveable carriage which is carried up the column by a
linear actuator. The booms are extended and retracted by a linear actuator at the base
of the sensor boom. Motion of this actuator, combined with motion of the carriage
linear actuator, permits the booms to deploy while maintaining constant boom tip-
to-ground distance. This substantially horizontal motion of the boom tip permits
the sensor booms to enter the plant rows without damage to the plants. Once fully
deployed the carriage linear actuator moves the booms upwards along the column
to scan plants. After reaching the top of the scan, booms are retracted in reverse of
the deployment motion and the system is moved to the next plant row to be scanned.
The deployment sequence is depicted in Fig. 2b. The system operates at the rate of
72 plants/hour which is much higher than the manual methods.
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Fig. 2 High-throughput Phenotyping Robot—a trailer with the sensorpod b deployment sequence
showing arms carrying sensorpods stretched out at the bottom; followed by sweeping up motion
inside plant canopy; and finally folding back into the mast

3.1 Sensorpod

The sensorpod has 10 cameras with 8 (low resolution) cameras placed in two rows
and remaining 2 (high resolution) cameras to the sides at a verged angle of 30◦.
The cameras are hardware synchronized and triggered every 10 cms when the boom
moves up the canopy (Fig. 3). The top center pair cameras are designated for stereo
reconstruction. The other low-resolution cameras carry narrow bandpass filters to
capture images in multiple wavelengths. 450 and 550nm filters correspond to the
chlorophyll absorption bands 2 and 3, the 740 and 940nm filters correspond to the
normalized difference vegetation index and 950nm filter correspond to nitrogen
band. The high-resolution verged cameras are used for Structure-from-Motion re-
constructions. A bright LED strip with diffusers is located below the camera array
so as to provide uniform illumination inside densely covered plant canopies. An
ambient light sensor is attached to the bottom of the sensorpod, looking at the plant,
to help set the exposure values of the cameras. A PAR1 sensor is mounted on top of
the sensorpod to make photosynthetic light measurements when the system moves
along the canopy. There is also an environmental sensor suite which measures the
temperature, humidity and CO2 mounted inside the sensorpod. All the cameras and
sensors are connected to a embedded computer (Intel i7 3.4GHz) running Ubuntu
14.04. In addition to the internal storage, a 1TB SSD is connected to the computer
exclusively for data logging. An identical setup, with the cameras and computer is
mounted on the other side of the sensorpod so that the system can scan two rows si-
multaneously. Sincemost LiDARunits do not provide high spatial resolution or close
range (<10cm), we do not use LiDAR for the purpose of dense 3D reconstruction
of plants.

1PAR—Photosynthetically Active Radiation is the spectral range of the solar radiation that plants
use during photosynthesis.
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Hard-drive bay
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Fig. 3 Sensorpod—sensingmodule integrated with 10 cameras, environmental sensors, computing
and storage

3.2 Data Collection and Interface

The robotic system has 2 sensorpods on either side and can scan 4 plants in one
sweep. The design supports 8 or 12 sensorpods in total. This results in data flowing
through 40 cameras and other environmental sensors simultaneously. In order to
achieve this throughput, the data is logged locally as noted in the previous section.
This gives us the freedom to add sensorpods to the boom without worrying about
bandwidth issues. We still need to monitor the data from all the sensors including
cameras and make sure it is logged properly. We accomplish this using the software
architecture proposed in Fig. 4.

The health and status process monitors the health of all the processes running on
the computer and also pulls images from the camera driver and sends image thumb-
nails and histograms to the user interface (UI) built using theRobotOperatingSystem
(ROS) framework. So if any camera fails, or if the image is not good (over/under
exposed, foreground not in focus, etc.) the operator can work on it. The logger stores
full resolution images from the camera drivers locally. After a scan is completed,
the logger reports the number of frames logged to the UI so that dropped frames are
noted immediately. The computing process monitors the state of the computer and
sends vital information to the UI for tracking and monitoring. The stereo process
generates disparities from the stereo pair and pushes them to the UI for inspection.
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Fig. 4 User interface showing the camera view. The top section streams camera data from the
different cameras along with a 3d depth image generated using the top inner stereo pair cameras.
The bottom section shows the data streaming from the environmental and other sensors

Fig. 5 Software architecture—the camera drivers feed image data to the different processes which
in-turn feed their status to the user interface. An identical version of the software suite runs on
each of the sensorpods. The encoder positions and other system level information flows from the
micro-controllers to the user interface

A clone of similar processes run on all the sensorpod computers which talk to the
central UI component. Figure5 shows a snapshot of the UI with data streaming from
the four sensorpod computers. It is crucial that we properly localize the robot so that
the logs are tagged appropriately. To help on that front, the user interface displays
a table of the plot layout and the operator would click on which plot the robot is
scanning.
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4 Modeling Plants

4.1 3D Reconstruction

Structure from Motion (SfM): Structure from Motion uses 2D grayscale images
from different view-points to construct a point cloud of the scene. It takes in rectified
images, finds features in the images and matches them. It then triangulates these
feature matches to obtain 3D point positions using an initial estimate of the camera
pose. The camera pose constituting intrinsics and extrinsics along with the 3D point
positions are then collectively solved for in an optimization problem that seeks to
minimize overall reprojection error [15, 16]. This gives a sparse point cloud which
is then fed to a patch-growing algorithm like [17] to create a dense point cloud of
the scene. An example of the point cloud constructed using SfM technique [15, 16]
is shown in Fig. 6a. Using SfM techniques we can reconstruct the full plant model.
The reconstructed plant model is geometrically consistent as it uses images from
multiple known viewpoints.

Fig. 6 3D point cloud of Sorghum plant generated using a SfM technique b using stereo (SGBM)
method
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Stereo: For stereo point clouds we can only use the images from the inner pair
of cameras on the top row. Since the plants are real close to the cameras (35–55
cms), using any other camera will make the disparity too big to be usable. Stereo
reconstruction generally produces denser point clouds, but compared to the point
clouds from SfM reconstruction, they are not as geometrically consistent as it uses
fewer images and limited view-points. Also, this technique produces point clouds
for each pair of frames and they have to be stitched (using techniques like Iterative
Closest Point [18]) to generate the full 3D model. Figure6b shows a 3d point cloud
generated using stereo reconstruction technique.

4.2 Segmentation and Phytomer Extraction

A phytomer unit is a functional building block for the plant which consists of a
leaf, its sheath and the stem segment on which the leaf resides. The pipeline [19]
mapping input plant images to 3D phytomers is illustrated in Fig. 7. The first stage
illustrates the generation of 3D point cloud from images. The next step computes
point-level 3D features [20] using local geometries and a global distance metric
to density modes. Each point is then classified as a stem or a leaf by learning a
Support Vector Machine decision boundary, followed by spatial smoothing using a
Conditional Random Field [21]. Next, the semantic segmentation step classifies each
3D point into one of two semantic classes, stem and leaf. The phytomer extraction
step proceeds by performing RANSAC fit of a 3D cylinder model [22] to the points
labeled as stem. The fitted cylinder is then expanded by ∼25% to intersect leaves
branching out from the stem. Each intersection point, referred to as a node, is then
passed as a seed point to a region growing algorithm [23] so as to extract a single leaf

Fig. 7 Automated pipeline mapping input plant images to segmented 3D phytomer units. The
first two modules take plant images captured from multiple viewpoints and generate a 3D point
cloud reconstruction of the plant. Once the 3D reconstruction is obtained, local and global 3D point
features are extracted. The next module uses a machine learning classifier to assign a semantic class
label to each 3D point. Finally, the phytomer is extracted from the segmented point cloud
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growing from that node. Once individual leaves at each of the nodes are extracted,
these are then merged with a section of stem around the node to obtain a phytomer
unit corresponding to that particular node.

5 Estimating Phenotypes

Since the field data is noisy due to occlusion, wind, etc., pure geometric approaches
like surface fitting perform badly for phenotype estimation. Instead, we build a neural
network model for this task. To be specific, the segmented phytomers are first binned
into voxels. The voxels are then fed to the neural network for prediction. However,
because the number of segmented phytomers are limited, the neural network cannot
make good predictions if it is trained on real data alone. To alleviate this problem,
we simulated plants based on the model from botanists and use this synthesized data
set to train our model. We use the Multilayer Perceptron architecture with 4 hidden
layers. The sizes of the layers are 5000, 1000, 200, 100. The plant point clouds are
binned into voxels with dimension 30 × 20 × 50. We serialize the 30 × 20 × 50
voxels into vectors of size 30,000 before feeding them to the neural network. The
neural network is trained on 10,000 synthesized plants with dropout probability 0.8
and learning rate 0.0001.

6 Field Experiments and Observations

We deployed a prototype in Puerto Rico in February 2016 to gain insights at the
needs and challenges in designing the sensorpod. In October 2016 we deployed the
robotic system in College Station, Texas and again in December 2016 in Weslaco,
Texas.

6.1 Exposure Control

Camera exposure control is critical to obtaining high-quality data in this environ-
ment of dappled constantly changing lighting. Our system utilized light sensing to set
camera exposure, as auto-exposure control algorithms were not feasible with our low
frequency trigger-based capture process. The dynamic range of our scenes gradually
increased along with required exposure time from the top of the plant moving down-
wards to the bottom of the plant creating dissimilarities in ideal exposure values. The
varying relative intensities between ambient light and LED arrays as we moved from
the top to the bottom, introduced a non-linearity to light-exposure relation. If images
were under or over exposed, features would become indistinguishable in the image,
underlining the importance of this process. In order to tackle this issue, we tried the
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following techniques, however, the problem is not solved completely. (a) We used
the high dynamic range (HDR) setting procedure to aid in compressing the dynamic
range of the scene into a capturable image. (b) We incorporated brighter LED arrays
into the sensorpod to increase the illumination at the bottom section of the plants. At
the top of the canopy though, it couldn’t be contrasted to the much brighter sunlight.
(c) We used the ambient light sensor and PAR sensor on the sensorpod and mast, to
set exposure of the cameras. Exposure controllers for the stereo camera were first
calibrated to the light sensors. This was done in the field, using images of the scene
at different heights so as to correctly expose the plants which covered most of the
scene, while still keeping the brightest and darkest spots of the dynamic range unsat-
urated. An 18% gray card was used as a middle-gray reference to seed calibration.
The resulting light-exposure relationship is given by:

exposure = K/(light)

where K is the calibration constant. Therefore, doubling the light (increasing by one
stop), would halve the exposure. Finally, offsets were calculated experimentally for
the filtered imagers based off the relative intensities of solar radiation in the narrow
wavelength bands. During field tests due to non-linearities mentioned earlier, we had
to periodically adjust calibration thresholds based on the time of the day and cloud
cover.

Though the current illumination helped at bottom of canopy, the imaging system
needs muchmore illuminated light to fully subtract the ambient sunlight above about
500 µmol/m2/s.2 Night scans with illumination yielded datasets with good amount
of background subtraction which helped the plant modeling algorithms.

6.2 Field of View (FOV)

It was quickly established that the wider FOV lens was not ideal from many aspects.
The wide FOV lens accepted light that the multispectral filters could not consistently
block. Filters only function with a certain angle of incidence (AOI) of light, but the
lens captured light outside of that region, which corresponded with a rainbow effect
in the images.

Other problems with the wide field of view lens were pixel density (resolution)
and depth of field related. Awider field of view lenswould require a higher resolution
imager to maintain the pixel density, which would increase the computing system
demand from acquisition, to storage, to processing.

The depth of field of a lens in this relatively close imaging arrangement is signif-
icantly reduced when compared to the same lens focused at its hyperfocal distance.
This problem is exacerbated with a wide field of view lens, where the distance a

2µmol/m2/s is based on the number of photons in a certain waveband incident per unit time on a
unit area divided by the Avogadro constant.
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subject is from the lens varies greatly from the center of the image to the ends. These
concerns lead us to compromise on the amount of a row in view per camera, to obtain
better image quality.

In our prototypes we used a lens with larger aperture f/2.6. But the depth of field
was too shallow and we switched to a smaller aperture (f/4.0) lens. This yielded a
larger depth of field at the expense of less light reaching the image sensor.

6.3 Filters

The commercially available off the shelf filters did not perform as expected. Some
of the filters were reflective and applied to thick substrates while not evenly blocking
light though the required FOV. This produced artifacts in the image. There also
seemed to be a signal to noise component to this artifact. It was most notable in the
filters for the 940 and 950nm wavelengths where there isn’t much sunlight due to
water vapor absorption in the atmosphere, which reduced the filter efficiency.

6.4 Ground Truth

Taking ground truth measurement and associating the measurements to the robot
collected imagery is a manually intensive and error prone process. For instance
consider the leaf angle measurement process. The leaf angle phenotype generally
refers to the first leaf below the flag leaf (top leaf). This leaf could have tillers
coming out of the node. Tiller is a side shoot emanating from the main stem. Even
for a keen human observer, the process of distinguishing a leaf from a tiller can
be confusing. Assuming the distinction is made and the leaf angle measured, they
need to be identified precisely from robot obtained imagery. This should be straight
forward if we have the full 3D plant reconstruction. To tackle this problem, we tagged
leaves for which we took ground truth leaf angle measurements. The tagging was
done by tying a bright colored ribbon below the leaves. During post processing, the
tag detection was automated and the manual measurements were then associated to
the robot-collected data.

7 Results and Analysis

We scanned 991 fully grown sorghum plants using this system of which 170 plants
were ground truthed. The ground truth phenotype measurements included leaf angle,
stem diameter, leaf area and plant height.
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Fig. 8 a Shows qualitative segmentation outputs from SVM followed by CRF smoothing for field
environment. b Shows segmented 3D phytomers extracted from the plant point cloud in (a)

Table 1 Relative root mean squared error on plant phenotypes measured using RGB-D sensor

Phenotype Relative root mean squared error (%)

Leaf area 26.15

Leaf length 26.67

Leaf width 25.15

Figure8 shows qualitative results for phytomer extraction on the field data col-
lected in Dec 2016. It shows the semantically segmented point cloud followed by
CRF smoothing along with the extracted 3D phytomers.

While the field data was processed and the segmentation algorithms were devel-
oped, we scanned the plants using a RGB-D sensor (indoors) and tested our neural
network implementation. The neural network was trained on 10,000 synthesized
plants with dropout probability 0.8 and learning rate 0.0001. The trained model was
evaluated on 54 real plants to either predict phenotype values or determine whether
the value is greater or smaller than the median value of all those real plants. Table 1
shows the predicted phenotypes along with their root mean squared errors relative
to the range of the phenotype. Our current result is better than the naively using the
mean all of data for prediction. The result can be improved in the future by passing
the voxels into a CNN without serialization, increasing the resolution (number of
voxels used) and adopting transfer learning techniques.

8 Conclusion

We presented a high-throughput non-intrusive phenotyping robot that takes multi-
ple phenotypic measurements throughout the life of the crop with minimal human
intervention. It is designed to handle the high volume data and make phenotypic
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measurements. Through field validation of the system and the observations focused
on bioenergy sorghum, the technology is deployable to a range of biomass crops as
well as agronomic row crops.
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Navigation for Robust Autonomous Landing
of UAVs
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Juan Nieto, Giancarmine Fasano, Domenico Accardo and Roland Siegwart

Abstract In many unmanned aerial vehicle (UAV) applications, flexible trajectory
generation algorithms are required to enable high levels of autonomy for critical mis-
sion phases, such as take-off, area coverage, and landing. In this paper, we present a
guidance approach which uses the improved intrinsic tau guidance theory to create
spatio-temporal 4-D trajectories for a desired time-to-contact with a landing platform
tracked by a visual sensor. This allows us to perform maneuvers with tunable trajec-
tory profiles, while catering for static or non-static starting and terminating motion
states. We validate our method in both simulations and real platform experiments by
using rotary-wing UAVs to land on static platforms. Results show that our method
achieves smooth landings within 10 cm accuracy, with easily adjustable trajectory
parameters.

1 Introduction

Unmanned aerial vehicles (UAVs) play a significant role in providing services and
enhancing safety thanks to their flexible and low-cost surveillance, monitoring, and
risk assessment capabilities. In many emerging applications, including environmental
monitoring [3], industrial inspection [4], and emergency response [13], high levels of
system autonomy are vital to guarantee safe and reliable operation. This is especially
true when UAVs act as sentinels monitoring large areas, which take-off from a nest
and return to it for recharging before performing further tasks.

A typical mission can be divided into the following phases: (1) take-off, (2) mid-
course, (3) area scanning [14, 15], (4) visual tracking, and (5) landing. Often, the
final phase is the most critical as it involves performing delicate maneuvers; e.g.,
landing on a station for re-charging [2] or on a ground carrier for transportation [8].
These procedures are subject to constraints on time and space, and must be robust
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to changes in environmental conditions, such as visibility and wind disturbances
[6]. To achieve smooth landings, precise sensing and accurate control techniques are
therefore required.

In this paper, we address these problems by integrating, within the end-to-end soft-
ware system developed at the ETH Zürich, a trajectory generation algorithm based
on a visual tracking system and a bio-inspired guidance method for autonomously
landing on a specified target. Our motivation is to increase the reliability and versa-
tility of landings in the example scenarios mentioned above. We use the improved
intrinsic tau guidance theory [10, 19] to generate spatio-temporal (4-D) trajectories
for a desired time-to-contact (TTC) based on the estimate of the relative pose of the
UAV with respect to the target. This approach enables us to perform a maneuver with
arbitrary initial and final motion states, and tailor its trajectory profile for various
types of rotary- or fixed-wing tasks, such as landing, in-flight obstacle avoidance,
and object-picking. The advantage of this approach is an “user-oriented” trajectory
generation method, where fundamental parameters can be tuned based on the mission
requirements. As such, the user may be interested in assigning predefined mission
requirements for the trajectory, such as to maintain the course within the boundary
of two intersecting planes (e.g., flying within a natural or man-made canyon), con-
trolling the total mission time or energy consumption, or specifying the initial and
final landing angles.

We simulate and experimentally validate our approach in outdoor and indoor
experiments using rotary-wing UAV equipped with a downward-looking camera for
detecting a static target. The main contributions of this work are:

1. A bio-inspired landing method which:

• generates easily tunable 4-D trajectories to the target,
• provides guidance starting or terminating with static or non-static motion

states,
• is applicable with different sensor configurations.

2. The validation of our method in both simulation and real platform experiments.

The paper is structured as follows: Sect. 2 begins by outlining the state-of-the-
art in autonomous landing methods. The general landing problem is formulated in
Sects. 3, and 4 describes our bio-inspired approach. We present our experimental
set-ups and results in Sects. 5 and 6 before concluding in Sect. 7.

2 Related Work

Significant work has been done recently on autonomous landing methods for UAVs
in various environments. As discussed by [6], landing navigation frameworks mainly
use a Global Positioning System (GPS) and an Inertial Measurement Unit (IMU),
with small, light-weight visual sensors often integrated for improved accuracy, espe-
cially in outdoor applications.
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Landing strategies can be categorized based on the guidance techniques used to
create trajectories to the landing position. We consider (i) position-based
[18, 20] and (ii) biologically-inspired [9, 11, 17] techniques. Traditional position-
based guidance approaches, such as the pursuit [20] and proportional [18] laws,
leverage Line-of-Sight (LoS) to navigate the UAV towards the target. While these
methods provide precise tracking, they are limited to position sensors only as posi-
tions and/or velocities must be accurately computed [8]. Moreover, they may require
complex control algorithms and lack controllability of the UAV trajectory pattern
and profile, thus restricting their applicability.

Bio-inspired guidance paradigms overcome these limitations by using visual
information such as the TTC [11] or optical flow [17] to generate 4-D trajectories
[9, 17], enabling the control of both their spatial and temporal components. In this
category, the general tau theory [10, 11] has been popularly postulated to describe
goal-directed movements, e.g., collision avoidance [19], docking, and landing [9].
[9] recently introduced a tau-based UAV autopilot and implemented it to perform
high-accuracy maneuvers. Similarly, we apply the tau principles to generate a 4-D
trajectory for landing. However, by using elements of improved intrinsic tau guid-
ance [19], our method is not restricted to static initial and final states and is thus also
suitable for landing on moving platforms.

3 Problem Definition

As outlined in Sect. 1, there are various UAV missions requiring large area coverage.
For safe and robust autonomous operation, it is necessary to generate successive and
consecutive trajectories by maintaining position and/or velocity continuities on the
boundary waypoint between the nth and the nth + 1 trajectories. Adjourning the
trajectories is also required during the successive steps of following or landing on
a moving object, taking into account the error deriving by the tracking algorithm,
including noise. Consequently, the main problem is to develop and apply a fast
and flexible algorithm enabling the UAV to perform the above-mentioned phases
autonomously, while maintaining a small number of intuitive turning parameters.

The general goal-directed trajectory generation problem is defined as follows. We
describe a spatio-temporal 4-D UAV trajectory by the state:

S(t) = {x(t), y(t), z(t), ẋ(t), ẏ(t), ż(t)}

The aim is to guide the UAV from arbitrary initial states S(t0) to goal states
S(t0 + T ) in the execution time T . The UAV dynamics are:

⎧
⎪⎨

⎪⎩

ẋ = ux ,

ẏ = uy,

ż = uz,

(1)
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where u = {ux , uy, uz} are the velocity components along each co-ordinate axes
used as commands for the trajectory tracker, which is discussed for our application
in Sect. 5.

Although the algorithm is applicable to a generic trajectory, this paper focuses
on the most complex mission scenario involving landing on a stationary or moving
target. The trajectory is adjourned based on visual information provided by a camera
during the approach phase. The specific requirements are to:

1. reach the target point in a specified time T ,
2. arrive and stop at the target point with zero velocity at contact, such that S(t) =

{x(t), y(t), z(t), 0, 0, 0} at t = t0 + T ,
3. reach the target point from a specific approach direction, as discussed in Sect. 4.1.

4 Approach

This section overviews the proposed bio-inspired guidance strategy for autonomously
landing on a platform, where the perching trajectory is generated assuming that the
target can be tracked with a camera. In brief, we use the intrinsic tau guidance
strategy to generate tunable 4-D trajectories for smooth landings with static or non-
static starting and terminating states. First, we present our method of trajectory
parametrization as the basis of our approach. We then summarize the basic principles
of general tau theory before detailing our specific guidance technique.

4.1 Trajectory Parametrization

With reference to Fig. 1, in the East-North-Up (ENU) frame, the landing maneuver
usually requires arriving at a destination with a final state of the trajectory depending
on the target morphology and dynamics. The main gaps are:

• the distance gap d(t),
• the relative speed,
• the approaching angle of the trajectory α(t), between d(t) and the normal to the

EN plane,
• the approaching angle of the trajectory β(t), which permits changing the UAV

heading during perching.

d(t) is the instantaneous distance along the LoS to the target, given by the dif-
ference between the UAV position pu(t), and the target position pt (t). The relative
speed is given by ṗu(t) − ṗt (t) which, in order to avoid collisions, must be zero at
the touch-down. The approaching angle α(t) is based on the landing approach, and
consequently depends on the UAV platform and application, e.g., along the tangent to
the surface for a fixed-wing UAV, near-vertical for a rotary-wing UAV, or inclined at
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Fig. 1 Reference frame and
main gaps for autonomous
tau-landing

a certain angle to enter an opening. The approaching angle β(t) ensures that the body
frames of the UAV and the target respect a required orientation at the touch-down,
e.g., when recharging requires docking between the two.

To introduce these parameters in the mission design, we use the intrinsic tau
guidance approach presented in Sect. 4.3.

4.2 General Tau Theory

Our guidance method for landing is based on the general tau theory [10], which uses
the tau function to represent the TTC of a goal-directed movement. We define the
tau variable of a motion gap χ as:

τχ =
{

χ(t)
χ̇(t) |χ̇(t)| ≥ χ̇min,

sgn
(

χ(t)
χ̇(t)

)
τmax |χ̇(t)| < χ̇min,

(2)

where χ(t) can be the gap of any state in S(t).

4.3 Improved Intrinsic Tau Guidance Strategy

Specifically, our landing method uses the improved intrinsic tau guidance strategy
[19] to allow for goal-directed movements and, in particular, to start the trajectory
with an initial flight condition. We formulate the intrinsic guidance gap of a movement
Gv(t) as:

⎧
⎪⎨

⎪⎩

Gv(t) = −0.5at2 + VGt + G0,

Ġv(t) = −at + VG,

G̈v(t) = −a,

(3)
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where a is the acceleration, VG is an initial velocity, and G0 specifies an initial intrin-
sic gap. In particular, the intrinsic tau guidance strategy (3) represents the vertical
component of a projectile motion. Once the acceleration a is assigned, the initial
velocity VG and the initial gap G0 must be computed according to the initial (t = 0)
and the final (t = T ) conditions of the actual movement, as described in the follow-
ing.

Considering the movement along a generic x-axis from time 0 to T as an example,
the position and velocity gaps can be expressed as Δx = xT − x and Δẋ = ẋT − ẋ ,
respectively, where xT and ẋT denote the goal states at time T . We apply the tau
coupling strategy [9, 19] for synchronous gap-closing to obtain the movement states:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x(t) = xT + ẋT (t − T ) − χx0

G1/kx
0

G1/kx
v ,

ẋ(t) = ẋT − χx0

kxG
1/kx
0

ĠvG
1/kx−1
v ,

ẍ(t) = − χx0

kxG
1/kx
0

G1/kx−2
v

(
1−kx
kx

Ġ2
v + GvG̈v

)
.

(4)

where kx is a gain parameter controlling gap convergence along the x-axis, as dis-
cussed below.

From the definition of Gv, Eq. 4, and Eq. 3, it can be shown that:

{
G0 = χx0gT 2

2(χx0+kxΔẋ0T )
,

VG = kxΔẋ0gT 2

2(χx0+kxΔẋ0T )
.

(5)

G0 and VG can be viewed as bonding actual and intrinsic movements due to gravita-
tional effects. If kx ∈ (0, 0.5), (x, ẋ, ẍ) → (xT , ẋT , 0) and the position and velocity
can be steadily guided to the target values, as required. Hence, varying the compo-
nents of k = {kx , ky, kz} within this range allows for modifying the trajectory profile
along each axis.

In addition, using the tau coupling strategy described by Eqs. (2) and (3), we can
apply a more “user-oriented” approach by coupling to the intrinsic movements the
gaps d(t), α(t) and β(t) as follows:

d(t) = d(0)

G
1
kd
0

G
1
kd
v (6)

α(t) = α(0)

d(0)
1
kα

d(t)
1
kα (7)
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β(t) = β(0)

d(0)
1
kβ

d(t)
1
kβ (8)

where each gap has its own gain parameter (kd , kα , kβ). Combining these equations
the position vector at time t of the UAV is simply given by:

p(t) = p(T ) +
⎡

⎣
−d(t)sinα(t)cosβ(t)
−d(t)sinα(t)sinβ(t)

d(t)cosα(t)

⎤

⎦ (9)

5 Experimental Set-Up

This section details physical system architectures used to test the proposed method
(Sect. 6.2). To demonstrate applicability, we conducted experiments in both outdoor
and indoor environments.

The outdoor experiments are conducted on an empty 20 × 20 m farmland plot
in clear weather conditions (Fig. 2a), where we demonstrate our landing algorithms
running in real-time on an AscTec Firefly (Fig. 2b). Our UAV is equipped with an
autopilot providing a low- and high-level control, and on-board computer (AscTec
Mastermind), and the following sensors:

• 100 Hz IMU,
• 10 Hz Piksi V2 (RTK) differential GPS,
• 20 Hz (VI-)sensor,
• 50 Hz downward-looking Point Grey Chameleon 2.0 camera.

The landing platform target (Fig. 2c) is an A3 (297 × 420 mm) arrangement of
variable-dimension tags, obtained from the ar_track_alvar library. The nested
tag layout on the platform allows for detecting and estimating the camera-to-target
relative pose from different altitudes. Note that, in this paper, we use a static platform
for proof of concept and leave the study of moving targets to future work.

The logical architecture of the algorithms running on the UAV is described in
Fig. 3, which depicts the different interacting modules. In particular, the input data
(Fig. 3, left) include: GPS measurements, images from the downward-looking cam-
era and the VI-sensor, and accelerometer and gyroscope measurements from the
VI-sensor and the on-board IMU.

For navigation, the UAV pose is estimated by integrating VI-sensor and GPS
data within the RObust Visual Inertial Odometry (ROVIO) framework [1]. This is
then integrated with IMU data in the Multi-Sensor Fusion (MSF) framework [12]
to obtain a refined state estimate Fig. 3. Guidance is based on the improved tau
guidance strategy (red block in Fig. 3), which uses the actual UAV state and the
camera-to-target relative pose to generate reference trajectories that are then tracked
by a non-linear Model Predictive Controller (MPC) [7].
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(a) (b) (c)

Fig. 2 a Shows our experimental set-up on the field, with the GPS RTK base station visible on
the right. b Depicts the AscTec Firefly positioned on the landing platform. c Exemplifies the tag
arrangement on the platform as seen by the on-board camera

Fig. 3 Systems diagram for our outdoor experiments. A camera is used to track the landing platform
pose, and localization is provided by the MSF framework output. The guidance unit passes reference
trajectories to the MPC. Note that our RTK GPS requires a ground base station (Fig. 2a) to receive
satellite signals and transmit position corrections to the UAV

We also performed indoor experiments in an empty 20 × 20 m environment
(Fig. 4) using the same landing platform. Here, our algorithms run in real-time on a
DJI Matrice 100 with a 100 Hz IMU and Intel RealSense ZR300 camera providing
30 Hz images [16]. Our system comprises the general pipeline in Fig. 3; however, in
the absence of GPS data, only images and IMU data are input to ROVIO and MSF.

6 Results

This section demonstrates the usage of the improved tau guidance strategy to land
smoothly on a target platform. We first validate our method in simulation before
presenting results from outdoor and indoor experiments.
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Fig. 4 A side view of our indoor experimental set-up showing the UAV and the landing platform

Table 1 Assumptions on the simulated bias and random errors for our simulation trials

Sensors Bias instability Random walk

Gyroscopes 14.5◦/hr 0.66◦/
√
hr

Accelerometers 0.25 mg 0.11 m/sec/
√
hr

6.1 Simulations

The performance of the proposed landing method is validated preliminarily in simu-
lation. The simulation environment is developed in the RotorS framework [5], which
realistically replicates the flight dynamics of an Asctec Firefly and its on-board sen-
sors. For the IMU, the orders of magnitude of biases and random errors are set to
be consistent with Micro Electro-Mechanical Systems (MEMS) used on the AscTec
Firefly (Table 1). Furthermore, the GPS position uncertainty in the ENU frame is mod-
eled as a constant bias plus Gaussian white noise to account for the time correlation
in GPS errors. For vision sensing, only the downward-looking camera was simulated
with an Instantaneous Field of View (IFoV) uncertainty modeled as Gaussian white
noise with a standard deviation of 0.05◦. This camera is used to detect the landing
target on the ground and to obtain its relative pose with respect to the UAV. Conse-
quently, navigation is achieved here without simulating ROVIO, but only integrating
simulated position and attitude measurements within the MSF framework.

The simulations serve to validate and integrate each component of the software
framework before the experimental tests (Sect. 6.2). Since the focus is set on rotary-
wing UAVs, the interest is also to land on the platform with a desired orientation α(t)
and zero velocity. Hence, simulations have been performed to evaluate the behavior
of trajectory shapes for varying coefficients k with an emphasis on vertical landing.
Figure 5a shows a comparison of different landing trajectories where the maneuver
starts from an height of 1.5 m and EN components of 0.8 m each. This figure evidences
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Fig. 5 a Depicts landing trajectories with different elements in k. These parameters enable mod-
ifying the trajectory profile for LoS (black), near-vertical (blue), and near-horizontal (red) shapes.
b Shows the velocity and acceleration norm profiles for the near-vertical (blue) curve in (a)

how the 3-D shape of each trajectory is determined by coupling the coefficients k, In
addition, Fig. 5b shows the velocity and acceleration profiles during the near-vertical
landing trajectory (blue curve in Fig. 5a), demonstrating that zero velocity is reached
at the end of the landing maneuver.

6.2 Experimental Tests

To test our approach in practical scenarios, we conducted multiple experiments using
the set-ups described in Sect. 5. In each trial, the UAV was commanded to:

1. take-off and perform its mission,
2. fly back to the landing area,
3. fly a search path to detect the target, and
4. safely land on the target point in a specified time.

Figures 6 and 7 illustrate the two autonomous landing stages for an outdoor test
using an AscTec Firefly. The first stage is target detection (at an height of about 2 m,
as shown in Fig. 6c) followed by a refinement phase for noise reduction. Once the
target is detected and tracked, the UAV starts the approaching stage during which
the camera continues tracking the target to update its relative pose. If the difference
between successive target positions is larger than a certain tolerance, the trajectory
is re-planned accordingly and passed to the non-linear MPC.

These aspects are evident in Fig. 6, which shows the UAV position components in
the ENU frame. A comparison of the reference trajectory generated by our guidance
strategy with the UAV position output from the MSF framework confirms that the
controller follows the reference throughout the maneuver until the touch-down.

Figure 7 compares the UAV position and velocity along the three co-ordinate axes.
The plots illustrate the optimum velocity profile of the maneuver to reach the softest
touch-down while achieving the accuracy required to land near the target center.
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Fig. 6 Differences between the reference and MSF trajectories during the final phases of landing

As shown in Fig. 8, the final landing position remains within a maximum disper-
sion of several centimeters with respect to the target center. It is worth noting that,
if the target is lost for a certain time period, the UAV is commanded to climb to
increase the camera footprint, and returns on the landing path only after the target is
detected and tracked again. Figure 8 demonstrates this effect as the target is lost at
∼20 cm height mainly due to the UAV shadow causing occlusions impeding robust
tracking. As a result, the UAV ascends, landing smoothly upon target re-detection.

In addition, we executed 63 successful indoor landings with the DJI Matrice 100.
State estimation was obtained by integrating ROVIO within the MSF framework,
the relative pose between the UAV and the landing platform was obtained by images
acquired by the Intel RealSense ZR300 and the VICON system was used for ground
truth reference. These tests show the repeatability and robustness of the proposed
landing approach as well as its achievable accuracy. To this end, six case studies were
considered varying in the k coefficients and the height of the target detection stage.
The approaching heights tested were 1.5, 2 and 2.5 m, with two different sets of k
coefficients: kx = ky = 0.2, kz = 0.4, and kx = ky = kz = 0.2. Statistical results are
summarized in Table 2. Here, errors are computed based on UAV and target ground
truth positions acquired from the VICON system.
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Table 2 Landing mean errors and standard deviations for the considered case studies

Height (m) 1.5 2.0 2.5

kz = 0.2 kz = 0.4 kz = 0.2 kz = 0.4 kz = 0.2 kz = 0.4

Mean (m) 0.15 0.16 0.14 0.14 0.2 0.19

Std (m) 0.02 0.04 0.04 0.05 0.04 0.04

7 Conclusions and Future Work

This paper presented a guidance approach based on the improved intrinsic tau guid-
ance law for autonomous UAV landing on a static platform. The guidance theory
generates smooth and computationally efficient 4-D trajectories that are both suit-
able for fixed- and rotary-wing UAV platforms. The framework was validated in
simulations and multiple outdoor and indoor experiments with different platforms,
showing that trajectories can be easily designed by varying the guidance coefficients.
Results from over 60 indoor tests, using a VICON system only to provide ground
truth reference, demonstrate landing with centimeter-level accuracy.

Future work will examine methods of developing a reliable target tracker based on
the current visual target detector as well as GPS and IMU measurements to estimate a
target pose with respect to the UAV. This would allow more robust target-tracking in
challenging conditions, such as dynamic motion, and even in cases where the target
is outside the camera field-of-view. An accurate target-tracker would also enable
landing on a moving platform. In addition, we will consider developing a target
detector more suitable for poorly lit environments.

Finally, we are interested in applying the proposed guidance law to fixed-wing
landing missions.
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Fast and Power-Efficient Embedded
Software Implementation of Digital Image
Stabilization for Low-Cost Autonomous
Boats

S. Aldegheri, D. D. Bloisi, J. J. Blum, N. Bombieri and A. Farinelli

Abstract The use of autonomous surface vehicles (ASVs) is an efficient alternative
to the traditional manual or static sensor network sampling for large-scale monitor-
ing of marine and aquatic environments. However, navigating natural and narrow
waterways is challenging for low-cost ASVs due to possible obstacles and limited
precision global positioning system (GPS) data. Visual information coming from a
camera can be used for collision avoidance, and digital image stabilization is a fun-
damental step for achieving this capability. This work presents an implementation of
an image stabilization algorithm for a heterogeneous low-power board (i.e., NVIDIA
Jetson TX1). In particular, the paper shows how such an embedded vision application
has been configured to best exploit the CPU and the GPU processing elements of the
board in order to obtain both computation performance and energy efficiency. We
present qualitative and quantitative experiments carried out on two different envi-
ronments for embedded vision software development (i.e., OpenCV and OpenVX),
using real data to find a suitable solution and to demonstrate its effectiveness. The
data used in this study is publicly available.

1 Introduction

Autonomous surface vehicles (ASVs), also known as Autonomous Surface Crafts
(ASCs), are marine drones that can operate without the direct guidance of humans
[6, 10]. The use of ASVs for performing large-scale monitoring of marine and aquatic
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Fig. 1 IntCatch 2020
project uses Platypus Lutra
boats, about 1 m long and
0.5 m wide

environments is receiving increasing attention, as it represents an efficient alternative
to manual or static sensor network sampling for persistent environmental monitoring
[5]. ASVs are capable of undertaking long-endurance missions and carrying multiple
sensors to collect data about water quality indicators (e.g., temperature and dissolved
oxygen) [3].

Figure 1 shows an example ASV specifically developed for water quality monitor-
ing. It is a Lutra mono-hull boat produced by Platypus,1 which can mount submerged
propellers or an air fan for propulsion. Lutra boats are used in the EU-funded project
IntCatch2020,2 which will develop efficient and user-friendly monitoring strategies
for facilitating sustainable water quality management by community groups and non-
governmental organizations (NGOs). The innovative approaches developed within
the IntCatch project will be tested and validated at sites including different scenarios,
ranging from large lakes (i.e., Lake Garda in Italy) to small rivers (i.e., a rural river
catchment in the east of England).

The possible presence of obstacles (above-, below-, and on-surface) and limited
precision global positioning system (GPS) data are two of the main challenges for
safe navigation of low-cost ASVs in narrow waterways. Due to cost limitations,
visual information coming from an on-board camera can be used as a cheaper alter-
native to radar [13] and sonars, to efficiently deal with both the challenges [6], and
digital image stabilization is a preliminary and fundamental step for achieving this
capability. Although hardware solutions for damping the motion of the camera (e.g.,
gyroscopic stabilizers) exist and work well in practice, they are too expensive to be
mounted on a low-cost boat.

In this work, we develop a software solution to the digital image stabilization prob-
lem designed for low-cost ASVs. In particular, we present a software implementation
of the stabilization algorithm that is:

• Efficient in terms of performance as well as power consumption. This is enabled
by heterogeneous (i.e., CPU- and GPU-equipped) low-power embedded systems.

1senseplatypus.com.
2www.intcatch.eu.

www.intcatch.eu
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• Power-scalable, allowing for obtaining a good performance to energy consumption
ratio. We can exploit dual-mode operation (i.e., performance-oriented or energy-
saving mode), switching from high frame rate to a lower one to trade accuracy for
energy efficiency. For example, in open water reducing accuracy is acceptable, so
throttling the algorithm to save energy is desirable.

The main contribution of this work consists of the qualitative and quantitative analysis
of different configurations of the stabilization software. This paper presents the results
obtained by implementations using two development environments (OpenCV3 and
OpenVX4) and the corresponding libraries for embedded vision software. As demon-
strated by the experiments we can obtain a sublinear growth in power consumption
as the processed frame rate approaches 60 frames per second.

The remainder of this paper is structured as follows. Background information is
provided in Sect. 2, together with an analysis of related work. The proposed method
is presented in Sect. 3, while qualitative and quantitative experimental results are
shown in Sect. 4. Finally, conclusions are drawn in Sect. 5.

2 Background and Related Work

Surface robotic platforms can be an invaluable cost-effective tool for several impor-
tant applications ranging from flood mitigation to environmental monitoring [16].
While Autonomous Underwater Vehicles (AUVs) [12] and Unmanned Surface Vehi-
cles (USV) [9] are often employed for data collection, such vehicles are typically
expensive and require a significant logistical effort in terms of personnel and equip-
ment for transportation and operation. The interest towards simple, low-cost surface
robotic platforms for water quality monitoring is now significantly increasing with
the advent of relatively cheap solutions, including NUSwan5 from Singapore, the
ARC boats6 and the Platypus system. In particular, the Platypus autonomous boats
are used in the EU-funded IntCatch project, which will demonstrate the use of low-
cost ASVs integrated with sensors for water quality monitoring.

Figure 2 shows the functional architecture of the IntCatch system.
The boat can be controlled with a Wi-Fi connected tablet. The user can define

a way-point path on the tablet that the boat follows, navigating autonomously. The
tablet app generates a spiral path between the way-points to collect sensor data
in the area. The data collected by the boat, including dissolved oxygen, electrical
conductivity and temperature, can be processed to infer water quality.

A possible extension for the IntCatch system consists of mounting a camera on the
bow of the boat to capture visual data (see Fig. 1). An important feature required by the

3opencv.org.
4www.khronos.org/openvx.
5http://www.arl.nus.edu.sg/twiki6/bin/view/ARL/Swan.
6www.hrwallingford.com/expertise/arc-boat.

www.khronos.org/openvx
http://www.arl.nus.edu.sg/twiki6/bin/view/ARL/Swan
www.hrwallingford.com/expertise/arc-boat
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Fig. 2 Overall scheme of the IntCatch 2020 autonomous boat for water quality monitoring. We
mounted different sensors to measure electrical conductivity, temperature and dissolved oxygen to
generate maps of geolocalized data

IntCatch system is the capability of avoiding obstacles. Obstacles in the operational
environment can be the boundary of the water or floating debris, which presents a
significant challenge to continuous detection from images taken on-board [2]. Stereo
rigs are used by Huntsberger et al. [11] for obstacle and moving objects detection
on an ASV. However, since a large baseline is required for granting a large field
of view, this can create instability for small vessels. A method for detecting water
regions in videos by clustering color and texture features is proposed by Santana
et al. [15]. However, color-based methods can suffer from significant variation of
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the appearance of water, depending upon the color of the sky, the level of turbidity,
the time of day, and the presence of wind, terrain reflections, underwater objects
visible from the surface, surface vegetation, and shadows [14]. Fefilatyev et al. [8]
use the horizon line position to eliminate all edges not belonging to floating objects
by assuming that within an image all objects of interest lie above the horizon line.
A similar idea is exploited by Wang et al. [19]. After detecting the horizon line,
potential obstacles are searched in the region below the horizon. The main drawback
of approaches based on the horizon line detection is that situations close to the shore
cannot be easily handled, since the edge of the water does not always correspond to
a simple horizon line.

In any of the above algorithms it is helpful to stabilize the images coming from
the camera, mitigating the effect of physical motions of the sensor (e.g., caused by
waves). Solutions involving hardware for damping the motion of the camera, e.g.,
gyroscopic stabilizers, cannot be used in the case of low-cost ASVs due to cost restric-
tions. Even if this equipment works well in practice, it is expensive. In this paper,
we propose the use of an embedded vision system for digital image stabilization.
With the term embedded vision, we refer to the deployment of practical computer
vision methods on new-generation high-performance, low-cost, and energy-efficient
embedded systems.

2.1 Low-Power Embedded Vision

In this work we adopted theNVIDIAJetsonTX1 system-on-module, which is based on
the Tegra X1 chip. Tegra X1 is one of the latest NVIDIA system-on-chip processor for
embedded applications. It includes four ARM Cortex-A57 cores and a 256-core GPU
based on the NVIDIA Maxwell architecture. For compute-intensive applications, the
GPU is the most interesting feature of this chip, which can be programmed (through
CUDA) to perform a wide range of parallel computation tasks in addition to handling
3D graphics.

OpenCV is a popular open source library of primitives for computer vision.
It consists of a large set of primitives that can be executed on a CPU, and a
subset of primitives implemented in CUDA and OpenCL to be accelerated on a
GPU. OpenCV4Tegra is a closed-source porting of OpenCV provided by NVIDIA
optimized specifically for the Tegra architecture. OpenCV4Tegra provides excellent
compatibility with OpenCV, thus promising seamless porting of code developed with
the open source OpenCV library.

OpenVX is an open standard from the Khronos Group aimed at enabling low power
computer vision applications in mobile and embedded devices. OpenVX consists of
a software framework and a library of common computer vision building blocks. The
framework allows developers to describe their computer vision algorithms in the form
of a dataflow graph. The framework can then execute the algorithm with dataflow
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optimized for the device architecture. For example, the OpenVX framework can
automatically apply node-to-computing element mapping or image tiling techniques
to greatly reduce bandwidth to off-chip memory, improving speed and reducing
power consumption.

VisionWorks is a software development package for computer vision and image
processing based on OpenVX and provided by NVIDIA for Tegra architectures.

Different works have been presented to analyse the use of OpenVX for embedded
vision [4, 18, 20]. In [20], the authors present a new implementation of OpenVX
directed at platforms comprised of CPUs and GPUs that leverages various analytical
techniques. In [4], the authors examine how OpenVX responds to different data access
patterns, by testing three different OpenVX optimizations: kernels merge, data tiling
and parallelization via OpenMP. In [18], the authors introduce ADRENALINE, a
novel framework for fast prototyping and optimization of OpenVX applications for
heterogeneous SoCs with many-core accelerators.

We present an optimized implementation of a real computer vision application
embedded on a Jetson TX1 board and the optimization analysis targeting perfor-
mance and energy consumption. In particular, we present an analysis of the study we
conducted by comparing the implementation performance of OpenCV (with its opti-
mization for the Tegra architecture, NVIDIA OpenCV4Tegra) and OpenVX (with
its optimization for such a board NVIDIA VisionWorks).

3 Method

In this work, we aim at implementing the digital image stabilization of a visual stream
captured by a camera mounted on a small ASV. An unstabilized video is an image
sequence that exhibits unwanted perturbations in the apparent image motion. The goal
of digital video stabilization is to improve the video quality by removing unwanted
camera motion while preserving the dominant motions in the image sequence. For
obtaining an obstacle detection solution, stabilization is a crucial pre-processing
step before performing higher-level processing like object tracking. For example,
the accuracy of predicted object trajectories can decrease in the case of unstabilized
images [7].

Figure 3 shows an overview of the adopted video stabilization algorithm, which
is represented through a dependency graph. The input sequence of frames is taken
from a high-definition camera, and each frame is converted to the grayscale format
to improve the algorithm efficiency without compromising the quality of the result.
A remapping operation is then applied to the resulting frames to remove fish-eye
distortions. A sparse optical flow is applied to the points detected in previous frame
by using a feature detector (e.g., Harris or FAST detector). The resulting points
are then compared to the original point to find the homography matrix. The last N
matrices are then combined by using a Gaussian filtering, where N is defined by the
user (higher N means more smoothed trajectory a the cost of more latency). Finally,
each frame is inversely warped to get the final result. Dashed lines in Fig. 3 denote
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Fig. 3 Dependency graph of the video stabilization algorithm

inter-frame dependencies, i.e., parts of the algorithm where a temporal window of
several frames is used to calculate the camera translation.

Although this algorithm does not represent particular challenges for the sequential
implementation targeting CPU-based embedded systems, it presents a large design
space to be explored when implemented for hybrid CPU-GPU systems. On the
one hand, several primitives of the algorithm (graph nodes) can benefit from GPU
acceleration while, on the other hand, their offloading on GPU involves additional
memory-transfer overhead. The mapping exploration between nodes and computa-
tional elements (i.e., CPU or GPU) is thus crucial both for the performance and for
the energy consumption.

To best explore correctness, performance, and energy consumption of the algo-
rithm, we implemented the software in all the possible configurations (nodes vs.
CPU/GPU) and by adopting both OpenCV and OpenVX design environments.

3.1 OpenCV Implementation

OpenCV provides the implementation for CPU of all the primitives of the video stabi-
lization algorithm. In addition, it provides the GPU implementation of the following
five nodes:

• Convert to Grayscale.
• Remapping.
• Feature detection (either based on Harris or FAST algorithm).
• Optical Flow.
• Warping.

The complete design space exploration of OpenCV consists of 32 configurations
with the Harris-based feature detection plus 32 configurations with the FAST-based
one. We exhaustively implemented and compared all the possible configurations.
We also conducted the system-level optimization for each configuration, which, by
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Fig. 4 OpenCV implementation of the most computational demanding nodes of the video stabi-
lization algorithm

adopting OpenCV, is a manual and time consuming task. Indeed, although any single
function downloading on GPU requires a quite straightforward code intervention
(i.e., a function signature replacement), the system-level optimization involves a
more accurate and time consuming analysis of the CPU-GPU data dependency in
the overall data flow. As an example, consider the three nodes feature detection,
compute homography, and optical flow. Any configuration requiring the first mapped
on the CPU and the others on the GPU involves one data transfer from the CPU
main memory (the output of the feature detection) to the GPU main memory (as
input for either the optical flow or homography). A second (useless) CPU-GPU data
transfer leads, in this algorithm implementations, to a 15% performance loss. Finding
such data dependency and optimizing all the CPU-GPU data transfer, in the current
OpenCV release, is let to the programmer.

The profiling analysis of all these code versions underlines that the feature detec-
tion and optical flow nodes are the two most computational demanding functions of
the algorithm. Figure 4 depicts their OpenCV structure, by underlining how they are
implemented (in terms of data exchange structures and the primitive signature) if run
on the CPU or offloaded on the GPU. Their mapping on CPU or GPU involves the
main important differences from the performance and power consumption point of
view, as shown in Sect. 4.

Even though OpenCV primitives for GPUs are implemented both in OpenCL and
CUDA, only CUDA implementations can be adopted for the Jetson board.

3.2 OpenVX Implementation

Listing 1 shows the most important parts of the OpenVX code. Some primitives have
been tested both with the version released in the standard OpenVX library and in the
VisionWorks library.
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1 vx_context context = vxCreateContext ();
2 /* create data structure */
3 vx_image gray = vxCreateVirtualImage(graph , 0, 0,

VX_DF_IMAGE_U8);
4 vx_image rect_image = vxCreateVirtualImage(graph , 0, 0,

VX_DF_IMAGE_U8);
5 vx_array curr_list = vxCreateVirtualArray(graph ,

VX_TYPE_KEYPOINT , 1000);
6 vx_matrix homography = vxCreateMatrix(context ,

VX_TYPE_FLOAT32 , 3, 3);
7 /* create graph and relative structure */
8 vx_graph graph = vxCreateGraph(context);
9 vxColorConvertNode(graph , frame , gray);

10 vx_node remap_node = vxRemapNode(graph , gray , rect_image ,
VX_INTERPOLATION_BILINEAR , remapped);

11 nvxCopyImageNode(graph , rect_image , out_frame , 0));
12 vxGaussianPyramidNode(graph , remapped , new_pyramid);
13 vx_node opt_flow_node = vxOpticalFlowPyrLKNode(graph ,

old_pyramid , new_pyramid , points , points , curr_list ,
VX_TERM_CRITERIA_BOTH , s_lk_epsilon , s_lk_num_iters ,
s_lk_use_init_est , s_lk_win_size);

14 nvxFindHomographyNode(graph , old_points , curr_list ,
homography , NVX_FIND_HOMOGRAPHY_METHOD_RANSAC , 3.0f,
2000, 10, 0.995f, 0.45f, mask);

15 homographyFilterNode(graph , homography , current_mtx ,
curr_list , frame , mask);

16 matrixSmootherNode(graph , matrices , smoothed);
17 truncateStabTransformNode (graph , smoothed , truncated , frame ,

s_crop);
18 vxWarpPerspectiveNode(graph , frame_out_sync , truncated ,

VX_INTERPOLATION_TYPE_BILINEAR , frame_stabilized);
19 nvxHarrisTrackNode(graph , rect_image , new_points , NULL ,

curr_list , 0.04, 3, 18, NULL);
20 /* force node to GPU */
21 vxSetNodeTarget(remap_node , NVX_TARGET_GPU , NULL);
22 /* force node to CPU */
23 vxSetNodeTarget(opt_flow_node , NVX_TARGET_CPU , NULL);

Listing 1 OpenVX Code Example

The programming flow starts by creating a context (line 1). Based on this context,
the program builds the graph (line 8) and the corresponding data objects (lines 3–6).
The whole algorithm is then finalized as a dataflow graph by linking data objects
through nodes (lines 9–19). Lines 21 and 23 show how processing nodes can be
manually forced to be mapped on specific processing elements.

The OpenVX environment allows automatically changing the nodes-to-processing
elements mapping and the corresponding data exchange system-level optimization. It
also provides both the Harris-based and FAST-based feature detector, both available
for CPU and GPU. In particular, it provides two different versions for each primitive:
the first one is the standard “general purpose” OpenVX version, while the second
one is provided in the VisionWorks library and is optimized for tracking algorithms.

In order to verify the best configuration targeting performance and to figure out
the best one targeting power efficiency, we developed and tested all the possible
configurations by forcing the nodes-to-processing elements mapping.

In the OpenVX mapping exploration, we considered the following differences
from OpenCV:
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Fig. 5 OpenVX implementation of the most computational demanding nodes of the video stabi-
lization algorithm

1. Harris/FAST tracker: OpenVX/VisionWorks provides the Harris/FAST tracker,
which allows optimizing the data eflow by giving priority to the points tracked
in the previous frame instead of the new detected ones, if they are in the same
area.

2. OpenVX relies on column-major matrices, while OpenCV relies on major-row
matrices. This is important especially in the remap cases, where the OpenCV
backend is used to build the coordinates of the remapped points.

3. VisionWorks relies on a delay object to store an array of temporal objects (e.g.,
N frames back). This is not possible in OpenCV.

4 Experimental Results

Experiments have been carried out on real data collected in a small lake near Verona,
Italy with a GoPro Hero 3 Black camera mounted on the bow of the Platypus Lutra
boat (see Fig. 1). In particular, we analyzed three different image sequences (see
Fig. 6), registered at 60 FPS with 1920 × 1080 wide angle resolution. Sequence
S1 is particularly challenging due to large rolling movements, while Sequence S2
presents strong sun reflections on the water surface, and the boat is very close to
the coast. The last Sequence S3 presents a similar view-point with respect to S1,
but with lower rolling. The three sequences can be downloaded from the IntCach
AI website,7 together with the source code of the different implementations that has
been considered. Additional sequences, not analyzed in this work, can be downloaded
from the IntCatch Vision Data Set.8

7http://profs.scienze.univr.it/bloisi/intcatchai/intcatchai.html.
8http://profs.sci.univr.it/bloisi/intcatchvisiondb/intcatchvisiondb.html.

http://profs.scienze.univr.it/bloisi/intcatchai/intcatchai.html
http://profs.sci.univr.it/bloisi/intcatchvisiondb/intcatchvisiondb.html
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Fig. 6 Video stabilization results on sequences S1 (first row), S2 (second row), and S3 (third row).
a A frame in the unstabilized video overlayed with lines representing point trajectories traced over
time. b The corresponding frame in the OpenCV stabilized video. c The OpenVX stabilization
results. Point trajectories are significantly smoother when the stabilization is activated

Stabilization results. In order to show the importance of video stabilization as
a necessary preprocessing step for horizon line detection, we have considered the
three sequences in Fig. 6, using them as input for a feature tracking algorithm. Sup-
plemental videos can be downloaded at goo.gl/mg4fH1 for a clearer demonstration
of our results.

We used the well-known Kanade-Lucas-Tomasi feature tracker (KLT) for tracking
points around the horizon line in the camera field of view. The obtained feature points
are visualized by tracing them through time [17]. The first column in Fig. 6 contains
stabilization results when the input consists of images that have not been stabilized.
The second and the third column show the results generated by the OpenCV and
OpenVX based implementation, respectively.

We use the median absolute deviation with median as central point (MAD) to
estimate the stabilization quality by measuring the statistical dispersion of the points
generated by the KLT algorithm:

MAD = median (|xi − median(X)|) (1)

where X = {x1, x2, . . . , xn} is the n original observations.
Table 1 shows the MAD values obtained with the unstabilized images and with

the preprocessed data generated by OpenCV and OpenVX. The stabilization allows
to obtain lower MAD values. It is worth noticing that the alternatives generated by
the same environment (i.e., OpenCV or OpenVX) give comparable results in terms
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Table 1 Stabilization quantitative results

Sequence Number of
tracked points

MAD

Unstabilized OpenCV OpenVX

S1 10 31.5 11.3 10.4

S2 10 25.0 8.2 6.8

S3 10 23.4 10.4 10.7

Table 2 OpenCV implementation results

Remap Cvt
color

Warping Optical
flow

Features Pavg
(W)

Ppeak
(W)

FPS E(Tend )
(J)

GPU GPU GPU GPU CPU/HARRIS 5.1 11 7.5 772

GPU GPU GPU GPU GPU/FAST 5.7 15 16.3 855

GPU GPU GPU GPU GPU/HARRIS 6.0 17 15.3 906

GPU GPU GPU GPU CPU/FAST 5.3 15 13.7 810

of MAD, while differ in terms of performance and power consumption as discussed
in the next paragraph.

Computational loadresults. Multiple mappings between routines and processing
elements have been evaluated using different metrics. Live capture has been simulated
from recorded video stored in the Jetson internal memory by skipping the frames in
accordance with the actual processing speed of the considered implementation.

Tables 2 and 3 show the obtained results in terms of frames per second (FPS)
together with the following metrics:

Ppeak = max
t

P(t) (2)

E(t) =
∫ t

0
P(t) (3)

Pavg = E(Tend)

Tend
(4)

where P(t) = V (t)I (t) is the instant power usage and Tend is the total duration of the
analyzed sequence in seconds. Table 3 has an asterisk at the beginning of rows which
correspond to configurations that have been chosen by Visionworks automatically.
The value E(Tend) denotes the absolute battery consumption measured in Joule
(J), Pavg gives a measure of the average instant power usage during computation
measured in Watt (W ), and Ppeak is the maximum instant power usage in Watt.

A Powermon board [1] has been used to measure the energy consumption. The
absolute value of energy is an important measure that determines the battery capacity
required for a mobile platform to perform the work. The number of processed frames
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Table 3 OpenVX implementation results

Remap Cvt
color

Warping Optical
flow

Features Pavg
(W)

Ppeak
(W)

FPS E(Tend )
(J)

GPU GPU GPU CPU GPU/HARRIS
OPENVX

5.4 12 36.5 810

GPU GPU GPU CPU GPU/FAST
VISION-
WORKS

5.1 11 15.3 760

GPU GPU GPU GPU CPU/FAST
VISION-
WORKS

4.3 11 16.2 639

* GPU GPU GPU GPU GPU/FAST
OPENVX

5.3 12 60 804

* GPU GPU GPU GPU GPU/HARRIS
OPENVX

5.2 11 60 776

* GPU GPU GPU GPU GPU/FAST
VISION-
WORKS

5.2 12 60 780

* GPU GPU GPU GPU GPU/HARRIS
VISION-
WORKS

5.1 11 60 764

is equally important to understand how well the algorithm performs. It is worth notic-
ing that the OpenCV implementation is not able to achieve real-time performance
with high-resolution high-frame rate data.

We investigated the maximum value of FPS that different configurations can reach
and the corresponding power consumption. We also investigated how the power
consumption scales with the performance. Since no OpenCV implementation allows
achieving real-time performance (60 FPS), we used a high resolution timer to simulate
the actual capture rate of the camera.

The results underline that the best OpenCV implementation allows reaching 16.3
FPS at the cost of 855 J energy consumption. They also underline that OpenCV
does not allow implementing a dual performance-oriented or energy-saving mode,
since the most appropriate energy saving configuration (−10% J) provides very
insufficient performance. In contrast, OpenVX allowed us to implement four different
configurations that guarantee appropriate performance (60 FPS) and energy scaling
over FPS, as underlined in Fig. 7. Here, a linear increase in frames per second can
be considered as a linear increase in computational load.
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Fig. 7 OpenVX energy scaling per FPS

5 Conclusions

Low-cost autonomous surface vehicles (ASVs) can provide effective and efficient
tools to help human operators performing water monitoring operations in lakes and
rivers. However, their use in natural narrow waterways is challenging due to the
possible presence of obstacles and limited precision GPS data.

In this paper, we investigate different solutions for digital image processing that
can operate online in low-cost ASVs. In particular, we consider image stabilization,
which is a key preprocessing step for building a horizon line detection module. Our
focus is to provide solutions that can manage high frame rate images in real time so to
allow the system to react when obstacles appears in the field of view of the on-board
camera. To this end, we implement state of the art approaches in two development
environments (OpenCV and OpenVX), investigating different mappings among the
routines (e.g., warping, optical flow, etc.) and processing elements (i.e., CPU, GPU).
Overall our results show that by using appropriate mappings we can run such state of
the art approaches on an embedded system (NVIDIA Jetson TX1) achieving a high
processing rate (i.e., 60 frames per second) while reducing the battery consumption
(with respect to a traditional CPU based implementation).

These results pave the way for several interesting research directions. In particular,
our future work in this space includes the implementation and evaluation of situation
assessment and obstacle avoidance methods that exploit the embedded system and
development environments investigated in this work.

Acknowledgements This work is partially funded by the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 689341.
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Evaluation of Combined Time-Offset
Estimation and Hand-Eye Calibration
on Robotic Datasets

Fadri Furrer, Marius Fehr, Tonci Novkovic, Hannes Sommer, Igor
Gilitschenski and Roland Siegwart

Abstract Using multiple sensors often requires the knowledge of static transforma-
tions between those sensors. If these transformations are unknown, hand-eye cali-
bration is used to obtain them. Additionally, sensors are often unsynchronized, thus
requiring time-alignment of measurements. This alignment can further be hindered
by having sensors that fail at providing useful data over a certain time period. We
present an end-to-end calibration framework to solve the hand-eye calibration. After
an initial time-alignment step, we use the time-aligned pose estimates to perform
the static transformation estimation based on different prefiltering methods, which
are robust to outliers. In a final step, we employ a non-linear optimization to locally
refine the calibration and time-alignment. Successful application of this estimation
framework is demonstrated on multiple robotic systems with different sensor con-
figurations. This framework is released as open source software together with the
datasets.

1 Introduction

The hand-eye calibration problem is among the most important calibration scenar-
ios in robotics. Its name refers to the problem of calibrating the pose of a camera
coordinate system relative to the reference frame of the robot arm’s end effector
on which it is rigidly mounted. Another important instance of the problem is infer-

F. Furrer (B) · M. Fehr · T. Novkovic · H. Sommer · I. Gilitschenski · R. Siegwart
Autonomous Systems Lab, ETH Zurich,Leonhardstrasse 21, 8092 Zurich, Switzerland
e-mail: fadri.furrer@mavt.ethz.ch

M. Fehr
e-mail: marius.fehr@mavt.ethz.ch

T. Novkovic
e-mail: tonci.novkovic@mavt.ethz.ch

H. Sommer
e-mail: igilitschenski@mavt.ethz.ch

R. Siegwart
e-mail: rsiegwart@mavt.ethz.ch

© Springer International Publishing AG 2018
M. Hutter and R. Siegwart (eds.), Field and Service Robotics, Springer Proceedings
in Advanced Robotics 5, https://doi.org/10.1007/978-3-319-67361-5_10

145



146 F. Furrer et al.

ring the relative pose of two sensors, such as cameras, even if their views do not
overlap. More generally, hand-eye calibration systems aim at finding the transfor-
mation between two reference frames that are rigidly mounted with respect to each
other.

Formally, solving the hand-eye calibration problem comes down to solving the
AX = XB equation in which A, B, and X represent rigid body motions. This
formulation, originally proposed in [21], has been subject of an extensive body
of research which focused on finding a solution to this equation. However, prac-
tical implementations of a hand-eye calibration system may present significant ad-
ditional challenges. For instance, time-alignment needs to be taken into account
when the two reference frames stem from sensors/actuators running on different
systems. This is particularly true when these systems need to be (re-)calibrated on-
line during regular operation and, therefore, cannot be specifically controlled for
calibration.

For practical applications it is of particular interest to be able to solve the afore-
mentioned problems within a single system making it widely applicable to different
practical instances of the hand-eye calibration problem. Unfortunately, the broad
body of research on the hand-eye calibration problem is not adequately matched
by thorough evaluations in different scenarios and freely available software pack-
ages.

The goal of this work is to fill this gap by providing an open source toolbox1

for hand-eye calibration that can be easily used within a broad range of applica-
tions and is at the same time easily adaptable to incorporating further algorithms
and calibration procedures. Contributions presented in this paper not only involve
the presentation of the software package but also its applicability to robotic sys-
tems. This is achieved through thorough evaluations on different types of datasets
involving a robotic arm and multiple hand-held devices. Furthermore, we make
all our datasets publicly available in order to simplify future evaluation of hand-
eye calibration algorithms. The contributions of this work can be summarized as
follows:

• A collection of datasets using different sensors and sensor configurations.
• Thorough validation of the hand-eye calibration system with different filtering
methods on these datasets.

• A software toolbox for hand-eye calibration including time-alignment and han-
dling noisy data.

The remainder of the paper is structured as follows. In the next section, we study
related work. An overview of the methodology implemented in the proposed cali-
bration toolbox is presented in Sect. 3. The datasets that are used for evaluation are
presented in Sect. 4 followed by the validation of the proposed method. A conclusion
with an outlook is provided in Sect. 6.

1https://github.com/ethz-asl/hand_eye_calibration.

https://github.com/ethz-asl/hand_eye_calibration
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2 Related Work

The problem of hand-eye calibration has been well studied in late 80 and 90s. Classi-
cal approaches to solving AX = XB problem decoupled rotational and translational
parts of the calibration, resulting in simpler but more error-prone solutions [23]. Shiu
and Ahmad [21] demonstrated how a hand-eye calibration problem can be expressed
using an angle-axis representation and solved for rotation, then translation using a
least squares fitting. Similar, but a more efficient approach was developed by Tsai
and Lenz [25] using a closed-form solution. Wang [26] proposed another formula-
tion using angle-axis representation and conducted an early comparison of the three
methods, reporting that the one by Tsai and Lenz [25] performed the best on average.
Formulation of the same problem using quaternions for rotations was introduced by
Chou and Kamel [3]. Park and Martin [18] have formed an alternative closed-form
solution using Lie group theory to simplify the problem, and Fassi and Legnani [6]
demonstrated how to solve the calibration problem, in a least squares manner, first
for rotation and then translation in presence of noisy data.

The same AX = XB problem can be solved simultaneously for hand-eye ro-
tation and translation. Horaud and Dornaika [13], in addition to proposing another
closed-form solution using quaternions for the decoupled problem, also proposed an
iterative method for solving the orientation (represented by quaternions) and trans-
lation components simultaneously. They applied a Levenberg-Marquardt technique,
a robust non-linear optimization method, to obtain the solution. Furthermore, they
performed a stability analysis for both of their approaches and the method proposed
by Tsai and Lenz [25], concluding that the non-linear optimization method is the
most robust with respect to measurement errors and noise, and much more accu-
rate than the classical formulation by Tsai and Lenz [25]. Daniilidis [4] proposed
another formulation, based on screw-theory, for the simultaneous hand-eye calibra-
tion. He obtained a singular value decomposition (SVD)-based solution by using a
dual-quaternion representation for both rotations and translations. His work was ex-
tended by Schmidt et al. [20] who also implemented the screw-axis based selection
of movement pairs for increasing numerical stability and random sample consensus
(RANSAC)-based elimination of outliers. Another iterative method based on a pa-
rameterization of a stochastic model was introduced by Strobl and Hirzinger [23].
In order to evaluate optimality of different algorithms, they introduced a metric on
the group of the rigid transformations SE(3) and the corresponding error model for
non-linear optimization.

Andreff and Espiau [2] demonstrated robot hand-eye calibration using structure-
from-motion for computing camera motions, up to an unknown scale factor which is
introduced in a linear formulation of the calibration problem. They also showed that
their method is very accurate in rotation, however, for translations, in case of noisy
data, other methods by Daniilidis [4] and Horaud and Dornaika [13] perform better.
A modification to the structure-from-motion approach was presented by Heller et
al. [12] which addresses the scale ambiguity by formulating the estimation of the
hand-eye displacement as an L∞-norm optimization problem.
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In most practical applications, in addition to estimating the hand-eye calibration,
and due to asynchronous clocks from different devices, it is necessary to perform
temporal alignment of the data. Ackerman et al. [1] used invariant quantities, coming
from screw theory, between two pairs of measurements to align uniformly asynchro-
nous data and account for data with gaps. Alignment was based on correlation of the
measurement invariants using the Discrete Fourier Transform (DFT), however, the
approach was evaluated only on simulated data. In their motion-based calibration
method, Taylor and Nieto [24] compute the likelihood of a timing offset based on
an angle through which each sensor rotates, taking the associated uncertainty into
account. Additionally, using a probabilistic framework and based on the estimated
motion of each individual sensor, estimated accuracy of each sensor’s readings and
appearance information, they compute the final calibration. Rehder et al. [19] have
demonstrated a general framework, using a continuous-time state representation,
for joint calibration of temporal offsets and spatial transformations between mul-
tiple sensors. In this approach, the time offset is estimated using basis functions
which allows them to treat the problem within the rigorous theoretical framework
of maximum likelihood estimation. An alternative approach, formulating the tempo-
ral calibration as a registration task, using an iterative closest point (ICP) algorithm,
was introduced by Kelly and Sukhatme [14]. TICSync, an open source library imple-
menting software for time-alignment was developed by Harrison and Newman [11].
They used a two-way timing mechanism to estimate the offset and realize unified
and precise timing across distributed networked systems. Since sensors rarely have
support for this two-way mechanism, another open-source framework, TriggerSync
by English et al. [5] was developed based on TICSync library. This framework is
used for synchronizing multiple triggered sensors with respect to the local clock.

Our approach is based on the method by Daniilidis [4] with a similar outlier rejec-
tion andmotion selection as in Schmidt et al. [20]. However, ourmethod incorporates
several additional outlier rejection techniques, ofwhichwe prove that they can signif-
icantly improve the performance of the original algorithm. Furthermore, we perform
initial time-alignment based on correlation between the angular velocities. As a final
refinement step we perform non-linear maximum likelihood batch estimation with
a continuous-time state representation as described in [9]. The overall approach for
the this step is very similar to the one proposed in [19].

3 Method

In the presented work, we allow inputs to the hand-eye calibration to be pose es-
timations or camera images from which we estimate poses relative to a visual tar-
get. Therefore, we split this section into the subsections for target extraction, time-
alignment, hand-eye calibration, and the refinement step. The pose estimations from
camera images are described in Sect. 3.1.We use interpolated angular velocity norms
for the time-alignment, which we describe in Sect. 3.2. With two timely aligned sets
of poses, we perform the hand-eye calibration with outlier rejection, as described in
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Sect. 3.3. Using the results from time-alignment and (global) hand-eye calibration as
initial guesses, we additionally perform a final local refinement step using non-linear
optimization to find a local, joint spatiotemporal maximum likelihood solution. This
last step we describe in Sect. 3.3.2.

3.1 Target Extractor

In order to use the time-alignment and hand-eye calibration methods presented in
the following sections, two sets of poses are required. There are several well known
methods to estimate poses from camera images, based on feature matching, optical
flow, etc. To avoid drift in the measurements it is beneficial to find features of an
object that is known to be stationary in the environment. Camera pose estimates from
matched features suffer from an unknown scale, in order to solve this issue, one can
look for pairs of features with known metric distances, or use additional sensors with
metric information, such as inertial measurement units, range sensors, radar, motor,
or wheel encoders.

In our approach, we use visual AprilTag targets [17] of known size. We assume
that the intrinsic camera calibrations are known.2 When the target is visible in the
camera frame, corner features are extracted. Additionally, by detecting AprilTags on
the calibration target, the detected corners can produce one to one matches among
different images. The successful observations of the target are appended to a vector.
For all these observations we check, using a RANSAC based Perspective-n-Point
method, if they agree with the cameramodel from the intrinsic calibration and extract
a pose estimation of the camera (or eye) E , TWE i , in the target (or world) frame W .
If the corresponding inlier ratio λi is greater than an inlier threshold λth we keep the
pose estimate TWE i along with its timestamp tE i for the next steps.

3.2 Time Alignment

In order to compare poses originating from different sensors one can rarely rely on
hardware-synchronized device clocks as the sensors might not be communicating at
all, e.g. when calibrating a camera tracked by an external motion capture system.
That is why the synchronization of the two sensor clocks, or to be more precise the
two sets of timestamped sensor data is the first crucial step for hand-eye calibration.
A popular method of computing the time-alignment for signals with constant time-
offsets is to correlate the angular velocity norms of both pose signals. To that end,
we first resample the poses at the lower frequency of the two pose signals and then
compute the angular velocity norm based on both sets of quaternions. In order to

2For intrinsic camera calibration, the Kalibr framework (https://github.com/ethz-asl/kalibr) was
used and we refer the reader to [7, 8, 16] for more details.

https://github.com/ethz-asl/kalibr
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make the time-alignment more robust to outliers or missing data, e.g. caused by a
signal drop, we first cap the signal at the 99th percentile of the magnitude and then
apply a low-pass kernel. The time offset can then be computed from the maximum
value of the convoluted signal. In order to provide feedback about the quality of the
time-alignment, the user is presented a comprehensible graphical representation of
the alignment results (see Fig. 1).

3.3 Hand-Eye Calibration

To perform a hand-eye calibration, at least two pose pairs are required. As depicted
in Fig. 2, we can then solve the hand-eye calibration equation:

TBH1THET−1
WE1

= TBH2THET−1
WE2

, (1)

where B is the body frame, H the hand frame,W and E , theworld and eye frame intro-
duced earlier. This can be reformulated using the transformation between consecutive
poses of the two pose sources, using TH1H2 = T−1

BH2
TBH1 , and TE1E2 = T−1

WE2
TWE1 ,

respectively, into TH1H2THE = THETE1E2 .
In the context of this paper, the method presented in [4] was used for the hand-eye

calibration. Therefore,we are solving the hand-eye calibration using dual quaternions
q̌H1H2 = q̌HE q̌E1E2 q̌

−1
HE . However, this method is sensitive to outlier and noise as it

employs an SVD to solve the hand-eye calibration problem.

3.3.1 Filtering

To improve the robustness and the accuracyof the calibration results,we implemented
and evaluated several outlier rejection and filtering methods. First, in order to reduce
the amount of data points we need to process, we employ the following filtering
technique:

Pose Filtering (PF) Since usual datasets can contain very large number of pose
pairs for calibration, in thefirst step of our approach,we apply afilteringmethodbased
on [20]. This method first computes the screw motion axis of each dual quaternion

Fig. 1 Time-alignment result: The plot provides an intuitive understanding of the direction and
magnitude as well as the quality of the alignment
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Fig. 2 The transformations
relevant for the and-eye
calibration. Black are the
transformations of the first
pose pair and in grey the
second pose pairs. Solid
lines indicate static
transformations, where
dashed lines indicate
transformations that change
over time

representing one transformation. The dot products for each combination of the screw-
axis from the hand data, as well as the dot products of each combination of the eye
data are computed. If one of these dot products is higher than a threshold then the
respective hand-eye pair gets filtered out. The main idea for this filtering is that if
the dot product is high, it means that the screw-axis for these transforms are almost
parallel, meaning that they contain similar information and that we can filter one of
them out since it is not so informative. Using this filtering method we can greatly
reduce the number of pose pairs that will be passed to the calibration algorithm, thus,
improving the efficiency, however, slightly reducing the accuracy.

RANSAC “Classic” (RC) In a first, stepwe reduce the number of dual quaternion
pairs using the filtering method described above. RANSAC (see Algorithm 1) draws
n (n ≥ 2) time-aligned quaternion pairs at random, the sample. As described in [4],
the scalar parts of two dual quaternions representing the same screw need to be equal
in order for this method to succeed. We made use of this condition to first reject any
samples that violate it early on. RANSAC then proceeds by identifying inliers that
agree with the hand-eye calibration. Therefore, the standard way is to first estimate
the calibration based on the drawn samples. This resulting calibration is then used
to transform the quaternion pairs into the same base frame. We then compare their
position and orientation errors which allows us to apply thresholds λt,min (position)
and λr,min (orientation) to identify inliers and outliers. The calibration is refined by
repeating the hand-eye calibration method on the inliers found in the previous step.
We repeat the evaluation step we used to identify the inliers and compute the root
mean square error (RMSE) of position and orientation across all the quaternion pairs.
Finally, we keep the calibration that exhibits the lowest RMSE.

RANSAC Scalar (RS) based inlier check Furthermore, we propose and compare
a second variant of this algorithm that employs a different, more efficient way of
identifying inliers. We reduce the sample size to 1 and omit the sample-based hand-
eye calibration computation and its expensive evaluation, and directly select the
inliers based on the compatibility of the quaternion pairs’ scalar values. The algorithm
then continues like the previous RANSAC variant by computing the calibration on
the inliers and evaluating it based on the RMSE of position and rotation error of the
aligned quaternion pairs.

We compare our proposed improvements to the following two algorithms.
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• Baseline (B): Finds the first subset of quaternion pairs that fulfills the scalar value
equality condition and compute the hand-eye-calibration.

• Exhaustive search (EC and ES): Is algorithmically identical to the proposed
RANSAC algorithms, except that all possible sample combinations are explored.
In order to keep the runtime within reasonable limits we employ this method only
on the filtered set of quaternion pairs.

Algorithm 1: RANSAC based input pose pair selection for Eq.1.
Data: A pair of vectors with time-aligned dual quaternions: Pa,b = [a, b]
a = [

q̌a,1 · · · q̌a,k
]T

, b = [
q̌b,1 · · · q̌b,k

]T
, RMSEbest = ∞

Result: Static transform dual quaternion q̌a,b and corresponding RMSE
Function HandEyeCalibrationRANSAC(Pa,b)

Fa,b ← FilterPairs(Pa,b) // PF
While not reached probability of at least one inlier sample do
Sa,b ← SamplePairs(Fa,b)
if not AllScalarPartsEqual(Sa,b) then next ;
if RC or EC then

q̌′
a,b ← ComputeHandEyeCalibration(Sa,b)

Ia,b ← GetInliersBasedOnPoseError(Fa,b, q̌′
a,b, λt,min , λr,min)

else
// RS or ES
Ia,b ← GetInliersBasedOnScalarPartsEquality(Sa,b, Fa,b)

end
if |Ia,b| < required number of inliers then next ;
q̌′
a,b ← ComputeHandEyeCalibration(Ia,b)

(RMSE, Ia,b) ← EvaluatePairs(Pa,b, q̌′
a,b)

if RMSE < RMSEbest then
RMSEbest ← RMSE
q̌a,b ← q̌′

a,b

end
return (RMSEbest , q̌a,b)

3.3.2 Refinement Step

In Sects. 3.2 and 3.3 we address the global extrinsic spatiotemporal hand-eye calibra-
tion problem. However, the expected accuracy is limited mostly due to the fact that
the assumed pose-trajectories are estimated individually and kept fix when align-
ing them to find the hand-eye calibration. A joint maximum likelihood optimization
of calibration and trajectory given the measurements allows higher accuracy. This
optimization is hard to solve as global problem but using the results from our global
approach as an initial guess a local likelihoodmaximization can improve the accuracy
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of the calibration.We perform this joint batch estimation step with a continuous-time
representation for the trajectory, as in [9, 19], and overall very similar to what is de-
scribed in [19]. Except for that we use Lie group valued B-splines, [22], to represent
SO(3)-trajectories instead of vector space valued B-splines in an unconstrained pa-
rameter space of SO(3) [9, 19].3 To solve the non-linear optimization we use an
extension of Levenberg-Marquardt to Lie groups (as documented e.g. in [22]).

More specifically, we model the joint problem with one trajectory for the moving
hand frame, H , TBH (t) =: X(t). The eye-frame, E , is assumed to be rigidly con-
nected to the hand frame by the spatial calibration, THE , as depicted in Fig. 2. The
pose measurement timestamps for H and E are assumed to be connected through a
fixed time-offset Δt . Their errors we assume to be generated from isotropic multi-
variate Cauchy distributions4 with three degrees of freedom independently for both
translation (with zero mean) and rotation (with identity mean)5 with respect to B
and W -frame respectively. Or, if the eye is only emitting relative pose estimates (as,
e.g., in visual inertial odometry), the same type of error source is assumed but with
respect to the pose of the last measurement event. This yields the following negative
log likelihood function, l, which we minimize:

l
(
TWE , THE ,Δt, X

∣∣(TWE i , tE i )
k
i=1 , (TBH i , tH i )

l
i=1

)

=
kE∑

i=2

ρ(‖dE
(
TWE i−1, TWE i , TWE (tE i−1), TWE (tE i )

) ‖2�E
)

+
kH∑

i=2

ρ(‖dH
(
TBH i−1, TBH i , TBH (tH i−1), TBH (tH i )

) ‖2�H
), (2)

where TWE (t) := TWBTBH (t − Δt)THE , TBH (t) = X(t), ρ(s) = log(1 + s) the
Cauchy-loss, and dE and dH are either relative, (A′, A, B′, B) �→ d(A′−1A, B′−1B),
or absolute (A′, A, B′, B) �→ d(A, B).6 As displacement vector d(A, B) ∈ R

6 on
SE(3) we use coordinates of (logSO(3)(R), u) with respect to a fixed positive ortho-
normal basis, where u is a translation and R a proper rotation such that (uniquely)
u ◦ R := A−1B. Please note that l becomes independent of TWE iff dE is relative
because then it cancels out in B′−1B.

3Traditional B-splines in parameter space are not equivariant with respect to transformations of
the world and body frame. Therefore, for a given trajectory the local expressiveness of such a
representation typically depends on where the trajectory is in that segment. Furthermore, they can
go through ambiguous or unstable regions of the parameter space. The Lie-group valued B-splines
we use are bi-equivariant [22] and are neither locally ambiguous nor unstable.
4This is equivalent to least squares with a Cauchy loss function.
5Approximated with zero-mean Cauchy distributions in the Lie algebra projected to SO(3) using
the exponential map.
6For absolute dE , dH the corresponding first measurements, i = 1, are assumed to be dummy
variables while the real measurements start with i = 2.
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4 Datasets

In the scope of this work, we evaluated our calibration framework on three different
systems. Firstly, an RGB-D sensor with a visual target in an external tracking system.
Secondly, a robot armwith an RGB-D sensor mounted close to the end effector. And,
lastly,we havemounted threeTango tablets on a rigid profile, and used it for recording
two datasets with different motions.

RGB-D-Sensor in external motion caption system: In the first experiments, we
recorded color images from a PrimeSense RGB-D sensor, which was tracked using
a Vicon tracking system. We placed a visual target in front of the camera to be able
to use the camera pose estimation described in Sect. 3.1.

Robot Arm with RGB-D-Sensor: We recorded two datasets with a UR-10 robot
arm equipped with a RealSense SR300 RGB-D sensor, mounted rigidly to a sen-
sor mount close to the end effector. The first dataset is simulated and recorded in
the Gazebo robotic simulator [15]. In this dataset, we can extract the ground truth
hand-eye transformation from the setup of the robot model. The second dataset is
a similar setup, but recorded on a real robot. In both, the simulation and the real
world experiment, there is an AprilTag target placed on the robot base to estimate
the camera motion.

Rig with Three Tango Tablets: The next datasets contain pose estimations from
three Google Tango tablets [10] that are rigidly mounted on an aluminum profile.
The datasets are recorded in an indoor environment. In order to improve the accuracy
of the Tango pose estimation, we used the Tango framework to find loop closures
and create optimized localization maps based on the individual trajectories and then
exported the self-localized pose estimates of the Tango tablet.

5 Results

Evaluating hand-eye calibrations is inherently difficult, as ground truth values are
not available for real systems. In order to evaluate the initial hand-eye calibration
results, we use the same evaluation method also employed for the sample evaluation
in the RANSACalgorithm, i.e., we transform the pose pairs into a common frame and
compute the RMSE of the position and orientation. For the datasets with more than
one sensor pair,we further evaluate the accumulation of position/orientation error that
occurs when all sensor pair calibrations are combined to form a loop, hence ideally
resulting in the identity transform. In order to evaluate the different components
of the proposed system we compare the PF_RC, NF_RC, PF_RS, NF_RS, PF_B,
NF_B,PF_EC,PF_ES variants (see Sect. 3.3) on the datasets described in Sect. 4. As
a refinement step, we apply the refinement described in Sect. 3.3.2 to the individual
initial guesses.
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Furthermore, we compare the runtimes of the different algorithms. All non-
deterministic algorithms (i.e. RC and RS) are run 20 times and the results are accu-
mulated using box-plots. For the Tango datasets, we additionally accumulated the
measurements of all 3 hand-eye calibration pairs.

5.1 Time Alignment

In order to demonstrate the importance of filtering the angular velocity norm prior
to the correlation used for time-alignment, we show how the RMSE results of the
ES algorithm improve, see Table1 and Fig. 3. For the PrimeSense and the robot arm
dataset we see an improvement of the calibration result. This corresponds with the
observation, that there is more noise on the orientation for those datasets. If the time
offset, which is a multiple of the discrete time steps of the timestamped poses, is the
same with and without filtering, the results are identical, as observed for the datasets:
robot arm sim and Tango triplet.

Table 1 RMSE (position [m]/orientation [deg]) results for the ES algorithm with and without
angular velocity norm filtering

RMSE (posi-
tion/orientation)

PrimeSense Tango triplets
short

Robot arm Robot arm sim

Filtering (0.0213/0.0213) (0.0364/0.6389) (0.0118/0.6619) (0.0034/0.2677)

No filtering (0.0227/1.8399) (0.0364/0.6389) (0.0120/0.8972) (0.0034/0.2677)

Fig. 3 Time-alignment with (top) and without (bottom) capping and low-pass filtering
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5.2 Hand-Eye Calibration

We show evaluations of the runtimes, in Fig. 4, and of the RMSE of position and
orientation for every dataset and algorithm in Fig. 5. The two different RANSAC
based algorithms (RS and RC) both outperform the B in terms of calibration quality,
which is to be expected as the random sampling has a higher chance of finding inliers.
Furthermore, both algorithms result in a calibration quality that is very close to the
ES and EC algorithms, which naturally represent the upper bound without using the
refinement step. The gap in calibration quality of the RANSAC based algorithms
comes at the cost of runtime, i.e. RS and RC are significantly slower than the B
algorithm. While intended as a baseline algorithm to provide an upper bound for the
calibration quality of RS, the ES algorithm proves to be efficient and therefore a valid
candidate. This is due to the fact, that it only requires a single sample and, therefore,
the number of combinations to explore is only the number of input poses, which has
been significantly reduced by the selection of informative pose pairs. That is why it
is only slightly slower than the RANSAC based algorithms. The EC algorithm on the
other hand uses a sample size of n (n >= 3) and, hence, has to explore a far greater
number of combinations, which is reflected in the runtime plot. Surprisingly, the
prefiltering of the poses generally had a negligible effect on both calibration quality
and runtime, with the exception of the above mentioned exhaustive search, which
would not have been feasible without it.

We plot the circular calibration error of the three sensors in the Tango datasets,
see Fig. 6. After the refinement step we get a mean circular position and orientation
error of 4.02mm and 0.091◦ for the Tango 1 dataset, and 7.19mm and 0.139◦ for the
Tango 2 dataset, which is a significant improvement over the initial calibration.

Fig. 4 The timings of the differently filtered algorithms on all datasets
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Fig. 5 Evaluation of the different filtering methods on the different datasets

Fig. 6 The circular error of the individual methods and the combined results after applying the
refinement step to the other methods, denoted with (O)



158 F. Furrer et al.

6 Conclusion

In this paper we presented a hand-eye calibration system that can easily be used out of
the box in a variety of scenarios and environments. In order to substantiate that claim,
our system is thoroughly evaluated on different datasets stemming from multiple
types of platforms. Taking a holistic view on the hand-eye calibration problem, we
consider aspects such as time offset estimation as well as detection and rejection
of outliers. All the datasets were made publicly available together with the entire
software toolbox, which was designed in a modular way to ensure extendability.
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Abstract Once a volcano erupts, molten rocks, ash, pyroclastic flow, and debris
flow can cause disasters. Debris flows can cause enormous damage over large areas.
Therefore, a debris-flow simulation is an effective means of determining whether to
issue an evacuation call for area residents. However, for safety purposes, restricted
areas are set up around a volcanowhen it erupts. In these restricted areas, it is difficult
to gather information such as the amount and permeability of the ash; this information
is necessary for precise debris-flow simulations. To address this problem, we have
developed an unmanned observation system for use in restricted areas around volca-
noes. Our system is based on a multirotor micro unmanned aerial vehicle (MUAV);
this system can be used to perform field tests in actual volcanic areas. In this paper,
we report the field tests conducted at Mt. Unzen-Fugen during November 2016.
The field tests included a demonstration of an unmanned surface flow measurement
device and the deployment and retrieval of a small ground vehicle and a drop-down-
type ash-depth measurement scale using an MUAV. In addition, we discuss some of
the lessons learned.
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1 Introduction

Recently, several active volcanoes in Japan have shown an increase in activity. In
recent years, eruptions have occurred at Nishino-Shima, Kuchino-Arab, and Ontake.
In the near future, there is a real possibility of a new, large-scale volcanic eruption
in Japan—this includes Mt. Fuji.

Once a volcano erupts, molten rocks, ash, pyroclastic flow, and debris flow can
cause disasters, as shown in Fig. 1. Debris flow is a phenomenon in which rain falls
on a slope containing accumulated volcanic gravel and ash, causing them to flow
downward. This can result in enormous damage over a large area. For example, in
the 1990s, Shimabara City suffered damage from debris flow caused by Mt. Unzen-
Fugen’s eruption [1].

A debris-flow simulation is an effective means of determining whether to issue
an evacuation call for residents. However, for safety reasons, a restricted area is set
around a volcano when it erupts. Therefore, in the restricted area, it is difficult to
gather the information necessary for a precise simulation, such as the amount and
permeability of the ash. In the Mt. Shinmoe eruption in 2011, the mountain was
covered with coarse volcanic sediment that made debris flow less likely; however,
there was no opportunity to observe it because of the restricted area. Thus, when a
small amount of rain fell and no debris flow occurred, conservative evacuation calls
were made and area residents gradually disbelieved the alarm.

For a precise debris-flow simulation, direct measurements of the (A) topography
shape, (B) amount of ash fall, (C) permeability of volcanic ash, and (D) rainfall are
required. Therefore, since 2014, our group has been developing an unmanned obser-
vation system for use in restricted volcanic areas; the system is based on multirotor
micro unmanned aerial vehicles (MUAVs). The MUAV includes a camera system
to obtain images and to generate 3D terrain information, as well as a soil sampling
device suspended from the MUAV [2]. In this research, we developed devices and

Debris flow

Volcanic bomb

Volcanic ashes

Lava stream

Pyroclastic flow

Fig. 1 Types of volcanic disasters



Field Report: UAV-Based Volcano Observation System… 165

functions, evaluated them in real volcanic environments, and improved them on the
basis of the results of the field tests.

In this paper,we report the findings of thefield tests conducted atMt.Unzen-Fugen
during November 2016. The tests included demonstrations of the following:

1. A drop-down-type ash-depth measurement scale to obtain the amount of ash fall,
2. A surface flow measurement device to estimate the permeability of volcanic ash,

and
3. MUAV-based deployment and recovery of a small ground vehicle that measures

the amount of rainfall.

In addition, we discuss some of the lessons learned.

2 Related Works

There have been several attempts to use robotic technology for the remote observation
of restricted areas. Many of them used mobile robots. Carnegie Mellon University
has conducted volcanic explorations using legged robots named Dante and Dante II
[3]. In Europe, a wheeled volcano exploration robot was developed by the Italian-
led RoboVolc Project and tested it at Mount Etna and Vulcano Island [4]. In Japan,
Tohoku University developed a teleoperated robot called Mobile Observatory for
Volcanic Eruption (MOVE) [5]. The above robots were relatively large, and their
operation areas were limited because of traversability problems. As a solution, some
research institutes considered aerial robots. One famous examplewas an autonomous
helicopter known as Yamaha R-Max [6]. When Mount Usu erupted in Hokkaido in
2000, anunmannedhelicopter, equippedwithGPSand avideo camera,was employed
to observe the land features and geological status in the vicinity of the crater. To obtain
the advantages of both mobile robots and aerial robots, we proposed a method that
combined a mobile robot and an aerial robot to observe restricted areas [7]. In the
current paper, we introduce the next version of the mobile robot, which is carried by
an MUAV.

3 Drop-Down-Type Ash-Depth Measurement Scale

3.1 Ash-Depth Measurement Method

For a precise debris-flow simulation, the direct measurement of the amount of ash
fall is very important. However, it is difficult to estimate the amount of ash fall using
only the visual information obtained from MUAVs. If there are many vertical scale
poles in the target environment as references, it is possible to measure the ash depth
by reading the values of those scales. Unfortunately, in most cases, locating such
instruments on volcanoes is prohibited in Japan.
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To measure ash depth, we propose a simple drop-down-type pyramid-shaped
scale. In the initial stage of a volcanic eruption, or when eruption signs have been
detected, anMUAV carries the drop-down-type scales to the restricted area and drops
them.

After the volcanic eruption, another MUAV flies to the same location and hovers
to take a photograph of the scales. Once the size and color of each scale are known,
we can estimate the ash depth by detecting the visible scales.

3.2 Prototype of the Ash-Depth Measurement Scales

For our initial tests, we produced scales in three sizes. Figure2a shows the prototype
scales. To eliminate the need to retrieve them later, we used biodegradable plastics
to construct the scales. When the ash depth is less than 1 cm, the vision sensor on
the robot can see the minimum size of the scales from the sky. When the ash depth
is between 1 and 2 cm, the minimum scales are not visible in the photograph, but the
other two scales can be seen from the sky, as shown in Fig. 2b. When the ash depth
is over 3 cm, only the largest scale can be seen from the sky.

To deploy the scales in a target environment, we developed a drop-down device
(i.e., an ash-depthmeasurement scale).When theMUAVarrives at the target position,
the device opens at the bottom and drops the scales from the air. The device has three
chambers so that it can deploy the scales to three positions in one flight. A concept
image of the deployment is shown in Fig. 2c.

3.3 Initial Tests of the Ash-Depth Measurement Scale and
Lessons Learned

We conducted some recognition tests to understand the suitable conditions for the
recognition of the scales. Red-, yellow-, and blue-colored 1-cm scales weremanually

Fig. 2 Prototype of the ash-depth measurement scale, method of operation, and deployment image
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Fig. 3 Scale images from an MUAV obtained at different flight heights

deployed on the ground. The MUAV then took pictures from different flight heights.
A 4000 × 6000-pixel camera with a resolution of 350 dpi was used.

Test results showed that visual recognition of the scales required a height of 50m
or less. Figure3 shows scale images obtained at different flight heights.Moreover, the
order of the color viewability was (1) yellow, (2) red, and (3) blue. It was difficult to
distinguish the yellow scale fromother objects, such as vegetation or small waterfalls.
On the other hand, blue-colored scales were difficult to recognize from above 50 m.
Furthermore, when volcanic ash was spilled on the scales manually, the top of the
scales was viewed as we expected.

In addition, we tested the deployment by an MUAV at Mt. Unzen-Fugen. The
MUAV suspended the developed drop-down device, which was able to deliver dif-
ferent sizes of scales autonomously.

On the basis of the above tests, several lessons were learned.

1. The pyramid-shaped scales are suitable for measurement of the ash depth. Other
shapes, e.g., rectangular shapes, were difficult to observe after the ash fell.

2. We need to consider the relationship between the camera’s view angle and the
positioning errors of the MUAV. The lower the MUAV flies, the better the resolu-
tion of the obtained scale image is. However, because of GPS positioning error,
the target scales may be out of range when theMUAV flies lower. It may be better
to fly the MUAV in a spiral fashion to obtain images reliably.

3. The scales’ color should be chosen on the basis of the color of the target ground.
Therefore, we should execute the following procedure for practical use.

a. An MUAV with a camera flies to obtain 3D terrain information of the target
area. On the basis of this information, the operator determines the scale
deployment locations and the optimal scale color.

b. An MUAV with a suspended drop-down device flies to deploy pyramid-
shaped scales to the planned locations.

c. At regular intervals, e.g., every 2 days, an MUAV with a camera flies to
obtain images of the deployed scales for measurement of ash depth.
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In future field tests, we will consider the above topics and conduct the above
procedure as a preparatory exercise.

4 Surface Flow Measurement Device

4.1 Development of the Surface Flow Measurement Device

Debris-flow simulations also require information on the permeability of volcanic
ash. However, typical methods of measuring the permeability require manual mea-
surement, a heavy device, an excess amount of water, and time. It is impossible to
conduct the same procedure with an unmanned MUAV system. Therefore, we had to
change our strategy. To improve the simulation results, we developed a surface flow
measurement device to roughly estimate the permeability, instead of measuring the
permeability directly.

Figure4 shows the developed surface flowmeasurement device and how it works.
It consists of a water storage, a controller to detect the landings and to make the
water flow, two cameras, and legs. When the device detects a landing, the controller
activates a servo motor to move a cutter blade to break the mounted water balloon.
Then, water falls to the ground immediately as a simulation of heavy rain. The
simulated rain’s intensity is equivalent to 1700 mm/h. Finally, two cameras located
on opposite sides of the device record the rate of water absorption into the ground.
The device is 350mm in both width and length, and 320mm in height. The diameter

Fig. 4 The developed surface flow measurement device and its method of operation
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of the storage of the water balloon is 100 mm. The maximum capacity of the water
balloon is approximately 500 mL. A servo motor with a cutter blade for breaking the
water balloon is located on the side of the device.

4.2 Initial Tests of the Surface Flow Measurement Device
and Lessons Learned

First, we conducted initial tests without the MUAV, using deposited sand from three
locations: Mt. Tarumae, Mt. Unzen-Fugen, and Mt. Sakurajima. Figure5 shows
images captured after water had fallen. In the case of volcanic ash with high per-
meability (Fig. 5a, b), fallen water permeated the soil quickly and the soil formed a
crater shape. On the other hand, in the case of volcanic ash with low permeability
(Fig. 5c), the initial fallen water let the fine particles dance like a snowstorm and then
it temporarily generated a surface flow; finally, it formed an amorphous shape. The
above phenomena were observed by wide-angle video cameras (GoPro) mounted on
the device; the permeation time could also be measured.

Next, the water permeability coefficients of the target samples were measured by
indoor experiments according to a conventional method. The results were as follows:

• Mt. Tarumae — 6.31× 10−4 (m/s),
• Mt. Unzen-Fugen — 7.96× 10−5 (m/s),
• Mt. Sakurajima — 1.34× 10−5 (m/s).

The above results qualitatively matched the results obtained by the proposed surface
flow measurement device.

Finally, atMt.Unzen-Fugen,we tested the deployment of the device by theMUAV.
The device was suspended by the MUAV and carried to the target position; it then
landed on the ground and obtained a video clip of the surface flow of the water
autonomously (Fig. 6).

During the above tests, several lessons were learned.

Fig. 5 Images captured after water had fallen onto different deposited sands
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Fig. 6 Flight test of the surface flow measurement device

1. Surface flow measurement devices cannot measure strict permeability. There-
fore, we will roughly classify the permeability of the soil by type, e.g., Tarumae
type or Sakurajima type. In debris-flow simulations, we will use representative
permeability values for each type. For classification, it is necessary to conduct
additional experiments on different types of soil.

2. In the above test, we considered the size and shape of the region where water was
absorbed. However, we should also consider how long it takes for the water to be
absorbed.

3. We need to improve the shape of the device and its components. Once the MUAV
became airborne, the tether caught the camera and the posture of the device tilted.
Moreover, during the preparations for the test, thewater balloon occasionally burst
before being set in the device. In general, preparation of the water balloon is very
troublesome.

In future works, we will redesign the device and conduct many tests to obtain data
for soil classification.

5 Mobile Sensing Device Carried by an MUAV

5.1 Development of a Small-Sized Mobile Robot

The amount of rainfall is also important for precise debris-flow simulations. Con-
tinuous measurements in volcanic areas are required to estimate how much water
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Fig. 7 CLOVER-II (left) and a lightweight rainfall sensor module (right)

the ground absorbs. However, in volcanic eruptions, sensors already installed in
such areas may malfunction. In the eruptions that occurred at Mt. Unzen-Fugen in
the 1990s, almost all sensors were broken. Therefore, sensors that can be installed
after an eruption are needed. To install sensors at suitable positions, we developed
a deployment system using a mobile robot carried by an MUAV. The robot has the
capability to mount lightweight sensors.

Figure7-(left) shows the mobile robot called CLOVER-II. It is a next-generation
version of CLOVER-I, which was designed for observing volcanic environments. It
can be deployed by an MUAV using the sky-crane method [7]. It has space to mount
a device at its center. The robot is 400mm in width, 465mm in length, and 220mm in
height. The robot’sweight is approximately 3.5kgwith batteries andwithout sensors.

5.2 Development of a Lightweight Rainfall Sensor for a
Mobile Robot

In this project, we designed and developed a rainfall sensor module to measure not
only the amount of rainfall but also the barometric pressure and frequency of thunder.
Figure7-(right) shows an image of the sensor module. The sensor module includes
the following three sensors:

1. Optical rain gauge
To measure the amount of rainfall, we chose an optical rain gauge (GR-11,
HYDREON Corporation). Infrared light emissions inside the dome decay when
raindrops attach to the surface of the dome. The amount of rainfall can be esti-
mated according to the amount of decay.

2. Thunder sensor
A portable, commercial thunder sensor, whose chip is AS3935 (Austria Micro
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Systems), is also installed in the module. It detects a signal generated by thunder
or an intercloud discharge.

3. Barometric pressure sensor
A prototype of the MEMS pressure sensor, developed by Murata Manufacturing
Co. Ltd., is also installed in the module. The temperature drift of the pressure
sensor is smaller than that of other MEMS pressure sensors, and the noise level
is relatively low.

5.3 Deployment/Retrieval Sequence of a Small Robot by an
MUAV

To carry a small mobile robot in restricted areas, we propose a method for deploying
and retrieving small robots using a capturing net suspended from an MUAV. The
capturing net is pyramid shaped and is dropped to the ground to allow the deploy-
ment/retrieval of the robot. The size of the net is 600 × 600 mm, and the height is
500 mm. Figure8 shows the deployment/retrieval sequence for the small robot. After
the capturing net lands on the ground, the robot moves off the net and travels to a
suitable position based on its teleoperation; it then performs a long-term fixed-point
observation. After a certain period has passed, e.g., 2 weeks, the MUAV flies to the
position again to retrieve the robot. The retrieval process is the reverse of the process
shown in Fig. 8.

5.4 Initial Test of Mobile Robot Retrieval by an MUAV and
Lessons Learned

We tested the multirotor MUAV’s deployment/retrieval of the mobile robot at a mud
control dam at Mt. Unzen-Fugen during November 2016. Figure9 shows the mobile
robot retrieval sequence performed by the multirotor MUAV. The multirotor MUAV

Fig. 8 Mobile robot deployment sequence as performed by the multirotor MUAV. The retrieval
sequence is performed in reverse order
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Fig. 10 A highly compressed rough image with block noise sent from the robot

hovers at the target position based on the GPS information and releases the capturing
net so that it falls to the ground (upper left of Fig. 9). The teleoperated mobile robot
remains near the landing point of the capturing net. After the net lands, the operator
instructs the robot to move onto the center of the capturing net, using the visual
information obtained by the front camera of the robot (upper right of Fig. 9). During
this procedure, the MUAV hovers in the air (lower left of Fig. 9). After a certain
period, the MUAV flies back to the departure point after suspending the capturing
net and the robot (lower right of Fig. 9).

According to our results, the success of the above retrieval operation depends on
a successful teleoperation to the center of the capturing net within a certain time,
and it relies on images from the front camera of the robot. In the above case, wire-
less communication was the bottleneck. The small robot uses 4G/LTE to transmit its
images. In typical communication situations, it sends 640 × 480 images at approx-
imately four frames per second (fps) without difficulty. However, when the small
mobile robot traversed the surface of the mud control dam, its antenna was located
in a very low position. Therefore, the position of its electric signal was lowered, and
it could send only highly compressed rough images with block noise to the operator
at 1 fps, as shown in Fig. 10. As a result, the operator suffered great difficulty during
the teleoperation. In this test, the robot was successfully navigated to the center of
the capturing net. However, we confirmed that communication near ground surfaces
is a serious problem.
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6 Conclusion and Future Works

In this paper, we introduced some unmanned technologies to observe restricted areas
near volcanoes and reported the results of the field tests conducted at Mt. Unzen-
Fugen during November 2016. The field tests included a demonstration of (1) a
drop-down-type ash-depth measurement scale for obtaining the amount of ash fall,
(2) a surfaceflowmeasurement device for estimating the permeability of volcanic ash,
and (3) an MUAV-based deployment/retrieval of a small ground vehicle for carrying
a sensing module that includes a device for measuring the amount of rainfall. In
addition, we reported some lessons learned.

As stated in the Introduction, the aim of this research was to realize a precise
debris-flow simulation. Therefore, we are developing software to perform flow rate
calculations and data conversions from unmanned observation data. Planned future
works include developing a debris-flow simulation based on robotic devices and
evaluating the simulation results.
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Cooperative UAVs as a Tool for Aerial
Inspection of the Aging Infrastructure

Sina Sharif Mansouri, Christoforos Kanellakis, Emil Fresk, Dariusz
Kominiak and George Nikolakopoulos

Abstract This article presents an aerial tool towards the autonomous cooperative
coverage and inspection of a 3D infrastructure usingmultipleUnmannedAerialVehi-
cles (UAVs). In the presented approach the UAVs are relying only on their onboard
computer and sensory system, deployed for inspection of the 3D structure. In this
application each agent covers a different part of the scene autonomously, while avoid-
ing collisions. The visual information collected from the aerial team is collaboratively
processed to create the 3D model. The performance of the overall setup has been
experimentally evaluated in a realistic outdoor infrastructure inspection experiments,
providing sparse and dense 3D reconstruction of the inspected structures.

1 Introduction

The annual investments on the infrastructure sector represent a significant percentage
of the Gross Domestic Product (GDP) of developed and developing countries e.g.
3.9%of theGDP for the old European states, 5.07%of theGDP for the newEuropean
states and 9% of the GDP for China [1]. Towards these inspection tasks, a variety
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of methods and approaches are adopted to address the challenges of infrastructure
inspection, where as an example specialized personnel performs visual inspection,
nondestructive testing andmaintenance tasks using scaffolds, roping or evenmanned
helicopters in order to obtain access to the sites of interest. According to the Heli-
copter Association International and the Utilities, Patrol and Construction Commit-
tee (UPAC) for Safety Guide for Helicopter Operators, 2009 [2] thousands of flight
hours are accumulated each day conducting manned aerial work, in support of Util-
ities Infrastructure (electricity, gas, water), as it is now well-understood that such
aerial works bring down the cost and time requirements

In order to decrease the human life risk and to increase the performance of the
overall procedure, autonomous ground, aerial or maritime vehicles are employed
for executing the inspection tasks. As an example, for these applications it can be
mentioned the power-line monitoring using autonomous mobile robots [3], bridge
inspection [4], boiler power-plant 3D reconstruction [5], urban structure coverage [6],
forest fire inspection [7], aerial manipulation [8] using UAVs, inspection of under-
water structures in [9] by the utilization of autonomous underwater vehicles and
cooperative sensing [10]. In most of these scenarios, there is an a priori knowledge
about the infrastructure, while the 3D or 2D models are available or can be derived
using CAD software.

UnmannedAerial Vehicles (UAVs) equippedwith remote sensing instrumentation
are emerging in the last years due to their mechanical simplicity, agility, stability and
outstanding autonomy in performing complex manoeuvres etc [11]. A variety of
remote sensors such as visual sensors, lasers, sonar, thermal, etc. could be mounted,
while the acquired information from the UAV’s mission can be analyzed and used
to produce sparse or dense surface models, hazard maps, investigate access issues,
and other area characteristics. However, the main problem in these approaches is to
guarantee the full coverage of the area, a fundamental problem that is directly related
to the autonomous path planning of the aerial vehicles.

This article demonstrates the novelty of an aerial sensor for the inspection of
complex 3D structures with multiple agents. In this approach, the a priori coverage
path is divided and assigned to each agent, based on the infrastructure architectural
characteristics in order to reduce the inspection time. Furthermore, to guarantee a
full coverage and a 3D reconstruction, the introduced path planning for each agent
creates an overlapping visual inspection area, that will enable the off-line cooperative
reconstruction. Based on the aforementioned state of the art, the major contribution
stems from the direct demonstration of the applicability and feasibility of the overall
cooperative coverage and inspection scheme with the UAVs for outdoors scenarios
without the utilization of any external reference system, e.g. motion capture sys-
tems. This demonstration has a significant novelty and impact as an enabler for a
continuation of research efforts towards the real-life aerial cooperative inspection
of the aging infrastructure, a concept that has never been presented before to the
authors best knowledge, in outdoor and with a real infrastructure as a test case. In
the outdoors demonstrations, the UAVs have been autonomously operated based on
odometry information from visual and inertial sensor fusion and without any other
support on localization, which adds more complexity and impact on the acquired
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results. The image and pose data on board the platform were post processed to build
a 3D representation of the structure.

The rest of the article is structured as follows. First a brief review on related works
is presented in Sect. 2. Then the general formulation of the problem is described in
Sect. 3. Later on, the proposed method is presented in Sect. 4, which follows with
a brief description on the 3D reconstruction from multiple agents. In Sects. 5 and 6
the hardware for autonomous navigation and multiple simulation and experimental
results are presented respectively. Finally the article concludes in Sect. 7.

2 Related Work

Navigation of multi-agent systems for infrastructure inspection, is an area of increas-
ing interest both from a research, as well as an application viewpoint. In recent
years, multiple approaches have been proposed regarding obstacle free path gen-
eration for robotic platforms. The application of potential field-based methods has
been explored [12, 13] as a promising research direction for such algorithms. Cov-
erage Path Planning (CPP) is the task of determining a path that passes over all
points of an area or volume of interest while avoiding obstacles [14]. The task of
coverage is fundamental in many robotic applications, such as, visual inspection of
complex structure [15], painter robots [16], wall climbing robots for inspection [17],
inspection of complex underwater structures [18], vacuum cleaning robots [19], etc.
In [14] a complete survey was presented on CPP methods in 2D and 3D. This arti-
cle is mainly focused on the application of CPP in aerial robotics for infrastructure
inspection, providing simultaneously the required theoretical background.

The task ofCPPhas received significant attention over the last years in the different
application scenarios, however still there are limited CPP approaches in the case
of aerial robotics and fewer approaches that addressed coverage of 3D spaces [20].
Especially in the case that the CPP concept is extended in the Collaborative approach
(C-CPP), by the utilization of multiple aerial agents, instead of a single one, the
overall coverage time has the potential to be dramatically reduced, while it can be
achieved realistically by multiple UAVs, when taken under consideration the flying
times and the levels of autonomy. Thus, inspired by this vision, the main objective
of this article is to establish a C-CPP method that is based on an a priori knowledge
of the infrastructure (e.g. a CAD model) and it will have the ability to generate
proper way points by considering multiple agents, while ensuring full coverage and
the overall collision avoidance among the flying agents. As it will be presented, the
proposed novel scheme will create a sub-coverage path planning for cooperative
inspection of the whole infrastructure, while having the capability to detect branches
of complicated infrastructures, which can be assigned to different agents. In the
sequel, supplementary, 3D reconstruction routines can be performed to provide an
updated 3Dmesh of the structure by using either themonocular or the stereo cameras.

Towards the 3D CPP, Atkar et al. [16] presented an offline 3D CPP method for
spray-painting of automotive parts. Theirmethod used aCADmodel and the resulting
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CPP should satisfy certain requirements for paint decomposition. In [21], the authors
presented a CPP with real time re-planning for inspection of 3D underwater struc-
tures, where the planning assumed an a prior knowledge of a bathymetric map and
they adapted their methodology for the case of an autonomous underwater vehicle,
while their overall approach was containing no branches. The authors in [18] intro-
duced a new algorithm for producing paths that cover complex 3D environments.
In this case, the algorithm was based on off-line sampling with the application of
autonomous ship hull inspection, while the presented algorithm was able to generate
paths for structures with unprecedented complexity.

In the area of aerial inspection, [6] presented a time-optimal UAV trajectory plan-
ning for 3D urban structure coverage. In this approach, initially the structures to
be covered (buildings) were simplified into hemispheres and cylinders and in a later
stage the trajectories were planned to cover these simple surfaces. In [22], the authors
studied the problem of 3D CPP via viewpoint re-sampling and tour optimization for
aerial robots. More specifically, they presented amethod that supports the integration
ofmultiple sensorswith different fields of view and considered themotion constraints
on aerial robots. Moreover, in the area of multi-robot coverage for aerial robotics
in [23], a coverage algorithm with multiple UAVs for remote sensing in agriculture
has been proposed, where the target area was partitioned into k non-overlapping
sub-tasks and in order to avoid collision both different altitudes have been assigned
to each UAV and security zones were defined, where the vehicles are not allowed to
enter.

3 Problem Statement

Multiple aerial robots will be employed andwill address the problem of autonomous,
complete, and efficient execution of infrastructure inspection andmaintenance opera-
tions. To facilitate the necessary primitive functionalities, an inspection path-planner
that can guide a team of UAVs to efficiently and completely inspect a structure will
be implemented. The collaborative team of UAVs should be able to understand the
area to be inspected, ensure complete coverage and an accurate 3D reconstruction to
accomplish complex infrastructure inspection. Relying on the accurate state estima-
tion as well as the dense reconstruction capabilities of the collaborative aerial team,
algorithms for the autonomous inspection planning should be designed to ensure full
coverage.

It should be highlighted that, this work is an extension of our preliminary work
presented in [24] which studied the problem formulation in 2D. Let assume Ω ⊂ R

3

be a given region that can have multi-connected components (complex structure),
while we also consider the finite set

Λ = {Ci : i ∈ In = {1, 2, . . . , n}} (1)
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of cells

Ci = {
(xi , yi , zi ) ∈ R

3 : (x, y, z) ∼ camera specification and position
}
. (2)

The placement of the cellsCi can be defined by the translation vector ui = (xi , yi , zi )
and orientation vector o = {φ, θ,ψi }, i ∈ In , while the set of translated and orientated
cells Ci (ui , oi ) is expressed by Λ(u, o), where u = {u1, u2, . . . , un} ∈ R

3n and o =
{o1, o2, . . . , on} ∈ R3n : 0 ≤ oi ≤ 2π.

The 3D polygonal

P(ui , oi , n) =
n⋃

i=1

Ci (ui , oi ) (3)

represents the region covered by the union of the cells Ci , while Λ∗ is a cover of Ω

if there exist a solution such that

Ω ⊂ P(ui , oi , n) =
⋃

i∈In
Ci (ui , oi ) (4)

Moreover, several cases arise in the interaction between two cells Ci (ui , oi ) and
C j (u j , o j )with i �= j , ui = (xi , yi , zi ), oi = (φi , θi ,ψi ), u j = (x j , y j , z j ) and o j =
(φ j , θ j ,ψ j ), where mainly determined by:

Ci (ui , oi ) ∩ C j (u j , o j ) = ∅
Ci (ui , oi ) ∩ C j (u j , o j ) �= ∅ (5)

Additionally the cases of Ci (ui , oi ) ⊂ C j (u j , o j ) and C j (u j , o j ) ⊂ Ci (ui , oi ) are
not considered when dealing with the coverage problem, because it is contrary to
optimality of the path to have a substantial overlapping for visual processing and
cover the whole surface of the under inspection object.

4 Methodology

CollaborativeUAVs can be deployed, equippedwith advanced environmental percep-
tion and 3D reconstruction, intelligent task planning, and multi-agent collaboration
capabilities. Such a team of UAVs should be capable of autonomously inspecting
infrastructure facilities, while this Section presents an experimental setup, towards
multi-robot collaboration, path-planning, localization, as well as cooperative envi-
ronmental perception and reconstruction. Furthermore, the mission-oriented plan-
ning algorithms will be integrated with the control and localization components of
the platform in outdoor environments. A major component that affects the over-
all performance of the inspection task, is the Path planning strategy. In this work
an extended version of CPP is implemented in a collaborative manner (C-CPP) by
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the utilization of multiple aerial agents, instead of a single one. The attributes of
this approach are the full coverage of a complex structure and the reduced mission
time [25] for the overall coverage, by considering the level of autonomy and flight
times for each agent. A full reference on developed C-CPP can be found in [15].

Briefly, the established C-CPP method is based on an a priori knowledge of the
infrastructure (e.g. a CAD model) and it has the ability to generate proper way
points by considering multiple agents, while ensuring collision avoidance among the
flying agents. The implemented method will create a sub-coverage path planning
for cooperative inspection of the whole infrastructure, while having the capability
to detect branches of complicated infrastructures, which can be assigned to different
agents. In the sequel, supplementary, 3D reconstruction routines can be performed to
provide an updated 3D mesh of the structure by using various sensors, like cameras
or lidars. Additionally, the generated waypoints guarantee enough overlapping Field
of View in order to build the structure 3D model from the processed sensor data.

The resulting waypoints are then converted into position-velocity-yaw trajecto-
ries, which can be directly provided to the utilized linear model predictive controller
cascaded [26] over an attitude-thrust controller. This is done by taking into account
the position controller’s sampling time Ts and the desired velocity along the pathVd .
These trajectory points are obtained by linear interpolation between the waypoints,
in such a way that the distance between two consecutive trajectory points equals the
step size h = Ts ||Vd ||. The velocities are then set parallel to each waypoint segment
and the yaw angles are also linearly interpolated with respect to the position within
the segment. The adopted trajectory generation that was used in the experimental
realization of the proposed C-CPP.

As stated throughout this article, the C-CPP method addresses the case of
autonomous cooperative inspection by multiple aerial UAVs. Each aerial platform is
equipped with a camera to record image streams and provide a 3D reconstruction of
the infrastructure [11].More specifically,Monocularmapping is considered to obtain
the 3D model of the infrastructure, while the overall aim is to merge the processed
data from multiple agents into a global representation. Structure fromMotion (SfM)
approach is used to provide a 3D reconstruction. While, the aerial agents follow their
assigned path around the object of interest the image streams from the monocular
cameras of all agents are stored in a database.

The process starts with the correspondence search step, which identifies over-
lapping scene parts among input images. During this stage, feature extraction and
matching algorithms between frames are performed to extract information about
image scene coverage. Next, a filtering step is implemented to remove outliers using
epipolar geometry [27]. The algorithm requires an initial image pair I1 and I2 with
enough parallax as the starting point and then to incrementally register new frames.
Briefly, image matches are extracted and the camera extrinsics for I1 and I2 using the
5-point algorithm [28]. Then projectionmatrices, including the relative pose between
frames, are estimated and used for triangulation of the detected image points, to
recover their 3D position X3D . Afterwards, the two-frameBundleAdjustment refines
the initial set of 3D points minimizing the reprojection error.
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The aforementioned process consist of the initialization step. The remaining
images of the dataset are incrementally registered in the current camera and point
sets usingPerspective-n-Point (PnP) [29]. The newly extracted points are triangulated
and are processed from a global Bundle Adjustment to correct drifts in the process.
The absolute scale of the reconstructed object can be recovered by combining the
full-pose annotated images from the onboard localization of the camera systems.

5 Setup for Autonomous Navigation

The proposed method has been evaluated with the utilization of the Ascending Tech-
nologies NEO hexacopter, depicted in Fig. 1. The platform has a diameter of 0.59m
and height of 0.24m. The length of each propeller is 0.28m as depicted in Fig. 1.
This platform is capable of providing a flight time of 26min, which can reach a max-
imun airspeed of 15m/s and a maximum climb rate of 8m/s, with maximum payload
capacity up to 2kg. It has an onboard Intel NUC computer with a Core i7-5557U
and 8 GB of RAM. The NUC runs Ubuntu Server 14.04 with Robotic Operatic Sys-
tem (ROS) installed. ROS is a collection of software libraries and tools used for
developing robotic applications [30]. Additionally, multiple external sensory sys-
tems (e.g. cameras, laser scanners, etc.) can be operated in this setup. Regarding the
onboard sensory system, the Visual-Inertial (VI) sensor (weight of 0.117kg.) (Fig. 1)
developed by Skybotix AG is attached below the hexacopter with a 45◦ tilt from the
horizontal plane. The VI sensor is a monochrome global shutter stereo camera with
78◦ FOV, housing an Inertial Measurement Unit (IMU) [31]. Both cameras and IMU
are tightly aligned and hardware synchronized. The camera was operated in 20 fps
with a resolution of 752× 480 pixels, while the depth range of the stereo camera lies
between 0.4 and 6m.

Fig. 1 AscTec NEO platform with the VI sensor attached
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Fig. 2 Software and hardware components used for conducting inspections

The proposed C-CPP method, established in Sect. 4, has been entirely imple-
mented in MATLAB. The inputs for the method are a 3D approximate model of the
object of interest and specific parameters, which are the number of agents (n), the
offset distance from the object (Ω), the FOV of the camera (α), the desired velocity
of the aerial robot (Vd ) and the position controller sampling time (Ts). The generated
paths are sent to the NEO platforms through the utilization of the ROS framework.

The platform contains three main components to provide autonomous flight,
which are a visual-inertial odometry, a Multi-Sensor-Fusion Extended Kalman Filter
(MSF-EKF) [32] and a linear Model Predictive Control (MPC) position controller
[26, 33, 34]. The visual-inertial odometry is based on the Robust Visual Inertial
Odometry (Rovio) [35] algorithm for the pose estimation. It consists of an EKF fil-
ter that uses inertial measurements from the VI IMU (accelerometer and gyroscope)
during the state propagation and the visual information is utilized during the filter cor-
rection step. The outcome of the visual inertial odometry are the position-orientation
(pose) and the velocity (twist) of the aerial robot. Afterwards, the MSF-EKF com-
ponent fuses the obtained pose information and the NEO IMU measurements. This
consists of an error state Kalman filter, based on inertial odometry, performing sensor
fusion as a generic software package, while it has the unique feature of being able to
handle delayed and multi-rate measurements, while staying withing computational
bounds. The linear MPC position controller [34] generates attitude and thrust refer-
ences for the NEO predefined low level attitude controller. The image stream from
the overall experiment is processed using the discussed method in Sect. 4, while the
overall schematic of the experimental setup is presented in Fig. 2.

6 Experimental Results

To evaluate the performance of the method, in a real autonomous inspection task, an
outdoors experiment was conducted. For this purpose the Luleå University’s campus
fountain has been selected to represent the actual infrastructure for the coopera-
tive aerial inspection. The fountain has a radius of 2.8m and height 10.1m without
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branches. The area is considered rural, while surrounded by multiple buildings and
also vegetated in some places. The UAV navigated in a constrained area around
the Fountain, for safety purposes 2m away from the structure and the experiment
was bounded in a cylindrical area with radius of 10m. In order to achieve a full
autonomous flight, the localization of the UAV relied only on the onboard sensory
system. Thus, the UAVs followed the assigned paths, based on visual-inertial odom-
etry localization. Before the beginning of the experiment an initialization process
was followed to fix the origin of the coordinate frame of UAVs close to the base of
the fountain. This initialization step was considered for simplicity purposes due to
the robocentric approach of the localization component that fixes the origin at the
position where the algorithm is initiated. It should be noted that there was little wind
during the described flight tests and the background was mainly static. However,
people were passing or standing to observe the experiment, which were considered
to be dynamic. Overall, the localization algorithm shows promising results despite
to these small variations in environment. This can be resulted from enough texture
in the inspected structure. The starting point has 180◦ difference and the coopera-
tive scheme reduce the flight time from 327s in case of one agent to 166s with two
agents. The average velocity along the path was 0.2m/s and the points fed to the
agents in a way to guarantee the maximum distance and avoid collision. It should
be highlighted that during the experiment all processes were executed on board the
aerial platform, while the 3D mesh was build offline from a ground station. During
the experiment, the UAVs took-off manually and when they reached specific height
switched to autonomous navigation. Similar strategy was followed for the landing
of the vehicles. This steps are mainly done for safety reasons of landing and taking
off. The actual and reference trajectories followed by both platforms are depicted in
Fig. 3.

The 3D model of the structure was build offline using the dataset collected from
both aerial agents. The extracted images were combined and processed by the SfM

Fig. 3 Trajectories which are followed in outdoor experiment
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Fig. 4 On the left is the Luleå University outdoor fountain, and, on the right, the cooperative
pointcloud of the structure with estimated flight trajectories

algorithm as described in Sect. 4. The fountain and its sparse 3Dmodel are presented
in Fig. 4.

In the proposed experiment the same strategy as indoor experiment is followed for
two agents. The starting position of each of them has the maximum of distance with
180◦ difference. The overall flight time is reduced from 370 to 189s and the average
velocity along the path was 0.5m/s. The sparse reconstruction provides an initial
insight regarding the object to inspect, while an extra step is followed to create a 3d
mesh. To retrieve the 3D mesh of the structure Autodesk ReCap 360 was used [36].
ReCap 360 is an online photogrammetry software suited for accurate 3D model-
ing. The reconstructed surface obtained from image data, is shown in Fig. 5. The

Fig. 5 Cooperative 3D mesh of the outdoor structure
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results show that the collaborative scheme of the path planner could be successfully
integrated for automating inspection tasks (https://youtu.be/c4q2T5eqYRk).

7 Conclusions

This article presents an aerial tool towards the autonomous cooperative coverage and
inspection of a 3D infrastructure using multiple Unmanned Aerial Vehicles (UAVs).
The proposed approach deploys multiple aerial robots and generates collision free
trajectories for the inspection of the 3D structure. The aim of this application is to
assign different parts of the scene to each agent for complete structure coverage in
short time, considering the agents navigate autonomously. The visual information
collected from the aerial team is collaboratively processed to create the dense 3D
model, which can be used for inspection purposes. The experimental evaluation of
the proposed inspection system demonstrated substantial performance in realistic
outdoor cases that could act as an enabler for further developments.
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Autonomous Aerial Inspection
Using Visual-Inertial Robust Localization
and Mapping

Lucas Teixeira, Ignacio Alzugaray and Margarita Chli

Abstract With recent technological breakthroughs bringing fully autonomous
inspection using small Unmanned Aerial Vehicles (UAVs) closer to reality, the com-
munity of Robotics has actively been developing the real-time perception capabili-
ties able to run onboard such constraint platforms. Despite good progress, realistic
deployment of autonomous UAVs in GPS-denied environments is still rudimentary.
In this work, we propose a novel system to generate a collision-free path towards a
user-specified inspection direction for a small UAV using monocular-inertial sens-
ing only and performing all computation onboard. Estimating both the previously
unknown scene and the UAV’s trajectory on the fly, this system is evaluated on real
experiments outdoors in the presence of wind and poorly structured environments.
Our analysis reveals the shortcomings of using sparse feature maps for planning,
highlighting the importance of robust dense scene estimation proposed here.

1 Introduction

The remarkable agility of small UnmannedAerial Vehicles (UAVs) has been drawing
growing interest in tasks, such as aerial surveying and industrial inspection (e.g.
of wind turbines1). Their employment in open fields can be automated using pre-
defined GPS waypoints. However, such methods do not only assume the absence of
any obstacles at the pre-specified flight altitude, but also the availability of reliable
GPS signals, restricting their applicability. As a result, most missions employing
UAVs today, resort to manually driven flights around the structures of interest, albeit
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limiting dramatically the inherent agility of UAVs to the pilot’s field of view and
judgement of clearance to structures.

Combining promising state-of-the-art building blocks, in this paper, we present a
novel system capable of generating autonomously collision-free trajectories for aer-
ial inspection in potentially GPS-denied environments. Despite the ability of stereo
image processing in providing reliable scene depth estimates, monocular sensing in
preferred onboard small UAVs as the stereo baselinemost often proves too small to be
effective in general missions, such as to provide clearance from structures. Factoring
in the possibility of external disturbances, such as wind gusts, a clearance range of
10–20m is recommended. As a result, the minimal setup of monocular-inertial sens-
ing is typical for Simultaneous Localization And Mapping (SLAM) onboard small
UAVs, respecting the platform’s constraining payload and computational capabili-
ties.

Starting off without any prior knowledge of the scene, the proposed system builds
on monocular-inertial SLAM to obtain a sparse map of the UAV’s surroundings and
estimate a denser scene representation as in [18]. Employing the Monocular-Inertial
SLAM based Planner (MISP) [2], demonstrated to be suitable for aerial inspection
in simulation, our system plans the UAV’s path to a pre-specified inspection direc-
tion using its current estimate of the scene, as shown in Fig. 1. The structure to
be inspected is assumed to be a static manifold with enough free space around to
safely fly. Exploiting the power of MISP to generate a collision-free path via contin-
uous re-planning, any structures encountered are inspected and used as a source of
localization cues. Evaluating MISP in real experiments for the first time, we demon-
strate that our denser scene representation provides a far more practical alternative
to feature-based maps used in [2].

2 Related Work

The complex task of automating inspection requires that the robot’s spatial perception
and path-planning capabilities are synchronized and able to cope with the uncertain-
ties arising in a real mission. While there is a vast body of literature addressing
either robotic perception or planning, it is due to the inherent difficulty in dealing
with uncertainties in both processes at the same time, that there is only a handful
of works addressing their combination and employment in real scenarios. On of the
first works to demonstrate successful path-planning for UAVs was the framework of
[1], which used Rapidly-exploring Random Belief Trees [6] on a pre-acquired map
of visual features to predict subsequent scene measurements. The prohibitive cost of
this approach, however, requires a base station for off-board computations, while its
employment of known maps limits its applicability to general tasks. Tackling path-
planning for an incrementally built map using SLAM, the monocular setup of [15]
employed a set of heuristic rules to indirectly evaluate the quality of the generated
paths, leading to an improvement in performance of the SLAM system in small scale
scenarios.
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In the most naive approach for collision avoidance, ultrasound range finders are
typically used as a last-minute resort to avoid obstacles (e.g. in parking guidance
for cars applications). However, it is depth and/or stereo cameras that are mostly
often employed to enable more sophisticated obstacle avoidance strategies, as they
provide denser scene information. Nonetheless, the limited range of both ultrasound
or RGBD sensors as well as their sensitivity to the environment renders them often
impractical in general scenarios.

Investigating the applicability of high performing real-time stereo matching algo-
rithms, we tested ELAS [9] and SGBM [10] to estimate a stereo-based scene recon-
struction. However, as predicted theoretically, the stereo baseline is relatively too
small with respect to the depth of the scene in the mid-range inspection addressed
here, producing poor scene estimates, thus rendering such systems unsuitable. As
aforementioned, the monocular-inertial setup employed in this work is typical in
UAV navigation, however, it poses great challenges in robust and denser scene esti-
mation. The most recent works of monocular ORB-SLAM [16], and monocular-
inertial ROVIO [5] and OKVIS [13], demonstrated that robust robot localization
using a sparse set of visual landmarks can be performed in real-time even without
using cues from a secondary (stereo) camera. ROVIO, for instance, tracks only about
20 visual features per frame, while OKVIS can track about 200.While ROVIO’smap
is clearly too sparse for meaningful use during path-planning, OKVIS’s map often
provides a more preferable (i.e. denser) distribution features in space. Denser real-
time monocular scene estimation approaches, such as LSD-SLAM [8] offer more
complete scene representations, but are too noisy to use for path-planning.

In this work, we employ the low-cost approach for denser scene representation
from monocular views of [18]. The outlier removal, smoothing and interpolation of
the SLAM landmarks performed by this algorithm overcome the problem of uneven
distribution of landmarks and noisy measurements, resulting to a favourable map
for path planning. Employing MISP [2], the generated UAV trajectory explicitly
considers the motion constraints of a robot with a monocular setup, improving the
overall performance of the SLAM system.

3 System

Our system for aerial inspection using visual and inertial sensing cues builds on top
of the open-source ETHZ-ASL ROS stack for visual-inertial autonomous flights.2

This framework permits the use of the three sensors that we have onboard our UAV;
a monocular camera with an Inertial Measurement Unit (IMU) attached to it and
another IMU inside the body of the UAV (at its center). The former IMU and the
camera are embedded in the same circuit for time-synchronization as in the Intel
RealSense ZR300 Camera. The latter IMU is used by the UAV’s autopilot system
inside the Attitude Controller.

2http://wiki.ros.org/asctec_mav_framework.

http://wiki.ros.org/asctec_mav_framework
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Fig. 1 The top view (top) and the side view (bottom) of a successful run from the start position
towards the inspection direction, until the pilot decides to take over (labelled as “end”). Note that
the planner chooses to follow the structure, while planning the robot’s path towards the inspection
direction as the structure is a rich source of visual cues, and thus ensures the system’s robustness.
The color of the trajectory represents the time. The platform used for all the experiments in this
paper is the AscTec Neo, shown in the inset

Using the sensor information from all onboard sensors, the proposed system,
illustrated in Fig. 2, is able to accurately estimate on the fly and in real-time the
UAV’s motion while building a map of the environment. Using such information,
the system plans and executes a collision-free path to the user-defined inspection
direction, while following closely the structure in front of the UAV (i.e. any structure
with visual features).

To this end, the autonomousflight stack, depicted in gray inFig. 2, is composed of a
visual-inertial SLAM system, the keyframe-based odometry algorithm OKVIS [13],
the EKF-based Multi-Sensor Fusion algorithm [14], and the linear model-predictive
position controller of [12]. This stack is well tested and used in several works, such
as [3, 17]. Employing a variant of MISP [2], here we modified the original path-
planning algorithm to enable its practicality and feasibility in real-life experiments.
Having been only illustrated in simulation so far, the original MISP uses directly the
landmarks provided by the visual-inertial SLAM (OKVIS), as illustrated by the red
dashed arrow. In this work, we propose to use a robust scene depth estimationmodule
as we demonstrate that the naive use of the pure visual-inertial SLAM landmarks
does not provide an accurate enough scene representation in real missions. All of the
components of the proposed pipeline run in the onboard UAV’s CPU.
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Fig. 2 The architecture of our system. Using both the feeds from the external IMU and monocular
camera, and the autopilot’s IMU, the UAV’s onboard computer runs the autonomous flight stack
(gray blocks), which estimates the UAV’s pose and a map of landmarks of the UAV’s surroundings.
Instead of naively using the landmarks to plan the UAV’s path to the goal (using the red-dashed
arrow), our experiments demonstrate that introducing a denser scene estimation module (green
block) results to more robust and accurate performance for aerial inspection

In the rest of this section, a brief description of the MISP algorithm is presented,
together with our strategy for real-time and robust depth estimation and their inte-
gration within the proposed pipeline.

3.1 Path Planning Based on MISP

MISP [2] is a path planning algorithm specially designed for small UAVs with lim-
ited computational capacity using monocular-inertial localization and mapping. The
algorithm exploits the structure of an a priori unknownmap to guide the robot towards
a known goal position, adapting the navigation as new areas are explored by means
of an quick re-planning policy. The efficiency of the algorithm relies on the reuse
of most of the underlying information between consecutive planning iterations by
limiting its reaction to only local changes in the map.

MISP facilitates the monocular localization by planning around the obstacles in
the map, while tracking and orienting the robot towards the visual features on them.
This path planning leads to a tangential navigation with respect to the local obstacles
that is most suitable for the inspection task proposed in this work. The algorithm
is originally designed as point-to-point planner, whereas the mission proposed in
this work does not consist of reaching a specific location, but rather inspecting the
structure that the UAV is facing at the time that MISP gets initialized. For this
reason, here we adapt the original algorithm to be guided by a generic and user-
defined inspection direction instead of a goal location as depicted in Fig. 3. In [2],
MISP achieves good results in an inspection task in a simulated environment. Here,
we address in detail the limitations of original algorithm when it is applied to real
scenarios in the following sections.

MISP employs a probabilistic 3D grid map representation [11] to register the
obstacles in the map on-the-fly. The obstacles in the map are considered sources of
visual features and thus, the accurate tracking of such features has critical impact
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Fig. 3 In an inspection task, theMISP segments part of the inspected structure at a given segmenting
altitude hseg . The segmented part of the structure, in green, is then used to generate paths keeping
a constant clearance at navigation altitude hnav . On the right, the MISP computes the best path
towards the inspection direction. The structure of the environment in the unknown map areas is
inferred based on the current map, relying on the efficient re-planning policy to adapt the navigation
to upcoming changes

in the performance of the employed vision-based SLAM system. Inspired by Cover
et al. [7], MISP generates position samples around to the map obstacles at a given
clearance distance ρ enforcing a collision-free navigation.

In this work, we restrict the algorithm to plan in a plane at a fixed navigation
altitude hnav , as proposed originally in [2]. For the proposed inspection task, we
also define the segmenting altitude hseg at which the structure of the environment is
considered of interest and thus any obstacles at this altitude are used to generate the
position samples as previously described (See Fig. 3).

The position samples surrounding the obstacles of interest are connected to other
neighbouring position samples via collision-free paths generating a graph in which
the current robot and goal position are also included. The graph is then searched for
the best path connecting the current position to the goal. The weights of the graph
are designed so that the resulting best path favours the robot to navigate close to
the obstacles at the given predefined clearance distance ρ, even if it implies a larger
overall travelled distance towards the goal.

We redefine the “goal” in the original MISP implementation to use an inspection
direction instead, guiding the navigation of the robot while avoiding any obstacles
in the way. We implement this modification by setting the goal location beyond
the reach of the inspection area. The mission is considered completed as soon as
the robot leaves the inspection area guided by the inspection direction while flying
autonomously.

In each planning iteration, the segments of the best path closer to the current robot
position are determined by the known local map, whereas any segments further away
are generated by inferring the structure of the unknownmap areas subject to changes.
As a result, we only execute the path up to a given short travelled distance, usually
a couple of meters, and subsequently repeat a planning iteration including any new
updates of the map. This receding horizon strategy, inspired by Bircher et al. [4],
allows the robot to re-plan its path and adapt its navigation as new areas in the map
are explored.
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The heading of the robot is defined to be almost perpendicular to the inspected
structure’s surface tomaximize the parallax of the perceived visual features, ensuring
this way to boost the robustness of the SLAM system during the mission. The head-
ing direction deviates slightly (e.g. ∼15◦) from the nominal perpendicular heading
towards the navigation direction in order to safely detect upcoming changes in the
structure. The original MISP implementation defines an additional set of so-called
“recovery behaviours” to overcome other endangering situations when navigating
close to the obstacles. Since this work focuses on medium-large range inspection,
we do not consider such heuristics. Although the structure is assumed to be a mani-
fold, small gaps can be effectively handled byMISP, since it allows the robot to move
from one obstacle to another inside of the inspection area, as well as the dense depth
estimation, that is able to fill small areas without visual information in the map.

3.2 Robust and Dense Depth Estimation

The original MISP implementation [2] naively assumes that the raw landmarks esti-
mated during SLAM are outlier-free, well distributed across the scene, and dense
enough to allow a good enough estimate of the world using a probabilistic 3D voxel
grid map at a coarse resolution. While these assumptions may hold in simulated
environments, in real scenarios noisy scene estimates and textureless areas are com-
mon enough to cause large deviations of the resulting behaviour from the nominal
expected performance, as illustrated in the experimental results presented in Sect. 4.

Considering the limited computational capacity and payload restrictions onboard
a small UAV, in this work we focus on the already available monocular and iner-
tial sensing cues to generate a denser scene representation, making the most of the
onboard sensor suite. Inspired by the mesh-based scene representation of [18], we
employ this method, which was specifically designed for aerial inspection to create
a mesh out of the landmarks estimated by SLAM and then perform an outlier elimi-
nation and smoothing of this mesh. This system assumes that the area in the field of
view is a continuous surface without small or thin objects protruding, although the
surface can be non-planar and have small discontinuities, which most often holds in
reality (see experimental setup of Sect. 4). Note that, although this mesh-based scene
representation is also capable of providing surface normals, this feature is not used
in this work.

As depicted in Fig. 8, the difference of the map estimation when using only raw
landmarks as opposed to the mesh-based depth estimation pipeline [18] is clearly
noticeable. Thismesh is computed using only the raw landmarks and the camera pose
estimates fromSLAM.Firstly, the 3D landmarks are checked for neighbourhood sup-
port (in their depth estimates) in order to filter out unreliable landmarks, i.e. the ones
with much larger uncertainty within their surroundings. The remaining landmarks
are projected onto the image plane corresponding to the current viewpoint and amesh
is constructed via a 2D Delaunay Triangulation. An outlier detection algorithm then
removes any triangles that do not fulfil the algorithm’s smoothness criteria; very
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oblique mesh-triangles and spikes in the mesh are rejected. The remaining mesh-
vertices are smoothed with respect to their depth using a Laplacian filter, before
interpolation is applied by a rasterization algorithm. The outcome of this pipeline is
a smooth mesh representation of the scene, providing one depth measurement per
pixel in the image space and resulting into a depth map with the same resolution as
the camera image. For all our tests, we use the default parameters provided in the
open source implementation of the authors.3 Please refer to the original paper [18]
for detailed explanation.

4 Experiments

In order to evaluate the proposed system, we carried experiments out in the ruins of
the Hardturm Stadium in Zurich visible in Fig. 4. We choose to inspect the largest
structure of the stadium’s stands (aka bleachers). This structure is about 8m tall and
forms an almost continuous surface covering a 100m × 100m area. Ground-truth
data was recorded for the test site by capturing a laser point cloud of the scene using
the Leica MS50 Station Theodolite. The ground-truth for the UAV’s trajectory in
each run, was generated by post-processing each sequence with OKVIS [13] using
unbounded optimization times and extended optimization windows.

During the experiments the algorithms face additional challenges, such as light
wind gusts. The wind does not only interfere with the UAV’s trajectory, but also with
the environment due to the fact that trees and bushes cover a large area in front of
the structure. Additionally, there is a featureless white tent in the area which adds
difficulty in performing SLAM robustly as this can occupy a large portion of the
UAV’s field of view at times.

Once the algorithm is initialized, the pilot hands over all control of the UAV’s
motion to the proposed system and takes back the control either at the end of the
route or if the pilot judges that the UAV enters a dangerous situation (e.g. flies too
close to a structure). The inspection direction is set as shown in Fig. 7.

Following a few test-flights, we set the clearance to 10m for this setup and the
current wind conditions. Making sure that the UAV is facing the structure to be
inspected at the beginning of eachmission, the origin of theUAV’s coordinate system
is set at the position where the SLAMmodule is initialized. This initial position also
determines the segmenting altitude, while the navigation altitude is set at 2m higher
due to the sensor’s slightly downward-tilted configuration as illustrated in Fig. 3. For
fairness of comparisons amongst different experiments, the segmenting altitude is
set to 2m measured by the UAV’s barometer and the navigation altitude at 4mm
high. Note that the barometer readings can by affected by the wind, so these settings
can only be approximate. In this setup, the rest of this section analyses the capability
of our system in respecting the navigating altitude and the clearance. Further on, the
quality of the generated map and the UAV trajectories are discussed, on the basis of

3https://github.com/VIS4ROB-lab/mesh_based_mapping.

https://github.com/VIS4ROB-lab/mesh_based_mapping
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Fig. 4 Aerial (top) and groundphotos (bottom) of the test site.Aerial image source: Swiss Panorama

five different flights with the same starting pose and inspection direction; three of
these using the mesh-based robust dense depth estimation and two using only the
SLAM sparse landmark map as a representation of the scene.

4.1 Navigation Altitude

Aconstant navigation altitude is important not only for collision avoidance during the
navigation, but also for acquiring images with sufficient overlap, crucial for robust
navigation and effective inspection. Figure5 illustrates the altitude measured during
each of the five flights. There is a clear drift tendency of descending UAV altitude,
from the SLAM origin and increasing with respect to the travelled distance and the
experiment’s duration. As a result, the mesh-based flights have similar descent rate,
but larger absolute drift than the sparse-based flights, because the travelled distance
is also longer (see Table1).

4.2 Clearance

Although MISP aims to maintain a constant clearance to the structure, in practice it
is a difficult task for the position controller to stabilize the UAV in presence of wind,
specially when all computations are based on noisy pose and map estimates. As a
result, some variance on the actual clearance is expected in real experiments, but the
average clearance achieved should be similar to the specified. Most importantly, the
UAV should never fly too close to the structure for safety reasons.

Extracting the same segmented region from the scene ground truth and in order
to evaluate the actual clearance during flights, we build a 2D map (i.e. top view)
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Fig. 5 The ground-truth of the navigation altitude throughout each flight, revealing drift in all trials
increasing with travelled distance and flight duration

Table 1 Duration and travelled distance for all five flights used in this analysis. Note that the
sparse-based flights are aborted prematurely as they are unable to safely complete the mission

Flight-label Mesh #1 Mesh #2 Mesh #3 Sparse #1 Sparse #2

Duration (s) 103 137 90 53 74

Distance (m) 120 125 102 62 77

Fig. 6 Distance between the actual UAV’s position and the desired clearance set for the trajectory
generation. While sometimes this error is large, in the mesh-based flights on average it approaches
zero. During flight Sparse #2, the UAV gets too close from the structure and the safety pilot took
over

with the same 1m-resolution as the probabilistic 3D voxel grid representation used
in the planner, essentially constructing a binary image. Using this image we calculate
the distance field to estimate the actual distance of the UAV (from the trajectory’s
ground truth) to the closest part of the structure. Figure6 plots the distance of the
actual position of the UAV to the desired clearance (here, set to 10m). The mesh-
and the sparse-based approaches exhibit comparable performance, probably due to
the fact that the test site was overall sufficiently textured, except the tent region.
Self-similar structure, however, e.g. arising from the vegetation around the structure
of interest, generates erroneous feature matches. While these can be filtered out to
a certain degree during mesh-based flights, for both sparse-based flights this proves
fatal as discussed in Sect. 4.3.
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Fig. 7 All the runs of the proposed pipeline with either options of using the sparse landmark map
or the mesh-based scene representation, shown in the top view (top) and a side view (bottom).
All experiments start from roughly the same position (marked with the square) and have the same
inspection direction. All mesh-based runs autonomously reach the boundaries of the experimental
area (marked with a disc), while both sparse-based runs end prematurely (marked with a star)

4.3 Trajectory Generation and Scene Estimation

Figure7 depicts the 3D trajectories of all five flights, as MISP plans a path, such
that the UAV inspects and follows the structure in the field of view. Each experiment
started at the square marker. An experiment is finished either when the UAV reaches
the boundaries of the experimental area marked with a disc in Fig. 7 or when the
UAV’s trajectory reveals large errors in the estimation processes and the pilot decides
to take over (marked with a star) for safety reasons. More specifically, when the UAV
loses the structure of interest from its field of view, it is a point of no return revealing
that a path is planned on an invalidmap containing toomany outliers, and this leads to
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Fig. 8 The sparse scene estimation (top) at the moment when flight Sparse #1 fails due to the
falsely perceived outlier very close to the UAV (yellow arrow is UAV’s pose at that moment). As
soon as the outlier is encountered a new path is planned (green nodes) around the erroneous obstacle
estimate, causing the UAV to lose track of the structure of interest. For comparison, the denser map
estimated during the successful flight Mesh #3 is superimposed in the bottom image

the decision of ending the experimental flight prematurely. Another case that leads
to premature take-over by the pilot is the segmentation of the ground plane (i.e.
containing no free space) due to vertical drift. This is very problematic situation that
can be more common in our test setup, where we fly close to the ground, however
typically aerial inspection is conducted at high altitudes practically eliminating this
failure case.

As clearly depicted in Fig. 7, both experiments relying on the sparse scene estima-
tion have to be interrupted by the pilot, while all flights employing the mesh-based
alternative are able to reach the boundaries of the flying area. In fact, mesh-based
dense depth estimation exploits the advantage of accessibility to a denser scene esti-
mation accumulated over time (i.e. multiple views of the same area), outliers can be
removed effectively resulting to a far less noisy scene estimation than the sparse coun-
terpart. Generally, most of the outliers in the scene estimation arise during inaccurate
registration of the current view to themap, following inaccurate pose estimation from
SLAM. Such outliers are very unlikely to be replaced by correct measurements later
on in the trajectory, when employing sparse depth estimation traditionally used in
SLAM.
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Fig. 9 The final 3D octomaps retrieved during different flights

Figure8 shows the probabilistic 3D grid map at the moment of the failure of flight
Sparse #1. During navigation, an outlier landmark suddenly gets estimated to be very
close to the current UAV position. As a result, the UAV is forced to move away from
it to maintain the nominal clearance, rotating during this manoeuvre to face to the
direction of this new obstacle that does not really exist, losing in the way the track of
the actual structure to be inspected. In the bottom image of Fig. 8, the dramatically
improved quality of the map when using the mesh-based map is evident.

The top-left image of Fig. 9 illustrates the sparse SLAM map as estimated at the
moment of the failure of flight Sparse #2. In this case, this sparse estimation of
the test site does not provide enough information to permit continuing the SLAM
estimation during the UAV’s rotation necessary for turning at the corner visible also
in Fig. 7, with the planned trajectory expanding through the white tent—hence if the
pilot would not take over, the UAV would collide with the tent.

5 Conclusion

This paper proposes a novel system composed of state-of-the-art vision-based per-
ception and planning able to run onboard a small UAV to perform autonomous aerial
inspection. Without any a priori knowledge of the environment, the UAV’s surround-
ings are estimated in real-time and the UAV’s trajectory to inspect the structure of
interest is constantly re-planned as newly perceived scene information enters the
system. The evaluation of this system on real and challenging experiments outdoors
reveals the power of the proposed method to deal with noisy estimates in the percep-
tion of the UAV’s motion and the scene.
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Sensing Water Properties at Precise Depths
from the Air

John-Paul Ore and Carrick Detweiler

Abstract Water properties critical to our understanding andmanaging of freshwater
systems change rapidly with depth. This work presents an Unmanned Aerial Vehicle
(UAV) based method of keeping a passive, cable-suspended sensor payload at a
precise depth, with 95% of submerged sensor readings within ±8.4 cm of the target
depth, helping dramatically increase the spatiotemporal resolution of water science
datasets. We use a submerged depth altimeter attached at the terminus of a 3.5m
semi-rigid cable as the sole input to a depth controller actuated by the UAV’s motors.
First, we simulate the system and common environmental disturbances of wind,
water, and GPS drift and then use parameters discovered during simulation to guide
implementation. In field experiments, we compare the depth precision of our new
method to previous methods that used the UAV’s altitude as a proxy for submerged
sensor depth, specifically: (1) only using the UAV’s air-pressure altimeter; and (2)
fusing UAV-mounted ultrasonic sensors with the air-pressure altimeter. Our new
method reduces the standard deviation of depth readings by 75% in winds up to
8m/s. We show the step response of the depth-altimeter method when transitioning
between target depths and show that it meets the precision requirements. Finally,
we explore a longer, 8.0m cable and show that our depth-altimeter method still
outperforms previous methods and allows scientists to increase the spatiotemporal
resolution of water property datasets.

1 Introduction

Monitoring shallow surface water systems (<10m) can be a deep challenge for
environmental and water scientists. Hampered by limited boat access, scientists are
further constrained because boating and wading mix the water, disturbing the water
properties under investigation. These water properties include temperature, conduc-
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tivity, dissolved oxygen, and photosynthetically active radiation—all these vary sen-
sitivelywith small changes inwater depth [1]. These stratified properties are linked to
ecosystem health and can predict imminent toxic algae blooms that threaten drinking
water and fisheries and cost billions of dollars worldwide [2, 3].

Currently, scientists deploy static sensor arrays, often a collection of data-loggers
vertically arranged underwater at a static position, and left for days or weeks. Some
sensors used by water scientists requiring settling time (often >3 s), and existing
water science datasets from static sensors have ≈0.25m resolution in depth [4].
These static sensors yield datasets with good temporal resolution, but are limited by
poor spatial resolution because they have to be installed separately at each location.
To increase the spatiotemporal resolution, our prior work presented the first UAV-
based water sampler [5], followed subsequently by several efforts [6–12]. The UAV
flies abovewater while connected by cable to a sensor payload belowwater, as shown
in Fig. 1. Our follow-on work [13] explored in-situ water sensing at different depths
with a UAV-based submerged sensor payload, and found it does not cause mixing
for temperature. However, in this follow-on work the UAV’s air pressure altimeter
caused the submerged sensor towander up and down around the target depth, limiting
precision.

Fig. 1 UAV-system with a
passive cable and sensors for
measuring water properties
at precise depths
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To increase the depth precision of water science datasets, this paper proposes and
experimentally evaluates using a depth altimeter as input to a controller that seeks to
minimize the target depth error using only the UAVsmotors. We assume calmwaters
(‘lentic’, not flowing) and that the UAV is stationary. This is challenging because
the semi-rigid cable between the UAV and the submerged depth altimeter exhibits
non-linear dynamics when bending and descending in water. Fortunately, these depth
sensors are fast (50Hz), light (<5 g), and precise (±3mm), and are already included
in many underwater sensor payloads. We first explore the feasibility of this approach
in simulation includingwind andwater, then use parameters discovered in simulation
to guide implementation, and finally test the implementation of our method in field
experiments.

Our contributions are:

• A new method to maintain a precise depth for a submerged sensor payload while
passively connected by cable to a UAV. We use only a lightweight submerged
depth altimeter, reducing the standard deviation of target depth errors from 16.1
to 4.2 cm compared with the next best method. This method enables increased
spatiotemporal resolution of water science datasets without additional payload.

• Field tests of this depth-altimeter method, with comparisons to two previous meth-
ods: (1) air pressure altimeter alone; and, (2) air pressure fused with ultrasonic
rangefinders. We compare these approaches using a 3.5m cable for water depths
down to 2.5m, showing an reduction of target depth error by 75%.

• An initial exploration of using an 8.0m cable, showing sufficient precision for
sensing at greater depths.

2 Related Work

Previous efforts relate to our current work in several ways: either a UAV is used to
measure water properties, or autonomous surface/underwater vehicles (ASVs and
AUVs) are used to measure water properties, or a UAV makes a pose and altitude
estimation in unknown environments, or a UAV has a cable-suspended load.

Several efforts seek to use UAVs to monitor water properties [6–10, 12]. These
systems use air pressure altimeters to estimate altitude, and like these efforts we seek
to sense water properties with a cable-connected payload, but unlike these works
we focus on precisely controlling the depth of the sensor payload. Systems like the
fixed-wing Flying Fish [14] maintain persistent observation of surface properties,
but cannot detect subsurface properties. Some efforts seek an amphibious UAV [15],
and like this work we are interested in the advantages offered by UAVs to water
monitoring, but unlike this work we seek to minimize water column mixing, that can
take hours to settle. Our previous work presents evidence that sensing by a small,
submerged sensor payload (≈2 cm diameter sensor, 1 cm cable) does not cause a
mixing disturbance that impacts water temperature measurements [13].
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In environmentalmonitoring,Dunbabin [16] usesmultipleASVs to sample green-
house gasses, while underwater the MARES AUV system samples water quality for
long duration at depths up to 100m [17]. Zhang et al. [18] explore water columns
with a gliding, fish-like robot, and Higgins and Detweiler [1] WaterBug descends
passively in a water column to collect a single water sample at a target depth. Unlike
these systems, we want to quickly deploy and redeploy to disconnected or difficult
to reach water bodies.

Several approaches seek to estimate altitude for micro UAVs in unstructured
outdoor environments, including Jain et al. [19], who autonomously explored rivers
using specular laser returns to estimate the plane of the river surface. Unlike this
work we seek a method that minimizes the payload devoted to non-water-property
sensing. Burri et al. [20] use a stereo camera and IMU to map and estimate a pose in
a previously unknown environment, but these methods have not been demonstrated
over water, to our knowledge. Our previous work [7] explores the use of fusing
downward-facing ultrasonic sensors with an air pressure altimeter, and we use this
method for comparison in the current work.

Several efforts model and control cable-suspended payloads from a UAV [21,
22], and assume that the cable can be observed. We likewise use a cable-suspended
payload, but do not attempt to observe the cable during flight.

3 Technical Approach

This section describes our approach to the problem of obtaining precise depth control
of a submerged sensor payload with minimal system complexity while retaining
the benefits of monitoring water properties by UAV. Based on our experience, we
assumed that the biggest obstacles would be non-linear dynamics of the partially
submerged cable and transient lateral disturbances from wind and GPS drift. But we
also wondered about the impact of signal delay in measuring and transmitting depth
readings before the controller can use them. We start by developing a model for how
the cable-connected sensor moves in the water, and then explore the feasibility and
initial parameters in simulation.

3.1 System Model and Simulation to Explore Feasibility

Figure2 shows the UAV modeled as a point mass and the cable as a series of rigid
links, following the approach in [22].We use Simulink for two configurations, a ideal
and perfectly vertical case, and a laterally disturbed case to model wind and GPS
drift.
Modeling the Ideal Case. In the ideal case, the cable is vertical and all forces are
parallel to gravity, as the UAV, cable, and depth altimeter move up and down. When
the UAV moves up, the sensor payload is directly coupled. When the UAV moves
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Fig. 2 Model of
UAV-system hovering over
still water, showing the
suspended cable as a series
of rigid links. The left side of
the figure shows the ideal
case, the right shows the
system during a lateral
disturbance from wind

down, the only forces acting on the payload are gravity and resistance from water.
The resistance from water limits the sensor’s descent rate to slower than the UAV.

To model the descent rate, we started by experimentally determining the terminal
velocity of the sensor in water. We released the sensor at the top of a translucent 3m
vertical water test tank (≈25 cm radius by 4m tall) and measured the time at which
the sensor reached markings of depth 1 and 2m. Using six observations, we estimate
the average terminal velocity, vt , to be 0.54m/s. Then, using the terminal velocity
equation:

vt =
√

2mg

ρACd
(1)

we calculate the constant ρACd , where ρ is the density of water, A is the area in the
direction of the movement, and Cd is the drag co-efficient. Using this constant with
the mass of the sensor,m, and gravity, g, we solve for the resistive force as a function
of velocity:

Ffriction = 1

2
ρACdv

2 (2)

We use Ffriction from Eq.2 to model how the sensor will descend in water. In
simulation, Ffriction limits the descent velocity of the senor payload as well as making
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it drag against lateral disturbances. Decreasing the target depth by <1m allows the
submerged sensor to descend fast enough tomatch the descent of theUAV.Decreasing
the target depth by >1m requires limiting the descent velocity of the UAV to avoid
the UAV outpacing the submerged sensor.
Modeling Lateral Disturbances. Figure2 also shows the lateral disturbance case
from wind or GPS drift. We want to model wind and GPS drift because we believed
lateral disturbances could be a critical impediment to our approach.

To model lateral disturbances, we are inspired by the U.S. Military Wind Gust
Model [23], that uses a sigmoid function that ‘ramps up’ a gust over time. We
model wind as the sum of two smoothed random number sequences that are directly
added to the forces exerted on the UAV in x and y. The two sequences operate at
different time scales, one changing every second and at a small scale, and the other
changing every 15s at a larger scale. Overall, a maximum force of 0.08N tends to
‘blow the system off course’ by about 1–2m, consistent with field observation. Note
that during lateral disturbances, Ffriction acts on the submerged sensor payload and
opposes the translation. The simulation indicates that the UAV-cable-sensor system
remains stable in response to lateral disturbance while controlling depth using the
depth altimeter with the UAV motors. We leave the detailed discussion and analysis
of this for future work.
Modeling Signal Delay and Sampling Frequency. We model signal delay because
of the multiple network hops for depth readings: from depth altimeter to embedded
system to control computer and back to the UAV (as shown in Fig. 3). In simulation,
a signal delay of less than 100ms was required to ensure that the system converges
smoothly to changes in target depth of≈1m, with smaller signal delay yielding only
modest improvements.

We model the sampling rate of the depth altimeter to find a baseline requirement,
and find that at least 10Hz is required. During simulation, the system could still
converge to a target depth with a slow sampling rate of 1.25Hz and a long delay of
700ms, but with significant oscillations.
Key simulation results:

• Depth altimeter sampling frequency >10Hz.
• Signal delay from the depth altimeter to UAV control input <100ms.
• Small transient lateral disturbances do not cause the system to become unstable.
• Limit UAV descent velocity or limit change in target depths to <1m.

We now use these simulation results to guide our implementation.

4 Implementation Details

This section describes the system architecture, depth altimeter characterization, and
descriptions of the three flight modes under test.
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Fig. 3 System architecture

4.1 System Architecture

Figure3 shows the system architecture used during experiments, consisting of: (1)
AscTecFireflyhexrotorUAV; (2) two embedded systems; and, (3) a control computer.

The Firefly includes a GPS and air pressure altimeter as well as an on-board
controller for attitude and position. We chose the Firefly for overwater experiments
because it can return to shore even after one motor fails. It has a payload capacity of
600 g, flies for 15–20 min per battery, and tolerates winds up to 10m/s.

The sensor payload installed on the Firefly consists of two embedded systems, the
first installed on the vehicle and the second waterproof system attached to the end
of the cable that dangles below the UAV. The first embedded system has an NXP-
LPC2368 (ARM7TDMI) microprocessor running a control loop at 50Hz, and has
inputs for a variety of water sensors and is used to log and transmit real-time readings
over radio. The submerged embedded system contains an ATmega-1284pb micro-
processor that reads the depth altimeter at 50Hz. The embedded system installed on
the UAV receives the depth readings and re-transmits them to the control computer.
The control computer is an Apple Macbook “Early 2015” running Ubuntu 14.04
with ROS Jade for control and logging.
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In this architecture, we estimate the complete signal delay from the depth altimeter
to the UAV control input to be 45ms worst case, within the 100ms bound identified
during simulation and described in Sect. 3.1.

4.2 Depth Altimeter Characterization

For the depth altimeter, we use a Measurement Specialties MS5803-01BA [24]
installed on an embedded system, and shown in Fig. 4. By the datasheet, this sensor
is water resistant to 100m with a built-in 24-bit ADC and a 10ms response time,
plus an additional 10ms to read the onboard thermometer to correct for temperature
variation. The 20ms total means a maximum sampling frequency of 50Hz, well
above the baseline 10Hz indicated by simulation.

To characterize the depth altimeter’s steady-state error,we placed it at a fixed depth
in a bucket of 22 ◦C water. Figure5 depicts 10 s of readings, and shows steady-state
error of±3mm.We characterized and corrected for the depth sensor’s bias using the
vertical tank described in Sect. 3.1. Because of theMS5803’s fast response, accuracy
to depths of 10m, and small steady-state error, we use this sensor for comparison
during our field experiments.

Note that changes to ambient air pressure causes pressure changes in water,
impacting depth readings. For example, an air pressure difference of 100mbar across
a strong weather front results in 0.6m pressure difference measured in water depth.
In practice, the depth altimeter must be calibrated for the current air pressure every
few hours by submerging the sensor to a known depth (we used 5 cm). However,
during a 20min flight, the total air pressure change is likely small, and transient air
pressure fluctuations like wind that cause an air altimeter change of ±2m cause a

Fig. 4 The waterproof
embedded system and sensor
payload

Fig. 5 Depth altimeter
steady state error at constant
depth showing ±3mm error
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depth altimeter change of only ±3mm. This makes sense since water is ≈800 times
denser than air.

4.3 Flight Modes: Depth, Air Pressure, Ultrasonic + Air
Pressure

We implement three flight modes: depth altimeter, air pressure altimeter, and ultra-
sonic altimeter. The depth altimeter mode is the new method proposed and imple-
mented in thiswork, and the air pressure and ultrasonicmodes are alternativemethods
for comparison during experiments. Note that the depth altimeter method controls
depth while air pressure and ultrasonic methods control the UAV’s altitude as a proxy
for sensor depth.

Depth altimeter mode controls only thrust, while the UAV controls roll, pitch,
and yaw. On the control computer, the stream of depth readings is passed through a
Kalman filter assuming Gaussian noise (characterized in Sect. 4.2), and we assume a
linear state transition function during hover. The filtered readings are used in a 50Hz
PID position controller for depth that commands thrust.

Air pressure altimeter mode uses the UAV’s onboard controller for everything:
roll, pitch, thrust, and yaw. Air pressure mode uses the UAV’s air pressure altimeter,
GPS, and an onboard IMU together to create a fused pose estimate. This is the basic
‘out-of-the-box’ controller.

Ultrasonic altimeter mode fuses downward-facing ultrasonic sensors with the
air-pressure altimeter to form an altitude estimate. To prevent the ultrasonic sensors
from seeing the cable, the readings from each of the two ultrasonic sensors are pre-
filtered based on both the variance of recent readings and the proximity of readings
to the current altitude estimate, before being passed through a Kalman filter. The
details of this pre-filtering are described in previous work [7].

Now that we have an implementation guided by simulation, we discuss experi-
mental validation in the field.

5 Field Experiments

This section describes the setup of field experiments and presents results. To test our
approach, we designed three field experiments: (1) a comparison of depth precision
for three flight modes with a 3.5m cable and submerged sensor payload; (2) step
responses to changes in target depth for the proposed depth altimeter method; and,
(3) an initial exploration of the depth altimeter method using a longer, 8.0m cable,
measuring precision and step response.

All field experiments were conducted during March 2017 at Wildwood Lake
near Lincoln, Nebraska, USA, as shown in Fig. 6. In total, we flew 33 missions.
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Fig. 6 Wildwood Lake near
Lincoln, Nebraska, USA,
shown with depth contours.
The yellow arrow indicates
location of field experiments.
Map courtesy of Nebraska
Game and Parks

The comparison dataset was collected during three days and the wind average speeds
were 3.5m/s, 2.0m/s, and 1.3m/s, respectively with maximum 5 s wind speed of
8.5m/s, 7.2m/s, and 7.9m/s, respectively, indicating occasional strong gusts. We
measured wind speed and direction using a weather station recording into a time-
synced computer log.

5.1 Comparison of Flight Modes for Maintaining Constant
Depth

The purpose of this experiment is to compare three flight modes and quantify how
preciselywe canmaintain the depth of a sensor payload. The threemodes are detailed
in Sect. 4.3.

We launched the vehicle from a jetty to a sampling location 10m from shore,
indicated in Fig. 6. For these experiments we used a 3.5m cable affixed below the
UAV’s center of mass. For each mission, we flew to the sampling location by human
pilot, descended until the depth altimeter was at least 1m deep, then switched to one
of the computer controlled flight modes. Once in computer control mode, the system
attempts to remain stationary in x and ywhile recordingdepth.Weflew twomodes per
flight, each for ≈4 min. It can be difficult to compare the results of different outdoor
trials, so within a single flight we tested different flight modes successively, and
recalibrated the depth altimeter every few hours to adjust for changing air pressure.
We swapped the flightmode sequence between trials to ensure that nomode benefited
from fresher batteries. In total, we flew 12min maintaining a specified depth for each
mode. We use the depth altimeter reading for comparison, as it is accurate and fast as
described in Sect. 4.2, and use this as a basis for evaluating the target depth precision.

Figure7 show the results of comparing depth precision during the three flight
modes. The data are collated from 3–4 flights per mode. We assume a Gaussian
distribution of target depth errors and estimate the standard deviation σ withMatlab’s
normfit function. As shown in the figure, the depth altimeter mode is significantly



Sensing Water Properties at Precise Depths from the Air 215

Fig. 7 Distribution of target depth error during three flight modes

Fig. 8 Comparison of depth precision using three different flight modes with 5-second-average
windspeeds. Note that the y-axes of all depth figures span 1.8m

more precise than either ultrasonic or air pressure modes. Specifically, the statistical
dispersion of depth readings in depth altimeter mode keeps 95% of readings within
±8.4 cm(σ = 4.2 cm), two standard deviations from the target depth. This is within
our goal of being able to obtain readings with a resolution of at least ≈25 cm. The
ultrasonic-pressure altimeter mode shows σ = 16.1 cm, or 95% of readings within
±32.2 cm of the target depth, while the air altimeter has the largest dispersion, with
95% of readings within ±60.2 cm(σ = 30.1 cm).

To better show the variation of depth readings in eachmode, Fig. 8 shows examples
of 4 min of continuous flight for each mode along with the 5-second-average wind
speeds. As shown in Fig. 8a, depth altimeter mode stays closest to the target depth
with almost no drift and small disturbances, and note than it maintained this target
depth during 5m/s wind gusts. Also note in Fig. 8b how ultrasonic altimeter mode
is not as precise and occasionally deviates almost a meter even with calmer winds,
but does not drift significantly over time, unlike the air pressure altimeter mode.
During the ultrasonic altimeter test, wemoved the UAV closer to the water so that the
ultrasonic rangefinders could get better readings, resulting in greater depth compared
to the other two methods. In Fig. 8c, the air altimeter mode depth readings change
by 30−40 cm in a small amount of time, but that within 2 min the depth readings
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Fig. 9 Step response of depth altimeter mode at 0.5m increments for a 3.5m cable

Fig. 10 Step response of air pressure altimeter mode at 0.5m increments for a 3.5m cable

can be off by ±0.75m. The large drift in air pressure mode is likely caused by larger
changes in ambient air pressure, like wind.

5.2 Step Response of Depth Altimeter Mode for a 3.5m Cable

To determine if the system under depth altimeter control could transition between
target depth reference points, we conduct ‘step response’ maneuvers. Figure9 shows
the step responses under depth altimeter control. For each reference depth, we set the
system to hold a particular target depth, then adjust the target by 0.5m. Notice how
the reference depths are repeatable both ascending and descending and the depth
quickly settles to within ±5 cm of the target depth. For comparison, Fig. 10 shows
the step response for air pressure altimeter mode. We do not show the step response
for ultrasonic altimeter mode because it only works well when close to the water.
We use 0.5m changes to avoid the UAV outpacing the submerged sensor toward the
target depth, until we implement a descent velocity limit, reserved for future work.

5.3 Longer 8.0m Cable: Target Error and Step Response

As an additional experiment, we extended the cable length to 8.0m. The reason we
are interested in a longer cable is that in some applications we want to be able to
measure water properties across a range of depths, nearly all <10m, and we also
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Fig. 11 Target depth error
comparison between 8.0 and
3.5m cables both using
depth altimeter mode over 4
min of flight

Fig. 12 Step response to
target depths at 0.5m
increments for an 8.0m
cable. Note the flat readings
near 550 s indicating the
water bottom

wanted to see what impact a longer cable would have on the ability to control the
depth. Therefore, we field tested the depth altimeter flight mode with the 8.0m cable.
The experimental setup is identical to the depth altimeter mode tests in Sects. 5.1–5.2
other than the longer cable length. We were only able to test the 8.0m cable down
to a depth of ≈4m, due to depth limitations at our field location.

Figure11 shows the results for holding a target depth, and for comparison the
figure shows the distribution of target errors for the 3.5m cable depth altimeter
experiments of Sect. 5.1. As shown in the figure, the 8.0m cable is less precise than
the 3.5m cable, with 95% of readings within ±14 cm(σ = 7.0 cm), still close to the
desired ≈0.25m resolution. The dispersion of target errors for the 8.0m cable still
improves on the ultrasonic and air-pressure altimeter modes, even when those modes
use the shorter 3.5m cable.

Figure12 shows the step response between target depths at 0.5m increments. Like
the system with the 3.5m cable under depth altimeter control, the configuration with
an 8.0m cable can transition precisely between target depths.

Because the 8.0m cable allows the sensor payload to remain within ±14 cm for
nearly all readings, this means an 8.0m cable might be viable for monitoring water
properties down to a depth of 7m, and we intend to explore this in future work.
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6 Discussion and Future Work

The precision for the depth altimeter flight mode exceeded our expectations, espe-
cially while flying in wind gusts at 80% of the manufacturer’s limit of 10m/s. We
believe that controlling depth with a depth altimeter and the UAVsmotors will enable
dramatically better vertical resolution with the advantages of quick deployment and
redeployment by UAV without additional sensors.

One future challenge includes integrating sensor payloads requested by water
scientists. The challenge is that the irregular shapes and configurations of sensors
might result in different drag and terminal velocities.

Fusing altitude and depth data might appear to be natural course, but we see little
advantage in fusing because other sensors measure the UAV’s altitude, not the depth
of the sensor payload. A hybrid controller could switch between flight modes based
on violations of invariants inferred during successful flights [25] (like hitting the bed
below the water, becoming entangled, or getting encased in muck).

We examined the depth error as a function of lateral disturbance (error in x and
y position), like when wind or GPS drift pushes the UAV out of position. However,
we saw no relationship between lateral error and depth error. We plan to explore this
in flowing water (‘lotic systems’) or while the UAV is translating.

Flying over water withmicro UAVs that are not waterproof is inherently risky, and
there are a number of ways to increase the reliability of this kind of system: (1) better
protection from unsafe descent, including conductivity sensors on the cable near the
UAV, and at least one ultrasonic sensor for redundant backup; (2) break-away cable
with a buoy; (3) a protective cover for the depth altimeter to prevent fouling; and,
(4) buoyancy of the UAV.

7 Conclusions

This work explores a novel method for precisely maintaining the target of a sub-
merged sensor payload passively cabled to a UAV. Our method enables 95% of
sensor payload readings within ±8.2 cm of the target depth, increasing the depth
resolution of UAV-based water property datasets. We tested our method in the field
moderately windy conditions (4−8m/s) and the system still quickly and accurately
reached and maintained target depths. The non-linear dynamics of a system with a
semi-rigid cable are challenging to model as it interacts with wind and water. Still,
we used simulation to guide and refine our approach before implementation.We con-
ducted field experiments that validate the approach, resulting in a 75% reduction in
standard deviation from a target depth when compared to the previous best method.
We also presented initial results for a longer, 8.0m cable, the longest cabled sensor
system yet attempted in UAV-based sub-surface water monitoring, and demonstrated
that even an this length the approach allows water monitoring at precise depths from
the air.
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Autonomous and Safe Inspection
of an Industrial Warehouse by a Multi-rotor
MAV

Alexandre Eudes, Julien Marzat, Martial Sanfourche, Julien Moras
and Sylvain Bertrand

Abstract This paper reports field tests of autonomous inspection in an industrial
indoor facility by a Micro-Air Vehicle (MAV) with no prior knowledge on the
environment. Localization, mapping and safe navigation is achieved using only the
embedded sensors (stereo-vision, IMU, laser altimeter) and with the entire percep-
tion and control loop running on-board of the MAV. An overview of the algorithmic
architecture and design choices is provided and the focus is put on mission and safety
capabilities that have been demonstrated via several flight tests defined in association
with SNCF (French Railways) in one of their train storage warehouse.

1 Introduction

Building inspection and surveillance can benefit from the use of Micro Air Vehicles
(MAVs) to provide additional or complementary data (in terms of nature or point
of views) that can be used for diagnosis and maintenance. If outdoor inspection of
buildings involves taking measurements at high altitudes, for which the use of MAVs
can be helpful, this is also the case for indoor inspection of industrial warehouses.
In this case, MAVs can be used to perform autonomous and repeatable inspections
inside the warehouse to assess the state of the building (walls, pillars, high altitude
structures, ceiling, etc.) or provide information on objects of interest stored or located
inside (number and location of goods, for example).
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This paper considers autonomous inspection by a multi-rotor MAV inside a ware-
house owned by SNCF (national French railway company) where maintenance of
trains and storage of spare parts are performed. Several major issues arise regarding
such a task. First the MAV should be able to localize itself in an indoor environment
(no GPS) while taking into account possible changes in this environment (stored items
moved between two flights). The flight and inspection should be fully automatic,
from take-off to landing, to lessen the dependence on a human telepilot and increase
repeatability. In addition, robustness with respect to signal loss must be ensured as the
vehicles evolve over long distances in a potentially electro-magnetically perturbed
environment (motor coils, etc.). Finally, safety must be guaranteed with respect to
possible workers entering the area of inspection.

Related work
In [13], Shen et al. present a MAV system able to navigate indoor, inside a multi-
floor building. They use a setup composed of one lidar, one camera and an IMU
to demonstrate self-localization, mapping, path planning and autonomous control
functionalities. In [3], Fraundorfer et al. propose to use a MAV for autonomous
exploration and mapping in GPS-denied environment. The MAV is equipped with
a stereo camera, an optical flow camera looking downward and an ultrasonic range
sensor. The MAV achieves visual odometry using the stereo camera which is fused
with the attitude estimated from IMU, the optical flow of the third camera and the
ultrasonic range measurement. The system computes a 3D occupancy grid that is
used to make a frontier-base exploration of the area. In [11] Omari et al. propose to
use a remotely operated MAV for industrial inspection applications. Their platform
is equipped with a stereo camera sensor that is used to compute visual odometry and
state estimation tightly coupled with an IMU. The MAV also computes an Octomap
representation of the environment which helps the pilot by preventing collisions.
In [1], Beul et al. use an hexarotor MAV controlled by a 3DR Pixhawk Autopilot.
The perception stack uses an omni-directional and heterogeneous sensor system
composed of three stereo cameras and two Hokuyo lidar sensors mounted on a
moving plate. They achieve localization by combining visual odometry and lidar, as
well as environment modeling in order to avoid obstacles.

In [2], Fang et al. address the problem of robust autonomous navigation in difficult
environments like inside a ship. Their work propose a robust pose estimation system
based on the fusion of RBG-D sensor, downward optical flow camera, downward
lidar punctual sensor and an IMU using a Monte Carlo approach. This is coupled
with a path planning system based on Receding Horizon Control to navigate between
way-points.

In line with these research efforts, the proposed solution is based on the devel-
opment of a fully embedded software architecture exploiting a stereo-vision system
(in association with an IMU and a laser telemeter) which performs on-board all the
functionalities required for safety and mission fulfillment: localization and mapping,
planning, control, obstacle detection and avoidance, safety supervision. This paper
presents this on-board architecture and its validation through field flight experiments
in a large-scale indoor facility with operational interest for industrial End-Users.
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The paper is organized as follows. In the next Section, a description of the indus-
trial warehouse, of the MAV platform and of the scenarios of inspection are pro-
posed. The overall on-board architecture and the associated algorithms are described
in Sect. 3. Section 4 addresses the supervision of the flight and the safety functional-
ities. Finally, before concluding remarks, results of flight validation experiments are
proposed in Sect. 5 for the considered scenarios of inspection.

2 Environment, MAV Platform and Scenarios Descriptions

2.1 Industrial Warehouse

The industrial warehouse in which inspections have to be performed belongs to the
French national railway company (SNCF) and is located in Sotteville-lès-Rouen. It is
used as a maintenance workshop for trains and as a storage place for spare parts (see
Fig. 1). The part of the warehouse dedicated to storage has been used for the flight
experiments presented in this paper. The corresponding flight volume is defined by
a ground area of 25 m by 50 m with an altitude of 10 m under ceiling.

2.2 MAV Platform

The flight experiments described here are conducted on a Pelican quadrotor base
from Asctec (Fig. 2). The proprietary Flight Control Unit (FCU) includes IMU,
3D-magnetometer and processors dedicated to low-level control (attitude stabiliza-
tion). The FCU is linked to an embedded computer containing an Intel i7 quadcore
(2.1 GHz) which handles the complete perception and control chain presented in

Fig. 1 Industrial environment: SNCF infrastructure warehouse in Sotteville, France
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Fig. 2 ONERA MAV (based on an Asctec platform) with stereo-vision sensors, lidar altimeter
(right) and embedded processing capabilities

Fig. 3. All processing is achieved on-board so the MAV is fully autonomous and
robust to communication loss during the execution of the mission. In addition to
the IMU, the sensor setup includes a 22 cm-baseline stereo-rig composed of two
USB2 cameras, electronically synchronized, offering a 100◦ field of view and a laser
telemeter pointing downward for altitude measurement (for take-off and landing).

2.3 Inspection Scenarios

Typical scenarios of inspection in the warehouse consist in recording pictures or
measurements provided by additional on-board sensors (e.g. FLIR camera) of dif-
ferent objects of interest: walls, high altitude structures, spare parts stored in the
warehouse. This requires to automatically take-off, fly over long distances to reach
areas of inspection, perform the inspection and fly back for automatic landing. Dur-
ing the flight, obstacle avoidance can be performed in case of trajectories conflicting
with detected static or dynamic obstacles. The trajectories of inspection are defined
by way-points or trajectory coordinates given either in the global frame associated
to the warehouse or in the local frame associated to a specific point whose global
location is known or detected during flight. In addition, sensor characteristics (range,
field of view, orientation) must be taken into account for the inspection as the mis-
sion performance is directly impacted by the MAV trajectory (measurement overlap
between two parts of the trajectory, relative distance and/or line-of-sight constraints
to the object to be inspected, etc.).

Two scenarios representative of realistic inspection tasks have been defined. The
first one consists in inspecting objects of interest defined by global coordinates in
the warehouse. More precisely, we chose two elements to be inspected, a metallic
structure located at an altitude of 7 m that the MAV must follow and inspect and
a load located over a platform around which the MAV must turn in order to take
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pictures. The second scenario consists in performing the inspection of a wall section
whose location is not a priori precisely known, but which can be detected by some
specific characteristic (e.g. visual tag). To also validate safety requirements, avoid-
ance situations with respect to static and mobile obstacles are considered in a third
scenario.

3 On-Board Navigation System

The embedded navigation system uses ROS to link together the numerous software
components of the global architecture from Fig. 3. Besides hardware related compo-
nents (interface with sensors or other computers), we distinguish 3 main functional
blocks described in the following subsections: multi-sensor state estimation, envi-
ronment modeling and control.

3.1 Multi-sensor State Estimation

The low-level controller provides a reliable estimate of the orientation. Therefore,
the vehicle state vector contains only the position and linear velocity in the reference
frame aligned with gravity and centered on the IMU-frame origin at the beginning
of the mission. The state is estimated by a linear Kalman filter as in [8]. Given the
initial pose, the state is predicted by integration of accelerometer and attitude mea-
surements at 100 Hz. The correction is performed at video-rate (20 Hz) thanks to the
pose computed from stereo-images by eVO [12], a keyframe-based visual odometry
algorithm. eVO builds a map of isolated landmarks automatically initialized from
images (no prior map) as in Visual-SLAM. Compared to state-of-the-art SLAM
and other odometry algorithms, eVO is oriented towards low computational cost and
includes some simplifications concerning the map updates: the landmarks are pruned
when they leave the sensor field of view and the landmarks localization is not refined
in a multi-view optimization scheme. Nevertheless, the drift on the localization is
of the class 1% of the traveled distance. A detection of outliers is performed on the
innovation of the Kalman filter which compares the state predicted using only the
IMU with the position computed by visual odometry. If this difference is larger than
the expected MAV velocity, an alarm is raised and the emergency mode activated
(see Sect. 4). A second Kalman filter estimates independently the ground height and
vertical velocity from the laser telemeter measurements and IMU attitude. It is only
used during automatic take-off and landing or emergency stabilization.
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Fig. 3 Perception-control loop for autonomous navigation with obstacle avoidance

3.2 Environment Modeling

In order to be able to avoid collision in such a cluttered environment, mapping
is performed on board. To handle both static and mobile objects, we consider a
dual model representation. An occupancy grid approach is used to model the static
environment while a feature-based (bounding box) approach is used for mobile object
detection.

The static mapping module is composed of 3 subtasks as shown in Fig. 3. First, a
stereo matching algorithm is used to compute a dense disparity map from a rectified
pair of stereo images. Here, we used the ELAS (Efficient Large-scale Stereo Match-
ing) algorithm [4]. This disparity map is used to triangulate a dense point-cloud that
is integrated in a well known Octree-based occupancy grid representation named
Octomap [6]. This approach models the space with a set of voxels organized into an
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Octree structure where each voxel can be either occupied or free. A Bayesian estima-
tion is performed, so each voxel stores its probability to be occupied and the cell then
a MAP decision rule is taken when needed. Note that this probabilistic framework
ensures that mobile obstacles are not included in this map, since several successive
observations of the same point are mandatory. Finally, with the resolution of the map
used (0.1 m), an Octomap representation for checking collisions over each potential
trajectory would be inefficient, because of the large number of voxels to be tested.
A solution to this problem is to additionally compute a distance-field to the closest
obstacle during the map update. For this purpose, we apply an Euclidean Distance
Transform (EDT) [7] to the Octomap. This mapping updating process is performed
at each keyframe.

The detection of mobile objects is based on the analysis of sparse optical flow
computed on Harris corners, which are located in 3D by stereo. We assume here that
mobile objects are clusters of features which violate two-views and three-views geo-
metrical constraints between two successive stereo-images and spatially consistent
with the dimensions of a pedestrian. The first step consists in classifying into moving
and static features. The classification is done in a two-tests cascade, firstly by the
OpenCV robust RANSAC-based fundamental matrix estimator then, for the inliers,
by the robust pose estimator implemented in eVO [12]. In a second step, the can-
didate moving image features are clustered. A Delaunay triangulation gives access
to the rough 3D structure localized in inertial frame thanks to the pose estimated
by the multi-sensor state estimator (cf. Sect. 3.1). Triangles are pruned according to
their size and orientation (only the most vertical ones are retained). The remaining
connected triangles form candidate objects. We finally compute 3D bounding cylin-
ders and select those whose width is inside a specified range. The mobile object
raw detection is fed into a Kalman filter tracker in order to remove false alarms
and to make prediction of the obstacle position in the next steps. The state vector is
composed of the object position, its height and radius. A constant velocity model is
used to predict the future positions of the object for avoidance purpose. The entire
processing takes less than 100 milliseconds on the MAV embedded CPU.

3.3 Safe Way-Point Navigation and Trajectory Tracking

The control algorithm is designed to track a reference trajectory or to reach a way-
point defined by the user (in the way-point case, a straight-line trajectory at constant
velocity is generated). Since the environment can be highly cluttered and no prior
assumption is made, an avoidance module for static or mobile obstacles has been
defined. It relies on a model predictive control (MPC) algorithm which exploits the
perception information from the previous subsection. A MPC scheme relies on a
prediction of the dynamical model on a time horizon to take into account future
MAV behavior and interaction with the environment. The design of the controller
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relies on a simplified linear acceleration model, for which an analytical MPC linear
quadratic solution has been obtained for trajectory tracking in the nominal case.

To guarantee the safety of the vehicle and the operators, the MPC algorithm is
adapted to avoid any obstacle that can be found on the reference trajectory. The
distance map information on the static environment and the future mobile object
positions are combined to obtain a single distance to the closest obstacle at each
position of the MAV predicted trajectory. If there is a risk of collision on the nomi-
nal predicted trajectory, an additional control input is then selected in a predefined
discretized set so as to optimize a cost function on the prediction horizon which is a
weighted sum between tracking the reference trajectory and respecting a parameter-
ized safety distance from any obstacle [9]. The resulting acceleration control input,
which is equal to the sum of the nominal and avoidance inputs, is then translated into
thrust, roll angle, pitch angle and yaw rate and forwarded to the low-level Asctec
controller.

4 Flight Management and Safety Functions

We have implemented a flight manager which supervises the execution of the auto-
matic mission. It includes a mission scheduling editor, a mission scheduler associated
to a state machine, the supervision of critical functions and an emergency manager.
All of these features contribute to make MAV operation easier and more robust to
sensors or software failures, which is of tremendous importance when such auto-
matic functionalities are deployed on the field (where no motion capture system is
available, unlike in laboratory).

4.1 Mission Planning and Execution

A mission scheduler allows the operator to define the content of the mission and to
configure and execute each task during the mission. The plan is built from a combi-
nation of simple tasks such as: way-point goto, viewpoint constraints, waiting steps,
user confirmation and more high level tasks like: take-off, land, start wall inspection.
A 3D representation of the plan allows an easy mission planning, verification and
visualization of the execution (Fig. 7).

The autonomous mission execution is managed by the state machine depicted in
Fig. 4. The automatic take-off is triggered by the safety pilot who starts the engine
and pushes the thrust stick up to a predefined level, settled near the stability thrust
level for easier manual recovery action. It should be noted that after these basic
human tasks all the missions are carried out in full autonomy. After the take-off,
an on-line calibration permits to adjust some controller parameters. The mission
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Fig. 4 State machine for flight management

starts and the predefined plan is executed after the MAV reaches and keeps hovering
around a target point at a given altitude above the starting point. The landing mode
is activated either when the MAV reaches the landing way-point or if the ground
station operator triggers an emergency landing. In the nominal case, the landing is
done autonomously thanks to relative altitude measurements from laser telemeter. In
the emergency case, depending of the state of the MAV, the emergency landing can
be fully autonomous or semi-autonomous.

4.2 Supervision and Emergency Manager

In order to handle any issues occurring during the mission, an emergency stack
is running on board. This stack is composed of a supervisor monitoring different
parameters (module status, sensor activity, etc.). An emergency event is triggered
when some parameters are abnormal: loss of a software node, inconsistency between
vision and IMU, no safe trajectory found by the MPC module. An emergency event
can also be triggered when the ground station operator activates the emergency switch
or when the safety pilot pushes any stick outside of a dead zone. Figure 5 presents the
different states of the emergency stack. The event sets the MAV in Emergency Stop
mode. In this mode the MAV suspends its mission and holds its position using all
functional sensors and modules. In the case where all critical functions are faulty, the
MAV sends a warning signal to the safety pilot and falls back inManual control mode.
When the MAV is in Emergency Stop, the ground station operator can evaluate the
situation in order to check what triggered the emergency event. Finally, he can decide
to go out of emergency mode and continue the mission, to activate an emergency
landing or to ask the safety pilot to recover the MAV in manual mode.
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Fig. 5 Emergency management

5 Flight Experiments

Scenario 1
In this first scenario, we demonstrated inspection tasks planned before the mission.

This type of mission definition is especially useful for periodic inspection. Different
types of trajectory are provided to allow an easy and efficient planning (example in
Fig. 6). Figure 7 shows the inspection plan of a bridge and two pillars which is very

Fig. 6 3D model autonomously built on-board by the MAV while following a long-distance refer-
ence trajectory (in red) composed of portions of ellipses and lines
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Fig. 7 Trajectory and 3D model built during the inspection scenario. The mission scheduling
appears as white text indications over the map

difficult to execute by a human pilot due to height and visibility conditions. We also
added the possibility to define a viewpoint function. When this function is active, the
yaw is controlled to ensure that a target point is always kept in the field of view. This
allows the operator to define trajectories that automatically observe an object from
multiple points of view (Fig. 8).

Scenario 2
An automatic wall inspection task has been developed. This task consists in scan-

ning a wall and ensuring its complete coverage by a dedicated sensor. The wall scan-
ning zone is defined by an AprilTag [10] located at the center, predefined dimensions
(height and width) and a desired scanning distance. The execution of the task is
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(a) ViewPoint Snapshots

(b) ViewPoint Trajectory

Fig. 8 Action of the viewpoint constraint on a L-shape trajectory. The targeted point is located
behind the trolley
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(a) Tag detection (embedded view) and
trajectory planning

(b) Trajectory tracking for wall scanning
(external view)

Fig. 9 Automatic wall inspection modus operandi

(a) Collision detection and control
input computation

(b) Final avoidance trajectory

Fig. 10 MPC static obstacle avoidance

carried out as follows. When the tag is detected, the MAV is guided to a position
in front of the wall to be able to correctly estimate the AprilTag orientation. The
orientation of the wall plane is then refined robustly from the point-cloud computed
by ELAS [5]. Assuming this model, the desired scanning distance and the field of
view of the payload sensor, a trajectory that covers the wall with the given field of
view is planned as a succession of linear segments that are then tracked by MPC
(Fig. 9).

Scenario 3
To tackle inaccuracies or mistakes during preflight mission planning, changes in

the environment or presence of mobile obstacles, the internal MPC algorithm ensures
collision avoidance during the plan execution. Figure 10 shows an example where
the original plan (in thin red) passes through a pole. During the execution, the safety
distance constraints were not satisfied and the MPC planned reactively an avoidance
trajectory (final trajectory in bold red). Figure 11 illustrates the successful avoidance
of a mobile obstacle with the same algorithm. These safety situations have been
successfully repeated several times.
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(a) Detection, estimation and motion prediction of mobile obstacle

(b) Mobile obstacle avoidance (external view)

Fig. 11 Detection, localization and avoidance of mobile obstacle

6 Conclusion

In this work, we demonstrated the capability for a MAV to navigate autonomously
in an unknown GPS-denied environment in order to achieve different missions in an
industrial context. The system presented relies on advanced embedded functional-
ities such as visual odometry, multi-sensor fusion, environment modeling and path
planning and control. The complexity and diversity of the different scenarios tested
on the field led us to add a flexible mission manager and several safety functionalities
in order to increase the reliability of the system. Field experiments in an industrial
facility have shown the soundness of the proposed approach. This is an important
step towards the operational deployment of such autonomous MAV solutions for
inspection, which will make it possible to relax the constraints on human operators.
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Online Multi-modal Learning
and Adaptive Informative Trajectory
Planning for Autonomous Exploration

Akash Arora, P. Michael Furlong, Robert Fitch, Terry Fong,
Salah Sukkarieh and Richard Elphic

Abstract In robotic information gathering missions, scientists are typically
interested in understanding variables which require proxy measurements from spe-
cialized sensor suites to estimate. However, energy and time constraints limit how
often these sensors can be used in a mission. Robots are also equipped with cheaper
to use navigation sensors such as cameras. In this paper, we explore a challenging
planning problem in which a robot is required to learn about a scientific variable
of interest in an initially unknown environment by planning informative paths and
deciding when and where to use its sensors. To tackle this we present two inno-
vations: a Bayesian generative model framework to automatically learn correlations
between expensive science sensors and cheaper to use navigation sensors online, and
a sampling based approach to plan for multiple sensors while handling long hori-
zons and budget constraints. Our approach does not grow in complexity with data
and is anytime making it highly applicable to field robotics. We tested our approach
extensively in simulation and validated it with real data collected during the 2014
Mojave Volatiles Prospector Mission. Our planning algorithm performs statistically
significantly better than myopic approaches and at least as well as a coverage-based

A. Arora (B) · S. Sukkarieh
Australian Centre for Field Robotics, The University of Sydney, Sydney,
NSW, Australia
e-mail: a.arora@acfr.usyd.edu.au

S. Sukkarieh
e-mail: salah@acfr.usyd.edu.au

P. M. Furlong · T. Fong · R. Elphic
NASA Ames Research Centre, Moffet Field, CA, USA
e-mail: padraig.m.furlong@nasa.gov

T. Fong
e-mail: terry.fong@nasa.gov

R. Elphic
e-mail: richard.c.elphic@nasa.gov

R. Fitch
Centre for Autonomous Systems, University of Technology Sydney, Sydney,
NSW, Australia
e-mail: robert.fitch@uts.edu.au

© Springer International Publishing AG 2018
M. Hutter and R. Siegwart (eds.), Field and Service Robotics, Springer Proceedings
in Advanced Robotics 5, https://doi.org/10.1007/978-3-319-67361-5_16

239



240 A. Arora et al.

algorithm in an initially unknown environment while having added advantages of
being able to exploit prior knowledge and handle other intricacies of the real world
without further algorithmic modifications.

1 Introduction

In robotic information gathering missions, scientists are often interested in variables
or phenomenonwhich cannot directly bemeasured butmust be observed through cor-
related proxy measurements. Examples include mapping water abundance in remote
environments by measuring neutron flux [1], inferring the health of aquatic life by
monitoring chemical concentrations [8], and searching for evidence of life on Mars
through biomarkers [16]. These proxy measurements often requires specialized ‘sci-
ence’ sensor suites such as spectrometers, subsurface drills and sample processing
equipment. These are typically either energetically expensive to use, require the robot
to remain stationary or have finite capacity limiting how often they can be used given
energy constraints and short life spans of many robotic missions.

Robots are also equipped with sensors that are inexpensive in time and energy,
such as navigation sensors like cameras or LIDAR. Learning relationships between
underlying scientific phenomena of interest and the different inexpensive sensors
on-board will allow scientists to better understand phenomena without incurring
the prohibitive cost of exhaustively sampling large environments with specialized
sensors. Given the locations to be explored are often remote and mostly unknown,
this relationship should be learned or updated in situ. Robots that can predict latent
science variables at a reduced cost will be able to plan paths and sensor usage more
effectively which increases science return, mission productivity and allows the robot
to operate at higher levels of autonomy.

In this paper we formulate a sensor planning problem in which a robot equipped
with multiple sensors has to learn about a latent scientific variable. The robot must
plan paths on a graph representation of the environment and decide when and where
to use each sensor, constrained by a sensing budget and a goal position. Sensor corre-
lations are modeled by a Bayesian network (BN) generative model, the parameters of
which are learned online as observations are made. Reasoning about the network to
plan informative sensing sequences is, however, a challenging optimization problem.
We calculate approximate solutions by applying Monte Carlo Tree Search (MCTS)
techniques [5]. The combination of BNs and MCTS allows the robot to learn and
update sensor correlations recursively in a manner which is constant in the number
of samples collected and plan informative sensing sequences in an anytime manner.
These two properties make our approach highly applicable for online use in robots
with limited computational capabilities.

We apply our general approach to a scenario modeled on the Mojave Volatiles
Prospector (MVP) project, conducted byNASAAmesResearchCenter in theMojave
Desert in 2014 [11]. The purpose of the MVP project was to test high tempo remote
operations while attempting to estimate abundance of subsurface water. KRex2,



Online Multi-modal Learning and Adaptive Informative Trajectory Planning … 241

Fig. 1 KRex2 in the Mojave Desert. KRex carried a neutron spectrometer system (NSS) and a
near infrared visible light reflectance spectrometer (NIRVIS). The robot autonomously drove and
localized itself at the command of remote scientists. The data that it collected was georegistered
and presented to the backroom of a team of 30 scientists who adapted their plans in response to
data updates

the robot used in MVP and pictured in Fig. 1, was equipped with several sensors
including a downwards facing camera and a Neutron Spectrometer (NSS) which
produces measurements that can be correlated with the abundance of subsurface
water. The NSS has a small field of view and measurement requires the robot to
drive slowly to avoid spatial blurring of readings. NSS is an inexpensive sensor to
use, but we use it as a stand-in for more involved subsurface sampling operations.

At the end of theMVP project, the sensor data was analyzed and it was determined
that there was a relationship between the visual properties of terrain and the corre-
sponding NSS readings [9]. If this relationship was learned automatically during the
mission, scientists could have made more informed decisions regarding where to
direct the robot and deploy sensors to maximize understanding of subsurface water
distribution. The MVP project was a precursor to the planned Resource Prospector
project which aims to deploy a robot with a similar sensor suite on the moon andmap
the abundance of surface volatiles [1, 11]. Learning sensor correlations online will
make the science return of the RP mission much greater, a significant boon given the
project is limited to one lunar day of operations.

We illustrate our key ideas both in simulation and with real data acquired from
the MVP project. There the robot deduces the water abundance in an environment
by autonomously planning paths, sensor placements and simultaneously learning the
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relationship between visual properties of terrain and NSS readings. We demonstrate
that our approach is statistically significantly better than myopic approaches and
comparable to the non-adaptive coverage based planners in initially unknown envi-
ronments, a result consistent with [13]. Our approach has the added benefit of being
generalizable to an arbitrary number of sensors and able to exploit prior knowledge
when it’s available without further algorithmic modifications.

2 Related Work

Robotic exploration and sensor planning to gain information about the world is an
informative path planning problem. Greedy approaches are effective and offer per-
formance guarantees when the problem is submodular [15]. Unfortunately, this prop-
erty often broken with path dependent rewards often present in field environments.
Branch and bound techniques which prune suboptimal branches early in the tree
search have shown promise [3, 12] but efficiently calculating tight bounds in prob-
lems with unknown environments and multiple sensors becomes non-trivial. There
are also various heuristic approaches but they either do not generalize to unknown
environments or cannot plan for multiple sensors without significant algorithmic
modifications.

In field applications of information gathering, several approaches have been pro-
posed. Thompson and Wettergreen used a greedy algorithm to design maximally
informative trajectories for constructing spatial maps of multi-spectral data [18].
Wettergreen et al. extended this in [19] to design trajectories that explore regions
of orbital maps that cannot be explained with previous observations—actively solv-
ing the spectral unmixing problem. Girdhar and Dudek [10] used a database of
observations to detect anomalous data. Similar to our approach, a generative model
was learned online by directing the robot towards these anomalies. However these
approaches used very short planning horizons and do not make decisions about using
expensive secondary sensors to gain information.

Tabib et al. [17] explored a search and rescue application where their robot plans
trajectories that maximize the information gained by two different sensors which
measure the geometry and temperature of the environment. It is assumed that the
instruments are constantly collecting data, instead of actively switched on which
simplifies the planning problem. Furthermore, it is assumed that the two sensors
are conditionally independent while in our problem, being able to learn and exploit
relationships between sensing modalities is fundamental.

Arora et al. used a Bayesian network to model relationships between sensing
modalities and the phenomena they are trying to measure [2]. The work assumes
the relationship between sensors is known a priori while in this paper we learn this
relationship online. Furthermore, the work uses a greedy planner while here we
explore long horizon planning and incorporate goal constraints.

Das et al. [7] builds a map of underwater plankton abundance by planning the
deployment of a low cost sensor which measures environmental parameters and an
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expensive ‘plankton’ sensor. To achieve this, twoGaussian Processes (GPs) are used.
The first maps spatial co-ordinates to environmental parameters while the second
maps environmental parameters to plankton abundance. The robot samples from
locationswith high plankton uncertainty,where the uncertainty is propagated through
both GPs via the Unscented Transform. However the computational complexity of
GPs grows with the number of collected samples. Using this framework in online
adaptive planning applications like ours is not amenable to long-term operation with
the limited computing resources in field robots.

3 Problem Setup

Like MVP we consider a ground vehicle exploring an open environment searching
for subsurface water abundance. The operating environment is discretized into a grid
where the robot is required to estimate the abundance of water, W , in each grid cell,
n. While the robot can be equipped with an arbitrary number of sensors, for ease of
illustration, we consider the case with two sensors: a camera which can be used to
classify terrain in a cell and a neutron spectrometer (NSS) which returns counts that
are positively correlated with water abundance.

The robot plans action sequences, a1:L , to maximize the expected information
gained, EI, on the water distribution in each cell. The camera always takes measure-
ments but the robot must actively decide when to use the NSS. The robot must also
reach a goal position, xgoal , before it exhausts the operating (motion and sensing)
budget of the mission, B. The optimization objective is:

a∗
1:L = arg max

a1:L∈A
EI(a1:L)

s.t. cost(a1:L) ≤ B

s.t. xend(xstart, a1:L) = xgoal

(1)

A is the action space of the robot which contains the movements the robot can
take in the next time step and the decision of whether on not to use the NSS. We
define the action space as the four cardinal directions but any motion models can be
used here. Similarly, any general cost function can be used and we define ours in
Sect. 5. The expected information gain is given by Eq.2 where H(·) is the Shannon
entropy, Wn is the water abundance in a cell n and N is the total number of cells in
the environment.

EI(a1:L) =
N∑

n=1

[H(Wn) − H(Wn|a1:L)] (2)

Each action produces some stochastic observation Zs which reveals information
about thewater distribution, where s ∈ {Image,NSS}. The expected information gain
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of a sensing sequence is computed over all possible observations that can result from
each sensing action in the sequence:

EI(a1:L) =
N∑

n=1

⎡

⎣H(Wn) −
∑

Z1:L

H(Wn|Z1:L)P(Z1:L |a1:L)
⎤

⎦ (3)

P(Z1:L |a1:L) is the sensor noise model while the H(Wn|Z1:L) term is a function
of the robot’s belief on the environment and the sensor correlations.

4 Approach

The overall proposed architecture is shown in Fig. 2. Instead of specifying paths and
sensing waypoints directly, our framework allows scientists to simply provide a goal
position constraint, sensing budget and the variable they are interested in learning
about- a useful capability in remote environments with communication constraints.
We now describe the two main components of our approach: a generative model
for learning sensor correlations online and an anytime, approximate path planner
(MCTS) to find approximate solutions to Eq.1.

Scien st

Robot’s internal belief

Planner Sensor correla on model

Naviga on 
and Control

Environment

Budget
Goal posi on
Variable of interest

Sensor 
observa ons

Next waypoint
Sensor choice

Take 
observa on

Update belief
Belief of 

environment

Robot
Informa on on 
variable of interest

Fig. 2 The overall systems architecture for our approach
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Fig. 3 Bayesian generative
sensor correlation model.
The model can be extended
to an arbitrary number of
sensors and adapted to
incorporate sensor
dependencies that come with
specific applications

Wn

ZNSSn

Tn

ZIn

N

4.1 Modeling and Learning Sensor Correlations

Loosely inspired from topic modeling literature [4], we structure the dependencies
between the NSS observations and the camera with the generative model shown in
Fig. 3. The NSS observes the water distribution W in a cell n through observations
ZNSS. The camera observation is denoted by ZI while T is the class of terrain. A
conditional probabilistic relationship between terrain and water classes is parame-
trized by θ and hyperparameters α which are learned during the mission as data is
collected. We assume all nodes are discrete variables but the observation nodes can
directly handle continuous data as well. The probabilistic mapping from T and W
nodes to their corresponding observation nodes is deduced from the sensor/classifier
model the robot is using. Unsupervised dimensionality reduction techniques can also
be applied here.

In this section we derive the Bayesian update for the beliefs of nodes Wn , Tn and
θ as observations are made in a cell. We define:

P(W |T = t) ∼ Categorical(θt ) (4)

θt ∼ Dirichlet(αt) (5)

θ = [θ1, θ2, . . . , θT ] (6)

By applying Bayes Theorem and exploiting conditional dependencies in the
Bayesian network, the beliefs on the water abundance and terrain types can be
updated using Eq.7 where η is the normalization constant. For compactness, we
drop the subscript n from the terms Wn and Tn .
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P(W |ZI , ZNSS) = ηP(ZNSS|W )P(W |ZI )

= ηP(ZNSS|W )
∑

T

P(T |ZI )P(W |ZI , T )

= ηP(ZNSS|W )
∑

T

P(T )P(ZI |T )P(W |ZI , T )

= ηP(ZNSS|W )
∑

T

P(T )P(ZI |T )

∫

θ

P(W |T, θ)P(θ)dθ

= ηP(ZNSS|W )
∑

T

P(T )P(ZI |T )

∫

θ

θ P(θ)dθ

= ηP(ZNSS|W )
∑

T

P(T )P(ZI |T )E(θ)

(7)

Similarly, we can iteratively update belief on terrain by evaluating:

P(T |ZI , ZNSS) = ηP(T )P(ZI |T )
∑

W

P(ZNSS|W )E(θ) (8)

Since θ is modeled by a Dirichlet distribution, E(θ) can be efficiently calculated
by normalizing the corresponding hyperparameters. We can update θ using Eq.9.
For compactness we define the full observation vector Z = [ZI , ZNSS].

P(θ |α, Z) =
∑

T,W

P(θ |αini t , Z , T,W )P(T,W |Z)

=
∑

T,W

P(θ |αini t , T,W )P(T,W |Z)
(9)

Since P(θ |α, Z) is also a Dirichlet distribution (conjugate prior) we can calculate
the posterior by updating the hyperparameters αw,t = αw,t + P(W = w, T = t |Z)

for all values of W and T , where w ∈ {1, . . . , |W |} and t ∈ {1, . . . , |T |}. When |W |
and |T | become large, Gibbs sampling approaches in topic modeling literature can
be used to approximate this update [10]. When a terrain cell is observed we also
update the terrain beliefs in neighboring cells using a Gaussian kernel.

4.2 Planning

Given the generative BNmodel, the robot needs to plan paths in an initially unknown
environment and decide when to use the NSS to maximize the information gained
on the water distribution in the map cells, described in Algorithm 1. As per the
optimization objective in Eq.1, the planned paths and sensing sequences must meet
mission budget constraints and arrive at the goal location, xgoal .
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Algorithm 1 Our algorithm uses MCTS for the planner(·), which is executed after
every action.
1: Input: SensingBudget S, BeliefSpace Bel, RemainingBudget R, GoalPosition xgoal
2: function Main
3: R ← S
4: while R > 0 do
5: robot Pose ← get Localisation()

6: aopt ← planner(robot Pose, R, Bel, xgoal )
7: Z ← takeObservation(aopt )
8: Bel ← updateBelie f Space(Z , Bel)
9: R ← R − cost (aopt )

Solving Eq.1 for large environments, long mission durations and large observa-
tions spaces quickly becomes intractable, especially for field robotswith limited com-
putational resources. Therefore we explore approximate online planning approaches
where in each time step the robot executes the first action in the calculated plan
and adaptively updates plans as new observations are taken. To tackle this sequential
decisionmaking problem,we employ theMCTSplanning algorithm- a best first, any-
time algorithm popular in game playing literature, which like our problem requires
reasoning about both long horizons and stochasticity [5].

We formulate theMCTS such that each node in the tree is a potential movement or
sensing action that can bemade. It is a tuple consisting of the robot’s x and y position,
a binary variable indicating whether the NSS was used and the remaining sensing
budget. MCTS then iteratively builds a tree by selecting leaf nodes to expand using
a tree policy, estimating terminal rewards associated with the leaf by conducting
simulations or ‘rollouts’ in the decision space and back-propagating the reward up
the tree. The process is repeated until some computational budget is reached, at which
point the root child with the highest average reward is selected as the action to be
executed.

We use the Upper Confidence Tree policy to select which leaf nodes to expand,
which is a popular approach known to produce good results [14]. For the simulation
phase, a random action selection policy is used from the leaf node to the goal position.
In this problem instance, the reward of the policy rollout is the expected information
gained on water distribution across the map after the policy has been executed,
where information gain is defined by Eq.2. Exact computation of the reward involves
averaging over all possible observations that can result from the rollout sequence
which quickly becomes intractable. We approximate information gain by sampling
observations from the robot’s belief of the map and simulating a belief update. As
number of iterations increases, the MCTS converges to the optimal sensing action
sequence. This formulation gives us a principled approach to incorporate multiple
sensors in planning and simultaneously handle long horizons and uncertainty in an
anytime manner.
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Algorithm 2MCTS Algorithm
function planner(robot Pose, R, Bel, xgoal )

T ← ini tialiseTree(robot Pose, R)

current Node ← T .root Node
while within computational budget do

current Node ← treePolicy(T )

simSeq ← de f ault Policy(current Node, R)

reward ← get Reward(simSeq, Bel)
T ← updateTree(T, reward)

return bestChild(T )

5 Analysis

Asmentioned in Sect. 2 there are several algorithms in literature for informative path
planning [3, 12]. However, these approaches are not suitable for tackling situations
in which the robot has to simultaneously decide when to activate secondary sensors
in addition to planning informative paths which adhere to budget and goal constraints
in initially unknown environments. We therefore compare the performance of our
approach with the following three baseline algorithms:
Random: At each time step the robot determines the set of actions it can execute
in the next step without breaking the goal position and sensing budget constraint. A
random action is chosen out of this set. The random policy serves as a baseline for
algorithm performance.
Greedy: At each time step, out of the reachable action set, the robot selects the action
with the highest expected information gain of the water abundance to sensing cost
ratio. This is given by:

a∗
next = arg max

a∈A

∑
z I (z)P(z|a)

cost (a)
(10)

Greedy algorithms are popular in similar field applications [10, 18] due to their
simplicity and depending on the problem, submodularity.
Lawnmower: We use a ‘lawnmower’ pattern to get uniform coverage of the envi-
ronment. Here we arbitrarily allocate 50% of the sensing budget to the path and 50%
to using the NSS. A lawnmower-like path which adheres to the initial and final posi-
tions and the budget is designed manually and the NSS is used at uniform intervals
along the path.

Our approach, MCTS-50 (50 iterations were used for MCTS) was evaluated
against the baseline algorithms on 50 randomly generated 20 by 20 voronoi maps
with fixed start and goal positions. Terrain, water, and the observation nodes were
categorical variables with three classes. The true correlation between terrain type and
water class (initially unknown to the robot) was set to be 0.85. I.e. given the terrain
class, the water class could be predicted with 85% accuracy. Sensor noise for the
terrain was set to be 10% while the NSS had 5%. All unobserved nodes were given
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an uniform prior and the α hyperparameters were initialized to a value of 1. The cost
of movement was 1 unit per cell while the NSS required 5 units. Two performance
metrics were used: information gain and the average posterior probability of the
correct class of water in the cells which we call the recognition score.

Mean and standard deviation is reported and statistical significance is shown with
the paired t-test p-value and the effect size using Cohen’s d. Negative values of d
indicate that the performance of the proposed algorithm is greater than the compared
algorithm. The magnitude of d gives the size of the effect, with d > 0.2, d > 0.5
and d > 0.8 being thresholds for small, medium and large effects respectively.

The results are shown in Tables1 and 2. In terms of average information gain,
we statistically significantly outperform random and greedy policies with notable
effect sizes (bolded). For the recognition score, the performance improvement is less
pronounced. This is because the robot only observes a small proportion of the map
and the unseen areas dominate the score.

The performance of the lawnmower is comparable to MCTS in these simulated
experiments. In completely unknown and open environments, paths which provide
good spatial coverage of the environment are indeed a logical and effective way to
gain information. Inmore realistic environmentswith obstacles, planning lawnmower
paths becomes more complicated. When environmental obstacles are known a priori
Choset’s approach can be applied [6]. In unknown or partially known environments,
however, additional replanning would need to occur as obstacles are discovered,
something our approach already does. Further, adapting the lawnmower approach
to an arbitrary number of sensors would require a way to split the sensing budget
across the different sensing modalities, which the MCTS optimizes automatically in
a principled manner. While the 50–50 budget split between paths and NSS produced
good results in the simulation setting, there is no guarantee that performance will
continue to be competitive in longer missions and large environments.

In roboticmissions, there is usually someprior knowledge available such as orbital
maps or scientific beliefs on what the robot is likely to see. A key advantage of our
approach is that we can easily encode this knowledge in the form of Bayesian priors.
Orbital maps can be encoded by biasing the prior distribution of terrain types while
scientific knowledge of known sensor correlations can be incorporated by incre-
menting the α hyperparameters. Unlike the standard lawnmower, our approach will
automatically take advantage of this information without algorithmic modifications.
To verify this, we ran 50 trials with a sensing budget of 140 where the robot’s belief
of the correct terrain type was initialized to 0.5 instead of a uniform distribution.
MCTS outperformed the lawnmower with p-values and effect sizes of <0.001 and
≈−0.5 respectively for both information gain and recognition scores.

The computational time of MCTS depends on the remaining sensing budget and
problem size. For our MATLAB implementation, 50 iterations took between 0 and
5 s. With more efficient memory management, optimized implementation and par-
allelization, significant speed boosts can be achieved which will further boost the
performance of MCTS as more iterations can be carried out.
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6 Results with Mojave Data

Sincemuch of the data from theMojaveDesert test sitewas collected in line traverses,
we selected 100 pairs of ground camera images and NSS counts from this dataset
and redistributed them into a 10 by 10 grid to simulate a field environment. Typical
ground camera images are shown in Fig. 4. The images from the MVP dataset are
quite noisy with both strong shadows and regions with saturation.

The data now needs to be transformed into a representation that can be fed into the
generative model. While any black box classifier model can be used for this, we use a
simple example based classifier for illustration. We selected image subsets based on
domain knowledge of the terrain classes present and used these to define four cluster
centers. Candidate images are then classified based on the closest cluster centre
in intensity space. The labels are transformed into soft evidence using a confusion
matrix derived from training data. Similarly, k-means clustering with three clusters is
used to probabilistically classify NSS counts into water abundance. The probabilistic
classifications are fed into the BN as soft evidence. Continuous data can also be
directly fed into the proposed generative model as long as the probabilistic mapping
from T and W nodes to observations can be determined.

We compareMCTS-50 and the lawnmower algorithms on 20 randomly generated
10 by 10 maps with a sensing budget of 40. We ran two sets of trials with NSS costs
of 5 and 2 units. Since the sensing budget of 40 is relatively small, by reducing the
cost of NSS, the latter trial artificially increases the planning horizon and intends to
show the resulting changes in performance.

The results are shown in Fig. 5. In terms of information gain, MCTS is on average
better than lawnmower for this sample and statistically significantly when the NSS
cost is 2. There is a larger performance gap compared to the simulations. This is
because, doing a 50–50 split in the lawnmower budget allocation is no longer as
effective for this map size, sensing budget and sensor model. Like in simulations,
we assumed an initially unknown environment and further improvements can be
expected with the integration of prior knowledge. In terms of recognition score,

(a) Pavement Terrain Type (b) Transition Terrain Type (c) Wash Terrain Type

Fig. 4 Different types of terrain in the MVP test area. Pavements were found to be associated with
high NSS counts, while washes had low NSS counts. The transition terrain was in between washes
and pavements and had moderate NSS counts.
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Fig. 5 Comparison of information gain and recognition scores for lawnmower and MCTS for
different NSS costs

MCTS is slightly lower than lawnmower in NSS-5 and similar in NSS-2 but remains
statistically indifferent like in simulations.

7 Conclusions and Future Work

Being able to reason about scientific latent variables of interest to plan informative
sensing sequences is an important problem in field robotics. We have presented a
scalable approach to automatically learn sensor correlations online and a sampling
based approach to plan long horizon sensing sequenceswhich is anytime and incorpo-
rates budget and goal position constraints. Our simulations and real data experiments
show we significantly outperform myopic approaches which are popular in similar
applications and compete with maximum coverage paths in unknown environments.
Our approach can also exploit prior knowledge when it is available without further
algorithmic modifications. In future work we would like to incorporate unsupervised
approaches to classification and evaluate our approach on different applications such
as remote sensing and agriculture.
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Season-Invariant Semantic Segmentation
with a Deep Multimodal Network

Dong-Ki Kim, Daniel Maturana, Masashi Uenoyama
and Sebastian Scherer

Abstract Semantic scene understanding is a useful capability for autonomous
vehicles operating in off-roads. While cameras are the most common sensor used
for semantic classification, the performance of methods using camera imagery may
suffer when there is significant variation between the train and testing sets caused
by illumination, weather, and seasonal variations. On the other hand, 3D informa-
tion from active sensors such as LiDAR is comparatively invariant to these factors,
which motivates us to investigate whether it can be used to improve performance in
this scenario. In this paper, we propose a novel multimodal Convolutional Neural
Network (CNN) architecture consisting of two streams, 2D and 3D, which are fused
by projecting 3D features to image space to achieve a robust pixelwise semantic seg-
mentation.We evaluate our proposedmethod in a novel off-road terrain classification
benchmark, and show a 25% improvement in mean Intersection over Union (IoU)
of navigation-related semantic classes, relative to an image-only baseline.

1 Introduction

For autonomous vehicles operating in unstructured off-road environments, under-
standing their environment in terms of semantic categories such as “trail”, “grass”
or “rock” is useful for safe and deliberate navigation. It is essential to have robust
scene understanding as false information can result in collisions or other accidents.
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Fig. 1 An image-based CNN [2] trained on a sunny summer dataset (top row) cannot predict
robustly when a test dataset has severe appearance variations, such as on a cloudy winter dataset
(bottom row)

An important step toward scene understanding is semantic image segmenta-
tion, which classifies an image at a pixel level. In recent years, deep Convolutional
NeuralNetworks (CNNs) have achieved the state-of-the-art in semantic segmentation
[1–7], surpassing traditional computer vision algorithms.However,we have observed
segmentation performance for CNNs suffer when there exist significant appearance
variations between the train and testing sets, caused by illumination, weather, and
seasons (Fig. 1). A straightforward solution is to add more training data with the rel-
evant variation factors, but this approach is expensive because of the effort required
to collect data and label the ground-truth for training.

Instead, an effective approach to address this problem is to use an additional,
complementary, sensor, such as LiDAR. Whereas a camera has advantages in the
range of vision and the density of data, a LiDAR has an advantage in invariance
to appearance variation caused by illumination, weather, and seasons. Thus, a com-
bined approach using an image and 3D point clouds collected by LiDAR creates
opportunities for CNNs to take advantage of their complementary characteristics.
However, the following questions still remain open: (1) how to jointly use the two
sensors for image segmentation, and (2) what features from each modality are useful
for robust segmentation.

In this work, we propose a solution in terms of a deep multimodal network, which
jointly uses image and 3D point cloud data, and outputs a segmented image. Our
main contribution is a frameworkwith projectionmodules that enable themultimodal
network to learn 2D and 3D feature representations, but also combine the features
in different domains effectively during training to segment an image robustly. To
evaluate the robustness of our method to appearance variations, we assembled a
labeled dataset of image and LiDAR captured from a modified All-Terrain Vehicle
operating in an off-road location across two different seasons, winter and summer.
We show that our proposed approach is highly accurate and significantly more robust
to this variation than image-only baselines.
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2 Related Work

In general, relevant approaches for semantic scene understanding broadly fall into
one of two classes depending on the number of input modalities: unimodal (e.g., only
image input) or multimodal (e.g., image and 3D point cloud).

2.1 Unimodal Image-Based Approaches

Semantic segmentation of RGB images is an active research topic. Many successful
approaches use graphical models, such as Markov or Conditional Random Fields
(MRFs or CRFs) [8–11]. These approaches often start with an over-segmentation
of an image into superpixels and extract hand-crafted features from individual and
neighboring segments. A graphical model uses the extracted features to ensure the
consistency of the labeling for neighboring regions.

Instead of relying on engineered features, CNN-based approaches have achieved
the state-of-the-art segmentation performance by learning strong feature represen-
tations from raw data [1–3]. The main difference between CNN approaches is the
network architecture. Shelhamer et al. [1] introduce the use of skip layers to refine the
segmentation produced by so-called deconvolution layers. Badrinarayanan et al. [2]
propose an encoder-decoder architecture with unpooling layers. These architectures
use the relatively slow VGG [12] architecture. To reduce computational costs, an
important goal for robotics, Paszke et al. [3] apply a bottleneck structure, motivated
by [13], to build an efficient network with a small number of parameters but similar
accuracy to prior models. We base the image-based part of our network on these
architectures.

2.2 Multimodal Approaches

Researchers have used image and 3D point clouds for scene understanding. In one
of the main inspirations for our work, Munoz et al. [14] train two classifier cas-
cades, one for each modality, and hierarchically propagate information across the
two classifiers using a stacking approach. Newman et al. [15] describe a framework
that classifies an individual LiDAR data by the Bayes decision rule and support-
vector machines, and uses the majority consensus to label superpixels in an image.
Cadena andKošecká [16] propose aCRF framework that enforces spatial consistency
between separate feature sets extracted from two sensor’s coverage. Alvis et al. [17]
extract appearance features from images for CRF and obtain global constraints for
sets of superpixels from 3D point clouds.

There are also several CNN-based approaches using RGB and Depth (RGBD)
representations, usually from stereo or structured lighting sensors. Couprie et al. [4]
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combine feature maps of multiscale CNNs from RGB-D and superpixels obtained
from an RGB image to segment an image. Gupta et al. [5] extract CNN features
both from the color and the encoded depth to detect objects in indoors. They demon-
strate that the augmented features computed based on object detections improve the
segmentation performance in [18].

A recent, relevant RGBD approach is that of Valada et al. [6]. In this approach
identical 2DCNNs are first learned to segment differentmodality input. Then features
of different modalities are fused by summing up feature maps of each CNN’s output
and processed later (late-fusion convolution approach).Whereas their fusion happens
at the output of each CNN model (late-fusion), we consider incorporating features
hierarchically from the other modality as multiple levels of abstractions learned by
CNN have proven beneficial [7].

A critical difference of our approach to methods using RGBD, is that we learn not
only 2D features, but also 3D features. 3D features contain useful spatial information,
which is hard to learn in 2D.

3 Proposed Approach

Our objective is to predict four semantic classes (“High Vegetation”, “Rough Ter-
rain”, “Smooth Terrain”, “No Info”) for safe navigation in off-roads. Cameras are
the most common sensor used for scene understanding because it has advantages
in a long range of vision (e.g., obstacles can be detected in the far distance) and
dense data. However, the performance of an image-based CNN may suffer when
there exists a significant variation between the train and testing image sets caused
by illumination, weather, and seasonal variations. On the other hand, 3D informa-
tion from LiDAR is comparatively invariant to these factors. We additionally use a
3D point cloud data to help CNN learn a more robust set of features to appearance
variations.

Our deep multimodal network (Fig. 2) jointly uses an image from a camera and
a 3D point cloud from a LiDAR, and outputs a segmented image. Our framework
consists of an image network that learns 2D feature representations from an image,
a point cloud network that learns 3D feature representations from a point cloud, and
a projection module that propagates the learned 3D features to the image network.
The propagation of the 3D features enables the image network to combine 2D/3D
features and learn a more robust set of features during training. In this section, we
describe these major components of our multimodal network in detail.

3.1 Image Network

The goal of an image network is to learn 2D feature representations θ2D from images
that minimize the categorical cross-entropy loss. A network should have a good
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Fig. 2 Our multimodal network takes inputs of an image and a 3D point cloud. Our network learns
and combines 2D/3D features; and outputs a segmented image. (point cloud colored by the intensity)

Fig. 3 ENet modules [3] used in our network. max : maxpooling layer with non-overlapping 2 ×
2 windows. up: upsample layer by a factor of 2. conv: either a regular, dilated, or asymmetric
convolution layer. bn: batch normalization. regulari zer : spatial dropout. 1 × 1 with down or up
arrow: 1 × 1 convolution to reduce or expand channels

segmentation performance, but also have fast prediction time and a small number
of parameters to be easily embedded in a real-time autonomous system. In this
work, we design the network based on ENet [3], which has demonstrated its similar
performance to existingmodels (e.g., SegNet [2]) but withmuch faster inference time
and much smaller number of parameters. ENet has the encoder part (initial, stage
1–3) and the decoder part (stage 4–5), which consist of the initial, downsample,
upsample, and bottleneck module described in Fig. 3. The bottleneck module has
an architecture of a single main branch and a separated branch with convolutional
filters. We use it several times in each stage, which enables the network to be deeper
with less vulnerability to the network degradation problem [13]. ENet architecture
is described in Fig. 5 (the above network). We refer readers to [3] for more details
about the network.
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Fig. 4 Visualization of roughness and porosity feature. The terrain area shows a low roughness and
low porosity, relatively to the vegetation area. We omit empty voxels for visibility. Axis notation:
x-axis (red), y-axis (green), z-axis (blue)

3.2 Point Cloud Network

Similarly to the image network, the point cloud network learns 3D feature represen-
tations θ3D that minimize the categorical cross-entropy loss in the 3D modality. For
our experiment, we use the image network (Sect. 3.1) but in 3D by using the 3D
convolution layer, max-pooling layer, and upsampling layer.1

We want to predict semantic classes of a high vegetation and a terrain as these
commonly appear in off-roads. Intuitively, we would expect that the terrain area to be
smoother compared to the high vegetation area; and the space containing vegetation
to be relatively more porous compared to the terrain area. Maturana and Scherer [19]
use this intuition and train a 3D CNN with the porosity as input to predict a landing
zone detection. Similarly, we provide the roughness and the porous feature (Fig. 4)
as input to the network, instead of a raw point cloud. Our hypothesis is that these
features represent the desired semantic classes better than a raw point cloud.

For each grid voxel2 indexed by (i, j, k), we calculate the roughness feature R3D
i, j,k

by calculating themean residual fromafitted plane to each point inside the voxel [20]:

R3D
i, j,k = 1

N

N∑

n=1

|Axn + Byn + Czn + D|√
A2 + B2 + C2

(1)

1For performance reasons, we simplify the point cloud network by replacing the dilation layer and
asymmetric layer with the regular convolution layer. Also, we replace the deconvolution layer with
the upsample layer followed by the 3 × 3 × 3 convolutional layer with stride 1. For simplicity, we
use the same term “deconvolution”.
2Point cloud is represented by the 3D voxel grid as a convolutional architecture requires a regular
input data format.
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where N is the number of points inside each voxel, x , y, z are the position of each
point, and A, B, C, D are the fitted plane parameters for N points inside the voxel (i.e.,
Ax + By + Cy + D = 0). For empty voxels (i.e., no points), we assign a constant
negative roughness value of −0.1.

For the porosity feature P3D
i, j,k , we use the 3D ray tracing [21] to obtain the num-

ber of hits and pass-throughs for each grid voxel. Then we model the porosity by
updating Beta parameters αt

i, j,k and β t
i, j,k for the sequence of LiDAR measurements

{zt }Tt=1 [19]:

αt
i, j,k = αt−1

i, j,k + zt (2)

β t
i, j,k = β t−1

i, j,k + (1 − zt ) (3)

P3D
i, j,k = αt

i, j,k

αt
i, j,k + β t

i, j,k

(4)

where α0
i, j,k = β0

i, j,k = 1 for all (i, j, k), zt = 1 for the hit, and zt = 0 for the pass.

3.3 Projection Module

The projection module first projects the 3D features learned by the point cloud
network onto 2D image planes. Then the bottleneck module in Fig. 3 is followed so
that better feature representations can be propagated to the image network.

In terms of the projection, we map each voxel’s centroid position (x, y, z) with
respect to the LiDAR onto the image plane (u, v) by the pinhole camera model:

s

⎡

⎣
u
v

1

⎤

⎦ =
⎡

⎣
fx 0 cx
0 fy cy
0 0 1

⎤

⎦ [
R | t]

⎡

⎢⎢⎣

x
y
z
1

⎤

⎥⎥⎦ (5)

where fx , fy , cx , cy are the camera intrinsic parameters, R and t are the 3× 3 rotation
matrix and the 3× 1 translation matrix from a camera to a LiDAR, respectively. We
sample (x, y, z) for every voxel size from the original point cloud dimension (e.g.,
16 × 48 × 40 in Fig. 5). This is to address a problem that the projection becomes
sparse due to the 3Dmaxpooling layers that reduce a dimension of a point cloud. We
apply the z-buffer technique to account pixels that have multiple LiDAR points pro-
jected onto the same pixel location. Then, we use the nearest-neighbor interpolation
to downsample the projected image planes to match the size of the image network’s
layer that the projection module will be merged to (Sect. 3.4).

We consider a fixed volume of 3D point clouds with regard to a LiDAR (Sect. 4.3).
Thus, voxel locations and their corresponding projection locations in the image
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Fig. 5 Our multimodal network architecture. The upper 2D part is the image network, and the
lower 3D part is the point cloud network. They are connected via the projection modules. ENet
modules refer to the modules in Fig. 3. The number below the bottleneckmodule indicates a number
of times that the module is used

network are constant if the dimensions of a point cloud and an image are same
(e.g., projection for stage 1 and 4). In practice, we pre-compute indices of voxel
locations and their corresponding pixel indices, and use them inside the network.

3.4 Multimodal Network

Figure5 summarizes our multimodal network architecture: the point cloud network
learns 3D features from the roughness and porous point cloud, the projection module
propagates the 3D features to the image network, and the image network combines
the 3D features with the 2D features extracted from images. We apply the projection
modules to the outputs of the initial and the stage 1–5 because multiple levels of
features learned by CNN are beneficial [7].

4 Results

We evaluate our method through a series of experiments. The experiments analyze
the ability of our framework to robustly segment images despite the appearance
variations caused by illumination, weather, and seasonal variations.

4.1 Dataset

We collected our dataset using a modified All-Terrain Vehicle (Fig. 6a) with a
camera and aLiDAR,HDL-64E,mounted. To acquire datasetwith a large appearance
variation, we collected our data on two separate dates: summer sunny day in July
2016 (24 sessions) and winter cloudy day in January 2017 (2 sessions). Because the
amount of winter data collected is considerably small and not enough to train our
multimodal network, we only use summer data for training. We divide the dataset
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Fig. 6 a Our all-Terrain vehicle used for collecting the dataset. The vehicle has a camera on the
front and a LiDAR on the top. b GPS coordinates overlayed on a geo-referenced satellite map to
visualize the data distribution

based on sessions: train (17 summer sessions), validation (4 summer sessions), test
summer (3 summer sessions), and test winter dataset (2 winter sessions). For the
K-fold cross validation in Sect. 4.4, we set the test datasets, but randomly shuffle
train/validation sessions. Data distribution for one of the K-fold cross validations is
shown in Fig. 6b. We note that there is no overlap between the train, validation, and
test datasets. Among the K-folds, the train data has 7.2k pairs, and the validation data
has 1.7k pairs of an image and a point cloud in average. The test data for summer
has 1.3k pairs, and the test data for winter has 0.6k pairs.

Our ground-truth semantic labels consist of 4 classes: “High Vegetation”, “Rough
Terrain”, “Smooth Terrain”, and “No Info”. To effectively label the ground-truth and
minimize the human error, we first construct a registered point cloud by stitching
point clouds over time (Fig. 7a). Then we manually label the registered point cloud
in the point cloud space between the terrain and high-vegetation class (Fig. 7b). We
separately label another cloud with labels between the rough terrain and smooth
terrain using the Eq.1 (Fig. 7c). We merge the two labeled point clouds into one
cloud with three classes (Fig. 7d). To get image labels, we project the final labeled
point cloud onto an image plane. We consider voxels with no points and pixels with
no LiDAR points projected as the no info class.
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(a) (b) (c) (d)

Fig. 7 The point cloud ground-truth generation procedure. a Point clouds are first registered. b
The terrain and high-vegetation class are labeled manually. c The rough and smooth terrain class
are labeled automatically using Eq.1. d Final labeled point cloud is acquired by merging labeled
point cloud (b) and (c)

4.2 Architectures

We compare the performance of our method (Ours-Proj) against baselines. The first
baseline (Mode) classifies each pixel based on a pixelwise mode of the labels in
the train dataset. Because off-roads have a general structure of trail on center and
vegetation on sides, this baseline is significantly better than chance. The second
baseline, SegNet is a popular encoder-decoder image segmentation network [2]. The
third baseline, Ours-Image, is the image network of our multimodal network without
the point cloud network and the projectionmodules. The last baseline (Ours-RGBRP)
is same as Ours-Image, but its input to the network is 5 channels (RGB, Roughness,
Porous) by projecting the point cloud network’s inputs onto the image planes and
treating them as additional channels similarly to the color channels. Ours-RGBRP
baseline compares the effectiveness of the learning and propagation of the 3D features
against learning 2D features.

We also explore options for Ours-Proj with different locations of the projection
module. We experiment with a single projection module for each stage, encoder
projections (initial and stage 1–3), and decoder projections (stage 4–5).

4.3 Training Details

All input and label images are resized to 224 × 224 px. With respect to the LiDAR,
we have a fixed volume of point cloud: −3.0 to 0.6m (z-axis), 3.0–17.4m (x-axis),
and−6.0 to 6.0m (y-axis), where the axis corresponds to the one in Fig. 4. The voxel
size is 0.3m, so the input and label point clouds have a dimension of 12 × 48 × 40
(z, x, y-axis). The intrinsic and extrinsic parameters in the projection module are
calibrated off-line. To reduce a GPU memory required for training Ours-Proj, we
first separately train the point cloud network. Then we remove the deconvolution
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and softmax layer in the point cloud network, connect with the image network via
the projection modules, and train the image network and projection modules by
fixing the point cloud network’s weight. Except for SegNet, all learning methods are
based on Theano. For SegNet [2], we use its publicly available code. We train all
learning methods from scratch. We use the validation data to determine weights for
the testing.

4.4 Experimental Results

Wereport a quantitative performancewith the per-class Intersection overUnion (IoU)
and average precision-recall (PR) in Tables1 and 2. The numbers correspond to the
mean and standard deviation of the K-fold cross validations, where K = 5.

Thanks to the off-road’s general structure, Mode works reasonably well for both
summer and winter. However, there are no pixelwise modes for the rough terrain
class, due to a small number of the rough class relative to the other classes. The
performances between the unimodality networks (SegNet and Ours-Image) and the
multimodality networks (Ours-RGBRP and Ours-Proj) are comparable for summer.
But, the multimodal networks outperform the unimodality networks for winter. For
instance, Ours-Proj shows a 25% improvement in mean Intersection over Union
(IoU) of the navigation-related semantic classes (i.e., semantic classes except the
no info class) relative to SegNet. Between Ours-Proj and Ours-RGBRP, Ours-Proj
shows improved IoU and PR. Especially, Ours-Proj predicts the smooth terrain class
accurately than other baselines. The results imply that the learning and propagation
of 3D features help the network learn more robust feature representations. The quali-
tative results (Fig. 9) support our quantitative results. Videos of the qualitative results
can be found at: http://frc.ri.cmu.edu/~dk683/fsr17/fsr17.mp4.

Fig. 8 Feature map visualization for each projection module’s output

http://frc.ri.cmu.edu/~dk683/fsr17/fsr17.mp4
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Fig. 9 One of the K-fold cross validation qualitative results
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The IoU scores for the winter’s rough terrain class is small due to a little amount
of the class in the winter label. We note that the multimodal methods can have
advantages in predicting the no info class because the ground-truth for the class
is based on the LiDAR projection. However, the multimodal networks still show
improved results for the navigation-related classes.

In terms of Ours-Proj with the different projection module locations, empirical
results show that the option of the encoder projections (initial and stage 1–3) achieves
the best segmentation performance (similar results to the full projections described
in Fig. 5). For a single projection module, the early fusion (stage 1 or 2) has better
results than the late fusion (stage 4 or 5).

4.5 Network Visualization

Figure8 shows featuremaps for each projectionmodule. Each featuremap represents
a particular feature on an input that a filter looks at, so it helps understand what 3D
features are propagated to the image network and why they improve the results.

The visualization shows that filters focus on lower horizontal planes (e.g., terrain),
vertical planes on both side (e.g., high vegetation), or diverse combinations of spatial
focus based on height, width, and depth. These are helpful 3D spatial features that are
hard to learn in the image domain. Thus, the joint training with 2D and 3D features
would explain why Ours-Proj achieves the best performance.

5 Conclusion

We describe a novel deep multimodal network consisting of two streams, a 2D CNN
and 3D CNN, which are merged by projecting the 3D features to image space to
achieve a robust pixelwise semantic segmentation. We demonstrate the ability to
segment robustly despite of the challenge of severer appearance variation caused by
seasons. Future works include faster prediction time for a real-time operation.

Acknowledgements We thank the Yamaha Motor corporation for supporting this research.

References

1. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional models for semantic segmentation. In:
Proceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015)

2. Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: A deep convolutional encoder-decoder
architecture for image segmentation. arXiv:1511.00561 [cs.CV] (2015)

3. Paszke, A., Chaurasia, A., Kim, S., Culurciello, E.: ENet: a deep neural network architecture
for real-time semantic segmentation. arXiv:1606.02147 [cs.CV] (2016)

http://arxiv.org/abs/1511.00561
http://arxiv.org/abs/1606.02147


270 D. -K. Kim et al.

4. Couprie, C., Farabet, C., Najman, L., LeCun, Y.: Indoor semantic segmentation using depth
information. arXiv:1301.3572 [cs.CV] (2013)

5. Gupta, S., Girshick, R., Arbeláez, P., Malik, J.: Learning rich features from RGB-D images for
object detection and segmentation. In: Proceedings European Conference on Computer Vision
(ECCV) (2014)

6. Valada, A., Oliveira, G.L., Brox, T., Burgard, W.: Deep Multispectral Semantic Scene Under-
standing of Forested Environments Using Multimodal Fusion. In: Proceedings International
Symposium on Experimental Robotics (ISER) (2016)

7. Hariharan, B., Arbeláez, P., Girshick, R., Malik, J.: Hypercolumns for object segmentation and
fine-grained localization. In: Proceedings IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2015)

8. Farabet, C., Couprie, C., Najman, L., LeCun, Y.: Learning hierarchical features for scene
labeling. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 35(8), 1915–1929 (2013)

9. Ladický, L., Sturgess, P., Alahari, K., Russell, C., Torr, P.H.S.: What, where and how many?
combining object detectors and CRFs. In: Proceedings European Conference on Computer
Vision (ECCV) (2010)

10. Micusik, B., Košecká, J., Singh, G.: Semantic parsing of street scenes from video. Intl J. Rob.
Res. (IJRR) 31(4), 484–497 (2012)

11. Xiao, J., Quan, L.:Multiple view semantic segmentation for street view images. In: Proceedings
IEEE Intl Conference on Computer Vision (ICCV) (2009)

12. Simonyan, K., Zisserman A.: Very deep convolutional networks for large-scale image recog-
nition. arXiv:1409.1556 [cs.CV] (2014)

13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
arXiv:1512.03385 [cs.CV] (2015)

14. Munoz, D., Bagnell, J.A., Hebert, M.: Co-inference for multi-modal scene analysis. In: Pro-
ceedings European Conference on Computer Vision (ECCV) (2012)

15. Newman, P., et al.: Navigating, recognizing and describing urban spaces with vision and lasers.
Intl J. Rob. Res. (IJRR) 28(11–12), 1406–1433 (2009)

16. Cadena, C., Košecká, J.: Semantic segmentation with heterogeneous sensor coverages. In:
Proceedings IEEE Intl Conference on Robotics and Automation (ICRA) (2014)

17. Alvis, C.D., Ott, L., Ramos, F.: Urban scene segmentation with laser-constrained CRFs. In:
Proceedings IEEE/RSJ Intl Conference on Intelligent Robots and Systems (IROS) (2016)

18. Gupta, S., Arbeláez, P.,Malik, J.: Perceptual organization and recognition of indoor scenes from
RGB-D images. In: Proceedings IEEEConference onComputerVision andPatternRecognition
(CVPR) (2013)

19. Maturana, D., Scherer, S.: 3D convolutional neural networks for landing zone detection from
LiDAR. In: Proceedings IEEE Intl Conference on Robotics and Automation (ICRA) (2015)

20. Scherer, S., Chamberlain, L.J., Singh, S.: Online assessment of landing sites. In: Proceedings
AIAA Infotech@Aerospace (2010)

21. Amanatides, J., Woo, A.: A fast voxel traversal algorithm for ray tracing. In: Proceedings
Eurographics (1987)

http://arxiv.org/abs/1301.3572
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1512.03385


StalkNet: A Deep Learning Pipeline
for High-Throughput Measurement
of Plant Stalk Count and Stalk Width

Harjatin Singh Baweja, Tanvir Parhar, Omeed Mirbod and
Stephen Nuske

Abstract Recently, a body of computer vision research has studied the task of high-
throughput plant phenotyping (measurement of plant attributes). The goal is to more
rapidly and more accurately estimate plant properties as compared to conventional
manual methods. In this work, we develop a method to measure two primary yield
attributes of interest; stalk count and stalk width that are important for many broad-
acre annual crops (sorghum, sugarcane, corn, maize for example). Prior work of
using convolutional deep neural networks for plant analysis has either focused on
object detection or dense image segmentation. In our work, we develop a novel
pipeline that accurately extracts both detected object regions and dense semantic
segmentation for extracting both stalk counts and stalk width. A ground-robot called
the Robotanist is used to deploy a high-resolution stereo imager to capture dense
image data of experimental plots of Sorghum plants. We ground-truth validate data
extracted using two humans who assess the traits independently and we compare
both accuracy and efficiency of human versus robotic measurements. Our method
yields R-squared correlation of 0.88 for stalk count and a mean absolute error of
2.77mm where average stalk width is 14.354mm. Our approach is 30 times faster
for stalk count and 270 times faster for stalk width measurement.

1 Introduction

With a growing population and increasing pressure on agricultural land to produce
more per acre there is a desire to develop technologies that increase agricultural output
[1]. Work in plant breeding and plant genomics has advanced many varieties of crop
through crossing many varieties and selecting the highest performing. This process
however has bottlenecks and limitations in terms of how many plant varieties can be
accurately assessed in a given timeframe. In particular plant traits of interest; such
as stalk count and stalk width are tedious and error prone when performed manually.
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Fig. 1 a The Robotanist [2] mobile ground robot. Stereo imager mounted at back of vehicle (far
right of image), b example image of stalk detection c example image of stalk width estimation

Robotics, computer vision and machine learning promise to expedite the process of
assessing plant metrics and more precisely identify high performing varieties. This
“high-throughput” plant phenotyping has the potential to extract measurements of
plants 30 times faster than humans.

We are developing a ground robot called the Robotanist [2] that is capable of
navigating tightly spaced rows of plants with cameras and sensors that can assess
plant performance. The robot is equipped with machine vision stereo cameras with
high-powered industrial flashes to produce quality imagery suitable for extracting
robust and precise plant measurements. Figure1a shows the camera setup where the
camera is mounted at bottom right of the robot, b shows sample stalk detections stalk
count and c shows stalk width measurement results respectively.

In this paper we present a new image processing pipeline the leverages both
recent deep convolutional neural networks for object detection and also semantic
segmentation networks together to output both stalk count and stalk width. The
combination of networks together provides more precise and accurate extraction of
stalk contours and therefore more reliable measurement of stalk width.

We collect data at two separate plant breeding sites one in South Carolina, USA
and the other in Puerto Vallarta,Mexico and use one dataset for training our networks
and the other dataset we ground truth using manually extracted measurements. We
study both the efficacy and efficiency of manual measurements by using two humans
to independently measure sets of plants and comparing accuracy and also total time
taken per plot to measure attributes. We then compare the human measurements to
the robot measurements for validation.



StalkNet: A Deep Learning Pipeline for High-Throughput Measurement … 273

2 Related Work

Machine learning researchers have been making efforts to oust traditional plant phe-
notyping techniques by adapting neoteric algorithms to work on ground data. A
number of such attempts have produced promising results. Singh et al. [3] pro-
vide a comprehensive study on how various contemporary ML algorithms can be
used as building blocks for high throughput stress phenotyping. Drawing inspiration
from traditionally used visual cues to estimate plant health, crop yield etc., Com-
puter Vision has been the mainstay of most Artificial Intelligence based phenotyping
initiatives [4]. Our group amongst several research groups is investigating the appli-
cations of computer vision to push the boundaries of crop yield estimation [5, 6] and
phenotyping. Jimenez et al. [7] provide an overview of many such studies.

Recent advances in deep leaning have induced a paradigm shift in several areas
of Machine Learning, especially Computer Vision. With deep learning architectures
producing state-of-the-art performances in almost all major computer vision tasks
such as image recognition [8], object detection [9] and semantic segmentation [10];
it was only a matter of time for researchers to use these for image based plant
phenotyping. A broad variety of studies ranging from yield estimation [11, 12], to
plant classification [13], to plant disease detection have been conducted [14].

Pound et al. [15] propose using vanilla CNNs (Convolutional Neural Networks) to
detect plant features such as root tip, leaf base, leaf tip etc. Though the results achieved
are impressive, the images used are taken in indoor environments thus escaping the
challenges of field environments such as occlusion, varying lighting amongst several
others. Considering work on phenotype metric of interest- stalks, traditional image
processing based approaches tailored for a particular task do well on specific data set
but fail to generalize [16, 17]. 3D reconstruction based approaches show promising
results, however are almost impossible to reproduce in cluttered field environments
[18]. Bargoti et al. [19] provide a pipeline for trunk detection in apple orchards.
The pipeline uses Hough Transforms on LIDAR data to initialize pixel wise dense
segmentation into a hidden-semi Markov model (HSMM). Hough transform proves
to be a coarse initializer for intertwined growth environments with no apparent gaps
between adjacent plants.

There has not beenmuchwork if any, combining deep learning based state-of-the-
art object detection and semantic segmentation for high throughput plant phenotyp-
ing. Our work uniquely combines the linchpins in object detection (Faster-RCNN)
and semantic segmentation (FCN) for plant phenotyping to get an accuracy that is
close to that of human at staggeringly high speeds.

3 Overview of Processing Pipeline

The motivation behind the work was to come up with a high throughput plant phe-
notyping computer vision based approach that is agnostic to changes in the field
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Fig. 2 Overview of the stalk count and width calculation pipeline

conditions and settings such as varying lighting conditions, occlusions etc. Figure2
shows the overview of the data-processing pipeline, used by our approach. The faster
RCNN takes one of the stereo pair images as its input and produces bounding boxes,
each for one stalk. These bounding boxes are extracted from the input image (also
called as snips) and fed to the FCN, one at a time. The FCN outputs a binary mask,
classifying each pixel as either belonging to stalk or the background. To this mask
ellipse are fitted, to the blobs in the binary mask, by minimizing the least-square
loss of the pixels in the blob [20]. One snip may have multiple ellipses in case of
multiple blobs. The ellipse with the largest minor axis is used for width calculation.
The minor axis of this ellipse gives us the pixel width of the shoot in the current snip.
The corresponding pixels in the disparity map are used to convert this pixel width
into metric units.

The whole pipeline takes on an average 0.43 s to process one image, on a GTX
970 GPU. This can make the data-processing on the fly for systems that collect data
at 2Hz.

3.1 SGBM

The stereo pair was used to generate to a disparitymap, using SGBM[21] inOpenCV.
This was used to get metric measurements from the pixel dimension. It was also used
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to calculate the average distance of the plant canopy from the sensor, it was converted
into field of view in metric units, so that the estimated stalk count and stalk diameter
can be converted into estimated stalk count per meter and stalk diameter per meter
respectively.

3.2 Faster RCNN

Fast-RCNN (Fig. 3) by Girshick uses a VGG-16 convnet architecture as feature
detector. The network takes pre-computed proposals from images and classifies them
into object categories and regresses a box around them. Because the proposals are
not computed over the GPU, there is a bottleneck at computing proposals. Faster-
RCNN by Girshick et al. is an improvement over the Fast-RCNN, where there is a
separate convolution layer that predict object proposals based on the features form
the activation of the last layer of the VGG-16 network, called Region Proposal
network (RPN). Since the region proposal network is a convolution layer, followed
by fully connected layers, it is implemented over GPU, making it almost an order of
magnitude faster than Fast-RCNN.

One drawback of the Faster RCNN is the use of non-maximal suppression (NMS)
over the proposed bounding boxes. Thus, highly overlapping instances of objects
might not be detected, due to NMS rejection. This problem is even severe in highly
occluding field images. It was overcome by simply rotating the images by 90◦ so
that the erectness of the stalks may be used to draw tightest possible bounding boxes.
We finetuned a pre-trained Faster-RCNNwith 2000 bounding boxes. Figure4 shows
sample detections.

Fig. 3 Faster-RCNN architecture used for stalk detection
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Fig. 4 Example stalk detections using Faster-RCNN

3.3 Fully Convolutional Network (FCN)

FCN (Fig. 5) is a CNN based end to end architecture that uses down-sampling (Con-
volutional Network) followed by up-sampling (Deconvolutional Network) to take
image as input and produce a semantic mask as output.

The snips of stalks detected by Faster-RCNN are sent to FCN for semantic seg-
mentation which by virtue of its fully convolutional architecture can account for
different sized incoming image snips. We chose to send Faster-RCNN’s output to
FCN as input instead of raw image. Output bounding boxes always contain only one
stalk and thus FCN is only required to do a binary classification into two classes,
namely: stalk and background without having to do instance segmentation also. Our
hypothesis was that this would make FCNs job a lot easier and would thus require
lesser data to finetune a pretrained version. This hypothesis is validated by results
presented in a latter section. We finetuned a pre-trained FCN with just 100 dense

Fig. 5 Fully convolutional network architecture used for dense stalk segmentation
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Fig. 6 Sample snipped
bounding box input to
segmented stalk output

labeled detected stalk outputs from Faster-RCNN. Sample input to output of FCN is
shown in Fig. 6.

3.4 Stalk Width Estimation

Once the masks have been obtained, for each of the snippets, ellipses are fitted to
each blob of the connected contours of the mask. The ellipses are fitted to minimize
the following objective:

ε2(θ) =
n∑

i=1

F(θi , xi )
2

where, F(θ; x) = θxx x2 + θyy y2 + θxy xy + θx x + θy y + θ0, is the general equation
of conics in 2 dimensions. The objective is to find the optimal value of θ such that
we get the best fitting conic over a given set of points. We use OpenCV’s inbuilt
optimizers to find best fitting ellipses. Figure7 shows the ellipses fitted to the output
mask of the FCN.

Ellipse is fitted to the contours of the blob, so that the minor axis can serve as a
starting point for width estimation of the stalk. For the same reason, a simple convex
hull fitting was not performed. The minor axes of all the ellipses are then trimmed to

Fig. 7 Result of ellipse
fitting on mask output of
FCN used for estimating
stalk width
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Ellipse Proposals Trim Minor Axes Find metric length Keep Largest Length

Fig. 8 Stalk width estimation pipeline

make sure they lie over the FCNmask. From the trimmed line segments, any segment
that night have a slope of greater than 30◦ is rejected. The remaining line segments
are projected on to the disparity map, so that the pixel width can be converted to the
width in metric units, as per Algorithm 1. The line segment with the greatest metric
width is selected as the width for the stalk in the current snip. The reason behind
choosing max width over others is to get rid of the segments proposals that might
have leaf occlusions.

Hence the overall procedure for width estimation, Fig. 8, can be summarized in
the following steps

Figure9 shows the final results for stalk width estimation pipeline.
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Fig. 9 Stalk width estimation results

4 Results

4.1 Data Collection

Image data was collected in July 2016, in Pendleton, South Carolina using the Rob-
otanist platform. The algorithms were developed on this data. To test the algorithm
impartially, another round of data collection with extensive ground truthing was done
in February, 2017 in Cruz Farm, Mexico. The images were collected using a 9 MP
stereo-camera pair with 8mm focal length, high power flashes triggered at 3Hz by
Robot Operating System (ROS). The sensor was driven at approximately 0.05m/s.
Distance of approximately 0.8m was maintained from the plant growth. Figure10a
the Robotanist collecting data in Pendleton, South Carolina, Fig. 10b shows the cus-
tom image sensor mounted on the robot.

Each row of plant growth at Cruz Farm is divided into several 7 ft ranges separated
by 5 ft alleys. To ground truth stalk count data, all stalks were counted in 29 ranges by
two individuals separately. The mean of these counts was taken as the actual ground
truth. Similarly, for width calculations, QR tags were attached to randomly chosen
stalks for ground truth registration in images. The width of these stalks at height of
12 in. (30.48cm) and 24 in. (60.96cm) from the ground was also measured by two
individuals separately using Vernier Calipers of 0.01mm precision. Humans at an
average took 210s to count the stalks in each range and an average of 55s to measure
width of each stalk. Each range at an average has 33 stalks, so on an average it takes
33min to measure stalk widths of entire range.



280 H. S. Baweja et al.

Fig. 10 a The Robotanist collecting data in Pendleton, South Carolina b Custom stereo imaging
sensor used for imaging stalks

4.2 Results for Stalk Count

Faster-RCNNwas trainedwith 400 imageswith approximately 2000 bounding boxes
using alternate optimization strategy. RPN and regressor are trained for 80000 and
40000 iterations respectively in first stage and 40000 and 20000 iterations in the
second stage using base learning rate of 0.001 and a step decay of 0.1 every 60000
iterations for RPN and 30000 iterations for regressor. Best test accuracies were
achieved by increasing the number of proposals to 2000 and the number of anchor
boxes to 21 using different scaling ratios with NMS threshold of 0.2. Due to inability
to get accurate homography for data collected at 3Hz, we resorted to calculating
stalk-count/meter using stereo data and do the same for ground truth stalk counts
which were collected from ranges, each of constant length 7 ft (2.134 m). Figure11
shows the R-squared correlation for results of 0.88.

To put the results into perspective, attempting to normalize counts using image
widths from stereo data may induce some error as this data is sometimes biased
towards stalk count towards the start and end of each range where the mount vehicle
is slowed down. Also, there is a little inherent uncertainty in the count data. There are
tillers (stems produced by grass plant) growing at the side of some stalks which are
hard to discern from stalks with stunted growth. To better understand this, we observe
in Fig. 12 that there is a small variation in ground truth stalk counting between two
humans as well. The R-squared of Human1’s count versus Human2’s count should
be 1 in an ideal scenario but that is not the case.

4.3 Results for Stalk Width

We plot the stalk width values as measured by Human1, Human2 and our algorithm
at approximately 12 in. (30.48cm) from the ground. At the time of data collection,



StalkNet: A Deep Learning Pipeline for High-Throughput Measurement … 281

Fig. 11 Linear regression for human stalk count/meter versus Faster-RCNN’s count/meter

Fig. 12 Linear regression for Human1’s stalk count/meter versus Human2’s stalk count/meter

it was made sure that a part of ground is visible in every image. This allows us get
stalk width at the desired height from the image data. This step is important as there
is prevalent tapering in stalk widths as we go higher up from the ground. Figure13
shows the widths of each ground trothed stalk as per both humans and algorithm.

Since there is a discernible difference inmeasurements of the two humans,we con-
sidered the mean of the two readings as actual ground truth. Themean width of stalks
as per this ground truth is 14.354mm. The mean absolute error between readings of
Human1 and Human2 is 1.639mm and the mean absolute error between readings
from human ground truth and algorithm is 2.76mm. The error can be attributed to
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Fig. 13 Width measured by Human1, Human2 and algorithm

rare occlusions that force algorithm to calculate height at a location other than 12 in.
(30.48cm) from the ground. We suspected this as a possibility and thus measure
stalk widths at 2 locations during the ground truthing process: at 12 in. (30.48cm)
and 24 in. (60.96cm) above the ground. Calculations from this data tell us that there
was 0.405mm/in. mean tapering on the measured stalks as we went up from 12 in.
(30.48cm) to 24 in. (60.96cm).

To validate our hypothesis that providing faster-RCNN’s output bounding boxes
as inputs to FCN would require lesser dense labeled data to train it. We trained
another FCN on densely labeled complete images. This FCN was trained with more
than twice the number of densely labeled stalk data (finetuned with approximately
250 densely labeled stalks) than the previous FCN (finetuned with on approximately
100 densely labeled stalks). Even after assuming perfect bounding boxes around it
for instance segmentation, the mean absolute error of this FCN was 3.868mm for
width calculation, which is higher than its predecessor having a mean absolute error
of 2.76mm.

4.4 Time Analysis

Table1 shows the time comparisons of Humans versus algorithm for an average plot.
Each plot has approximately 33 stalks and is about 2.133m in length. We observe
that Algorithm is 30 times faster as compared to humans for stalk counting and 270
times faster than human for stalk width calculation.
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Table 1 Time analysis for measuring one experimental plot

Human1 (min) Human2 (min) Robot (s)

Stalk count 3.33 3.66 6.5

Stalk width 29 30

Total 32.33 33.66 6.5

5 Conclusion

We have shown the strength of coupling deep convolutional neural networks together
to achieve a high quality pipeline for both object detection and semantic segmenta-
tion. With our novel pipeline we have demonstrated accurate measurement of mul-
tiple plant attributes.

We find the automatedmeasurements are accurate to within 10% of human valida-
tion measurements for stalk count andmeasure stalk width with 2.76mm on average.
Ultimately though, we identify that the human measurements are 30 times slower
than the robotic measurements for count and 270 times slower for measuring stalk
width over an experimental plot. Moreover, when translating the work to large scale
deployments, that instead of 30 experimental plots are 100’s or 1000’s of plots in size,
it is expected that the human measurements become less accurate and logistically
tough to measure in timely fashion during tight growth stage time windows.

In future work we plan to integrate more accurate positioning to merge multiple
views of the stalks into more accurate measurements of stalk-count and stalk-width.
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Learning Models for Predictive Adaptation
in State Lattices

Michael E. Napoli, Harel Biggie and Thomas M. Howard

Abstract Approaches to autonomous navigation for unmanned ground vehicles rely
on motion planning algorithms that optimize maneuvers under kinematic and envi-
ronmental constraints. Algorithms that combine heuristic search with local opti-
mization are well suited to domains where solution optimality is favored over speed
and memory resources are limited as they often improve the optimality of solutions
without increasing the sampling density. To address the runtime performance limita-
tions of such algorithms, this paper introduces Predictively Adapted State Lattices,
an extension of recombinant motion planning search space construction that adapts
the representation by selecting regions to optimize using a learned model trained
to predict the expected improvement. The model aids in prioritizing computations
that optimize regions where significant improvement is anticipated. We evaluate the
performance of the proposed method through statistical and qualitative comparisons
to alternative State Lattice approaches for a simulated mobile robot with nonholo-
nomic constraints. Results demonstrate an advance in the ability of recombinant
motion planning search spaces to improve relative optimality at reduced runtime in
varyingly complex environments.

1 Introduction

Recent advances in sensors, computing, and algorithms for perception, planning, and
control have allowed unmanned ground vehicles (UGVs) to be deployed in increas-
ingly challenging and harsh conditions. Applications such as planetary exploration,
nuclear inspection, and resource extraction could require robots to traverse envi-
ronments that are dangerous or difficult for human operators and situations where
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assistance (if at all available) may be limited to remote teleoperation of the platform.
In these situations, the UGV is dependent on its own autonomy to reliably balance
the minimization of vehicle risk with energy consumption and achieve mission suc-
cess. Often, risk avoidance in these fields is paramount and optimality of achieved
planning solutions is strongly desired. In environments with many homotopically
distinct classes, graph and sampling approaches have been employed successfully to
find near optimal solutions. However, these algorithms provide higher fidelity plans
often at the expense of computational runtime. This compromise between optimality
and efficiency is fundamental to mobile robot motion planning and many algorithms
feature a balance between the two.

Fig. 1 An illustration of
optimized and unoptimized
nodes expanded during
heuristic search (above) and
the path generated by the
PASL algorithm (below)

start generated path (magenta) goal

unoptimized node (red) optimized node (green)

high cost (light) low cost (dark)
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An approach to motion planning that considers memory, differential, and envi-
ronmental constraints involves modeling the continuum of actions and states in a
recombinant search space graph structure known as a State Lattice (SL) [1]. Such
a formulation converts the motion planning problem into a graph search which can
be solved using a variety of existing algorithms. It has also been shown that, in suf-
ficiently complex environments, applying local optimization can improve the opti-
mality of generated solutions [2]. A limitation of this approach, referred to as the
Adaptive State Lattice (ASL), is that it indiscriminately optimizes every node that
is encountered in the search space. This paradigm results in cycles spent optimiz-
ing regions that are not complex or for which optimization is too difficult and are
unlikely to impact the resulting trajectory. This paper introduces a novel extension of
the ASL, referred to as the Predictively Adapted State Lattice (PASL) which exploits
a learned predictive model to adapt the representation of the search space by antici-
pating the amount of improvement to be obtained when applying optimization over
local regions (Fig. 1). The addition of this model allows the PASL to focus optimiza-
tion on regions where sufficient improvement is expected. The result from the PASL
is a feasible solution with comparable optimality and memory requirements to the
ASL approach, but with reduced computational runtime.

This paper presents three contributions, the first of which is the algorithm that
incorporates a learned model for predictive adaptation in adaptive state lattices
(PASL). The second is a statistical evaluation of the performance of PASL in both
runtime and relative optimality, a metric which refers to the nearness of a solution to
the global optimum, in a selection of randomly generated obstacle fields. This study
assesses the PASL against a comparative baseline of SL, ASL and a heuristic based
approach to selective adaptation referred to as the Selectively Adaptive State Lattice
(SASL) [3]. The final contribution is a qualitative comparison between the solutions
obtained with all four algorithms, which visualizes their performance in a random
world of nominal complexity.

2 Related Works

Decades of research and advancements have led to a myriad of algorithms which
address the motion planning problem in a variety of ways. These algorithms are
often classified by the mechanism they exploit to sample the continuum of states
and actions. One such classification are probabilistic approaches which leverage
iterative random sampling and are often probabilistically complete. The Probabilis-
tic Roadmap (PRM) is a probabilistic approach which randomly samples points in
the admissible robot configuration space [4]. Subsequently, the sampled points are
connected using a fast local planner. Rapidly-exploring Random Trees (RRTs) are
another probabilistic sampling approach, which iteratively sample the state space
continuum and expand a tree structure towards these sampled points until a con-
nection to a goal region is made [5]. Extensions of this algorithm that bias sampling
towards the goal region and utilize a bidirectional variant were shown to lead to faster
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convergence. Further research has been explored to extend the representation within
the RRT from a binary (admissible/inadmissable) to continuous representationwhich
considers path optimality [6, 7]. It was proven that the RRT algorithm converges to a
suboptimal solution and a new extension was proposed (called RRT*) which almost
surely converges to the optimum [8]. Additional methods have been developed to
include homotopy aware approaches, bi-directional RRT* variants and application
of local optimization techniques which improve global optimality [9–11].

A limitation of approaches based on probabilistic sampling is the memory effi-
ciency of the resulting search space. Another family of motion planning algorithms,
referred to as the State Lattice (SL), is a recombinant search space approach that con-
structs a graph structure by regularly sampling the mobile robot state-action space
[1]. These algorithms, which have been applied for navigation in autonomous auto-
mobiles [12] and planetary rovers [13], represent samples in the state space as nodes
on the recombinant lattice and the edges between them are described by feasible
actions that pre-encode system dynamics. The state space utilized in the original SL
work consists of position, heading and curvature such that the state vector may be
represented as x = [

x y θ k
]
. Actions used in this work are parameterized functions

(such as clothoids or polynomial spirals) of curvature and linear velocity and are
generated using constrained optimization techniques [14, 15]. The state lattice is
stored compactly in a structure referred to as the control set which contains a pre-
selected sampling of states and actions describing the transitions from each node.
An advantage of the SL is that nodes do not need to be allocated until their parent
node is expanded (placed on the closed list) during the graph search. This feature
reduces the memory requirements to be predominantly the storage of instantiated
nodes. Further memory reduction can be obtained while maintaining optimality by
utilizing an admissible heuristic in a search algorithm. SLs are resolution complete,
meaning that all possible solutions will be considered within the sampling density
of the state-action space.

3 Technical Approach

One of the primary limitations of the SL is the rigidity imposed by the regular sam-
pling of the control set, where nodes are chosen irrespective of their associated cost
in the robot’s environment, resulting in many unused or unexpanded nodes sampled
in high cost regions. To alleviate this limitation, an approach called the Adaptive
State Lattice (ASL) was developed to optimize the sampled values of the state space
before nodes are represented in an open list during heuristic search [2]. Adaptation
of the representation within search has been shown to improve the performance of
heuristic search in a State Lattice (shorter trajectories, faster runtime, lower mem-
ory utilization) over fixed search with a finer resolution SL in sufficiently complex
environments. However, the ASL applies optimization to all nodes regardless of the
potential for improvement. This can result in wasteful computations spent attempting
to optimize regions where little gain is obtainable. An outline of the general search
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process is shown in Algorithm 1 for the PASL and the three variants explored later
in Sect. 4. Similarly to traditional graph search, expansion is performed on the top
node in the open list generating child (L1) nodes. Instead of directly adding these
nodes to the open list, a function is evaluated to predict which L1 nodes may benefit
from adaptation. For each of the L1 nodes that exceed a particular threshold, their
children (L2) nodes are generated and optimization is performed over that L1 parent.
The prediction process for the SL always returns a false and conversely a true for the
ASL. For completeness, the prediction step for the heuristic based SASL is outlined
in Algorithm 2. The PASL prediction step is shown in Algorithm 3.

Algorithm 1: Predictive Graph Search
Input : Start node xs , goal node xg , step length α, line search parameter β, finite difference

step Δ, predictive threshold (if applicable) cthresh , predictive model (if applicable)
net , training data mean (if applicable) X̂, training data standard deviation (if
applicable) σ

Output: Trajectory of nodes x(t)
1 Main
2 OPEN ← xs
3 CLOSED ← ∅
4 while OPEN �= ∅ do
5 xnext ← get top from OPEN
6 if xnext == xg then
7 return xg
8 end
9 XL1 ← EXPAND(xnext )

10 foreach xL1 in XL1 do
11 if xL1 is not in OPEN then
12 if predict (xp, x1:N ,m, cthresh , net, X̂, σ ) then
13 XL2 ← EXPAND(xL1)
14 adapt(xL1,XL2, α, β, h)
15 end
16 OPEN ← xL1
17 end
18 end
19 closed ← xnext
20 sort( OPEN )
21 end
22 end

3.1 Local Optimization in State Lattices

The ASL algorithm applies optimization of every instantiated node’s state vector [2],
where the values of the sampled state space are optimized but trajectories subject to
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boundary state constraints of other nodes expressed in the state lattice. This procedure
is described mathematically in Eq.1, where xp represents the current (later referred
to as the parent) node’s state vector containing position, heading, curvature, linear
velocity, and/or other quantities of interest. The objective being minimized, denoted
as Jagg(xp) is the aggregate control set cost of the current node expansion.

minimize
xp

Jagg(xp) (1)

The aggregate control set cost is the sum of each of the edges connecting the current
(parent) node to each of its child nodes as shown in Eq.2 where xn denotes the nth
child node’s state vector and J (xp, xn) represents the cost of the edge between the
parent and the nth child node.

Jagg(xp) =
N∑

n=1

J (xp, xn) (2)

The cost of a single edge is the sum of the nth child node’s total edge path traversal
time s f,n and integrated path cost denoted asL (xp, xn, s), as shown in Eq.3 where
s0,n and s f,n represent the nth child node’s starting and final time respectively. The
integrated path cost represents the cost of traversing a particular region in the robot’s
environment. In practice, the environment representation is usually defined using a
discrete pixel approximation such as a cost map. Consequently, the integration in
Eq.3 is approximated numerically using the cost of pixels intersected by the edge.

J (xp, xn) = s f,n +
∫ s f,n

s0,n

L (xp, xs, s)ds (3)

The optimization of the state vector adapts the parent node’s edges to adjust the
shape of the control set to conform to features in the local environment, which (in
terms of the graph search) reduces the edge’s cost and reflects a more optimal set
of routes that would be represented by a finer representation of the search space. A
visualization of the iterative optimization process applied to a simple cost map is
shown in Fig. 2, highlighting how edges no longer cross high risk regions and are
therefore better suited to the proximate environment.

The optimization technique in Fig. 2 is gradient descent which uses forward dif-
ferencing to numerically estimate the aggregate control set cost objective gradient.
Numerical estimates of the gradient are performed to enable evaluation of vehicle
models that may contain complex models of dynamics and wheel-terrain interac-
tion. When the state-action space is densely sampled, the computational overhead
required to compute the gradient is consequential resulting in increased runtime of
large searches. For further details about implementation and performance of the ASL
method is presented in [2].
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(a) Initial control set (b) First step of optimization

(c) Adapted state vector

Fig. 2 State vector adaptation using gradient descent. The edges from the center parent node
intersect high cost (dark) regions in the cost map. Iterative optimization adjusts the parent node’s
state vector until all edges traverse safer low cost regions

3.2 Heuristic Based Selective Adaptation

The application of local optimization allows the ASL to achieve higher relative
optimality in many cases over the SL [2]. However, a major limitation is the indis-
criminate optimization of nodes. In a statistical study, it was shown that a heuristic
could be applied to selectively perform adaptation resulting in reduced runtimewhile
providing solutions in the same homotopic class as the ASL [3]. The proposed algo-
rithm, known as the SASL, computes the Normalized Mean Cell Cost (NMCC) of
the environment patch spanned by the current node’s expansion as a heuristic. This
approach is outlined in Algorithm 2 and is included in the experiments discussed in
Sect. 4. A threshold was chosen based on statistics collected over training data shown
in Fig. 3.
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(a) Histogram of negligible improvement (b) Histogram of moderate improvement

(c) Histogram of significant improvement

Fig. 3 Histograms of improvement vs NMCC for threshold selection. A large amount of the
improvement in class 2 (significant) occurs below NMCC = 0.6. Additionally, this is the case for
moderate and negligible (class 1 and 0 respectively) improvement. A threshold of NMCC = 0.6
was chosen for the SASL based on these statistics

3.3 Predictive Adaptation of Search Space Representations

The SASL approach attempts to alleviate some of the computations wasted by the
application of optimization to all nodes with the ASL, however experiments demon-
strate that it is difficult to design an heuristic that is both accurate and efficient.
Instead, we propose the use of a predictive model learned over a selection of training
data to serve as the arbiter for predictive adaptation of state vectors in the search
space. The model utilized in our proposed PASL method is an artificial neural net-
work [16] where the input layer consists of the vectorized local region pixel values
augmented with the parent node’s orientation (θp) and the free function parameters
used to describe all exiting edge curvature profiles. For consistency of the evaluation
presented later in Sect. 4, the pixel region is identical to the patch utilized by SASL
in Sect. 3.2. An example of the feature vector is shown in Eq.4 where mi represents
the i th cost map patch index, k j,n the j th parameter of the curvature function for
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Algorithm 2: Prediction for Selectively Adaptive State Lattice
Input : Parent node xp , child nodes x1:N , costmap m, heuristic threshold h
Output: Boolean prediction

1 Predict (xp, x1:N ,m, h)
2 c ← 0
3 for i in patch m(xp) do
4 c ← c + mi
5 end
6 c ← c

Ncells∗MAXCOST

7 if c ≤ h then
8 return true
9 end

10 else
11 return false
12 end
13 end

nth child node, and s f,n the path length of the curvature profile for the nth child
node. The local regions are 41 × 41 pixel patches which, when augmented with the
additional features, results in an input layer of 1724 features. For every node during
planning, the PASL collects all appropriate features and performs adaptation only
if the model output is above a chosen threshold. Algorithm 3 outlines the PASL
prediction procedure.

Algorithm 3: Prediction for Predictively Adapted State Lattice
Input : Parent node xp , child nodes x1:N , costmap m, improvement threshold h, trained

artificial neural network net , mean of training data X̂ , standard deviation of training
data σ

Output: Boolean prediction
1 Predict (xp, x1:N ,m, h)
2 θp ← orientation(xp)
3 U ← parameters(xp, x1:N )

4 X ← [
m θp U

]

5 X ← X − X̂

6 X ← X
σ

7 ŷ ← f orward(net, X)

8 if ŷ ≥ h then
9 return true

10 end
11 else
12 return false
13 end
14 end
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x = [
m1 m2 . . .mn θp k1,1 . . . s1, f k2,1 . . . sn, f

]T
(4)

All inputs are zero centered and normalized to unit variance (calculated exclusively
over training data) prior to applying the network with an architecture containing two
hidden layers of 50 and 200 nodes respectively and hyperbolic tangent sigmoid acti-
vation functions. An output layer consisting of a single node and a linear activation
function is used to represent the predicted improvement in objective. All training data
was collected over a series of worlds generated using the random process discussed
in Sect. 4 and the resulting data was binned into improvement intervals of 50. Sub-
sequently, the data was sub-selected for training using stratified random sampling to
prevent overfitting the model. All training targets were scaled by a factor of 10 as
it was empirically determined that the model was overfitting to outputs of smaller
magnitude.

Prior to employing the model in planning, a five fold cross validation experiment
was performed using 70, 15, 15% for training, validation, and testing data respec-
tively to evaluate the chosen network architecture. A series of threshold values were
selected and binary classification (adaptation/no adaptation) was performed on each
data point using the model’s predicted improvement. The True Positive Rate (TPR)
of correct classifications for each threshold value was averaged over five folds and
are shown in Fig. 4. The results illustrate the model’s classification performance of
approximately 93–100% over the spanned threshold range.

Fig. 4 Five-fold cross validation evaluation of neural network with 95% confidence
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4 Experimental Design and Evaluation

Our proposed approach is focused on improving upon the performance of SL and as
such, we restrict the scope of our subsequent analysis to variants of this search space
representation. A statistical study was performed to evaluate the PASL and compare
its performance with the SL, ASL, and SASL. All four algorithmswere assessed over
simulated random worlds with varying degrees of entropy, representing a mobile
robot’s environment. Each world contained specified regions where start and goal
points were selected. These areas were common for all worlds and each algorithm
was tasked with planning for every combination of world, start and goal point. The
total number of plans solved for each algorithm was 32100. The simulations used in
this evaluation do not include the separate set of random worlds generated strictly
for model training from Sect. 3.3.

(a) λ = 10 (b) λ = 50

(c) λ = 100

Fig. 5 Sample of random worlds generated for simulation experiments. The number of obstacles
(dark regions) increases with the Poisson expected rate of occurrence (λ). The start region for the
planners is in the unoccupied space on the left, whereas the goal regions are on the right
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Random worlds were created using a Poisson forest procedure similar to the
approach described in [17]. The number obstacles were chosen using a Poisson
distribution for ten levels of expected rate of occurrence (λ). These ranged from
λ = 10 − 100 and also the free space world λ = 0. To model a penalty function of
proximity to obstacles, the map was blurred using a Gaussian kernel and cropped
by half a meter on all sides to avoid edge effects. Each map ranged from (−10, 10)
meters in x, y and was sampled at a resolution of 5 centimeters. The search algorithm
was forbidden from expanding into regions with maximum cost. A consequence of
this is that some worlds do not have solutions in the continuum and the planning
algorithms will fail. A small selection of random worlds are shown in Fig. 5 to
provide a qualitative representation of the planning difficulty for a range of λ.

4.1 Statistical Results

The relative optimality is defined as the ratio of the free space solution cost obtained
with SL and the solution cost obtained by a planner for a world with a particular
λ. Relative optimality and runtime results for all algorithms are shown in Fig. 6.
Runtime results were obtained using an Intel Xeon(R) CPU E5-2520 v3 2.40GHz
processor.

The trends in Fig. 6 indicate that the ASL tends to outperform the other algorithms
in terms of relative optimality, but also requires themost runtime.Anotable exception
to this is for SASL with a heuristic threshold of 0.7. Since the adaptation only
considers local regions, there is no guarantee that it will improve the global objective.
Therefore, performing optimization does not always result in a better solution. For
this data point, it is believed that the SASL actually benefited from not performing
optimizations in some instances.

The PASL performance is relatively consistent. As the improvement threshold
increases, the quality of the solution degrades, however a decrease in runtime is
obtained. With an improvement threshold of 200, the PASL runtime is consistently
lower than SASL with a heuristic of 0.7. Furthermore, the relative optimalities of
the two algorithms are comparable in the more cluttered obstacle fields. At less
cluttered obstacle densities, the SASL tends to outperform the pasl in terms of relative
optimality, however at significantly increased runtime. The increased runtime for the
SASL algorithm is likely due to the difficulty of setting a good threshold when using
a simple heuristic. An interesting comparison is between the SASL with a threshold
of 0.6 and the PASL with a threshold of 300. Although the runtime is comparable
between the two algorithms in the higher obstacle density worlds, the PASL is able to
maintain higher relative optimality. In this domain, it appears that the PASLpredictive
model outperforms the SASL at selecting nodes to optimize given the higher relative
optimality. Due to the challenging nature of the planning problems for higher λ,
in many domains it is worthwhile to spend computational resources to improve the
solution.
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Fig. 6 Simulated random world study results for relative optimality a and runtime b versus λ

presented with 95% confidence intervals
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4.2 Comparative Results

To examine the qualitative differences between the four algorithms a sample world is
chosen with a nominal amount of clutter and the path representations are visualized
in Fig. 7. The map in Fig. 7 is hand selected to represent planning in a moderately
complex environment. The solution obtained with the SL is the fastest with a total
runtime of 1.07 s, however it has the highest path cost at J = 37.63. Due to the
regular sampling resolution, the unadapted search is unable to cut through the clutter
to reach the goal. The ASL obtains the lowest path cost at J = 28.00, but with the
highest runtime at 30.08 s. This search is able to optimize to the cost map and weave
through obstacles allowing it to achieve a lower cost solution. Similarly to the ASL,
the SASL is also able to apply some amount of optimization and achieves a path cost
of J = 33.33 with a runtime of 15.69 s. The PASL performs similarly but with a
lower path cost at J = 28.54 and faster runtime at 11.67 s. For this sample, the PASL

(a) State Lattice Path Visualization (cost =
37.63, runtime = 1.07 seconds)

(b) Adaptive State Lattice Path Visualization
(cost = 28.00, runtime = 30.08 seconds)

(c) Selectively Adaptive State Lattice Path Vi-
sualization (cost = 33.33, runtime = 15.69 sec-
onds, threshold = 0.7)

(d) Predictively Adapted State Lattice Path Vi-
sualization (cost = 28.54, runtime = 11.67 sec-
onds, threshold = 200)

Fig. 7 Qualitative comparison between the solutions obtained by each algorithm tasked with plan-
ning from the start node (cyan) to the goal (red) in a randomly generated world with λ = 60
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was able to produce a result comparable to the ASL, with a significantly reduced
runtime. An interesting note here is that the ASL, SASL, and PASL solutions all
belong to the same homotopic class whereas the SL solution does not. This seems to
indicate that the application of predictive adaption can result in solutions of similar
quality to fully adapted search spaces, but with large reductions in runtime.

5 Conclusions and Future Work

As the prevalence ofUGVs increases, computationally efficient and safemotion plan-
ning algorithms become evermore crucial. For applicationswherememory resources
are limited and risk mitigation is paramount, the SL and its extensions are well suited
due to their ability to obtain deterministic, resolution optimal solutions that inherently
satisfy nonholonomic constraints. Improvements over resolution optimality of the SL
is shown to be possible by applying local optimization over samples in the graph.
In this paper, we have shown that a learned predictive model can achieve nearly
the same optimality as the ASL with significantly reduced runtime requirements
and outperform simple hand-coded thresholds for selective adaptation. Statistically
significant results are obtained using simulations in random worlds which show an
improvement over the SASL and the SL in relative optimality and the SASL and
ASL in runtime.

Future work involving the presented algorithm includes optimizations for improv-
ing the runtime performance, field experiments in partially observed environments,
and adaptation of richer spatial-semantic models of the underlying representation.
Although thorough assessment of the algorithm requires examining the performance
over many planning scenarios, implementation and validation of these experiments
using a physical platform is valuable. The scope of this paper is to improve the per-
formance this particular class of motion planning algorithms, however future work
involves comparisons between probabilistic sampling approaches such as RRTss and
PRMs.

Acknowledgements This work was supported in part by the National Science Foundation under
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Field Deployment of the Tethered Robotic
eXplorer to Map Extremely Steep Terrain

Patrick McGarey, David Yoon, Tim Tang, François Pomerleau
and Timothy D. Barfoot

Abstract Mobile robots outfittedwith a supportive tether are ideal for gaining access
to extreme environments for mapping when human or remote observation is not
possible. This paper details a field deployment with the (TReX) to map a steep, tree-
covered rock outcrop in an open-pit gravel mine. TReX is a mobile robot designed
for the purpose of mapping extremely steep and cluttered environments for geologic
and infrastructure inspection. Mapping is accomplished with a 2D lidar fixed to an
actuated tether spool, which rotates to produce a 3D scan only when the robot drives
andmanages its tether. In order to handlemotion distortion, we evaluate two existing,
real-time approaches to estimate the trajectory of the robot and rectify individual
scans before alignment into the map: (i) a continuous-time, lidar-only approach that
handles asynchronousmeasurements using a physicallymotivated, constant-velocity
motion prior, and (ii) a method that computes visual odometry from streaming stereo
images to use as a motion estimate during scan collection.Once rectified, individual
scans are matched to the global map by an efficient variant of the ICP algorithm.
Our results include a comparison of estimated maps and trajectories to ground truth
(measured by a remote survey station), an example of mapping in highly cluttered
terrain, and lessons learned from the deployment and continued development of
TReX.
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1 Introduction

We are motivated to use tethered mobile robots for mapping extreme environments
not suitable for human or remote survey for the purpose of geologic and infrastructure
inspection. Deploying an unmanned aerial vehicle to map a steep rock outcrop below
the tree canopy would be hazardous, given the challenge of navigating cluttered
environments and limited operational time imposed by on-board power storage.

Alternatively, a tethered robot can leverage an attached electromechanical tether,
which provides support on steep terrain, continuous off-board power supply, and a
reliable wired connection to a remote base station.

McGarey et al. [9] introduced theTetheredRobotic eXplorer (TReX) as amapping
platform capable of advanced mobility on steep terrain. In this paper, we evaluate
the TReX platform in a field deployment to an open-pit gravel mine, where the robot
was piloted on steep, cluttered terrain to map exposed bed rock as shown in Fig. 1.
Our main contributions will be a discussion of mapping results, lessons learned from
the deployment, and updates to the TReX system required for deployment.

TReX utilizes a 2D lidar mounted to its rotating tether spool to produce a single
3D scan of the environment as it drives and deploys tether. Thus, we must account
for motion distortion in order to produce a global map. We test two existing ap-
proaches to estimate the robot’s trajectory and handle motion-distorted scans using
(i) a continuous-time approach that accounts for asynchronous lidar measurements
with a physically motivated motion prior, and (ii) an approach that uses visual odom-
etry to estimate themotion of the robot during the collection of a single 3D scan. Both
approaches attempt to reduce distortion prior to scan alignment, which is handled by
an efficient Iterative Closest Point (ICP) algorithm.We compare estimated maps and
trajectories with ground truth collected by a Leica Total Station, which produces an
undistorted point cloud of non-occluded terrain and tracks the position of a marker

Fig. 1 TReX Field Deployment: Our tethered mobile robot navigates extremely steep terrain in
order to generate a 3D map of a spanning rock outcrop that is partially occluded by vegetation.
The experiment, which was conducted over several days in an open-pit mine in Northern Ontario,
Canada, involved just over 1km of driving on extremely steep terrain. TReX is anchored at the
top of the cliff and manually piloted. The attached electromechanical tether (bright green) provides
support, off-board power, and wired communications between the robot and base station
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attached to the robot if visible. The results show that the odometry-aided approach is
best suited for mapping highly unstructured environments when the robot’s motion is
complex. We also provide evidence that tethered robots are well suited for mapping
steep, occluded environments by highlighting an example map collected in an area
hidden from remote view by vegetation.

The paper is structured as follows: Sect. 2 discusses tethered robots and lidar-based
mapping, Sect. 3 provides an updates on TReX, Sect. 4 details mapping methodolo-
gies, Sect. 5 covers the deployment and mapping results, Sect. 6 outlines lessons
learned, and Sect. 7 offers concluding remarks and future extensions.

2 Related Work

Tethered robots can be used to explore extreme areas considered dangerous or time
consuming for human exploration (e.g., field geology, emergency response, and in-
frastructure inspection). Tethered mobile robots have been used to explore steep
terrain for geologic inspection in the past [7, 13]. McGarey et al. [9] offers an in-
depth review of these systems. We are motivated by the idea of lidar-based geologic
mapping because it is more efficient than manual survey and also provides a means
to investigate rock structure and composition using lidar intensity returns [10].

Since we are interested in producing a map from a rotating lidar mounted to a
moving vehicle, we can formulate our problem as a simultaneous localization and
mapping (SLAM) problem[12]. The landmark-based simultaneous localization and
mapping (SLAM) approach is commonly used to solve this problem, where the state
of the robot (i.e., the trajectory and map) is estimated given lidar measurements
(i.e., range/bearing to 3D points) [3, 4]. Given that our robot is always in motion
while scanning, we require a tool to recover its trajectory in 3D space. Bosse and
Zlot [2] use offline, batch scan matching to find a transform between two scans that
can be used to approximate the sensor’s trajectory in 3D space without the need
for additional odometric measurements. Zhang and Singh [14] expand on this with
a real-time, continuous-time lidar odometery and mapping (LOAM) approach that
uses high-rate, low-resolution lidar odometry to provide a motion estimate to use
in low-rate, fine-resolution scan registration. Without modification, lidar odometery
and mapping (LOAM) would not work for TReX because (i) scanning is coupled to
the robot’s motion (i.e., lidar odometery fails while stopped), and (ii) its environment
is highly unstructured (i.e., lacks planar surfaces and edges). One solution would be
to use Vlidar odometery and mapping (LOAM), also from [15], which integrates
additional measurements from VO to estimate the robot’s motion during a scan.

In this paper, we test two methods to estimate the robot’s trajectory and produce
a global map from lidar measurements. The first is a lidar-only, continuous-time
approach from [1], which uses a constant-velocity motion prior for the robot during
scan collection and allows for any-time trajectory sampling. As asynchronous lidar
measurements arrive, they are associated to a queried transform that can be used
to rectify individual 3D scans prior to alignment into the global map. The critical
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difference between this approach and lidar odometery and mapping (LOAM), is its
use of a physically motivated motion prior, which enables it to work for TReX. Once
a scan has been rectified, it is aligned into the global map using an efficient form
of the ICP algorithm[11]. The second method also relies on ICP for scan matching
and is similar to Vlidar odometery and mapping (LOAM), in that it leverages VO
as a motion prior to minimize scan distortion [6]. While the continuous-time method
requires the minimum number of sensors (i.e., lidar only), the VO-aided approach
is better equipped to capture the robot’s complex motion in highly unstructured
environments for mapping.

3 Tethered Robotic eXplorer Update

The operational concept for the TReX system is demonstrated in Fig. 2. McGarey et
al. [9] first introduced TReX as a system that can both rotate in place regardless of the
direction of applied tension due to a passively rotating tether arm, and generate 3D
scans of the environment through tether spool rotation. The advanced mobility of the
platform allows for turning in place and driving laterally on steep terrain provided
sufficient wheel traction. In preparation for field testing, several major updates were
made to the TReX system that are not covered in [9], including (i) the integration of
an electromechanical tether, (ii) the development of an autonomous, terrain-adaptive
tether controller [8], and (iii) the creation of a user interface for use in teleoperation.

Fig. 2 Tethered Robotic eXplorer: The illustration on the left is an operational concept for a typical
TReX geologic surveying mission. TReX is anchored and deployed near the cliff’s edge to map the
steep terrain using an on-board lidar. The right image shows an actual mapping field deployment
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Fig. 3 User Interface: A remote user monitors and teleoperates the robot by viewing the live map
and cameras, which are transmitted over tether. The tether has been illustrated for reference

(i) Electromechanical Tether: Prior to the integration of the electromechanical
tether, a static climbing rope was used. As a result, TReX was limited to use on-
board power and could only operate for 10–20 mins on steep slopes before a charge
was required. The tether1 allows for simultaneous power and data transmission up to
1200Wand100Mb/s respectively,which enables continuous operation andoff-board
data processing. The tether supports the robot’s 100kg mass (including the tether),
can withstand shocks up to 900kg, and is constructed of two 18AWGpower and four
24AWG Ethernet conductors, which are encased in an inner layer of woven Kevlar
and an outer layer of polyurethane for strength and resistance to liquid. Its diameter
is 9mm, which limits the spool capacity and range of the robot to 45m.

(ii) Tether Controller: In order to manage the tether, a controller was developed
to automatically maintain a set tension regardless of inclination, while assisting the
robot to climb on steep terrain [8]. The controller uses both feedback to maintain
an inclination-dependent set tension based on the robot’s orientation with respect to
gravity (measured by an inertial sensor), and feedfoward components to account for
the commanded velocity of the robot.

(iii) User Interface: The interface shown in Fig. 3 has been developed to allow
an operator to monitor multiple camera feeds from the robot while observing the
construction of a 3D point-cloud map. The benefit of a ‘wired’ connection is that
lidar data can be reliably streamed via tether and processed by the base station
computer.

1Falmat XtremeNet Deep-Water Ethernet Cable—Model: FM022208-03-2K.



308 P. McGarey et al.

4 Mapping Methodology

Figure4 illustrates how a planar lidar fixed to the robot’s tether spool is used to
generate a 3D scan as TReX drives. The slow rotation of the lidar while in motion
results in scan distortion analogous to the rolling-shutter effect in passive cameras.
In order to complete a single 3D scan, the spool must rotate by 180◦, which translates
to 0.5m of distortion along the direction of travel at full speed. For comparison, a car
with a Velodyne lidar, scanning at 10Hz, would only need to travel at 5m/s (18km/h)
to produce 0.5m of distortion. However, in our case, the rotational speed of the lidar
will not always be constant due to a coupling of spool rotation with vehicle motion,
which leads to distortion that is not uniform in time.

Any distorted scan can be rectified by estimating the trajectory of the lidar or
robot during collection. Given the rough terrain and slow speed of the robot, wheel
odometry and inertial measurements alone cannot be relied on. Alternatively, one
approach is to assume a constant-velocity model for the robot during the collection
of a single scan in order to handle asynchronous measurements from the lidar. The
continuous-time approach uses Gaussian-Process (GP) regression to allow for any-
time trajectory querying using GP interpolation, which means that the sensor’s pose
can be queried at measurement time. The benefit of this approach is that it only
relies on lidar data and uses a physically motivated motion prior (i.e., white noise
on acceleration). For more on this continuous-time approach, including detail on the
constant-velocity model and implementation, see [1]. In extreme cases, when the
constant-velocity model fails to capture the true motion of the robot, the continuous-
time approach will not work (see Fig. 12). Accordingly, we test a second method
to handle distortion that uses VO as a motion prior for the robot’s trajectory during
a single scan; VO is generally accurate over short distances and is better suited
to capture complex robot movements, provided that the field-of-view and lighting

Lidar & 2D scan plane
Driving direction

0%25%50%75%100%

tether
3D scan percentage

Tether arm & spool

Fig. 4 Generating a 3D Scan: As illustrated, a 3D scan is built from a series of 2D scans only when
the robot drives and deploys its tether, which causes 3D scans to be motion distorted. Generally,
the robot will need to travel 0.5m to generate a single scan
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Fig. 5 Building a Map: This pose graph represents the scan matching process used to create a
global map. Triangles represent the state (i.e., pose and map) being estimated. Prior to matching,
the trajectory of the robot is estimated with either a constant-velocity or VO-aided motion prior.
Scans can be matched into the global map either sequentially or in a batch, sliding-window setup

conditions are stable.Weuse an existingVOpackage2 to output pose estimates during
scan generation at the frame rate of the camera (10Hz), and rely on a linear-time
interpolation function in ROS to associate incoming lidar data to pose estimates.
Once scans are rectified, we perform ICP matching3 to align new scans into a global
map. Figure5 illustrates the mapping problem as a pose graph.

5 Field Deployment & Mapping Results

Field Deployment: Mapping experiments were performed in an outdoor, open-pit
mine located inNorthernOntario, Canada.4 This location features a steep cliff, where
bedrock has been exposed by erosion, but is partially hidden by vegetation. Figure6
provides aerial images of the site that have been annotated with the paths taken to
map the terrain. TReX was teleoperated for the entirety of the experiment due to the
extreme conditions. Note that much of the cliff is covered by vegetation, meaning
that remote survey alone cannot be used to map the contiguous rock outcrop. For
more on the deployment, including animated mapping results, see the linked video.5

MappingResults:While drivingonPathsCandE, the 3Dpositionof amarkerfixed
to the robot was recorded by a LTS.6 Figure7 illustrates the ground-truth trajectory
overlaid on a dense, ground-truth point cloud. For comparison, we show trajectory
estimates from our (CT) and VO-aided ICP pipelines. We note that the full trajectory
is not shown because it extends off the visible point cloud. Instead, we plot a portion
of the outbound trajectory for clarity. As shown, the VO-aided estimate is closest to
ground truth, which is true for all runs. In fact, the CT approach only works when

2Fast Odometry from Vision [5], package available: https://github.com/srv/fovis.
3Libpointmatcher [11], package available: https://github.com/ethz-asl/libpointmatcher.
4Sudbury Ontario, Canada: 46◦24′33.5′′N, 80◦50′27.3′′W.
5Supplemental video: https://youtu.be/9r10kC7GTmc.
6Model: Leica Nova MS50 MultiStation.

https://github.com/srv/fovis
https://github.com/ethz-asl/libpointmatcher
https://youtu.be/9r10kC7GTmc
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Fig. 6 Experiment Site: The paths driven during the experiment are illustrated on aerial images.
The area marked as ‘ground truth’ was mapped by a stationary Leica Total Station. Being that the
cliff is covered with vegetation, we use TReX to navigate below the tree canopy for in-situ mapping

Fig. 7 Trajectory Comparison: Two intensity-colored, ground-truth point clouds are shown. The
‘side view’ shows the slope, which ranges from 30–60◦ inclination. The position of a marker on
robot was recorded to provide ground truth (GT) while driving on Paths C and E only. The VO-aided
ICP estimate, VO+ICP, outperforms the continuous-time approach, CT+ICP. We note that GT and
CT+ICP are not complete for Path E, which is due to target loss and estimation failure resulting
from the robot’s complex motion. Only the outgoing trajectories are shown for clarity
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the robot’s true motion is smooth and the environment is sparsely vegetated, as later
discussed in Sect. 6. On a large scale, the combined VO-aided map (Paths A-E) is
comparable to ground truth, and actually coversmore area as shown inFig. 8. Looking
closer, Fig. 9 compares a portion of the map produced from Path C. Although the
VO-aided map is clearer than CT, both fail to capture the rock outcrop better than
ground truth because (i) individual scans collected by TReX are relatively sparse, and
(ii) an insufficient number of scans were collected of the target area. Lastly, Fig. 10
provides a map collected by TReX from a densely vegetated, cluttered environment,
where the robot navigates below the tree canopy and surveys a rock feature that is
not visible remotely.

Fig. 8 GlobalMapComparison: Global point clouds of the unobstructed terrain are compared. The
ground-truth map shows the terrain visible to the LTS from a remote position. The VO+ICP map,
which encompasses more area than the ground-truth scan, combines estimated point clouds from
Paths A-E, which were aligned manually. Common features are indicated by color-coded arrows
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Fig. 9 Local Map Comparison: An aerial photo is compared with close-up, virtual images from
ground-truth, VO+ICP, and CT+ICPmaps colored by point intensity. The rock shown by red arrows
in Fig. 8 ismarked here aswell.While the ground truth ismost dense and clearly shows rock features,
VO+ICP is our best estimate and is noticeably more detailed than CT+ICP. The estimated maps are
sparse due to limited observation time in the target area (e.g., not enough scans were generated).
This is also a case where CT+ICP works for a segment of the full trajectory. Generally, the robot’s
motion is too complex for CT+ICP to work on more challenging trajectories

Fig. 10 Mapping Cluttered Environments: This example highlights the benefit of the TReX plat-
form, which can navigate in cluttered environments to explore terrain occluded from remote view.
The photos show a heavily vegetated, hard-to-reach area on Path K where bedrock is exposed. Vir-
tual images from the VO+ICP estimated point cloud are compared images. Arrows indicate shared
features between the image and map. A portion of Path K is also superimposed on the aerial photo
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6 Lessons Learned

We outline lessons learned from the deployment of TReX by addressing mapping
challenges, platform mobility, tether management, and perceived design limitations,
which impact the robot’s ability to explore extreme environments.

Mapping Challenges: Given the mapping performance discussed in Sect. 5, we
consider the factors that cause the (CT) approach to perform worse than the VO-
aided approach in complex, unstructured environments. One reason is illustrated in
Fig. 11, which shows the correlation of spool velocity to 3D scan completion over
time. For two sample intervals, we see that the time to complete a scan varies strongly,
which implies that TReX, whose spool velocity is coupled to vehicle motion, may
violate the constant-velocity model used in CT estimation. One way to deal with this
problem is to add additional keyframes (i.e., pose estimates along the trajectory),
which would make the velocity assumption arbitrarily better, but also have the effect
of slowing down the pipeline. Currently, keyframes are dropped at the completion of
each scan (e.g., the robot drives∼0.5m), which allows for running the pipeline in real
time. Instead of inserting more keyframes, we set the velocity prior to zero between
segments of the trajectory where gaps in measurement time occur. However, wemust
contend with a greater issue, which is that the velocity prior fails to truly capture
the complex motion of the robot driving on extreme terrain. Figure12 best illustrates
this problem; the zoomed-in view shows the estimated trajectory fromVO compared
to the constant-velocity estimate from CT just as the robot drives over the edge of
a cliff. Assuming constant velocity, the robot’s motion is estimated to be a smooth
arc, when in reality, the robot tilts or rocks at the edge of the cliff before descending.
Conversely, VO is able to capture this complex motion. However, VO can fail if
the environment is overly cluttered and lighting is too dynamic, which occurs when
navigating through dense vegetation (i.e., strong shadows and obstructed vision from
hanging leaves).

Another challenge for mapping in the field is that it is difficult to generate
dense, minimally distorted point clouds given the operational environment. Figure13
illustrates this idea by showing how cluttered environments impact scan density and
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quality; throughout a single traverse, the quantity and average depth of 3D points
vary as the robot passes through vegetation. The low average depth indicates that
most points lie within 3m, making it harder to scan distant targets. In terms of point
quantity, even the most dense scans are still sparse, with most of the scan being lost
to the sky. For comparison, a Velodyne lidar can generate between 100–200k points
per scan, which is an order of magnitude more than TReX. Therefore, it would be
beneficial to use a 3D scanning lidar to produce high-quality, detailed maps.

Platform Mobility: In [9], a preliminary mobility evaluation was performed on
a steep metal structure to demonstrate lateral movement while under tension. We
now provide an in-depth, platform-mobility analysis using examples from the field.
Figure14 provides a collection of images that both highlight the robot’s advanced
mobility on steep terrain, and demonstrate limitations of the platform. In general,
TReX was successful in navigating very steep slopes, regardless of the terrain type
(e.g., rock, sand, or grass). With the exception of the inverted slope in Fig. 14.4, the
angled tether arm aligns tensional force with the robot’s center-of-mass, keeping
all tires in contact with the surface. Figures14.5 and14.6 show examples of TReX
driving laterally under tension, which made it possible to visit and map more terrain
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Fig. 14 Platform Evaluation: TReX’s advanced mobility on steep terrain is demonstrated through
visual examples during the field deployment. Images 1–3 show TReX successfully navigating steep
rock faces. Image 4 shows how the robot’s front tires can lift off the rock due to excessive slope
and high tension on the tether. Images 5–6 show the lateral mobility of the robot while under
tension. Image 7 shows TReX just after tipping over, which was caused by platform instability
when navigating tangent to an angled surface. Image 8 illustrates a common limitation of using a
tether; when the taut tether contacts rock, abrasion or severe bending can result in damage

during a single traverse. Despite the success of the deployment, there were several
failures, which underline key limitations of the platform. In Fig. 14.7, TReX is shown
after tipping over, which occurred while driving parallel to the tether on a steep,
angled surface. The fall indicates that (i) the center-of-mass is too high, and (ii)
the robot would benefit from some form of passive differential suspension (e.g.,
rocker-bogie system) to accommodate for uneven terrain.

Tether Management: The prevention of tether damage is a persistent concern
when using tethered robots; tether damage is caused by small bend angles, excessive
twisting, and or abrasion from rough surfaces.Any one of the above can cause internal
wires to break, resulting in power and data loss, or worse, a severed tether, which
could damage or destroy the robot and environment. Figure14.8, shows an example
of bending and abrasion during the field deployment, where the robot’s tether became
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wrapped around a sharp rock. In practice, we find that the tether must be replaced
after each deployment, which results in additional time and cost. To prevent tether
damage in future designs, we would need to (i) ensure that the minimum bend radius
is not exceeded in the tether management system, (ii) implement better coiling of
the tether to prevent twist, and although somewhat impractical, (iii) avoid wrapping
the tether around sharp corners or abrasive surfaces in the operational environment.

Size Limitations: The current size of the robot, which encompasses 1 cubic meter
and weighs 100kg, makes it difficult to deploy remotely. During the deployment, the
operator would start at the base of the cliff, hike to the top, throw down a rope to an
assistant, and manually pull the tether up the cliff to attach to a tree or anchor. The
robot would then ascend the cliff, where it could be deployed further. Additionally,
the tether-limited range of the robot made it necessary to frequently re-anchor the
robot to access new terrain. To cut down on the support and human effort needed
to deploy TReX, future iterations of the design should be scaled for use by a single
operator, which would allow the entire system, including robot, ground station, and
generator, to be backpackable. A reduction in weight would also allow for the use of
a thinner, lighter tether and increase vehicle range and overall usability.

7 Conclusion

This paper details the field deployment of the (TReX) to map extremely steep,
cluttered terrain in a gravel mine located in northern Ontario. Since TReX pro-
duces motion-distorted scans while driving and deploying tether, we evaluate (i)
a continuous-time approach that relies on a velocity-based motion prior, and (ii) a
VO-aided approach that leverages odometry from a stereo-camera. Both methods are
used to compute a trajectory estimate, which can be used to rectify distorted scans
prior to ICP alignment into the global map. Each pipeline was evaluated with data
collected during the field trial. Our results indicate that the VO-aided approach out-
performs the continuous-time method because it best captures the robot’s complex
motion in dynamic, unstructured environments.

For future work, we would like to deploy TReX to other harsh environments, like
caves, mine shafts, and dams. In particular, we would like to test autonomous, route-
following techniques [8] that were not developed at the time of the field deployment.
We would also like to incorporate other sensors on the robot to use for improving
motion estimation, including inertial, inclinometer, and tether measurements (e.g.,
length and bearing-to-anchor). In the long term, reducing the form factor of TReX
design will make it more economical and effective for use in research, inspection,
and reconnaissance.
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Towards Automatic Robotic NDT Dense
Mapping for Pipeline Integrity Inspection

Jaime Valls Miro, Dave Hunt, Nalika Ulapane and Michael Behrens

Abstract This paper addresses automated mapping of the remaining wall thickness
of metallic pipelines in the field by means of an inspection robot equipped with
Non-Destructive Testing (NDT) sensing. Set in the context of condition assessment
of critical infrastructure, the integrity of arbitrary sections in the conduit is derived
with a bespoke robot kinematic configuration that allows dense pipe wall thickness
discrimination in circumferential and longitudinal direction via NDT sensing with
guaranteed sensing lift-off (offset of the sensor from pipe wall) to the pipe wall,
an essential barrier to overcome in cement-lined water pipelines. The data gathered
represents not only a visual understanding of the condition of the pipe for asset
managers, but also constitutes a quantative input to a remaining-life calculation
that defines the likelihood of the pipeline for future renewal or repair. Results are
presented from deployment of the robotic device on a series of pipeline inspections
which demonstrate the feasibility of the device and sensing configuration to provide
meaningful 2.5D geometric maps.

1 Motivation—A Taxonomy of NDT Inspection Techniques

Non-Destructive Testing (NDT) or Evaluation (NDE) is extensively employed by
the energy and water industry to assess the integrity of their network assets,
particularly their larger and most critical conduits (generally refered to as those
larger than 350mm in diameter), in their decision-making process leading their
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renewal/repair/rehabilitation programs. The key advantage of NDT/NDE is that the
structure of the asset is not compromised in estimating its condition.

The sensing modality to use is strongly influenced by the material of the asset.
Grey Cast Iron (CI) pipelines remain the bulk of the buried critical water infrastruc-
ture in the developed world as that was the material of choice for mass production
with the advent of the Industrial Revolution in the middle of the 18th century (along-
side its less brittle relative of Ductile Iron since the nineteen fifties), until carbon
steel, asbestos cement or plastic pipelines (PVC) amongst other materials made
them redundant over the years. The non-homogeneity of the CI produce means that
sensing techniques widely employed in the (mild) Carbon Steel networks in the
energy pipeline sector, such as ultrasonics or electromagnetic acoustic transducers
(EMAT), are inadequate for CI, and the underlying techniques of most commercial
propositions for CI are instead based on either magnetics (e.g. Magnetic Flux Leak-
age (MFL), Pulsed Eddy Currents (PEC) and Remote Field Eddy Currents (RFEC)),
or the study of the propagation of pressure waves in the pipeline and/or fluid.

NDT techniques produce results that tend to be a trade-off between deployment
costs and information gain. Local inspection techniques (i.e. 1–3 m) can provide
dense measurements but are time-consuming and generally costly per unit-length as
significant preparatory civil works are required (excavations, network re-routing for
guaranteed supply, traffic control, etc.).Moreover inspections can only be undertaken
at locations which are accessible from the surface. An example of these tools can be
seen in Fig. 1b.

On the other hand, the taxonomy of long-coverage tools can be broadly split
into techniques that provide average pipe wall measurements over longer distances
(generally from a few to 100s of meters, even kilometers), and in-line intrusive
(ILI) devices (“smart pigs”) deployed inside the pipeline to inspect in higher detail

(a) External averaging.

(b) External local inspection.

(c) ILI.

Fig. 1 Example of various configurations of NDT tools
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over longer distances (generally 100s of meters to kilometers to make it more cost-
effective), while propelled by the operating pressure of the fluid.

The former are generally deployed by accessing the external pipewall orwater col-
umn at a few access points spread over the length of the pipeline, either through small
key-hole excavations or through external access points such as valves or hydrants. As
such they tend to have low or no impact in the continuing operation of the pipeline
and are more affordable alternatives for condition assessment. An example can be
seen in Fig. 1a. However given the averaging nature of their results, these tools are
aimed at providing an initial screening of the condition of an asset, and lack the ability
to provide the type of detailed geometry information needed to ascertain likelihood
of pipe failure.

Flow-driven ILI tools, on the other hand, are inserted into the charged water
column either through standard large appurtenances present in critical mains, or
more often than not via dedicated launch and retrieval mechanisms, as depicted in
Fig. 1c. While these tools are able to provide direct measurements related to the pipe
wall condition over long distances, they do so at the expense of higher disruption to
the utilities and combined costs from the substantial civil engineering support from
the utility prior, during and post inspection. Moreover, the effectiveness of these
techniques has not been fully established within the industry given the consequential
validation investment required to do so in a statistically meaningful way.

ILI tools present additional shortcomings in the pursuit of attaining an accurate
depictions of the condition of a pipe wall:

• they are at the mercy of the pressure of the fluid driving them (both in the tethered
and free-flowing case).

• should the tools were to be operated in de-watered conditions, they necessitate
complicated winch mechanisms between entry and exit points.

• operating parameters need to be closely controlled (e.g. tool velocity), meaning
that discriminating flow controls need to be in place, not necessarily an easy feat
to achieve in a complex interconnected network.

• they lack the ability to do fine control and adjustments for mapping (e.g. ensuring
tight tolerances in sensor lift-off, repeatability, rectify missed measurements).

Driven by the needs of the water industry the work hereby presented describes
the development and field testing of a novel internal NDT inspection robotic vehicle
able to:

1. undertake localised, controlled inspections.
2. generate dense NDT mapping suitable for condition assessment and failure pre-

diction.
3. tightly control inherent lift-off during sensing (as induced by the presence of

non-magnetic cement lining and pipeline wall irregularities)
4. access arbitrary (within tethered range) pipeline spools from a single point of

entry, hence reducing costs to utilities and allowing inspection of inaccessible
sections from the surface (e.g. under a rail pass) and minimising disruption to
customers (e.g. a pipeline under a driveway).
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While the proposed solution requires pipes to be de-watered for deployment,
this serves a clear mandate from the utility sector that necessitates a robotic NDT
inspection vehicle that can be deployed in an opportunistic manner to ascertain the
condition of a particular pipeline, specifically when a mains break occurs, or on the
back of a valve inspection or repair program when pipelines are inevitably taken
off-line. The remainder of this paper describes such an NDT robot for the inspection
of buried network infrastructure and the novelties behind its inception.

2 NDT Pipeline Wall Inspection

Recent research in the space of stress analysis and failure prediction of critical CI
water mains has revealed that over and above pit depths, as traditionally provided
during condition assessment of a critical asset, there is a need to ascertain the presence
and geometries of large corrosion patches in the pipe walls [1], such as those depicted
in Fig. 12d. There exist a wide range of NDT technologies developed for the purpose
of material characterisation for CI [2], yet the provision to build dense 2.5D maps
of remaining wall geometries for lined water mains has driven the need to design
an internal inspection tool around Pulsed Eddy Current (PEC) sensing technology,
as a proven technique typically used in the NDT sector for ferromagnetic material
thickness estimation [3, 4], resilient to sensor lift-off.

Fig. 2 enables interpreting 2.5D maps of remaining wall thickness produced
through PEC sensing, and the conventions shown in Fig. 2 hold for all thickness
maps presented herein. The axial location indicates the distance along the pipe’s
longitudinal axis, while the circumferential location represents rotational degrees
around the pipeline. 0◦ and 360◦ coincide on the top (crown) of the pipe. In the field
inspection results presented in Sect. 4, longitudinal locations are in reference to the
origin set at the robot’s entry point to the pipe. The colour bar to the right of the
thickness maps is a legend representing thickness in mm, between 0 and 30.

(a) 2.5D thickness map. (b) Rolled pipe thickness map. (c) Coordinate system on pipe.

Fig. 2 Axial x and circumferential y coordinates of a 2.5D pipe thickness map
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(a) PEC sensing operating diagram. (b) Typical PEC signals on CI thicknesses.

Fig. 3 PEC sensing setup embedded in inspection robot, and typical PEC signals

Developed PEC Sensing System A typical PEC sensing system developed for
ferromagnetic materials consist of an exciter coil, a detector coil, a voltage pulse
generator for excitation and an amplifier for the detected signal. A block diagram of
the PEC sensing set up developed for this work is shown in Fig. 3a. Given the size
of the pipes of interest the footprint of the sensor used was 50mm, indicating that it
measures the average thickness of a 50mm×50mm area under the sensor. Signals
captured from the system on different CI thicknesses are shown in Fig. 3b and as
reported in the literature features can be extracted from such signals which can be
directly linked to material thickness [5, 6].

Validation of PEC Robot Sensor Setup The validity of the sensor arrangement
was first assessed by comparing results on the exhumed CI pipe in Fig. 4 with intact
cement lining. The objective was to evaluate how well the measurements agree if a
section of the pipe is scanned externally and internally via cement lining. External
measurements were performed on known locations with the aid of the grid pattern
marked in Fig. 4a. The same locations were scanned internally as shown in Fig. 4b
with the aid of the robot localized with reference to the pipe’s edge. Measurements
were recorded at 50mm distance increments along rings in the circumferential direc-
tion, whilst distance between consecutive rings was set to 100mm to speed-up the
inspection process, since thus generated thickness maps can be then upsampled with
minimal information loss as shown in Fig. 12d. The rationale and methodology for
this will be further elaborated on in the following two Sections. Strong agreement
between both measurements was notable as depicted in Fig. 5; the error histogram
in Fig. 5e, calculated by subtracting internal thickness estimates from external ones
hints at a small positive bias in the error, with a mean and standard deviation of
0.323mm and 0.417mm respectively. This is an expected result since marginally
better sensitivity can be expected when scanning externally (particularly for higher
thickness), as the sensor touching the pipe wall can achieving stronger penetration
than from the inside given the lift-off effect induced form the cement lining layer. The
errors are indicative of acceptable agreement between internal and external measure-
ments confirming the sensor’s suitability for internal assessment of pipes via cement
lining.In another sensor verification experiment, Fig. 5c shows results of a repeata-



324 J. V. Miro et al.

(a) Exhumed pipe on which internal and exter-
nal measurements were performed.

(b) Pipe assessment robot perform-
ing internal measurements.

Fig. 4 Laboratory setup with exhumed pipe for internal and external PEC validation

(a) External. (b) Internal. (c) Repeatability of straight line test.

(d) One-on-one comparison 5a vs. 5b. (e) Error histogram 5a vs. 5b.

Fig. 5 Thickness maps from internal and external measurements

bility test carried by measuring a straight line along the pipe six times (three times
internally and three times externally, with each line having 18 measurements); the
average variation on a location was less than 1mm, indicating appreciable measure-
ment repeatability.

Further to the comparison of internal versus external deployment, the PEC sensor
arrangement was also validated on a pipe whose actual wall thickness ground truth
(GT) had been previously obtained, with the results collected in Fig. 6. Attaining
the GT is a destructive process, whereby the pipes are first exhumed, then both
internal and external pipe surfaces are grit-blasted to remove rust and graphitization,
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(a) Pipe section and high resolution GT map. (b) Estimates against GT.

Fig. 6 External PEC thickness estimates against GT

the by-products of the corrosion process inflicted on a buried pipeline, leaving only
the bare metal—the target of the PEC sensor measurement. Both surfaces are then
reconstructed with a high-resolution 3D laser scanner and ray-tracing performed on
the collocated upsampled internal and external pipe surface point clouds to derive
the GT thickness maps at a resolution of 0.6mm [7]. This high resolution GT can
then be downsampled to the sensor’s 50mm footprint by means of averaging so as
to match the PEC sensor measurements in order to compare. RMS error of 1.29mm
was observed between external PEC measurements and GT, indicating reasonable
agreement even when challenged by significant defects as evident from the testing
pipe depicted in Fig. 6a, selected to better capture variability in the remaining wall
thickness.

3 NDT Robot Kinematics, Locomotion and Control

The robotic NDTmapping unit was designed to allow accurate positioning of sensors
internally on the pipe surface, in a robust and repeatable manner. To achieve this,
a mechanism designed to self-align inside the pipe while providing circumferential
and longitudinal control with a single actuation to place sensors against the pipe
inner wall was developed, shown in Fig. 7.

Mechanical Design Mecanum wheels were selected for the robot locomotion. In
planar applications they enable holonomic robot motion as they allow control in all
three degrees-of-freedom (DoF) available to the robot [8]. For this application it is
only necessary to control two degrees-of-freedom, longitudinal and circumferential
motion. By applying a non-standard wheel configuration it is possible to exploit the
unique geometry of the operating environment to passively align with the central
pipe axis, automatically tracking the pipe should minor changes in direction occur.
Fig. 8a and b demonstrate the layout designed to achieve these requirements. In this



326 J. V. Miro et al.

(a) Solid model design. (b) Robot inspecting a pipeline.

Fig. 7 NDT inspection robot design, and during field deployment in a pipeline

(a) Top view. (b) Front view.

Fig. 8 Mecanum wheel layout

configuration, the axis of rotation of the pipe contacting rollers all pass through a
single point allowing the robot to rotate freely about this point in response to an
external force. When resting on a cylindrical surface, such as a pipe wall, an external
restoring force is generated in response to angular disturbances which acts to return
the robot to the aligned position.

Control in the longitudinal direction and rotation about the circumferential direc-
tion are achieved by controllingwheel velocities using the kinematic relations derived
in Eq.1, which follow standard forwards kinematic equations in simplified form [9],
where vx (t) reflects the longitudinal velocity (m/s), vy(t) is the circumferential veloc-
ity (m/s), ωi (i = 1 . . . 4) is the wheel rotation speed (rad/s) and r is the wheel radius
(m).
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vx (t) = (ω1 + ω2 + ω3 + ω4) × r

4

vy(t) = (−ω1 + ω2 + ω3 − ω4) × r

4

(1)

It is essential that the angular velocities of diagonally opposite wheels arematched
to prevent excessivemotor loads as the robot is constrained in the z-axis. Driving each
pair of diagonally opposite wheels with a single motor would achieve this require-
ment, however, the required drivetrain is complex and in the proposed designed
control of each separate motors is implemented in software, as discussed below as
part of the system overview.

Tomaintain stability during circumferential rotations, a set of free-wheeling omni-
wheels are mounted on a parallel four bar linkage shown in Fig. 9a. This assembly
is pressed against the pipe wall with a preload of approximately twice the robot
weight, maintaining control authority regardless of orientation while simultaneously
compensating for variation in pipe diameter. A linear actuator is included to retract
the omni-wheels from the pipe surface during insertion. This actuator features a
spline so that it does not affect the self correcting behaviour of the parallel linkage
during normal operation.

The PEC sensors are coupled to actuated lever arms using a stiff rubber joint.
This joint allows the sensor to conform to the pipe surface in the presence of minor
irregularities while maintaining a precise placement. The actuators drive until a stall
condition is detected, allowing the sensor to be reliably placed on the pipe surface
regardless of pipe variations or actuator drift.

System Overview The system uses two computers, one on-board the robot for
data acquisition and actuator control, and one outside the pipe for the user interface.
The entire system runs from a generator on the surface with power delivered to the
robot with a power over ethernet (PoE) connection. The user interface can receive
data and issue control commands in real-time over the local area network (LAN)
connection provided by the ethernet tether. This approach limits operational range

(a) Arm design. (b) Rotated stabilising arm.

Fig. 9 Stabilising arm



328 J. V. Miro et al.

Table 1 Core component specifications

Computing Odroid XU4—arm based single board computer

Sensors Xsens Mti-10 IMU w/Gyro 450◦/s, acc 50 m/s2

Odroid USB-Cam 30FPS, FOV: 68◦
3D Structure sensor w/HFOV: 58◦, VFOV: 45◦

Control Maxon motor DCX26L, gear ratio 231:1, sensor 500 counts/turn
Sensor actuator—linear actuator, max force: 1000 N
Stability actuator—linear actuator, max force: 2500 N

Power PoE injector/splitter, 60 W, 70 m cable reel

but provides for significantly longer operation times. To overcome power limitations
of PoE, an ultracapacitor bank and bespoke charger was developed to supply bursts
of high power while ensuring that the PoE equipment maintains an optimal power
delivery rate. This setup provides a steady power supply for the overall system on
the condition that high power maneuvers are not sustained for extended periods.

The on-board Odroid, running Linux and the Robotic Operating System (ROS),
receives data from the sensor suite through a poweredUSBhub and controls on-board
actuators via digital input/outputs pins. Each sensor has it’s own monitoring node to
manage incoming data and publish to the communication layer. Custom task alloca-
tion/behaviour nodes then subscribe to the data streams, processing and publishing
control commands as required to the motor and actuator nodes. System control is
accomplished using a state machine, which allows both user and autonomous control
modes for consistent data retrieval and safe user override. When switched into auto-
matic scanning mode, the circumferential angle and longitudinal position are man-
aged using independent set-point control loops. This simplifies both the kinematics
and the algorithms required for control. Controlling circumferential angle is achieved
using the on-board IMU and a standard PID control algorithm. The IMU publishes
attitude data to ROS at a fixed rate of 100Hz. As each data packet is received, the
attitude data is transformed into the local coordinate frame to maintain consistency
even when the pipe is not level. Similarly, longitudinal control is achieved using
odometry calculated using encoder readings published at a 100Hz and filtered to
detect wheel stalls. In addition, an overriding human in the loop (HITL) input allows
direct control of the longitudinal position. This is used to recover when odometry
fails due to motor stalls or excessive wheel slip during the ring-to-ring transitions. A
laser distance sensor is utilised to confirm longitudinal position when conditions are
safe to deploy in the excavation pits. Details of the system are collected in Table1.

Motion Validation Consistency during automated scanning was verified at onsite
trials, with angular repeatability and translational slip during rotation being the key
metrics providing confidence in the sensor placement accuracy. Data was collected
from an IMU to validate robot orientation, and a laser distance sensor was used to
confirm longitudinal positions. Fig. 10a shows the measured rotation angle error dur-
ing repeated scanning cycles of 180◦ using 10◦ increments. The observed offset of
0.53◦ in relation to the set-point was found to be originated by the pressing action
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(a) Circumferential repeatability. (b) Longitudinal error.

Fig. 10 Circumferential and longitudinal consistency

of the sensor against the pipe wall. Fig. 10b shows longitudinal drift during these
scans. An average error of 0.55mm was produced (maximum 5.4mm). Since PEC
sensing produces a result averaged over a 50× 50mm area, and scan rings are spaced
at increments of 100mm, a 5mm drift in the longitudinal direction is well within the
safety margins generally assumed for failure prediction analysis in civil infrastruc-
tures. Given overall sensing and mechanical constraints, the system operates at slow
speeds: deployment runtime metrics showed an average spool completion time of
166min, or 1.3m/h. This includes 216s of automated scanning for each ring, with
30–60s dedicated to motion from one ring to the next.

4 Field Pipeline Inspection Results

The proposed robotic device has been extensively deployed in a buried 1Km live
CI Cement Lined (CICL) pipeline provided by a utility in Sydney, Australia, in
what effectively constitutes a unique worldwide opportunity for the advancement
of NDT sensing and automation research in the field [10]. The pipeline has been
decommissioned and is therefore no longer part of the utility’s live network. However
a connection point to an adjacent 600mm water main and various scour valves and
hydrants allow for the pipeline to be pressurised and discharged as needed. Details
of the pipeline are collected in Table2. Pipe sections between 3 and 4m in length
were targeted for scanning by inserting the inspection robot through a removed pipe
section, be that a previously replaced section, as shown in Fig. 1c, or a new cut-out.
An example of an inspection plan is shown in Fig. 11.

Asmentioned in Sect. 1 the salient novelty of the proposed robotic integrity assess-
ment is the ability to carry out internal detailed inspections that enable dense map-
ping where identification of the geometry of wall loss patches can be confirmed. An
example of the final outcome achieved is shown in Fig. 12d, where measurements
indicative of the lead run joints are also shown.
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Table 2 Test-bed specifications, adapted from [10]

Year installed 1922

Nominal pipe diameter 600mm

Internal pipe diameter 579–590mm (with cement lining)

External pipe diameter 662–666mm

Nominal wall thickness 27mm

Material Pit cast iron

Internal liner Cement (installed in 1964)

Cement lining thickness 9.5–16.5mm

Fig. 11 A typical inspection plan

(a) Target 1650 in Fig. 11. (b) Target 1670 in Fig. 11.

(c) Measured thickness map (inspected
section not from Fig. 11 area).

(d) GP-inferred thickness map depict-
ing visible joints and corrosion patches.

Fig. 12 Various examples of remaining pipe wall thickness maps as measured by the robotic wall
inspection during field deployment on buried critical water mains

To achieve this outcome various inspection patterns were studied to mitigate the
slow robot examination speed reported in Sect. 3, and it was proven that circumfer-
ential rings 100mm apart in axial distance were able to reconstruct detailed dense
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maps by means of Gaussian Process (GP) [11] spatial data dependences from lim-
ited NDT inspection data [12]. Given the 50mm sensor footprint this effectively
meant skipping every other ring with considerable time savings yet inconsequential
information loss in relation to map quality and sizing of critical patches.

Robot localisation with respect to an entry point while travelling towards a section
targeted for inspection was done by means of robot odometry, measurement of tether
release and accounting for spool joints traversed as seen by the robot camera. Val-
idation from an external laser scanner mounted at the entry point as seen in figure
was also used when it was deemed safe to be deployed in the field excavation pit.
Moreover, discontinuity on spool joints also reveals a characteristic PEC signal com-
parable to a crack that was also exploited in case of ambiguity about spool length.
After reaching the target spool, circumferential and longitudinal ring inspections
were undertaken as described in Sect. 3 to generate maps such as those depicted in
Fig. 12. Where wall loss is present the spread of the reduction is clearly evident and
can be identified and measured. Such patches are modelled as ellipses (see Fig. 12d),
and their defining parameters can then be incorporated for stress calculation and
remaining life prediction of the asset [1].

Prior to using the robotic tool for extensivemeasurements, repeatability tests were
also carried out on pipe sections at the test-bed to ascertain the performance of the
robotic inspection unit in-situ. Results from one of the tests are shown in Fig. 13.
The error histogram in Fig. 13c suggests a close to zero-mean Gaussian (0.112mm
mean, 0.869mm standard deviation). Information such as minimum, maximum and
average thickness of the inspected pipe section are key parameters of interest to water

(a) Map A. (b) Map B.

(c) Errors between maps.

Map A Map B

Minimum thickness 17.4 16.2
Maximum thickness 28.1 28.8
Average thickness 21.8 21.9

(d) Inspection measurements (mm).

Fig. 13 Robotic inspection repeatability tests on a single pipe section
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(a) Picture of anomalous nar-
rowing (white ring at pointer).

(b) 3D reconstruction of anomaly
captured by RGBD robot sensor.

(c) Outer clamp found after
excavation.

Fig. 14 Unchartered pipe anomaly found during inspection; verification excavation

utilities for stress analysis and asset management in general. Figure13d collects the
most typical quantitative information being currently reportedwith the robotic device
on the two inspections shown—Map A (Fig. 13a) and Map B (Fig. 13b).

Pipe Inner Surface Profiling In addition to PECmeasurements, perceptual infor-
mation from video streaming and point clouds of the pipe inner surface (cement lin-
ing) can also be recorded with the RBG camera and the 3D structure sensor mounted
at the front of the robot. The latter in particular allows mapping the geometry of the
pipe inner surface in order to evaluate the surface unevenness, variation in the nomi-
nal pipe diameter and mapping the structure of in-pipe features (chainage, off-takes,
valves). Moreover, reconstructing the inner surface profile has the advantage that it
enables identifying and locating unchartered coarse anomalies present on the cement
lining surface which may impede motion of ILI tools. An example of the latter was
apparent during one of the inspections where the robot encountered an abnormality
in the form of pipe narrowing during the experiment is shown in Fig. 14b. The mean
diameter of the narrow region was observed to be 579mm while the expected nom-
inal diameter of the cement lined inner surface is expected to be close to 600mm.
A posterior excavation found an unchartered outer clamp, shown in Fig. 14c, whose
existence was not known to the utility.

5 Concluding Remarks

An in-line robotic solution for the inspection of buried critical water mains and its
evaluation during field deployments has been presented in this paper. A singular
kinematic locomotion design that optimizes mobility in such tubular environments
has been coupled with an embedded NDT sensing solution based on PEC for mea-
surements unsusceptible to sensor lift-off, as typically found in cement lined water
pipelines. The device addresses a utility sector need for an automatic NDT inspec-
tion vehicle that can report dense pipe wall thickness discrimination as prescribed by
failure prediction analysis, and that can be deployed in an opportunistic manner—
e.g. when a mains break occurs, or during valve inspection or repair programs when
pipelines are discharged and access made available. Extensive results have proven



Towards Automatic Robotic NDT Dense Mapping for Pipeline Integrity Inspection 333

the validity of the solution on laboratory tests and field pipeline inspections which
demonstrate the feasibility of the device and sensing configuration to provide mean-
ingful 2.5D geometric maps.
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Real-Time Semantic Mapping
for Autonomous Off-Road Navigation

Daniel Maturana, Po-Wei Chou, Masashi Uenoyama
and Sebastian Scherer

Abstract In this paper we describe a semantic mapping system for autonomous
off-road driving with an All-Terrain Vehicle (ATVs). The system’s goal is to provide
a richer representation of the environment than a purely geometric map, allowing it to
distinguish, e.g., tall grass from obstacles. The system builds a 2.5D grid map encod-
ing both geometric (terrain height) and semantic information (navigation-relevant
classes such as trail, grass, etc.). The geometric and semantic information are esti-
mated online and in real-time fromLiDARand image sensor data, respectively.Using
this semantic map, motion planners can create semantically aware trajectories. To
achieve robust and efficient semantic segmentation, we design a custom Convolu-
tional Neural Network (CNN) and train it with a novel dataset of labelled off-road
imagery built for this purpose. We evaluate our semantic segmentation offline, show-
ing comparable performance to the state of the art with slightly lower latency. We
also showclosed-loopfield resultswith an autonomousATVdriving over challenging
off-road terrain by using the semantic map in conjunction with a simple path plan-
ner. Our models and labelled dataset will be publicly available at http://dimatura.net/
offroad.

1 Introduction

The last few years have seen enormous progress in the 3D sensing capabilities of
autonomous vehicles. Mature and robust LiDAR and INS technologies give self-
driving vehicles an accurate and real-time sense of the geometric structure around
them, immensely simplifying navigation-related tasks.

However, we have observed that relying primarily on geometric information leads
to disappointing results for autonomous navigation in off-road environments. The
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Fig. 1 Our autonomous
all-terrain vehicle (ATV).
The two main sensors, a
spinning 3D LiDAR and a
stereo camera, can be seen
on the vehicle roof

main reason is that geometric structure, by itself, fails to provide many important
distinctions for wheeled All-Terrain Vehicles (ATVs) such as ours, shown in Fig. 1.
For example, tall grass may be perceived as an obstacle, but our ATVmay traverse it
if desired. Similarly, leaf litter may appear as rocky terrain, or puddles may appear as
either holes or smooth surfaces. All of these may lead to suboptimal, even dangerous,
decisions in path planning. Similar observations have been made many times before
in the context of off-road robotics, e.g., [11, 12, 17, 24].

In this paper, we describe a system to counter this problem by building a semantic
map, a representation of the vehicle’s surroundings encoding both geometric (e.g.,
height, roughness) and semantic information (navigation-relevant classes such as
trail, grass, obstacle, etc.). The map is stored as a 2.5D grid centered on the vehi-
cle frame and is continuously updated as new sensor data is acquired. Using this
representation, a motion planner can create semantically-aware trajectories.

Our key contribution is a simple yet effective system coupling a custom Convo-
lutional Neural Network architecture, based on Fully Convolutional Networks [16],
and a 2.5D vehicle-centered semantic grid map that fuses the geometric and semantic
measurements as the vehicle moves and acquires more data. We show the effective-
ness of the semantic segmentation CNN in offline benchmarks. By using a simple
planner with the semantic map, we show qualitative examples of our system being
successfully used to navigate challenging off-road terrain.

As additional contributions, the labeled dataset of off-road imagery used to train
our network, as well as our semantic segmentation code, will be made publicly
available. See the project website, http://dimatura.net/offroad for links.

http://dimatura.net/offroad
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2 Related Work

Our system is heavily inspired by the rich literature on semantic approaches to off-
road navigation tasks, going as far back as 1990 [7].

A decade later, various practical systems showed impressive results with this
paradigm, usually with a combination of LiDAR and images [12, 17, 24, 27, 28].

The LAGR program [11] featured various highly relevant systems such as [2,
13, 20, 26], which performed semantic classification with hand-engineered vision
pipelines. An exception is [9], featuring an early deep neural network system for
semantic segmentation.

In more recent work, [23] demonstrate autonomous navigation featuring a light-
weight semantic segmentation system. Unlike our system, they use traditional visual
feature engineering, leading to noisy pixel-wise predictions that they smooth with a
novel regularization method. In contrast, our architecture, based on Fully Convolu-
tional Networks (FCNs) [16], incorporates spatial context that naturally smoothes the
output. Another relevant work is [25], which uses an encoder-decoder network archi-
tecture that is similar to FCNs. They explore modalities beyond RGB and achieve
impressive segmentation results. However, they do not build a metric map or demon-
strate closed-loop navigation.

3 Approach

Overview. This system architecture is outlined in Fig. 2. There are two primary
sensor streams, RGB imagery and LiDAR point cloud data. The RGB images are fed
into the semantic segmentation module, which uses a CNN to generate a pixel-wise
labeling. Concurrently, the LiDAR point clouds are used to update a 2.5D grid map
in the semantic mapping module. The semantic mapping module also receives the
pixel-wise prediction images from the semantic segmentation module and projects

Fig. 2 Overview of our semantic mapping system
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them onto the 2.5D grid map, which fuses the semantic predictions over time. The
result is a vehicle-centered 2.5D grid map encoding continuously updated estimates
of relevant geometric and semantic information for off-road navigation. Finally, the
map is used for semantically-aware path planning. For our initial testing, we used a
simple receding horizon path planner that assigns a traversal cost to each semantic
class and continuously chooses a path to minimize the cost. The whole system runs at
10Hz, a rate dictated by the speed at which the semantic mapping module processes
images.

Hardware Platform. Our vehicle is shown in Fig. 1. It is a commercial All-Terrain
Vehicle modified and instrumented for experiments in autonomous off-road driving.
The sensor suite includes an INS/GPS system, a 64-line Velodyne LiDAR and an
RGB stereo camera with a 21cm baseline manufactured by Carnegie Robotics. Note
that the system in this paper does not currently use the stereo depth information.
All computation is performed onboard with two COTS laptops, connected through
high-speed ethernet. The laptop for semanticmapping includes anNVIDIAGT980M
GPU, used to achieve real-time execution of the CNN classifier.

Software Platform. All computers run Ubuntu Linux. The different systemmodules
run concurrently as ROS nodes and communicate through ROSmessages. The nodes
are implemented in C++ and Python, using CUDA (generated via the Theano library
[3]) to make effective use of the GPU.

3.1 Semantic Segmentation

The goal of 2D semantic segmentation is to assign one of K predefined classes to
each pixel in an image. Like many tasks in computer vision, the state of the art
for this task has been recently revolutionized by Deep Learning, and in particular
Convolutional Neural Networks.

For this task, the most successful neural networks architectures are Fully Convo-
lutional Network (FCNs) [16]. The key idea in these networks is to take advantage
of convolutional structure to label all the pixels simultaneously with a very similar
network to more traditional CNNs. Due to pooling, this results in low-resolution
outputs; to reverse this, so-called “deconvolution” layers are added to upsample the
output. In order to preserve high-frequency detail, skip layers connecting early lay-
ers to upsampled feature maps are added. Encoder-Decoder architectures [1, 19], of
which UpNet [25] is an example, are similar but omit skip layers.

At the start of the project, we found state of the art architectures to be relatively
slow, as they were optimized for accuracy over speed. Thus we implemented and
trained our own architectures, using the Theano [3] and Lasagne [6] libraries. We
have found various possible architectures to show very similar accuracy for our off-
road semantic segmentations tasks, differing mostly in time cost, which in turn is
largely driven by details of the architecture and input/output resolution. We believe
this is due to the relatively small datasets used.
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Fig. 3 Our two network architectures. “conv” denotes a convolutional layer; “pool”, a pooling
layer; layers ending in “nin” are 1 × 1 convolutional layers;“fuse” is an elementwise sum layer;
“up” is an upsampling deconvolution layer; “norm” is a local response normalization layer. The
input is assumed to be the layer above, unless otherwise specified. For convolutional layers, “size”
is the kernel size; for pooling layers, it is the pooling receptive field. Note that for dark-fcn we
split the table due to space constraints

We use two architectures. The first, cnns-fcn, is based on our “convolution-
alization” of VGG-CNNs from [4], and has 227 × 227 input size with 109 × 109
output size. The second, dark-fcn, is based on our convolutionalization of the
Darknet architecture [21], which in turn is similar but more efficient than VGG16
[22]. For dark-fcn both the input and output are 300 × 300, in order to facilitate
comparison with UpNet. Despite the higher resolution dark-fcn is faster than
cnns-fcn: 21ms on a GT980M, compared to 37ms. The authors of UpNet [25]
describe a 50ms with Caffe on a GTX Titan X, which in our experience has similar
speeds to the GT980M. This leads us to believe our model should be faster or at least
comparable. Figure3 shows both of our architectures. Code and trained models will
also be made available.

3.2 Semantic Mapping

The output of the semantic mapping step is in 2D image space, but it is far more
natural for vehicles to plan in a 3D, metric space. In our case, we adopt a 2.5D grid
with each grid cell containing estimated height, i.e., a height map. This suffices for
many environments, but would potentially have issues with overhanging trees or
tunnels.

To keep an up-to-date height map of the vehicle’s surroundings, we use a scrolling
grid data structure, which has been reinvented multiple times in the literature. This
structure is a generalization of ring-buffers to two dimensions, and its main feature
is that it can be shifted (translated) without copying its data, and instead updating the
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Fig. 4 Mapping the semantic segmentation to the 2.5D map

variables indicating its limits. This is a speed optimization; logically, the grid behaves
like a finite 2D array centered around the vehicle, with each grid cell containing
various properties about the terrain. In our paper the grid cells are 0.25 m×0.25 m
each, and themap has 400 × 400 cells. Each grid cell maintains a running estimate of
the minimum and maximum height in that grid cell, computed by using occupancy
and free-space constraints derived from LiDAR rays, similar to [8, 30]. For each
point in the point cloud, we raytrace on our grid using Bresenham’s algorithm in 3D;
cells that are passed through, and above, are considered empty, and cells where the
beam stops, and below, are considered occupied.

The semantic map also integrates semantic measurements, as its name indicates.
To project the output of the 2D semantic segmentation into a height map represen-
tation, we follow a straightforward process depicted in Fig. 4.

Given that we know the relative position of the camera and the LiDAR, and the
camera intrinsics, we can project the 2D semantic predictions onto the 2.5D grid
cells using simple geometry. However, for added robustness, we fuse measurements
over time. To this end we adopt a scheme inspired by the sequential filtering process
of occupancy maps [18], but generalized to K classes.

For this, we use the probabilistic (softmax) pixel-wise output of the classifier. We
maintain a running sum of the log odds of the K classes projected to each grid cell.
While this soft multiclass representation could be used directly, for simplicity when
interfacing with other systems, we use the argmax of the K classes as our current
best estimate of the semantic class for each grid cell. Note that this representation
assumes a single class per cell, which may be a limitation in certain environments.

An example cumulative output of the semantic map in a live field run is shown in
Fig. 5.
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Fig. 5 Example output of semantic map in a field run

Fig. 6 Path planning. a Library of candidate paths, overlaid on top of the semantic map. Red
indicates feasible paths. b Illustration of how we account for vehicle width. For each trajectory,
we compute the cost (or reward) over seven shifted versions of the trajectory, covering the vehicle
footprint. c An example of a chosen trajectory, chosen according to the traversability score of the
semantic classes it covers

3.3 Path Planning

In order to demonstrate autonomous operation, we implement an extremely simple
receding horizon path planner. The planner has a library of 30 trajectories corre-
sponding to yaw rates of −15◦/s to 15◦/s, discretized at 1◦/s, and at constant velocity
of 9km h−1; see Fig. 6a).

Each time the map is updated, which happens at 10Hz, a trajectory is chosen from
the library. The choice of trajectory maximizes a reward function derived from the
semantic map as follows. Cells labeled as “smooth” or “rough” trail have a reward
of 1, and cells labeled as “grass” have a reward of 0.1. All other classes have zero
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reward. The total reward of a trajectory is the sum of rewards over a 20 m trajectory
length, originating from the vehicle. To account for vehicle width, we slightlymodify
this calculation, as shown in Fig. 6b).

The advantage of this planner is that in its extreme simplicity, its performance
depends largely on the output of our semantic mapping, with no interference from
other factors thatwill be a present in amore complex,multi-layered system.However,
our system was also used as an additional input to a more deliberative proprietary
planner, for which the main representation was a geometric map built with LiDAR.
In this planner, our semantic predictions were used primarily to avoid treating grass
on and near trails as obstacles, enabling operation on narrow trails.

4 Experiments

Overview. We evaluate our system in two ways. First, we run offline benchmarks
of the semantic segmentation module in two datasets. Second, we demonstrate the
whole system operating autonomously live field experiments.

4.1 Offline Benchmarks

In order to evaluate our semantic segmentation module, we use two datasets, the
DeepScene dataset from Valada et al. [25] and our own dataset, the Yamaha-CMU
Off-Road Dataset.

DeepScene Dataset. This dataset consists of 233 training images and 139 validation
images of off-road imagery densely labeled with six semantic categories: void, road,
grass, vegetation, tree, sky, and obstacle. While this dataset shows some interesting
variety in appearance due to the time of day, it is fairly small and seems to lack
diversity in terms of weather and location. A key feature of this dataset is various
modalities (depth, NIR), but we do not currently make use of them.

Yamaha-CMU Off-Road Dataset. In order to train and evaluate our method we
have collected our own dataset, which we call Yamaha-CMU-Off-Road, or YCOR.
It consists of 1076 images collected in four different locations in Western Pennsyl-
vania and Ohio (Fig. 8), spanning three different seasons (Fig. 7). The dataset was
labeled using a polygon-based interface with eight classes: sky, rough trail, smooth
trail, traversable grass, high vegetation, non-traversable low vegetation, obstacle. The
polygon labels were post-processed using a Dense CRF [15] to densify the labels; the
output of the CRF was manually inspected, and in some cases corrected, to ensure
no wrong labels were created.

We believe our dataset is more diverse and challenging than DeepScene. In Fig. 8,
we show the mean RGB image and pixel-wise label mode of each dataset. The
DeepScene dataset shows a left-right bias andmore predictable structure than ours; if



Real-Time Semantic Mapping for Autonomous Off-Road Navigation 343

Fig. 7 Montage of frames from our dataset collection

Fig. 8 First two columns: a comparison of dataset statistics. We show the mean RGB frame and
the pixel-wise mode for the labeled frames in the training sets of each dataset used. Last column: a
map with locations where YCOR was collected

we used the pixel-wisemode as a baseline classifier, wewould obtain 0.30 pixel-wise
error-rate in DeepScene, but 0.51 in ours. However, we acknowledge that compared
to recent efforts, both datasets are relatively small; cf. CityScapes [5], with 25000
labeled images.

Our current split has 931 training images, and 145 validation images. This split
was generated randomly, ensuring there was no overlap in data collection session
between images in the training and validation split. However, there is overlap in
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locations used. We will provide location and time of acquisition metadata to enable
further evaluation regarding generalization across these factors.

Quantitative Results. We evaluated our models on the two datasets. In each case,
we train our models from scratch on the predefined training set until convergence
with SGD, dividing by the initial learning rate (0.0001) by a factor of 10 three times.
We use a standard pixel-wise cross-entropy loss with a small L2 regularization factor
(0.0005). Training takes around two days on a GT980Ti GPU. We use crop, rotation
and color augmentations at training time, and none at test time. We use per-class
intersection over union (IoU) as the evaluation metric, the most common metric for
semantic segmentation.

Table1 shows results for DeepScene and Table2 shows results for YCOR. In
both, we include a variant of the dark-fcn model with 448 × 448 resolution, in
addition to the standard 300 × 300. We report the numbers from their paper [25],
where we denote by frequency-weighted IoU (fw-IoU) what they denote as IoU,
and add mean IoU (mIoU), calculated by ourselves. As we can see, both our models
perform comparably, with dark-fcn having a slight advantage. In the DeepScene
dataset we can also compare the two models with the RGB UpNet. We see that
our models have a slight edge in fw-IoU, though they display dramatically worse
performance for obstacles, which severely skews the mIoU metric. We note that the
number of obstacle pixels in the dataset is three orders of magnitude less than for
the other classes, so the network tends to ignore it. A similar situation occurs with
puddles in YCOR. Nonetheless, it is an important class, and we are investigating
how to detect it more accurately. Finally, we see that increasing the input resolution
gives a slight boost in performance.
Qualitative Results. We show some qualitative labelings of the cnns-fcn archi-
tecture for each dataset in Fig. 9. As can be seen, the results are generally accurate.
For theYCOR,most of the confusions come from smooth vs. rough trail, a distinction
that is hard for humans to make consistently.

Table 1 Per-class, mean IoU and frequency-weighted IoU of UpNet (RGB) and our models in
DeepScene dataset. The first three rows use a 300 × 300 image size, as in UpNet; the last row uses
448 × 448

Road Grass Veg./tree Sky Obstacle mIoU fw-IoU

Upnet (RGB) [25] 85.03 86.78 90.90 90.39 45.31 79.68 85.30

cnns-fcn 85.95 85.34 87.38 90.53 1.84 58.51 87.47

dark-fcn 88.03 86.65 89.21 93.17 5.03 60.35 89.41

dark-fcn-448 88.80 87.41 89.46 93.35 4.61 60.61 89.85
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Fig. 9 Montage of predictions from cnns-fcn in the YCOR dataset (top four rows)and Deep-
Scene (bottom four rows). In each case, we show three images: input, ground truth labels, and
predicted labels
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Fig. 10 Action shots of autonomous off-road driving in our testing site. In the first two rows, the
left-hand side shows screenshots of the sensor data and map as seen from the vehicle. The last
row shows aerial action shots with the right-hand showing the semantic map. Videos will be made
available on the project page

4.2 Field Experiments

We performed various self-driving experiments in March and July 2017, in various
locations around our testing site near Pittsburgh, PA. The terrain traversed including
steep slopes, rocky and muddy terrain, puddles, and vegetation of various heights
surrounding and covering the trails. Despite the simplicity of our planner, the vehicle
managed to successfully traverse various trails that were too challenging for a previ-
ous LiDAR-only system. These include locations with puddles, grass in the middle
of the trail, and narrow trails. Video is available in the project website. Figure10
shows the vehicle in autonomous operation.

On the other hand, we observed some limitations of our current system. Many
of the limitations were due to the simplicity of the receding horizon planner, which
often swerved from side-to-side in wider trails.

Some of the failures were also due to our semantic classification system. For
example, it sometimes failed to detect sparse grass alongside the trail, resulting in
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the vehicle veering off-trail. In one occasion, it also confused a large non-traversable
bush with traversable grass, forcing us to manually intervene.

While we maintained a nominal speed of 9 km h−1, the velocity in practice varied
by a kilometers per hour; when traveling at more than 12 km h−1, we occasionally
observed the map would not update in time to make correct planning decisions, again
resulting in failures to react appropriately.

More extensive testing was performed with the proprietary deliberative planner.
In trials traversing more than 100 km, we observed far more stable operation.
Timing. We run all computation onboard the vehicle using an i7 laptop with a 6GB
GT980MGPU.Thebottleneckof the system is in the raytracingoperation of semantic
mapping, with semantic segmentation taking approximately 35ms per image and
the label projection taking around 60ms per image. These steps occur sequentially,
leading to the roughly 10Hz rate operation of the system. This is sufficient for
medium-speed operation, but there is ample space to optimize performance further
to support faster driving and/or more limited computing platforms.

5 Conclusions

We have introduced an efficient and robust semantic mapping system for off-road
navigation featuring a state-of-the-art CNN classifier. To train the CNN, we have
collected and labelled a new dataset of off-road imagery. We have evaluated it in
offline benchmarkswith results comparable to the state of the art with lower latencies.
We have also demonstrated closed-loop operation in challenging off-road terrain.

In future work, we are interested in incorporating recent advances from the state
of the art in semantic segmentation, such as Dilation layers [29], pyramid spatial
pooling [10]. We are also evaluating the contribution of multiple input modalities,
including an approach jointly using LiDAR and imagery for segmentation [14].

Having verified firsthand the difficulty of accurately labelling large amounts of
data, in future work we are interested in alternatives to manual labelling, such as
self-supervision and inverse reinforcement learning.

Acknowledgements We gratefully acknowledge YamahaMotor Corporation for their support, the
Yamaha-CMU team for building and maintaining the autonomous ATV, and Mesh Robotics for
field testing data.
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Boundary Wire Mapping on Autonomous
Lawn Mowers

Nils Einecke, Jörg Deigmöller, Keiji Muro and Mathias Franzius

Abstract Currently, the service robot market mainly consists of floor cleaning and
lawn mowing robots. While some cleaning robots already feature SLAM technology
for the constrained indoor application, autonomous lawn mowers typically use an
electric wire for boundary definition and homing towards to charging station. An
intermediate step towards SLAM for mowers is mapping of the boundary wire. In
this work, we analyze three types of approaches for estimating the boundary of the
working area of an autonomous mower: GNSS, visual odometry, and wheel-yaw
odometry. We extended the latter with orientation loop closure, which gives the best
overall result in estimating the metric shape of the boundary.

1 Introduction

Autonomous lawn mowers are on the verge of a major market in the lawn and garden
segment. The segment is still small with an installation volume of 103k units in
2015 [1]. However, the market for autonomous mowers is growing quickly (25%
in 2015 [1]), mostly because the robot mowers increase their owner’s leisure time,
while maintaining good cutting results.
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Currently, autonomous vacuumcleaning robots [2–4] and autonomous lawnmow-
ers [2, 5] are the most promising entry points for robots at home. While high-end
research robots for household tasks are typically too expensive and not robust enough
for 24/7 application, autonomous vacuum cleaning and autonomous lawn mowers
have become a robust and stable platform. For vacuum cleaners, there is an active
research especially for vision SLAM [6–8]. However, autonomous lawn mowers
still lack intelligent functions known from state of the art research like mapping, ob-
ject recognition, obstacle avoidance, localization, dynamic path planning or speech
recognition.

Almost all autonomous lawn mowers use a boundary wire emitting an electro-
magnetic signal for limiting the working area and for homing to the charging station.
Typically, robotic lawn mowers move randomly within the boundary wire. Such
a system is simple and reliable and does not require localization during operation.
However, finding the charging station, for example, requires searching and following
the wire. Direct navigation to the charging station would obviously be more efficient.

In this work, we compare different sensors andmethods for estimating a boundary
wire map (see Fig. 2), which is an intermediate step towards localization. Given a
map as produced by our approach, and measurement of wire signals, localization is a
much easier problem than full SLAM, e.g. using Particle Filtering [9]. Localization
is the basis for more intelligent behavior of the robot mower, like direct start (move
from the base station directly to a user defined position), direct home (directly move
to the base station without following the wire), or mowed area bookkeeping (mower
keeps track of mowing time in certain zones like front yard).

2 Related Work

Publications specifically on autonomous lawn mowers are scarce. In [10, 11] an
omni-directional position estimation system for an autonomous lawn mower was
introduced. The authors used an off-the-shelf robotic mower and extended it with an
omni-camera and an additional compute unit. In their latest work [11] the equipment
was nicely integrated in a near-product fashion. Unfortunately, the outdoor results
were not compared with state of the art approaches. Another example for localization
on a lawn mower uses odometry, a gyroscope, and an additional RFID system [12].
While detection of the RFID tags can compensate for drift, this system requires
additional infrastructure in the garden.

Besides the few mower-specific work there is a large base of research on outdoor
navigation. In the automotive domain, the online KITTI benchmark [13] has become
a standard tool for the comparison of state of the art visual odometry (VO) methods.
The different approaches are evaluated against ground truth trajectories generated by
a fusion of GPS and IMU data. In contrast to the KITTI VO benchmark, our focus is
on the robot navigation in garden environments which have a different characteristic.

Odometry accumulates drift, which can be corrected by external measurements,
such as visual outdoor localization. The robustness of visual localization depends
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on invariance against appearance changes on different time scales (e.g. lighting,
weather, seasons). Popular local descriptors like SIFT and SURF are prone to fail in
these conditions [14]. However, recently there has been increased interest to develop
long-term robustness for visual localization (e.g., [15, 16]).

In this publication, we concentrate specifically on garden environments, which
are typically relatively small and with poor GNSS reception. Our test gardens were
equipped with border wires that allowed method comparisons under precise path
repetitions. While camera-based systems have high potentials, we will show that
a low-cost wheel odometry system can be competitive or better in these specific
settings.

3 Approach

As explained above our target is to accurately estimate the garden layout. Our idea
is to let the autonomous mower follow the wire while recording sensor data.

3.1 GNSS

Global navigation satellite systems (GNSS) like GPS can be an easy out-of-the-
box solution for many localization problems. However, GNSS localization quality
strongly depends on the visibility of satellites. At least four satellites must be visible
simultaneously in order to compute the receiver’s location. Localization quality also
depends on the angular distribution of satellites in the sky, and it can strongly decrease
if signals are not received directly but as reflections from nearby objects. Thus, the
operating conditions for GNSS in a typical garden environment can be extremely
bad, given that trees and buildings often shadow or reflect the direct line-of-sight.
We considered three improvements for the accuracy: RTK, an additional base station
for differential mode, and IMU integration.

In April 2016we commissioned a study from the institute of Physical and Satellite
Geodesy at Technical University Darmstadt for one of our test gardens to compare a
high-end reference GNSS system with a low-cost system. The high-end system was
based on two Novatel ProPak-V3 and the cheap system on one u-blox ANTARIS
AEK-4T. Average accuracy of the reference system in this garden was just below
0.5m, while the u-blox ANTARIS AEK-4T often yielded position errors more than
2 magnitudes higher. Only after the end of the study in April 2016, the new cm-
precision low-cost differential RTK system u-blox C94M8P became available. We
found that this system outperformed the reference system of the earlier study. Hence,
we only show results for the new u-blox system.
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3.2 Wheel Odometry

In general, the movement of an autonomous lawn mower is described by differential
drive kinematics [17]. This means autonomous lawn mowers typically have two
independent drive wheels located on one axis. Using the principle of instantaneous
center of curvature the movement of the mower system can be computed from just
the velocities of the two wheels:
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Δx
Δy
Δθ
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ω = vr − vl
l
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In these equations vl and vr are the left and right wheel velocity, respectively. The
distance along the axis between the two wheels is l. The actual wheel velocities are
calculated from the wheel turning rates.

It is well known that the wheel odometry heavily suffers from wheel slip which
is in particular true for autonomous lawn mowers as grass tends to be slippery when
wet. Hence, in addition to the wheel rate, we also record the yaw sensor data of the
autonomous lawn mower. Since the orientation estimation in the differential drive
Eq. (1) is independent of the position estimation, the computed orientation changes
Δθ can be replaced by measured orientation changes Δθyaw. In the remainder, we
will refer to this as yaw sensor enhanced wheel odometry (yWO).

Unfortunately, the standard differential drive kinematics are defined for 2Dmove-
ments. However, not all gardens are flat. Thus, we additionally record data from the
mower’s accelerometer. Please note that in Europe autonomous mowers require to
have a tilt sensor in order to automatically switch off the mowing blades in case of a
turn over. Typically, this tilt sensor is an accelerometer. Using this data it is possible
to rotate the 2D movement computed by means of the differential drive Eq. (1) in
3D such that actually 3D movements can be estimated.

3.3 Visual Odometry

Simply put, visual odometry (VO) is odometry estimation using cameras. The basic
idea is to use the apparent image motion in order to derive the movement of the cam-
era. In the single camera case the estimation struggles with a scale problem, i.e. the
algorithms have to estimate metric distances by clever assumptions and integration
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over time. Using stereo cameras, this problem is directly solved by available depth
information.We decided to concentrate on VO based on stereo cameras as the correct
metrics are very crucial for our boundary wire estimation target.

We use two different VO approaches in this work: the stereo version of ORB-
SLAM [18] and NOTF [19]. ORB-SLAM is a full blown algorithm for simultaneous
localization and mapping. VO is just one piece in this complex algorithm. ORB-
SLAMalso encompasses a key-framebased pose graph construction, local and global
refinements using bundle adjustment, 3Dmap building and place recognition. For our
needs mainly the estimated camera path is interesting, however, the other parts of the
algorithm indirectly contribute to this path estimation thereby potentially improving
it.

In contrast to ORB-SLAM, NOTF is a pure VO algorithm. It does neither involve
any kind of temporal filtering like bundle adjustment nor does it build up amap of the
environment. Essentially, NOTF is a simple frame by frame estimation framework.
Nevertheless, it ranks very high in theKITTI benchmark [13].Due to its concentration
on pure VO and simple nature but high performance on KITTI we decided to include
NOTF in our comparison.

3.4 Weighted Loop Closure

Position estimated by wheel odometry or visual odometry both drift over time due
to error accumulation in the single movement estimation steps. Full blown SLAM
algorithms like ORB-SLAM tackle this problem by relocalization using features
stored along with the map data. Once a position is detected as being revisited, a loop
closure is done. The idea of loop closing is to realign the position estimates between
the two visits of the same point such that the estimated position of the two visits is the
same. This leads to a strong improvement of the position estimation for visual SLAM
methods compared to pure VOmethods. For wheel odometry this is more difficult as
the detection of revisiting the same position is very difficult without additional data
as from a camera.

The situation in our scenario of boundarywire layout estimation ismore favorable.
Since the autonomous lawn mower starts and ends in the base station the start and
end point are known to be the same. This makes it possible to also compute a loop
closure for the wheel odometry.

The naïve approach for loop closing (LC) is to distribute the position error equally
to all n estimated positions p = (x, y) within the loop:

perr = pend − pstart (4)

Δpcorri = Δpi − 1

n
perr (5)

In our experiments, we found this correction to work but having some issues espe-
cially at points where the position of the mower does not change much, e.g. during
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turning or standing at the base station. Hence, we propose a weighted error distrib-
ution based on the movement distance:

di = |pi − pi+1|2 (6)

dall =
∑
i

di (7)

Δpcorri = Δpi − di
dall

perr (8)

We dubbed this technique weighted position loop closure (wPLC). The advantage of
wPLC is a better handling of minor movements and especially of periods of standstill
which in the naïve equal distribution lead to a generated drift where actually no
movement takes place.

Another advantage of the base station is that, for charging, the mower needs to
stand in a defined orientation in the base station.We use this property to also apply an
orientation loop closure as we know that the start and end orientation of the mower
should also be the same. Similar to wPLC we propose to weight the correction of
the error. For the orientations we use the absolute rotation as weighting:

θerr = θend − θstart (9)

θall =
∑
i

|Δθi | (10)

Δθ corr
i = Δθi − |Δθi |

θall
θerr (11)

We refer to the combined application of weighted orientation and weighted position
loop closure as wOPLC. Since the rotation estimation in the differential drive Eq. (1)
is independent of the position estimation, it is favorable for the wheel odometry to
first calculate the orientation loop closure and only afterwards calculate the position
loop closure.

4 Results

4.1 Hardware Setup

For recording realistic data we use an off-the-shelf autonomous lawn mower and
extend it with a stereo camera module that also hosts a mass storage for recording
the camera data as well as CAN bus data. Figure1 shows the mower with the camera
module attached. The module replaces the maintenance lid and thus seamlessly
integrates into the lawn mower body. For stereo image capturing and recording we
use a phyFLEX-i.MX6 (Fig. 1, right image, top board), with an industrial grade
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(a) Test Unit (b) Embedded Board

Fig. 1 b Autonomous lawn mower with camera module for image capturing and data recording.
b Internal embedded board phyFLEX-i.MX6 on top of a base board providing interfaces to the
cameras and the mower CAN

Freescale i.MX6 quad-core processor running Linux OS, manufactured by Phytec
Messtechnik GmbH (Mainz, Germany). The reason for the industrial grade is the
expected high burden on the electronics due to heat and moisture in the garden
environment. Especially, in high summer heat can be a major issue as active cooling
is not possible because the cut grass snippets would clog the air intake or the fan
after a short time.

For seamless integration of the computing board with the autonomous lawn
mower, we use a custom base board (Fig. 1, right image, bottom board also by
Phytec) that provides a CAN interface to the phyFLEX-i.MX6 board and that al-
lows a direct connection to the battery power line of the autonomous mower. The
overall power consumption of the whole module is 5–7W, and the direct connection
to the mower power line allows a fully autonomous operation of our prototype as the
mower recharges autonomously without user interaction.

To capture stereo images we use two Phytec camera boards that feature an Aptina
MT9V024 automotive CMOS chip with a resolution of 752× 480 pixels and global
shutter at 20Hz.

4.2 Test Setup

Our primary target is to achieve a good estimation of the outline of the garden shape
the autonomous mower is working in. The idea is to let the autonomous mower
drive along the boundary wire (in “border cutting mode”) and simultaneously record
sensor data for estimating the position of movement of the mower. As explained in
Sect. 3, we compare three different methods: wheel odometry, visual odometry and
RTK-GPS.
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(a) Garden 1 (b) Garden 2 (c) Garden 3

(d) Garden 4 (e) Garden 5

Fig. 2 Aerial images of the five test gardens with the boundary wire layout in white. SourceGoogle
map

In order to be able to compare the methods, we need representative test gardens
and ground truth position data of the boundary wire. To this end, we selected five
different gardens in the Frankfurt area that had already an autonomous lawn mower
(and accordingly a boundary wire) installed. Figure2 shows aerial images of the five
selected test gardens.

We tried to have test gardens of different size and shape but also of different GNSS
occlusion in order to get representative measures for all methods. Furthermore, by
selecting gardens with already installed mower and wire we made sure that the wire
was placed without being biased by our experiment.

For ground truth generation of the boundary wire layout we had a land surveyor
measure the exact position of the wire. We manually marked between 16 and 183
positions on the wire using pegs. In curves we put more pegs than on the straights in
order to get a good approximation of the continuous shape of the wire. The position
of the pegs were then accurately measured by the land surveyor with a theodolite.
The origin of the local position coordinate system was put in the center of the base
station and the orientation of the coordinate system was aligned with the heading of
the base station (the direction the mower has to enter for charging). Figure3 shows
the ground truth layout of all five test gardens as determined by the land surveyor.



Boundary Wire Mapping on Autonomous Lawn Mowers … 359

x[m] x[m] x[m]

y[
m
]

y[
m
]

y[
m
]

-4

-2

0

2

4

6

(a) Garden 1 (b) Garden 2 (c) Garden 3

(d) Garden 4
x[m]x[m]

-12 -10 -8 -6 -4 -2 0 2

-10 0 10 20 30 40 50 60 70 80

y[
m
]

y[
m
]

-20

-10

0

10

20

30

40

(e) Garden 5

Fig. 3 Boundary wire layout in the five test gardens, as determined by the land surveyor

As can be seen, the size of the gardens varies from 88 to 4072m2 and the shape
encompass elongated and roundish structures. The length of the wire ranges from
38m in the smallest garden to 348m in the largest garden.

The error of the ground truth accuracy is governed by two things. Firstly, it depends
on the accuracy of the actual measurement with the theodolite, which is very high
(<1cm). Secondly, there is an error introduced by placing the pegs. Since in some
gardens the wire was buried the placing error is about 3cm as we had to use the
mowers internal wire sensor for locating the wire in these cases. Thus, in summary
the maximum position error of the ground truth boundary wire layout is 4cm.

4.3 Results

In each of the five test gardens we did three types of recordings. Firstly, we recorded
wheel rate, yaw sensor and accelerometer data for thewheel odometry. This was done
by reading the CAN data from the mower, i.e. we used the internal sensor data of the
off-the-shelf mower. The recording rate from the CAN bus was 10Hz. Secondly, we
recorded stereo image data for the visual odometry with the Phytec stereo camera.
The resolution of the cameras is 752× 480 pixels and the images were recorded with
20Hz. Thirdly, we recorded GPS data with the RTK-GPS system, which was just
mounted to the top of the autonomous lawn mower. The recording rate was set to
1Hz. Please note that the three types of recording were done in separate runs.
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For measuring the accuracy of the different methods we compare the estimated
trajectory of the mower driving along the boundary wire to the ground truth data.
Although we normalized the ground truth data in position and direction according
to the position and direction of the base station, we realized that there are minor
differences in orientation of the mower when standing in the base station. These
minor orientation differences can amount to gross position differences in the large
gardens. To tackle this problem, we apply an Iterative Closest Point algorithm (ICP)
[20, 21] for all methods between the estimated trajectory and the ground truth wire
layout prior to the error calculation. Note that this has no influence on the goal of
our evaluation as we are only interested in the shape of the layout and not its correct
global position and orientation.

The actual computation of the accuracy is based on point to line distances. Given
a trajectory, output by on one of the evaluated methods, we first compute the minimal
point to line distance for each trajectory point to the polylines of the ground truth
data. We then compute the average minimal point to line distance for all points of
the ground truth to the polyline of the trajectory. Finally, we take the maximum of
both measures. In the discussion below we will just refer to this measure as average
distance.

The results of the comparison for all evaluatedmethods (ORB-SLAM,NOTF,WO
and RTK-GPS) are summarized in Table1. For ORB-SLAM we tested two different
variants, the original ORB-SLAM and ORB-SLAM with deactivated global bundle
adjustment (BA). Since ORB-SLAM is doing a loop closure and a global BA upon
loop detection, we analyzed how much the additional BA is contributing.

From the results it can be seen that the additional BA has only a major influence
in garden 4. The reason for this is that garden 4 posed a particular difficult setting for
the visual odometry. The boundary wire in garden 4 was very close to some bushes,
leading to heavy occlusion as the mower drives so close that the camera touches the
leaves of the bushes (see Fig. 4a). This of course leads to high estimation errors. As
the result in Table1 shows both NOTF and ORB-SLAM without global BA have a
very high error in garden 4. BA significantly reduces the error for ORB-SLAM from
2.37 to 0.91m because the global BA can recover gross misestimations of key frame
positions if the surrounding key frames have a good position estimation. Another
problem encountered mainly in garden 4 were heavy sun glares (see Fig. 4b). Similar
to the occlusions the sun glares lead to wrong feature movements which lead to
failure in camera motion estimation.

It is interesting to see that given its simple nature, NOTF is not much worse than
ORB SLAM. This means that the internal map building does not yield much more
information for the visual odometry than the selection strategy of feature points
in NOTF. This is in line with the observations in [19] that even without temporal
filtering and map building a high accuracy of VO can be achieved. It should be noted
though that we extended the NOTF algorithm with our proposed weighted position
loop closure (wPLC) and that the results presented here might not generalize to other
application areas where loop detection is not straightforward.

Next we evaluated the RTK-GPS system. The obvious advantage of GPS is that
it does not drift with time. However, it is strongly influenced by the 3D layout of the
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Table 1 Comparison of visual odometry methods ORB-SLAM and NOTF; plain wheel odometry
(WO), yaw sensor enhanced WO with standard loop closure (yWO+LC) and yaw sensor enhanced
WO with our proposed weighted orientation and position loop closure (wOPLC); as well as RTK-
GPS with altitude information and without. The table entries are average distances between the
boundary wire layout estimated by the evaluated methods and the ground truth data. Gardens 1–5
correspond to the gardens seen in Figs. 2 and 3

Method Garden 1
38m
88m2

error (m)

Garden 2
56m
158m2

error (m)

Garden 3
183m
494m2

error (m)

Garden 4
190m
478m2

error (m)

Garden 5
348m
4072m2

error (m)

Avg. error

ORB SLAM 0.26 0.13 0.38 0.91 1.14 0.56

ORB SLA w/o
global BA

0.28 0.21 0.33 2.37 0.95 0.83

NOTF+wPLC 0.22 0.20 0.47 1.46 1.45 0.76

RTK-GPS 0.61 0.57 3.90 1.65 0.20 1.39

RTK-GPS w/o
altitude

0.18 0.33 0.68 0.82 0.24 0.45

WO 2.72 1.38 4.19 2.84 12.57 4.74

yWO+LC 0.20 0.15 0.76 0.45 4.08 1.13

yWO + wOPLC 0.19 0.15 0.38 0.24 0.85 0.36

(a) Occlusion (b) Sun Glare

Fig. 4 Encountered issues with the visual odometry. a Occlusion in camera view when the mower
drives close to a bush in garden 4. b Heavy sun glare caused by direct sun

environment. High structures like buildings or trees block the view to some satellites,
which reduces the position accuracy. This is directly reflected in the accuracy of the
boundary wire layout estimation. Garden 5 has no higher structures which leads to
a very high accuracy of 0.2m. Gardens 1 and 2 have only some obstruction while
gardens 3 and 4 have many high structures leading to some areas in the garden where
position estimation is extremely difficult. Looking at the actual position estimations
reveals that the error for RTK-GPS is mainly in the altitude, i.e. the height estimates
are very noisy. Thus, we also calculated the average distance for the RTK-GPS with
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a fixed height (starting height). This leads to a major improvement in almost all
gardens.

The last three entries in Table1 show our results with plain wheel odometry (WO),
yaw sensor enhanced WO with standard loop closure (yWO+LC) and yaw sensor
enhanced WO with our proposed weighted orientation and position loop closure
(yWO+wOPLC).As expected the resultswith plainWOare not very accurate,mainly
due towheel slip.Using additional yaw sensor data and standard loop closing strongly
improves the estimations as the orientation estimation is not influenced by wheel
slip anymore. However, in the larger gardens 3–5 the drift of the yaw sensor has a
significant impact on the overall accuracy. A visual comparison of the three different
WO methods is shown with the resulting maps of garden 5 in Fig. 5.

In the end, we achieved the best overall results with our proposed wOPLCmethod
applied on the yaw sensor enhanced wheel odometry (yWO), which was surprising
to us. The evaluation demonstrates that our proposed wOPLC is very capable of
correcting the drift error. Of course the error still increases with driven distance
as the higher average layout distance in garden 5 indicates. Nevertheless, it shows
that todays autonomous lawn mowers could build a map of the boundary wire with
just their internal sensors which opens the way to many functions improving the
efficiency and perceived intelligence of the autonomous lawn mowers.

Figure6 shows the trajectories estimated by yWO+wOPLC for all test gardens.
The plots show the high similarity between the layout estimated by yWO+wOPLC

trajectories and the ground truth boundary wire layout. In all gardens a small arc is
visible close to the origin of the coordinate system that deviates from the ground
truth. This is the location of the base station and the arc in the trajectory is caused
by the autonomous lawn mower driving around the base station in order to enter it
from the correct direction (or to reach the wire after exiting the station).
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Fig. 5 Comparison of plain wheel odometry (WO), yaw sensor enhanced WO with standard loop
closure (yWO+LC) and yaw sensor enhanced WO with our proposed weighted orientation and
position loop closure (wOPLC) on the data of garden 5. The blue line is the ground truth layout
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Fig. 6 Results for our proposed yWO+wOPLC method for all five test gardens overlayed with
ground truth (GT) layout measured by the land surveyor

5 Summary

We presented a comparison of visual odometry (VO), wheel odometry (WO) and
RTK-GPS for estimating the layout of the boundary wire of autonomous lawnmower
installations. For the evaluation five test gardens were selected and the wire was
measured by a land surveyor for ground truth position data.

The result of our comparison shows thatWO together with our proposed weighted
loop closure shows the best overall results. VO methods struggle with occlusion of
the camera when the mower comes very close to objects like bushes, and with heavy
sun glare in certain conditions. Furthermore, VO methods would require artificial
lighting in night time operation. RTK-GPS also showed good results when only few
high structures are located near the garden. Otherwise the accuracy is lower than VO
or WO. In particular the altitude is very noisy and not suitable to estimate the slopes
in most gardens.

The good performance of WO may be surprising but also means that current
off-the-shelf mowers are capable to estimate a boundary wire map with their already
equipped internal sensors. Suchmapsmake localization feasible, which in turn opens
theway to intelligent functions like automatic start point definition,mowing schedule
optimization, direct homing or mowed area bookkeeping.

In the future, we want to investigate the possibility to fuse multiple wire following
trajectories in order to improve the accuracy. Also a fusion of the different methods
has the potential for canceling out respective weaknesses. In particular, the fusion of
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the WO with GPS would allow a map with global position data, which in turn would
help facilitate the localization of the lawn mower within the garden, especially after
a user intervention.

Acknowledgements We would like to thank Nico Steinhardt for supervising the GNSS prestudy.
Furthermore, we want to thank Hideaki Shimamura and Makoto Yamamura for supporting us with
the autonomous lawn mower.
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A Submap Joining Based RGB-D SLAM
Algorithm Using Planes as Features

Jun Wang, Jingwei Song, Liang Zhao and Shoudong Huang

Abstract This paper presents a novel RGB-D SLAM algorithm for reconstructing
a 3D surface in indoor environment. The method is a submap joining based RGB-
D SLAM algorithm using planes as features and hence is called SJBPF-SLAM.
Two adjacent keyframes, with the corresponding small patches and planes observed
from the keyframes, are used to build a submap. Then the current submap is fused
to the global map sequentially, meanwhile the global structure is recovered gradu-
ally through plane feature associations. The use of submap significantly reduces the
computational cost during the optimization process, without losing any information
about planes and structures. The proposed method is validated using publicly avail-
able RGB-D benchmarks and obtains good quality trajectory and 3D models, which
are difficult for existing RGB-D SLAM algorithms.

1 Introduction

The indoor environment is one of themost common scenarios in robotic applications,
where building a high quality map of the unknown environment in real-time is still a
challenging task for SimultaneouslyLocalization andMapping (SLAM). Point-based
SLAM algorithms [1, 2] have achieved much success in various environments, but
it still cannot deal with environments with a large area of texture-less planes, for
example, walls, floors, and ceilings. These areas actually provide useful information
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of the structure, however they are regarded as challenges in point-based SLAM. In
plane-based SLAM, the planes can help to improve the estimation of both robot
poses and surfaces. The high quality dense maps can be used in various applications,
such as robot navigation, real estate and base maps for virtual reality. While various
algorithms have been developed to make use of planes in SLAM and most of them
can produce a relatively accurate trajectory, it is still difficult to obtain a high quality
model in a challenging indoor environment, such as long corridors including ceilings,
floors and other walls.

In this paper, we proposed a Submap Joining Based RGB-D SLAM algorithm
using Planes as Features (SJBPF-SLAM), which is more efficient than batch off-
line 3D reconstruction and more accurate than existing RGB-D SLAM algorithms.
We compared our method with the state-of-the-art approaches on several publicly
available challenging datasets, which demonstrated the improvements of our method
regarding the quality of both trajectory and surface estimation.

The paper is organized as follows: some related work is discussed in Sect. 2. The
proposed method is described in Sect. 3. Specifically, this comprises the local map
building in Sect. 3.1 and localmap joining in Sect. 3.2. Section4 presents experiments
and results. Section5 concludes the paper and gives some future work about this
method.

2 Related Work

The exploitation of planes in SLAM or 3D reconstruction has been studied for years
in robotics, computer vision and computer graphics.

RGB-DSLAM. Kinect-style depth sensors provide the 3Dmodel of the environment
in a straightforward way. CPA-SLAM [3] modeled the environment with a global
plane model, which reduces the drift along with direct image alignment. In their
global model, two types of residuals are defined, one is the distance between points
to points, and the other is the distance from points to the global plane, when the points
are detected on a plane. This kind of residuals may suffer from the noise of depth
images. Kintinuous [4] and Elastic fusion [5] did not use planes explicitly. Instead,
they use a frame-to-model strategy to overcome drift. Though providing large scale
dense mapping, these two methods still have drift when recovering global structures
because the plane structure is not utilized directly, as shown in Sect. 4. Dense planar
SLAM [6] used planes as a representation of the model, however, the planes are
not included in the state vector, and thus the planes are not optimized during map
building. [7] proposed a fast place recognition algorithm based on plane-based maps.

Visual Odometry and Monocular SLAM. Planes are explored for different appli-
cations and with various sensors. Plane-primitives are applied to provide a robust
odometry for RGB-D cameras [8]. Recent research use planes to improve the accu-
racy in monocular SLAM. Pop-up SLAM [9] used deep convolutional networks to
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detect planes in images and demonstrated that this kind of structures could improve
both state estimation and dense mapping, especially in texture-less environments. In
[10], a structured learning algorithmwasproposed tofit the reconstructedmodel to the
“box” structure of the room following the perspective cues. Parallel and orthogonal
walls were applied to correct the odometry of the camera [11]. In monocular scenery,
the plane structure of the environment is difficult to detect, and these approaches can
only be used in limited scenes under restrictive conditions.

Off-line 3D reconstruction. [12] proposed a fine-to-coarse global registration
method. In particular, the plane association windows increase gradually during iter-
ations and cover the whole sequence at the end of the algorithm, which is called
hierarchy optimization. As all the cost functions are computed in each step, this
method is only suitable for off-line applications. [13] made use of the labeled objects
in the environment to guide the optimization and thus obtain a better global registra-
tion. In themethod, using the limit extend of one object as constraint can significantly
reduce drift and improve the global registration, however labeling objects manually
for video sequences is exhausting.

Submap joining algorithm. Submap based approaches have attracted the interests
of researchers in recent years [14–16]. Sparse local submap joining filter (SLSJF)
[15] presented a canonical and efficient submap joining algorithm that makes use of
consistent local submaps to build large scale feature-based maps. They explored the
sparse structure together with a novel state vector and applied a covariance submatrix
recovery technique. [16] proved that the submap joining problem can be formulated
as a linear least square problem, and thus can be solved with a closed form solution.
All these methods used points as features.

In this paper, we use planes as features to build precise local submaps [15], and
exploit the plane structures in the global map during submap joining.

3 Methodology

There are two main stages of our framework. First, we build the local submaps from
each pair of adjacent keyframes. Second, all the local submaps are joined by map
joining algorithm in a sequential manner. As shown in Fig. 1, we apply a rough visual
odometry between consecutive frames. The most time consuming computations, i.e.
extracting small patches and detecting planes, just occur on the keyframes, and they
can be easily distributed to parallel processes. In a local submap, small patches
improve the estimation of the pose and obtain a better image alignment. The output
of the local submap is one end pose and planes observed from the first keyframe,
which are defined in local frame of the first keyframe. In the bottom part of Fig. 1,
several planes in different submaps are associated as one unique plane in global
model.



370 J. Wang et al.

Fig. 1 Framework of the proposed algorithm. Ki denotes the keyframes, the triangles denote the
poses, and small squares denote planes

3.1 Build Local Submaps

A local submap is built on two adjacent keyframes. The input of this stage is the
keyframes Ki and Ki+1: including the coefficients of planes observed by keyframe
Ki , small patches on the two keyframes, and a transformation from visual odometry.
The output of this stage is a local submap: the informationmatrix, the optimal solution
of the state vector including the pose of the keyframe Ki+1, and the coefficients of
the planes observed from keyframe Ki . Note that, the pose of first keyframe Ki is
not in the state vector, as it defines the local frame for the submap.

3.1.1 Preprocessing

Before building the submap, small patches and planes are extracted on each keyframe.
Figure2a presents the original color image and depth image, Fig. 2b shows the
extracted small patches, the detected planes are shown in Fig. 2c.

Small patch extraction. Small patches are detected from the depth images. First
we divide the depth image into n by n grids uniformly. Then a RANSAC fitting
algorithm is applied to extract the plane coefficients for each grid cell separately,
with a threshold Tpa controlling the minimal number of inliers. In our algorithm, a
small patch is denoted by ω = {a, b, c, d, pc}, where {a, b, c, d} is the coefficients
of plane, and pc is the anchor point of the patch.
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(a) Sample images (b) Detected small patches (c) Extracted planes

Fig. 2 Preprocessing: small patches detection and plane extraction from RGB-D images. a Color
and depth images. b Detected small patches overlaid on color image. c Extracted planes overlaid
on point cloud

Plane detection. We apply a two-round clustering method to extract planes from the
depth image. First, the normal vectors of each pixel in the depth image are computed
efficiently by utilizing the integral image [17], then they are classified based on the
angles between them. Second, the distances between every point to the origin along
the normal direction are calculated, and all pixels are clustered using these distances.
The points lying in a common region of the two-round clustering results are supposed
to be on a same plane. Finally, the initial values of plane coefficients can be estimated
by fitting the points on the plane.

3.1.2 Local Relative Pose

In this part, we utilized the fact that visual odometry is accurate locally although it
suffers from drift in long sequences. Fortunately, our submaps are exactly locally
defined, so the pose in a local submap should be close to the visual odometry. We
incorporate the visual odometry as information and define an error term as follows:

EL =
pmax∑

m=1

||R̂ pm + t̂ − Rpm − t ||2 (1)

where rotationmatrix R̂ and translation vector t̂ aremeasurements fromvisual odom-
etry, R and t are rotationmatrix and translation vector from state vector, points pm are
constants and uniformly selected from a unit-radius sphere and pmax is the number
of the points selected. In this way, we can avoid the direct measurements of angles
in poses and make all the errors under Euclidean distance [12, 18]. In our study the
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visual odometry is provided by a bundle adjustment on adjacent frames using resid-
uals of pixels and 3D feature positions, however any other proper visual odometry
algorithms should work for this task.

3.1.3 ICP-style Registration on Small Patches

The basic idea of this ICP-style registration is to only use small patches to do a
3D registration, with a rough visual odometry providing initial values. This kind of
registration utilizes the small patch coefficients fitted from the depth values, rather
than the point clouds transformed from the depth images, which usually suffer from
much noise from the sensor itself.

Small patches association. Patches observed on keyframe Ki+1 is transformed to
the keyframe Ki using the current estimated pose (visual odometry is used as initial
guess in the first iteration). Then we can find the closest patches in terms of angles
and distance in the same coordinate frame. Tomake it clearer, supposeωi

i+1 is a small
patch from keyframe Ki+1, and transformed to keyframe Ki coordinates.ωi is a small
patch from keyframe Ki . We check two criterions to decide whether the two patches
are correspondence: one is the angle between the two normals, and the other is the
distance between the two patches. To boost the speed of finding correspondences, a
KD-tree is created using the center point of each patch. We can easily find several
pairs of closest patches, and compare the normals within the small set of patches,
instead of computing all the distances exhaustedly. The keyframe Ki defines the local
coordinates and its pose remain unchanged during iterations, so we create a KD-tree
on the patches from this keyframe. The patch observed on keyframe Ki+1 can be
used to query in the KD-tree. In this waythe KD-tree will be created only once during
optimization, despite that the pose of keyframe Ki+1 will be adjusted.

Cost function. We defined an error term as follows tominimize the distance between
two corresponding patches, aiming at obtaining coplanar patches.

ES =
kmax∑

k=1

||(Rpc(i+1)(k) + t)T · ni + di ||2 +
kmax∑

k=1

||(R−1(pci (k) − t))T · ni+1 + di+1||2 (2)

where rotation matrix R and translation vector t are from the estimated state vector,
{ni , di } = {ai , bi , ci , di } are the coefficients of the patch on keyframe Ki , {ni+1, di+1}
are the coefficients of the patch on the keyframe Ki+1, pc(i+1)(k) is the k-th anchor
point of the patch observed on keyframe Ki+1, pci (k) is the k-th anchor point from
the patch on keyframe Ki . kmax anchor points are selected around center point on
the patch. Briefly, this term measures the point-to-plane distance between the anchor
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points from left patch and the corresponding plane of right patch, and vice versa.
During iterations, the correspondences between patches from left and right frames
will be updated according to the estimated pose of right frame. Ideally, the cen-
ter points should be exactly on the corresponding planes, and can be expressed as
equation ax + by + cz + d = 0, where {a, b, c} is the unit normal of a patch, d is
the distance from the patch to the origin and {x, y, z} is the location of one anchor
point. Note that in this cost function, the relative poses are the only variables and the
coefficients of patches on both frames are considered as constants.

3.1.4 Plane to Small Patches

In this section, we describe the relationship between planes and small patches. For the
local submap built by keyframe Ki and Ki+1, only the planes observed fromkeyframe
Ki are included (planes only observed from keyframe Ki+1 are incorporated in the
next submap, in which Ki+1 is the start pose). These plane coefficients are optimized
both in submap building and submap joining stages.

Association between planes and small patches. The planes are associated with
small patches on the first keyframe of submap, i.e. keyframe Ki . As they are defined
under the same frame, we can compare their normals and distance without any
coordinate transformations. Similar to small patches associations, we compute the
angle between the two normals, and the distance between plane and small patch.
When the angle and distance are under some threshold, the plane is associated with
the small patch. By this way, all the small patches on the plane are found.

Cost function. We defined another error term to measure the relationship between
planes and small patches. The following geometric error is minimized, aiming at
obtaining the plane coefficients.

EPS =
mmax∑

m=1

kmax∑

k=1

||pTc (k) · nm + dm ||2 (3)

where pc(k) is k-th anchor point from small patches, nm = {am, bm, cm} and dm are
the coefficients of the plane Ωm , and mmax is the number of planes.
As the parameterization of planes is not a minimal representation, we define an error
term to constrain the normal of the plane to make the representation unique.

EC =
mmax∑

m=1

||a2m + b2m + c2m − 1||2 (4)
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3.1.5 Optimization and Output of Submap

The objective function for the local submap is defined as follows:

ELM = WLEL +WSES +WPSEPS +WCEC (5)

where EL , ES, EPS, EC are the cost functions defined in previous sections,WL ,WS,

WPS,WC are the corresponding weights for each term. The function is optimized
using Levenberg-Marquardt (LM) methods. The output of submap is the optimal
solution of the state vector and information matrix as defined by (X̂ L , I L), where
X̂ L (the superscript “L” stands for the local submap) is an estimate of the state
vector XL = (XL

c , XL
1 , XL

2 , ..., XL
n ) and I L is the corresponding information matrix,

which is computed using the estimated variables in the last iteration. The state vector
contains the camera final pose XL

c (the subscript “c” stands for the camera) and the
plane coefficients XL

1 , ..., XL
n . Since only one pose and several plane coefficients are

included in a submap, the convergence of the optimization is very fast and stable.

3.2 Local Submap Joining

The input of this stage is the local submap built in the previous section. The local
submap joining algorithm merge all the local submaps in a sequential way. The
output is a global map, containing all the poses, the coefficients of the planes, and
the corresponding information matrix. The major difference between this algorithm
and the SLSJF [15] is that we explore the global structure by associating the planes in
local submap to the structure, which utilizes planes as features not points as features.

3.2.1 The State Vector in Global Map

The global map starts from the first local submap and expands with the fusing of
them. After the fusion of 1 to j − 1 local submaps, the global map can be denoted
by (X̂G

j−1, I
G
j−1), where X̂G

j−1 is an estimate of state vector XG
j−1, I

G
j−1 is the corre-

sponding information matrix, and the superscript “G” stands for the global map. The
following equation gives the detail of the state vector XG

j−1

XG
j−1 = (XG

c1, X
G
c2,…, XG

c( j−1), X
G
p1, X

G
p2,…, XG

pm) (6)

where XG
c are the robot poses, and XG

p are the plane coefficients. When fusing a local
submap into the global map, the end pose and new planes in local submap are added
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to the global map as new variables, and the planes associated with existing planes in
global map will also be incorporated. The global map will cover all the planes and
poses at the end of the fusion stage.

3.2.2 Fusion as a Least Squares Problem

We formulate the fusion of local submap with global map as a least squares problem,
which takes two part of measurements as input: global map from the previous step
and current local submap to be fused.

For local submap (X̂ L
j , I

L
j ), we believe that the estimation of the end pose and

plane coefficients are locally accurate and can be regarded as a measurement of
the true values, with a Gaussian noise. The covariance matrix can be given by the
information matrix (the inverse of information matrix is the covariance matrix)

X̂ L
j = Hj (X

G
j ) + wj (7)

where Hj is a transformation function, which transforms the variables from global
frame to current local frame using the start pose of the local submap, which is the
last pose of global map, wj is the zero-mean Gaussian “observation noise”, whose
covariance matrix is

PL
j = (I Lj )−1 (8)

Similarly, the global map (X̂G
j−1, I

G
j−1) can also be regarded as measurements of

the true values of poses and plane coefficients, with a Gaussian noise. The covariance
matrix can also be given by the information matrix. That is

X̂G
j−1 = XG

j−1 +Wj−1 (9)

whereWj−1 is the zero-meanGaussian “observation noise”,whose covariancematrix
is PG

j−1 = (I Gj−1)
−1.

From the above, the fusion of the j-th local submap to the ( j − 1)-th global map
can be formulated as a least squares problem, using all the information from the
global and the local submap. The equation below shows this weighted least squares
problem

min
XG
j

(X̂ L
j − Hj (X

G
j ))T I Lj (X̂ L

j − Hj (X
G
j )) + (X̂G

j−1 − A j X
G
j )T IGj−1(X̂

G
j−1 − A j X

G
j ) (10)

where A j is a matrix that extract corresponding variables from XG
j , which already

exist in X̂G
j−1. This problem can be solved using Gauss-Newton algorithm.
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Algorithm 1: Find plane correspondence
Input: planes in local submap, planes in global submap, end pose in global map
Output: plane correspondences
1: Transform planes in global map from global to local frame.
2: Compute the covariance matrices for both features under the same frame.
3: Compute Mahalanobis distance dgl between each pair of planes.
4: If dgl < dmin , the two planes are regarded as associated.
5: Otherwise, a new plane is added as new variables in global map.

3.2.3 Data Association

The data association in Algorithm 1 is applied to find the plane correspondences
between local and global map. Let ΩG be a plane feature in the global map, PG is
the corresponding covariance matrix. Let Ω L be the plane feature in local submap,
PL be the corresponding covariance matrix. The plane feature in global map ΩG is
transformed to local frame of the current local submap Ω̄G using

Ω̄G = H(ΩG)

H(ΩG) = ((Re)
−1nG, ten

G + dG)
(11)

where ΩG = {nG, dG}, pGe = {Re, te}. H(ΩG) transforms plane coefficients ΩG

from the global frame to the local frame using the end pose of camera pGe in global
map (“e” stands for end pose in global map). We then define aMahalanobis distance:

dgl = (Ω̄G − Ω L)T (P̄G + PL)−1(Ω̄G − Ω L) (12)

where P̄G is the covariance matrix of transformed global map. Thus a proper thresh-
old value dmin can be selected based on χ2 distribution, such that the null hypothesis
that the two features are the same one is not rejected under some confidence level.
This procedure is repeated at every iteration.

4 Experiments and Evaluation

In this section, we evaluate our SJBPF-SLAM algorithm and compare it with the
state-of-the-art methods. Three publicly available datasets are used in the assess-
ment: ICL-NUIM synthetic scenes [19] and Princeton University SUN3D dataset
[13] and TUM datasets [20]. The ICL-NUIM synthetic scenes have ground truth,
while the SUN3D dataset provides challenging scenes with distinct geometric struc-
ture that can be used to compare the reconstructed surfaces.
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The building of local submaps is parallel in nature and thus can be distributed to
different computing units. For the submap joining algorithm, even though the state
vector grows linearly with local submap joining, the number of plane features are
limited in common scenes. At present, the entire SLAM algorithm is implemented
in MATLAB, and evaluated with an Intel Core i5-6300, 2.30GHz and 8G RAM. For
the computation time, it costs about 2 s for each frame in preprocessing, about 4 s to
build a submap. The submap joining is running in real-time.
We set pmax = 8, kmax = 6 for sample point selection on sphere andplane.Keyframes
are selected by measuring the movement or the number of frames reaches m = 5.
The weights in local submap building stage are set to: WPS = 1,WL = 2,WS =
1,WC = 10. The thresholdTpa is set to 0.95 in our datasets. The LM algorithm con-
verges in 3–4 iterations for each submap. While in submap joining stage, we don’t
need to set the weights manually, the information matrix provides the information
of the uncertainty and are used as the weights in the optimization. The map joining
algorithm using Gauss-Newton converges quickly in just 2 iterations.

4.1 Trajectory Estimation

In the first experiment, we evaluate the performance of our SJBPF-SLAM by com-
paring the results with ground truth using noisy ICL-NUIM synthetic scenes. The
trajectories from global map are compared to the ground truth trajectories. Table1
presents the results of comparison with absolute trajectory error (ATE). We compare
our SJBPF-SLAM algorithm with other state-of-the-art RGB-D SLAM systems,
including Elastic Fusion [5], Kintinuous [4], RGB-D SLAM [2], MRSMap [21],
DVO-SLAM [22], and some planar based methods: CPA-SLAM [3] and dense pla-
nar SLAM [6]. Table1 shows the results of comparison with these methods. Many
systems performed not very well on some datasets, for example, the maximum error
of DVO SLAM is 0.191 (on dataset kt2), RGB-D SLAM 0.433 (on dataset kt3),
MRSMap 1.090 (on dataset kt3), Kintinuous 0.355 (on dataset kt3), Elastic Fusion
0.106 (on dataset kt3), Dense planar SLAM 0.246 (on dataset kt1), CPA SLAM per-
forms similar as ours, however it utilizes GPU for its computation. As our SJBPF-
SLAM explore the global structure and benefits on the structure, the maximum error
is below most of the previous SLAM systems.

4.2 Surface Estimation

To evaluate the surface estimation performance of our approach we compared the
global map to the output of other state-of-the-art methods. As shown in Fig. 3a, in
the output of batch Bundle Adjustment (BA) of [13], which does not use any plane
information, there is a gap between two walls. We evaluated our SJBPF-SLAM on
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(a) A model from BA of [13] (b) A model from our SJBPF-SLAM

(c) Details of model by [13] (d) Details of the our model

Fig. 3 Surface comparison: a the reconstructed model of batched Bundle Adjustment from [13],
b the reconstructed model of our SJBPF-SLAM, c some details from (a), d some details from (b)

the same dataset [19], it can be seen from Fig. 3b that the global structure is well
reconstructed. Figure3c, d show more details of the two models, which marked
the remarkable improvements of our method. We also tested our method on TUM
datasets [20], as shown in Fig. 4. The models are shown with planes highlighted.
The big planes on the floor and some other artificial objects, such as checkerboard,
desks, are detected and maintained in our plane model. Figure5a shows the result
of Kintinuous [4] on the dataset from SUN3D [13], which was captured along a
long corridor. Kintinuous failed on this challenging scene because of tracking errors.
Elastic Fusion [5] preforms well on the most part of the dataset, but also drifts near
the end of the corridor, as show in Fig. 5b. Figure5c shows the output of our SJBPF-
SLAM methods. With a global structure maintained in our algorithm by submap
joining, it helps a lot to reconstruct a precise 3D model of the environment.
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(a) A sample image from fr3/texture. (b) 3D model of our result on fr3/texture

(c) A sample image from fr2/pioneer. (d) 3D model of our result on fr2/pioneer.

Fig. 4 Result of our method on some TUM datasets [20]

(a) Results of Kintinus

(b) Results of Elastic Fusion

(c) Results of our SLJEP SLAM.

Fig. 5 Comparison with Kintinuous and Elastic Fusion. Top: the result from Kintinuous on dataset
SUN3D. Middle: the result of Elastic Fusion. Bottom: the output of our method
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5 Conclusion and Future Work

In this paper, we present a SJBPF-SLAM algorithm which takes advantage of planes
in man-made indoor scenes, thus could be used to build a high quality 3Dmodel. The
algorithm is very efficient as it applied submap joining technique. Theglobal structure
is gradually recovered by joining new submaps, which are built on local frames and
thus very precise. The experiments demonstrate that the 3D model produced by our
algorithm is much better than most of the state-of-the-art RGB-D SLAM algorithms,
and our algorithm is more efficient than off-line 3D reconstruction.

In the future, we will improve the algorithm such that it can robustly handle
very large loop closures and some dynamic objects. We will also extend the work
to environments with non-planar regions and common objects in man-made scenes,
such as chairs and desks. The active perception for robust RGB-D SLAM in dynamic
environments is also our future research topic.

References

1. Mur-Artal, R., Tardos, J.D.: Orb-slam2: an open-source slam system for monocular, stereo and
rgb-d cameras (2016). arXiv:1610.06475

2. Endres, F., Hess, J., Sturm, J., Cremers, D., Burgard, W.: 3-d mapping with an rgb-d camera.
IEEE Trans. Robot. 30(1), 177–187 (2014)

3. Ma. L., Kerl. C., Stückler, J., Cremers, D.: Cpa-slam: Consistent plane-model alignment for
direct rgb-d slam. In: 2016 IEEE InternationalConferenceonRobotics andAutomation (ICRA),
pp. 1285–1291, IEEE (2016)

4. Whelan, T., Kaess, M., Fallon, M., Johannsson, H., Leonard, J., McDonald, J.: Kintinuous:
spatially extended kinectfusion. Advanced reasoning with depth cameras. In: RSS Workshop
on RGB-D (2012)

5. Whelan, T., Leutenegger, S., Salas-Moreno, R.F., Glocker, B., Davison, A.J.: Elasticfusion:
dense slam without a pose graph. In: Robotics: science and systems, vol. 11 (2015)

6. Salas-Moreno, R.F., Glocken, B., Kelly, P.H., Davison, A.J.: Dense planar slam. In: 2014 IEEE
International Symposium on Mixed and Augmented Reality (ISMAR), pp. 157–164. IEEE
(2014)

7. Fernández-Moral, E.,Mayol-Cuevas,W.,Arévalo,V.,Gonzalez-Jimenez, J.: Fast place recogni-
tion with plane-based maps. In: 2013 IEEE International Conference on Robotics and Automa-
tion (ICRA), pp. 2719–2724. IEEE (2013)

8. Raposo, C., Lourenço, M., Antunes, M., Barreto, J.P.: Plane-based odometry using an rgb-d
camera. In: British Machine Vision Conference (BMVC) (2013)

9. Yang, S., Song, Y., Kaess, M., Scherer, S.: Pop-up slam: semantic monocular plane slam for
low-texture environments. In: 2016 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 1222–1229. IEEE (2016)

10. Hedau, V., Hoiem, D., Forsyth, D.: Recovering the spatial layout of cluttered rooms. In: 2009
IEEE International Conference on Computer Vision (ICCV), pp. 1849–1856. IEEE (2009)

11. Stuckler, J., Behnke, S.: Orthogonal wall correction for visual motion estimation. In: 2008
IEEE International Conference on Robotics and Automation (ICRA), pp. 1–6, May 2008

12. Halber, M., Funkhouser, T.A.: Structured global registration of RGB-D scans in indoor envi-
ronments (2016). arXiv:1607.08539

13. Xiao, J., Owens, A., Torralba, A.: Sun3d: A database of big spaces reconstructed using sfm
and object labels. In: 2013 IEEE International Conference on Computer Vision (ICCV), pp.
1625–1632. IEEE (2013)

http://arxiv.org/abs/1610.06475
http://arxiv.org/abs/1607.08539


382 J. Wang et al.

14. Ni, K., Steedly, D., Dellaert, F.: Tectonic sam: Exact, out-of-core, submap-based slam. In: 2007
IEEE International Conference on Robotics and Automation (ICRA), pp. 1678–1685. IEEE
(2007)

15. Huang, S., Wang, Z., Dissanayake, G.: Sparse local submap joining filter for building large-
scale maps. IEEE Trans. Robot. 24(5), 1121–1130 (2008)

16. Zhao, L., Huang, S., Dissanayake, G.: Linear slam: A linear solution to the feature-based and
pose graph slam based on submap joining. In: 2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 24–30. IEEE (2013)

17. Holz,D.,Holzer, S.,Rusu,R.B.,Behnke, S.:Real-timeplane segmentation using rgb-d cameras.
In: Robot Soccer World Cup, pp. 306–317. Springer (2011)

18. Pulli, K.: Multiview registration for large data sets. In: 1999 Proceedings of the Second Inter-
national Conference on 3-D Digital Imaging and Modeling, pp. 160–168. IEEE (1999)

19. Handa, A.,Whelan,McDonald, T. J., Davison, A.J.: A benchmark for rgb-d visual odometry, 3d
reconstruction and slam. In: 2014 IEEE International Conference on Robotics and Automation
(ICRA), pp. 1524–1531. IEEE (2014)

20. Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers, D.: A benchmark for the evaluation
of rgb-d slam systems. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 573–580. IEEE (2012)

21. Stückler, J., Behnke, S.: Multi-resolution surfel maps for efficient dense 3d modeling and
tracking. J. Vis. Commun. Image Represent. 25(1), 137–147 (2014)

22. Kerl, C., Sturm, J., Cremers, D.: Dense visual slam for rgb-d cameras. In: 2013 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pp. 2100–2106. IEEE
(2013)



Mapping on the Fly: Real-Time 3D Dense
Reconstruction, Digital Surface Map
and Incremental Orthomosaic Generation
for Unmanned Aerial Vehicles

Timo Hinzmann, Johannes L. Schönberger, Marc Pollefeys
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Abstract The reduced operational cost and increased robustness of unmanned aerial
vehicles has made them a ubiquitous tool in the commercial, industrial and scientific
sector. Especially the ability to map and surveil a large area in a short amount of time
makes them interesting for various applications. Generating a map in real-time is es-
sential for first response teams in disaster scenarios such as, e.g. earthquakes, floods,
or avalanches or may help other UAVs to localize without the need of Global Naviga-
tion Satellite Systems. For this application, we implemented a mapping framework
that incrementally generates a dense georeferenced 3D point cloud, a digital surface
model, and an orthomosaic and we support our design choices with respect to com-
putational costs and its performance in diverse terrain. For accurate estimation of
the camera poses, we employ a cost-efficient sensor setup consisting of a monocular
visual-inertial camera rig as well as a Global Positioning System receiver, which
we fuse using an incremental smoothing algorithm. We validate our mapping frame-
work on a synthetic dataset embedded in a hardware-in-the-loop environment and in a
real-world experiment using a fixed-wing UAV. Finally, we show that our framework
outperforms existing orthomosaic generation methods by an order of magnitude in
terms of timing, making real-time reconstruction and orthomosaic generation feasi-
ble onboard of unmanned aerial vehicles.
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1 Introduction

A fast and precise overview of an area is important for first aid teams in disaster
scenarios such as earthquakes, floods, or avalanches. In particular, digital surface
models (DSM) and orthomosaics are essential tools to support the human operator in
quick decision-making. An orthomosaic gives a broad overview of the surroundings
and helps the human operator to find regions of interest. Furthermore, orthomosaics
enable every agent with a camera to infer its own absolute pose by employing feature
extraction or image matching. The orthomosaic can therefore be used to localize
the robot and other unmanned aerial vehicles (UAVs) while solely relying on an
image stream [1]. An orthomosaic image is obtained by correcting aerial images for
perspective and camera distortion using the information about the camera intrinsics
and camera poses such that the generated image is true to scale and corresponds to a
map projection throughout the image. The task of true orthorectification requires a
three-dimensional model of the scenery. This is necessary in order to appropriately
map intensities observed by the perspective camera to their location with respect to
the orthographic camera. The DSM represents the three-dimensional model in form
of a height map and furthermore helps to detect changes in elevation or to plan robot
or human missions. The literature distinguishes between a DSM and a digital terrain
model (DTM). The DSM includes the earth’s surface and all objects such as buildings
and trees on top of it. In contrast, the DTM models the bare earth’s surface. In this
publication, we are only interested in generating DSMs.

2 Related Work

The literature for creating overview images can be roughly categorized into panorama
and mosaic generation where we utilize the distinction from [2, p. 12]: “Panorama
is an extension of field of view (FOV) while mosaic is an extension of point of view
(POV)”. The mosaic generation can be divided into forward projection, using e.g.
homographies or dense point clouds, and backward projection, using e.g. ray tracing
in combination with grids or triangle meshes. An overview of the categories is given
in Fig. 1. In this publication, we describe and compare a homography-based and
point cloud-based forward projection, as well as a batch, and incremental grid-based
backward projection approach by analyzing the advantages and disadvantages in
particular with respect to their real-time capabilities.

All of the approaches above are incorporated in our end-to-end mapping frame-
work (cf. Fig. 2) that tightly couples IMU odometry, GPS position and visual cues
in a smoothing-based estimator and thus does not detach state estimation from or-
thomosaic generation. In summary, we claim the following contributions:

• A real-time incremental end-to-end dense reconstruction and orthomosaic gen-
eration framework for UAVs that tightly couples state estimation and seamless
mosaic generation.
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Mosaic (POV)

Forward Backward

Incremental Grid

HomographyPointcloud Grid Triangles

Panorama (FOV)
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Fig. 1 Categories for generating an overview image. In this paper, we analyze a homography-based
and point cloud-based forward projection, as well as a batch and incremental grid-based backward
projection approach
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Fig. 2 System overview: The IMU, camera, and GPS measurements are fused in a smoothing-based
optimizer. The optimized camera poses and images are used as input for the dense reconstruction
and orthomosaic generation. The DSM is updated incrementally from the 3D dense georeferenced
point cloud. The orthomosaic is computed via an incremental backward grid-based approach while
employing the DSM or a planar assumption and considering the optimal viewing angle

• Most importantly, we propose an incremental grid-based orthomosaic generation
algorithm that is suitable for real-time applications in arbitrary terrain by con-
sidering the surface model and best viewing angle. We validate its performance
on a synthetic and real-world dataset with respect to homography-based, point
cloud-based, and batch alternatives.

• We open-source our framework aerial_mapper consisting of all described
DSM and orthomosaic generation approaches. Our framework augments the effi-
cient and modular grid_map library [3] with utilities for georeferenced mapping
from aerial views.

2.1 Panorama Generation

Many approaches exist to generate a panoramic view given a set of images by ap-
plying a homography. Brown et al. presents in [4] an approach to robustly stitch a
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set of unordered images to a seamless panorama assuming rotations only around the
optical axis. The main steps consist of feature extraction, matching in feature space,
applying RANSAC and then computing the homography and applying bundle ad-
justment. Steedly et al. [5] build up on [4] and predict overlapping images more
efficiently by utilizing the fact that the video stream is not unordered. Agarwala et
al. [6] generate a multi-viewpoint panorama of a street using a homography and
Markov Random Field (MRF) optimization. Laganière et al. [7] use homographies
to generate bird-eye views for teleoperation of a robot. All of the approaches have in
common that they focus on obtaining seamless and visually appealing panoramas or
bird-eye views and are not concerned about georeferencing or georeferencing errors.
However, stitching using only feature correspondences leads to error accumulation
and distorted maps when directly applied to UAVs as demonstrated e.g. in [8, p.
20]. The same is true when only the first image is georeferenced and the subsequent
images are incrementally stitched to this reference image.

2.2 Mosaic Generation

2.2.1 Forward Projection

In UAV applications, where we are rather interested in generating a seamless and
georeferenced mosaic, additional sensor measurements are used to obtain camera
pose measurements or estimates: Hemerly et al. [9] describe the process of obtaining
a single georeferenced image using a UAV. Olawale et al. [10] recover the camera
intrinsics and extrinsics using GPS and manually collected ground control points in
combination with the commercial photogrammetric software (Agisoft) and generate
an orthomosaic. Yahyanejad et al. present in [2, 8] the results of homography-based
image mosaicing from sensor data recorded on board of a rotary-wing UAV with a
down-looking camera.

As presented, many approaches use a camera pose estimate and an image as in-
put and then apply a robust but costly feature detection and matching algorithm.
For instance, [2, 8] assume noisy IMU and GPS measurements and deal with this
by designing a quality function that finds a trade-off between geo-referencing error
and seamless stitching. In contrast, we do not detach state estimation and ortho-
mosaic generation but fuse GPS and IMU measurements as well as feature tracks
in a consistent smoothing-based state estimation. The small offset between images
in combination with gyroscope measurements enables fast and subpixel-accurate
Lucas-Kanade feature tracking (KLT) [11]. The use of KLT is also supported by
the findings in [12] claiming that KLT achieves the best quantitative results in the
context of orthomosaic generation. Our philosophy is that accurate and efficient es-
timation of the camera poses is the backbone of consistent dense 3D reconstruction
and seamless orthomosaic generation. Furthermore, the literature was previously not
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concerned about presenting runtime results and [2, 12] deplore lack of quantitative
performance measures. We tackle this absence of information by presenting the run-
time of all methods and an open-source Gazebo-based HIL environment [13] capable
of generating synthetic datasets.

2.2.2 Backward Projection

Note that none of the homography-based forward projection approaches presented
in the previous section employ a DSM as input. In contrast, in order to generate
true orthomosaics, [14] employ triangle-based backprojection, also known as ray
tracing, in combination with a DSM. Our backprojection approach is very similar to
[14] but we utilize a grid of squares to simplify the raytracing process. Furthermore,
we present a novel incremental grid-based orthomosaic generation approach to speed
up the computation.

3 Methodology

The methodology section follows the data flow illustrated in Fig. 2: Sect. 3.1 presents
the smoothing-based GPS-IMU-Vision fusion. Given the input images and corre-
sponding optimized camera poses, a dense georeferenced point cloud can be gen-
erated using planar rectification, as demonstrated in Sect. 3.2. Section 3.3 presents
how this dense point cloud can be used to generate a DSM by employing inverse
distance weighting (IDW). Finally, Sect. 3.4 presents our approaches to generate an
orthomosaic from a stream of images, optimized camera poses, and DSM using (a)
forward projection and (b) backward projection.

3.1 Multi-Sensor Fusion

In this section, we present the core elements of our proposed multi-sensor fusion
framework. We distinguish three coordinate systems: the global frame FG , the cam-
era frame FC , and the body frame FB . To avoid unnecessary conversions due to
the vision-based fusion, we choose the Universal Transverse Mercator (UTM) co-
ordinate system where pG

B expresses easting, northing, and elevation. We seek to
estimate the robot states xR as well as the set of landmarks xL . We define the robot
state as: xR := [

pG
B qG

B vGB ba bg
]

where the orientation, position and velocity of the
body frame expressed in global coordinates are denoted with qG

B , pG
B and vGB . The

remaining state vector consists of accelerometer bias ba and gyroscope bias bg .
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3.1.1 Vision Front-End

FAST features [15] are extracted from every input image and tracked from frame to
frame using KLT with subpixel refinement. To speed up the tracking process and to
avoid outliers, we use the gyroscope of the IMU to predict the location of the pixel
in the subsequent image. Furthermore, we employ feature bucketing to guarantee
uniformly distributed features across the image for improved vision-based motion
estimation.

3.1.2 Smoothing-Based State Estimation

For sensor fusion and pose estimation we use the incremental smoothing and mapping
algorithm iSAM2 [16]. For the employed reprojection residual, we refer to [17].
Every reprojection factor has a Cauchy M-Estimator associated with it to reduce the
influence of outliers.1 The IMU measurements are preintegrated and summarized in a
single relative motion constraint connecting two time-consecutive poses as described
in [18]. The residual and Jacobian of the GNSS position factor is calculated by
“lifting” the residual: e = t̃GB − tGB , ∂e

∂δt = − ∂
∂δt

(
tGB + RG

B δt
) = −RG

B where t̃GB is the
measured position transformed to UTM coordinates.2 All measurements are inserted
into the factor graph once they become available. For every measurement, the factor
graph is augmented by a state node. To estimate the initial position, orientation as
well as accelerometer biases, at the beginning of every experiment, the plane is kept
level for few seconds. During this time, the GPS position measurements are averaged
to determine the initial position. The averaged accelerometer readings are used for
coarse gravity alignment and bias estimation. After take-off is detected, the vision
measurements are incorporated into the factor graph. Note that in this publication only
open-loop SLAM was employed, i.e. no loop closures or inter-matches were included
in the factor graph. Albeit we did not experience any inconsistencies in the generated
dense reconstruction or orthomosaics we consider to integrate an online loop-closure
or map-tracking module in future work to guarantee the global consistency of the map.

3.2 Dense Reconstruction

Given the optimized camera poses of our monocular camera rig, a virtual stereo-pair
is generated using planar rectification [19]. The dense point cloud is then computed
by applying efficient stereo block matching. Note that planar rectification assumes
that the epipoles of a virtual stereo-pair are outside the field of view which is fulfilled
for our fixed-wing UAV with down-looking camera due to the approximately fronto-
parallel motion with respect to the ground.

1The Cauchy weight is k2/(k2 + e2), where e is the residual and k is a constant set to 3.0.
2Note that we neglect the translational offset between GNSS antenna and IMU since for our setup
this corresponds to few centimeters.
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3.3 Digital Surface Map Generation

The georeferenced dense point cloud serves as input for the digital surface map. The
algorithm consists of a for-loop that iterates over all affected cells in the grid.

Algorithm 1 Grid-Based DSM
pr : Radius of the kd-tree used for interpolation.
λ : Factor to increase the interpolation radius.

1: function DSM(POINT CLOUD,
CAMERA POSES)

2: cells ←identifyAffectedCells(TG
C )

3: for c : cells do
4: while N = {} do
5: pr ← λ · pr
6: N ← kd-tree(xc,yc, pr)
7: end while
8: Apply interpolation methods
9: (Optional:) Height-to-color mapping

10: end for
11: end function

..
.. ..... .
.

.. .. ..
.. ...
...

. . ...
. .. DSM

A fast kd-tree3 implementation returns the set of nearest points N found within
the interpolation radius pr . Next, inverse distance weighting (IDW) is applied as
interpolation method. IDW intuitively determines the cell’s height by using a linearly
weighted combination of the nearest neighbors, where the weight corresponds to the
inverse distance to the cell center, thus giving higher weight to points that are closer
to the cell center. An adaptive interpolation radius is utilized (cf. Algorithm 1) that
is guaranteed to return an interpolated height value in sparse regions and still keeps
a high level of detail in dense regions.

3.4 (Ortho-)Mosaic Generation

In this section, we present the implemented approaches for computing an (ortho-)
mosaic while focusing on the proposed incremental grid-based orthomosaic gener-
ation.

3.4.1 Homography-Based Mosaic (Forward Projection)

A perspective homography H is computed which relates the border pixel coordinates
of the image to points on the ground surface.

3nanoflann: nano fast library for approximate nearest neighbors.
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Algorithm 2 Homography-BasedMosaic
w : Image width in pixel. h : Image height in pixel.

1: function MOSAICHOMOGRAPHY(IMAGE, CAMERA

POSE, CAMERA INTRINSICS)
2: p1 ← (0,0), p2 ← (w,0), p3 ← (w,h),p4 ← (0,h)
3: undistort(image)
4: // Obtain ground points.
5: for i= 1 : 4 do
6: // Computing the scale.
7: λi ← −(zGC −hground)/(RG

C t̃
C
L )z)

8: // Computing the ground position [UTM].
9: p′

i ← tGC +λiRG
C t̃

C
L

10: end for
11: H ←computeHomography(p,p′)
12: imagetrans f . ← applyHomography(H, image)
13: mosaic ← iterativeBlending(imagetrans f .)
14: end function

tGC

λ

H

p′
3

p′
2

p′
1

p′
4

t̃CL

Raw input image

Rectified image

Satellite image overlay

The homography is then applied to the undistorted input image and the trans-
formed single rectified image is blended with the overall mosaic using feathering.
The pseudo code of the algorithm and the results are presented in Algorithm 2 and
Fig. 6, respectively.

3.4.2 Grid-Based Orthomosaic (Backward Projection)

The grid-based orthomosaic generation in batch formulation iterates over all cells
and, for every cell, queries the corresponding height from the DSM layer. An addi-
tional for-loop iterates over all images and, given the corresponding camera pose and
camera intrinsics, checks if the cell is within the visible camera cone. Since every cell
is usually observed from several camera frames, the question poses which is the ideal
pixel intensity value to be assigned to the cell of the orthomosaic. Various mosaic
strategies exist [14]. We propose to extract the pixel intensity from the image where
the corresponding camera pose is the closest to nadir. This elevation angle is defined
as the observation vector from the camera to the cell center. Instead of performing
these operations on all cells in the grid, our proposed incremental formulation (Al-
gorithm 3) identifies the subset of cells that needs to be updated, as illustrated in
green in Fig. 6. The cells are identified by projecting the border-pixels of the cur-
rent image onto the plane defined by the minimal elevation obtained from the DSM.
All cells which are potentially visible given the current camera pose are obtained
by min/max operation. Depending on the image distortion, a tighter approximation
could be achieved using e.g. the Bresenham algorithm [20]. Only those cells which
show a higher elevation angle than currently stored and which are visible from the
current camera configuration are updated.
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Algorithm 3 Incremental Grid-Based Orthom.

1: function INCREMENTALORTHOMOSAIC-
GRID(IMAGE, CAMERA POSE, CAMERA INTRINSICS)

2: cells ←identifyAffectedCells(TG
C )

3: for c : cells do
4: zc ← dsm(c)
5: if visibility(xc,yc,zc,TG

C ) then
6: score ← computeScore(xc,yc,zc,TG

C )
7: if score > score(c) then
8: (u,v) ← backproject(xc,yc,zc,TG

C , image)
9: ortho(c) ←pixelIntensity(u,v, image)

10: end if
11: end if
12: end for
13: end function

DSM

Orthomosaic

Score
layer

layer

layer

visible?

Query height

Assign pixel
intensity

3.4.3 Point Cloud-Based Orthomosaic (Forward Projection)

In contrast to the approach described in Sect. 3.4.2 one can directly use the dense
3D reconstruction of the environment (cf. Sect. 3.2) to generate an orthomosaic view
and hence avoid the costly backprojection step. The proposed point cloud-based
orthomosaic generation approach closely follows Algorithm 2 but instead of the
height we compute the IDW of the pixel intensity.

4 Platform and Sensors

For our experiments, we use Techpod (cf. Fig. 2), a small unmanned research plane
with a wingspan of 2.60 m. The IMU ADIS16448, and the grayscale camera Aptina
MT9V034 of the sensor pod are hardware-synchronized using a VI-Sensor [21] and
run at 200 Hz and 25 Hz, respectively. The cameraAptinaMT9V034 has a focal length
of 2.8 mm, a sensor diagonal of 1/3 inch, and a resolution of 752 × 480 pixels. The
ublox LEA-6H GPS receiver and the pressure sensors are connected to the Pixhawk
autopilot running a real-time EKF [22].

5 Simulation Experiments

The Gazebo-based HIL environment was used to validate the DSM and orthomosaic
generation is illustrated in Fig. 3. The aerodynamic coefficients and mounted sensors
closely model our UAV Techpod. Figure 4 shows the results from a simulated single
scan line at a relatively low altitude of 50 m above the mesh of Pix4D’s cadastre [23]
dataset. For this experiment, 429 images are rendered at a frame rate of 20 Hz and
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(a) Fixed-wing UAV and synthetic image. (b) Output of QGroundControl in HIL mode.

Fig. 3 Gazebo-based HIL environment for fixed-wing UAVs

each image is associated with the ground truth pose. Figure 4a shows the coordinate
system of the last camera pose and the point cloud generated by the planar rectification
algorithm using every 10th image. In this experiment, we deliberately do not use every
frame for the dense reconstruction to underline the framework’s potential to handle
sparse regions or holes in the point cloud. The DSM layer, which is given in Fig. 4b,
is generated by applying IDW with an initial radius of 5 m to the dense point cloud.
Figure 4c depicts the incremental grid-based orthomosaic in which the pixel intensity
is queried from the first camera that is in line of sight of the respective cell. In contrast,
Fig. 4d shows the incremental grid-based orthomosaic where the pixel intensities are
obtained from the camera frame with the view closest to nadir. The corresponding
elevation angles between selected camera pose and orthomosaic cell are shown in
Fig. 4f, g. In particular in regions with a small altitude to terrain height ratio (e.g.
tree in center) one can observe that the nadir-view approach renders an improved
orthorectified view and avoids double object mapping. As Fig. 4e illustrates, the
result of our nadir-view approach is in accordance with the orthomosaic generated by
Pix4D, for which we used the same georeferenced images as input. The homography
approach is not shown since the underlying flat plane assumption results in the
predicted large orthomosaic distortions.

6 Real-World Experiments

In this section, we present the results obtained from the semi-autonomous flight at an
altitude of 100 m above ground (cf. Fig. 5). The dense point cloud and orthomosaics
are presented in Fig. 6. In contrast to the previous experiment, we present the output
of the incremental grid based on a flat DSM. Due to the high altitude to terrain height
ratio in this experiment, the assumption does not introduce measurable orthomosaic
inconsistencies with respect to Google imagery (cf. Fig. 6b). The homography-based
orthomosaic with applied feathering, shown in Fig. 6a, can handle an image stream
of up to 57 Hz. Given the measured runtime in Table 1, the combination of dense
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89.88◦45.26◦ 89.91◦50.57◦

−6.64m
(b) DSM

(f) Observation angle (First view) (g) Observation angle (Max. elevation angle)

(e) Pix4D Orthomosaic

(d) Incremental Grid-Based Orthomosaic (Max. elevation angle)

(c) Incremental Grid-Based Orthomosaic (First view)

(a) Dense Reconstruction

18.43m

Fig. 4 Simulation results for dataset cadastre [23]
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Fig. 5 Comparison of Pix4D, Pixhawk-EKF [22] and iSAM2-based estimation
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(c) Point cloud-based ortho-
mosaic (Section 3.4.3)

Fig. 6 Mapping results based on the iSAM2 state estimates using a fixed-wing UAV

reconstruction and point cloud-based orthomosaic is even slightly faster than the
homography-based approach. The caveat of the former is that, due to image distor-
tions at the outer regions, a smaller field of view will be covered by the virtual stereo
pair (cf. Fig. 6c). Both the homography- and point cloud-based approach outperform
the methods presented in [2] by an order of magnitude. Note that the variants pro-
posed in [2] do not generate a DSM and thus visual artifacts are introduced into the
orthomosaic when the planar assumption is violated. The proposed incremental grid-
based approach speeds up the computation by a factor of 10 compared to the batch
variant. Both, the batch and incremental grid approach are several magnitudes faster
than the triangle mesh implementation [14]. However, the implementation in [14]
also performs color matching and identifies obscured pixels during the ray casting
process adding up to a runtime of 62 min per image.
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Table 1 Runtime results for dense reconstruction and orthomosaic generation
Time/image Total time # images Resol. CPU Type Impl.

Homography (Sec. 3.4.1) 17.4ms 4.33s 249 - 2.8GHz Forw. C++
Dense rec. (Sec. 3.2) 16.7ms 0.384s 23/249 - 2.8GHz Forw. C++
Point cloud (Sec. 3.4.3) 0.2ms 0.51s 249 10m 2.8GHz Forw. C++
Point cloud (Sec. 3.4.3) 0.79ms 1.97s 249 1m 2.8GHz Forw. C++
Point cloud (Sec. 3.4.3) 31ms 7.72s 249 0.1m 2.8GHz Forw. C++
“Position” [2] 0.47s 17.31s 37 n/a 2.66GHz Forw. Matlab
“Pose” [2] 0.5s 18.33s 37 n/a 2.66GHz Forw. Matlab
“Image” [2] 12.41s 459.2s 37 n/a 2.66GHz Forw. Matlab
“Hybrid” [2] 3.68s 136.28s 37 n/a 2.66GHz Forw. Matlab

Grid (batch) (Sec. 3.4.2) 0.43s 107.41s 249 10m 2.8GHz Backw. C++
Grid (batch) (Sec. 3.4.2) 1.73s 430.27s 249 1m 2.8GHz Backw. C++
Grid (incr.) (Sec. 3.4.2) 171ms 42.6s 249 1m 2.8GHz Backw. C++
Triangle Mesh [14] 62min 620min 10 0.15m 2.8GHz Backw. C#, Matl.

Implemented Proposed

7 Conclusion

In this publication, we demonstrated that incremental end-to-end dense reconstruc-
tion and orthomosaic generation for UAVs is feasible in real-time allowing, for in-
stance, advanced autonomous missions of UAV fleets by relying on orthomosaic-
based localization only. We highlight the characteristics of our implemented ortho-
mosaic generation approaches in particular with respect to runtime and the influence
of the flight altitude to terrain height ratio: The advantage of homography-based
orthomosaic generation is the seamless blending, the fast computation and the op-
timal integration of all pixels but is only suited for planar scenery or, alternatively,
high flight altitudes. The benefit of the point cloud-based orthomosaic is the low-
est computation time among the evaluated methods, the seamless blending and the
direct way of considering the surface elevation. However, depending on the dense
reconstruction algorithm the area of coverage is smaller and sparse regions can only
be overcome by interpolating nearby point intensities potentially leading to incorrect
orthomosaics. Our proposed backward incremental grid-based orthomosaic is suited
for arbitrary terrain, renders a true orthomosaic by considering the surface model
and optimal viewing angle and still achieves real-time performance.
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Aerial and Ground-Based Collaborative
Mapping: An Experimental Study

Ji Zhang and Sanjiv Singh

Abstract We here present studies to enable aerial and ground-based collaborative
mapping in GPS-denied environments. The work utilizes a system that incorporates
a laser scanner, a camera, and a low-grade IMU in a miniature package which can be
carried by a light-weight aerial vehicle. We also discuss a processing pipeline that
involves multi-layer optimization to solve for 6-DOF ego-motion and build maps
in real-time. If a map is available, the system can localize on the map and merge
maps from separate runs for collaborative mapping. Experiments are conducted in
urban and vegetated areas. Further, the work enables autonomous flights in cluttered
environments through building and trees and at high speeds (up to 15m/s).

1 Introduction

The paper is aimed at solving a mapping problem. In particular, we seek for collab-
oration between mapping from the ground and air due to each own characteristics.
Ground-based mapping is not prone to limitations of space or time. Typically, a
mapping device carried by a ground vehicle is suitable for mapping in large scale
and can move at a high speed. On the other hand, a tight area can be mapped in a
hand-held deployment. However, ground-based mapping is limited by the sensor’s
altitude, difficult to realize a top-down looking configuration. As illustrated in Fig. 1,
the ground-based experiment produces a detailed map of the surroundings of a build-
ing, while the roof has to be mapped from the air. If a small aerial vehicle is used,
aerial mapping is limited by time due to the short lifespan of batteries. Space also
needs to be open enough for aerial vehicles to operate safely. In this paper, we carry
out experimental studies to pursue the advantages of both.

The collaborative mapping is based on our previous work [1–3] which develops
a data processing pipeline for real-time ego-motion estimation and mapping. The
method utilizes a laser scanner, a camera, and a low-grade IMU, processes data
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Fig. 1 Example of air-ground collaborative mapping. a shows the ground-based map and sensor
trajectory (colored curve starting with blue and ending with red) produced by an operator holding
a sensor pack and walking around a building at 1–2m/s for 914m of travel. The ground-based
map covers details surrounding the building except the roof. Then in (b), the same sensor pack is
mounted to an aerial vehicle flying over the building at 2–3m/s for 269m. The green point cloud
in (b) is the aerial map and the colored curve is the sensor trajectory in the air
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through multi-layer optimization. The resulting motion estimates are at a high rate
(200Hz) with a low drift (typically <0.1% of the distance travel).

Benefit from the high-accuracy processing pipeline, the paper develops a method
to merge the maps from the ground and air in real-time. This is by localization
of one output w.r.t. the map from the other. In the existing literature, prior map
based localization often involves particle filtering [4–9]. In addition, Nieuwenhuisen
et al. use multi-resolution scan matching to localize an aerial vehicle on a 3D point
cloudmap [10]. Also employing scanmatching, our method enables both high-speed
navigation (up to 15m/s) and large scale mapping (over 1km).

While the proposed scheme fulfills collaborative mapping, it further reduces the
complexity of aerial deployments. With a ground-based map, flight paths are defined
and the aerial vehicle conducts mapping in autonomous missions. In experiments,
the aerial vehicle is able to accomplish challenging flight tasks autonomously.

2 Method

2.1 Sensor Configuration

Figure2 presents the sensor/computer pack utilized by the paper to enable collab-
orative mapping. Our processing software is not limited to a particular sensor con-
figuration. However, introducing sensors in the front helps readers understand the
technology. The sensor pack (see Fig. 2a) consists of a Velodyne Puck laser scanner
generating 0.3 million points/s, a camera at 640 × 360 pixels resolution and 50Hz
frame rate, and a low-grade IMU at 200Hz. An onboard i7 computer processes data
from the sensors in real-time for ego-motion estimation and mapping. Figure2c, d
illustrate the sensor field of view. An overlap is shared by the laser and camera, with
which, the processing software associates depth information from the laser to image
features (more discussion in Sect. 2.2).

2.2 Odometry and Mapping

The odometry and mapping method is originally proposed in [3]. For completeness,
we include an overview of the method. The software processes data from a range
sensor such as a laser scanner, a camera, and an inertial sensor. Instead of combining
data from all sensors in a large, full-blown problem, we parse the problem asmultiple
small problems, solve them sequentially in a coarse-to-fine manner. Figure3 gives a
block diagram of the software system. In such a system, modules in the front conduct
light processing, ensuring high-frequency motion estimation robust to aggressive
motion. Modules in the back take sufficient processing, run at low frequencies to
warrant accuracy of the resulting motion estimates and maps.
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(a)
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Fig. 2 a Sensor pack including a Velodyne Puck laser scanner, a camera, and a low-grade IMU. An
onboard i7 computer processes data from the sensors to conduct real-time ego-motion estimation
and mapping. b and c Horizontal and vertical field of view of the laser and camera

The software starts with IMU data processing (orange module in Fig. 3). This
module runs at the IMU frequency to predict the motion based on IMU mecha-
nization. The result is further processed by a visual-inertial coupled method (green
module in Fig. 3). The method tracks distinctive image features through the image
sequence and solves for the motion in an optimization problem. Here, laser range
measurements are registered on a depthmap, with which, depth information is asso-
ciated to the tracked image features. Since the sensor pack contains a single camera,
depth from the laser helps solve scale ambiguity during motion estimation.

The estimated motion is used to register laser scans locally. In the third module
(bluemodule in Fig. 3), these scans arematched to further refine themotion estimates.
The matched scans are registered on a map while scans are matched to the map. To

Fig. 3 Block diagram of the
laser-visual-inertial
odometry and mapping
software system
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Prediction

Visual-inertial 
Odometry

Scan Matching 

Pose 
Integration

200Hz
pose

50Hz
pose

200Hz
pose

Camera feedback Laser feedback

5Hz
pose



Aerial and Ground-Based Collaborative Mapping: An Experimental Study 401

accelerate the processing, scan matching utilizes multiple CPU threads in parallel.
The map is stored in voxels to accelerate point query during scan matching. Because
the motion is estimated at different frequencies, a fourth module in the system (gray
module in Fig. 3) takes these motion estimates for integration. The output holds both
high accuracy and low latency beneficial for vehicle control.

The modularized system also ensures robustness w.r.t. sensor degradation, by
selecting “healthy” modes of the sensors when forming the final solution. For exam-
ple, when a camera is in a low-light or texture-less environment such as pointing to
a clean and white wall, or a laser is in a symmetric or extruded environment such
as a long and straight corridor, processing typically fails to generate valid motion
estimates. Our system automatically determines a degraded subspace in the problem
state space [11]. When degradation happens, the system only solves the problem
partially in the well-conditioned subspace of each module. The result is that the
“healthy” parts are combined to produce the final, valid motion estimates.

2.3 Localization and Map Merging

When a map is available, the method described in Sect. 2.2 can be extended to utilize
the map for localization. This is using a scan matching method similar to the blue
block in Fig. 3. The method extracts two types of geometric features – points on
edges and planar surfaces, based on the curvature in local scans. Feature points are
matched to the map. An edge point is matched to an edge line segment, and a planar
point is matched to a local planar patch. On the map, the edge line segments and local
planar patches are determined by examining the eigenvalues and eigenvectors asso-
ciated with local point clusters. The map is stored in voxels to accelerate processing.
The localization solves an optimization problem minimizing the overall distances
between the feature points and their correspondences. Due to the fact that we use the
high-accuracy odometry estimation to provide initial guess to the localization, the
optimization usually converges in 2–3 iterations.

Compared to Sect. 2.2, the difference is that the localization does not process
individual scans but stacks a number of scans for batch processing. Thanks to the
high-accuracy odometry estimation, scans are registered precisely in a local coor-
dinate frame where drift is negligible over a short period of time (a few seconds).
A comparison is given in Fig. 4, where Fig. 4a is a single scan that is matched in
Sect. 2.2 (scan matching executes at 5Hz), and Fig. 4b shows stacked scans over
2 s, which are matched during localization (scan matching runs at 0.5Hz). One can
see the stacked scans contain significantly more structural details, contributing to
the localization accuracy and robustness w.r.t. environmental changes. Additionally,
low-frequency execution keeps the CPU usage to be minimal for onboard processing
(localization consumes about 10% of a CPU thread).

Our localization is compared to a particle filter based implementation. The odom-
etry estimation provides the motion model to the particle filter. It uses a number of
50 particles. At each update step, the particles are resampled based on low-variance
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Fig. 4 Comparison of scans involved in odometry estimation and localization. In odometry esti-
mation, each individual scan is processed in scan matching at 5Hz. While in localization, a number
of locally registered scans are stacked and batch processed at 0.5Hz

resampling [12]. Comparison results are shown in Fig. 5 and Table1. Here, errors
are defined as the absolute distances from localized scans to the map. During the
evaluation, we choose a number of planar surfaces and use the distances between
points in localized scans to the corresponding planar patches on the map. Figure5
shows the error distribution. When running the particle filter at the same frequency
as our method (0.5Hz), the resulting error is five times as large. While in Table1, the
CPU processing time is more than twice of ours. In another test, running the particle
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Fig. 5 Comparison of scan matching accuracy in localization. We use the absolute distances from
localized scans to the corresponding local patches on the map as the metric. Points are selected
from a number of planar surfaces in Fig. 4. The red lines illustrate medians, the blue boxes represent
75% of the distributions, and the black lines are the maximum errors

Table 1 Comparsion of CPU processing time in localization. When running the particle filter at
5Hz, sensor data is processed at 25% of real-time speed due to high CPU demand

Method Particle filter Ours

Frequency (Hz) 0.5 5 0.5

Time per execution
(ms)

493 478 214

Time per second (ms) 247 2390 107

filter at 5Hz helps reduce the error to be slightly larger than our method. However,
the corresponding CPU processing time increases to over 22x of ours. These results
imply a particle filter based method does not take full advantage of the high-accuracy
odometry estimation as compared to our implementation.

3 On Sensor Orientation

In previous work [3], we studied the system performance w.r.t. sensor degradation.
We concluded that the system is robust to individual sensor failures, i.e. when the
laser or camera is degraded, the corresponding module is bypassed while the rest of
the system is staggered to generate the solution. In this section, we further carry out
studies where the sensor pack is orientated differently. This is especially motivated
by aerial mapping due to the fact that during “up and away” flights, the sensor pack
has to be tilted downward in order to capture data from the ground.

The first set of study is conducted in Figs. 6 and 7. First, we carry the sensor pack
horizontally in a garage building. Figure6a shows themap built and sensor trajectory.
Figure6b is a single scan. In this scenario, the scan contains sufficient structural
information.Whenbypassing the camera processingmodule (greenmodule inFig. 3),
the system produces the same trajectory as the full pipeline. On the other hand, we
run another test with the sensor pack tilted vertically down toward the ground. The
results are shown in Fig. 7. In this scenario, structural information in a scan is much
sparser (see Fig. 7b). The processing fails without usage of the camera and succeeds
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Fig. 6 Example of horizontally orientated sensor test. The processing succeeds with and without
the camera, both yield the same map and sensor trajectory (colored curve starting with blue and
ending with red) in (a). (b) shows a raw laser scan during the test which contains plenty of structural
information for scan matching based methods to function

with the full pipeline. The results indicate the camera is critical for high-altitude
flights where tilting of the sensor pack is required.

The second set of study compares the drift rate w.r.t. different sensor orientations.
As shown in Fig. 8, the sensor pack is held by an operator walking through a circle
at 1–2m/s speed with an overall traveling distance of 410m. Figure8a shows the
map built and sensor trajectory with a horizontally orientated sensor configuration.
The sensor is started and stopped at the same position. The test produces 0.18m of
drift through the path, resulting in 0.04% of relative position error in comparison
to the distance traveled. Then, the operator repeats the path with two sensor packs
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Fig. 7 Example of vertically orientated sensor test. The processing succeeds only when the camera
is present, which yields themap and sensor trajectory in (a). Due to the lack of structural information
in laser data (see a raw laser scan in (b)), odometry estimation requires assistance from the camera.
Methods only replying on scan matching are not functional

held at 45◦ and 90◦ angles, respectively. The resulting sensor trajectories are shown
in Fig. 8b. Clearly, tilting introduces more drift, where the relative position errors
are 0.6% at 45◦ (blue dash curve) and 1.4% at 90◦ (red dash-dot curve). Finally, by
localizing on the map in Fig. 8a using the method in Sect. 2.3, the drift is canceled
and both configurations result in trajectories as the black solid curve.

4 Flight Experiments

4.1 Drone Hardware

The drone platform is a DJI S1000 aircraft as shown Fig. 9. The aircraft weights
6.8kg (including batteries) and can carry a maximum of 4.2kg payload. The sen-
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Fig. 8 Accuracy comparison between horizontally orientated and downward tilted sensor tests. a
shows the map and sensor trajectory (colored curve starting with blue and ending with red) of a
horizontally orientated setup. The sensor pack is started and stopped at the same position, and held
by an operator who walks at 1–2m/s through a circle for 410m. The odometry estimation produces
0.18m of drift resulting in 0.04% of relative position error w.r.t. the distance traveled. b shows
results of a repeated test with the operator holding two sensor packs, one at 45◦ (blue dash curve)
and the other at 90◦ (red dash-dot curve). Tilting at 45◦ results in 2.3m of drift and correspondingly
0.6% of relative position error, while tilting at 90◦ generates 5.8m of drift and 1.4% of relative
position error. Finally by localizing w.r.t. the map in (a), both setups produce trajectories as the
black solid curve. All trajectories start at the black dot
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Fig. 9 DJI S1000 aircraft with sensor pack. The aircraft is built with a GPS receiver (on top of the
aircraft). GPS data is not used in mapping or autonomous missions as in this paper

Fig. 10 Sensor trajectories
corresponding to Fig. 1. The
ground-based mapping is at
1–2m/s with an overall
distance of 914m. The aerial
mapping is at 2–3m/s with
269m of travel. The
trajectories start at the black
dots
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Fig. 11 Autonomous flight result through a shed. a shows the ground-based map and sensor
trajectory (colored curve starting with blue and ending with red) built by an operator holding the
sensor pack and walking at 1–2m/s for 672m. With the ground-based map, way-points are defined
and the drone executes an autonomous mission. It takes off inside a shed on the left side of the
figure, navigates across the site at 4m/s, passes through another shed on the right side at 2m/s, and
returns to the first shed over 390m of travel. In (b), the green point cloud is the aerial map, the
colored curve is the sensor trajectory in the air, and the large points on the curve are the way-points.
c and d are two images taken by an onboard camera when the drone flies between the sheds and is
about to enter the shed on the right. e shows the estimated speed through the route
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Fig. 11 (continued)

sor/computer pack is mounted to the bottom of the aircraft, weighting 1.7kg. The
bottom right of the figure shows the remote controller. During autonomous missions,
the remote controller is operated by a safety pilot to override the autonomy if neces-
sary. Note that the aircraft is built with a GPS receiver (on top of the aircraft). GPS
data is not used in mapping or autonomous missions through the paper.

4.2 Teleoperated Flight Results

In the first collaborative mapping experiment, an operator holds the sensor pack and
walks around a building. Results are shown in Fig. 1. In Fig. 1a, the ground-based
mapping covers surroundings of the building in detail, conducted at 1–2m/s over
914m of travel. As expected, the roof of the building is empty on the map. Second,
the drone is teleoperated to fly over the building. In Fig. 1b, the flight is conducted at
2–3m/s with a traveling distance of 269m. The processing uses localization w.r.t. the
map in Fig. 1a. That way, the aerial map (green points) is merged with the ground-
based map (white points). After the ground-based map is built, the take-off position
of the drone is determined on themap. The sensor starting pose for the aerial mapping
is known, and from which, the localization starts. Figure10 presents the aerial and
ground-based sensor trajectories, in top-down and side views.

4.3 Autonomous Flight Results

Further, we conduct autonomous flights to realize aerial mapping. In Fig. 11, we
first build a ground-based map by hand-held mapping at 1–2m/s for 672m of travel
around the flight area. The map and sensor trajectory are shown in Fig. 11a. Then
based on the map, way-points are defined and the drone follows the way-points to
conduct aerial mapping. As shown in Fig. 11b, the colored curve is the flight path,
the large colored points on the curve are the way-points, and the green points form
the aerial map. In this experiment, the drone takes off inside a shed on the left side of
the figure, flies across the site and passes through another shed on the right side, then
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Fig. 12 Autonomous flight result over a long-run. a shows the ground-based map and sensor
trajectory (colored curve starting with blue and ending with red) generated by the sensor pack
mounted to an off-road vehicle, driven at 10m/s for 1463m. b shows the result of the autonomous
mission from an 1118m flight. During the mission, the drone first flies at 20m above the ground at
15m/s and then descents to 2m above the ground through a line of trees at 10m/s. The green point
cloud is the aerial map, the colored curve is the flight trajectory, and the large points on the curve
are the way-points. c and d are from an onboard camera when the drone flies high above the trees
and low underneath the trees. e shows the estimated speed through the route
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returns to the first shed to land. The speed is 4m/s crossing the site and 2m/s passing
through the shed. Figure11c, d are two images taken by an onboard camera when
the drone flies toward the shed on the right and is about to enter the shed. Figure11e
shows the estimated speed during the mission.

Finally, we conduct another experiment over a longer distance. As shown in
Fig. 12, the ground-based mapping involves an off-road vehicle driven at 10m/s
from the left end to the right end, over 1463m of travel. With the ground-based map
and way-points, the autonomous flight crosses the site. Upon take-off, the drone
ascends to 20m high above the ground at 15m/s. Then, it descends to 2m above the
ground to fly through a line of trees at 10m/s. The flight path is 1118m long as the
colored curve in Fig. 12b. Two images are taken as the drone flies high above the
trees (see Fig. 12c) and low underneath the trees (see Fig. 12d).

5 Conclusion

The paper presents experimental studies on collaborative mapping from the ground
and air. Utilizing aminiature sensor pack consisted of a laser scanner, a camera, and a
low-grade IMU,wedemonstrate aerial and ground-basedmappingwhile themaps are
merged in real-time during the flights. This benefits from a data processing pipeline
with multi-layer optimization—modules in the front execute at high frequencies to
handle aggressive motion and produce high-rate motion estimates, while modules in
the back run at low frequencies and take sufficient computation to warrant accuracy.
Weevaluate the system inboth teleoperated and autonomousflights, through cluttered
environments and at high speeds (up to 15m/s).
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I Can See for Miles and Miles: An Extended
Field Test of Visual Teach and Repeat 2.0

Michael Paton, Kirk MacTavish, Laszlo-Peter Berczi,
Sebastian Kai van Es and Timothy D. Barfoot

Abstract Autonomous path-following systems based on the Teach and Repeat par-
adigm allow robots to traverse extensive networks of manually driven paths using
on-board sensors. Thesemethods arewell suited for applications that involve repeated
traversals of constrained paths such as factory floors, orchards, and mines. In order
for path-following systems to be viable for these applications they must be able
to navigate large distances over long time periods, a challenging task for vision-
based systems that are susceptible to appearance change. This paper details Visual
Teach and Repeat 2.0, a vision-based path-following system capable of safe, long-
term navigation over large-scale networks of connected paths in unstructured, out-
door environments. These tasks are achieved through the use of a suite of novel,
multi-experience, vision-based navigation algorithms. We have validated our system
experimentally through an eleven-day field test in an untended gravel pit in Sudbury,
Canada, where we incrementally built and autonomously traversed a 5Km network
of paths. Over the span of the field test, the robot logged over 140Km of autonomous
driving with an autonomy rate of 99.6%, despite experiencing significant appearance
change due to lighting and weather, including driving at night using headlights.

1 Introduction

Autonomous path-following algorithms based on the Teach and Repeat paradigm
allow robots to repeat networks of connected paths previously driven by human
operators using only on-board sensors.

The unique task of autonomously traversing a human-taught path gives a robot a
strong prior on where it is safe to drive [2]. This allows for confident, autonomous
navigation through rough, outdoor terrain that would otherwise be inaccessible or
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require complex, generic, and potentially risky terrain-assessment algorithms. Fur-
thermore, thesemethods can be implemented to have bounded computation costs and
minimal map sizes [7], making them well suited for long-range navigation. These
benefits make autonomous path following appealing for industrial applications that
consist of repeated traversals over constrained paths, such as factory floors, orchards,
andmines. They are alsowell suited to applications that consist of autonomous explo-
ration and retrotraverse such as search-and-rescue and hazardous-exploration robots.
However, autonomous path-following systems suited for these applications need the
ability to navigate large-scale environments over long time periods. Furthermore,
they require constant metric localization to the manually driven path as input to a
path-tracking controller to ensure minimal drift, and the ability to recognize and cope
with obstacles blocking the path. These requirements pose a serious challenge for
vision-based systems whose advantages of cost and commercial ubiquity come at the
expense of robustness to appearance change. This paper presents Visual Teach and
Repeat (VT&R) 2.0, a path-following system capable of long-term, navigation on
large-scale networks of paths using only a stereo camera through the integration of
a suite of recently published navigation algorithms [2, 14, 19, 21]. Furthermore, we
present results from an extensive outdoor field test, illustrated in Fig. 1, that consisted
of incrementally building and autonomously traversing a 5km network of connected
paths over the span of eleven days at an untended gravel pit in Sudbury, Canada.
Over these eleven days, the robot traversed over 140km with an autonomy rate of
99.6% of distance traveled while experiencing significant appearance change due to
lighting, weather, and terrain modification.

The remainder of this paper is outlined as follows. Work related to VT&R 2.0
is summarized in Sect. 2. Details of the VT&R 2.0 system are presented in Sect. 3.

Fig. 1 A Grizzly RUV deployed with an autonomous path-following algorithm navigating a 5km
network of manually taught paths. Applications that rely on repeated traversals of constrained paths
will greatly benefit from such algorithms: such as mining, agriculture, and patrol robots. In order
to be useful for such applications, autonomous path-following algorithms will need to be able to
cope with large-scale maps, and appearance change over long periods of time. Using a novel multi-
experience localization andmappingmethod, the robot pictured above autonomously traversed over
140km over two weeks, experiencing significant appearance changes in the environment
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Section4 provides information on the experimental set up of the field test with results
presented in Sect. 5. Failure conditions of VT&R 2.0 and lessons learned from the
field are presented in Sect. 6 with a conclusion in Sect. 7.

2 Related Work

VT&R 2.0 is an evolution of our previous system that provides short-term, vision-
based path following on large-scale tree structures, VT&R 1.0 [6, 7]. While effective
at long-range navigation, the system is highly susceptible to lighting change while
operating outdoors, limiting successful operation to a window of only a few hours.
This method was extended to multi-day operation through the use of color-constant
images andmultiple stereo cameras [18], but is still susceptible to longer-termappear-
ance change due to weather and seasons. Apart from VT&R 1.0, short-term, vision-
based path-following systems have been demonstrated using heading-only naviga-
tion [4, 10]. Despite the fusion of wheel odometry, the lack of a reliable translation
estimate makes navigation in constrained environments unsafe. Path-following sys-
tems that rely on active sensors provide long-term, lighting-invariant navigation and
have been demonstrated using appearance-based methods on lidar-generated inten-
sity images [15] and point-cloud registration on dense 3D scans [11]. However, these
systems struggle with motion distortion issues and rely on expensive and sometimes
commercially unavailable sensors.

It iswell known that constant-time localization andmapping can be achieved using
globally inconsistent, topometric pose graphs [20], even with loop closures. Long-
range navigation with VT&R 2.0 is possible through the use of this representation,
allowing the system to build large-scale networks of paths with smooth path tracking
across loop closures [21]. Long-term navigation with VT&R 2.0 is achieved through
the use of the Multi-Experience Localization (MEL) algorithm [19]. This method is
inspired by the Experience-Based Navigation (EBN) framework [5], which localizes
against a number of past experiences, providingmetric localization to themost similar
experience. In contrast,MEL provides localization to the singlemanually taught path
using experiences gathered during autonomous operation. Due to their reliance on
multiple experiences, both EBN andMEL are inherently computationally intractable
if left unbounded. A viable strategy to overcome this issue is to select a fixed-
size subset of experiences for the localizer. [12] use past localization success to
recommend experiencesmost likely to localize well in the future for the EBN system.
In contrast, our system selects experiences most similar visually to the live view [14].
Another work closely related to MEL is the ‘Summary Maps’ method [16]. This
method provides metric localization across seasonal appearance change through a
multi-experience map that is pruned and curated offline. This method is successful,
but requires downtime between traverses to performmapping on an offline server—a
constraint which restricts use for some applications.

Safe navigation with VT&R 2.0 is achieved through a place-dependent, multi-
experience terrain-assessment algorithm [2]. Traditional terrain-assessment methods
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are limited by the ability to label the terrain in a human-interpretable way, often
resulting in conservative estimates [8]. More recent methods alleviate these issues
through the use of previous experiences to learn traversability [3, 9], but still lead
to conservative estimates in difficult environments. In contrast, our system learns a
separate classifier at every place on the path [2], achieving better performance than
a single general classifier applied to every place.

3 System Overview

This section provides an overview of the following components ofVT&R2.0: (i)map
structure, (ii) network construction, (iii) route planning, (iv) autonomous path follow-
ing, (v) multi-experience localization, (vi) appearance-based experience selection,
and vii) place-dependent terrain assessment.

The Spatio-Temporal Pose Graph: Our system stores the map in a database
indexed by a Spatio-Temporal Pose Graph (STPG). Depicted in Fig. 2, the graph
structure contains vertices, temporal edges, and spatial edges. Vertices, each with a
reference frame, F−→, store raw sensor observations and triangulated 3D landmarks
with associated covariances and descriptors.1 The edges link vertices with uncertain,
relative SE(3) transformations. Temporal edges (blue lines) connect temporally adja-
cent vertices, while spatial edges (green lines) connect those that are spatially close
(but may be temporally distant). Edges are considered privileged (solid lines) if the
robot was being manually driven, or autonomous (dashed lines) if the robot was
autonomously repeating a route. VT&R 2.0 uses the STPG to represent a multi-
experience network of connected paths, where each experience is a collection of ver-
tices linked by temporal edges. The subgraph containing all privileged experiences
represents the collection of safe, drivable paths. Autonomous experiences linked to
this privileged subgraph are used to aid the navigation algorithms, by providing a
wealth of place-specific information.

Network Construction: VT&R 2.0 is operated through the user interface shown
in Fig. 3, which provides an intuitive means to construct networks of paths, and com-
mand autonomous traversal to goals on the networks. A network is built by adding
a teach goal (left panel) and manually driving the robot; this adds privileged experi-
ences to the STPG. If the network exists prior to the teach, then a localization search
centered around the robot’s topological state estimate is performed. Upon successful
localization, a privileged spatial edge is created, branching the new experience off
the existing network. The robot will then add vertices and temporal edges to this
new experience through our stereo VO pipeline [19] as it drives. Live experiences
can be merged back into the network through loop closures initiated through the UI.
The operator selects a region for the merge, and the system attempts to localize the

1We use SURF features triangulated from greyscale and color-constant stereo measurements in our
implementation, but the overall system is generic to any point-based, sparse visual feature.



I Can See for Miles and Miles: An Extended Field Test … 419

Fig. 2 Overview of the STPG data structure used to represent our multi-experience network of
paths. Experiences are shown as rows of vertices (black triangles) connected metrically through
blue temporal edges calculated via VO while the robot is either being manually driven (solid) or
autonomously repeating (dashed). Experiences are related metrically through green, spatial edges,
calculated through localization and can either be added autonomously while driving (dashed) or
manually while adding a branch or loop closure (solid)

Fig. 3 Overview of the
VT&R 2.0 user interface
used to build networks of
connected paths and
command the rover to
autonomously traverse the
network

live view to the privileged vertices in this selection. Upon successful localization,
the operator can confirm the result, adding a privileged spatial edge from the live
vertex to the target. Otherwise, the user may continue driving to improve alignment,
or cancel the merge.

Route Planning: Autonomous traversal begins with planning a route in the UI
by adding a repeat goal (active in Fig. 3) to the queue, and selecting a sequence
of waypoints for the robot. To plan the path, the system uses the safe, privileged
subgraph of the network, including privileged experiences, and privileged spatial
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edges from branching and merging. Given the robot’s current topological position
in the network and a set of waypoints, the planner finds the minimum-cost path that
covers all selected waypoints in sequential order. Two edge costs we find useful are
the path distance, and the temporal age between the live experience and the most
recent traversal of the edge (combining absolute time and time-of-day). Since our
system localizes against multiple autonomous experiences, planning over recently
traversed edges is a heuristic to improve the likelihood of successful localization.

PathFollowing: Given a planned route through the privileged network, the system
creates a new autonomous experience in the network, and attempts to localize the
live view to a vertex in the privileged path. This process is identical to the first step of
teaching, except the added spatial edge is flagged as autonomous. Once connected to
the privileged experience, the system propagates the position estimate using stereo
VO, which is sent to a model-predictive-control path tracker [17]. When a new
keyframe is added as a vertex in the live run, it is localized to the closest vertex
in the privileged path using MEL, detailed in the next subsection. Upon successful
localization, an autonomous spatial edge is added between the two vertices.

Multi-Experience Localization: VT&R 2.0 provides metric localization with
respect to the privileged path through the Multi-Experience Localization (MEL)
algorithm [19]. Illustrated in Fig. 4, MEL estimates the uncertain transformation,
{T̂bd , �̂bd} (purple, dashed line), between the live vertex, Vb, and the estimated clos-
est privileged vertex, Vd . This process takes a window of recommended experiences
(green rectangles) as input, and transforms their landmarks to the coordinate frame

Fig. 4 An overview of the MEL algorithm. Given a selection of experiences to localize against
(green rectangles), The algorithm solves for the transformation between the vertex in the live
experience, Vb, and the vertex in the map experience, Vd , by transforming all landmarks in the
localizationwindow into the coordinate frame of Vd and performing a simple keyframe-to-keyframe
bundle adjustment problem
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of the target privileged vertex, Vd , using the temporal and spatial edges. The uncer-
tainty of the transformed landmarks includes that from the source landmark and the
transform itself. Landmarks originating from the live vertex, Vb, are then matched
against these consolidated map landmarks. Matching consists of checking the sim-
ilarity of unmatched, live landmarks to landmarks at each map vertex, starting at
Vd , and expanding in a breadth-first search. Similarity is determined by the key-
point Laplacian sign, feature descriptor distance, and a weak check on projected
landmark position in image space using the prior. The process continues until one
of the following exit conditions is met: (i) enough matches are found, (ii) the time
limit has expired, or (iii) the map window is exhausted. The matches are first verified
to remove outliers and initialize Tbd , and a motion prior is built by compounding
VO transforms and the most recent successful localization. The uncertain transform,
{Tbd ,�bd}, is iteratively refined in a robust, nonlinear, least-squares optimization
using our Simultaneous Trajectory Estimation and Mapping (STEAM) engine [1].

Appearance-Based Experience Selection: Matching against all intermediate
landmarks in theMEL algorithm becomes computationally intractable as the number
of experiences grows. Only a subset of these are actually required to localize the live
vertex—if we restrict our localization problem to the most relevant, we maintain
real-time performance. To determine a relevant subset of experiences, we would like
to find those with similar appearance to the live view. To this end, we have devel-
oped an algorithm [14], that selects a small subset of experiences based on a BoW
appearance summary, illustrated in Fig. 5.

Each vertex in the STPG contains a BoW descriptor, quantized from the sta-
ble (tracked by VO) features in the keyframe against a local visual vocabulary. To
improve robustness to viewpoint and signal-to-noise ratio, a grouped descriptor is

Fig. 5 An overview of the experience selection algorithm using BoW. 1. Given the VO feature
matches for the live frame, a sliding-window BoW descriptor is constructed. 2. The BoW descriptor
is compared against those for past experiences, centered on the coarse localization. Themost similar
experiences are selected for use in the remainder of the localization problem
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formed by summing the descriptors from a local group of vertices, ψ , from the same
experience [13]. At the start of each MEL problem, the local BoW descriptor (green
rectangle) around the live vertex (white triangle) is compared to those of each past
experience (lower green rectangles) using the cosine similarity. The N experiences
with the highest similarity to the live experience are selected for MEL, where N is
chosen to maintain real-time performance (5–10). Since this comparison is very fast,
this method allows us to triage a large number (100s) of experiences very quickly.

Place-Dependent Terrain Assessment: We exploit the fact that during VT&R,
the robot only needs to assess the traversability of terrain that it has already seen and
driven.All of the drivable pathswere at one pointmanually taught, andweassume that
they were safe at that point in time. Traversability of the terrain ahead of the robot is
determined by comparing it to known safe examples from previous experiences, and
labeling any terrain that is sufficiently different as unsafe. This reduces the problem
of terrain assessment to the simpler problem of change detection—allowing slow,
gradual change over the lifetime of the path (such as growing grass), and stopping for
large, sudden changes (such as a fallen tree). This place-dependent terrain-assessment
algorithm first appeared in [2], and an overview of the pipeline is shown in Fig. 6.
Patches are compared by taking the absolute difference of individual cell heights
between the lookahead patches and each training patch individually. The patch cost
is defined as the worst of these cell differences for each lookahead-training pair, and
the traversability of the terrain is determined based on the lowest cost to previous
experiences.

Fig. 6 An overview of the place-dependent terrain assessment. 1. Patches are computed at the
robot location using recent data in the underfoot set (purple). 2. Patches are computed ahead of the
robot at vertices in the lookahead set (green). 3. Lookahead patches are compared to previously
computed underfoot patches from a spatially local training set (blue). The traversability ahead of
the robot is based on its similarity to previous experiences
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Fig. 7 Orthomosaic imagery
of the 5km network of paths
at the Ethier Sand and Gravel
in Sudbury, Ontario, Canada

4 Experimental Setup

Between the dates of 10/06/2016 and 16/06/2016, an extended field test of VT&R
2.0 was conducted at an untended gravel pit in Sudbury, Canada. Illustrated in Fig. 7,
this field test was designed to stress test our system’s ability to traverse a large-
scale network of paths, in an unstructured environment, for an extended period of
time, over significant appearance change. This location was selected for its variety
of challenging environments, including rich vegetation and shifting sand with little
visual texture.

The hardware configuration for the this field test consisted of a Clearpath Robotics
Grizzly RUV, shown in Figs. 7 and 7, equipped with a Point Grey Research (PGR)
Bumblebee XB3 stereo camera, and a pair of 9-watt LED headlights for nighttime
operation. All of our VT&R 2.0 code ran on a Lenovo P50 laptop with a Intel®
CoreTM i7-6820HQ CPU equipped with a Quadro M2000 GPU.

Daily field test activities are outlined in Table1. The majority of the network was
taught on the first three days of testing during overcast conditions. During the first
five days, the network was traversed from day to night, accumulating over 95km
of driving. On each of the remaining six days, the robot autonomously traversed
between 5 and 10km a day. For each day, the autonomy rate remained above 99%. It
is interesting to note that the majority of manual interventions occurred on the first
two sunny days. Details on the causes of manual interventions are left for Sect. 6.
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Table 1 Overview of the 2016 Sudbury Field Test

Date Start
(hh:mm)

End
(hh:mm)

Weather Teach
Dist. (km)

Auto.
Dist. (km)

Intervention
Dist. (m)

Auto.
Rate

2016/06/06 11:15 21:19 Rainy 1.56 13.45 12.56 99.91

2016/06/07 05:42 20:42 Overcast 1.88 17.61 8.74 99.95

2016/06/08 07:21 21:10 Rainy 0.83 23.95 72.66 99.70

2016/06/09 06:25 21:23 Sunny 0.03 19.10 148.69 99.22

2016/06/10 07:13 21:17 Sunny 0.33 20.76 171.62 99.17

2016/06/11 07:40 20:46 Sunny 0.22 09.64 41.49 99.57

2016/06/12 09:59 22:35 Sunny 0.20 08.95 20.04 99.78

2016/06/13 10:38 22:45 Sunny 0.00 07.87 27.65 99.65

2016/06/14 07:33 22:50 Sunny 0.00 07.63 53.42 99.30

2016/06/15 12:16 17:57 Sunny 0.00 07.37 2.27 99.97

2016/06/16 09:16 14:57 Sunny 0.00 04.15 2.85 99.93

Total – – – 5.0 140.5 561.99 99.60

5 Results

This section presents the results of our field test. We begin with a detailed look
at localization performance for a 240m section of the network whose appearance is
shown in Fig. 8 and path is highlighted in the top half of Fig. 1 as a blue line. The path
begins in a meadow with tall grass and rapidly inclines up to a ridge containing thick
vegetation bordered by a tree line, finishing with a steep descent into a sandy gravel
pit. During the field test, this stretch of the network was autonomously traversed
109 times with only two manual interventions required. We chose to highlight the
performance results of this section of the network in particular because it showcases
every variety of appearance change seen during this field test and the rich vegetation
and tree line make the environment challenging for vision-based navigation.

Figure9 shows the relationship between the similarity score usedby the experience
selector to recommended experiences and feature inlier matches for all autonomous
traverses of the example path. The plot shows that experiences with higher scores
(>0.6) in general have higher feature match counts to each other, validating the
selector’s ability to select experiences that will provide more matches.

Figure10 shows localization results for all 109 autonomous traverses of the path.
The left- and right- hand plots show the Cumulative Distribution Function (CDF) of
the cross-track uncertainty and inlier feature matches, respectively. We define cross-
track uncertainty as the one-standard-deviation uncertainty of our lateral translation
estimate relative to the privileged path. The plot can be read as “for y%of the traverse,
the localizer reported less than xm of cross-track uncertainty”. For the majority of
traverses, the cross-track uncertainty stayed below 10cm. The exceptions are three
traverses where the uncertainty rose to 5, 10, and 15cm at the 80% mark. This same
trend can be seen in the right-hand feature inlier CDF, which shows that for all but
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Fig. 8 The changing appearance of the 240m example path. The top-left image was taken during
network construction (no tire tracks), and all subsequent images were successfully localized to it
using MEL. This section of the network is challenging for vision-based navigation due to strong
shadows cast by a tree line and tall vegetation that moves in the wind
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Fig. 9 Experience selector results: Normalized cosine similarity versus feature inlier matches for
the vegetation-rich area
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Fig. 10 Localization results for a 240m section of the network, highlighted in Figs. 1 and 8. left:
CDF of the 1 − σ localization uncertainty for all auotnomous traverses on this path. right: CDF of
the inlier feature matches for all autonomous traverses on this path. note: log scale on x-axis
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Fig. 11 Localization performance over the entire 11day field trial with the daylight cycle colored.
For each plot the dark line shows the median, the dark shaded area shows the interquartile region,
and the light shaded area shows the mini/max extents. top: localization computation time of MEL
including experience selection. bottom: inlier localization feature matches. note: log scale on y axis

three runs the localizer had more than 20–30 matches at the 80% mark. This high
uncertainty and low match count can be correlated to traverses during sun glare and
highwinds, causing poor localization performance.More details on these localization
failure cases is discussed in Sect. 6.

Figure11 shows localization computation times and inlier feature matches for
every autonomous traverse in the field test. For both plots, the dark-purple line shows
the median values of the traverses, the dark-green, shaded area shows the upper (Q2)
and lower (Q1) quartile, and the light-green, shaded area shows the min/max inlier
values. The background of the plots are colored with respect to daylight conditions.
Note the three instances of night driving on the far right. Timing results (top plot)
show that the median localization computation time for most traverses is below or
near the 100ms mark. This value is safely within the tolerance for online driving for
the VT&R 2.0 system, whose parallelization allows for VO at the frame rate of the
sensor and localization at the rate of keyframe creation which is between 2 and 4Hz.

Feature matches (bottom plot) show that the median and Q1match count typically
stayed between 100 and 30 inlier matches for the majority of traverses. However,
there are instances of median values dropping to single digits with Q1 values of zero.
These cases can be attributed to navigation in environments challenging for vision-
based navigation during difficult weather conditions. These include high winds in
vegetation-rich areas, sunshine and terrain modification in open desert areas, strong
shadows on tree-lined roads, and glarewhen the elevation of the sun is low.A detailed
analysis of these corner cases can be found in Sect. 6.

During the field tests, the VT&R 2.0 system ensured safe driving through the
place-dependent terrain-assessment algorithm. A qualitative example of the algo-
rithm is illustrated in Fig. 12, in which a human blocked the path on the vegetation-
rich ridge area illustrated in Figs. 1 and 8. The robot was able to identify a
change in the environment caused by the human obstacle and decided to stop. The
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Fig. 12 Example of the
place-dependent
terrain-assessment algorithm
correctly classifiying a
human in the path as unsafe

Table 2 Accuracy results for the place-dependent terrain-assessment algorithm.

Obstacles No obstacles

True Positives False Negatives True negatives False positives FPR

Count 29 0 20120 56

Percentage (%) 0.14 0 99.58 0.28 0.28

quantitative performance of the algorithm is measured using the number of true
positives (TP) (obstacles correctly identified), false positives (FP) (obstacle detected
when no obstacle present), true negatives (TN) (safe terrain correctly identified), false
negatives (FN) (missed obstacles), and false-positive rate (FPR), defined as FP

FP+TN .
which can give more insight into the performance of the system since the nature of
the terrain-assessment problem results in many more examples of safe terrain than
examples of obstacles.

The terrain-assessment results are shown in Table2. Notably, there are no false
negatives, meaning that all obstacles were identified on the path (100% recall). In
the absence of obstacles, only 56 false positives occurred in over 20000 estimates
which translates to a false-positive rate of 0.28%. This is extremely low, and is
a better indicator of algorithm performance than the typically reported precision
(34%) because of the large imbalance of obstacle to obstacle-free examples. The
results show that the algorithm is able to safely navigate in challenging environments
with very few false positives per distance traveled.

6 Challenges/Lessons Learned

Difficult Conditions: For the majority of the 140km of autonomous driving, the
median inlier match count was at or above a safe value of 50, as shown in Fig. 11.

However, there were a select few traverses with median values near 10 matches,
with a Q1 value of zero. This poor localization performance can be attributed to
traversing in conditions that are difficult for vision-based navigation. The conditions
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open desert windy vegetation tree lined road sun glare

Fig. 13 Example images of areas that remain difficult for vision-based navigation. from left to right:
i open desert areas with heavy vehicle traffic, ii lush vegetation during high winds, iii tree-lined
corridors with strong shadows, and iv sun glare

that were encountered during the field test are highlighted in Fig. 13. Open, desert
areas contain few features that persist over time with vehicles, wind, and weather
changing the shape of the sand on a daily basis, which causes any stable features to
be limited to the horizon. Vegetation-rich areas are typically not a problem for the
VT&R 2.0 system, except when high winds are present, which causes the vegetation
to rapidly sway back and forth, causing issues for outlier rejection for both localiza-
tion and VO. Tree-lined corridors cast strong shadows on the road on sunny days.
In these conditions, the majority of inlier matches originate from these ephemeral
features. With multi-experience systems, this can lead to incorrect state estimates
if the majority of inlier matches arise from features that have all moved with the
elevation of the sun. The final difficult condition encountered during the field trial is
glare from when the sun is low on the horizon, causing images to be oversaturated.
It was in these conditions on the sunniest days of the field test where the majority of
manual interventions occurred.

Manual Interventions: Figure14 displays the manual interventions encountered
due to localization failures. Trivial interventions were manifestations of a software
bug that occurred when the system experienced a VO error, which would stop the
robot until the operator drove it forward approximately 0.3m to trigger a new vertex
in the graph. As the nature of this error is somewhat random, the distribution of trivial
interventions is nearly uniform across the network. This bugwas aminor issue related
to the logic of switching between states after a VO error and was resolved after the
conclusion of this field test.

Minor interventions were the result of the robot being slightly out of its tracks,
which required a small course correction to continue autonomous operation. Thiswas
a result of poor localization for short distances, which corresponded to the difficult
conditions previously mentioned. Major interventions (yellow lines) occurred when
the robot was significantly off course and could not recover. These are a result of
extended localization failures without the ability to recover. During the field test the
robot experienced interventions in the following areas: i) the tree-lined road when it
was sunny and windy (top left), ii) the vegetation-rich area during high winds (mid
right), and iii) the open desert area in sunny conditions after heavy vehicle traffic.

A more detailed look at localization performance in this desert area is displayed
in Fig. 15. This 50m path was the most difficult to localize against, running through
flat, sandy ground with daily vehicle traffic. After the fifth day of testing, a new path
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Trivial
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Fig. 14 Manual interventions during the 140km field trial due to localization issues
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Fig. 15 Localization results a 50m, open desert section of the network, highlighted in Fig. 13. left:
CDF of the 1 − σ localization uncertainty for all auotnomous traverses on this path. right: CDF of
the inlier feature matches for all autonomous traverses on this path. note: log scale on x-axis

was rerouted around the trouble area. It can be seen in the figure that the uncertainty
is much higher than the vegetation-rich ridge area highlighted in Sect. 5, with 1 − σ

cross-track uncertainty between 5 and 10cm for the majority of the traverses. for
three traverses, the maximum uncertainty was as high as 1m. This corresponds with
the feature inlier count, where 40% of the traverse had less than 10 inlier feature
matches, for traverses older than 2days since map creation.
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7 Conclusion/Future-Work

This paper presents the long-term, long-range autonomous path-following system,
Visual Teach and Repeat (VT&R) 2.0. We present results from an extended field test
demonstrating our system’s ability to safely traverse large-scale networks of paths
across appearance change as different as night-vs-day in challenging, unstructured
environments.Over an elevendayperiodour system traversed a5kmnetworkof paths
accumulating over 140km of autonomous driving with an autonomy rate of 99.6%.
However, there remain challenges for vision-based, autonomous path-following sys-
tems related to difficult outdoor conditions that must be addressed. Chief amongst
them are environments and conditions with ephemeral ground features such as open
deserts, tree-lined roads, and high winds.

Future work on the VT&R 2.0 system will be focused on quantifying the scale
of our uncertainty, which is calculated at every stage of the localization process,
but has not undergone a rigorous evaluation with respect to ground truth to ensure
consistency. Once this process is undertaken, the uncertainty can be used to inform
the robot to abandon an autonomous traversal before it is too far off the path. Because
the VT&R 2.0 system is always adding a new experience into the map, in the event of
localization failure, it should be possible to use the current experience to backtrack
to a safe area and replan or reattempt the traversal.
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Abstract Onboard obstacle avoidance is a challenging, yet indespensible compo-
nent of micro air vehicle (MAV) autonomy. Prior approaches for deliberative motion
planning over vehicle dynamics typically rely on 3-D voxel-based world models,
which require complex access schemes or extensive memory to manage resolution
and maintain an acceptable motion-planning horizon. In this paper, we present a
novel, lightweight motion planning method, for micro air vehicles with full configu-
ration flat dynamics, based on perception with stereo vision and a 2.5-D egocylinder
obstacle representation. We equip the egocylinder with temporal fusion to enhance
obstacle detection and provide a rich, 360◦ representation of the environment well
beyond the visible field-of-regard of a stereo camera pair. Thenatural pixel parameter-
ization of the egocylinder is used to quickly identify dynamically feasible maneuvers
onto radial paths, expressed directly in egocylinder coordinates, that enable finely
detailed planning at extreme ranges within milliseconds. We have implemented our
obstacle avoidance pipeline with an Asctec Pelican quadcopter, and demonstrate the
efficiency of our approach experimentally with a set of challenging field scenarios.
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1 Introduction

Micro air vehicles possess size, weight, and power (SWaP) constraints on comput-
ing resources that require efficient obstacle detection, representation, and avoidance
algorithms in order to successfully operate in unknown environments. Accordingly,
vision-based techniques using one or more cameras, particularly binocular stereo,
have emerged as a popular and successful method for obstacle detection due to their
light weight, compactness, and ability to generate dense depthmaps of a scene. These
advantages have been extended into the internal onboard representation of obstacle
environments through the use of egospace data structures [7], such as the dispar-
ity images and egocylinders, that are based on the geometry of camera projection,
possess a favorable resolution pattern tailored to visual detection, and offer efficient
collision-checking and temporal fusion of depth data.

Egospace obstacle representations also simplify reactive obstacle avoidance
because their underlying geometry reduces any radially-aligned path to a single
pixel, which in turn can be evaluated and selected against depth data using a light-
weight pixel scan. Egospace also admits full configuration flat dynamics, ofwhich the
quadcopter and commonly-used car and airplane models are examples, and allow all
control inputs and vehicle states to be determined uniquely in terms of the trajectories
as they appear, in egospace coordinates, in relation to obstacles.

In this paper, we extend reactive egospace trajectory selection for micro air vehi-
cles with negligible dynamics [1] to incorporate full configuration flat dynamics.
We present experimental verification on a quadcopter platform in a priori unknown
environments, using stereo obstacle detection, temporal filtering of depth data, and
an egocylindrical obstacle and motion planning representation.

2 Related Work

Traditional approaches for MAV motion planning rely on flatness-based trajectory
generation (as in [14]) over a three-dimensional voxel model of the environment.
[12] populates a uniform resolution occupancy representation of an unstructured
environment, which is used to identify a minimum-jerk trajectory using layered
short-range and long-range planners based on convex segmentation followed by a
graph search. For a known indoor environment, [17] achieves high-speedflightwithin
a volumetric world model by seeding a polynomial motion planner with the output of
a preliminary, dynamics-free RRT* search. Although almost any standard motion-
planning method can be used within a voxel representation, uniform grids scale
very poorly in size in large outdoor environments and complex access is required to
distribute resolution in a more favorable way [9].

Egospace representations, on the other hand, can encode collision-free radial
paths using a single pixel and offer an efficient trajectory search space for dynamics-
free, reactive motion planning in unstructured environments [1]. Matthies et al.[13]
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uses a disparity image representation to efficiently collision-check the segments of a
closed loop RRT (CL-RRT) motion planner after a projection, but perform trajectory
selection and generation in world coordinates using forward integration of a non-
linear plant model at severe computational expense. Although reactive methods in
egospace [1] are extremely lightweight, they scale poorly to high speeds because full
trajectories are neither known nor collision-checked in advance—even if an instanta-
neous collision-free action is identified, there is no way to practically verify if it will
remain dynamically feasible and trackable in an unknown environment. Delibera-
tive motion planning performed entirely within egospace representations, rather than
simply projected into egospace for collision-checking, is introduced and character-
ized in [7] for robots with configuration flat dynamics—completeness properties are
established for the egospace equivalents ofmotion planners inworld coordinates, and
motion primitives expressed directly in egospace coordinates extend the advantages
of world trajectory libraries to also encompass fast collision-checking and trajectory
selection.

Depth data can be obtained from active depth sensors or passive stereo match-
ing. Stereo matching approaches work well both indoors and outdoors and have an
adjustable depth range that provides computational flexibility for the design of the
perception system. Depth estimation is typically performed on each frame indepen-
dently, which introduces errors and holes due to environmental factors as well as
stereo matching failures. As a result, some degree of temporal fusion is required to
propagate reliable data over time and generate a complete and reliable scene rep-
resentation for later motion planning steps—unfused egospace approaches, such as
[1], require additional side-looking cameras to achieve a large field-of-regard, and
suffer from flicker and missed-obstacle incidents that result in collisions. Fusion can
be performed during the matching step [5, 10, 16], in image space [2, 3, 18] or on
3D voxel representations [4, 8].

In [16] and [10], temporal fusion incorporates temporal data in cost functions
during estimation as an extension to spatial aggregation. SLAM techniques [5] also
constrain temporal consistency in the estimation framework, where online updates
are applied in key frames. In [5], a simple Gaussian model represents depth mea-
surements and limits the search range according to the standard deviation of prior
hypotheses. Multi-view filtering is another approach that improves depth maps by
removing outliers and compensating holes. In [18], the frameswithin a specified time
window (a fixed number of the most recent frames, for example) are mapped to the
most recent frame according to the related depth maps. These hypotheses are merged
probabilistically via probability density estimation. Cigla [3] and Cigla et al. [2] use
GaussianMixtureModels (GMM) to represent depth observations in a compactman-
ner, with an online update and propagation approach that decreases computational
complexity and memory requirements. These methods tend to produce more reliable
depth maps than can be obtained using filter-based fusion approaches.

Three-dimensional models [4, 8] are also commonly used tomergemultiple depth
map observations and provide temporal fusion. In this regime, depth data is mapped
to voxels [4] and accumulated in a surface representation [8] that produces highly
accurate maps at the expense of memory usage and computational efficiency.
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Fig. 1 System architecture for the implementation on an Asctec Pelican quadrotor that is equipped
with an Asctec Mastermind and an Odroid XU4 computing board

3 System Overview

The perception, representation, and motion planning modules are implemented
within a pipeline architecture onboard an Asctec Pelican quadcopter, with vision
and perception tasks performed on an Asctec Mastermind embedded computer and
motion planning and state estimation performed on an Odroid XU4 (Fig. 1). After
acquiring stereo imagery of a scene using a set of forward-looking cameras, depth
data is calculated, temporally filtered, and used to populate an egocylinder structure
in which obstacles are artificially expanded in order to abstract the vehicle to a point
mass for planning. The expanded egocylinder is then passed to a two-stage motion
planner, which first performs a pixel scan to identify a candidate flight path, and
then attempts to identify a dynamically feasible, collision-free maneuver onto the
candidate path using minimum-jerk paths directly in image space. Once a motion
plan is successfully found, a low-level flatness-based controller calculates feedfor-
ward inputs and tracks the reference trajectory until a new motion plan is required.
Vehicle pose is provided to both the temporal filtering and motion planning modules
using visual odometry from a downward-looking camera (SVO [6]) fused with IMU
data using the SSF framework [19].

3.1 Perception and Representation

The egocylinder representation of the scene [1] is used to represent the environment
for collision-checking, which avoids much of the memory and computation expense
used by voxel maps to represent free space. A full 360◦ field-of-regard is achieved
by integrating depth maps forward as the vehicle moves within the environment.
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Fig. 2 The visual perception pipeline uses stereo matching to acquire depth data, which is then
mapped onto an egocylinder for temporal fusion and C-space expansion directly in egocylinder
coordinates. Areas of the egocylinder visible to the stereo cameras are enclosed within a white
rectangle for illustration

Visual perception for collision avoidance is based on the approach shown in Fig. 2.
The most recent stereo vision-based depth map estimate is first mapped onto an
egocylinder representation fixed to the frame of the left camera—the optical center of
the left camera maps to the center of the structure, with the forward direction aligned
with its viewing axis. The internal representation of the egocylinder is a disparity
image which wraps around the cylinder structure, which is called the egocylinder
image.

Obstacles are then expanded into configuration space (C-space) [13] by a charac-
teristic radius of the vehicle, directly on the coordinates of the fused egocylindermap,
in order to abstract the vehicle to a point mass and simplify path planning. As motion
planning proceeds and the vehicle continues to move through the environment, new
depth data is observed in the central area of the egocylinder corresponding to the
field-of-view of the stereo cameras.

We use GMM-based fusion [2, 3] to efficiently merge the current depth map with
past observations directly in image space. In this approach, each pixel is modeled
by a mixture of Gaussian distributions, in pixel coordinates (u,v) and disparity d,
and propagated to the recent depth map using vehicle pose estimates. The final
depth map is obtained by constraining both the standard deviation of the disparity
models and an observation count to remove flicker and rely on frequently observed
depth values. Cigla et al. [2] demonstrates that GMM-based fusion improves depth
quality by removing large depth errors such as false obstacles, which are typically
due to errors in stereo matching, and by assigning reliable depth values for empty



438 A. T. Fragoso et al.

pixels in the recent depth map. Temporal fusion in this region of the egocylinder
mitigates sensing failures, such as incorrect depth estimates or empty pixels, by
constraining the temporally accumulated data. Regions of the egocylinder not visible
to the stereo sensors do not receive new depth data, and are instead updated by
transferring temporally accumulated models subject to a forgetting factor at each
update. As the vehicle moves around and encounters obstacles at a variety of viewing
angles, amore complete representation of the scene emerges as temporal data is fused
into the structure.

3.2 Motion Planning

The first stage of the motion planning module replicates the approach of [1] in which
collision-free, yet dynamically infeasible radial paths are represented by their pixel
locations and identified using a scan over the expanded egocylinder structure. During
this scan, the distance to obstacles at each pixel is compared to a predetermined
planning horizon distance h, which is chosen to maintain a safe time-to-contact
towards obstacles at the desired speed and can take values up to the maximum
reliable sensor range depending on the expected complexity of the environment. The
collision-free pixel that is closest to that of the destination is selected as a candidate
path (Fig. 3), and if no safe candidate path is found the process is repeated with a
lower desired speed and shorter planning horizon.

In the second stage, a trajectory generation module attempts to identify a feasible
maneuver that can smoothly merge the vehicle onto the infeasible candidate path at
the desired final velocity V, which greatly narrows the set of admissible trajectories
that must be calculated and collision-checked. The straight-line segment that follows
is known to be collision-free from the first stage and need not be checked again, and

Fig. 3 The first stage of the planner identifies collision-free flight paths by checking the pixels of
the egocylinder against a planning horizon chosen to guarantee a minimum time-to-contact. A goal
is projected into the egocylinder (green, occluded) and the nearest collision-free pixel (white) is
selected as a candidate path and passed to the trajectory generator. Here, brighter pixels are closer
to the camera
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the required acceleration, velocity, and position are automatically specified at the
beginning and end of the turning maneuver (for position, up to an undetermined
range):

ẍ(0) = a0, ẋ(0) = v0 x(0) = x0,

ẍ(t f ) = 0, ẋ(t f ) = V λ̂ x(t f ) = (λh)λ̂.

Here, the final flight direction λ̂ is chosen in the first planning stage, t f is the total
maneuver time, and λ ∈ (0, 1] is a free parameter that modulates the distance to the
end of the maneuver.

The set of possible trajectories is further narrowed by insisting on a mini-
mum jerk maneuver, which can be shown to consist of fifth degree polynomials
(x(t), y(t), z(t)) = ∑5

i=0 ai t
i using a straightforward application of the Pontrya-

gin minimum principle. Once the endpoints are prescribed, the maneuver has only
two remaining free parameters, t f and λ, that can either be modulated indepen-
dently or constrained to each other to produce a one-parameter family of admissible
trajectories—for example, the total time can be chosen to maintain an average vector
velocity associated with the candidate path (fixed speed, fixed direction) such that
t f = (λh)/V . Minimum-jerk polynomials can be shown by direct substitution to
satisfy the differentially flat quadcopter plant model of [11],

ẍ = (sin φ cosψ − cosφ sin θ sinψ) ucollective
m ,

ÿ = (− sin φ sinψ − cosφ sin θ cosψ) ucollective
m ,

z̈ = −g + (cosφ cos θ) ucollective
m ,

φ̈ = uroll,
θ̈ = upitch,
ψ̈ = uyaw,

where (φ, θ, ψ) are roll-pitch-yaw Euler angles and ucollective is the collective motor
thrust. The trajectories (x(t), y(t), z(t)) correspond to unique control inputs, subject
to actuator saturation and a yaw angle trajectory that can be chosen independently of
the translation of the vehicle, that are determined algebraically using the associated
flatness relations.

The coefficients of the minimum-jerk polynomials are determined symbolically,
in advance, as a solution of a small linear system of equations in terms of the initial
and final vehicle states and the search parameter λ. This solution step dramatically
reduces the amount of computation that needs to be performed onboard and allows
for a large number of potential trajectories to be considered during a planning cycle
(see Sect. 4 for runtime statistics). Evaluation for control saturation and collisions is
enhanced by a simultaneous dual representation of the trajectories (Fig. 4) in world
coordinates and egocylinder coordinates, which both have a simple closed form and
are determined by the single search parameter—the world coordinate trajectories
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Fig. 4 Closed-form trajectories are simultaneously maintained in egocylinder coordinates for
collision-checking and world coordinates for control. Here, a trajectory (top, blue dots proceeding
towards the right) has been selected to avoid a tree (brighter pixels are closer) using a pixel scan
and collision-check in egocylinder coordinates. The trajectory is tracked in world coordinates (blue
line, bottom) by the flatness-based controller
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Fig. 5 The trajectory generator, shown in 2–D for clarity, attempts to merge the vehicle smoothly
from the green heading (left, dashed) to the red heading (right, dashed) using minimum-jerk poly-
nomials (blue) that are parametrized by the distance covered before merging. By decreasing the
length of the maneuver, the trajectory generator can provide a more aggressive turn if a collision is
detected

can be easily checked for saturation and converted into control inputs, while the
egocylinder coordinates can be immediately collision-checked using a pixel-by-pixel
comparison against the egocylinder data structure.

The trajectory search itself begins by attempting to merge the vehicle onto the
candidate radial path at a distance corresponding to the planning horizon (Fig. 5). The
proposed maneuver is collision-checked, evaluated against the control constraints,
and returned if successful—otherwise, the distance to the end of the maneuver is
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decreased along with the total time until either a valid trajectory is identified or the
controls saturate, in which case either the total time is increased independently or a
different candidate radial path is attempted. Once the trajectory is available, a low
level controller tracks the reference using a standard two degree-of-freedom feed-
forward design [15], with nested position/velocity and attitude loops corresponding
to the slow and fast dynamics of the vehicle model.

Our receding-horizon approach does differ from an RRT-type formulation, like
that of [17], in that it lacks a completeness guarantee and can become stuck in dead
ends. For obstacle avoidance in unstructured environmentswhere frequent replanning
is required, however, RRT-type methods can bottleneck the pipeline [13] and limit
flight speeds. Receding-horizon formulations such as ours, however, do share some
degree of deliberative action with complete approaches and offer forward collision-
checking unavailable to reactive approaches such as [1].

4 Results

The visual perception pipeline is implemented on the Asctec Mastermind embedded
computer equipped with a 1.86 GHz Intel Core2Duo processor. The forward-looking
stereo cameras are installed with a baseline of 25 cm, and frame-wise stereo disparity
maps (376× 240) are calculated by blockmatchingwith a search range of 100 pixels.
The resolution of the egocylinder image is 660× 200. The full pipeline maintains a
10Hz update rate using both cores of the processor, with computation times for each
step in the visual perception pipeline given in Table1.

Typical results for temporal fusion on the egocylinder are illustrated in Fig. 6. The
left stereo image, unfused disparity map, and the corresponding egocylinder images
are shown sequentially as the vehicle approaches an obstacle. Temporal fusion yields
a more complete scene representation compared to the unfused disparity maps—
known regions that would be otherwise discarded at each frame are instead retained
in the egocylinder. The propagation process is particularly important for obstacles at
close range, which eventually become invisible to stereo matching due to a limited
search range and would otherwise present a missed-detection hazard (Fig. 7).

Table 1 Onboard
computation times for each
step in the visual perception
pipeline

Step Time (ms)

Stereo matching 100

Cylindrical mapping 14.4

Temporal fusion 52.6

C-space expansion 4.5
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Fig. 6 The perception pipeline was tested in a forested environment. In the first column are raw
images (grayscale) from the left stereo camera and the unfused disparity map, and in the second
are full egocylinder maps with temporal fusion. Here, warmer colors are closer, cooler colors are
farther, and the maroon background represents no data. In the fourth row, temporal fusion prevents a
collision at close range (first column) by propagating obstacle data forward from an earlier detection
(second column)
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Fig. 7 While the maximum disparity calculated by the stereo algorithm is too low to resolve the
nearby obstacle, temporal fusion propagates the previously observed obstacle, which is then used
in the motion planner. Left: left rectified image, Middle: stereo disparity map, Right: temporally
fused disparity map
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Fig. 8 While navigating through a forested environment (tree trunks at 2m height shown as black
point clouds), the vehicle took evasive maneuvers around three trees and successfully reached a
predetermined destination 40m away. The path (blue, vehicle travels from left to right) consists
of segments of dynamically feasible trajectory segments (red arcs) calculated using the two-step
procedure of Sect. 3 and followed in a receding-horizon fashion. Axis scale is in meters

Motion planning experiments were conducted at a number of challenging sites,
including a 40m course through a forested area, a small dead-end alcove in a built-up
area, and an open, obstacle-free wash with distant buildings.

While maintaining a speed of 1 m/s, the vehicle encountered and successfully
avoided three trees in the forest using the minimum-jerk trajectories of Sect. 3 exe-
cuted in a receding-horizon fashion (Fig. 8). This environment required frequent
replanning as new obstacles became visible, which was performed efficiently with
average runtimes on the Odroid XU4 listed in Table2.

The egocylinder also proved highly useful in preventing the vehicle from becom-
ing stuck in confined areas when paired with temporal propagation of depth data.
After exploring a small alcove and discovering a dead end (Fig. 9), the motion plan-
ner was able to extricate the vehicle towards an open area to its left that was invisible
to the stereo pair, but already stored within the egocylinder structure and available
to the motion planner.
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Table 2 Onboard computation times for each step in the motion planning pipeline

Step Time (ms)

Egocylinder scan 4.0a

Trajectory generation 0.02

Collision-checking 0.2
aFor a complete replan (motion planner can reuse old targets)

Fig. 9 When combined with temporal fusion, the egocylinder facilitates exploration of confined
areas by propagating knowledge of open areas when they become invisible to the stereo camera.
Here, the vehicle has reached a dead end within an alcove (top, raw images shown), but continues
to represent an exit to its left within the egocylinder (blue area, bottom left) beyond the visible
field-of-regard of unfused stereo (white rectangle). An escape route is also available by climbing
over the building, but was excluded by a mission-level altitude ceiling

By identifying a restricted trajectory search space and exploiting the natural res-
olution pattern of the egocylinder, the motion planning module was also able to
efficiently generate detailed, dynamically feasible trajectories at ranges near the lim-
its of reliable stereo detection. When presented with a destination waypoint inside
a parking garage over 40 m away, within 5 ms the motion planner identified a 5 m
× 2 m opening into the garage as the best path towards the target and calculated a
collision-free and dynamically feasible path into the building (Fig. 10).
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Fig. 10 Egospace representations are particularly well-suited for producing finely detailed trajec-
tories at extreme ranges. Here, the motion planner has been assigned a waypoint behind a pillar
inside a parking garage 45 m away (raw image, top). After generating and expanding an egocylin-
der representation (original, bottom left, zoomed for clarity, right), the motion planner projects the
waypoint (black square, bottom right) into the image and identifies the closest collision-free target
(white square, bottom right) as a candidate flight path for the trajectory generator

5 Conclusion

We have demonstrated an obstacle avoidance pipeline over the full dynamics of a
micro air vehicle using a temporally fused egocylinder representation. In addition to
being simple to access and compact to store, the egocylinder representation admits an
extremely lightweight trajectory selection procedure, based on a parametrization of
flight paths by pixels and differential flatness, that can quickly generate dynamically
feasible turn maneuvers towards targets at the range limit of stereo sensing. This
advantage is made more reliable and flexible with temporal fusion of obstacle data
within the egocylinder geometry, which improves the accuracy of sensed data and
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accumulates a 360◦ representation with a single set of stereo cameras that is useful
for navigation in confined and cluttered environments.

Our perception framework also addresses a number ofweaknesses of stereo vision,
primarily due to the limited and fixed baseline of MAV stereo applications, and sig-
nificantly increases its power as an obstacle detection tool. The resolution pattern of
the egocylinder, which decreases favorably with distance without additional over-
head, allows stereo data to inform motion planning and remain useful even at long
ranges where it is less accurate. Detection errors at close ranges, which eventually
become inevitable for raw stereo due to a limited field of view and disparity search,
are prevented by propagation and storage of sensed data with real-time temporal
fusion.

Acknowledgements This work was funded by the Army Research Laboratory under the Micro
Autonomous Systems & Technology Collaborative Technology Alliance program (MAST-CTA).
JPL contributions were carried out at the Jet Propulsion Laboratory, California Institute of Tech-
nology, under a contract with the National Aeronautics and Space Administration.

References

1. Brockers, R., et al.: Vision-based obstacle avoidance for micro air vehicles using an egocylin-
drical depth map. In: ISER (2016)

2. Cigla, C., Brockers, R., Matthies, L.: Image-based visual perception and representation for col-
lision avoidance. In: IEEE International Conference on Computer Vision and Pattern Recog-
nition, Embedded Vision Workshop (2017)

3. Cigla, C., et al.: Gaussian mixture models for temporal depth fusion. In: IEEE Winter Confer-
ence on Applications of Computer, Vision (2017)

4. Dryanovski, W., et al.: Multi-volume occupancy grids: an efficient probabilistic 3d mapping
model for micro aerial vehicles. In: IROS (2010)

5. Engel, J., et al.: Semi-dense visual odometry for a monocular camera. In: 2013 IEEE Interna-
tional Conference on Computer Vision, pp. 1449–1456. IEEE (2013)

6. Forster, C., Pizzoli, M., Svo, S.D.: Fast semi-direct monocular visual odometry. In: IEEE
International Conference on Robotics and Automation (ICRA) (2014)

7. Fragoso, A., Matthies, L., Murray, R.: A fast motion planning representation for configuration
flat robots with applications to micro air vehicles. In: ACC (2017)

8. Hane, C., et al.: Stereo depth map fusion for robot navigation. In: IROS (2011)
9. Hornung, A., et al.: Octomap: an efficient probabilistic 3D mapping framework based on

octrees. Auton. Robot. 34(3) (2013)
10. Hosni, A., et al.: Temporally consistent disparity and optical flow via efficient spatio-temporal

filtering. In Pacific Rim Symposium on Image and Video Technology (2011)
11. How, J., et al.: Real-time indoor autonomous vehicle test environment. IEEE Control Syst.

Mag. 28(2) (2008)
12. Liu, S., et al.: High speed navigation for quadrotors with limited onboard sensing. In: ICRA

(2016)
13. Matthies, L., et al.: Stereo vision-based obstacle avoidance formicro air vehicles using disparity

space. In International Conference on Robotics and Automation (ICRA) (2014)
14. Mellinger, D., et al.: Minimum snap trajectory generation and control for quadrotors. In: ICRA

(2011)
15. Powers, C., et al.: Quadrotor kinematics and dynamics. In: Handbook of Unmanned Aerial

Vehicles. Springer, Netherlands (2015)



Dynamically Feasible Motion Planning for Micro Air Vehicles Using an Egocylinder 447

16. Richardt, C., et al.: Real-time spatiotemporal stereo matching using the dual-cross-bilateral
grid. In: European Conference on Computer Vision (2010)

17. Richter, C., et al.: Polynomial trajectory planning for aggressive quadrotor flight in dense indoor
environments. In: ISRR (2013)

18. Unger, C., et al.: Probabilistic disparity fusion for real-time motion stereo. Mach. Vis. Appl.
25 (2011)

19. Weiss, S., et al.: Monocular vision for long-term micro aerial vehicle state estimation: a com-
pendium. J. Field Roboti. 30(5) (2013)



Informed Asymptotically Near-Optimal
Planning for Field Robots with Dynamics

Zakary Littlefield and Kostas E. Bekris

Abstract Recent progress in sampling-based planning has provided performance
guarantees in terms of optimizing trajectory cost even in the presence of significant
dynamics. The STABLE_SPARSE_RRT (SST) algorithm has these desirable path
quality properties and achieves computational efficiency by maintaining a sparse set
of state-space samples. The current paper focuses on field robotics, where workspace
information can be used to effectively guide the search process of a planner. In par-
ticular, the computational performance of SST is improved by utilizing appropriate
heuristics. The workspace information guides the exploration process of the planner
and focuses it on the useful subset of the state space. The resulting Informed-SST
is evaluated in scenarios involving either ground vehicles or quadrotors. This includes
testing for a physically-simulated vehicle over uneven terrain, which is a computa-
tionally expensive planning problem.

1 Introduction

This work focuses on the performance and properties of motion planning algorithms
in the context of field robots that exhibit interesting and challenging dynamics. Exam-
ples include unmanned aerial vehicles, which are becoming increasingly available
and can be used for aerial reconnaissance [8], or wheeled rovers for exploration
applications [4, 13], or aquatic robots for observing and monitoring large bodies of
water [12, 26].

The objective is anytime performance, which means that the planner should be
able to quickly generate trajectories that drive the robot to the goal. Then, given
additional computational budget, the solution trajectory can be refined or replaced
by a better one. Many factors can hinder a motion planning algorithm’s performance,
such as complex environments and challenging dynamics. This paper builds on top
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of a framework that can provide formal guarantees for systems with dynamics and
improves its practical performance toward stronger anytime properties. This new
planner is able to solve less complex challenges quickly, but is also able to provide
solutions in more complex cases. In essence, the algorithm tries to balance the clas-
sic “exploration vs exploitation” trade-off during planning while still maintaining
desirable formal guarantees.

Related Work: A straightforward path-finding framework relies on performing a
discretization of the environment into a grid. Then, an A* search can be performed
on the grid, thereby providing waypoints for the robot to follow. There are also
methods that aim to smooth the paths via interpolation or visibility checks, and have
been used for several successful navigation tasks [10, 25].

In order to more accurately take a robot’s dynamics into account, a discrete struc-
ture of dynamically feasible trajectories can be built. By choosing these trajectories
carefully, the end states of these trajectories can coincide, creating a lattice struc-
ture that covers the state space [9, 22, 29, 32]. Then path finding can be done with
search-based methods like A*. As long as the branching factor in this lattice is finite
and the lattice is connected, the search on this lattice will terminate with the optimal
sequence of motions.

This type of approach faces issues when the effects of controls are unknown a
priori, i.e. when dynamics have significant effect. If many different control inputs
cannot arrive at the same state, the search space becomes intractably large. This
is also a problem when considering a continuous control space where any of the
admissible controls may be selected from any state. When the number of actions is
infinite due to a continuous action space, completeness and optimality are sacrificed
for practical performance [5, 7, 14, 23].

Once a feasible path is found, it can then be used as input to a trajectory optimiza-
tion procedure [30, 33]. Such methods work well for optimizing trajectories locally,
and can be applied as post processing on any motion planning algorithm. It is impor-
tant that the input trajectory is as close to optimal as possible to aid convergence.

A family of algorithms that aims to handle continuous action spaces and high-
dimensional state spaces are sampling-based planners [17, 19]. These algorithms
trade traditional completeness for probabilistic completeness and aim for a compre-
hensive exploration of the underlying state space. Recently, research efforts have
focused on the conditions under which these methods converge to an optimal path
[16] including for systems with dynamics [20, 21] and under uncertainty [24]. The
latter work on the SST approach is the basis for this paper. The SST planner is
able to provide asymptotic near-optimality properties for systems with dynamics,
as well as for physically-simulated robots. Trajectories are generated in an anytime
fashion, where an initial suboptimal solution is found and improved givenmore com-
putation. It becomes more difficult to improve solutions over time, however, when
computational effort is wasted on parts of the state space that will never provide
better solutions. Heuristic and anytime search-based methods handle this problem
well and focus computation only on viable parts of the search space.
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There are prior methods that tried to bring insights from search-based methods
into sampling-based planning [2, 3, 11, 31], while others consider what sampling-
based insights can do for search-based methods [27, 28]. The integration of these
two methodologies is generally more efficient than using one alone. Using heuristic
information focuses computation on useful areas in the state space that will lead to
good quality trajectories. This can be seen as contradictory to the “exploration” prop-
erty that sampling-based planners traditionally focus on but guiding this exploration
to the useful parts of the state space provides practical benefits.

Contribution: This paper focuses on an effective integration of heuristic search
principleswith sampling-based kinodynamic planning. There aremultiple changes to
the underlyingSSTmethod that after experimentation with simulatedmodels of field
robots with dynamics have been shown to be effective: (a) the node selection process
of the algorithm is deterministic—more similar to that of A*—instead of uniform
sampling in state space, i.e., RRT-like, (b) a workspace-based heuristic is used to
guide the exploration and node pruning routines of SST, (c) the method can formally
utilize desirable prespecified maneuvers, while still allowing for the consideration
of random controls that allow for probabilistic completeness, (d) multiple controls
are considered at each iteration of the algorithm and the best maneuver according
to the heuristic information is utilized, (e) furthermore, a branch-and-bound process
focuses the search method once an initial solution has been found. These adaptations
result in improved success rate for finding solutions within given time limits and
improved path quality over SST, the basic RRT, or a Randomized A* algorithm
given the same amount of computation.

2 Problem Setup and Background

This paper considers systems with dynamics that follow differential equations of the
form:

ẋ(t) = f (x(t), u(t)), x(t) ∈ X, u(t) ∈ U, (1)

where x(t) is an element of the state space X, and u(t) is in the control space U.
Some systems have their dynamics in closed- form, but when using a physics engine,
the dynamics are numerically computed.

A trajectoryπ is a functionπ(t) ∈ Π : [0, Tπ ] → X,whereTπ is the timeduration
of this trajectory. A feasible trajectory is one where all states x ∈ π(t) are collision-
free, i.e. belong in the free space X f ⊂ X. With a slight abuse of notation, π is
implied to always include its time parameter implicitly, and a trajectory generated
between state x and x ′ can also be denoted as x → x ′.

Each state x ∈ X is assigned a state cost g : X → R
+, which encodes the difficulty

of moving through that part of the state space. One common state cost function
involves the use of a discrete cost map, where different areas of the state space are
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more costly than others. This can encode difficult to traverse areas, making them last
resorts for a motion planner. Then, the cost of a trajectory π is denoted by

c(π) =
∫ Tπ

0
g(π(t))dt.

Common choices for a cost function include time to execute the trajectory, amount of
energy expended, or simply distance traveled. In general, as long as the cost function
is strictly monotonic and additive over a trajectory, SST can provide path quality
guarantees.

The overall goal for a motion planner is to find trajectories, which satisfy Eq.1,
start from an initial state x◦ and bring the system to a goal regionXG . The secondary
objective is to provide anytime performance, i.e., find an initial solution quickly and
then improve the quality of this solution over time given additional computation,
getting as close to the optimal solution cost as possible. The optimal cost c∗(π) is

c∗(π) = {min c(π) : π ∈ Π,π(0) = x◦, π(Tπ ) ∈ XG, π(t) ∈ X f , ∀t ∈ [0, Tπ ]}

If a trajectory between two states is not available, and a lower bound on the cost
between those two states is needed, a heuristic can be defined:

h : X → R, s.t. h(x) ≤ c∗(π), π ∈ Π,π(0) = x, π(Tπ ) ∈ XG (2)

A trivial heuristic function h(·) = 0 satisfies this relationship, but provides no useful
information about the expected cost between two states. If possible, a heuristic should
be as close to the cost of the optimal trajectory between the two states. Another
consideration for a heuristic function is that it is in the same unit as the cost function.
If energy or time is the cost function, the heuristic function needs to account for this
and create a lower bound on these costs. A properly constructed h function can help
guide the motion planner toward useful areas to search.

3 Algorithm

SST framework: The algorithm that this work builds upon is outlined inAlgorithm 1
[21]. It includes a series of additions to theRRT framework so as to achieve asymptotic
near-optimality guarantees in terms of solution trajectory quality for systems with
dynamics, while also requiring low computational resources in terms of space and
time. There are three basic additions to RRT that SST employs. They correspond to
node selection, random propagation, and pruning:

• Node Selection: In RRT, nodes are selected via a nearest neighbor call around
a randomly sampled state. This type of selection biases the selection of nodes
toward those on the frontier of the tree. SST employs a Best_Near procedure
that selects a node within a radius δBN of a random sample that has the lowest path
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Algorithm 1: SST( X, U, x◦, Tprop, N , δBN , δw)

1 Vactive ← {x◦},Vinactive ← ∅;
2 G = {V ← (Vactive ∪ Vinactive),E ← ∅};
3 w0 ← x◦, w0.rep = x◦, W ← {w0};
4 for N iterations do
5 xselected ←Best_Near( X, Vactive, δBN );
6 xnew ← Random_Prop(xselected , U, Tprop);
7 if CollisionFree(xselected → xnew) then
8 if Is_Locally_Best(xnew , W , δw) then
9 Vactive ← Vactive ∪ {xnew};

10 E ← E ∪ {xselected → xnew};
11 Prune(xnew , Vactive, Vinactive, E );

12 return G;

cost from x◦, the root of the tree. This selection procedure biases toward nodes
that are likely to have good path quality.

• Random Propagation: Implementations of RRT perform edge extensions in two
ways: going toward the randomly sampled state from the selection process, or
random propagation. It was recently shown that in some cases, the propagation
toward the randomsample is incomplete [18]. In addition to this, randomly sampled
controls play an integral part for the asymptotic near-optimality proof for SST.

• Pruning: Especially when searching high-dimensional spaces, the number of
nodes stored in an RRT can become quite large. By maintaining a witness set
that “claims” a radial region around states, the number of nodes can be mini-
mized. This also makes algorithm iterations much faster than RRT. An illustration
of these witness nodes with respect to the tree of states is shown in Fig. 1.

These three modifications make SST asymptotically near-optimal, details of the
proof of which can be found in the original paper [21].

Informed Extension: Algorithm 2 outlines the changes that make SST into an
informed algorithm, iSST. Introduction of the heuristic function, h, allows for more
effective selection, more informed edge extension, and more accurate pruning capa-
bilities relative to SST. Each of these changes are explained in the coming sections
in more detail. In the abstract, iSST borrows insights from heuristic search methods
for graphs and trees, and applies them to a continuous motion planning problem.

As explained in Sect. 2, the construction of the heuristic function, h, should be
a lower bound estimate of the optimal cost to the goal. For many applications, the
distance between the two is used to estimate this cost. This function, however, could
lead an informed search method toward environmental obstacles, subsequently hit-
ting a local minimum. This makes trajectories difficult to find and negates much of
the benefit of a heuristic. To account for this, a simpler motion planning problem
(using a roadmapmethod [16]) is solved that accounts for the geometric aspects of the
dynamic motion planning problem. A geometric path tree built from this roadmap
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Fig. 1 Illustration of the main operations in the SST framework. The witness set W is a set of
unconnected nodes, which indicate areas that have been visited. During the node selection process,
a radial region around a uniformly sampled point is examined for low cost nodes

Algorithm 2: iSST( X, U, x◦, Tprop, N , δw,h)

1 Vactive ← {x◦},Vinactive ← ∅;
2 G = {V ← (Vactive ∪ Vinactive),E ← ∅};
3 w0 ← x◦, w0.rep = x◦, W ← {w0};
4 O ← {x◦},O′ ← ∅;
5 for N iterations do
6 xselected ←SearchSelection( O, O′);
7 xcurr ← xselected ;
8 while xcurr =NULL do
9 xnew ←Blossom(xcurr ,h);

10 xcurr .priori t y ← xcurr .priori t y + 1;
11 if xcurr = xselected then
12 O ← O ∪ {xcurr };
13 if CollisionFree(xcurr → xnew) ∧ BranchAndBound(xnew) then
14 if Is_Node_Locally_the_Best_SST(xnew, W , δw) then
15 Vactive ← Vactive ∪ {xnew};
16 E ← E ∪ {xcurr → xnew};
17 Prune_Dominated_Nodes_SST(xnew, Vactive, Vinactive, E );
18 xcurr ← xnew;
19 continue;

20 xcurr ← NULL;

21 O
′ ← O

′ ∪ {xselected };

is then used to estimate the true optimal cost to a goal region, XG . In this way,
geometrically misleading areas are avoided in favor of areas of the state space that
are more likely to lead to solution trajectories.
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Algorithm 3: SearchSelection(O, O′)
1 xselected ←NULL;
2 repeat
3 if O==∅ then
4 O ← O

′;
5 O

′ ← ∅;
6 x ← min

c+h
(O);

7 O ← O \ {x};
8 n ∼ U([0, 1]);
9 if quality(x)< n then

10 O
′ ← O

′ ∪ {x};
11 x .priori t y = 1;

12 else
13 return x ;

Informed Selection: A major departure from the SST framework is that node selec-
tion is not done via random sampling in the state space. Instead, a queue system is
employed that ensures that every node has a chance to be selected. Initially, the open
set, O, contains only the start vertex, x◦, and the auxiliary set, O′, is empty. Every
time a node is selected and tries to add a new child node, it is removed from O and
gets inserted intoO′, with one exception that is explained in the blossom propagation
section.

Because this is a continuous state and control space problem, one expansion of
a node is not sufficient to exhaust all possible control inputs for that node. For this
reason, whenO is empty, the auxiliary set,O′, is reassigned asO and is subsequently
cleared. In this way, all nodes that are in the tree will be continuously re-expanded,
unless pruned for path quality.

For each iteration of iSST, the SearchSelection is called to return a node
to expand (the algorithm can be found in Algorithm 3). This is replacing the
Best_Near procedure from SST. Among all nodes in the open set, O, the node

Fig. 2 Quality measures of nodes in a 2D workspace when the best known trajectory cost to the
goal is 3× the optimal cost (left), 1.5× the optimal cost (middle), and 1.05× the optimal cost (right)
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with the lowest c + h value is returned, where c is the path cost from the root node,
x◦, to that node and h is the heuristic value to the goal. Similar evaluations can be
found in A∗ formulations. After a node is found in the open set, a quality measure
for that node is computed:

quality(x) =
(

1
x .c

xgoal .c
+ h(x)

h(x◦)

)x .priori t y

. (3)

This expression aims to bias selection toward nodes that aremost likely to improve
upon the current solution found, which has cost xgoal .c. A simple illustration of
how this function biases toward nodes that are more likely to provide better solution
trajectories can be found in Fig. 2.When a solution has not been found, the expression
reduces to h(x◦)/h(x) which says that any node that has heuristic value less than the
start node’s will be selected with probability one.

Algorithm 4: Blossom(x ,h)
1 Xnew ← ∅;
2 repeat
3 xnew ← MonteCarlo − Prop(x, u ∼ U(U), t ∼ U([0, T ]));
4 if CollisionFree(xnew)
5 ∧ Is_Node_Locally_the_Best_SST(xnew, W , δw)
6 ∧ BranchAndBound(xnew) then
7 Xnew ← Xnew ∪ {xnew};
8 until M tries;
9 return min

h
(Xnew);

Blossom Propagation: Another deviation from the SST framework is the use of
a “blossom” variant of extension [15] (see Fig. 3). Instead of only trying out one
control input every iteration, a series of propagations are performed. Among all of
these propagations that are simulated, any that collide with the environment (Algo-
rithm 4, Line 4), would be pruned via the witness sample set (Line 5), or would
never produce a better solution trajectory to the goal (Line 6) are all removed from

Fig. 3 A basic illustration of
the Blossom procedure.
After trying many different
candidate edges, only one is
added to the search tree.
Edges can be disregarded
due to collisions, suboptimal
paths, or subpar heuristic
values
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consideration. Of the remaining nodes, the node with the minimal heuristic value
will be the next node added to the search tree. This set of propagations from the
same start state aims to mimic the expansion step in A∗ searches. But given that the
control space is continuous, all possible control inputs cannot be tried immediately.
Instead, a number of tries are attempted, M . This number is unique to each node,
and is reduced upon each expansion. When M becomes 1, the expansion procedure
reverts to MonteCarlo-Prop from SST.

Another modification that can be done in the Algorithm 4 is introducing pre-built
maneuver sets. For certain robot platforms, an expert user may be able to provide a
set of maneuvers known to have a variety of end states. For car-like systems, this may
be maneuvers that human drivers would perform. The MonteCarlo-Prop call in
Algorithm 4 can be replaced with a lookup into this maneuver library, as long as
random propagations are restored when all maneuvers have been attempted. Using
maneuvers can help speed up iSST’s performance by using known good controls,
similar to lattice-based methods.

Informed Pruning: In SST, nodes that share a witness node, i.e. are within a δw

radius of a witness node w, are evaluated against each other. The node with the
smaller path cost from x◦ would be kept, and the other node would be pruned. In
iSST, a similar procedure is done, but the evaluation criterion is now x .c + h(x).
With this additional information about expected path cost, the algorithm can be more
confident that pruned nodeswill bemore unlikely to improve the current best solution
trajectory.

The commonly used technique of branch-and-bound can also be used in iSST.
Whenever a solution is found, any node that will never provide a better solution can
be pruned, i.e. x .c + h(x) < xgoal .c. This further reduces the number of nodes that
have to be expanded in future iterations, making it more likely that better solutions
can be found.

Effects of Changes on Properties: The proof of SST’s probabilistic completeness
property relies on showing that every node in the tree will be selected infinitely
often and eventually all control inputs will be tried. With the Best_Near selection
process, this involved showing that every node had a volume of the state space where
if a random sample is thrown, that nodewill be selected for propagation. In the case of
iSST, each node is selected infinitely often by construction. The open set selection
guarantees that each node has a positive probability of being selected. Regarding the
propagation properties, as long as iSST reverts to a single random control in the
Blossom procedure, we can maintain probabilistic completeness. The number of
blossomed propagations is reduced over time to a single propagation.

The proof of SST’s probabilistic completeness and asymptotic near-optimality
rely on the definition of a δ-robust trajectory. A δ-robust trajectory is a trajectory, π ,
that is always δ distance away from the obstacle space, Xobs , and has more than δ

dynamic clearance. Then, it can be shown that if δBN + 2δw < δ, the properties of
probabilistic completeness and asymptotic near-optimality apply to SST. For iSST,
since the Best_Near procedure has been replaced with SearchSelection,
δBN is not a needed parameter to consider in the analysis. It can then be shown that
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2δw < δ is the condition of the properties outlined above. This bound may not be
tight, but follows directly from the analysis in previouswork [21]. Having an adaptive
δw in different regions of the state space is the subject of future work, which would
also help alleviate this condition in the analysis. In practice, most reasonable values
of δw work well.

For a given value of δw , asymptotic near-optimality can be proven inSST, and sub-
sequently for iSST. The analysis in prior work [21] provides a method for achieving
asymptotic optimality by reducing the δBN and δw radii over time. The same method
can be applied in the case of iSST. It is, however, not recommended to implement
this modification, since it is only needed for an asymptotic property. For practical
run times, the iSST algorithm presented here provides good performance.

4 Experimental Evaluation

Experimental Setup: In order to test the performance of iSST, a few robotic sys-
tem models are considered for evaluation. These robotic system abstractions are
meant to approximate real-world analogs. There are three different robotic systems
implemented for the evaluation of the new motion planning algorithm.

Second-order car: A four-wheeled vehicle with dynamics needs to reach a goal
region traversing through a parking lot environment filled with vehicles (see Fig. 4).
The state space is 5D (x, y, θ, v, ω), the control space is 2D (v̇, ω̇) and the dynamics
are: ẋ = v cos(θ) cos(ω), ẏ = v sin(θ) cos(ω), θ̇ = v sin(ω).

The optimization criterion for trajectories is time to execute the trajectory, thus
a minimum time path is the objective. The heuristic function for the car takes the
shortest path from the preprocessed data structure, and then computes the minimum

Fig. 4 The test case environment for the second-order car (left). The task to traverse a parking lot
with lightpoles and cars as obstacles. The heuristic function gradient is shown at the left with the
goal in the top right of the aerial view
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Fig. 5 The test case
environment for the
quadrotor. The task is to
traverse the multi-level
building to reach the roof.
Walls are removed to show
the floor plan

time to traverse that distance if the car were to follow that path. This time is not
feasible due to the dynamics of the car, but provides a reasonable lower bound.
There is no state cost used here.

Quadrotor: A quadrotor moving in three dimensional workspace of a building (see
Fig. 5). The dynamics are derived from [1]. The state space is 12 dimensional and the
control space is four dimensional, corresponding to the thrust from each rotor. The
cost function is the workspace distance traveled by the quadrotor, while the heuristic
is the same.

Physically-simulated Rover: A physically-simulated rover system tasked with tra-
versing an uneven environment. The system is simulated with the Bullet physics
engine [6]. The system is the most computationally expensive among the three test
cases, andwill be given extra time in the experiments to show algorithmperformance.
The time for simulation is only going to be possible for planetary exploration tasks
that can have a large lead time before navigation. Future work aims to alleviate this
computational cost to get closer to the car and quadrotor runtimes.

The heuristic function for this test case utilizes a state cost function in the
workspace. The terrain generates a heightmap in the two-dimensional workspace
of the car, which can then be transformed into a state cost function. This height cost
function then weights trajectories according to their elevation, promoting paths that
do not change elevation significantly.

Results: To evaluate the motion planners, several statistics are gathered from each
individual planning instance. Solution cost over time is reported to show how well
algorithms can improve their solution trajectory quality. When solutions with better
costs are found quickly, this builds confidence in the algorithm’s capability to find
near-optimal solutions in practice.

To evaluate the informed motion planner, iSST, several comparison methods
are utilized. For sampling-based comparisons, the canonical RRT is evaluated as
a baseline [19]. Then, the original SST algorithm is shown as the state-of-the-art
asymptotically near-optimal algorithm for finding motion plans for dynamical sys-
tems [21]. Finally, in order to evaluate the speed of finding solution trajectories,
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Fig. 6 The test case environment for the physically-simulated rover (left). The task is traversing to
the bottom left of the map (see middle overhead view). Since the heuristic takes the terrain height
into account, the heuristic does not follow a regular wavefront behavior (see right figure)

Fig. 7 Ratio of found solutions to planner attempts over time for the second order car (left), the
quadrotor (middle), andphysically-simulated rover (right). Everyplannerwasgiven50opportunities
to return a result within their computational budget (15min for the car and quadrotor, and an iteration
limit for the rover). Ratios closer to one are better

Randomized A∗ is implemented [7] and uses the same heuristic information that
iSST uses. In addition, Randomized A∗ also makes use of the same maneuver sets
from iSST.

The success rate over time for finding solution trajectories is shown in Fig. 7. In
the case of the second-order car, SST and iSST get similar number of solutions over
time, since random controls naturally explore the workspace well in the case of SST.
Randomized A∗ is unable to return a solution reliably due to its incomplete nature.

In the case of the quadrotor, iSST and SST diverge more. It is more difficult
in this case to find solutions without a guiding heuristic, which makes iSST find
solutions quicker. Just using the heuristic is not sufficient however, as shown by the
Randomized A∗ not finding a single solution in this problem. By allowing retries on
nodes, the success rate is improved in iSST.

When moving to the more computationally expensive rover, the amount of time
necessary to find solutions is much larger. But relative to the comparison methods,
iSST is able to provide more solutions. Randomized A∗ takes significantly more
time to execute the same number of iterations as the other algorithms, so the graph
in Fig. 7 (right) is truncated for readability.
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Fig. 8 Average solution cost over time for the second order car (left), the quadrotor (middle),
and physically-simulated rover (right). Every planner was given 50 opportunities to return a result
within their computational budget (15min for the car and quadrotor, and an iteration limit for the
rover) and all solutions at each time instance are averaged for an overall evaluation. Lower solution
costs are better

The solution cost results for each test case can be found in Fig. 8. Interestingly,
when Randomized A∗ finds solutions, they are usually better than those returned by
all other algorithms compared here. The drawback, however, is that Randomized A∗
does not guarantee returning solutions, and in some cases like the quadrotor, likely
will not return a solution. iSST, on the other hand, returns low cost solutions and
finds those solutions relatively quickly. iSST also decreases the best solution cost
over time at a much faster rate than SST.

5 Discussion and Conclusion

By leveraging insights from many heuristic search methods, iSST is able to pro-
vide solution trajectories for systems with dynamics for a small computational cost.
Additionally, these trajectories can be improved over time, leveraging the anytime
nature of the SST framework. This is an encouraging result for achieving the goal
of effective and practical motion planning, but there are many outstanding issues to
address in future steps.

In regards to the SST framework, there are two parameters that drastically affect
the performance of the method, the selection radius, δBN , and the pruning radius,
δw. iSST removes the requirement for choosing δBN , but the pruning radius still
requires careful selection. One way to potentially address this is to adapt the pruning
regions based on clearance from obstacle regions. This information can be generated
during the construction of the heuristic estimate, and may alleviate some conditions
of the analysis necessary for asymptotic optimality.

Another way to improve the performance of iSST is to provide more diverse
maneuver sets. This work used maneuver sets that are generated by an expert user.
While this is sufficient for well-defined robots like cars and quadrotors, more com-
plex systems may need a computational approach to generating this set. Leveraging
machine learning techniques for finding maneuvers will enable this informed plan-
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ning framework to work for novel robot designs that previously were difficult to
study. These maneuver sets can also provide estimates of the expected update to the
state of the robot, making heuristic computation at the end of trajectories possible
without a full simulation. This would make the physically-simulated rover experi-
ment shown in this work more computationally efficient, bringing the computation
down to similar levels for the other experimental setups.
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Strategic Autonomy for Reducing Risk
of Sun-Synchronous Lunar Polar Exploration

Nathan Otten, David Wettergreen and William Whittaker

Abstract Sun-synchronous lunar polar exploration can extend solar-powered robotic
missions by an order of magnitude by following routes of continuous sunlight. How-
ever, enforcing an additional constraint for continuous Earth communication while
driving puts such missions at risk. This is due to the uncertainty of singularities: static
points that provide weeks of continuous sunlight where communication blackouts
can be endured. The uncertainty of their existence and exact location stems from
the limited accuracy of lunar models and makes dwelling at singularities a high-risk
proposition. This paper proposes a new mission concept called strategic autonomy,
which instead permits rovers to follow preplanned, short, slow, autonomous drives
without communication to gain distance from shadow and increase confidence in
sustained solar power. In this way, strategic autonomy could greatly reduce overall
risk for sun-synchronous lunar polar missions.

1 Introduction

Solar-powered lunar rovers (Fig. 1) could achieve months of exploration by follow-
ing sun-synchronous polar routes to maintain continuous sunlight for power and
heating while avoiding prolonged exposure to extreme cold. These routes favor peak
elevations at high latitudes and could be accomplished with slow driving speeds
as low as 0.1 cm/s. Such routes are intriguing because of their extended durations
and their proximity to areas of scientific and commercial interest. Planning reliable
sun-synchronous routes prior to launch requires detailed maps of future lighting con-
ditions, which can be estimated based on prior 3D models of the Moon. The resolution
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Fig. 1 Prototype
solar-powered lunar polar
rover “Polaris.” Image credit:
Astrobotic Technology, Inc

and certainty of predicted insolation maps is limited by the quality and accuracy of the
underlying elevation models. The inherent uncertainty of lunar topography data leads
to uncertainty that rovers following preplanned sun-synchronous routes will remain
in continuous sunlight. The magnitude of this uncertainty is strongly influenced by
the strictness of a mission’s requirement for rover-to-Earth communication.

One ostensibly conservative strategy permits rovers to drive only when in direct
communication with ground controllers to facilitate teleoperation and/or highly
supervised autonomy. Sans satellite relay, rovers would be required to maintain an
unobstructed view of Earth when driving. This strict requirement severely constrains
rover movement and, in many cases, would force rovers to dwell motionless near the
day–night terminator for weeks at a time to achieve multiple lunar days of operation.
Locations of enduring sunlight must be reached prior to losing Earth communica-
tion, which must later be reestablished before driving can resume. Such locations
are so small and rare that they effectively behave as single points or singularities,
through which all valid routes must pass. Due to the uncertainty of predicted insola-
tion maps, the existence of such points cannot be guaranteed. A mission dependent
on dwelling at a presumed singularity that turns out not to exist will almost certainly
terminate prematurely. So, while solar-powered missions with a strict requirement
for sustained communication when driving require singularities to achieve multiple
lunar days, the uncertainty of such phenomena makes them unreliable as a means
to that end. Rather than reducing overall mission risk, this “conservative” strategy
ultimately increases odds of failure.

This paper proposes an alternative strategy for achieving extended lunar polar
rover missions. In the absence of Earth communication, strategic autonomy would
permit short, slow, autonomous drives following preplanned paths in areas adjacent
to singularities to guarantee continuous sunlight. Under this new mission concept,
the majority of a rover’s distance traveled could still be teleoperated and highly
supervised. The key difference is that in situations where a communication blackout
is inevitable, the rover would be liberated to drive autonomously to increase its
estimated distance from shadow and thus improve its expectation of solar power.
While the limited use of unsupervised autonomy does incur some additional risk,
it is outweighed by increased confidence in uninterrupted sunlight. The adoption of
strategic autonomy for sun-synchronous lunar polar exploration could substantially
reduce overall risk and enable greater mission durations and returns.

The remainder of this paper is organized into five sections followed by a conclu-
sion. Section 2 provides relevant background information regarding the lunar polar
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environment, sun-synchronous exploration, and the models used for route planning.
Section 3 describes a common concept of operations for lunar roving that enforces a
strict communication constraint and presents a baseline route. Section 4 introduces
a 2D representation of dynamic 3D constraints useful for analyzing and comparing
routes. Section 5 formulates the concept of strategic autonomy and presents a corre-
sponding alternative route. Section 6 highlights the benefits of strategic autonomy.

2 Background

2.1 The Lunar Polar Environment

Water The abundance of water on the Moon is well-documented, and the next steps
of exploration are surface missions to visit and characterize local concentrations.
Lunar water is a key resource because it can be converted into breathable air, drink-
able water, and combustible propellent, all three of which are vital to sustaining
exploration beyond Earth. Orbiting satellites have collected overwhelming evidence
of vast quantities of frozen water ice concentrated at the lunar poles [3, 11], and
NASA is considering a solar-powered robotic surface mission to verify and quantify
this water and other frozen volatiles [2]. The estimated subsurface depth of frozen
water permafrost [10] at a candidate landing site near the lunar south pole is shown in
Fig. 2. In addition to accessible water, Nobile exhibits a combination of topography
and latitude ideal for demonstrating the advantages of strategic autonomy.

Sunlight Because the synodic period of the Moon averages approximately 708 hours,
a single lunar day is equivalent to about 29.5 Earth days [4]. At non-polar latitudes,
this yields alternating day and night periods of sunlight and darkness averaging

Fig. 2 Estimated depth of
permafrost below the lunar
surface for a roughly
40-by-40-km area of the
Nobile Crater rim near 86◦S
[10]. Gray terrain indicates
an estimated permafrost
depth of greater than 1 meter.
A 74-day sun-synchronous
route, which crosses the
steep gradient between deep
and shallow permafrost
several times, is located near
the center of the area shown.
Image credit: Richard Elphic
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(a) Polar Illumination Map (b) Polar Communication Map

Fig. 3 These images represent the composite illumination (a) and communication (b) coverage
over a 4-month period of a 20-by-20-km area on the rim of Nobile Crater near the lunar south
pole. Brighter values indicate greater cumulative exposure (to the Sun or Earth, respectively) as a
percentage of total time: white indicates 100%, while PSRs appear as black. Earth is upward

14.75 Earth days each. Limited to 2 weeks of solar power, slow-moving1 rovers that
lack a sustainable internal heat source (e.g., nuclear isotopes) are doomed by the
unavoidable cryogenic temperatures characteristic of lunar night [9, 10, 15].

Near the poles, however, seasonal effects and local topography dominate, resulting
in more dynamic and complex lighting conditions. The Moon’s 1.5◦ axial tilt relative
to the ecliptic induces seasons that are subtle relative to Earth’s yet pronounced
enough to leave the poles almost completely dark during winter and predominately
lit during the summer. The Sun circles the summer pole once per lunar day and never
deviates far above (or below) the horizon; thus, sunlight grazes the lunar polar surface.
The low-angle light renders shadows that stretch many kilometers and sweep across
the rough terrain, locally blocking out sunlight for days at a time. Although no polar
peak is lit 100% continuously [6], slow-moving rovers can maintain uninterrupted
solar power for 3–6 months by navigating strategic sun-synchronous routes. This
enables mission durations an order of magnitude greater than what is possible at
lower latitudes or without sun-synchronous planning.

A 4-month composite of polar illumination based on 3D modeling is shown in
Fig. 3a. This is the same area as that shown in Fig. 2. The permanently shadowed
regions (PSRs) generally correspond to high concentrations of ice, while the small
points of maximum illumination at local peaks are characteristic of singularities.

Communication After power, the most critical resource for lunar rovers is com-
munication with Earth. Without frequent communication, rovers cannot adequately
receive commands nor transmit telemetry and scientific data. A satellite relay could
provide (near) constant communication with polar rovers, but such infrastructure is

1Here, less than 10 cm/s is considered slow. (Circumnavigating the equator requires ∼ 4.3 m/s.).
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costly to deploy. Polar rovers can instead rely on direct line-of-sight to Earth-based
antennae. Due to tidal locking, only one hemisphere of the Moon ever faces Earth;
however, at the poles, the Moon’s axial wobble causes the Earth to rise and set
periodically as viewed from the surface. This induces intermittent communication
coverage with periodic blackouts common at local depressions and on non-Earth-
facing slopes. These conditions are not conducive to highly supervised autonomy
or teleoperation. A composite of polar communication coverage (via line-of-site to
Earth) is shown in Fig. 3b. The steepest communication gradient coincides with the
peak of maximum illumination, another characteristic of singularities.

Topography Another important aspect of the lunar polar environment is local topog-
raphy, which dictates not only the sunlight and communication available to rovers
but also the terrain that must be negotiated. While rover-scale terrain features cannot
yet be resolved using the best lunar data, topographic models do yield maps of gross
ground slope, much of which is too steep for typical wheeled rovers to traverse.

2.2 Sun-Synchronous Mission Planning

Sun-synchronous circumnavigation routes for maximizing solar power and extending
missions were first envisioned without the benefit of high-fidelity lunar terrain models
[18]. The concept was later partially demonstrated in field experiments each span-
ning a single day on Earth [17]. The concept of mission-directed path planning was
developed to enable global planning and navigation capabilities for planetary rovers
over large scales and long durations amenable to sun-synchronous exploration [14].
The TEMPEST planner embodied a sun-synchronous navigation strategy tailored
to solar-powered polar exploration and was demonstrated onboard the “Hyperion”
rover on Devon Island north of the Arctic Circle. It was not extended to multiple
diurnal periods, interplanetary communication, nor the use of lunar data.

Prior work by the authors presents examples of sun-synchronous lunar polar routes
generated using data from Lunar Reconnaissance Orbiter (LRO) [5, 8]. South polar
routes at Malapert Massif and Shackleton Crater maintain uninterrupted sunlight
and traversable slopes for 2 months with maximum driving speeds of 1 cm/s and
1 m/s, respectively, but do not account for communication [8]. A route near Nobile
Crater (similar to the routes presented in this paper) achieves 74 days with a strict
requirement for direct line-of-sight to Earth when driving [5]. Although this route
dwells twice at a ‘singularity,’ prior research did not identify or define this concept
nor did it address the related risk.
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Fig. 4 This 10-m LOLA
DEM covers the lunar south
pole out to 85◦ S. The Nobile
Crater rim is among the peak
elevations

2.3 Lunar Models

Prior work and this research use predictions of future lighting generated using lunar
digital elevation models (DEMs), lunar and solar ephemeris data, and ray-tracing soft-
ware. The DEMs are a data product of LRO’s Lunar Orbiter Laser Altimeter (LOLA)
instrument.2 The highest resolution LOLA DEM covering the Nobile Crater region
is 10 m per pixel [12]. This 2.5D elevation model, shown in Fig. 4, was converted
into a 3D mesh model in Cartesian coordinates, and a simulated Sun3 was positioned
according to the SPICE toolkit [1]. Ray-tracing software renders an orthographic
map of lighting conditions for each time in a predefined sequence. The result is a
3D binary array that defines each (x, y, t) state as either lit or shadowed, in this case
with spatial resolution of 10 m and a temporal resolution of approximately 2 hours.
The same process was used to estimate communication coverage by substituting the
Earth’s position for the Sun’s.4 Principal ground slope was computed by applying
divided difference to the DEM.

The resolution and accuracy of LOLA data is orders of magnitude better than
what was available previous to LRO [19]; however, uncertainty remains an issue.
The accuracy of individual LOLA ground points is approximately 10 m radially
and 50–100 m spatially [13], and gridded LOLA DEMs contain a myriad of visible
artifacts. In low-angle lighting, these errors are magnified, resulting is substantial
uncertainty about the exact location of sunlight–shadow boundaries. This uncertainty
makes dwelling near the terminator a risky proposition.

2LRO data products are accessible via NASA’s Planetary Data System Geosciences Node [7, 16].
3The Sun can be approximated as a directional or area light source. The latter yields a range of solar
flux values, which can be thresholded to produce a binary output for planning purposes.
4Since radio waves behave differently than visible light, this yields a slightly optimistic estimate.
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3 Supervised Teleoperation

This section describes a common concept of operations that uses a mix of highly
supervised autonomy and teleoperation. An example route is presented as a baseline
for later comparison with a route demonstrating the concept of strategic autonomy.

The default concept of operations is loosely modeled after those used by NASA’s
Mars rovers, albeit at an accelerated cadence. The Mars Science Laboratory “Curios-
ity” and the Mars Exploration Rover “Opportunity” are each actively managed by
a team of rover operators that upload a sequence of commands no more than once
per day based on previously returned telemetry and science data. Upon receiving
the command sequence, the rover executes the actions (if possible) with the aid of a
limited set of semi-autonomous navigation capabilities, transmits new data back to
Earth, and awaits further instruction. This cyclical process generally repeats every 24
hours. The pace is dictated by the 20-min average communication delay, limited solar
flux, and the length of a sol. Real-time teleoperation is prohibited by high latency
due to the large distance between Earth and Mars, and rover movement is highly
supervised, never going beyond the previous day’s horizon.

A similar approach could be used for lunar exploration but at a far more rapid
cadence enabled by the Moon’s proximity to Earth, greater solar flux, and lesser
gravity. Command cycles could iterate every few hours or minutes instead of once
per day. This pace approaches that of pure teleoperation, which is possible at slow
driving speeds and with low latency of a few seconds. In this strategy, no unsuper-
vised rover autonomy would be required nor permitted. The rover would operate
under constant supervision with humans in the loop ready to intervene if necessary.

Constraints The supervised teleoperation (“teleop”) concept of operations imposes
the following constraints on sunlight, communication, and terrain slope.

Sunlight The rover must remain in direct sunlight at all times and cannot enter or be
overcome by shadow.

This constraint is constant and unconditional. While a rover’s onboard battery,
depending on its size, could enable it to operate, drive, and possibly even heat itself
for a limited time in the absence of sunlight, it is simpler and safer to impose a strict
constraint to always remain in sunlight.5 This constraint guarantees consistent power
and heating and leverages the unique character of polar lighting to extend operational
life. For the work presented here, being in shadow is defined as being at any state
(location and time) for which the ground is shadowed. Extensions that account for
the height of the solar array above the ground are possible; however, the definition
used here provides a reasonable and conservative approximation.

Communication The rover must maintain an unobstructed view of Earth at all times
during which it is driving.

5To complete certain science objectives, a rover may be required to enter a PSR or other unlit area
for a brief period of time; however, this extension is outside the scope of the work presented here.
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This constraint is conditional, as it is only active when the rover is moving. The
proximity of Earth and the Moon enables a level of control not possible for Mars. The
opportunity for near real-time communication invites a seemingly prudent approach
that not only takes advantage of constant supervision but mandates it.

Slope The rover must remain on terrain of principal slope not exceeding 20◦.
This value was chosen such that it would not dominate route planning in the fol-

lowing examples. In practice, this constraint is dependent on the mobility platform
and could be higher or (most likely) lower.

PlanningMethodThe gridded lunar model representations described in Sect. 2.3 are
conducive to grid-based planning methods. The distinctions of sunlight, communica-
tion, and slope yield a planning problem with heterogeneous constraints. Enforcing
a constraint on slope is the simplest, since it is defined by a static 2D map of binary
go/no-go conditions. Enforcing a constraint on sunlight is similarly simple, with the
only difference being that the map is dynamic, represented by a 3D binary array
composed of stacked 2D maps for each time step. The communication condition
must be enforced at planning time, since it is conditional on whether or not two
consecutive rover states share the same spatial position. For two graph nodes of dif-
fering positions to be legally connected by an edge, both must have communication
coverage (and sunlight). Sunlit nodes of identical position are connected along the
time dimension, regardless of communication coverage. This conditional constraint
is straightforward to implement in the state transition or ‘get_child_node’ function
of any standard heuristic graph search algorithm.

To generate the following example route, a starting point was selected based on
favorable landing site criteria, and several major waypoints were manually selected
such that the rover would visit numerous sites of scientific interest near PSRs. A
minimum distance path passing through all waypoints was generated using A* graph
search on a 3D adaptation of an eight-connected grid (see [8] for details). This was
done first at a resolution of 80 m and then the coarse route was refined to a resolution
of 20 m using the 80-m route sequence as waypoints for a second iteration of A*.
This hierarchical approach was used to reduce computation time.

Supervised Teleoperation Route The baseline teleop route is illustrated by a series
of snapshots in Fig. 5. Each frame represents only a single instant in time; however,
each path represents the full route history up to that point. Hence, green path over-
laid on top of black or blue ground does not indicate that the rover passed through
shadow, only that a visited location later became shadowed. The route covers approx-
imately 63.5 km in 74 Earth days without exceeding 10 cm/s. It returns to its starting
point after each of three drives to wait out the communication blackout. Dwelling
at this singularity is the only means of achieving three lunar days of solar-powered
exploration under the given constraints.
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(a) Day 6: Drive 1 (b) Day 11: Begin Dwell 1 (c) Day 29: End Dwell 1

(d) Day 35: Drive 2 (e) Day 40: Begin Dwell 2 (f) Day 59: End Dwell 2

(g) Day 67: Drive 3 (h) Day 74: End Route

Power & Comm
Power & NO Comm
Steep Slope
NO Power & Comm
NO Power & NO Comm
Rover Route

 

Fig. 5 Supervised Teleoperation: This sequence of snapshots illustrates a 3-lunar-day route near
Nobile Crater. The route starts in the bottom-right quadrant and proceeds in a clockwise fashion
with a long dwell period at a singularity near the starting point between each of the three drives.
The rover is stationary from Day 11 (b) to Day 29 (c) and from Day 40 (e) to Day 59 (f) due the
communication constraint. It theoretically maintains uninterrupted solar power near the edge of the
terminator while dwelling, but this is uncertain. The terrain is color-coded by constraint conditions

4 Route Analysis

Visualizing 3DRoute Constraints in 2DThis section introduces a novel method for
visualizing three-dimensional spatiotemporal routes in two dimensions. The route’s
spatial proximity to an ordered set of dynamic constraint conditions is viewed as
a function of time. This 2D projection is useful for visualizing, analyzing, and
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Fig. 6 This graph shows the
proximity of the teleop route
to the best- and worst-case
constraint conditions as a
function of time. The vertical
green line at 0 represents the
relative position of the
rover’s planned path. On the
right side of the green line is
the most dominant constraint
at every distance from the
rover’s position. On the left
side is the least dominant
constraint. The horizontal
magenta dotted lines mark
when the rover arrives at and
departs from the singularity.
See Fig. 5 for color-coding
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comparing routes, particularly where 3D formats (e.g., videos) are prohibited. Fur-
thermore, this technique reveals the risk associated with dwelling at singularities.

This 2D graphical representation was inspired by weather radar history graphs
and can be explained using that analogy. A video playback of weather radar can
be condensed from three dimensions to two by plotting the distance from a given
location (e.g., a city center) to the nearest storm front in any direction for all times.
An even richer representation can be constructed by plotting the most severe weather
condition that occurs a specific distance away (in any direction) for all distances with
a given range and for all instants over a span of time. Essentially, this type of graph
displays the minimum distance to the worst case conditions as a function of time. A
similar graph can be constructed for a moving vehicle instead of a static point, where
distances are relative to the vehicle’s instantaneous position. Rover constraints (e.g.,
sunlight, communication, slope, and combinations thereof) can be substituted for
weather conditions as long as they are ordered by severity.

Applying this concept to the teleop route yields the graph shown in Fig. 6. The
y-axis represents time and advances downwards like a strip chart. The x-axis marks
distance from the rover’s instantaneous position, which is indicated by a vertical
green line. Distances are relative and can be in any direction. Each row of the plot
represents a snapshot of the dominant constraints at each distance from the rover’s
position at that instant in time. To the right of the green line is the worst-case con-
dition at every distance, analogous to the distance outside the storm’s edge. To the
left of the green line is the best-case condition at every distance (distance inside the
storm’s edge). The precedence of the color-coded conditions match that of Fig. 5 and
are in order of increasing severity: white (power and comm), yellow (power and no
comm), red (steep slope), blue (no power and comm), black (no power and no comm).
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Computational Method The graph is computed one row at a time. Distance is
divided into discrete uniform bins, each defined by two radii. For example, at a dis-
tance of d = 100 m with a resolution of 20 m, r1 = 90 m and r2 = 110 m. All unique
constraint conditions lying within the ring formed by the two radii are isolated. The
most severe condition within that subset is plotted at distance d, and the least severe
condition is plotted distance −d. This is repeated for every distance to complete the
first row and for every row to complete the graph.

Interpretation The proximity graph efficiently conveys useful information about
the route plan and reveals potential concerns. By examining Fig. 6, it is clear that the
rover spends two periods of nearly 20 days each within 10–30 m of total blackout
from sunlight. This happens when the rover is parked at a singularity as the terminator
rotates about the peak. During this time, the rover is not permitted to move due to
communication denial. Because the DEM contains errors of up to 50–100 m, the
location of this single point of light may vary significantly, or it may not even exist.
Both cases would strand the rover in darkness and cold for weeks, likely ending the
mission before communication is restored.

5 Strategic Autonomy

The concept of strategic autonomy is motivated by concerns of dwelling at an uncer-
tain singularity as illustrated by the constraint proximity graph. This new operational
concept seeks to reduce overall mission risk by distancing the rover from singulari-
ties (akin to the way robotic manipulators avoid kinematic singularities). This comes
at the cost of some accepted added risk related to unsupervised autonomy during
communication outages. This paper asserts that this tradeoff is beneficial.

Constraints Strategic autonomy is defined by the following constraints.

Sunlight The rover must remain in direct sunlight at all times (same as teleop).

CommunicationThe rover must maintain an unobstructed view of Earth when driving
except when doing so would cause the rover to dwell at a singularity for a period of
time exceeding 24 hours. In this case, the rover is permitted to drive autonomously
without communication at 20% of the nominal maximum drive speed.

This is the key distinguishing feature of the strategic autonomy concept of oper-
ations. This modified constraint prevents the rover from dwelling motionless at a
singularity for long periods of time. Instead, the planner is free to maximize the
rover’s distance from shadow and thus confidence of sunlight.

Slope Principal ground slopes must not exceed 20◦ (same as teleop).
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(a) Day 11: Begin SA 1 (b) Day 17 (c) Day 23 (d) Day 29: End SA 1

(e) Day 40: Begin SA 2 (f) Day 50 (g) Day 55 (h) Day 59: End SA 2

Fig. 7 Strategic Autonomy (SA): This sequence of snapshots (zoomed in relative to Fig. 5 and
centered at the route’s starting point/singularity) illustrates the two autonomous route segments that
differ from the baseline teleop route. The top row (a–d) replaces first teleop dwell period, and the
bottom row (e–h) replaces the second teleop dwell period. The autonomous drive segments are
drawn in magenta, whereas unaltered route segments are green. See Fig. 5 for terrain color-coding

Planning Method The planning method begins with the baseline teleop route and
modifies discrete segments according to the altered communication constraint. Sin-
gularities are identified manually with the aid of the 2D constraint proximity graph.
At the instant the rover reaches an identified singularity, the altered constraints are
activated. A small set of new waypoints are selected (manually, for this example) to
maximize distance from darkness and steep slopes such that the new route segment
splices into the original route at the instant the original dwell would have ended.
Minimum distance paths passing through all new waypoints are computed using the
same A* method as before with reduced maximum drive speed (from 10 to 2 cm/s)
while suspending the requirement for communication.

Strategic Autonomy Route Using this method, two instances of dwelling at sin-
gularities were identified and replaced. The altered route segments, which exhibit
strategic autonomy, are shown in Fig. 7. All other route segments remain unaltered
and are identical to those in Fig. 5. Like the baseline, the strategic autonomy route
spans 74 Earth days but covers a total distance of 71.8 km, a 11.5% increase compared
to the teleop route. The constraint proximity graph is shown in Fig. 8.
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Fig. 8 This visualization
shows the proximity of the
strategic autonomy route to
the best- and worst-case
constraint conditions as a
function of time. The vertical
green line at 0 represents the
position of the rover as it
traverses the planned path.
This plot should be
interpreted in the same
manner as Fig. 6. Likewise,
constraints are color-coded
as in Fig. 5. The large yellow
areas to the right of the green
line indicate a wide margin
of predicted sunlight in all
directions around the rover
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6 Discussion

Notable differences between the supervised teleoperation and strategic autonomy
routes are shown in Table 1 and Fig. 9. Most notable is the increased mean distance
to shadow. Whereas the teleop route dwells approximately 10 and 30 m from the
nearest shadow (the day–night terminator) the corresponding strategic autonomy
route segments achieve a mean separation of approximately 180–190 m. On a 10-
m DEM, this is the difference between 1–3 pixels and nearly 20. This difference
becomes even more significant when considering that the LOLA topography models
have an estimated spatial accuracy of 50–100 m. If this translates to an error of
up to 100 m, the supervised teleoperation route is problematic, whereas the strate-
gic autonomy route might still retain a safety margin of almost 100 m. Compared
to dwelling at uncertain singularities, this added buffer substantially increases the
likelihood of maintaining solar power and continued exploration.

Table 1 Route segment comparison

Route segment Total
time
(days)

Dwell
time
(%)

Distance
traveled
(km)

Max
speed
(cm/s)

Mean
speed
(cm/s)

Min
dist. to
shadow
(m)

Max
dist. to
shadow
(m)

Mean
dist. to
shadow
(m)

Dwell 1 18 100 0 0 0 10 50 29

Dwell 2 19 100 0 0 0 10 30 12

Autonomy 1 18 36 4.1 1.5 0.26 10 390 191

Autonomy 2 19 38 4.2 1.6 0.26 10 370 178

Dwell supervised teleoperation dwell segment; Autonomy strategic autonomy drive segment
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Fig. 9 The supervised teleoperation route dwells statically at singularities while the strategic
autonomy route continues driving to avoid them. Vertical lines mark the start and end of the two
dwell/autonomy segments corresponding to Table 1. The three segments labeled “Drive” are iden-
tical between the two routes

Strategic autonomy is not without drawbacks. Its reliance on unsupervised
autonomous driving, even at very slow driving speeds, incurs some added risk. The
total magnitude of this risk depends on numerous complex factors related to the
rover’s perceptual, computational, and mechanical design and can therefore not be
estimated easily or without rigorous testing of the actual systems. However, the high
level of risk inherent to dwelling at an uncertain, unverified singularity the size of
which is less than the estimated error of the models used to predict such a point
almost certainly exceeds that of short, slow, autonomous drives preplanned to favor
regions of almost certain sunlight.

7 Conclusion

Solar-powered rovers are a logical next step for exploring the poles of the Moon, and
multi-month missions are possible using a new concept of operations called strategic
autonomy. Strategic autonomy maintains continuous exposure to sunlight by per-
mitting short, slow, autonomous drives during periodic communication blackouts—
a natural consequence of sun-synchronous routes. These drives follow preplanned
paths and distance rovers from the day–night terminator where sustained insolation is
uncertain. Mission concepts that prohibit autonomy and enforce a strict requirement
on constant communication for teleoperation inevitably force rovers to dwell station-
ary for weeks at small peaks of predicted sunlight; however, the existence and exact
locations of such singularities cannot be confidently predicted due to limitations in
lunar topographic data. This paper asserts that the risk associated with dwelling at
uncertain singularities exceeds that of driving autonomously with guaranteed solar
power. Strategic autonomy ultimately reduces overall mission risk while enabling
extended lunar polar exploration. Future work will quantify this claim.



Strategic Autonomy for Reducing Risk of Sun-Synchronous Lunar Polar Exploration 479

Acknowledgements The authors thank Dr. Tony Colaprete and Dr. Richard Elphic for their advice
on the development of this work and for providing information on relevant lunar sites. This research
was supported by NASA Innovative Advanced Concepts (NIAC) Grant # NNX13AR25G.

References

1. Acton, C.H.: Ancillary data services of NASA’s navigation and Ancillary Information Facility.
Planet. Space Sci. 44(1), 65–70 (1996)

2. Andrews, D.R., Colaprete, A., Quinn, J., Chavers, D., Picard, M.: Introducing the Resource
Prospector (RP) Mission. In: AIAA SPACE 2014 Conference and Exposure Reston, Virginia
(2014)

3. Colaprete, A., Schultz, P., Heldmann, J., Wooden, D., et al.: Detection of water in the LCROSS
ejecta plume. Science 330(6003), 463–468 (2010)

4. Heiken, G.H., Vaniman, D.T., French, B.M.: Lunar Sourcebook—A user’s Guide to the Moon.
Cambridge University Press, New York, New York, USA (1991)

5. Heldmann, J., Colaprete, A., Elphic, R.C., Bussey, B., McGovern, A., Beyer, R., Lees, D.,
Deans, M.C., Otten, N., Jones, H., Wettergreen, D.: Rover Traverse Planning to Support a
Lunar Polar Volatiles Mission. In: LEAG. NASA Ames Research Center (2015)

6. Mazarico, E., Neumann, G., Smith, D., Zuber, M., Torrence, M.: Illumination conditions of
the lunar polar regions using LOLA topography. Icarus 211(2), 1066–1081 (2011)

7. NASA: Welcome to the Planetary Data System. https://pds.nasa.gov/
8. Otten, N.D., Jones, H.L., Wettergreen, D.S., Whittaker, W.L.: Planning routes of continuous

illumination and traversable slope using connected component analysis. In: 2015 IEEE Inter-
national Conference on Robotics and Automation (ICRA), pp. 3953–3958. IEEE (2015)

9. Paige, D.A., Foote, M.C., Greenhagen, B.T., Schofield, J.T., et al.: The lunar reconnaissance
orbiter diviner lunar radiometer experiment. Space Sci. Rev. 150(1–4), 125–160 (2010)

10. Paige, D.A., Siegler, M.A., Zhang, J.A., Hayne, P.O., et al.: Diviner lunar radiometer observa-
tions of cold traps in the moon’s south polar region. Science 330, 479–482 (2010)

11. Pieters, C.M., Goswami, J.N., et al.: Character and Spatial Distribution of OH/H2O on the
Surface of the Moon Seen by M3 on Chandrayaan-1. Science 326(5952), 568–572 (2009)

12. Smith, D.E., Zuber, M.T., Jackson, G.B., et al.: The lunar orbiter laser altimeter investigation
on the lunar reconnaissance orbiter mission. Space Sci. Rev. 150(1–4), 209–241 (2010)

13. Smith, D.E., Zuber, M.T., Neumann, G.A., Lemoine, F.G., et al.: Initial observations from the
Lunar Orbiter Laser Altimeter (LOLA). Geophys. Res. Lett. 37(18) (2010)

14. Tompkins, P., Stentz, A., Wettergreen, D.: Mission-level path planning and re-planning for
rover exploration. Robot. Auton. Syst. 54, 174–183 (2006)

15. Vasavada, A.R., Bandfield, J.L., Greenhagen, B.T., Hayne, P.O., et al.: Lunar equatorial surface
temperatures and regolith properties from the diviner lunar radiometer experiment. J. Geophys.
Res.-Planet. 117(4) (2012)

16. Washington University in St. Louis: PDS Geosciences Node Data and Services: LRO LOLA.
http://pds-geosciences.wustl.edu/missions/lro/lola.htm

17. Wettergreen, D., Tompkins, P., Urmson, C., Wagner, M., Whittaker, W.: Sun-synchronous
robotic exploration: technical description and field experimentation. Int. J. Robot. Res. 24(1),
3–30 (2005)

18. Whittaker, W.L., Kantor, G., Shamah, B., Wettergreen, D.S.: Sun-synchronous planetary explo-
ration. In: AIAA Space (2000)

19. Wieczorek, M.: The gravity and topography of the terrestrial planets. Treatise Geophys. (2007)

https://pds.nasa.gov/
http://pds-geosciences.wustl.edu/missions/lro/lola.htm


Towards Visual Teach and Repeat for
GPS-Denied Flight of a Fixed-Wing UAV

M. Warren, M. Paton, K. MacTavish, A. P. Schoellig and T. D. Barfoot

Abstract Most consumer and industrial Unmanned Aerial Vehicles (UAVs) rely
on combining Global Navigation Satellite Systems (GNSS) with barometric and
inertial sensors for outdoor operation. As a consequence, these vehicles are prone
to a variety of potential navigation failures such as jamming and environmental
interference. This usually limits their legal activities to locations of low population
density within line-of-sight of a human pilot to reduce risk of injury and damage.
Autonomous route-following methods such as Visual Teach and Repeat (VT&R)
have enabled long-range navigational autonomy for ground robots without the need
for reliance on external infrastructure or an accurate global position estimate. In this
paper, we demonstrate the localisation component of VT&R outdoors on a fixed-
wing UAV as a method of backup navigation in case of primary sensor failure. We
modify the localisation engine of VT&R to work with a single downward facing
camera on a UAV to enable safe navigation under the guidance of vision alone. We
evaluate the method using visual data from the UAV flying a 1200m trajectory (at
altitude of 80 m) several times during a multi-day period, covering a total distance
of 10.8km using the algorithm. We examine the localisation performance for both
small (single flight) and large (inter-day) temporal differences from teach to repeat.
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Through these experiments, we demonstrate the ability to successfully localise the
aircraft on a self-taught route using vision alone without the need for additional
sensing or infrastructure.

1 Introduction

With increasing use in civilian airspace, UAVs need to be able to navigate reliably
and safely using a variety of redundant sensing modalities. Typically, low-cost, com-
mercial UAVs (Fig. 1) used for mapping and surveillance tasks rely on a combination
of GNSS such as the Global Positioning System (GPS) in combination with baro-
metric, airspeed and inertial sensing to navigate outdoors. However, these sensors
are prone to both malicious and environmental interference (e.g., jamming, poor sky
view, obstruction and mechanical stress). This means that airspace regulators often
tightly restrict their operation to line-of-sight and low-population-density locations
to minimise risk.

Autonomous route-following methods such as VT&R [12] have enabled long-
rangenavigational autonomy for ground robotswithout relyingonexternal infrastruc-
ture or an accurate global position estimate. By first building a visualmapwhile under
control of a human operator (the ‘teach’ phase), VT&R then allows the vehicle to
autonomously re-follow the taught path (the ‘repeat’ phase) by matching sensor
observations back to the original map in a local co-ordinate frame and providing
path-tracking errors to a suitable vehicle controller [22]. We seek to adapt VT&R
for use on a fixed-wing UAV as a demonstration of a low-cost navigation method in
case of GPS, communications, or other navigational failure.

We see the applicability of VT&R on aircraft in two different cases: (1) a method
of emergency return during an exploratory or traditional mapping flight, by follow-
ing the ‘visual breadcrumbs’ home, and (2) acting as a complement or complete
replacement of primary navigational systems when performing flights over repeat
trajectories (e.g., inter-warehouse delivery or linear infrastructure inspection) in cases
where GPS may be unreliable (e.g., due to poor sky view or jamming). This type of

Fig. 1 The PrecisionHawk Lancaster fixed-wing UAV used in experiments, seen here during take-
off. Note the payload bay in the centre of the fuselage housing the downward-looking camera used
for experiments. (Image: François Pomerleau)
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Fig. 2 Post-MLESAC
matches (orange lines) and
features (orange circles, size
denotes octave) during
localisation for a repeat
flight. Large orientation
differences between teach
and repeat phases account
for the large pixel offsets
seen in matching, while a
high number of inliers is
representative of the short
temporal difference between
teach and repeat (∼20min)
in this case

safety net could open the door to operation beyond line-of-sight in more urbanised
environments, and in less than ideal physical conditions.

To date, VT&R has been primarily demonstrated on ground vehicles following
restricted routes. In this paper, we demonstrate a core aspect of VT&R adapted
to a fixed-wing UAV: accurately localising during a repeat flight over a pre-taught
route using a downward-facing, onboard camera in a large-scale, outdoor experiment
(Fig. 2). This demonstration of VT&R on a UAV has some critical differences to a
ground-based robot: (1) reliance on stereo for accurate scale is not feasible due
to the ratio of practical baseline to altitude; (2) perspective of the scene can be
radically different due to changes in altitude, orientation and position; meaning map
observations can often be fleeting, (3) trajectories are no longer restricted to specific
routes as there are few traversability concerns like that of ground robots when flying
at sufficient altitude.

This paper presents the first demonstration of the VT&R localisation engine, or
any visual route-followingmethod, in this scenario.Wepresent performance statistics
related to localisation robustness and algorithm speed and discuss the implications
and challenges of adapting VT&R to this scenario. To sufficiently limit the scope of
this paper, we leave a number of tasks to future work; including closing the control
loop on navigating the aircraft along the autonomously taught route, the planning
of an efficient return route, and identifying when traditional navigation has failed in
order to switch over to the emergency return mode.

The rest of this paper is outlined as follows: Sect. 2 describes related work, Sect. 3
outlines the monocular VT&R framework and application-specific modifications,
Sect. 4 describes the vehicle, datasets, and experiments used to test the VT&R local-
isation engine, Sect. 5 demonstrates the results of experiments,while Sect. 6 discusses
the outcomes and challenges of this work. The paper is concluded in Sect. 7.
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2 Related Work

Today, most small-scale UAVs utilise GPS and inertial measurements in a filtered
framework for 6 Degree-of-Freedom (DOF) state estimation [20]. However, many
civil aviation authorities have made clear, through statements and regulations [8,
15], that for UAVs to perform routine operations over urban and other sensitive
environments, reliance solely on GPS and radio-based communication for accurate
navigation is not sufficient. New technology is attempting to bridge or mitigate this
gap with improved air-to-air communications, localisation from existing infrastruc-
ture, and the ability to land safely in the event of an emergency.

Non-GPS-based navigation on aerial vehicles has seen increased interest in recent
years due to these regulatory and operational issues, with many demonstrations in
GPS-denied environments [9, 10, 29] using LiDAR [5] and stereo [16], visual-
inertial systems [1, 26], and with vision alone [11, 18]. In most cases of outdoor,
vision-only navigation, the literature has mostly been restricted to visual odometry
or relatively small maps with few online examples [6, 17], mostly due to the mass
and compute limitations on board the aircraft, or sometimes offloading processing
to a more powerful ground-based computer with a high-rate data link.

Visual route-following on pre-built maps has been studied for some time [14].
As a modern technique, VT&R has been extensively tested in ground-based appli-
cations with stereo cameras [12], with LiDAR [19], and with multiple experiences
for long-term autonomous navigation [24], and has made use of colour-constant
imagery to improve resistance to lighting change [23]. It has also been tested with
monocular cameras by taking advantage of the ground-plane assumption [7] and has
seen preliminary testing in the air on board a Micro Aerial Vehicle (MAV) [25],
demonstrating its wide applicability. Our work differs from [7] in that it does not
make strict assumptions about the ground plane nor require continuous knowledge
of the camera altitude, as in [25].

3 Methodology

In this paper, we intend to demonstrate robust localisation on imagery gathered
from a fixed-wing UAV suited to the task of autonomous route following, without
requiring input from additional sensors. We use the same software system as [24],
adapted to suit a monocular front end for the single camera on board the aircraft.
Similar to [24], the algorithm consists of separate teach and repeat phases. During
the teach phase, the aircraft flies under control of an on-board autopilot during a
primary data gathering task, analagous to the human operator used in ground-vehicle
demonstrations, inserting the visual observations from this privileged experience into
a relative map of pose and scene structure. During the repeat phase, without reliance
on GPS or other sensors, the vehicle should autonomously re-follow the route by
visually localising to the map of the privileged path. The vehicle repeats a path
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by sending high-frequency localisation updates to a path-tracking controller [21].
While such a system has been demonstrated online on ground vehicles (by using a
human operator and stereo vision to follow the privileged path) [24], in this paper
we demonstrate the localisation engine of VT&R using datasets and leave closing
the control loop to future work. The remainder of this section provides details on the
mapping process (Sect. 3.2), Visual Odometry (VO) (Sect. 3.3) and the localisation
process (Sects. 3.3–3.3.3).

3.1 Map Building

The map used in our system, which we refer to as a Spatio-Temporal Pose Graph
(STPG), is depicted in Fig. 3. This data structure is an undirected graph, G =
{V, Es, Et }, where V is a set of vertices, Et is a set of temporal edges, and Es

is a set of spatial edges. Vertices, each with an associated reference frame, F−→, store
raw sensor observations and triangulated 3D landmarks with associated covariances
and descriptors. Landmarks and associated descriptors are stored in the first vertex at
which the feature corresponding to the landmark is observed. An edge in the graph
links vertices metrically with a relative 6 DOF SE(3) transformation with uncer-
tainty. Temporal edges (blue lines) link vertices that are temporally adjacent, while
spatial edges (green lines) link vertices that are temporally distant yet spatially close,
i.e., from the repeat to the teach pass. Temporal edges are furthermore denoted as
privileged if they were collected while the aircraft was self-teaching a route under
autopilot control or repeated if the aircraft was following a privileged route; this
distinction is illustrated in Fig. 3 as solid and dashed lines, respectively. We define an
experience as a contiguous collection of vertices linked by temporal edges. Mapping

Fig. 3 Overview of the localisation problem and the spatio-temporal pose graph (STPG) data
structure used as our map. We wish to estimate the unknown transform and uncertainty, {T̂bd , Σ̂bd }
(dashed, purple line), between the live vertex, Vb, and the target vertex, Vd , in the privileged path
(solid blue line). This is achieved bymatching all landmarks in Vb to landmarks observed in the map
window (dashed, red rectangle), transformed into the coordinate frame of Vd . This setup allows for
outlier rejection and a simple optimisation of {T̂bd , Σ̂bd } against a map of locked landmarks with
uncertainty
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(a) High-rate: frame-to-vertex VO. Landmark
estimates (black stars) at the latest vertex are
locked, and the motion estimate is solved using
new matches from the live frame (purple trian-
gle) to the last vertex (black triangle) while us-
ing a smoothing trajectory prior (black dot).

(b) Low-rate: sliding-window vertex bundle ad-
justment. Transforms and landmarks connected
to unlocked vertices (white triangles) are opti-
mised and those connected to locked vertices
(black triangles) are locked.

Fig. 4 VO pipeline showing the parallel high-rate, approximate a and low-rate, accurate b estima-
tors similar to [17]

consists of adding either a privileged or autonomous experience to a new or existing
STPG while computing data products and temporal edge transformations through a
monocular VO pipeline, which is illustrated in Fig. 4. For each incoming frame (the
live frame), sparse visual features are extracted and their descriptors computed. Fea-
tures are represented by a single measurement, {y,Y}, where y is the 2 × 1 keypoint
position of the feature and Y is the 2 × 2 covariance on the measurement. We use
oriented Speeded-Up Robust Features (SURF) [4] to detect and describe keypoints
and calculate Y based on the octave and Hessian of the response. When two mea-
surements are matched through their descriptors, the 3D landmark is triangulated
via the inverse camera model and the relative transform between the cameras to
obtain a 3D landmark including uncertainty, {p,Φ}, where p is the 4 × 1 positional
mean in homogeneous coordinates and Φ is the uncertainty represented by a 3 × 3
covariance.

3.2 Visual Odometry

To initialise the VO, features and descriptors are extracted from the first image, and
thenmatched against those from subsequent frames. Both an Essential matrix and 2D
Homography matrix are computed using MLESAC [28] to extract a relative trans-
formation for each new frame, subject to a Geometric Robust Information Criterion
(GRIC) test [27] to select the best estimate. Once the inlier count for each frame-
to-frame transformation drops below a threshold (as an analogue for translational
motion), landmarks are triangulated (subject to a re-projection and plane-distance
test to eliminate gross outliers) and the pair of frames placed as the first two vertices
in the graph, with the computed transformation inserted as the edge. To initialise
the scale appropriately, a ground plane is fitted to the triangulated landmarks from
which the height from the scene is extracted, then the true height from the ground is
retrieved from a GPS position at a similar time-point to find the scaling parameter.
This is then applied to the transformation and landmarks. In practice, any approxi-
mate scaling data can be used, such as from a calibrated barometer, laser altimeter,
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or other suitable sensor. Perfect scaling is not crucial to the function of VT&R, drift
of global estimates is easily handled.

For subsequent frames, extracted features from the live view are matched via their
appearance to locked landmarks in the latest graph vertex (a.k.a., keyframe) and
motion computed (Fig. 4a) by solving the Perspective-Three-Point (PnP) problem
[13], again using MLESAC. New landmarks are triangulated from new matches that
are not associated with an existing landmark, subject to the same plane-distance and
re-projection tests to remove outliers. A trajectory (velocity and position) estimate
is produced at frame rate from the optimisation and can be queried to predict future
motion. This prediction is used to project landmarks into the new frame (reducing
image search space for matching) and compensates for latency between the localisa-
tion system and the path-tracking controller. If the translational or rotational motion
is large, or the number of matched features between the live view and the last graph
vertex drops too low, the live frame is inserted as a new vertex in the graph; oth-
erwise, it is discarded. Upon insertion of a new vertex, a temporal edge linking to
the previous vertex is added. If the aircraft is in GPS-based teach mode, this edge is
flagged as privileged. Following vertex insertion, bundle adjustment is performed on
a sliding window of the latest vertices in the graph (Fig. 4b) using our Simultaneous
Trajectory Estimation And Mapping (STEAM) [2] engine; smoothing factors are
added to the relative transforms to ensure stability in the estimated trajectory during
areas of poor feature tracks. After optimisation, the updated poses, landmarks, and
their uncertainties are re-inserted into the graph.

3.3 Localisation

When repeating a path, the overall objective of the algorithm is to estimate the
posterior transform and uncertainty, {T̂bd , Σ̂bd}, between the most recent vertex in
the live run, Vb, and the estimated closest vertex in the privileged path, Vd . This is
achieved by minimising the measurement error of landmarks in the map window
(red, dashed rectangle in Fig. 3) observed by Vb. Throughout the algorithm, we make
use of the prior term, {Ťbd , Σ̌bd}, obtained by compounding the uncertain transforms
[3],

{Tba,Σba}, {Tac,Σac}, {Tcd ,Σcd}, (1)

which are computed through previous VO and previous localisation estimates. The
localisation pipeline consists of the following main steps: (a) Landmark Transfor-
mation, (b) Localisation Matching, and (c) State Estimation.
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3.3.1 Landmark Transformation

The first step of localisation is to transform all landmark means and uncertainties
in the active map window from their respective coordinate frames in each vertex
to F−→d , the coordinate frame of Vd and the one in which localisation is to be com-
puted.We use the same process as Paton et al. [24] to transform landmarks expressed
in a nearby vertex map frame, F−→m , with mean and covariance, {pm,Φm}, to F−→d ,
giving {pd ,Φd}, ensuring uncertainty is appropriately transformed along with the
landmark co-ordinates. This process is carried out on all landmarks in the map win-
dow to produce a set of landmarks with 3D position and uncertainty, all expressed
in the privileged frame, F−→d . The locations and uncertainties of all landmarks are
transformed, even if they are not matched, as these help refine the matching process,
making it faster and more robust.

3.3.2 Localisation Matching

The goal of localisation matching is to associate every feature observed by Vb to a
landmark in the map window, even if the feature is not associated with a landmark
in Vb. The process begins with labeling all features in the live vertex as unmatched.
Vertices in themapwindow are sequentially examined starting from Vd in an outward
search pattern. We choose to center the search around the privileged target vertex
as a heuristic for prioritising landmarks that have the lowest uncertainty in the tar-
get privileged frame. For every new vertex visited, the transformed map landmarks
associated with this vertex are projected into the camera frame of vertex Vb using the
prior term, {Ťbd , Σ̌bd}. Each feature associated with this vertex is then checked for
matching feasibility to the unmatched live features by comparing keypoint position
and descriptor appearance. This process continues until one of three criteria are met:
(i) a sufficient number of matches are found, (ii) the amount of time has surpassed
an allowed limit, or (iii) the map window of vertices is exhausted. As the process of
comparing visual features is costly, this process is the most computationally expen-
sive step of localisation, but it is performed in parallel to the main VO pipeline for
each new vertex on the Graphics Processing Unit (GPU), meaning online operation
is possible. Upon completion of localisation matching, the problem is set up so that
there are candidate features in Vb associated with landmarks in Vd . This information
is sent through a MLESAC PnP estimator to initialise the relative transform between
Vb and Vd (as this may be significantly different from the prior) and remove outliers.
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3.3.3 State Estimation

We now seek the optimal posterior,

{T̂bd , Σ̂bd}, (2)

given the prior term, {Ťbd , Σ̌bd}, as well as associated data between Vb and map
landmarks in the coordinate frame of Vd . This can be achieved by minimising the
negative-log-likelihood cost function:

J (Tbd) = 1

2

M∑

j=1

e j TR−1
j e j + 1

2
eTR−1e, (3)

with the first term in J summing the squared reprojection error of map landmarks
and the second term encoding the transform prior. Given a map landmark, j , with
mean and uncertainty, {pd, j ,Φd, j }, expressed in the co-ordinate frame of Vd and
a monocular measurement of j , y j , with uncertainty, Y j , expressed in the camera
frame of Vb, the reprojection error is defined by

e j = y j − g(Tbdpd, j ), (4)

R j = Y j + G jTbdDΦd, jDTTT
bdG

T
j , (5)

where g(·) is the monocular measurement model and G j is its Jacobian (evaluated
at pb, j = Tbdpd, j ), with

D =

⎡

⎢⎢⎣

1 0 0
0 1 0
0 0 1
0 0 0

⎤

⎥⎥⎦ . (6)

This weights each error by uncertainty in the measurement and the map. The second
term of Eq. (3) constrains the optimisation problem by the prior with

e = ln(ŤbdT−1
bd )∨, R = Σ̌bd , (7)

where ∨ is the inverse operator of ∧ [3]. To obtain an optimal posterior estimate,
T̂bd is iteratively refined in a nonlinear least-squares optimisation using our STEAM
engine [2]. In the absence of any matches between the live image and map, the prior
estimate (based on VO) is returned.
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4 Experimental Setup

To evaluate the performance of the modified VT&R localisation in this new appli-
cation, a series of experiments were conducted offline using a monocular dataset
collected using a PrecisionHawk Lancaster Rev IV (Fig. 1). This aircraft is the tar-
get system for the developed algorithms, with a take-off weight of ∼2.5kg and
wingspan of 1.5m. The typical flight time is 30–45 min. This UAV was fitted with a
custom payload consisting of a single Point Grey Chameleon machine-vision cam-
era, configured to face straight down from the payload bay. This camera uses a
1/2 ” global shutter CMOS sensor, with an approximately 90◦ × 80◦ Field of View
(FOV). Bayer-encoded imagery is captured at ∼22Hz and 1280 × 1024 pixel reso-
lution (converted to grayscale and down-sampled to 640 × 512 for this experiment).
Imagery is recorded using an on-board, 1.6Ghz Intel Atom PicoITX computer along
with GPS data at 5Hz from an on-board Ublox LEA-6N receiver. The data was gath-
ered at a disused open-pit gravel mine in Sudbury, in central Canada, during early
summer. This site consists of dirt roads, both undisturbed and naturally reforested
boreal forest and exposed regolith from prior mining operations. The dataset consists
of multiple flights using the custom payload, covering a square box pattern (Fig. 5)
with segments approximately 400 m in length. This pattern is flown in sequence,
multiple times per flight. Each flight is approximately 15–25 min in duration, with
1–7 repeats per flight, and these are split into individual ‘experiences’ that cover a
full loop of the flown square pattern. A selection of these are used in the experiments
for this paper, shown in Table1, chosen to cover a variety of test scenarios (other
flights were for different test configurations).

We test the performance of VT&R localisation on the airborne data by experi-
menting with these selected sets of flights, focusing on increasing time differences
between the initial teach pass and repeat to evaluate the performance of the system
under appearance change and compare to our well established ground-based system.
For each experiment, performance is evaluated by examining both relative uncer-
tainty of the UAV and inlier matches during localisation in the repeat phase. The

Fig. 5 The configuration of
the flight path. Start and end
of route at bottom left corner.
Note forested areas
in top-left and right of image
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Table 1 Overview of the selected experiences in the Sudbury dataset

ID Flight Start time condition Conditions

e0 2 14/6/2016 12:53 sunny, calm

e4 2 14/6/2016 13:05 sunny, calm

e5 4 14/6/2016 14:57 sunny, calm

e11 4 14/6/2016 15:14 sunny, calm

e12 8 14/6/2016 17:54 sunny, calm

e18 8 14/6/2016 18:07 sunny, calm

e19 10 15/6/2016 12:07 sunny, windy

e24 10 15/6/2016 12:19 sunny, windy

e25 15 16/6/2016 12:02 sunny, windy

Table 2 Overview of the configurations used for localisation experiments

ID Live experience Privileged experience ΔT teach to repeat
hh:mm (24 hr hh:mm)

g0 e4 e0 0:09

g1 e24 e19 0:12

g2 e18 e12 0:13

g3 e11 e5 0:17

g4 e25 e19 23:51 (−0:09)

g5 e19 e0 23:17 (−0:43)

g6 e25 e0 47:04 (−0:54)

g7 e5 e0 2:07

g8 e12 e0 5:04

makeup and included experiences in each experiment are listed in Table2. These
experiments can be grouped into three general categories: (1) same-flight repeats
(g0–g3), (2) temporally close repeats (g4–g6), and (3) temporally distant repeats
(g7–g8).

Experiments g0–g3 include teach and repeat from the same flight (the first pass
of the pattern to the last). In all these experiments, the time difference between teach
and repeat is less than 17 min. Experiments g4–g6 include teach and repeat from
flights that are temporally close, but different days. Experiment g4 includes a repeat
approximately 24 h after the teach, but with only a 9-min time-of-day difference.
Experiments g5 and g6 are one and two days after the teach, but 43 and 54min
temporally distant from the teach. Finally, experiments g7–g8 are conducted on the
same day, but approximately 2 and 5 h after the teach. We use both grayscale and
colour-constant imagery [23] in all experiments to ensure the best performance in
VO and localisation.

By examining the performance of VT&R localisation in this way, we can estab-
lish the temporal limitations on safe and accurate repeats for emergency returns,



492 M. Warren et al.

and make comparisons to the performance of VT&R localisation in the more tradi-
tional ground-vehicle environment.Weuse the localisation uncertainty as the primary
metric for judging localisation success, and define it as the one-standard-deviation
uncertainty of our 3D translation estimate relative to the privileged path. This tells
us how uncertain we are of the distance of the vehicle to the privileged path. This is
plotted as a Cumulative Distribution Function (CDF), where better performance is
indicated by lower uncertainties over a greater percentage of the path. It is important
to note that while uncertainty is calculated at every stage of the algorithm from key-
point detection to landmark transformation, we have not yet performed a rigorous
evaluation of our uncertainty estimates with respect to ground truth to ensure con-
sistency. Therefore we treat this metric as a way to compare relative performance
between experiments and do not necessarily trust the exact scale of our uncertainty
estimates.

We also include the inlier count for each localisation on the repeat path, and use
a count of 15 inliers as the minimum number to constitute a successful localisation.
Fewer than 15 inliers generally indicates either a poor or degenerate estimate.We plot
this as inlier count vs. time since repeat start, grouped into three figures corresponding
to the experiment type described above, to highlight the reliability of localisation over
the course of each flight. Each experience is from 120 to 170s long, andwe normalise
the inlier count vs. time results to 170s to improve the consistency of comparison
when discussing sections that cover the same area.

5 Results

Results are presented in Figs. 6 and 7. In Fig. 6, it can be seen that short time differ-
ences (< 20 min) mean the probablility of successful localisation is high (Table3).
This corresponds well with our intended application of emergency return, where
the repeat would typically be conducted in the same flight as the teach. Since the
aircraft’s typical flight time is 30–45 min, these results indicate that return within a
single flight is feasible and reliable. With increasing temporal difference, however,
the average uncertainty grows rapidly. Performance rapidly drops after 45 min dif-
ference (with a total time difference of 24 h). At 2 h (g7) and 5 h (g8) difference
from teach to repeat, uncertainty is high and localisation performance is significantly
degraded (Table3).

These results are corroborated by plots of localisation inliers over time (Fig. 7).
For experiments g0–g3 (Fig. 7a), localisation performance is strong, with the number
of inliers at each localisation step approximated by the number (∼500) of migrated
points. Fig. 7b, c highlight the reduced performance of later repeats. The algorithm
uses 1GB RAM and runs at ∼25Hz on an NVIDIA Tegra TX2, which exceeds the
framerate used in the dataset of ∼22Hz.
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Fig. 6 The CDF of
translational uncertainty for
each experiment, in
increasing temporal time
difference. g0–g3 (solid
lines) are within the same
flight, g4–g6 (dashed lines)
are different days but within
9–54 min of the teach and
g7–g8 (dash-dot lines) are
large temporal differences (2
and 5 h respectively)
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Table 3 Localisation performance for each experiment. Success is an inlier count >15

ID Localisation Successful %

keyframes localisations

g0 880 880 100.0

g1 938 932 99.4

g2 824 824 100.0

g3 832 832 100.0

g4 999 978 97.9

g5 797 701 88.0

g6 775 530 68.4

g7 664 443 66.7

g8 526 230 43.7

6 Discussion, Challenges and Future Work

These initial results show the concept of a vision-based UAV emergency naviga-
tion system is feasible using VT&R as a basis. This first prototype has generated
valuable lessons and highlighted some significant challenges for future research, as
highlighted below.

First, the localization performance (Fig. 6) when repeating over a path deteriorates
an order of magnitude faster than experienced on ground vehicles [23]. Results
from Paton et al. showed that with colour-constant imagery, strong performance in
localisation during repeat was possible 7 h after the initial teach. In the airborne case,
2 h saw significant loss of accuracy and reliability. This is due to a number of factors:
(1) A reduced perspective constraint due to unrestricted paths. When localising,
minimising the perspective change from the live to the map view enhances reliability
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Fig. 7 Inlier counts for each
keyframe during the repeat
phase for the three grouped
sets of experiments: a g0–g3,
b g4–g6, c g7–g8
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(a)Temporally close experiments.

(c)Temporally distant flight experiences.
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(b)Temporally close experiments, diff. days.
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in matching descriptor-based features. For ground vehicles, the restricted paths and
locally 2D surface makes this an easier task. In the air, an un-closed control loop,
unrestricted paths and 6-DoFmotionmean perspective can significantly change from
teach to repeat. (2) Significant shadow dependent appearance change. In the airborne
perspective, particularly over forests (which have high depth variation), shadows
move rapidly and the ‘opposition effect’ (bright halos seen around an object’s shadow
when illuminated directly from behind) means that features are generally tracked for
shorter distances.

This latter potential cause is highlighted by certain segments of the flight path.
During the first and last segments of flight (seconds 0–30 and 170–180), the imagery
consists of grass and exposed regolith, which tends to show better invariance to
appearance change than areas that cover forest (seconds 30–60, and 140–170). The
appearance change of these areas for different experiments are highlighted in Fig. 8.



Towards Visual Teach and Repeat for GPS-Denied Flight of a Fixed-Wing UAV 495

Fig. 8 Sample images from differing regions of the dataset during experiment g0 (top row), exper-
iment g8 (centre row) and experiment g9 (bottom row). Exposed regolith (left column, approx. 70 s
since start of repeat) and grass (centre colum, 20s since start of repeat) are significantly more robust
to appearance change than forest (right column, 40s since start of repeat). Note change in shadow
and movement of halo due to the opposition effect in the right-hand column (identify the tall tree
in centre right of image to assist in recognising scene)

Contributing to the significant appearance change seen in forests are the rapidlymov-
ing shadows generated in small regions between tall trees, and less robust descriptors
generated from typically smaller octaves due to significant fine detail.

Apart from these application specific challenges, the general use of feature
descriptors presents the same limitations as that for ground vehicles: rapid appear-
ance change due to cloud shadowing or featureless environments will reduce local-
isation performance. We have addressed these challenges through the development
of colour-constant imagery [23] andMulti-Experience Localisation (MEL) [24] (see
below). However, the airborne case is less strictly reliant on continuous localisation
as the return trajectory does not need to be strictly the same. We expect long periods
of dead-reckoning where the aforementioned factors cause localisation failure, and
during the first stage of an emergency return (the turn-around). Our tests show a VO
translational error of approximately 1% over the trajectories tested, in line with cur-
rent state-of-the-art. We have tested with other feature types such as Oriented FAST
and Rotated BRIEF (ORB), but have seen similar localisation performance.
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The second major lesson is reflected in the shortage of results that leverage mul-
tiple experiences, as demonstrated for ground vehicles in [24], which is a current
major focus for our lab. While not strictly required for emergency return, a multi-
experience framework would remain useful in applications that require repeat tra-
jectories (such as deliveries) in GPS-denied or GPS-intermittent areas. Given rapid
appearance change in the airborne case, the need for accurately timed bridging expe-
riences is critical, and effectively requires continuous flights with 10–15 min delay
in order to generate enough inlier matches to successfully estimate pose relative to
the original path. This is logistically difficult to implement feasibly, so such investi-
gations are left to future work.

Since the primary application is emergency return, the algorithm will be further
developed in conjuntion with a path-tracking controller suited to guidance of a fixed-
wing aircraft. This will build on previous work for ground vehicles [22]. To improve
localisation performance during large temporal differences, we are exploring tech-
niques to learn place-specific binary descriptors that aremore invariant to appearance
change and localisation on data captured from differing sensors.

7 Conclusions

This paper presented the application of a monocular VT&R localisation engine on
an outdoor, fixed-wing UAV. A key contribution is the demonstration of localisation
using only a single camera in a configuration as-yet untested outdoors. Through an
analysis of localisation performance and estimated uncertainty, we have shown that
our algorithm is able to provide metric localisation to a privileged experience during
a single flight within the capabilities of the PrecisionHawk Lancaster, such that it
can be used for emergency return. Performance was also evaluated with increasing
temporal difference, showing the current limitations of the algorithmgiven significant
and rapid appearance change.

Acknowledgements Thanks to PrecisionHawk, MITACS, and the NCFRN for project funding,
Ethier Sand and Gravel for property access to gather data, and Haowei Zhang for logistical support
and data processing.
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Local Path Optimizer for an Autonomous
Truck in a Harbor Scenario

Jennifer David, Rafael Valencia, Roland Philippsen and Karl Iagnemma

Abstract Recently, functional gradient algorithms like CHOMP have been very
successful in producing locally optimal motion plans for articulated robots. In this
paper, we have adapted CHOMP to work with a non-holonomic vehicle such as an
autonomous truck with a single trailer and a differential drive robot. An extended
CHOMP with rolling constraints have been implemented on both of these setup
which yielded feasible curvatures. This paper details the experimental integration of
the extended CHOMP motion planner with the sensor fusion and control system of
an autonomous Volvo FH-16 truck. It also explains the experiments conducted on the
differential-drive robot. Initial experimental investigations and results conducted in
a real-world environment show that CHOMP can produce smooth and collision-free
trajectories formobile robots and vehicles as well. In conclusion, this paper discusses
the feasibility of employing CHOMP to mobile robots.

1 Introduction

The motivation of this work comes from the Cargo-ANTs EU project1 which aimed
to create smart Automated Guided Vehicle (AGVs) and Autonomous Trucks (ATs)
that can cooperate in shared workspace for efficient and safe freight transportation
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in main ports and freight terminals [13]. The whole context of the project invokes
research questions on multi-robot/vehicle path planning of AGVs and ATs in a con-
strained outdoor environment like the container terminal. Though there are different
approaches available for solving multi-robot/vehicle path planing like centralized
and decentralized methods, a dedicated navigational framework called SPADESwas
proposed in [5].

SPADES (Simultaneous Planning and Assignment in Dynamic EnvironmentS)
framework (Fig. 1) is based on the multi-robot task allocation methodology similar
to [8]. It consists of a global task assignment and a global path planner that runs on
the central station of the harbour and a local interconnected path adaptor running on
individual vehicles. The global task assignment module assigns tasks to each of the
vehicles based on the classical Hungarian algorithm [6] which minimizes the overall
path length of all the vehicles. Thus, under a static environment, an optimal task (e.g.
A vehicle picks N container, B vehicle picks O container, etc.) is given to each of
the vehicles from the set of its all possible tasks (A vehicle can pick N or O and B
vehicle can pick N or O, etc.) The minimization criteria is the path length of each of
the vehicle,which is obtained from the global path plannermodule. Thismodule finds
all the possible paths between the vehicle-container-goal combinations. The cost of
each combination is a simple navigation function that makes the overall assignment
and planning faster. The resulting trajectories are later continuously refined by a local
path adaptor to avoid collisions with dynamic obstacles or to avoid conflicts with
other paths. When encountered with dynamic obstacles, the optimal paths assigned
to all the vehicles can loose their optimality due to the path refinement by the local
path adaptor. However, it always produces near-optimal solutions. This is because the
conflicts are resolved locally by taking into account the trajectories of other vehicles.

In this paper, we detail on the lower navigational framework of SPADES frame-
work by detailing on the adaptation of the local path adaptor for a non-holonomic
vehicle, its implementation details on the Volvo FH-16 truck and the real-world
experiments conducted on it. We also compare the results with a turtlebot2 differen-
tial drive robot to analyze the extent of this approach. The next section details on the
recent works related to local obstacle avoidance techniques used for multi-robot path
planning. Section3 details the local path adaptor and the approach used for adapting
it to a mobile robot. The implementation details are explained in Sect. 5 followed by
the vehicle software architecture. The results and discussions are explained in the
final Sects. 6 and 7 with concluding remarks at Sect. 8.

2 Related Work

There is a large body of literature in motion planning for multiple robots in general
and intelligent vehicles in particular [7]. For local path adaptation,many of the simple
obstacle avoidance techniques [12] could be used. One of the well-known reactive
techniques like Reciprocal Velocity Obstacle (RVO) approach [15] is suitable for
multi-vehicle scenario. This approach extends the older Velocity Obstacle concept
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Fig. 1 SPADES architecture - Simultaneous Planning and Assignment in Dynamic EnvironmentS

[10] to appropriately address situations where interacting ATs can be assumed or
designed to share the responsibility for avoiding collisions with each other. There are
also recent generalizations to RVOwhich are able to handle significant kinematic and
kino-dynamic constraints [1]. It should be noted that this type of reactive avoidance
technique is more beneficial for on-board execution on each vehicle, as it increases
the safety in unforeseen situations. However, this could break down at resource
bottlenecks, for instance if there is a single gate through which all traffic must flow.
This also lowers the throughput of the system due to non-optimal solutions.

The use of gradient based path optimization approaches have been very successful
for articulated robots. They are fast and produce locally optimal solutions. For the
SPADES framework, there is a need for a very fast reactive approach to be coupled
with the task assignment. This is because in case of a very tight local path conflict
situation, there is a need for a re-planning from the global path planner from the
central station. Hence, in this paper, we seek to adopt the CHOMP algorithm by [9]
as the local path adaptation algorithm for SPADES. It is used for optimizing the
path generated by the global path planner, in this case, the E∗ algorithm [11] for
a group of autonomous vehicles depending on the local obstacles. In this paper,
the CHOMP algorithm has been extended to mobile robot/vehicle by incorporating
simple constraints on the optimizer. In Sect. 3, a brief explanation on the concept of
CHOMP algorithm and its extension is elaborated.
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3 Chomp Preliminaries

CHOMPstands forCo-variantHamiltonianOptimization forMotionPlanningby [9].
It is a trajectory optimization technique used formotion planning in high-dimensional
spaces. It produces near-optimal solutions without violating dynamical constraints.
CHOMP iteratively improves the quality of an initial trajectory by optimizing an
objective functional that trades off between desired qualities such as smoothness
and obstacles avoidance. An additional merit of CHOMP is inherent invariance to
the choice of trajectory parametrization used. Given a trajectory ξ : [0, 1] → C, i.e.
a function mapping time to robot configurations, CHOMP optimizes a functional
U : ξ → R, which maps each trajectory ξ in the space of trajectories ξ to a real
number. In the original formulation of CHOMP, an objective given as follows was
optimized:

U [ξ] = Fobs[ξ] + λFsmooth[ξ], (1)

where the termFsmooth penalizes the trajectories based on dynamical criteria such as
velocities and accelerations to encourage smooth trajectories. At the same time, the
termFobs penalizes proximity to objects in the environment to encourage trajectories
that clear obstacles. In order to integrate CHOMP within SPADES architecture for
a fleet of AGVs, it has to be adapted to include the non-holonomic constraints of the
robot/vehicle. In this section,we elaborate themethod to incorporate these constraints
in CHOMP to be used with such robot/vehicles.

The main goal is to incorporate curvature constraints into a trajectory optimizer
such as CHOMP. The problem, however, is that there may be no feasible curvature-
constrained trajectory in the basin of attraction of the initial guess trajectory, partic-
ularly in our system where the initial guess currently involves significant simplifica-
tions.We see twooptions: either ensure that the initial guess trajectory is always good,
or employ an optimizer that can switch basins of attraction. This implied system-wide
trade-offs are beyond the scope of this paper and part of ongoing research.

In order to solve this, different methods were tried out without changing the
nature of CHOMP, which are elaborated in [2]. In this paper, a constrained CHOMP
approach as mentioned by [9] was derived, thus, generating feasible trajectories for
non-holonomic vehicles. For the Cargo-ANTs project, we assume that the globally
planned path which is used to initialize CHOMP lies close enough to a trajectory that
respects curvature constraints and that a soft curvature-maximization objective func-
tion suffices to keep the optimizer from violating curvature constraints. In practice,
this approach works well in the tested settings with less-cluttered scenarios.
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4 Non-holonomic Constraints

CHOMP algorithm makes use of Lagrange multipliers to include additional con-
straints in its original form by changing the update rule. Similarly, we add the kine-
matic constraints to CHOMP, here, by explicitly including them in the optimization
step via the method of Lagrange multipliers. In order to avoid this process to hamper
real-time performance, we opted to instead include only rolling and forward motion
constraints by this mean. To this end, we formulate them as equality constraints as we
show next.2 By doing so, it increases the smoothness to a point where the curvature
constraints are respected.

Thus, we first formulate the rolling constraint and the forward motion constraints
separately here. The rolling constraint expresses the fact that the midpoint in the rear
axle has to move in a direction normal to the rear wheels axle, that is,

x ′ sin(θ) − y′ cos(θ) = 0, (2)

where x ′ and y′ are the global linear velocities of the vehicle along the x and y axis
and θ is the vehicle’s orientation.

Thus, for a trajectory of n + 1 discrete vehicle’s configurations qi = (xi , yi , θi )
�,

our rolling constraint functional can be expressed as follows

Hroll(ξ) =
n−1∑

t=0

xt+1 − xt
�t

sin(θt ) − yt+1 − yt
�t

cos(θt ). (3)

Next, to enforce forward motions, we can constraint the forward velocity in the local
vehicle’s frame to always be positive, that is,

∣∣∣∣x ′
R

∣∣∣∣ − x ′
R = 0, (4)

where x ′
R is the velocity along the x-axis of the local vehicle’s frame R. Thus, for a

trajectory of n + 1 discrete vehicle’s configurations, our forward motion constraint
functional can be expressed as follows,

H f wd(ξ) = 1

�t

n−1∑

t=0

(xt+1 − xt ) cos(θt ) + (yt+1 − yt ) sin(θt )

− ||(xt+1 − xt ) cos(θt ) + (yt+1 − yt ) sin(θt )|| .
(5)

Finally, our restrictions are summarized into the following constraint functional

H(ξ) = Hroll(ξ) + H f wd(ξ) = 0. (6)

2A C++ implementation of CHOMP using the rolling and forward motion constraints is available
at https://github.com/rafaelvalencia/path-adaptor.

https://github.com/rafaelvalencia/path-adaptor
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Now this equality constraints is added to CHOMP by expressing it as a constraint
functional H(ξ) = 0. It requires to iteratively update the trajectory as follows,

ξi+1 = ξi − 1

ηi
A−1∇U [ξi ]

+ 1

ηi
A−1C� (

CA−1C�)−1
CA−1∇U [ξi ]

−A−1C� (
CA−1C�)−1

b, (7)

with A = KK�, where K is a finite differencing matrix (see Eq.13 in [9]), C =
∂
∂ξ
H(ξi ) is the Jacobian of the constraint functional evaluated at ξi and b = H(ξi ).

Thus, trajectory updates that follow our motion restrictions are formulated using the
constraint functional H and its Jacobian C and b here.

5 Real-Time Integration

The constrained CHOMPwas integrated with the sensor fusion and control system of
the Autonomous Truck. It should also be noted that, the overall SPADES framework
has a single global path planner that computes optimal paths alongwith the global site
planner in a central station. However, in this paper, we are studying the performance
of the local path adaptor (the constrained CHOMP) for a single vehicle only and
not the SPADES framework. Hence, a global path planner like the E∗ was run on
the vehicle to generate paths for the constrained CHOMP. Also, the interference
objective of CHOMP that considers the trajectories of other vehicles to adapt its
own path has also been excluded. In this section, we detail the integration of the
constrainedCHOMPwithout the interference objective butwith the localmap, global
path planner and the control system of the vehicle.

5.1 Autonomous Truck and Sensors

A Volvo FH-16 truck with tractor 4 × 2 was used for the project Cargo-ANTs as
shown in Fig. 6. The sensors that are fitted with the truck are explained in the Fig. 2.3

Sensors include a GPS, front camera, two IBEO lux laser scanners with 7 layers, a
front RADAR and four Delphi short range RADARs at either side of the truck and
trailer. There is a navigation PC which fuses the high level sensor information to the
low-level processed perception information to keep track of the vehicle positioning
and tracking functions together with the map storage and distribution functionality.

3Courtesy: Volvo Trucks AB, Goteborg.
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Fig. 2 Sensors location in the AT

It has Intel Core i3 1.6Ghz processor running Ubuntu 14.04 and ROS Indigo version.
A global grid map is generated offline by running the truck along the confined area
and the truck is localized in this map [3]. The navigation PC is used to run the global
mapping package and store this global map as shown in Fig. 3.

During autonomous driving of the truck, this navigation PC runs the global path
planner on this stored global map and localizes its position. The E∗ algorithm gener-
ates smooth interpolatedway points from the start to the goal point. This path consists
of n number of (x,y) discretized way-points which are broken into smaller chunks
of path of 20m length ahead of the vehicle. The navigation PC also runs a dynamic

Fig. 3 Software components of an autonomous truck
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local map simultaneously which generates a poly line map representing the dynamic
obstacles. The local path adaptor, in our case, the constrained CHOMP takes the
pruned path with 20m length (start point taken as the current position and the goal
point is 20m ahead of the truck) and the local map as input for every 20s. Thus, the
constrained CHOMP produces new trajectory as it moves because the start and goal
points shift at every 1m. It then generates the desired trajectory points (x, y, th),
the desired velocities and acceleration of the path as (x ′, y′, th′) and (x ′′, y′′, th′′)
respectively.

5.2 Integration with Controller

The Cargo-ANTs block diagram is explained in Fig. 3 that details the control flow
between the navigation PC and the truck controls which is run on an application
PC. In the Fig. 3, the vehicle control and sensor fusion components of the truck or
applications runs on the application PC. The navigation applications or the ROS
interfaces runs on the navigation PC. It should be noted that the navigation PC runs
Ubuntu 14.04 and the vehicle low-level control is run under an application PC with
Windows 7 OS and Matlab. This type of flow was adapted for ease and independent
software development by various partners involved in the project. The flow of control
between the two PCs are done via UDP control protocol. The sensor data from the
truck is packed as ROS messages by the UDP to be used by the navigation PC and
the trajectory points by the constrained CHOMP are then converted back to UDP
messages to be used by the vehicle low-level controller.

A path follower controller based on [14] method is used to execute the desired
trajectory. It takes the given trajectory way-points, which is obtained as UDP mes-
sages and traces to follow it, thus, controlling the lateral motion of the truck. The
desired velocities and acceleration of the output trajectory is used for controlling the
longitudinal motion of the truck. The local path adaptor takes care of any dynamic
obstacles on the local map and avoids it. However, when a complicated scenario
arises, the local path adaptor requests for a new path from the global path planner.
There is also an emergency safety module for the autonomous truck which over takes
the truck when the distance between the obstacle and the truck is less than 0.5m.

5.3 Integration in a Turtlebot

The constrained CHOMPwas implemented with the ROSNavigation stack by devel-
oping aplugin for the local planner. The existing local planners likeTrajectoryRollout
and Dynamic Window are replaced by the constrained CHOMP. Thus, it makes use
of the base controller in the move base ROS package for controlling the turtlebot
[4].
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Fig. 4 Gazebo simulations on the truck

6 Experiments

6.1 Simulation - Autonomous Truck

The constrained CHOMP was also tested using a simulated Truck with ROS under
Gazebo simulation environment.Models of the harbour entitieswere created as xacro
models using dae sketches from Google Sketchup.4 The truck model was designed
as per the specifications of the real Volvo FH-16 truck model that was used for the
project in terms of sensor placements and dimensions of the truck chassis.

Figure4a is one of the screen-shots that explains the truck model following a path
in a simulated harbour scenario in Gazebo and RVIZ. Figure4b and c explains the
constrained CHOMP trajectory for an another simple obstacle avoidance scenario.
The initial path is given to be a straight line of length 50m from the truck’s location
which crosses an unexpected obstacle. This initial guess is iterated by CHOMP
to produce feasible, smooth and constrained trajectory for the truck. The CHOMP

4Xacro models of Harbour Environment are available at https://github.com/jenniferdavid/cargo-
ants-ros/tree/master/cargo-ants-models.

https://github.com/jenniferdavid/cargo-ants-ros/tree/master/cargo-ants-models
https://github.com/jenniferdavid/cargo-ants-ros/tree/master/cargo-ants-models
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Fig. 5 Gazebo view of the constrained trajectory for an arbitary goal for the turtlebot

parameters taken for both the scenarios are: λ = 10.00, time step of 1ms, η = 100,
number of poses in ξ = 20 for 100 iteration limits. The obstacle, (in this case, three
barrels) are inflated to 0.04m of their original sizes.

6.2 Simulations - Turtlebot

The constrained-CHOMP was tested for a differential-drive robot (Turtlebot) under
a ROS-Gazebo environment with viz visualizer. A screenshot of the simulation is
shown in Fig. 5. It also compares the trajectory generated by CHOMP with con-
strained CHOMP that gives a smooth and curvature constrained trajectory.

6.3 Real World Experiments on an Autonomous Truck

Real world experiments were conducted on the autonomous truck separately as well
as with the truck hooked with a single trailer at Storaholm test track, Goteborg.5

In the test track, multiple wooden pallets of size 1 × 0.75 × 1.2m were added as
obstacles in an area of about 1.5 sq. km. Two separate scenarios were demonstrated
that explains the feasibility of constrained CHOMP on non-holonomic vehicles with
and without obstacles. As shown in Fig. 6, constrained CHOMPwas able to avoid the
front obstacle with the trailer by generating a smooth and collision free trajectory.

5The video of the demo is with Volvo Trucks AB, Goteborg.
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Fig. 6 Real-World Scenario - the AT avoiding an obstacle in the front along with the trailer

7 Discussions

7.1 Performance Comparison

A simple GUI of the CHOMP and constrained CHOMP was created as shown in
Fig. 7. In this simple setting, we consider an initial planar trajectory connecting a
starting robot configuration at (−5.0m, −5.0m, π/4 rad) to a goal configuration in
(7.0m, 7.0m, π/2 rad), with 20 intermediate robot poses stacked initially into the
starting pose. In the middle of a straight line, connecting the starting and ending
configurations, we place two obstacles, enclosed by the blue and purple circles with
a radius of 2m. In practice, the radius of these circles account for the size of the
obstacle plus some inflation, i.e. in Fig. 7 the robot is not in contact to the actual
obstacles.

For these tests, we compare the unconstrained and constrained CHOMP using
the same setting. For both CHOMP implementations, we used �t = 1, η = 100 and
λ = 1. In Fig. 7c we show the evolution of the smoothness for the trajectories found
at each iteration with the unconstrained CHOMP and by adding rolling constraints.
From Fig. 7b we notice that adding the rolling constrains allows us to get smoother
trajectories than the unconstrained case. The unconstrained trajectory shows a sharper
turnwhen approaching the obstacle (see Fig. 7a), which is especially not desirable for
a heavy-duty vehicle. Moreover, the computation time is not significantly increased
in the constrained case. Note also that we did not constraint the final pose in this
implementation, however, a similar procedure [9] can be performed to include it.

Another set of experiments were conducted on the simulation truck and turtlebot.
Table1 illustrates the experiments conducted on 10 different scenarios varying from
highly cluttered to scarcely cluttered on a simulated truck, simulated truckwith trailer
and a turtlebot. It could be seen that the trajectories produced by CHOMP was not
feasible for the simulated truck to navigate at all compared to the turtlebot because
of its minimum turning radius. However, the constrained CHOMPwas able to safely
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Fig. 7 Obstacle avoidance and the evolution of the smoothness cost at each iteration for the uncon-
strained CHOMP (red dotted line) and constrained CHOMP (blue solid line)

Table 1 Simulation results on the simulated truck and turtlebot for 10 different scenarios

CHOMP Constrained CHOMP

Turtlebot Sim AT Sim AT
& trailer

Turtlebot Sim AT Sim AT
& trailer

Number of successful maneuvers 8/10 3/10 1/10 10/10 9/10 7/10

Avg planning time (in secs) 0.8 1.1 1.2 1.08 0.9 0.97

Avg time for iterations (in secs) 41 34 25 32 29 38

navigate in almost all the cases as shown. It is also seen that the computation and
updation of this extra Lagrangian term in Eq.7 does not affect the regular planning
and updation time of the CHOMP.
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7.2 Insights

From these results, it can be observed that the constrained CHOMP did perform
well with differential-drive robots more than with non-holonomic vehicles. This is
because it does not capture all the kinematic constraints and physical dimensions for
the truck or a truck with trailer. This way of adding constraints seems straightforward
and easy. But adding all constraints wouldmake Eq.6 and its Jacobianmore intricate.
Nevertheless, for avoiding obstacles of the sizewe consider in our tests, this approach
gives a fast and feasible solution. Using this approach for more complicate scenarios,
i.e. withmore clutter or larger obstacles, a replanning scheme should be followed, i.e.
we would need to compute a new path with our global path planner when CHOMP
cannot provide a feasible solution. Another issue we notice is that it also gets stuck
in local minima, however, some solutions to this problem include random restarts [9]
as well as proper initial trajectory input. Lastly, an alternative to adding motion
restrictions in this way was to include inequality constraints into CHOMP instead,
in order to restrict the motion of the vehicle inside a kinematic feasible region.

8 Conclusions

The SPADES framework was developed for a fleet automation in container han-
dling with multiple layers of abstraction. Each layer consists of carefully chosen
simplifications to achieve good overall system performance while making sure that
each layer is tractable. In this paper, the lower level of the navigational framework is
tested in simulations as well as in a real-world scenario. For this, we have adapted the
CHOMP algorithm for use on non-holonomic vehicles as well as with differential-
drive robots.Approaches involving constraints on the curvaturewith a separate objec-
tive functional aswell as integrating alongwith the smoothness objective have already
been investigated in [2]. The incorporation of sliding and rolling constraints on the
CHOMP trajectory to obtain a smooth curvature for non-holonomic vehicles have
been studied here in this paper. The results have been tested on a real-world scenario
as well as in simulations where the truck with trailer was able to avoid obstacles. It
has also been found that the basic algorithm of CHOMP does not allow us to cap-
ture the complete kinematic constraints of the vehicle. However, this approach has
been found to work satisfactorily in fairly uncluttered environments. Future work
will include in adding inequality constraints to CHOMP and improved versions of
CHOMP that can truly respect the curvature constraints of the vehicle in a larger
scale.

Acknowledgements The authors would like to thank Volvo Trucks AB, Gothenburg for their
contributions in this work. This work has been supported by the EU Project CargoANTs FP7-
605598.
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Field Experiments in Robotic Subsurface
Science with Long Duration Autonomy

Srinivasan Vijayarangan, David Kohanbash, Greydon Foil, Kris Zacny,
Nathalie Cabrol and David Wettergreen

Abstract A next challenge in planetary exploration involves probing the subsurface
to understand composition, to search for volatiles like water ice, or to seek evidence
of life. The Mars rover missions have scraped the surface of Mars and cored rocks to
make ground breaking discoveries. Many believe that the chance of finding evidence
of life is expected to increase by going deeper. Deploying a system that probes
the subsurface brings its own challenges and to that end, we designed, built and
field tested an autonomous robot that can collect subsurface samples using a 1m
drill. The drill operation, sample transfer, and sample analysis are all automated.
The robot also navigates kilometers autonomously while making decisions about
scientific measurements. The system is designed to execute multi-day science plans,
stopping and resuming operation as necessary. This paper describes the robot and
science instruments and lessons from designing and operating such a system.
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Fig. 1 Panorama taken by Zoë in the Atacama desert showing the heterogeneous nature of the
environment

1 Introduction

The search for life in the far reaches of the solar-system compels the use of robots to
explore faster, cheaper, and safer than humans. Still these robotic systems and their
operations are complex, so it is necessary to practice and test robotic missions on
Earth to gain insights into the technical challenges and best methods. To that end,
we deployed a robotic system and operated it in the Mars-analog Atacama Desert in
Chile where evidence suggests that the interior is the most arid and lifeless region on
Earth (Fig. 1). Our field investigation uses a rover to make controlled transects in the
desert with instruments to characterize subsurface habitats (Fig. 2). Figure3 shows
the regions explored in two field seasons to accomplish the following goals:

• Subsurface sample analysis: drill into the surface autonomously, collect samples
and analyze them using the onboard science payload.

• Autonomous science sequences: select sampling targets that maximize the infor-
mation gain while minimizing the navigational cost.

• Multi-day autonomy: operate on a plan autonomously for multiple days: execut-
ing commands during the day, detecting the end of day, shutting down the robot
gracefully, waking up the next morning and resuming the plan after the robot is
fully charged.

The paper is organized as follows. Section2 categorizes the related work based on
our goals. Section3 gives an account of the robot and its science payload. Sections4,
5 and 6 details progress with respect to project goals. Section7 discusses the lessons
learned during the field operations.

2 Related Work

2.1 Subsurface Sample Analysis

The Mars Exploration Rovers Spirit and Opportunity landed on Mars in January
2004 carried the Rock Abrasion Tool (RAT) [1] for grinding and brushing. It drilled
0.045m wide by 0.005m deep holes in Martian rocks. The Curiosity rover which
landed in November 2011 carried a percussion drill capable of drilling 0.016m wide
and up to 0.05m deep holes [2].
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Fig. 2 Zoë

Fig. 3 Region traversed by Zoë in 2013 (right) and 2015 (left)
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There are few simulation missions similar to our work. The Mars Astrobiology
Research and Technology Experiment (MARTE) [3] conducted a drilling operation
simulating a Mars mission in 2005. It collected core samples near the Rio Tinto
river (southwest Spain). It drilled 6m deep in a 30day mission and collected 21 core
samples. Scarab [4] simulated a lunar mission with a coring drill capable of drilling
1m in Mauna Kea in Hawaii. It processed the core samples and analyzed the com-
position of captured soil. The Icebreaker mission simulated a Mars polar mission
operating the Icebreaker drill [5] in the Arctic and the Antarctic Dry Valleys. The
Icebreaker drill is a 1m class drill with a triple redundant sample transfer mecha-
nism which is capable of drilling 1m in 1 h with approximately 100W of power.
However in all these missions, the drilling procedure and the sample handling and
analysis procedures were tele-operated manually.

2.2 Autonomous Science Sequences

Eariler works of Thompson et al. [6] fused images from different views of the robot to
detect rocks that could be sampled autonomously. This was followed by Thompson
et al. [7] where the features of geologic interest were automatically detected using a
probabilistic fusion technique. Smith et al. [8] proposed different modes of operation
for science autonomy and reported qualitative results using Zoë [9].

2.3 Multi-day Autonomy

Wettergreen et al. used Hyperion [10] with goals of long duration autonomy. Given
a command, the mission planner generated waypoints which the robot followed
autonomously with the health monitor looking for faults. It introduced the basic
software structure to operate autonomously for long durations. This was followed
by the work on DepthX [11] which was capable of executing an elaborate plan.
The missions involved diving into flooded sinkholes in Sistema Zacatón (Mexico),
searching science worthy targets, collecting samples and surfacing, all without any
telemetry. The plan also included an extensive list of contingency plans for safety. The
missions lasted 4–6 h, thus extending the hands-off autonomous operation duration.
Scarab [4] extended this capability by including a drilling operation along with the
navigation goals. One of these systems have the capability to operate on a plan of
possibly unlimited duration and diurnal hibernation.
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Fig. 4 Zoë with drill and science payload (MMRS and BUF imager)

3 System Overview

The system deployed for the Atacama field experiments is a rover with integrated
1m drill, sample collection and handling to Raman spectrometer and fluorescence
imager. Long range sensing with visible-near infrared spectrometer aid in sample
selection.

3.1 Rover

We refurbished and reconfigured Zoë [9] to incorporate a drill and scientific instru-
ments for field investigations in June 2013 and March 2015. Zoë is a solar powered
robot with passive steering and passive suspension. The solar panels use triple junc-
tion GaAs cells 2.4m2 with 23% efficiency [12]. It has a pan-and-tilt unit that points
a visible near-infrared spectrometer with 1◦ resolution and a high-resolution camera
for taking close-up context images and panoramas.

Zoë has a stereo camera pair mounted on the mast used for navigation. However
software is added to use those cameras for science autonomy tasks as well.
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3.2 Drill

The drill is a two stage, rotary percussive mechanism capable of drilling up to 1m
deep. Its design accounts for flight constraints like weight and volume. It weighs
10kg and consumes 300W of power on average. The drill is designed and devel-
oped by Honeybee Robotics Spacecraft Mechanisms Corporation and consists of
the following subsystems: (1) Rotary-Percussive drill head, (2) Sampling auger, (3)
Brushing station, (4) Z-stage, (5) Deployment stage (6) Carousel (Fig. 4).

The drill head is designedwith rotation and percussion decoupled. This allows use
of the more energy intensive percussive system only when required (e.g., to penetrate
harder formations).Both rotary andpercussivemotors are approximately 150Weach.
To reduce sample handling complexity, the drill auger is designed to capture drill
cuttings as opposed to cores. High sampling efficiency is possible through a dual
design of the auger. The lower section of the auger has deep and low pitch flutes.
This geometry creates natural cavities ideal for retaining granular materials (cuttings
and soil). The upper section of the auger moves the cuttings out of the hole efficiently.

The drill mechanism lowers to contact with the ground surface with its first stage
and stabilize the mechanism on the drill hole. The rotary-percussive second stage
then drives the auger into the ground. The mechanism is co-designed with the rover
mast for efficient integration and greater overall rigidity and stabilization. For sample
collection, soil from the tip of the auger is captured in a collar which expels upon
drill retraction down a chute into the sample cups. The carousel is a single degree
of freedom system designed to move 20 cups underneath the drop off spout and
the other science payload instruments. It has a cantilevered (fully passive) scraper
that smooths out and compacts the top powder in each cup. Automatic coordination
onboard the rover places specific cups beneath the chute which are then rotated into
sealed storage.

The drill uses a bite sampling approach where samples are captured in ∼10cm
intervals. That is, after drilling 10cm, the auger with the sample is pulled out of
the hole, and the sample is brushed off into one cubic centimeter cups by a passive
brush within the brushing station. An advantage of the bite sampling approach is that
stratigraphy is preserved and the provenance depth of the sample is known.

3.3 Mars Microbeam Raman Spectrometer

TheMarsMicrobeamRaman Spectrometer (MMRS)measures the Raman scattering
of the collected samples using a focused laser beam. Raman scattering probes the
fundamental vibrations of molecules that produces finger-print spectral patterns with
sharp no-overlapping peaks. Laser Raman spectroscopy is a powerful technique for
the detection and characterization, at fine-scale, of the major, minor and trace species
in a mixture (rocks and soils).
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The carousel delivers the samples collected at different depths (10, 30 and 80cm)
under the MMRS probe head. It then collects the Raman spectra for the sample in
the sample cup by focusing a 532nm laser beam. A stepper motor within the probe
moves the optical bench linearly over the sample surface in a range of 10mm, from
which Raman spectra of 20 to 100 spots are collected without using autofocus.

The wavelength of the laser used in the MMRS is calibrated using a Ne lamp
before, during and after the field experiments. In addition, wemeasureRaman spectra
of substances like naphthalene and diamond which has strong and distinct Raman
spectra and use as reference and measure multiple times in a day. This helps us to
keep the laser wavelength calibrated and also evaluate the general performance such
as sensitivity, noise levels and spectral resolution of the device.

3.4 Bio UV Fluorescence Imager

The Bio UV Fluorescence (BUF) imager shines UV and white light on the samples
and measures fluorescence, if any. Fluorescence under UV light is a strong indicator
of chlorophyll in the sample which provides evidence of life. 370nm wavelength
UV light LEDs are used in the BUF imager. The imager is a light-field camera
manufactured by Lytro, Inc. One unique feature of the light-field camera is that it
uses a lenslet array to simultaneously collect a number of images at slightly different
perspective with no moving parts. These images comprise a rayfield image that can
be re-focused after the fact. While this synthetic autofocus feature is not required to
examine the flattened powdered samples presented to it in the carousel, this feature
enables the BUF imager to examine unprepared rock samples in other venues without
the need for a mechanical autofocus mechanism. The BUF imager is controlled by
the MMRS which in turn is commanded from the rover computer. The BUF imager
is mounted on the same carousel next to the MMRS.

3.5 Visible-Near Infrared Spectrometer and Panoramic
Imager

The Visible-Near Infrared (VNIR) spectrometer on Zoë is an Advanced Spec-
tral Devices (ASD) FieldSpec Pro with readings in the Visible-Near Infrared
(350–2500nm) range. It uses a one-degree foreopticmounted on a pan/tilt unit along-
side the panoramic imager on the mast. Visible/near-infrared spectroscopy involves
studying the reflectance spectra of a material in the visible/ near-infrared wavelength
range. The goal of the visible/near-infrared spectrometer is to support the rover and
other instruments with mineralogical composition information. This can be used to
help direct the rover when used in conjunction with orbital based spectral data and
to determine locations of interest to the rover.
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The Visible-Near Infrared Spectrometer (VNIR) was deployed successfully in
the 2004 and 2005 LITA field investigations [13]. However software functionality
is added to enable intelligent and complex workflows using the spectrometer. For
instance, software functionality is added to calibrate the spectrometer to the camera
so that its viewpoint within the image is known and the target of the spectrometer
can be identified. Further, several algorithms for detecting features in the panoramic
image have been developed andported to the rover so that it can automatically identify
salient features in the scene and then direct and record high resolution image and
VNIR spectra.

4 Subsurface Sample Analysis

Drilling: Drilling in consolidated, fine grained soils is easy and the sample is retained
in the auger successfully every time. Poorly consolidated, coarse-grained soil, is
relatively easy to drill, but capturing and retaining of samples within the auger flutes
is difficult. In most cases, the soil is pushed aside as the drill is lowered into the
ground and in turn no soil is captured because of low friction angle and lack of
cohesion. To address these issues we experimented with various combinations of the
following: (1) We increased the diameter of the auger from 0.5 to 0.75 in. to enable
greater sampling volume (2) We used shallower flutes to help with sample retention,
(3) We optimized drilling software to shorten the sampling time, and (4) We drilled
without percussion and retracted the drill without rotation. In all cases, the average
drilling power is less than 15W because the percussive system is not needed and
hence not engaged most of the time. The weight-on-bit is also low, at 50N or less.
Table 1 lists the different locations we drilled successfully in March 2015 and their
depths.

A drilling sequence which involved drilling to 10cm, retracting and dumping to
a cup on the carousel, followed by drilling to 30 and 80cm, took a total of 130min.

Table 1 Lists the sites where we successfully completed the drilling operation in March 2015 and
their respective depths

Locale Latitude Longitude Drill depths (cm)

12 24◦ 29’23.69”S 70◦ 08’52.05”W 10, 15

13 24◦ 29’15.65”S 70◦ 08’52.25”W 10, 19, 50

14 24◦ 29’06.11”S 70◦ 08’52.96”W 10, 20

15 24◦ 29’03.13”S 70◦ 08’53.43”W 10, 17

18 24◦ 29’17.26”S 70◦ 09’02.26”W 10, 15, 20, 50

19 24◦ 29’18.18”S 70◦ 09’04.85”W 20

20 24◦ 29’31.32”S 70◦ 09’59.09”W 20

24 24◦ 34’15.63”S 70◦ 09’31.02”W 10, 20
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But the duration and sample collection efficiency depended largely on the drilled
location and material drilled into.

Raman Spectras: Any changes, especially the optical alignment of MMRS affected
by mechanical, optical or electronic fluctuations during the transverse of the rover,
are apparent in the reference spectra. Despite Zoë’s 50Km transverse on a rough
terrain and a wide diurnal temperature cycle, from −6 to 27 ◦C, during the field
campaign, the MMRS did not show noticeable performance change. We did notice
the laser wavelength shift, due to insufficient temperature control in the laser unit
within MMRS which was later corrected.

Multi-point Raman spectra were obtained for 31 samples. The spectral analy-
sis showed the presence of three groups of minerals in the Atacama samples. They
are: original igneous minerals (mainly feldspar and quartz); alteration products (e.g.,
T iO2 and goethite); and hydrous or anhydrous salts (sulfates and carbonates) with
variable origins.

Bio UV Fluorescence: The BUF imager recorded images of the samples illuminated
under UV light. Abundances were negligible, so no fluorescence was detected but
images were still useful when the samples were illuminated under white light as they
served as a reference for the MMRS measurements.

Autonomy: The system accomplished end-to-end operation collecting samples to
analyzing them, several times. This involved drilling to a specified depth, followed
by retraction and dumping to a cup on the carousel, moving the carousel to position
the cup under the MMRS, recording the Raman spectra, repositioning the cup under
the BUF imager, collecting images with UV and white light illuminations and then
navigating to a different location. We found that batch processing the samples with
MMRS and BUF is much more efficient that processing them individually after they
are collected.

5 Autonomous Science Sequences

Zoë’s science autonomy system includes two basic capabilities that operates the ro-
bot on mesoscale and macroscale features respectively. Smart targeting identifies
science features in rover navigation imagery and uses this information to point the
VNIR-ASD spectrometer. Adaptive path planning navigates on scales of tens or hun-
dreds of meters, using satellite images to select waypoints with distinctive or novel
spectra. A more detailed account of these techniques can be obtained from Wetter-
green et al. [14].

Smart Targeting [15, 16]: Zoë began each autonomous target selection process by
acquiring a navigation camera image. Onboard image processing then analyzed the
scene to find large contiguous regions (using connected components analysis) of a
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desired terrain class (using random forest classification). Typically these classeswere
rough surface features like rock outcrop or bright sediment patches with distinctive
spectral signatures. Upon finding a feasible target, the rover re- calibrated its VNIR-
ASD spectrometer, pointed at the feature and collected a small 33 raster of spectra
centered on the target of interest. For context, it also acquired a high-resolution color
image of the scene.

Adaptive Path Planning: The science autonomy system also operates on larger
scales of tens or hundreds of meters, where it analyzes satellite data to adjust its
traverse path.Wemodel the explored environment using a standard geographic or area
mixingmodelwhere eachmeasurement is amixture of a small number of endmember
materials. Endmembers’ spectra combine in proportion to their physical extent on
the surface. In practice there is always residual error separating the reconstruction
from the measurement. This is partly attributable to measurement noise, but unless
the library is comprehensive there may also be incompleteness errors (e.g. spectral
features that are expressed in the observations but not present in the library). A
library that reconstructs all spectra well can be said to have explained the scene,
and provides insight into the mineral compositions in the remote sensing data. This
intuition provides a figure of merit for an adaptive path planning system to select
future measurement locations. Zoë’s planner selects locations, the measurements at
which provide the largest expected reduction in unmixing error. As a consequence,
it aims to visit locations that are spectrally distinctive, collecting samples that fully
explain the orbital image.

6 Multiday Autonomy

In order to achieve multiday autonomy goals we created a tool called Rover Com-
mander for scientists to generate plans for the rover. To enable the rover to power
up and power down the devices through commands from the autonomy system, we
built the Power Management and Distribution (PMAD) system. Finally, to navigate
to a desired location autonomously with used Reliable Autonomous Surface Mobility
(RASM) [17] software.

Rover Commander: Rover commander is a web-based planning tool that is used to
generate a list of commands that can be executed by Zoë. The plan can span mul-
tiple days. Figure5 shows a snapshot of the tool. The tool uses the Google Maps
API to source the underlying terrain information. The tool has presets for different
operations like drill with different depths, quick or full panoramas, location to move
to, drive to location using adaptive science, etc. A sample plan file generated by the
Rover Commander is shown in Table2.

Power Management and Distribution: The PMAD is a low powered embedded
computer that is developed to provide a way to turn on/off devices through soft-
ware. It has solid-state relays connecting to all the devices on the robot which can
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be controlled through software. This also allowed us to save power on the robot by
commanding only the essential devices to be powered up. For example, we powered
down the drill and the scientific instruments when driving. Another main utility of
the PMAD is to support the idea of surviving the night.When the power goes below a
set threshold at sunset, the PMAD sends a hibernate signal to the high-level software
which suspends the current plan, shuts down the devices and powers down the robot.
In the morning, after the batteries are sufficiently charged from the solar panels, it
wakes-up the robot automatically and the high-level software will then resume exe-
cution of the previous day’s plan.

Reliable Autonomous Surface Mobility: RASM [17] is the onboard navigation
software in Zoë that is capable of local hazard avoidance and path planning using a
3D terrain representation.

Autonomy: Zoë demonstrated multi-day autonomy partially. During the end of the
day, Zoë suspended the current plan, turned off its devices and hibernated. It survived
the night and successfully booted back up the next morning and resumed the previous
day’s plan from where it left off. But unfortunately for a variety of different reasons,
each day of the field season, the motor controllers got into an error state and the
robot was not able to accomplish its complete plan but it moved a few meters before
encountering the error state thus demonstrating the capability but not accomplishing
it.

Table3 shows the percentage of time each of the specific operation was carried
out compared to the uptime of the robot. Figure6 shows the time of the day when
these operations were performed. Of all the operations, driving took the most amount
of time. This is because we drove 25.6kms in 10days. 60.62% of the total distance
was driven autonomously in these exploration experiments.

Fig. 5 Rover commander—a web based planning tool to generate science plans for Zoë
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Table 2 Sample plan generated by Rover commander

Command Description

Checkplan Check plan for syntax error

Drill locale12 500 Drill command to drill 0.5m and name the
sample locale12

Sotf −24.488383 −70.151347 0.2 Use adaptive science (science-on-the-fly) to
navigate to the specified lat/lon location. Will
explore the region while ensuring the
additional distance overhead to less than 20%

Panorama −30 30 −20 20 Generate a panorama with elevation angles
(−30◦, 30◦) and azimuth angles (−20◦, 20◦)

Spanorama −10 10 −10 10 10 1 Generate a spectral panorama using the VNIR
spectrometer and the high-resolution camera

Latlon −24.488012 −70.150286 Navigation command to drive to specified
latitude and longitude

Sotf −24.486816 −70.148548 0.4 Use adaptive science (science-on-the-fly) to
navigate to the specified lat/lon location. Will
explore the region while ensuring the
additional distance overhead to less than 40%

Drill locale13 300 Drill command to drill 0.3m and name the
sample locale13

Panorama −40 40 −20 20 Generate a panorama with elevation angles
(−40◦, 40◦) and azimuth (−20◦, 20◦)

Spanorama −10 10 −10 10 10 0 Generate a spectral panorama using just the
VNIR spectrometer

Latlon −24.487680 −70.147848 Navigation command to drive to specified
location

mmrsbuf Take MMRS and BUF measurements on all the
unprocessed samples (locale12 and locale13 in
this case)

Table 3 Percentage of total duration of each of the operations with respect to the uptime

Operation Duration (% of uptime)

Science-on-the-fly (adaptive science) 3.20

MMRS and BUF 5.31

Panorama 6.35

VNIR spectra 9.36

Driving 18.84

Drilling 11.99
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Fig. 6 Graph shows the time of the day each of these operations were performed. Each vertical
column corresponds to a day during the field operations and the horizontal rows correspond to the
hours in the day

7 Lessons Learned

• Drilling in unconsolidated soil: After digging and inspecting a pit, we noticed
many layers of different soil combined with layers of rocks and void spaces. The
possible explanation for not being able to generate sample in the cup may be the
collapse of material into the void spaces, as evidence by the lack of tailings pile
at some sites.

• Time/power forMMRS: TheMMRS instrument consumedmore power than that
could be sourced by the solar panels. This is because the laser was designed to be
operated on the cooler environment in Mars. Also each measurement took more
than a few minutes which added up as the number of samples increased.

• Fiddling with science plan: Although the robot had the capability to continue
executing a plan for several days, the plan was often modified multiple times.
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This was mainly because the scientist found value in altering the plan when the
robot arrived at a new locale. Thiswas also commondue to the fact that theAtacama
desert received historic rains during our field investigations and the environment
was changing drastically.

• Registration of orbital data (salar experiment): We used the data from ASTER
satellite for the orbital data. However we found that the ASTER images are mis-
registered. This prevented the science autonomy software from accurately guiding
the rover in some cases.

• Software integration eariler, rather than modularity: We favored modularity
and delayed the integration of the different software components. But we learned,
once again, that integrating the software components early in the development
process saves time.

• Use a standard tool for logging: Early in the software design we decided to use
SQL based logger as opposed to a custom binary logging tool. It proved useful as
it is hard to maintain a custom logging tool for several years. However since our
data is logged into a SQL database we can use any SQL tool to access the data.
This greatly aided data analysis.
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Design and Development of Explosion-Proof
Tracked Vehicle for Inspection of Offshore
Oil Plant

Keiji Nagatani, Daisuke Endo, Atsushi Watanabe and Eiji Koyanagi

Abstract French oil company TOTAL and ANR (L’Agence Nationale de la
Recherche) organize the ARGOS (Autonomous Robot for Gas and Oil Sites) Chal-
lenge, which our research group had the opportunity to participate in. ARGOS is
a research and development competition for mobile robots capable of autonomous
inspection of instruments and teleoperated information gathering in oil plants, in
place of human workers. One of the features of this challenge is that robots should
be constructed with explosion-proof structures, because the target plants may have
explosive atmospheres. To participate in the third competition of the ARGOS Chal-
lenge in March 2017, we developed AIR-K, an explosion-proof robot. The AIR-K
is divided into three parts to make it explosion-proof. According to the features for
robot functions and sensors, it uses a flameproof battery enclosure (Ex ‘d’), a pres-
surized apparatus (Ex ‘p’) for its body, and intrinsic safety (Ex ‘i’) for sensors; the
explosion-proof of the robot is achieved by a combination of these methods. In this
paper, we introduce the design guidelines and implementations that allow our robot
to be explosion-proof.

1 Introduction

In recent years in Japan, the practical use of field robots is expected for economic
improvement, reduction of dangerous tasks, and social creation. Therefore, indus-
tries, government, and academia are continually researching and developing such
robots. In particular, the aging of social infrastructure and plants constructed during
periods of high economic growth is a significant problem. Therefore, the introduc-
tion of robot-based maintenance management methods is recommended to solve
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the problem. With such robotic technologies, it is expected that the lifetime of the
infrastructure will be extended and the total cost of maintenance will be reduced [1].

The need for robotic inspection of infrastructure and plants is not limited to
Japan—it is a common problem for nations that possess similar facilities. A con-
crete example is the oil spill that occurred at the Deepwater Horizon in the Gulf of
Mexico on April 20, 2010. During the accident, the concerned facility should have
been investigated. However, it was impossible to enter the plant because it was too
dangerous for human inspectors.

To facilitate robotic investigations in emergency situations, and inspections during
normal operations, French oil company TOTAL and ANR (L’Agence Nationale de
la Recherche) organized the ARGOS (Autonomous Robot for Gas and Oil Sites)
Challenge, which was launched in December 2013. ARGOS was a research and
development competition for mobile robots capable of autonomous inspection of
instruments and teleoperated information collection in oil plants, in place of human
workers. Five international teams, including ours, were selected for the challenge,
based on a document review. One of the features of this challenge was that robots
should be constructed with explosion-proof structures, because the target plants may
have explosive atmospheres. Figure1 shows a scene from the ARGOS Challenge
final competition in March 2017.

Few small mobile robots have obtained explosion-proof certificates. It can be said
that Sakura-II was the first small mobile robot with explosion-proof certification. It
was developed byMitsubishi Heavy Industries Ltd. with aNewEnergy and Industrial
Technology Development Organization (NEDO) research grant for surveillance of
tunnel disasters. The robot was certified according to the explosion protection (zone-
1) of the Japanese standard (IEC spec conformable), which is almost equivalent to
ATEX Cat.2.

With reference to the above robot, we conducted research and development of an
explosion-proof robot, called AIR-K, in order to participate in the third competition
of the ARGOS Challenge in March 2017. In this paper, we introduce the design
guidelines and implementation for our explosion-proof robot.

Fig. 1 AIR-K prototype
(non-explosion-proof
version) in ARGOS
Challenge
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2 Design Guidelines of AIR-K

2.1 Requirements

The objectives of AIR-K are autonomous inspection of instruments during normal
operations and teleoperated observations in emergency situations (e.g., gas leaks
and fires). Therefore, the AIR-K requires numerous capabilities, including image
processing, sound detection, temperature detection, gas detection, obstacle detection,
localization, and stair traversal. To provide such capabilities, the following sensors
and mechanisms were installed onto the AIR-K.

• Image processing: Six optic cameras were installed.
• Sound detection: Four ultrasound microphones were installed.
• Temperature detection: A thermal camera was installed.
• Gas detection: A gas sensor was installed.
• Localization, obstacle detection: Two 3D LIDARs were installed in the front and
back.

• Stair traversal: Four subtracks were installed to negotiate stairs.

The configuration of the sensors on the robot is shown in Fig. 2.

Fig. 2 Configuration of sensors and actuators on the AIR-K
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2.2 Design Guidelines Providing Explosion-Proof Structure

To make the AIR-K explosion-proof, we performed design and development based
on the following requirements:

1. Hazardous region: zone 1
2. Gas group: IIA
3. Temperature class: T3

where the explanation of the standards are in [2]. The hazardous region is zone 1, so
the equipment protection level (EPL) should be Ga or Gb.

The AIR-K is divided into three parts to make it explosion-proof. Figure3 shows
a block diagram of the components of AIR-K. According to the features of robot
functions/sensors, it uses a flameproof enclosure (Ex ‘d’), a pressurized apparatus
(Ex ‘p’), and intrinsic safety (EX ‘i’); its explosion-proof capability is achieved by
a combination of these methods.

The basic idea of the whole explosion proof of AIR-K is as follows:

1. A type ‘d’ flameproof enclosure protects the battery based on the philosophy
of “ensuring its explosion proof capability even when the battery discharges all
energy.” It is located inside the pressurized apparatus. The battery has the poten-
tial to ignite. However, when a flameproof enclosure covers it, and when the
enclosure is located inside of the pressurized apparatus, it can meet the following

Fig. 3 Block diagram of components of AIR-K
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requirement: “a device with ignitability is not built in the internal pressure con-
tainer in the normal state.”

2. Some electric sensors, such as microphones and cameras, are difficult to make
pressurized apparatus, individually. One possible method is that the internal pres-
sure of the sensor is kept equal to the inside of the main body by using the
through-holes. However, restrictions on design are large, and expandability is
also impaired. Therefore, we configured intrinsically safe devices and located
outside of the robot. The protection type is Ex ‘i’.

3. Other equipment, such as PC and integrated flashlight located inside the pressur-
ized apparatus, do not have a flameproof enclosure. So, these are assumed to be
ignition capable apparatus (ICA). Therefore, the protection type is Ex ‘p’.

We introduce additional design and implementation details for the flameproof
battery enclosure in Sect. 3, the pressurized apparatus for the robot body in Sect. 4,
and the intrinsically safe sensors in Sect. 5; other requirements for explosion-proof
capability are discussed in Sect. 6.

3 Flameproof Enclosure for Batteries

A type ‘d’ flameproof enclosure protects the battery module. The whole module,
including the flameproof container with the battery inside, is placed inside the pres-
surized apparatus (IEC60079-1 [3]). Thus, the module secures a protected circuit
in cases where the internal pressure cannot be sustained. In addition, this circuit is
connected to a pressure sensor that measures the pressure balance between the inside
and outside of the explosion-proof structure. If the internal pressure is not at least
+50 Pa higher than the external pressure, the relay inside the flameproof container
will be switched off, so that the battery’s energy will not be discharged to the out-
side of the container. The protection type is ‘px,’ so this mechanism must be dual
redundant. Because the battery must be rechargeable, the AIR-K’s battery is charged
by a contactless electricity transmission coil. This configuration was chosen because
it is assumed that the robot will be deployed on offshore platforms, where it may
experience salty breezes and rain. If the battery is charged via a connected charger,
there is a possibility of power leakage from a short circuit. Thus, we strongly believe
that a contactless charging system is essential, even if the charging system is placed
in the non-explosive atmosphere.

Figure4 shows a batterymodule diagram for the AIR-K. The coil for receiving the
power from the contactless charging system is placed on the outer side of the robot,
which is connected to the charging circuit located inside the pressurized apparatus.
The charging circuit is connected to the battery inside the flameproof container via
the double protection circuit including the relay. The coil protection circuit actuates
only when power is supplied from the charging station located in the non-explosive
atmosphere, which makes it a non-electric component in hazardous zones. However,
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Fig. 4 Battery module diagram for AIR-K

all cables that connect the inside and outside of the flameproof container satisfy
IEC60079-1 section13 [3].

Standards for explosion-proof batteries state that cells must be connected in series
only. Thus, lithium-ion batteries (L1A0N8C1: Maxell [4]) should be connected in
series. However, owing to Japanese aviation regulations, we cannot transport such
battery via an airplane. Therefore, as an alternative for the AIR-K, we chose a battery
(DUO-150: IDX) that could be transported to the ARGOS challenge.

We conducted initial functional tests in which the robot was switched off when
the internal pressure became lower than the external pressure, and confirmed that the
functionality worked as we expected.

4 Pressurized Apparatus for Robot Body

The Ex ‘p’ pressurization method protects the robot body. The inner pressure should
be 50Pa higher than the outside pressure (IEC60079-2, section7.10 “Value of over-
pressure” [5]). Therefore, the AIR-K is equipped with an intake gas cylinder that
contains an inert gas, and the inner pressure is adjusted by controlling a solenoid
valve attached to the cylinder to supply the gas. Figure5 shows a block diagram of
the AIR-K’s internal pressure regulator. It uses a differential pressure sensor to con-
trol the inner pressure, and the threshold for opening/closing the valve is 1 kPa. Once
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Fig. 5 Diagram of pressurized apparatus for AIR-K

Fig. 6 Relationship between pressure sensor and solenoid valve

the robot opens the valve, the inert gas is supplied to the robot body. The threshold
value can be changed, and it is a temporary value, at present.

Figure6 shows the relationship between the differential pressure sensor and the
status of the solenoid valve. When the inner pressure decreases, the robot opens the
valve, and then the inner pressure increases. On the other hand, if an abnormal pres-
sure drop occurs (the differential pressure sensor detects that the difference between
the inner pressure and outside pressure is lower than 200Pa), the system shuts down
the battery module. Thus, the output voltage of the battery is never exposed to the
outside of the flameproof enclosure.

As described above, the inside of theAIR-K is equippedwith an intake gas cylinder
to supply inert gas. Therefore, AIR-K is assumed to use a pressurized apparatus
structure with a leakage compensation method. Figure7-left shows a CAD model
of the bottom part of the robot, and Fig. 7-right shows the actual location of the
gas supply valve. According to Technology Institution of Industrial Safety (TISS) in
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Fig. 7 Intake gas cylinder and cylinder valve

Japan, scavenging air is not required based on this method. Therefore, AIR-K does
not have a function to scavenge air.

In the implementation of AIR-K’s pressurized apparatus, the following values are
ensured:

• Maximum: Outside pressure + 2 kPa
• Minimum: Outside pressure + 50Pa
• Operating: Outside pressure + 1 kPa (Reference value)

The minimum pressure value of “outside pressure + 50Pa” is the same as the value
of type px in IEC60079-2, section7.10, “Value of overpressure” [5].

To confirm the safety of the pressurized apparatus, the strength of the robot’s
body must be tested. The test includes a 1kg-sharp-weight-drop from a height of
more than 70cm (IEC60079-26.4.2).

5 Intrinsically Safe Configuration for Sensors

The microphones, optical cameras, infrared camera, and gas sensor are difficult to
make pressurized apparatus, individually, as described in Sect. 2.2. Therefore, these
are configured as intrinsically safe devices (Fig. 8).

5.1 Intrinsically Safe Configuration for Optical and Thermal
Cameras

Six optical cameras and one thermal camera are mounted on the robot to measure
the instruments, to detect heat sources, and to send images for teleoperation. These
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Fig. 8 Diagram of intrinsically safe configuration for cameras, etc

sensors have an intrinsic safety structure and are designed according to IEC60079-11
[6]. We install these modules outside the robot’s body, and connect the signal and
power lines to the controller located inside the pressurized apparatus via protected
circuits. Therefore, they will not become an ignition source even when a short circuit
occurs.

There aremainly two types of protected circuits: Zener barrier and isolated barrier.
A Zener barrier requires an A-class earthing, so it is not applicable for mobile robots.
Therefore, the robot adopts the isolated barrier so that there is no need for earthing.
We configure the barrier circuit with the following components:

• Isolator: Insulates the USB communication line and power to prevent unintended
ground loops.

• Current/Voltage regulation circuit: Prevents ignition even when there is a circuit
failure or short circuit. Resistance and Zener diodes are used.

USB isolators (USB-029L2, HuMANDATA co., Ltd.) and DC-DC converters were
selected, with a dielectric strength voltage of 2000 V. The factor of safety was 3.5,
calculated from the French power source’s peak voltage of 564 V. Figure9 shows an
isolated barrier circuit for USB devices.

The current limiting resistor in the barrier circuit is designed to satisfy the condi-
tion described in CENELEC (European Committee for Electrotechnical Standard-
ization). Particularly, since the power lines send electricity, if the 5V from the USB is
supplied directly to the line, it will not satisfy the requirements. So, a voltage larger
than 5V is used to produce 5V at the device, the electricity should be at a lower
current. The value of the current limiting resistor was calculated by model-based
design method.

Ishort, the maximum current to avoid explosion when there is a short circuit, is
calculated as

Ishort = E

R
, (1)

where power voltage denotes E , and current limiting resistor R.
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Fig. 9 Isolated barrier circuit for USB devices

Fig. 10 Standards to determine if the system will ignite or not [7]

On the other hand, I , the current at maximum load for functioning devices, is
calculated as

I = E − √
E2 − 4 · R · P/eff

2 · R , (2)

where electricity conversion efficiency (at the device) eff and the maximum power
consumption (at the device) P . It is the equation to obtain the necessary current for
the DC-DC converter to drive the devices under certain protection resistance and
voltage. In case the resistance is too large, the power cannot be supplied, and I
becomes an imaginary number. Therefore, I should be a real number to supply the
power.
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To avoid ignition when there is a short circuit, the circuit has to be under
the Current-Inductance curve, Voltage-Electrostatic capacity curve, Current-Voltage
curve, as shown in Fig. 10. Theworst case scenario for ignition from induced currents
is when a line is a cutoff, and the short circuit triggers another cutoff. So, Ishort and
inductance of circuit L must be below the Current-Inductance curve. The worst case
scenario for ignition from the circuit capacity is when a line is a cutoff, the circuit
is open, and the electrostatic capacity reaches the power voltage before triggering
a cutoff. So, E and capacity of circuit C must be below the Voltage-Electrostatic
capacity curve. The worst case scenario for ignition from the current/voltage of the
barrier circuit has many conditions, so the design is made on the conservative side.
Taking into account the worst case scenario for the current/voltage, E , Ishort must be
below Current-Voltage curve.

Based on a full search in 2-dimensional parameter space of current limiting resis-
tor and supply voltage, these parameters are set as 66 � and 23.8 V. Using these
parameters, the factor of safety of 5 for the ignition energy can be guaranteed.

By setting the USB signal level to 3.3 V, and inserting a 36 � current limiting
resistor, the signal lines is guaranteed with a factor of the safety of 10. It is more
conservative parameter.

5.2 Intrinsically Safe Configuration for Ultrasonic Sensors

Four ultrasonic microphone modules were mounted to detect gas leak sounds and to
locate the source. This module has an intrinsic safety explosion-proof structure that
is similar to those of the optical and thermal cameras, as per the standard stated in
IEC60079-11 [6].We installed thesemodules outside the robot’s body, and connected
the signal and power lines to the controller located inside the pressurized apparatus
via protected circuits; this prevents them from becoming an ignition source, even
when a short circuit occurs.

The microphone module consumes very little power; thus, it does not have a
power line, and operates using the weak current from the signal line. Each signal
line is connected to the microphone module in the isolated barrier circuit via a
current/voltage limited circuit and an isolated circuit. The current/voltage limited
circuit is identical to that of the USB signal lines of the optical and thermal camera
modules, with a factor of safety of greater than 10 (even when a short circuit occurs).

5.3 Gas Sensors

A GX-2009 (RIKEN KEIKI Co., Ltd.) gas detector is mounted on the robot for
detecting flammable gas. The structure of this sensor is intrinsically safe Ex ‘i’ (Exia
CT4X), with a certificate from TIIS. It is also IP67-equivalent waterproof. This sen-
sor performs infrared communication (IrDA) via a Pro Plus (ABS510700), a special
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LEGASTIC IrCOMM adaptor receiver, to communicate with external interfaces. To
enable the robot to detect flammable gas, we locate the detector outside of the pres-
surized apparatus, and locate the receiver inside the apparatus. The infrared source
and receiver face each other, which enables communication through the transparent
body.

We connect a power cable from the battery module to the sensor to extend the
activity of the sensor. To guarantee its intrinsic safety, the maximum voltage is set to
5 V, and the current limiting resistor is set to 36 � to ensure that the current is within
30–50 mA (factor of safety: greater than 70).

6 Other Requirements for Explosion-Proof Operation

6.1 Dissipation of Static Electricity Buildup

The non-metal materials (plastic) used for the robot enclosure must satisfy at least
one of the conditions below.

1. Surface resistivity based on the measurement method specified in IEC60079-0
section26.13 is below 109 �/sq.

2. Maximum surface area is below 10,000mm2 (Equivalent to EPL ‘Gb’).
3. Maximum layer thickness is below 2mm (Equivalent to EPL ‘Gb’).

These conditions are intended to prevent static electricity, and are stated in
IEC60079-0, section7.4. (If the material is categorized as Gas Group II A, and
Equipment Protection Level (EPL) ‘Gb.’)

On the other hand, plastic materials are used for the following sections inside the
AIR-K robot: (1) Charging coil case, (2) Light transmitting plate, (3) 3D LIDAR
case (includes translucent parts), (4) Wireless LAN enclosure, (5) Base plate for Gas
sensor, (6) Base plate for receiver of Gas sensor, (7) Ultrasonic microphone case,
(8) Thermal camera case, (9) Optical camera case, and (10) Main switch case. The
surface areas of objects (2)–(10) are each below 10,000mm2. In the case of (1), the
surface area of its acrylic case exceeds 10,000mm2, and the surface resistivity is
1,016 �. Therefore, we should spray an anti-electrostatic agent on the surface to
satisfy the standards.

6.2 Earthing Arrangement

The earthing arrangement is stated in IEC60079-0 (Connection facilities for earth-
ing or bonding conductors), and equipment that needs grounding is described in
section15.1. On the other hand, equipment that does not require grounding is
described in section15.2, and the following statement is provided: “for which supple-
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Fig. 11 Earthing structure of AIR-K

mentary earthing is not necessary, an internal or external earthing or bonding facility
need not be provided.”

According to the following reasons, AIR-K can be classified as “Safety Extra Low
Voltage” (SELV), and it does not require grounding.

1. There is no connection to the primary power supply in the danger zone.
2. The potential difference of the robot is a maximum of 34 V, and it does not exceed

42.4 V (which corresponds to a dangerous level of current for humans).
3. The surface of the robot has the sameelectric potential, and the potential difference

between two arbitrary points (one point may be broken) is safe for human contact.

Figure11 shows the earthing structure of AIR-K.
As described above, AIR-K does not require grounding. However, conductive

belts should be used for tracks to satisfy high electrostatic breakdown strength, as
described in IEC60079-0, section7.4 (Electrostatic charges on external non-metallic
materials). Therefore, for safety considerations, the structure has simply secured
grounding.

7 Conclusions

In this study, we conducted research and development to create a mobile robot (AIR-
K) as our participation entry for the ARGOS Challenge 3rd competition. The robot’s
explosion-proof design was based on the IEC60079 series standard. As shown in this
paper, the robot uses a flameproof enclosure (Ex ‘d’), a pressurized apparatus (Ex ‘p’),
and intrinsic safety (EX ‘i’), and its explosion-proof is achieved by a combination
of these methods. Figure12 shows an image of the developed robot. Because of a
problem with the locomotion, we did not use the robot in the 3rd competition but
attended with a non-explosion-proof AIR-K prototype.

Because of space limitations, not all tests to confirm the robot’s explosion-proof
capabilities were described in this paper. However, to obtain an explosion-proof
certificate for the robot, remaining issues must be solved and additional tests must
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Fig. 12 Explosion-proof
robot AIR-K Ver.3

be cleared. As the main issues, the robot must consist of cells connected in series
only, according to explosion-proof standards for batteries. We need to replace the
serial battery configuration and conduct tests on their flameproof capabilities. Sec-
ond, a thermal test inside the robot should be conducted during operations. Third, a
strength test of the body should be conducted to confirm the safety of the pressurized
apparatus.

In the future, we plan to develop explosion-proof mobile robots for autonomous
inspection in oil plants, based on our experience from the above research and devel-
opment.
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Life Extension: An Autonomous Docking
Station for Recharging Quadrupedal Robots

Hendrik Kolvenbach and Marco Hutter

Abstract In this paper we describe the design of a fully autonomous docking station
for the quadrupedal robot ANYmal. The autonomous recharging of mobile robots
is a crucial feature when long-term autonomy is expected or human intervention is
not possible. This is the case when a robot is used in environments that create a
potential hazard to humans such as the inspection of oil rig platforms. If operated in
such explosive environments, machines are usually required to be frequently purged
with inert gas to avoid ignition through electric sparking (ATEX-P certification).
Our docking station allows for recharging of ANYmal’s battery as well as purging
of its main body with gas. We present a robust docking strategy that negotiates
positioning errors of the robot through guiding elements and flexible parts. The
docking mechanism itself consists of an actuated plug which is inserted into a socket
on the robot’s belly for electrical and mechanical connection. The mechanism is
designed for reliable, sealed and spark-free operation. The system has proven to be
robust in a laboratory environment and under realistic conditions.

1 Introduction

The operational lifetime of autonomous mobile robots is limited to the energy supply
of the system. While some robots use their own means to charge, for instance by
using solar energy [1], digesting slugs [2] or carrying radioactive generators [3],
most robots rely on energy provided by an external source. In environments where
long-term autonomy of the mobile robot is expected, especially in industrial/home
automation or exploration tasks, autonomous charging becomes a necessary asset.

Generally speaking, autonomous charging has been around since the early days of
mobile robots. In the 1940s Grey Walter was using light to guide his tortoise robots
into a hut, where they would make contact with a charging circuit [4]. Since then, the
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Fig. 1 Scenario overview
with docking station

general idea of using on-board sensors to identify a specifically designed docking
station, move towards the station and physically dock using some sort of mechanism
has not changed much [5]. Some researchers are beginning to tackle the problem
more generally by trying to connect to common power outlets; however, to date this
requires the robot to be fairly advanced [6]. Docking stations have recently become
visible in everyday life due to their commercial application in home automation. A
good example is presented by robotic vacuum cleaners or home surveillance robots
[7]. These stations are designed for robots using wheel-based locomotion. Since
the more recent arrival of robots using legged locomotion, the question of how to
autonomously charge these systems has arisen.

So far, autonomous docking stations for legged robots have not yet been an active
area of research. Most notable is the consumer market docking station of Sony’s Aibo1

robot introduced in the early 2000s. Here, the robot uses its on-board CCD camera
to locate the docking station, walk over it and place its main body on the station,
which matches the shape of the robot’s belly. The charging contacts are exposed on
the station and make physical contact with the robot once seated. Another docking
station is the predecessor of this station developed in 2016 [8]. Here, the robot climbs
over the station and seats itself on two 3d printed cones; the charging pins are exposed
on the station. However, the system has several drawbacks such as poor success rates
and its non-suitability for outdoor use.

Since legged robots provide an advantage over wheeled systems when it comes to
negotiating with complex environments, it is only a matter of time until these systems
are used extensively for demanding tasks such as inspection of disaster sites. This
presents a scenario in which the system should be able to explore and operate for
several hours without the need for human interaction (Fig. 1).

Such a task, an autonomous inspection of an oil-rig platform, was the goal of the
ARGOS (Autonomous Robot for Gas & Oil Sites) challenge organized by Total.2

The third and last round of the 3 year competition took place from March 9–17, 2017
at Lacq, France and presented a good opportunity to validate the docking station

1http://www.sony-aibo.com/.
2http://www.argos-challenge.com/.

http://www.sony-aibo.com/
http://www.argos-challenge.com/
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and our robot in a realistic scenario [9]. Our robot, ANYmal, is a quadrupedal robot
specifically designed to fulfill inspection tasks in harsh environments [10]. The robot
is equipped with two rotating Hokuyo laser scanners for localization and an actuated
sensor head to perform inspection tasks. The recently updated power source consists
of a 12 S 5P Panasonic NCR 16850-GA Lithium-Ion battery with a capacity 745 Wh,
which provides the robot with roughly 2.5 h of autonomy under nominal load. Since
the robot is operated in a potentially explosive atmosphere, it is necessary to purge
and pressurize its body with inert gas [11].

In the following chapters, we describe the development of a new autonomous and
robust docking station to charge the quadrupedal robot ANYmal with energy and
purge the main body with inert gas. We introduce the system design, the docking
strategy and experimental results.

2 System Design

The docking station consists of several subsystems of which the most important ones
can be defined as follows: Docking Mechanism, Sensing, Actuation and Control and
the Pneumatic system. All of these are integrated inside the station (Fig. 2), which
has a size of roughly 1 m × 0.14 m × 0.27 m (Length × Width × Height) and a
weight of 16.17 kg (without gas bottle).

A safe and secure docking is of high importance for reliable operation of the robot
and for human interaction with the system. The hardware is intrinsically designed to
not have any exposed contacts at high power unless a reliable connection is made.

Fig. 2 The picture shows the hatch and plug assembly (docking configuration) on the left, the
control electronics in the middle and the pneumatics and charger on the right. Handles, guiding
brackets and signal lights are also visible
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2.1 Docking Mechanism

Frame

The frame has to fulfill several functions. First, the dimension must be small enough
for the robot to walk over it while providing enough space to house all components
in a waterproof environment. To protect the charging plug and to keep the housing
sealed, a linearly actuated hatch is mounted on top. An important feature of the frame
is the guiding brackets. These brackets are used to compensate linear alignment errors
of the robot of up to 20 mm. The corresponding interface on the robot is the belly
plate, which is developed for shock absorption in the event of fall.

The brackets are made from polyoxometalate (POM) for low friction, and are
adapted to match the design of the belly plate. To sense if the robot is correctly
seated on the docking station, an inductive sensor is placed on top of the station
between the guiding brackets. To visually notify the operator about the current status
of the station, a yellow and green signal light is attached to the frame. A long-range
wireless connection is made with a directional antenna. Handles are mounted for
easy transport and adjustable feet are mounted below the station to ensure a sta-
ble stand on uneven terrain. To set the initial status of the station, three buttons are
mounted. One button is used to power on and off the station, another to activate the
fully autonomous mode and one button that enables the purging and pressurization
procedure whenever the robot is docked. An emergency stop is installed that can cut
power and stop all operation.

Plug

The plug (Fig. 3a) is housed inside the docking station and can be moved linearly
through the opened hatch against the robot once it is in position. The main functions
are to provide a stable connection to the socket and to allow energy and gas flow to
the robot. The shape of the plug and socket was partially inspired by the mechanisms
for spacecraft docking [12]. The round top and the conically shaped part allows for
precise positioning of the plug with respect to the socket. To overcome the remaining
tolerances, the plug is situated on top of a flexible rubber part which allows a certain
freedom of motion. Four pogo pins are placed on the plug in a special, arbitrary
pattern to avoid reverse polarity. Two pins are used for detecting contact and two to
transmit the power. The contact detection pins are designed slightly shorter than the
other two. This ensures that during docking, the shorter pogo pins are in contact after
the power pins, as well as ensures they are the first ones that will lose contact when
undocking. This is important to avoid sparking on the power pins.

Socket

The counterpart of the plug is attached to the belly of the robot. The socket assembly
consists of a plastic part, two printed circuit boards (PCB), a lid, a check valve and
a sealing (Fig. 3b). The plastic part, like the brackets, is made from polyoxometalate
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(a) Plug (b) Socket

Fig. 3 The figure shows the plug (a) and the socket (b) with matching shape

(POM) for low friction. The inner shape matches the outer shape of the plug to guide
it to a defined position. A circuit board with gold-plated contacts is located on the
bottom of the socket part, partially covered by a lid. The bottom circuit board serves
as the interface to the pogo contacts of the plug. A second circuit board (not visible
in the figure) is located on top of the socket inside the robot. This board houses a
passive set of electronics (relays and diodes), that are powered by the docking station.
The electronics ensure a safe connection to the battery once contact is established
and verified. The check valve ensures the gas flow is directed inwards. The socket
is mounted from the outside to the main body of the robot and is sealed to avoid gas
leakage.

2.2 Sensing, Actuation and Control

The docking station is controlled by a Raspberry Pi 3 situated on a custom circuit
board, which interfaces the connected peripherals (Fig. 4). We use the Raspbian
Jessie3 distribution as OS and installed ROS Indigo.4 We programmed a docking
station node for ROS in the form of a state machine, which is started once the
station is powered on and the program start button is pressed. The docking station
node is incorporated in the overall system architecture, which includes ANYmal and
the operator PC. Hence, easy communication and monitoring of the status of both
ANYmal and the docking station is possible and available to the operator.

The controller board is the interface to the electromechanical components. The
controller is able to move the linear actuators attached to hatch and plug, to indicate
the status of the station via yellow and green signal lights, as well as read the various
sensors (Induction, Pressure, Current, Contact) and the buttons mounted on the frame.

3https://www.raspberrypi.org/.
4Robotic Operation System—http://wiki.ros.org/.

https://www.raspberrypi.org/
http://wiki.ros.org/
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Fig. 4 Schematic overview of the electrical components and interfaces

We also developed an analog circuit that allows the sensing of passive electronics
inside the robot.

This circuit inside the robot, which is mounted on the socket (Sect. 2.1), is decou-
pled from the rest of the system and can only be powered by the contact pins once
contact is established. This allows one to safely open relays inside the robot and
inside the docking station and minimize, together with the mechanical design of the
pogo pins, the risk of sparks and voltage peaks. The current flow through the battery
charger is measured and visible to the operator. Depending on the state of the gas
filling enabling switch, the purging procedure can be started or neglected.

2.3 Pneumatic System

We can purge the robot with inert gas (nitrogen) provided by the docking station. Part
of the pneumatic installation is installed inside the docking station, while additional
parts are placed inside the robot (Fig. 5).

The docking station setup consists of a gas cylinder (C1) with a pressure gauge
(P1); a setup of two pressure regulators to set operating pressure, minimize oscilla-
tions and the supply pressure effect (R1, R2); two respective pressure gauges (P2, P3);
an electromechanical valve (Q1) with suppressor (R3); a manual switch connected
in parallel (S1) and a pressure transducer (B1). The pneumatic system interfaces the
robot through the plug mentioned in Sect. 2.1.

http://dx.doi.org/10.1007/978-3-319-67361-5_2
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Fig. 5 Overview of the pneumatic system

The robot (C2) is equipped with two check valves (R4, R5). One check valve (R4) is
connected to the socket with the flow-direction pointed inwards, while the other (R5)
is connected to the front of the robot, directed outwards. Once a sealed connection
between the plug and socket is made and confirmed, the docking station can start
the purging procedure. The electromechanical valve (Q1) opens while the charg-
ing pressure is constantly monitored through the pressure transducer (B1). The two
pressure regulators (R1, R2) are preset to maintain a constant output pressure. The
check valve is integrated in the socket and opens once a pressure difference between
working pressure and robot is reached. The nitrogen level inside the main body rises
until the pressure difference between outside and inside is reached and the second
check valve (R5) opens to release overpressure.

The point in time after the check valve opens is monitored by the docking station
control. The valve stays open and closes within discrete time steps until a minimum
of five times the robots volume equivalent of gas has purged through the body. After
the successful purging, the electromechanical valve (Q1) closes, remaining pressure
between the valve and the check valve (R4) is relieved through the suppressor (R3)
and the robot’s main body remains pressurized. As an alternative to the automatic
docking procedure, the electromechanical valve can be bypassed by a manual on-off
valve (S1). Additionally, the pressure inside the main body is constantly measured
and monitored through the onboard electronics.

3 Docking Strategy

Deployment

On entering an inspection site, ANYmal can be transported seated on the docking
station inside a wheeled box. The box can be moved by one person by pulling it by
a metallic handle. The box is designed to overcome pavement edges of up to 8 cm.
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(a) ANYmal leaving the station, plug retrieves (b) Mission started, docking station idle mode

(c) ANYmal returns, sliding in guiding brackets (d) ANYmal successfully docked

Fig. 6 The docking sequence

Once close to the area of interest, ANYmal and the docking station can be lifted from
the box and transported by two people to the destination point by using two handles
attached to the docking station.

Once deployed (Fig. 7), the robot starts localizing itself within the environment.
Therefore, the Iterative Closest Point (ICP) algorithm [13] is used to match the local
scan (perceived by the two rotating Hokuyos in the front and in the back) to the
reference map. Starting from an initial guess of the robot’s pose within the reference
frame, the algorithm iteratively searches for the nearest neighbors between local and
reference point clouds and minimizes the sum of all squared distances. The resulting
absolute pose of the robot is used to correct the robot’s odometry during the entire
mission. In this case, the pose of the robot in seated configuration on the docking
station is stored for future reference. After this, the robot lifts its body and walks off
the station to start the mission (Fig. 6a). The docking station automatically retrieves
the plug and closes the hatch once the robot is not sensed anymore. This state is
called the idle state (Fig. 6b).
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Approach and Docking

When the mission is finished or a low battery/pressure status is detected, the robot
autonomously returns to the docking station. The target pose of the robot is the same
as the starting pose during the deployment phase. The robot approaches the docking
station and walks over it by using a special maneuver [14]. A two-step strategy is
used in order to position the robot with high precision and account for potential
localization errors. The first step is to position the robot above the guiding brackets,
which can passively compensate misalignment errors of a few centimeters (Fig. 6c).
The robot slides in a seating position and the successful seating of the robot is sensed
by the inductive sensor of the station.

In the second step, the hatch on top of the station opens and the plug moves towards
the socket. The plug has the ability to negotiate remaining, small misalignment errors
of a few degrees/millimeters thanks to a rubber part that allows for certain flexibility.
The successful docking is confirmed by two pogo pins on the plug, which sense the
passive electronics of the socket (Fig. 6d). In case a confirmation was not received,
the plug will retreat a few centimeters and tries to dock again. If docking was not
successful following the third try, the station would return to the idle state. Since the
operator will be aware of the situation, he could then try to walk-off the station and
restart the docking maneuver.

Charging

Once the connection is made, the robot’s batteries are automatically charged. Addi-
tionally, the robot can be pressurized with gas. This is important for ATEX-P certifi-
cation, which the robot has to comply with when operating in areas with a potentially
explosive atmosphere [11].

During this process, the main body of the robot is purged several times its volume
with an inert gas (i.e. nitrogen) and has to remain pressurized for the time of opera-
tion. Both, current flow and the amount of gas flowing in the robot is measured and
available to the operator. Signal lights indicate the status of the station. A flashing
yellow light indicates the move of the actuators and a flashing green light indicates
a successful docking and charging.

Undocking

In nominal operation, the robot stays connected through the plug on the docking sta-
tion and batteries are constantly charged. In case the robot is lifted off or commanded
to continue its mission, the station automatically returns to idle state. If necessary,
the station can also be shut down remotely or manually while the robot is seated.
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4 Experiments and Results

We used the docking station extensively during the last round of the ARGOS chal-
lenge. The scenarios in which the robot and the docking station were tested include
the autonomous inspection of an oil rig platform under realistic environmental con-
ditions. We deployed the robot with the docking station (Fig. 7), and several missions
were started and finished on it. We carried out the charging with both gas and energy
successfully.

Additionally, we performed end-to-end tests in a laboratory environment. For the
first two experiments, the station was not powered and no docking was performed. We
tested if the robot was able to walk off and on the station, and if the guiding brackets
would allow a defined positioning of the robot. In the next four experiments, the
docking station was activated and the robot walked off and immediately returned
to the station without an intermediate mission simulation. In the following four
experiments, the robot walked off, trotted in front of the station, and returned. The
docking station was able to perform autonomous docking with confirmed contact
in all eight cases (Table 1). In one case, the automatic retreat and re-dock mode as
mentioned in Sect. 3 was triggered since the pogo pins did not confirm contact at
first. Here, the plug retreats slightly and approaches the socket a second time while
the robot remains seated. We observed this, albeit rarely, at the competition which is
why we implemented the procedure. To guarantee a 100% docking at first try, further
improvements could be made through optimization of the flexible part (allowing more
flexibility).

Fig. 7 ANYmal in seated
configuration on the docking
station at the ARGOS
challenge
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Table 1 Results of docking station end-to-end testing

Exp.
no

Task Docking
station

Result Comment

1 Walking off and immediate
return

Inactive Success Robot seated correctly

2 Walking off and immediate
return

Inactive Success Robot seated correctly

3 Walking off and immediate
return

Active Success

4 Walking off and immediate
return

Active Success

5 Walking off and immediate
return

Active Success

6 Walking off and immediate
return

Active Success

7 Walking off, trotting, and return Active Success

8 Walking off, trotting, and return Active Success

9 Walking off, trotting, and return Active Success

10 Walking off, trotting, and return Active Successa

aThe docking station docked successfully after short retreat and re-dock of the plug (Chap. 3)

Though never observed, one can imagine a case where the ICP algorithm fails to
localize the robot with high certainty, e.g., in flat, open areas. In this case, the docking
station could be surrounded by geometric items, i.e., poles. Alternatively, CV tags
could be used to localize the station directly, or the guiding brackets could be enlarged.
Overall, our experiments confirm the high robustness of the system, which we also
observed during the ARGOS challenge.

5 Future Work

The docking station could be upgraded with additional features in the future. It can be
used as a communication bridge between the operator and the robot to enlarge reach
of the Wi-Fi and, consequently, the operational area. Additionally, sensors could be
mounted on the station to monitor the environment in close proximity and inspect
the robot for potential damage. In the event that the station is used in a scientific
scenario, one can think of having additional instrumentation to facilitate the analysis
of samples brought by the robot.

The current version is connected with a cable to an external power supply and
with a hose to a gas bottle. The last building block for a completely independent and
autonomous operation would be achieved by incorporation both a gas bottle and a
large battery pack.

http://dx.doi.org/10.1007/978-3-319-67361-5_3
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6 Conclusion

We introduced the first autonomous, outdoor-proof docking station for quadrupedal
robots. Through testing and use in a realistic scenario we showed the capability of
the system to safely charge the robot’s batteries and purge and pressurize the main
body.

The system is capable of increasing the robot’s operational time in hazardous
environments without human intervention. Furthermore, the docking station provides
a solid base for future implementation of additional features.
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Autonomous Mission with a Mobile
Manipulator—A Solution to the MBZIRC

Jan Carius, Martin Wermelinger, Balasubramanian Rajasekaran,
Kai Holtmann and Marco Hutter

Abstract This work presents the system and approach we employed to tackle the
second challenge of the Mohamed Bin Zayed International Robotics Challenge
(MBZIRC) (See http://www.mbzirc.com/challenge). The goal of this challenge is
to find a tool panel on a field, pick an appropriate wrench from the panel, and operate
a valve stem therewith. For this purpose we use a task-oriented field robot, based on
Clearpath Huskywith a customized series elastic arm, that can be deployed for versa-
tile purposes.However, to be competitive in a robotic challenge, further specialization
and improvements are necessary to achieve a certain task faster and more reliably.
A high emphasis is put on designing a system that can operate fully autonomously
and independently respond if a subtask was not executed successfully. Moreover,
the operator can easily monitor the system through a graphical user interface and,
if desired, interact with the robot. We present our algorithms to explore the field,
detect the panel, and navigate to it. Furthermore, we use a support vector machine
based object detection method to locate the valve stem and wrenches on the panel for
visual servoing. Finally, we show the advantages of a force controllable manipulator
to handle the valve stemwith a tool. This system demonstrated its applicability when
fulfilling the entire task fully autonomously during both trials of the Grand Challenge
of the MBZIRC 2017.

1 Introduction

Robotic competitions and challenges give a strongmotivation to foster innovation and
research and to aim for a long-term goal. They support development and real-world
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verification of single components, but also force to integrate those components into
a complete system. This may be a reason why these contests gained more and more
popularity over the past years and spread over various areas of robotics. Contests like
Cybathlon [16], DARPA Robotic Challenge (DRC) [8], ELROB and euRathlon [17],
European Robotic Challenges (EuRoCs) [18], RoboCup [12], and RoCKIn [13], to
mention only a few, show the state of the art but also catalyze new developments.
Furthermore they present a great opportunity to promote the progress in robotics
to a broad audience. However, robotic challenges may also drive the technological
innovation into an “reductionist design” [2], where simplistic but custom-tailored
solutions are applied instead of generic approaches. Finally they expose clear weak-
nesses of current systems that require help from several humans to be set up and
supervised.

This work presents the approach and system design that we used to master the
second challenge of the MBZIRC 2017. The task of this challenge is to use an
unmanned ground vehicle (UGV) to locate a wrench panel on a 60× 60 m outdoor
field, navigate to it, select and grip a suitable wrench hanging on the panel, and
turn a valve stem 360◦ therewith. A special focus of this challenge lies on complete
autonomous behavior, since any intervention by a human operator will directly result
in significant score penalties. We decided to utilize a generic mobile manipulation
platform that can be used for a variety of tasks. The modifications made on hardware
and software are modular and complement the base system.

The remainder of this work will cover our contributions to accomplish the chal-
lenge task: design of a mobile robot for handling wrenches (Sect. 2); autonomy and
mission state machine (Sect. 3); detection of the panel (Sect. 4); exploration, naviga-
tion, and positioning (Sect. 5); object detection and visual servoing (Sect. 6); valve
manipulation (Sect. 7); and finally we conclude with the performance during the
Grand Challenge.

2 Hardware

The system used for this robotics challenge consists of the four-wheeled skid-steer
platform Husky (Clearpath Robotics), equipped with a custom six degree of free-
dom (DoF) manipulator arm (see Fig. 1 left). For state estimation, localization, and
navigation in unknown environments the UGV is equipped with wheel encoders,
a Microstrain 3DM-GX4-15 inertial measurement unit (IMU), a Velodyne HDL-
32E light detection and ranging (LIDAR) sensor, and optionally a Garmin GPS-18x
global positioning system (GPS) receiver. The arm is an advancement of the previ-
ously presented ANYpulator [1] with newly three DoF allocated at the wrist of the
manipulator. All joints of the arm are actuated by the same high-performance series
elastic actuator (SEA) units. These actuators, called ANYdrives [10], are composed
of a brushless high-torque motor, harmonic drive gear, and a torsional spring. The
usage of SEAs adds inherent compliance to the system, making it especially suit-
able for interaction tasks such as valve manipulation. The computational payload for
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Husky UGV

Wireless Router

LIDAR

Gripper
ANYpulator

GPS

Computers

Fig. 1 Left: Integrated mobile manipulator platform with six DoF arm. Right: Clamp design for
grasping wrenches with attached camera for visual servoing

navigation, arm control, and perception is distributed on three on-board computers,
which connect to an operator computer through a wireless network.

Specifically designed for the task of the challenge is the end-effector tool for
wrench grasping (see Fig. 1 right). The gripper’s mechanical design is optimized to
provide a lightweight but effective tool for holding the shafts of standard wrenches.
A hollow aluminum structure attaches to the final joint of the robot arm and provides
mounting points for a camera and a clamping mechanism. A single Dynamixel MX-
64 Motor drives two sheet metal clamps through a rack and pinion mechanism. This
ensures that the closing position is centered laterally with the end-effector reference
frame. Additionally, the clamps are designed to center the head of a gripped wrench
with the rotation axis of the last joint. This facilitates pure rotation motion of the
tool, e.g. for turning a screw or the valve stem. Sensing of motor current and position
allows to determine whether or not an object is successfully held by the gripper. For
visual servoing, a calibrated monocular camera (PointGrey Chameleon 3) is attached
to the aluminum shaft below the clamps, such that a graspedwrench does not obstruct
the view of the camera.

3 Autonomy and Mission Control

A typical mission that we expect our robot to fulfill involves several sequential steps
such as exploration, detection of the manipulation site, navigation, positioning, and
manipulation itself. Tasks of this complexity call for a modular mission design since
each sub-task may fail and needs to be repeated. Figure2 displays our mission state
flow diagram for the second task of the MBZIRC. Each state is responsible for a
specific sub-task and is accompanied by a supervision module (not shown in the
figure) that decides if the completion was successful or not. In case of failure specific
recovery behaviors may be executed or the state machine simply transitions back
to the previous task and starts another attempt. This architecture also allows the
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Fig. 2 State flow during the MBZIRC mission. Each state may succeed (�) or fail (×). On failure,
the robot will execute the previous task again or request user input

Fig. 3 Hierarchical software
architecture and abstraction.
The operator can interact
with the mission task
dispatcher or teleoperate the
system directly

interruption of a current task on predefined conditions, for example when the battery
runs low or the operator requests the mission to stop (Fig. 3)

The operator can monitor the robot through an additional operator computer,
which is connected to the robot’s wireless network. A graphical user interface (GUI)
displays information from all relevant software modules and diagnostic information
such as battery charge state and temperatures. Additionally, a visualization of the
constructed environment map and the image stream from the camera are displayed
to the operator. At any time, the operator may interrupt the autonomous mission and
provide manual commands through a joystick or through the GUI. This empowers
an user to issue specific commands such as closing or opening the gripper, switching
to a specific mission state, or controlling the manipulator or mobile platform.
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All mission critical software is running on the robot itself and is independent from
the quality of theWiFi network. Therefore, even under limited network connectivity,
the robot maintains its autonomous behavior. For safety, the robot pauses if there is
a connection time-out to the joystick.

4 Wrench Panel Detection

An important element for succeeding in the navigation part of the MBZIRC is the
correct identification of the wrench panel and its subsequent pose estimation. Our
method relies on 3D point clouds acquired from a laser scanner.

4.1 Point Cloud Processing

The panel detection software operates on any kind of point cloud (e.g., constructed
map or raw scan) with the only requirement that the vertical direction of the cloud is
known. For the MBZIRC, our setup directly uses raw scans, obtained by assembling
laser data from one revolution of the scanner.

To identify the panel, we make use of the known geometric dimensions of the
rectangular sides as given by the challenge description. Our algorithm can identify
any planar side of the panel by executing the following operations:

1. The point cloud is cropped to a boxwith side length of 10m around the robot. This
reduces the computational requirements and prevents detection of false positives.

2. A normal vector is assigned to each point through principal component analysis
of the covariance matrix from neighbors of the query point.

3. Region growing using conditional Euclidean clustering assigns each point to a
cluster, thereby segmenting the point cloud. Two points share the same cluster if
they are sufficiently close (Euclidean distance) and their normals are aligned.

4. In each cluster, random sample consensus (RANSAC) [6] plane extraction singles
out individual planes. We reject non-vertical planes and those that lie outside of
our search space (specified as a polygon corresponding to the arena geometry).

5. For each of the remaining planes, we check if its dimension matches any of the
rectangular sides of the panel. Finally,we confirm that the point distribution across
the plane is approximately uniform to reject any remaining artifacts.

4.2 Pose Estimation

If all of the above tests are successful, the identified plane, together with its orien-
tation and position, is passed to an estimation module which keeps track of several



564 J. Carius et al.

detections. The individual detections (measurements) of the panel pose are fused to
potential matches (candidates). Each candidate i holds an internal state, containing
the pose of the front plane of the panel with respect to a map-fixed reference frame
and an improper probability pi ∈ [0, 1] indicating how likely it is the true match.
Newmeasurements will update existing candidates if there exists a sufficiently close
one, otherwise a new candidate will be initialized with probability pinit.

(a) Initializing Candidates: Upon construction of a new candidate, the pose infor-
mation of the measurement is transformed to an equivalent pose of the panel’s
front side by applying a suitable translation and rotation. If the initial measure-
ment is ambiguous, i.e., the algorithm detected the side of the panel, one cannot
decisively infer if the detection corresponds to the right or left part. In this case,
an arbitrary choice is made and the state of this candidate is set to ambiguous.

(b) Updating Candidates: The first step in updating a candidate is again trans-
forming the measurement to an equivalent pose of the front side of the panel. In
ambiguous cases, the rotation is chosen such that it supports the current hypoth-
esis. If a previously ambiguous candidate receives an update by a conclusive
measurement (e.g., the front or back side), the ambiguity can be resolved. This
potentially involves flipping front and back side if the wrong initial choice was
made. The position is updated through a first order filter and the rotation through
spherical linear interpolation and the probability is increased by pupdate.

At each iteration, the candidate manager reorders its list in descending probability
order, normalizes the probabilities such that the highest does not exceed 1.0, and
removes candidates with probabilities below a given threshold. We accept the most
likely candidate 0 if its probability p0 > pthreshold and it is significantly more likely
than the next best candidate p0 − p1 > pdiff, if any. The parameters fulfill

0 < pinit + pupdate < pthreshold < pinit + 2pupdate < 1 , (1)

hence at least three detections are necessary for acceptance of a candidate.

4.3 Evaluation

Our approach correctly identifies the pose of the wrench panel from a distance of
10m, which is approximately the point at which the rectangular sides become visible
in the point cloud visualization for a human observer.

The computational load of processing point cloud data allows update rates of
0.6 Hz on an Intel i7 processor, which places an upper bound on the speed at which
the robot can drive past the panel without missing it. In practice, the maximum speed
of our ground vehicle (1.0 m/s) does not cause any problems in this respect.

A major difficulty for the detection algorithm arises from occlusions in the laser
scan. Our scanner is protected by a cover which is held by three vertical pillars,
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casting conic shadows with opening angles of 7◦. If the panel happens to fall inside
this region, the occlusions render the detection difficult or at times impossible.

Apart from detections in the laser scan, the estimation module accepts panel
measurements from several sources. While we did not employ this in the actual
challenge, it would have been possible to take input from a user or measurements
made by drones about the potential position of the panel. The rejection mechanism
of single false positives proves essential in many cluttered environments.

5 Navigation

We applied a custom navigation routine to drive and position the robot in front
of the wrench panel. This routine makes use of underlying iterative closest point
(ICP) based localization and mapping [14, 15] and the ROS navigation stack1 for
path planning and following. The navigation is divided into two main phases, first
locating the panel in an exploration phase and secondly positioning the robot relative
to it.

5.1 Exploration

The panel has to be located before the robot can position itself precisely. Therefore,
the explorationmodule creates a complete coverage path plan in a predefined rectilin-
ear search space which is defined by the user via the input of GPS corner coordinates.
This coverage path starts at the center of the search space and works its way towards
the boundaries in counter-clockwise cycles around the middle point. The step size
between those cycles thereby correlates directly with the detection range of the panel
detection algorithm. An illustration of the coverage path plan is given in Fig. 4 (left).
Furthermore, this module comes with a set of recovery behaviors to increase overall
robustness. They guarantee that exploration continues when encountering scenar-
ios such as unreachable waypoints due to obstacles. For increased efficiency of the
exploration, heuristic priority waypoints can be specified. They are tracked prior to
the retracing of the inherent coverage path.

The exploration phase is usually the first stage in a mission and terminates once
the concurrently running panel detection algorithm (Sect. 4) succeeds in identifying
the manipulation site. In a subsequent transition phase, the robot navigates to a fixed
position relative to the wrench panel. Once this intermediate goal is reached, the
transition completes and the positioning phase is triggered.

1See http://wiki.ros.org/navigation.

http://wiki.ros.org/navigation
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(a)

(b)

(c)(d)

Fig. 4 Left: Waypoints for complete coverage of rectilinear search space. Right: The positioning
procedure: a Facing, b Approaching, c Turning, and d Centering

5.2 Positioning in Front of the Wrench Panel

The purpose of this phase is to position the robot in a way that the panel is within the
reach of the arm and subsequent manipulation tasks can be performed. To this end,
a fixed sequence of maneuvers is executed. These maneuvers ensure that the desired
goal pose of the robot in front of the wrench panel is reached reliably and accurately
considering the skid-steer constraints of the mobile robot.

The positioning is divided into four stages: Facing, Approaching, Turning, and
Centering. The schematic overview of these stages is illustrated in Fig. 4 (right).
During the first three stages simple unidimensional velocity commands are applied,
that is a constant rotation around the robot’s z-axis in stage (a) and (c) and a linear
velocity in stage (b). In the last stage both linear and angular velocities are controlled
simultaneously. Thereby, potential residuals in lateral and longitudinal direction as
well as rotational offsets from the previous stages are eliminated.

6 Object Detection and Visual Servoing

Manipulation of the valve using the appropriate wrench is the fundamental task of
the mission. The key elements for succeeding in this task are correct detection of
valve, precise estimation of depth, selection of the correct tool, and reliable visual
servoing.

A support vector machine (SVM) [9] based object detection method using his-
togram of oriented gradients (HoG) features [4] is adopted in order to achieve robust-
ness. HoG features are used as it captures the object’s shape characteristic which is
the most distinct property of the considered objects. A linear SVM model is trained
using SVMLight [11] for each object i.e. valve, wrench, wrench box-end (referred
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Fig. 5 Valve tracking (a) inside a region of interest (blue) to align the camera center (red) with the
valve (green) (b). Detected valve contour (c) for depth estimation

to as wrench ring), and wrench open-end (referred to as wrench head). The training
set contains images of the objects augmented for different illuminations to facilitate
detection in different lighting conditions.

6.1 Valve Pose Estimation

Wemeasure first the valve position and save it is as reference point for the subsequent
manipulation, as the wrench panel layout is specified.

(a) Valve Detection and Tracking: The previously mentioned HoG based object
detection method is used to detect the valve. The end-effector executes a prede-
fined spiral motion pattern while searching for the valve. Once the valve is found
with a certain confidence level, tracking starts using a Kalman Filter. Velocity
commands are sent to the arm controller to reduce the alignment error between
the center of the camera and the center of the valve as shown in Fig. 5a. After
aligning the camera with the valve (Fig. 5b), the pose of the valve with respect
to the robot’s base can be computed using the current pose of the camera and
the estimated distance between valve and camera.

(b) DepthEstimation: The valve is segmented from the panel using adaptive thresh-
olding [5] and its external contour is extracted using an algorithm based on con-
nected components [19] as shown in Fig. 5c. This gives us the size of the valve
in pixels (dimage). Knowing the focal length ( fcam) of the camera, we determine
the distance between the valve and camera (Zdepth) using the known size of the
valve in metric standards (Dworld) via the projective equation

Zdepth = Dworld fcam
dimage

. (2)
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Fig. 6 a Pin detection to estimate view orientation. bWrench length estimation through head and
ring detection. c Selected wrench (green) after length voting

6.2 Wrench Selection

Corresponding to the given dimension of the valve stem, the appropriate wrench is
selected according to its length with the following steps:

(a) Wrenches View Camera Pose Estimation: As the panel layout is specified, we
can infer the camera pose where all wrenches are visible from the camera lens
parameters (perspective view angle) and the estimated valve position.

(b) Orientation Alignment and Depth Estimation using Wrench Rings: The
wrench rings are detected using the mentioned SVM detector and the center
points of the rings are accumulated fromconsecutive image frames.Once enough
points are recorded, a line is fit over those points as shown in Fig. 6a and its angle
from the horizontal is calculated to correct the camera roll.
In order to be robust against positioning deviation of the UGV, we again estimate
the depth from the wrench hanging pins. An approach similar to estimate the
depth from the valve is used again. The distance (in pixels) between the con-
secutive pins in the image is equated to the distance (in metrics) between them
from the panel layout using Eq. (2).

(c) Wrenches Length Estimation and Selection: The head and ring of every
wrench is detected using the trained SVM models. The distance (in pixels)
between themid-points of the detected ends of the wrench is calculated as shown
in Fig. 6b and is converted to metric length.
In order to be robust against swinging of wrenches due to wind, a voting scheme
is used. A wrench is selected in each image frame based on its estimated length.
Each candidate is voted based on its frequency of occurrence as shown in Fig. 6c.

6.3 Wrench Grasping

Once the appropriate wrench is selected, it is approached by the gripper using visual
servoing. Our method uses both position-based visual servoing (PBVS) and image-
based visual servoing (IBVS) [3, 7] control techniques.
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Fig. 7 Wrench head tracking for grasping: The wrench head is detected (green) within an dynamic
region of interest (blue) to align the camera (red) during approaching

(a) Approaching the Selected Wrench: First, we use the estimated depth and a
PBVS approach to move the gripper close to the selected wrench as shown in
Fig. 7a, from where it can be tracked.

(b) Wrench Head Tracking: IBVS is used to align the gripper with the wrench
before grasping. During alignment, the gripper also approaches the wrench as
shown in Fig. 7b. ASVMmodel trained for thewrench head alongwith aKalman
Filter is used for detection and tracking.
While approaching, we calculate the ratio between the size of the wrench head
and the size of the image frame. As we move closer this ratio increases and we
can detect when the gripper is close enough to grasp the wrench as shown in
Fig. 7c. A first order low pass filter on the ratio is used to avoid false detection
due to movement of the wrench in presence of wind.

(c) Grasping: Once the gripper has approached the wrench, the gripper closes
slightly ensuring the wrench is bound within the claws. Then it moves down
such that the wrench head is aligned to the rotation axis of the last actuator and
does not occlude the camera view. The clamps close with a constant force and
the final clamp position is used to detect if the grasping was successful.

7 Valve Manipulation

To fulfill the major part of the manipulation task it is sufficient to simply follow a
desired end-effector trajectory. However, the ability to precisely measure and control
the applied contact forces and torques demonstrates its usefulness during interaction
of the gripper with objects. In particular, it shows its advantages in handling the valve
stem with a wrench for both engagement and rotation.
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Fig. 8 Torque τ and position q tracking during valve engaging for themanipulator’s last joint (tool).
The solid lines show the commanded state, the dashed line the actual joint position and torque

7.1 Valve Engaging

Before engaging the wrench with the valve stem, we have to make sure that it is
properly gripped. Though in the previous steps we ensure that the wrench is within
the gripper, there is a chance that wrench slides down due to its weight. For this
purpose we turn the gripper upside down, open the claws slightly to let the wrench
head completely slide to the mechanical end stop, and close the gripper again. This
ensures that the wrench head is at the correct position for engagement. Subsequently,
the engaging procedure is executed.

First the gripper is placed in safe distance to the panel such that wrench head
opening is pointing towards the valve stem edge, with an offset of 5 cm to the
stem center. Next, we make contact between the wrench and the valve stem by first
approaching towards the panel, afterwards to the center of the valve stem, and finally
opening the gripper slightly to allow sliding the wrench towards the stem center.
To engage, the gripper is moved such that the wrench head is rotating around the
stem center. The gripper stays slightly opened during this motion to allow engaging
of the wrench and prevent jamming due to induced forces from the manipulator. A
successful engagement can be detected by a torque peak measured by the last joint
(see Fig. 8). After engaging, the gripper is closed again for the subsequent valve
turning.

7.2 Valve Rotation

We have tomake sure to stay engaged during a full 360◦ rotation of the valve. For this
purpose the manipulator applies a constant force of 10 N to push the wrench towards
the stem center during valve rotation. Additionally, a torque of approximately 5Nm is
required, according to the competition specifications, to operate the valve stem. The
resulting desired end-effector force Fee is directly applied as feed-forward torque
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Fig. 9 Torque τ and position q tracking during valve rotation for the manipulator’s last joint. The
desired end-effector torque (solid) corresponds to the specified 5 Nm resistance, but the actual
required torque (dashed) corresponds to less than 1 Nm

τFee = Jee (q)� Fee, where Jee (q) is the end-effector Jacobian. Figure9 shows the
commanded and measured torque of the manipulator’s last joint during valve stem
operation with a rotation speed of 0.25 rad s−1. Noticeably, the actual required torque
for rotation is less than 1 Nm.

8 Grand Challenge Performance

Both trials during the Grand Challenge showed similar performance. The second
attempt lasted approximately 327 s of which 90 s were needed for exploration and
navigation until positioned in front of the wrench panel, 95 s for measuring the
valve stem and selecting the correct wrench, 110 s for grasping the wrench and
engaging it with the valve, and the remaining 32 s for the actual rotation of the valve
stem. The main bottleneck during navigation was the slow average driving speed of
approximately 0.3 m/s which was owed to the limited turning rate necessary to avoid
stick-slip effects between wheels and ground. During manipulation, the end-effector
motion was required to be slow and steady for reliable and accurate visual tracking.
Especially during grasping, slow approaching was necessary because of the shaking
wrenches due to wind gusts.

A common failure source was the loss of target tracking during visual servoing
because of changing lighting conditions. To recover from this case the arm moved to
the last reference pose and restarted the tracking. Particularly important for successful
manipulation is the precise positioning in front of the panel, as the armwith its limited
range has to reach both the valve stem and the wrenches. We plan to overcome this
limitation in the future through combined arm-base motion.

Overall, we successfully demonstrated the applicability of our system design by
accomplishing the full valve operation task during both trials of the grand challenge
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of MBZIRC. Our mobile manipulator demonstrated its ability to operate completely
autonomously even in the presence of network dropouts and adverse environmental
conditions (high temperature,wind).Ourmodular approach proved valuable by being
fast to adapt to a newenvironment, allowing software faults to be isolated, andmaking
replacements of mechanical components easy. We will continue to use this system
for further applications in real-world scenarios and as a research platform.
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Towards a Generic Solution for Inspection
of Industrial Sites

Marco Hutter, Remo Diethelm, Samuel Bachmann, Péter Fankhauser,
Christian Gehring, Vassilios Tsounis, Andreas Lauber, Fabian Guenther,
Marko Bjelonic, Linus Isler, Hendrik Kolvenbach, Konrad Meyer
and Mark Hoepflinger

Abstract Autonomous robotic inspection of industrial sites offers a huge potential
with respect to increasing human safety and operational efficiency. The present paper
provides an insight into the approach taken by team LIO during the ARGOS Chal-
lenge. In this international competition, the legged robot ANYmal was equipped with
a sensor head to perform visual, acoustic, and thermal inspection on an oil and gas
site. The robot was able to autonomously navigate on the outdoor industrial facilty
using rotating line-LIDAR sensors for localization and terrain mapping. Thanks to
the superior mobility of legged robots, ANYmal can omni-directionally move with
statically and dynamically stable gaits while overcoming large obstacles and stairs.
Moreover, the versatile machine can adapt its posture for inspection. The paper addi-
tionally provides insight into the methods applied for visual inspection of pressure
gauges and concludes with some insight into the general learnings from the ARGOS
Challenge.

1 Introduction

Recent advances in environment perception and robot control make autonomous
mobile machines more and more applicable for inspection scenarios. Instead of
expensive and inflexible instrumentation, mobile surface robots can carry sophis-
ticated sensory equipment to any point of interest in order to conduct inspection
or surveillance tasks. If such solutions are available, no humans need to be sent to
working places that are dirty or dangerous, and even tedious and repetitive tasks can
be conducted day and night with high precision.
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Over the last years, there have been a number of initiatives from research and
industry (e.g. EuRoC [16]) that try to bring such solutions from research labora-
tories to real world sites. The ARGOS Challenge,1 initiated by TOTAL SA, aims
at the application of mobile robotic solutions for offshore oil and gas site inspec-
tion. According to [9], the organizers expect a major impact with respect to (i)
health, safety and environment (i.e. a reduction of risk to personnel, environment
and installation as well as (ii) operation (i.e. cost reduction, increase of efficiency
and production). In the ARGOS Challenge, the robots must be able to autonomously
navigate on the industrial site and inspect various objects such as pressure gauges,
water level gauges, or valve handle positions. They need to analyze the sound of
the running pumps in order to identify malfunctioning systems, detect alarm signals,
find gas leaks as well as hot spots, and recognize changes that were made on the site
(e.g. missing or moved objects). To make the scenario as realistic as possible, the
applied robots must satisfy ATEX (explosion protection) and IP (ingress protection)
standards. Moreover, during the missions that happen on multiple floors connected
by steep stairs, the robots are facing different hurdles such as unexpected obstacles,
heavy water falls, strong winds, or humans that are working on the site.

In contrast to specific robotic devices that are already commercially used in tanks,
vessels, or pipes2 the ARGOS Challenge seeks for very generic robots that can one-
to-one take over tasks performed by human specialists. In particular the require-
ments regarding mobility are demanding such that the few existing solutions like the
wheel-based robots MIMROex [11] or SENSABOT [15] are not applicable. To
address these issues, four of the five ARGOS Challenger teams selected in 2013
use tracked vehicles [9], while team LIO proposes an innovative solution based on
a versatile legged robot. The remainder of this paper provides an insight into the
realization of one of the most generic inspection robots.

2 System Description

Team LIO builds upon the modular and lightweight quadrupedal robot ANYmal [7]
as transporter platform for inspection (Fig. 1). The legs of this versatile machine are
driven by twelve equal series elastic actuator units [6] mounted at the joints. The
kinematic structure of the robot is designed to achieve a large mobility allowing to
overcome obstacles and stairs as well as for convenient transportation, compact stor-
age, and simple deployment by a single operator. To keep the design as lightweight as
possible, most of the structure is manufactured from carbon fibers. For fall protection,
the robot features a rollover bar, a Kevlar belly plate, and shock absorbers. Moreover,
force sensors in the feet provide haptic feedback of the environment, enabling safe
locomotion even in case the robot is completely blind. ANYmal is designed in a
hierarchical manner: On joint level, every actuator module is connected over a CAN

1http://www.argos-challenge.com.
2For example, see http://inspection-robotics.com.

http://www.argos-challenge.com
http://inspection-robotics.com
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Fig. 1 ANYmal robot extended with a pan-tilt sensor head for inspection

bus and works independently. This allows component-level ingress and ATEX pro-
tection as well as fast and simple maintenance in case of hardware failure. On system
level, computation is split among three independent computers that are connected
through an internal network. The first computer (locomotion) hosts all real-time crit-
ical elements required for locomotion control and to interface the joint modules. The
second computer (navigation) is responsible for environmental perception, localiza-
tion, navigation, and mission execution, i.e. all software parts that are required to
autonomously operate the robot. The third computer (inspection) runs all algorithms
for inspection and detection.

For localization, navigation, and foothold planning, the machine is equipped with
two rotating Hokuyo LIDAR sensors in the front and back, which provide detailed
scans of the environment and the terrain. Additional wide-angle cameras in the front
and back ensure an omni-directional view around the robot.

For inspection, we employ a pan-tilt head containing a high-quality zoom camera
with high infrared (IR) sensitivity, a thermal camera, an ultrasonic and a regular
microphone, a gas detection sensor, and LED illuminators. Since our robot can move
its base in all directions, there is no need to employ the robot with an extension
mechanism or arm.

The proposed system can operate fully autonomous with onboard batteries for
more than 2.5 h. To extend this lifetime, ANYmal can autonomously dock to recharge
the battery and to pressurize the mainbody with Nitrogen for ATEX compliance [8].

3 Autonomous Navigation on Industrial Sites

The ability to autonomously move on industrial sites requires that the robot is able to
precisely (and globally) localize, to map its environment, to plan a navigation path,
as well as to detect and overcome obstacles.
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3.1 Localization and Re-localization

To track its position and orientation, the robot scans its environment with two rotating
line LIDAR sensors (Hokuyo UTM-30LX-EW) and matches the resulting 3D point
cloud of to the reference map using the iterative closest point (ICP) algorithm [12].
The individual scans (half rotation of the laser, 20’000 points) are dewarped using
the local state estimation from IMU and leg kinematics [1]. The ICP algorithm then
searches for neighbor points between the two 3D point clouds of the single scan and
the map (Fig. 2a) and tries to minimize the sum of all their distances which takes
about 0.4 s. The estimated location is then fed back to the systems state estimator
as an update measurement. The challenging part in this setup was that the duration
of the ICP matching step is variable. To compensate for the potentially old position
update, the pose was further propagated using the local state estimation [1].

To converge to the correct solution, ICP requires that the errors of the initial guess
of the robots pose are less than 1.5 m in position and 30◦ in orientation. In case of
larger errors (i.e. at initialization or after loss of localization), the robot uses a plane
matching algorithm. This algorithm searches for planes in the two 3D point clouds and
groups them to all possible triples (see Fig. 2b). A similarity analysis of a scan and a
reference plane triple can be done quickly by comparing the interplanar angles. If the
plane triples are similar, their relative transformation can be directly computed from
the plane parameters. Using this transformation, the scanned point cloud is expressed
in the reference frame and a plausibility analysis is done by computing the nearest
neighbor ratio. If a certain threshold is met, the according relative transformation
between the clouds is taken to derive the robots pose. This approach has proven to
work very reliably during all missions and typically took between 20 and 100 s to
find the right position. Wrong positives were not encountered in any of the missions.

(a) Point Cloud (b) Plane Segmentation

Fig. 2 a The ICP algorithm matches every scan aquired by the LIDAR sensor during one half
rotation with the known reference map by minimizing the distance between both point clouds.
b The point cloud of the site is segmented into planes for global localization
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3.2 Path Planning and Re-planning

The mission contains two consecutive states for path planning and path following.
The path planning requires a start and a goal pose (whereby the start may be the
robots current pose) and outputs a path. The path following takes this path as input
and computes desired forward, sideways and rotational velocities with respect to the
robots body frame for the locomotion controller.

For path planning, the robot features two complementary algorithms, namely the
pose graph planner and the traversability planner.

The pose graph planner is used for global path planning, when the robot needs
to navigate from one pose to another on the site. The pose graph (Fig. 3a), which
is created once for the entire site, is a representation of the accessible and safely
traversable areas on the reference map. It consists of a tree of nodes with according
connections (edges). Since the individual areas are mostly flat, the node is a degen-
erated pose containing position and yaw information. The type of motion that the
robot is able to execute, i.e. the type of gait or climbing maneuver, is encoded in
the edge. The pose graph planner computes a path by using an A* algorithm on
the node tree. This method has several advantages: The planning is very fast (due
to the limited dimension of the problem) and the result is completely deterministic.
Any two points on the site can be connected by the pose graph planner. If a point
does not lie on the pose graph, the entry or exit nodes are determined by closest
proximity evaluation. Thanks to the short planning time, the robot can continuously
and in real-time re-plan its path independent on the event of blocked paths, changed
missions, or emergency situations.

For local path planning, e.g. when an obstacle blocks the global path of the robot,
the traversability planner [17]3 comes into play. It builds up a map containing the
estimated traversability of the environment, which is computed by fusing various

(a) Pose Graph (b) Local Planner

Fig. 3 a The pose graph consists of nodes (blue dots) and edges (green lines). b While following
the nominal trajectory, the traversability planner adapts the path around untraversable areas

3Traversability estimation online available: https://github.com/ethz-asl/traversability_estimation.

https://github.com/ethz-asl/traversability_estimation
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filters for slope, roughness, or step heights using the acquired LIDAR data (Fig. 3b).
After planning the local path with a sampling based RRT* planner, the mission
replaces the blocked segment of the global path with the alternative local path.

3.3 Sense and Move Strategies

In cases where a checkpoint is hidden or badly visible from a selected viewpoint,
e.g. due to reflections or bad angle of view, the robot visits an alternative position.
To this end, a tool was developed to determine all possible inspection locations for
every checkpoint, i.e. for every element that needs to be inspected. From the nominal
position and orientation of the checkpoint given by the CAD model of the site, the
possible inspection locations are determined. The likelihood of getting a good view
on the checkpoint is evaluated as a function of the offset to the nominal robot posture
and the angle of view offset (see Fig. 4). The robot then starts with the optimal
inspection point (green) and only moves to the others if the confidence for a correct
inspection is below a defined threshold.

3.4 Posture Adaptation

At every inspection point, the robot adapts its posture within the kinematically fea-
sible limits in order to get an optimal view of the checkpoint. As displayed in Fig. 5,
height and orientation of the body can be adjusted for every inspection situation. In
fact, the robot can change height by about 0.5 m, which allows for inspection without
an additional arm.

Fig. 4 Possible robot positions to read the checkpoint which are generated beforehand
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Fig. 5 ANYmal can adapt its posture to get an optimal view of the checkpoint

3.5 Stair Climbing

Ascending and descending stairs with ANYmal is achieved with two different strate-
gies. In the general case, steps are negotiated by stepping regularly with one leg
a time in a walking gait (Fig. 6a). The geometry of the stair such as the step rise
and run is either taken from the CAD model or estimated online from the elevation
map [5]. Based on this information, the foothold coordinates and whole-body motion
is generated using the Free Gait motion control architecture,4 where we use pose
optimization and spline-based interpolation to automatically synthesize the required
climbing motion [4]. In case of extreme conditions such as high inclinations (>50◦),
very slippery ground, or high wind speeds, ANYmal can negotiate the stairs in a
turtle like crawling gait as demonstrated during the second competition. Here, the
main body lies on the ground, the legs are moved to find the next stable contact holds,
and the machine is subsequently pulled upwards (Fig. 6b). Thanks to ANYmals large
range of motion, the legs can be turned overhead to prevent collision with the ground
or side rails.

(a) Stair Walking (b) Stair Crawling

Fig. 6 ANYmal uses the Free Gait motion control architecture [4] to overcome stairs by stepping
regularly with one leg a time in a walking gait (a) or by using a turtle like crawling gait (b)

4Free Gait online available: https://github.com/leggedrobotics/free_gait.

https://github.com/leggedrobotics/free_gait
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3.6 Obstacles

3.6.1 Obstacle Detection

Building upon the onboard range measurement from the LIDAR sensors and the
robot pose estimation, we create an elevation map5 which serves as a reference for
obstacle detection [5]. The elevation map is a discrete 2.5D representation of the
environment and it is based on the universal grid map library,6 a mapping framework
for mobile robotics [3]. An example of the visualization of a generated elevation map
is shown in Fig. 7.

During operation, the robot updates the elevation map by periodically adding
newly perceived point clouds. By comparing the reference elevation map of the site
and the updated elevation map, changes in the environment and thus, obstacles are
detected. In case of negative obstacles, this task becomes harder since they are defined
as the absence of structure which can only be detected by ray-tracing. If a laser point
behind an expected structural element is perceived, the robot assumes that the element
has disappeared. To robustify the approach against outliers, we only classify clusters
as an obstacle if at least several neighbor cells fall in the same region. Since laser
data are sparse in far distance, only obstacles closer than 2.5 m are considered for
path planning. In case obstacles fall within 2 m distance, the obstacle is additionally
tested if it is a human or not.

Fig. 7 Visualization of a generated elevation map during locomotion on site

5Elevation mapping online available under http://github.com/ethz-asl/elevation_mapping.
6Grid map library online available under http://github.com/ethz-asl/grid_map.

http://github.com/ethz-asl/elevation_mapping
http://github.com/ethz-asl/grid_map
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3.6.2 Human Detection

The human detection is based on You Only Look Once (YOLO) [13] respectively the
improved version YOLOv2 [14]. We adapted YOLOv2 to fit in our framework and
use the small model of YOLOv2 with the training data from PASCAL VOC 2007
and 2012. Since the entire area around the robot must be covered, we use the front
and back fisheye camera. As soon as the robot detects an obstacle inside the guarded
space, the coordinates of the objects are transformed from Cartesian space into the
image frames of the two cameras. Depending on the size of the obstacle, the image
is cropped around the obstacles position to increase the robustness and speed of the
human detection. Our version processes images on the central processing unit (CPU)
and it only takes few seconds to detect objects.

3.6.3 Obstacle Negotiation

Thanks to its legs and the high range of motion, ANYmal can flexibly climb over
various known and unknown obstacles without creating contact with them. Small
steps and obstacles (height < 20 cm) are overcome by safely stepping on suitable
footholds in a static walking gait (Fig. 8, left). Bigger obstacles and high steps (height
> 20 cm) are negotiated by rotating the legs in an outwards configuration (Fig. 8,
center and right), which avoids any potential collision between the robot and the
obstacles. With this, the robot can also climb on steps up to approximately 40 cm
height. In case of known obstacles (Fig. 8, left and center), we defined the desired
behavior (leg configuration and step positions) from a database of parameterized
motion definitions. Based on our software architecture for motion generation [4], this
allows for robust and repeatable obstacle negotiation. In case of unknown obstacles
(Fig. 8, right), the elevation map created by the laser scanners is used to determine
safe foothold locations. During the negotiation maneuver, the robot automatically
adapts to the dimensions of the obstacle.

Fig. 8 ANYmal uses the Free Gait motion control architecture [4] to negotiate known (left and
middle) and unknown (right) obstacles. For known obstacles we generated a database of parame-
trized motion definitions. Unknown obstacles are negotiated by selecting safe footholds from the
environmental mapping and optimizing the body motion and posture
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4 Inspection

As outlined in the introduction, the robot is able to perform visual, thermal, and
acoustic inspection. While a detailed description of all tools would go beyond the
scope of this paper, we want to outline the specific approach and results for pressure
gauge inspection.

4.1 Camera Alignment, Tracking, Zooming

In order to robustly point the camera at the checkpoint, the robot moves to a pre-
computed optimal posture at the inspection point and then determines online the
required pan-tilt angles depending on the position of the robot and the checkpoint.
After the approximate pan-tilt angles are set and the camera is aligned, the algorithm
switches to a tracking mode. Tracking is required to zoom in without losing the
checkpoint due to uncertainties in the robots position and position anomalies of
the checkpoints. To track the checkpoint, we use a particle filter approach. The
measurement updates for the particle filter come from analyzing the image with a
histogram oriented gradients (HOG) [2] descriptor.

For a robust detector, a global HOG descriptor is trained with machine learning,
namely the SVMlight library, using about 5000 positive and negative samples (Fig. 9).
The positive samples are generated by rendering two different manometer models
from different view points using blender and adding random background images
from the ARGOS site. The negative samples consist only of random background
images. Then, for each of those samples, a HOG descriptor vector is computed to
train the global descriptor. The detector works with a sliding window approach and

(a) Positive Samples (b) Negative Samples

Fig. 9 Positive and negative examples for the machine learning algorithm
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different image scales. To speed up the detection process, it is first searched only
with the expected manometer size and stoped if at least two overlapping detections
exist. If there were no detections or only one, different scales are applied to the image
and the detector runs again.

This approach has proven to work very robustly since it does not matter if the
pressure gauge has a different dial face. Once the checkpoint is tracked in the image,
the camera zooms in until the checkpoint has the optimal size to read.

4.2 Dewarping

Usually it is not possible to face the camera exactly in front of the checkpoint as neces-
sary for accurate reading. In order to dewarp the image by correcting the perspective
and rotation of the checkpoint, two complementary approaches are implemented.

First, a given front image of the checkpoint is matched with a given example image
by looking for scale-invariant feature transform (SIFT) features [10] that appear in
both images. From the matched SIFT features, the homography matrix is computed
and used to dewarp the image (see Fig. 10). This method requires an undistorted
image of each pressure gauge type.

This SIFT-based approach may fail in situations where the image of the checkpoint
differs too much from the given example image such that there are not enough features
for image matching. This is typically the case if the angle of view is too large. To
overcome this limitation, the algorithm can “manually” dewarp the taken image of the
checkpoint with the knowledge of both the cameras orientation and the checkpoints
nominal orientation. While this approach works well as long as the checkpoint has the
nominal orientation, it is more likely to fail than the SIFT method if the checkpoint
does not exhibit its nominal orientation.

Fig. 10 The SIFT features are generated by comparing a given example image (left) with the image
of the checkpoint (middle). The visualized homography matrix shows the connection lines between
the matched features of both images. This homography matrix is used to generated the dewarped
image (right)
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Fig. 11 Pressure gauge reading process (from left to right): (1) multiple circle detections, (2) line
segment extractions, (3) resulting mean circle with estimated manometer center (green point) and
filtered lines (yellow), (4) mean pointer line (green) and resulting read value in red

4.3 Reading

For an accurate reading of the pressure gauge it is important to identify the center
of the pressure gauge. As illustrated in Fig. 11, a Hough-based circle detection is
first applied to estimate the gauge frame. To limit the search area, the knowledge of
the camera tracking is used as it provides an approximate position within the image.
Once the circles are estimated, the mean is taken to provide the gauge frame and
center of the gauge reading. In a second step, a Hough-based line detection is used to
find the pointer of the pressure gauge. The algorithm uses the center to filter the lines
and to discard the lines that do not belong to the pointer. The mean of the resulting
lines gives the estimated pointer. Finally, the actual pressure value is computed from
the known scale of the pressure gauge, the center, and the line angle.

4.4 Evaluation

To verify the robustness of the pressure gauge reading algorithm, a series of measure-
ments from different viewpoints and with different pointer positions was conducted
(Fig. 12).

Fig. 12 Experimental setup to identify the maximal possible angle of view
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Table 1 Measurements with different angles and pointer positions. 50 measurements per angle and
pointer position were obtained

Defined
angle α′

0◦ 10◦ 20◦ 40◦ 45◦ 50◦

Actual angle
α

0◦ 10◦ 20◦ 40◦ 50◦ 45◦ 55◦ 50◦

Pointer
position

Measurements

1.00 kg/cm2

(∼90◦)
0.96 0.96 0.96 0.96 0.94 0.96 0.92 0.96

1.99 kg/cm2

(∼135◦)
1.97 1.97 1.99 1.99 2.15 2.00 2.18 2.03

2.98 kg/cm2

(∼180◦)
2.92 2.96 2.97 2.97 3.01 3.00 3.02 3.02

3.98 kg/cm2

(∼225◦)
3.98 3.98 3.97 3.98 3.88 3.98 3.86 3.96

SIFT rate 100% 100% 100% 100% 0% 91% 0% 12%

The results displayed in Table 1 proof that the overall robustness of the proposed
approach is high. Ignoring the cases where α �= α′ gives an average absolute deviation
of 0.013 kg/cm2 respectively 0.58◦ with an allowed maximal deviation of 0.12
kg/cm2 or 5.36◦. Even the manual dewarping at α �= α′ = 50◦ provides accurate
measurements (only 12% of the images were dewarped by the SIFT algorithm).
Overall, manometers can be read within the required accuracy from angles of view
between −50 and 50◦. The experience during the actual inspection missions supports
these results as outstanding inspection accuracy was achieved in all missions.

5 Conclusion

The present paper illustrates the worldwide first attempt of using a versatile legged
machine for autonomous inspection on industrial sites. In three consecutive compe-
tition on a testing site in Pau, France, team LIO was able to demonstrate the high
potential of the proposed solution. For illustration, we collected a video summary of
Challenge 27 and Challenge 3.8

While all individual tasks regarding system mobility, navigation, and inspec-
tion could be entirely fulfilled, the high system complexity entails several potential
sources for failure. Firstly, the fact that neither stopping (blocking) nor disabling
the joint motors leads to an immediate stop of a legged robot complicates safety
consideration. As a result, we encountered during the three competitions several
(uncontrolled) falls which the robot all survived. In the future, it is required to fur-

7https://youtu.be/SR5OJ-vklIs.
8https://youtu.be/2RQDp0Q2vSo.

https://youtu.be/SR5OJ-vklIs
https://youtu.be/2RQDp0Q2vSo
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ther extend the work on smart emergency behaviors such that legged robots can safely
operate even in case of critical software or hardware failure. Secondly, the realistic
missions unveiled that robust, reliable, and fast terrain perception under harsh con-
ditions is still challenging. When the robot was moving fast, it was difficult to create
terrain maps without any false positive obstacles due to the distorted scans from the
motion, reflections on metal and wet surfaces, and rain drops on the laser. Thirdly,
despite the superiority in mobility compared to tracked or wheeled vehicles, there
is still a lot of potential for improvement of the locomotion skills of legged robots.
Once these deficiencies are overcome, we are convinced that legged robots such as
ANYmal can find their way into applications like industrial inspection.
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Vehicle

Alex Wallar, Brandon Araki, Raphael Chang, Javier Alonso-Mora
and Daniela Rus

Abstract A large number of traffic accidents, especially those involving vulnerable
road users such as pedestrians and cyclists, are due to blind spots for the driver, for
example when a vehicle takes a turn with poor visibility or when a pedestrian crosses
from behind a parked vehicle. In these accidents, the consequences for the vulnerable
road users are dramatic. Autonomous cars have the potential to drastically reduce
traffic accidents thanks to high-performance sensing and reasoning. However, their
perception capabilities are still limited to the field of viewof their sensors.Wepropose
to extend the perception capabilities of a vehicle, autonomous or human-driven, with
a small Unmanned Aerial Vehicle (UAV) capable of taking off from the car, flying
around corners to gather additional data from blind spots and landing back on the car
after a mission. We present a holistic framework to detect blind spots in the map that
is built by the car, plan an informative path for the drone, and detect potential threats
occluded to the car. We have tested our approach with an autonomous car equipped
with a drone.
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1 Introduction

Globally, over 3000 people lose their lives in vehicle-related accidents and over one
hundred thousand are injured or disabled on average every day [4]. In the United
States, over 90% of these accidents are due to human error [1]. This has resulted in
the continued development of advanced safety systems by commercial car manufac-
turers. For example, systems exist to automatically brake in the case of unexpected
obstacles [18], maintain a car in a lane at a given speed [6], and alert users of pedes-
trians, signage, and other vehicles on the roadway [7]. These systems will make our
cars safer and eventually autonomous. However, many accidents are due to blind
spots, for example when a vehicle takes a turn with poor visibility or when a pedes-
trian crosses from behind a parked vehicle. In these accidents, vulnerable road users,
i.e. pedestrians and bikers, are typically involved and the consequences are dramatic.

We propose to extend the perception capabilities of a vehicle, autonomous or
human-driven, with a small Unmanned Aerial Vehicle (UAV) capable of taking off
from the car, flying around corners to gather additional data from blind spots and
landing back on the car after a mission. Small UAVs are highly mobile and agile,
and they are capable of capturing aerial footage autonomously [17]. The quadcopter
could use the car as a charging base, while the car could send the quadcopter out on
missions to scout ahead and fill in the blind spots in its vision.

A crucial step in enabling a small UAV and an autonomous car to work together
is to ensure that there exists an accurate pose transform between the car and the
quadcopter. In this paper, we present a method for relative localization using ultra-
wideband radios (UWBs) to measure the relative position of the quadcopter relative
to the car with an accuracy of less than 14cm. This information is fused with the
internal state estimation to enable the UAV to safely navigate to blind spots and then
land back on the car. Furthermore, we have developed a path planning algorithm for
remote sensing and have carried out experiments using a quadrotor and a car.

Our method has similarities with multi-robot mapping. For instance [9, 15] com-
bined the maps from a ground and an aerial robot for enhanced exploration and [8]
employed a map created by an aerial robot for planning the motion of a ground robot.

Quadrotors have been able to track a moving vehicle using visual techniques such
as AprilTag localization [5], optical flow [11], and infrared markers [22]. However,
a weakness of visual systems is that visual cues must be in the line of sight of the
quadrotor-mounted camera.Moreover, the lighting conditionsmust be suitable for the
cameras. These restrictions limit the usefulness of visual tracking. Meanwhile, GPS
tracking, while useful in long-range outdoors scenarios, is not accurate enough for
maneuvers such as landing and obstacle avoidance. For example, average accuracy
in smartphone GPS receivers is 4.9 m [2].

UWB sensors have in recent years become a popular tool for localization of
quadrotors, particularly in indoor GPS-denied environments [12, 14, 19], since they
can provide distance measurements with an accuracy of 10 cm and a range of up to
300m [3]. Indoor localization of quadrotors has been achieved by placing UWB “an-
chors” around the perimeter of a room and attaching a UWB “tag” on the quadrotor.
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Using this technique, [16] and [13] have achieved localization with accuracy on the
order of 30cm.

The problem of relative localization is more challenging because the UWB tag
is outside of the perimeter of the anchors. However, in [10], a quadrotor outfitted
with four UWBs was able to follow a person carrying a UWB tag in the plane of
the quadrotor with less than 10cm mean error. The authors achieved this accuracy
using an iterated Extended Kalman Filter. Building off of this work, we used 6 UWB
sensors on a car to estimate the 3D position of a UWB on a quadrotor with an average
mean error of 13.7cm. Moreover, unlike in previous systems, we take advantage of
the accurate relative transform to use the sensors on the car to plan safe paths for the
quadrotor.

1.1 Contribution

This paper presents a method for extending the sensing capabilities of self-driving
vehicles by using a small quadrotor to autonomously locate and observe regions
occluded to the vehicle and detect potentially unsafe obstacles such as pedestrians
or other cars. Our contributions include

• A method for determining the relative transformation between a ground vehicle
and a quadrotor using an array of ultra-wideband radios

• An informative planning algorithm that computes collision free paths for the
quadrotor relative to the ground vehicle that view occluded regions

• A system that uses the localization and planning algorithms and enables a UAV to
position itself and transmit images outside the field of view of the sensors on the
car

• Experimental validation using a sensor-equipped Toyota Prius and a Parrot Bebop
2 quadrotor.

1.2 Method Overview

We consider two vehicles.

• A ground vehicle, i.e. the car, which can create a local map of the environment,
localize with respect to it and autonomously navigate. We utilize a 2D grid map
to represent the free space and obstacles seen by the car. In particular, our vehicle
is equipped with a 2D LIDAR.

• A lightweight companion quadrotor equipped with a front facing camera. The
drone is able to fly autonomously to/from the ground vehicle and detect obstacles
that were originally occluded for the ground vehicle.

Given a laser scan from the ground vehicle, our objective is to: (a) determinewhich
areas of the environment are occluded to ground vehicle, (b) compute a safe path for
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the aerial vehicle to observe the occluded areas, and (c) detect unseen obstacles, such
as pedestrians, and report them back to the ground vehicle. The quadrotor will take
off from the vehicle when it is ready to begin driving and land back on the vehicle
when it has parked.

To accurately localize the quadrotor relative to the ground vehicle, we equip
the ground vehicle with several UWBs. In the quadrotor, we fuse, via an Unscented
Kalman filter (UKF) relative information from aUWB radiowith odometry estimates
from a down-facing optical flow sensor and an onboard IMU. Our algorithm operates
directly on the laser scan from the ground vehicle to find occluded regions. We then
employ an anytime sampling-based algorithm to compute a collision free path for the
drone that maximizes the occluded area viewed by the quadrotor. To detect obstacles
within the occluded areas, we employ a real-time object detecting convolutional
neural network [20], which is able to classify and locate objects, such as pedestrians,
cars, bicycles, in monocular images. These obstacles are then reported back to the
ground vehicle.

Using the ground vehicle’s 2D laser scan, we compute the areas it is unable to
sense. We employ an anytime sampling-based algorithm to construct a collision free
path for the quadrotor that maximizes the total area of the occluded regions it is able
to observe.While the quadrotor is executing the planned path, we use a convolutional
neural network to classify and detect objects in the quadrotor’s field of view, such
as pedestrians and cars, and relay this information back to the ground vehicle. The
driver of the vehicle is then able to view the quadrotor’s camera feed along with the
annotated objects. The path is updated if it is no longer collision free due to changes
in the laser scan or if a new path is computed that can observe a larger occluded area.
A high level overview of the entire process is shown in Algorithm 1.

Algorithm 1 Overview of the Foresight algorithm
1: � ← ∅
2: while IsRunning() do
3: x ← GetQuadrotorConfiguration()

4: L ← GetLaserScan()

5: P ← ConstructBoundingPolygon(L)

6: B ← ComputeBlindRegions(L)

7: ˜� ← ComputeCoveragePath(x,B,P)

8: if |�| = 0 ∨ ¬PathCollisionFree(�,P)∨
ObservingArea(˜�,B) > ObservingArea(�,B) then

9: � ← ˜�

10: SendPathToQuadrotor(�)

2 Planning for Exploration

Planning a path to observe the blind spots of an autonomous car is broken into
following steps. First, using the 2D laser scan from the car, we compute a bounding
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polygon. This polygon represents the known free space where the quadrotor can
travel. We use the laser scan to determine regions in space where that the car is not
able to sense. These regions are called blind regions. A path is then computed for
the quadrotor that maximizes the observed area of the blind regions while staying
within the bounding polygon for a given time horizon.

The remainder of this section is structured as follows; Sect. 2.1 introduces the our
formal definition of a laser scan and describes how the bounding polygon is found,
Sect. 2.2 describes how the blind regions are computed from the laser scan, and
Sect. 2.3 describes the algorithm we developed for computing the exploratory path.

2.1 Finding the Bounding Polygon

The bounding polygon computed using a scan from the 2D LiDAR sensor on the car
is used as a conservative representation of the free space in which the quadrotor can
travel. Below we provide a formal definition of a laser scan that is used in the rest of
the paper.

Definition 1 A laser scan is a sequence of points, L = {c + ri · [cos θi , sin θi ]T :
θmin ≤ θi ≤ θmax} ⊂ R

2, where c is the 2D position of the LiDAR sensor, ri is the
distance from the sensor to the closest obstruction in the θi direction, and [θmin, θmax]
is the angular range of the sensor.

From the laser scan, we compute a bounding polygon. The bounding polygon is
defined as the minimum area simple polygon that contains all the points in the laser
scan. Since the laser scan data is ordered by θi from θmin to θmax, the bounding polygon
can be constructed in one pass with the vertex sequence {c} ∪ L ∪ {c}. Figure1b
shows an example of laser scan data and the corresponding bounding polygon.

2.2 Determining the Blind Regions

Using the laser scan data, we can determine which areas in the environment the
car is unable to sense. We call these areas blind regions. The blind region, B, is
the set of points contained within a rectangle with a vertex sequence {Li , Li + k ·
L̂ i,i+1, Li+1 + k · L̂ i,i+1, Li+1, Li } where L̂ i,i+1 is the unit normal for the vector
between points Li and Li+1 that points away from the bounding polygon and k is
a tuning parameter that contributes to the area of the blind region. In practice we
only care for blind regions where ||Li − Li+1||2 > δ where δ is a tuning parameter
because the laser scan consists of a finite number of points with a known angular
distance. We will use B to denote the set of all such regions. Figure1c shows an
example of blind regions in found in a found from a laser scan.
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Fig. 1 Plots showing the four stages of the planner. Figure a shows the points from the laser scan.
Figure b shows bounding polygon created from the laser scan. Figure c shows the regions occluded
to the vehicle in red and Fig.d shows the initial plan for the quadrotor to view some of these blind
regions

2.3 Computing the Exploratory Path

Using the blind regions, current configuration of the quadrotor, and the bounding
polygon, we present an anytime algorithm that computes a collision free path for the
quadrotor that maximizes the total observed area of the blind regions within a given
time horizon. The algorithm builds a search tree starting from the current configu-
ration of the quadrotor. It expands leaf nodes in descending order of total observed
blind region area and only adds new leaf nodes to the search that are contained within
the bounding polygon. When a collision free neighbour is propagated, the orienta-
tion, θ∗(x,B), that maximizes the area of the remaining blind region, B, viewed at
that configuration, x , is also added to the search tree. Below we formally define this
orientation.
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Definition 2 Let ψ(x, θ,B) be the set of points visible by the quadrotor at position
x ∈ R

3 with orientation θ . Let θ∗(x,B) = arg max
0<θ≤2π

ψ(x, θ,B). For convenience, we

define ψ∗(x,B) = ψ(x, θ∗(x,B),B).

As the quadrotor follows the path, the planner is constantly replanning. To avoid
oscillating between candidate paths, the quadrotor only follows a new path if its
current path is no longer collision free or if the new path has a larger objective value.

Algorithm 2 Path planning for remote sensing UAV (looking around the corner)
Input:

• x0: The initial position of the robot, B: The blind region, P: The bounding polygon

Output:

• � ⊂ R
3 × [0, 2π ]: A sequence of 3D positions and orientations representing the path

1: Q ← {(x0, θ∗(x0,B),B \ψ∗(x0,B))}
2: while |Q| > 0 do
3: (x, θ,B′) ← arg min

B′∈Q
Area(B′)

4: if SearchTimeoutExpired() then
5: � ← {}
6: while HasParent(x, θ) do
7: � ← � ∪ {x}
8: (x, θ) ← Parent(x, θ)

9: return �

10: for all x ′ ∈ CollisionFreeNeighbours(x,P) do
11: θ ′ ← θ∗(x ′,B′)
12: Q ← Q ∪ {(x ′, θ ′,B′ \ψ∗(x ′,B′))}
13: Parent(x ′, θ ′) ← (x, θ)

14: Q ← Q \ {(x, θ ′,B′)}
15: return {}

At the start of Algorithm 2, we initialize a priority queue that is used to store the
leaf nodes of the search tree. Each node is comprised of the position of the quadrotor,
x ∈ R

3, the orientation of the quadrotor on the Z-axis, θ ∈ [0, 2π ], and the remaining
blind region, B, that is left unobserved after the quadrotor reaches x with orientation
θ . Until the search timeout has expired, collision free neighbours of x are added to
the search along with their maximizing orientation and remaining unobserved blind
regions. Once the search has expired, the path, � comprised of 3D positions and
orientations, that was able to view the largest cumulative blind region area starting
from x0 is returned. Figure1d shows an example of a path being computed to view
the blind regions.

Since the obstacles and blind regions are two dimensional, we fix the altitude of
the quadrotor in our experiments. In the future we would like to extend the blind
region detection and planning to three dimensions by using a 3D point cloud sensor
mounted on the ground vehicle.
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2.4 Autonomous Landing

To enable autonomous landing, the quadrotor tries to maintain a static position rel-
ative to the car as it drives towards a parking spot. Once the vehicle has stopped,
the quadrotor moves directly above the landing platform and proceeds to land on the
platform.

3 Relative Pose Localization

From each UWB tag we receive a range measurement ri in its own frame. From the
quadrotor we receive velocity measurements v, a yaw reading ψq , and an altitude
measurement za in an ENU-aligned world frame. The frames and relative transforms
of our system are visualized in Fig. 2. Given n UWBs, we define the measurement
vector as z = [r1, . . . , rn, v, za, ψq ] ∈ R

n+5.
Yaw orientation is calibrated at the start by lining up the quadrotor along the car’s

x-axis and measuring the yaw offsetψoff between the car and the quadrotor. The yaw
of the quadrotor is then given by ψ = ψq − ψoff.

One challenge we encountered in estimating the 3D position of the quadrotor was
that the distance measurements from the UWBs showed larger errors when the UWB
on the quadrotor was out of their plane. We therefore first estimate p̂odom using only
use the quadrotor’s onboard odometry readings v and za as the inputs to a UKF.
We then use the estimated height, p̂odomz with the UWB range measurements ri to
estimate the quadrotor’s x-y position, p̂xy . We do this by first projecting each ri onto
the plane of the estimated height of the quadrotor:

rproji =
√

r2i − ( p̂odomz )2

We then find p̂xy by solving the nonlinear least squares optimization

Fig. 2 The frames and measurements of our system
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h( p̂xy) = min
p̂xy

n
∑

i=1

((rproji )2 − ‖ p̂xy − ti xy‖2)2

We then define the 3D position estimate to be p̂ls = [ p̂xy, ẑ]. Next, we combine
p̂ls and p̂odom in a second UKF to find a final position estimate p̂. Thus the final state
estimate is x̂ = [ p̂, ψ].

4 Results

In this section we provide experimental results that validate our approach. A video
accompanies this submission and is available at [21].

4.1 Localization Accuracy

We tested our localization framework by emulating the car’s UWB configuration
inside a motion capture system. We placed motion capture markers on the quadrotor
and on each UWB sensor. This allowed us to obtain the absolute position of the
quadrotor and UWBs in the same coordinate frame. We then flew the quadrotor
inside the motion capture system and recorded its predicted position determined by
our localization and absolute position using the motion capture markers. We ran 10
tests andwere able to obtain an error of 13.7 cm, or 35.9% the length of the quadrotor.
Figure3 shows how our localization compares to the ground truth. The green and
red lines respectively show the ground truth and predicted positions of the quadrotor.
While our accuracy is less than the system in [10], the UWBs in that study were
all in the same plane. The accuracy of out-of-plane position estimation using range
measurements is lower than in-plane estimation because of the larger state space.
Since we wanted our quadrotor to have the ability to fly beyond the plane of the
roof-mounted UWBs, we included additional out-of-plane UWBs which decrease

Fig. 3 Comparison of our
localization method with
respect to ground truth.
Ground truth was supplied
by a motion capture system
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accuracy compared to having all UWBs in the same plane, but which help to provide
greater accuracy for out-of-plane measurements.

4.2 Experimental Setup

For our experiments, we used a Toyota Prius with a SICK LMS1xx mounted on the
front of the car and six Decawave TREK1000 UWBs mounted on the roof and front
bumper of the car. A platform for the quadrotor to take off and land was attached to
the front bumper of the Prius. We used a Parrot Bebop 2 quadrotor with a Decawave
TREK1000 mounted on the battery. Figure4 shows the Toyota Prius and modified
Bebop 2 quadrotor used in the experiments.

We also ran tests using an autonomous golf cart as our ground vehicle in two
different settings. One setting, shown in Fig. 5d, was artificially created using tall
whiteboards as obstacles to mimic an adversarial environment. The second, shown
in Fig. 5c, was a more realistic setting with the golf cart approaching an open garage
door with blind spots on either side. In both cases, the quadrotor was successfully
able to observe the blind spots and relay this information back to the computer on
board the golf cart. For the interest of brevity, we will only discuss in detail the
experiments using the Toyota Prius.

Our experimental scenario involves a car preparing to leave a garage with a sig-
nificant blind spot. The car is unable to sense around the corner to determine if there
are pedestrians or other cars that may obstruct its path. Our quadrotor takes off from
the car’s front bumper platform and autonomously flies out of the garage and looks
around the corner. The car is then able to leave the garage when there are no more
pedestrians detected by the quadrotor. Once the car is ready to return, it backs up
into the garage. The quadrotor then follows the car into the garage and autonomously
lands on the platform.

Fig. 4 Pictures showing Toyota Prius and Parrot Bebop 2 used in the experiments
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Fig. 5 Snapshots from four experimental settings in which we tested our algorithm. Figures a and b
used a Toyota Prius in a parking lot and a garage, respectively. Figures c and d used an autonomous
golf cart in outdoor and indoor environments

4.3 Experiment with Quadrotor

Under each experimental condition shown in Fig. 5, we conducted multiple tests. In
the course of one afternoonweperformed 25 tests in the environment shown in Fig. 5b
in which the quadrotor successfully took off from the car, followed a path to observe
blind spots, and landed back on the car’s platform. Each test took around a minute to
autonomously look around the corner and land back on the car. In every case, take
off, path following, and landing was successfully completed. For the remainder of
this section we will detail one representative experiment.

4.3.1 Looking Around the Corner

Figure6 shows snapshots of the experiment as it progressed. The first column is a
third person angle of the Prius and the quadrotor. The second column shows frames
from the quadrotor’s on-board camera along with object detection and classifications
from the convolutional neural net. The third column is a visualization of the sensor
data from the car, the bounding polygon, blind regions, and the quadrotor’s plan.
Each row shows a single snapshot from the experiment.
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Fig. 6 Snapshots from the experiment as it progressed. The second column is from the quadrotor’s
on board camera. The third column shows a visualization of the planner

The snapshots show that the quadrotor is able to successfully take off from the car,
use the laser scan to find the blind regions, and plan a path to look around the corner
in the garage. The last row shows that our system is able to detect the pedestrian
around the corner and provide the bounding box back to the car.

Note that even though the quadrotor is not equipped with the sensors needed to
perform robust 3D obstacle avoidance, it is able to avoid collisions and fly through
the open garage door using the laser scan from the car.

4.3.2 Landing on the Car

Once the car is ready to park, the quadrotor is able to autonomously land back on the
platform attached to the front bumper. Figure7 shows snapshots from the experiment

Fig. 7 Snapshots of the quadrotor landing on the car
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as the quadrotor followed the car and landed on the platform. The first image in Fig. 7
shows the quadrotor following the car as it backs up into a garage. The second shows
the car parked and the quadrotor hovering over the platform. The last image shows
the quadrotor after it successfully landed on the platform.

5 Conclusion

In this workwe presented a system for using a quadrotor to examine the blind spots of
an autonomous car. We developed a path planning algorithm that maximizes visual
coverage of blind spots in a 2D laser scan; created an experimental system using
UWBs to localize the quadrotor with respect to the car; and performed tests in a
variety of environments to verify the effectiveness of our system. Extensions to our
work include planning using 3D laser scan data; improving the accuracy of the UWB
localization; and applying our system to other problems such as package delivery
and formation control. We believe that multi-robot coordination, particularly in the
context of an autonomous car and a quadrotor, will become increasingly useful in
the future.
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Dynamic System Identification, and Control
for a Cost-Effective and Open-Source
Multi-rotor MAV

Inkyu Sa, Mina Kamel, Raghav Khanna, Marija Popović,
Juan Nieto and Roland Siegwart

1 Introduction

Multi-rotorMAV platforms are rotorcraft air vehicles that use counter-rotating rotors
to generate thrust and rotational forces. These vehicles have become a very popular
research and commercial platform during the past decade. The wide variety of ready-
to-fly platforms today is proof that they are being utilized for real-world aerial tasks
such as indoor and outdoor inspection [1], aerial photography, cinematography, and
environmental survey and monitoring for agricultural applications. The performance
of these vehicles has also shown steady improvement over time in terms of flight
time, payloads, and safety-related smart-features. However, it is challenging to adapt
these commercial platforms for robotic tasks such as obstacle avoidance and path
planning [2, 3], object picking [4], and precision agriculture [5]. Because an accurate
dynamics model, a low-latency and precise state estimator, and a high-performance
controller are required to perform these tasks.

Ascending Technologies provides excellent research grade MAV platforms
[6, 7] dedicated to advanced aerial robotic applications. There is also awell-explained
software development kit (SDK) and abundant scientific resources. These platforms
are ideal for developing aerial robots. However, their relative expensive cost may be
a hurdle for researchers and replacing parts in a case of a crash (which can occur in
the early development stage) is time-consuming due to the limited number of retail
shops.

For vertical take-off and Landing (VTOL) MAVs to become more pervasive, they
must become lower in cost and their parts easier to replace. There is an affordable
consumer grade VTOL platform shown in Fig. 1. Developers can now access sensor
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Fig. 1 A commercial Multi-rotor MAV quadrotor platform (Matrice 100). An onboard computer
is mounted, and the external motion capture device provides position, velocity, and orientation
measurements at 100 Hz for Model Predictive Controller (MPC)

data such as IMU and barometers and send command data to the low-level attitude
controller. It is easy and prompt to order parts from local retail stores with short
delivery spans. There are, however, difficulties in using these platforms for robotics
applications (e.g., lack of essential scientific resources such as attitude dynamics and
the structure of underlying autopilot controller). This information is essential for the
development of aerial robots. In this paper, we address these gaps by performing
system identification using only the built-in onboard IMU. Researchers can perform
their system identificationwith the provided documentation and build a base platform
for field and service aerial robots.

The contributions of this system paper are:

• Presenting full dynamics system identification that is employed by a subsequent
MPC position controller enabling to build a research grade field and service aerial
robotic platform.

• Delivering software packages including modified SDK, linear MPC, and system
identification tools and their documentation to the community.

http://goo.gl/lXRnU8

The benefit of this paper would be that the proposed techniques can be directly
applied to other products such as Matrice 200, or 600 series.

The remainder of this paper is structured as follows. Section2 introduces state-
of-the-art work on MAV system identification and control and Sect. 3 describes the

http://goo.gl/lXRnU8
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specification of the vehicle, system identification, and control strategies. We present
our experimental results in Sect. 4, and conclude in Sect. 5.

2 Related Work/Background

VTOL MAVs’ popularity is gaining momentum both industry and research field. It
is necessary to identify their underlying dynamics system and behavior of attitude
controllers to achieve good control performance. For a common quadrotor, the rigid
vehicle dynamics are well-known [8] and can be modeled as a non-linear system
with individual rotors attached to a rigid airframe, taking into account of drag force
and blade flapping [9]. In practice, however, the identification of attitude controllers
is often a non-trivial task for such consumer products due to the lack of scientific
resources.

There are system identification techniques to estimate dynamic model parameters
in literature. Traditionally, parameter estimation has been performed offline using
complete measurement data obtained from a physical test bed and CAD models
[10, 11]. Such pioneer offline methods significantly contributed to the VTOL MAV
community in the early development stage. Recently, Burri et al. [12] demonstrated
a method for identification of the dominant dynamic parameters of a VTOL MAV
using Maximum Likelihood approach. Alternatively, a linear least-squares method
is used to estimate parameters from recorded flight data in batch processing manner
[13, 14]. We follow a batch-based approach to determine the dynamic parameters
of the vehicle from short manual pilots. This allows us to obtain the parameters
necessary for MPC using only the onboard IMU and without applying any restric-
tive simplifying assumptions. Given the identified dynamics model, we use a high-
performance state-of-the-art Model Predictive Control (MPC) [15] for horizontal
position control.

3 Matrice 100 VTOL MAV Platform and Control

In this section, we present overviews for the hardware platform, software develop-
ment toolkit, and address coordinate systems, attitude dynamics, and control strategy.

We define 2 right-handed frames following standard Robot Operating System
(ROS) convention: world {W} and body {B} shown in Fig. 2. The x-axis in {B}
indicates forward direction for the vehicle, y-axis is left, and z-axis it up. We use
Euler angles; roll (φ), pitch (θ ), and yaw (ψ) about x, y, z-axes respectively for the
RMS error calculation and visualization purposes. Quaternions are utilized for any
computational processes. The defined coordinate systems and notations are used over
the rest of paper.1

1Image source from http://goo.gl/7NsbmG.

http://goo.gl/7NsbmG
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Fig. 2 Coordinate systems definition. W t is the 3× 1 translation vector w.r.t {W}. W RB is 3× 3
matrix and rotates a vector defined w.r.t {B} to a vector w.r.t {W}

3.1 Aerial Platform and Its SDK

The general hardware specification of Matrice 100 is well documented, this section
only highlights our findings. The vehicle is a quadrotor and has 650 mm diagonal
length. It uses N1 flight controller, but the information regarding the device is not
disclosed to the public. The variety of sensing data can be accessed using SDK
through serial communication, such as IMU, GPS, barometer, and magnetometer.
The SDK enables to access most functionalities and supports cross-platform devel-
opment environments. We use the onboard SDK with the Robot Operating System
(ROS) wrapper, but there is a fundamental issue for sending control commands with
this protocol. The manufacturer uses ROS services to send commands that are
strongly not recommended.2 It is a blocking call that should be used for triggering
signals or quick calculations. If data transaction (hand-shaking) remains as a fail-
ure for some reasons (e.g., poor WiFi connection), it blocks all subsequent calls.
Small latency ≈10 ms in control commands makes a huge difference in the resultant
performance. We thus modify the SDK to send direct control commands via serial
communication.

Common control commands through a transmitter are pitch, roll angles (rad), yaw
rate (rad/s), and thrust (N). However, the vertical stick input of the platform is veloc-
ity (m/s) that permits easier and safer manual flight. To address this different, we use
a classic PID vertical position controller alongside linear MPC horizontal position
controller. Interestingly, there is no trim buttons on the provided transmitter.; instead,
the N1 autopilot has auto-trim functionality (e.g., position mode) that balances atti-
tude by estimating horizontal velocity. This feature allows easier and safer manual
piloting but introduces a constant offset position error for controlling. This needs

2http://wiki.ros.org/ROS/Patterns/Communication.

http://wiki.ros.org/ROS/Patterns/Communication
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to be properly compensated. We estimate the balancing point where the vehicle’s
motion is minimum (hovering) and then adjust the neutral position to the estimated
balancing point. If there is a change in an inertial moment (e.g., mounting a new
device or changing the battery position), the balancing position has to be updated.

Another interesting aspect of the autopilot is the presence of relatively large dead
zone that is the range close to the neutral value. Within this zone, the autopilot
ignores all input commands, and no API is supported to set this. This function is also
useful for a manual pilot since the vehicle should not react to small inputs yielded
by tremor of hands but significantly degrades the performance of the controller. We
determine this by sweeping control commands around dead zone area and detecting
the control inputs when any motion is generated. Although this task is difficult with
a real VTOL platform due to its fast and naturally unstable dynamics, we use the
manufacture’s hardware-in-loop simulator (DJI Assistant 2)3 that enables to receive
input commands from the transmitter. After determine the dead zone, we simply
compensate it by adding the estimated offset to control commands if they lie within
the dead zone range. Details of the modifications and tutorial are given in http://goo.
gl/vSCQjg.

3.2 Dynamic Systems Identification

In this section, we present full dynamics system identification resulting from the
simulator and experiments. We record input and output data; Virtual RC commands
and attitude response while manual flight on an onboard computer.

3.2.1 Input Commands Scaling

Prior to performing system identification, it is necessary to identify the relation
between Virtual RC (actual control commands) and the corresponding attitude mea-
surements from the IMU. This can be determined by linearly mapping with the
maximum/minimum angles (±30◦), however there is small error in practice. This
can be caused by a variety of sources such as unbalanced platform, small dynamics
modelling error. We estimate these parameters using nonlinear least-squares opti-
mization such that

λ� := argmin
λ

T∑

k=1

‖zMeas
k − λucmd

k ‖2 (1)

where T denotes the number of samples used for optimization. λ is 4× 1 vector
containing roll, pitch, and yaw rate scaling parameters, [λφ, λθ , λψ̇ , λż]T . zMeas

k is

3http://goo.gl/Pk5kTL.

http://goo.gl/vSCQjg
http://goo.gl/vSCQjg
http://goo.gl/Pk5kTL
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Table 1 Virtual RC scaling parameters

Scale param Experiment Simulator

λφ 8.65 × 10−4 8.35 × 10−4

λθ 8.44 × 10−4 8.23 × 10−4

λψ̇ 2.24 × 10−3 3.23 × 10−3

λż 2.65 × 10−3 3.02 × 10−3
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Fig. 3 uφ scaling parameter estimation. a and b are before and after the scaling

4× 1of [φ, θ, ψ̇, ż]T obtained from IMUand amotion capture device at 100Hz. ucmd
k

is also 4× 1 vector of Virtual RC commands [uφ, uθ , uψ̇ , u ż]T . Note that it is difficult
tomeasure vertical velocity using IMU, but there are three options; (1)motion capture
device, (2) ultrasonic, barometer, and IMU fusion for vertical velocity estimation
from the onboard flight controller, (3) using the simulator. The first approach is the
most accurate but the third is useful and produces similar results as shown Table1.
The input commands and output measurements are aligned with cross-correlation
to remove the delay between the two signals. This is acceptable since we estimate
the signal magnitude. Figure3a shows original input command in blue and angle
measurement in red. (b) displays results after scaling using estimated parameters
from Table1.

3.2.2 Roll and Pitch Attitude Dynamics

Our linear MPC controller [15] requires first order attitude dynamics for position
control and the second order for the disturbances observer.We estimate the dynamics
by recording the input and output at 100Hz and logged two sets of a dataset formodel
training and validation.



Dynamic System Identification, and Control for a Cost-Effective … 611

We assume a low-level flight controller that can track the reference roll, φ∗, and
pitch, θ∗, angles with first order behavior. The first order approximation provides suf-
ficient information to theMPC to take into account the low-level controller behavior.
We thus utilize classic system identification techniques such that:

y(s)φ
u(s)φ

= 3.544

s + 2.118
,

y(s)θ
u(s)θ

= 3.827

s + 2.43

y(s)φ and u(s)φ are IMU measurement and input commands in continuous-time
space. The time constants for roll and pitch are, τφ = 0.472, τθ = 0.472 and DC
gains are kφ = 1.673, kθ = 1.575.

The identified first order dynamic models in continuous time space are discretized
in MPC and will be addressed in the next Sect. 3.3. We also performed second order
dynamic system identification exploited by disturbances observer, and the dynamic
models are

y(s)φ
u(s)φ

= 26.37

s2 + 5.32s + 27.04
,
y(s)θ
u(s)θ

= 28.86

s2 + 6.00s + 27.45

Their gain, kφ , damping, ζφ , and natural frequency, ωφ are presented in Table2.
Figure4 shows measured attitude, estimated first and second order dynamics. The
models fit close to the measurement (dotted line), and they are utilized by controllers
presented in next Sect. 3.3.

3.2.3 Yaw and Height Dynamics

The input commands of yaw and height are rates, uψ̇ , u ż, and the desired references
are orientation, ψ∗ and position, z∗. This implies there are controllers that track the
desired yaw rate, ψ̇∗, and height velocity, ż∗. Their first order dynamics are

y(s)ψ̇
u(s)ψ̇

= 5.642

s + 5.268
,
y(s)ż
u(s)ż

= 3.342

s + 2.99

Table 2 Matrice 100 identified dynamics summary

φ θ ψ̇ ż

1st order τφ = 0.472 τθ = 0.472 τψ̇ = 0.161 τż = 0.334

kφ = 1.673 kθ = 1.575 kψ̇ = 1.057 kż = 1.118

2nd order kφ = 0.975 kθ = 1.052 kψ̇ = 1.079 kż = 1.024

ζφ = 0.512 ζθ = 0.573 ζψ̇ = 1.898 ζż = 0.718

ωφ = 5.200 ωθ = 5.239 ωψ̇ = 23.448 ωż = 4.985
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Fig. 4 Measured and predicted pitch (a) and roll (b) angles for manual flight. The black denotes
the measured angle, and the blue represents the model response

Similarly, the second order dynamics for ψ̇ and ż are identified as

y(s)ψ̇
u(s)ψ̇

= 593.3

s2 + 89.0s + 549
,
y(s)ż
u(s)ż

= 25.43

s2 + 7.16s + 24.8

y(s)ψ̇ is obtained from the built-in IMU, gyro measurement along the z-axis, and
y(s)ż is provided by a motion capture device. It is also feasible to identify the height
dynamics by utilizing vertical velocity estimation from N1 flight controller.

3.3 Linear-MPC for Horizontal Control

The control of the lateral motion of the vehicle is based on a Linear Model Predictive
Control (MPC) [15]. The vehicle dynamics are linearized around the hovering con-
dition. We define the state vector to be x = (

x, y, vx, vy,Wφ,Wθ
)
and the control

input vector to be u = (Wuφ,Wuθ

)
. We also define the reference state sequence

as XT
ref = [

xTref:0, . . . , x
T
ref:N

]T
, the control input sequence as U = [

uT
0 , . . . , uT

N-1

]T
,

and the steady state input sequence Uref = [
uT
ref:0, . . . , u

T
ref:N-1

]T
. xref:k, uref:k are the

kth reference state and control input. Every time step, the following optimization
problem is solved:

min
U,X

N−1∑

k=0

(
(xk − xref:k)

T Qx (xk − xref:k)

+ (uk − uref:k)
T Ru (uk − uref:k)

+ (uk − uk-1)
T R
 (uk − uk-1 )) (2)

+ (xN − xref:N)T P (xN − xref:N)
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subject to xk+1 = Axk + Buk + Bddk;
dk+1 = dk, k = 0, . . . , N − 1

uk ∈ U

x0 = x (t0) , d0 = d (t0) .

where Qx � 0 is the penalty on the state error, Ru � 0 is the penalty on control input
error, R
 � 0 is a penalty on the control change rate and P is the terminal state error
penalty. The� operator denotes positive definiteness of a matrix.4 dk is the estimated
external disturbances. Note that the attitude angles φ, θ are rotated into the inertial
frame to get rid of the vehicle heading ψ .

A high-performance solver has been generated to solve the optimization problem
(2) using the FORCES5 framework. The solver is running in real-time for a prediction
horizon of N = 20 steps. Moreover, to achieve an offset-free tracking, the external
disturbances dk has to be estimated and provided to the controller each time step.
These disturbances include external forces (the wind for instance) and also a mod-
eling error. The disturbances are estimated using an augmented Extended Kalman
Filter (EKF) based on the second order dynamics model identified from the previous
section. For the remaining axes control (i.e., height and yaw), we use standard PID
controllers.

4 Experimental Results

In this section, we present implementation details; hardware and software setup and
control performance evaluation through experiments.

4.1 Hardware Setup

Matrice 100 quadcopter carries an Intel NUC 5i7RYH (i7-5557U, 3.1 GHz dual
cores, 16 GB RAM), running Ubuntu Linux 14.04 and ROS Indigo onboard. A
Vicon motion capture system consisting of 6 IR cameras provides 6 DOF pose of the
quadcopter target at 100 Hz, used for control. The quadcopter is also equipped with a
flight controller, N1, embedded an onboard IMUwhich provides vehicle orientation,
acceleration, and angular velocity at 100 Hz to the computer via 921,600 bps USB-
to-serial communication. Control commands are also transmitted at 100 Hz through
the serial bus.

4https://en.wikipedia.org/wiki/Positive-definite_matrix.
5http://embotech.com/FORCES-Pro.

https://en.wikipedia.org/wiki/Positive-definite_matrix
http://embotech.com/FORCES-Pro
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The total system mass is 3.3 kg and WiFi is used for communicating with the
quadcopter using a ground control laptop via ROS and a customized onboard SDK
ROS interface. The ground station, Vicon server, and onboard computer are time
synchronized via chrony time sync software package. The vehicle carries 0.92 kg
payload with the onboard computer, and a gimbal camera. 6 cells LiPo battery,
22.2 V, 4500 mAh powers the vehicle and the total flight time is around 14 mins
with a small angle of attack ≈ ±20◦.

4.2 Software Setup

We integrate the system using ROS as shown in Fig. 5. Each box represents a ROS
node and runs at 100 Hz. The Vicon server publishes position, orientation, transla-
tional and angular velocity as denoted [p, q, ṗ, q̇] using ros_vrpn_client. The data
is subscribed by the Multi-Sensor Fusion (MSF) framework [7] to filter noisy mea-
surement and to compensate for a delay. The ground station sets either a goal pose
as denoted p∗, position, and q∗], orientation or N sequences, [p∗

1:N , q∗
1:N ], planned

by the trajectory generator [12].
The SDK runs on the onboard computer and receives IMU measurements,

[Φ, Φ̇, Ba], orientation, angular velocity, acceleration in B coordinate from the
N1 flight controller. It also sends the calculated control commands to the attitude
controller.

Fig. 5 Software packages implementation using ROS
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Table 3 Control performance summary

Hovering Step response Trj. following Unit

Pose 0.039 0.041 0.394 0.266 0.080 0.103 m

x 0.021 0.027 0.259 0.127 0.058 0.066 m

y 0.016 0.015 0.295 0.226 0.043 0.059 m

z 0.029 0.026 0.034 0.059 0.035 0.053 m

Roll 0.392 1.044 – – – deg

Pitch 0.618 0.697 – – – deg

Yaw 1.087 1.844 1.141 2.165 1.539 2.876 deg

Duration 15–75 15–75 20–120 20–120 30–80 20–70 s

Wind – 11–11.5 – 11–11.5 – 11–11.5 m/s

4.3 Experiments Setup

For control performance evaluation, we conduct real-world experiment: hovering,
step response, and trajectory following. To demonstrate, the robustness of the con-
trollers, we generate wind disturbances using a fan that has 260 W and 300 m3/min
air flow. This produces 11–11.5 m/s disturbance at the hovering position measured
by an anemometer. Each task has two results, i.e., with/without wind disturbances.

We use root-mean-square (RMS) error metric between the reference and actual
position and orientation measured by a motion capture device for performance eval-
uation. Euclidian distance is used for 3D pose RMS error calculation. Table3 sum-
marizes experimental results.

4.4 Control Performance Evaluation

We present quantitative control performance evaluation using RMS error while per-
forming 3 tasks, i.e., hovering, step response, and trajectory following, and qualitative
results for step response and trajectory following.

4.4.1 Experiments Results for Hovering

Figure6 shows hovering results (position and orientation) without any wind distur-
bances (a) and (b) and with disturbances (c) and (d). Noticeable areas are magnified
due to the small scale of plots. We can clearly see the presence of wind disturbances
affect to control performance. Especially, the variation in yaw and attitude are sig-
nificant since a fan is located at South-East of the vehicle. As shown in Table3, we
achieve competitive results while hovering. Interestingly, the position errors for x, y,
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Fig. 6 Hovering control performance without/with wind disturbances

and z are consistent even with wind disturbances, 11–11.5 m/s. The force acting on
the platform in the wind is too small to push the 3.3 kg flying platform.

4.4.2 Experiments Results for Step Response

Asoppose to the advantage of strong resistance to external disturbances, the downside
for the heavy platform is a slower response. Figure7 shows step response plots
without wind disturbances (a), with wind (b). A goal position is manually chosen to
excite all axises. The peaks in roll and pitch are caused by tilting toward the direction
of maneuver, so we ignore them in RMS calculation. The results from Table3 show
a large control error in both x and y. Slow response causes accumulating error while
the vehicle reaches to a reference goal. Note that the RMS error of x-axis in windy
condition (i.e., 0.127m) is much smaller than without wind (0.259m). This is mainly
due to the vehicle travels only 2 m for the former whereas it flies 6 m for the latter.
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Fig. 7 Step response control performance without (a) and with (b) wind disturbances

4.4.3 Experimental Results for Trajectory Following

We use [2] to generate a smooth polynomial reference trajectory as shown in Fig. 9.
Even though hovering and step response tasks explicitly demonstrate control perfor-
mance and essential functionalities for VTOL MAVs, trajectory following is also a
significant task for many robotic applications such as obstacle avoidance, and path
planning. Figure8 shows trajectory following results without wind disturbances (a)
and with the wind (b). It can be seen that the platform tracks the reference well in
both conditions. RMS errors are also presented in Table3.
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Fig. 8 Trajectory following control performance without (a) and with (b) wind disturbances
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4.4.4 Qualitative Results

Wepresent two qualitative results for trajectory following and step response. Figure9
illustrates the planned trajectory (red) and the vehicle position (blue) obtained from a
motion capture device. The left column is without the wind, and the right is in windy
condition. Note that a fan is located around 3 m away from the hovering position
along the South-East direction as illustrated. Each row is top and side views. It
is clearly seen that the trajectory is shifted to the wind direction (positive x and
y-direction). Figure10 shows motions of step response (a) and trajectory following
(b). For the step response, it can be seen that the vehicle builds up moments by tilting
toward the goal direction and decelerates by tilting into the opposite direction when it
approaches. For the trajectory following, the vehicle accurately follows 1× 1 square
shown in Fig. 10b.
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Fig. 9 3D pose during trajectory following without (left column) and with (right column) wind
disturbances
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Fig. 10 Vehicle motion while step response (a) and trajectory following (b)

5 Conclusions

We have presented control performance of a cost-effect VTOLMAV platform using
classic system identification techniques and the-state-of-the-art MPC controller. The
essential information for developing theVTOLMAVrobotic platformsuch as attitude
dynamics are addressed. The applied controller performance are evaluated through
experiments while executing hovering, step response and trajectory following. Using
this platform has many advantages such its low-cost, high payload, ease of use and
the ready availability of replacement parts, user-friendly interface, powerful SDK,
and a large user community. Our experiences and findings are returned to the com-
munity through open documentation and software packages to support researchers
having their high-performance MAV platform for diverse field-service aerial robot
applications.

Acknowledgements This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 644227 and No 644128 from the
Swiss State Secretariat for Education, Research and Innovation (SERI) under contract number
15.0029 and 15.0044.

References

1. Sa, I., Corke, P.: Vertical infrastructure inspection using a quadcopter and shared autonomy
control. In: The International Conference on Field and Service Robotics (2012)

2. Burri, M., Oleynikova, H., Achtelik, M., and Siegwart, R.: Real-time visual-inertial mapping,
re-localization and planning onboard MAVs in unknown environments. In: IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (2015)

3. Popovic, M., Hitz, G., Nieto, J., Sa, I., Siegwart, R., Galceran, E.: Online informative path
planning for active classification using UAVs. IEEE Int. Conf. Robot. Autom. (2016)



620 I. Sa et al.

4. Mellinger, D., Lindsey, Q., Shomin, M., Kumar, V.: Design, modeling, estimation and control
for aerial grasping and manipulation. In: IEEE/RSJ International Conference on Intelligent
Robots and Systems (2011)

5. Zhang, C., Kovacs, J.: The application of small unmanned aerial systems for precision agricul-
ture: a review. Precis. Agric. (2012)

6. Achtelik, M., Weiss, A., Siegwart, R.: Onboard IMU and monocular vision based control for
MAVs in unknown in- and outdoor environments. In: Proceedings of the IEEE International
Conference on Robotics and Automation (2011)

7. Weiss, S., Scaramuzza, D., Siegwart, R.: Monocular-SLAM–based navigation for autonomous
micro helicopters in GPS-denied environments. J. Field Robot. (2011)

8. Bouabdallah, S.: Design and control of quadrotorswith application to autonomous flying. Ecole
Polytechnique Federale de Lausanne, Ph.D. Thesis (2007)

9. Mahony, R., Kumar, V., Corke, P.: Multirotor aerial vehicles:Modeling, estimation, and control
of quadrotor. IEEE Robot. Autom. Mag. (2012)

10. Pounds, P., Mahony, R., Corke, P.: Modelling and control of a large quadrotor robot. Control
Eng. Pract. (2010)

11. Hoffmann, M., Waslander, S., Tomlin, C.: Quadrotor helicopter trajectory tracking control. In:
AIAA Guidance, Navigation and Control Conference and Exhibit (2008)

12. Burri, M., Nikolic, J., Oleynikova, H., Achtelik, M., Siegwart, R.: Maximum likelihood para-
meter identification for MAVs. IEEE Int. Conf. Robot. Autom. (2016)

13. Sa, I., Corke, P.: System Identification, Estimation andControl for aCost EffectiveOpen-Source
Quadcopter. IEEE Int. Conf. Robot. Autom. (2012)

14. Tischler, M., Remple, R.: Aircraft and rotorcraft system identification. In: AIAA Education
Series (2006)

15. Mina, K., Thomas, S., Kostas, A., Roland, S.:Model Predictive Control for Trajectory Tracking
ofUnmannedAerialVehiclesUsingRobotOperating System. Springer Press (2016) (to appear)



AirSim: High-Fidelity Visual and Physical
Simulation for Autonomous Vehicles

Shital Shah, Debadeepta Dey, Chris Lovett and Ashish Kapoor

Abstract Developing and testing algorithms for autonomous vehicles in real world
is an expensive and time consuming process. Also, in order to utilize recent advances
in machine intelligence and deep learning we need to collect a large amount of
annotated training data in a variety of conditions and environments. We present a
new simulator built on Unreal Engine that offers physically and visually realistic
simulations for both of these goals. Our simulator includes a physics engine that can
operate at a high frequency for real-time hardware-in-the-loop (HITL) simulations
with support for popular protocols (e.g. MavLink). The simulator is designed from
the ground up to be extensible to accommodate new types of vehicles, hardware
platforms and software protocols. In addition, the modular design enables various
components to be easily usable independently in other projects. We demonstrate
the simulator by first implementing a quadrotor as an autonomous vehicle and then
experimentally comparing the software components with real-world flights.

1 Introduction

Recently, paradigms such as reinforcement learning [1], learning-by-demonstration
[2] and transfer learning [3] are proving a natural means to train various robot-
ics systems. One of the key challenges with these techniques is the high sample
complexity—the amount of training data needed to learn useful behaviors is often
prohibitively high. This issue is further exacerbated by the fact that autonomous ve-
hicles are often unsafe and expensive to operate during the training phase. In order to
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seamlessly operate in the real world the robot needs to transfer the learning it does in
simulation. Currently, this is a non-trivial task as simulated perception, environments
and actuators are often simplistic and lack the richness or diversity of the real world.
For example, for robots that aim to use computer vision in outdoor environments, it
may be important to model real-world complex objects such as trees, roads, lakes,
electric poles and houses along with rendering that includes finer details such as
soft shadows, specular reflections, diffused inter-reflections and so on. Similarly, it
is important to develop more accurate models of system dynamics so that simulated
behavior closely mimics the real-world.

AirSim is an open-source platform [4] that aims to narrow the gap between simu-
lation and reality in order to aid development of autonomous vehicles. The platform
seeks to positively influence development and testing of data-driven machine intelli-
gence techniques such as reinforcement learning and deep learning. It is inspired by
several previous simulators (see related work), and one of our key goals is to build a
community to push the state-of-the-art towards this goal.

2 Related Work

While an exhaustive review of currently used simulators is beyond the scope of this
paper, we mention a few notable recent works that are closest to our setting and has
deeply influenced this work.

Gazebo [5] has been one the most popular simulation platforms for the research
work. It has a modular design that allows to use different physics engines, sensor
models and create 3D worlds. Gazebo goes beyond monolithic rigid body vehicles
and can be used to simulate more general robots with links-and-joints architecture
such as complex manipulator arms or biped robots. While Gazebo is fairly feature
rich it has been difficult to create large scale complex visually rich environments
that are closer to the real world and it has lagged behind various advancements in
rendering techniques made by platforms such as Unreal engine or Unity.

Other notable efforts includes Hector [6] that primarily focuses on tight integra-
tion with popular middleware ROS and Gazebo. It offers wind tunnel tuned flight
dynamics, sensor models that includes bias drift using GaussianMarkov process and
software-in-loop using Orocos toolchain. However, Hector lacks support for popu-
lar hardware platforms such as Pixhawk and protocols such as MavLink. Because
of its tight dependency on ROS and Gazebo, it’s limited by richness of simulated
environments as noted previously.

Similarly, RotorS [7] provides a modular framework to design Micro Aerial Ve-
hicles, and build algorithms for control and state estimation that can be tested in
simulator. It is possible to setup RotorS for HITL with Pixhawk. RotorS also uses
Gazebo as its platform, consequently limiting its perception related capabilities.

Finally, jMavSim [8] is easy to use simulator that was designed with a goal of
testing PX4 firmware and devices. It is therefore tightly coupled with PX4 simulation
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Fig. 1 A snapshot from AirSim shows an aerial vehicle flying in an urban environment. The inset
shows depth, object segmentation and front camera streams generated in real time

APIs, uses albeit simpler sensor models and utilizes simple rendering engine without
any objects in the environment.

Apart from these, there have been many games like simulators and training appli-
cations, however, these are mostly commercial closed-source software with little or
no public information on models, accuracy of simulation or development APIs for
autonomous applications (Fig. 1).

3 Architecture

Our simulator follows a modular design with an emphasis on extensibility. The
core components includes environment model, vehicle model, physics engine, sen-
sor models, rendering interface, public API layer and an interface layer for vehicle
firmware as depicted in Fig. 2.

The typical setup for an autonomous aerial vehicle includes the flight controller
firmware such as PX4 [9], ROSFlight [10], Hackflight [11] etc. The flight controller
takes desired state and the sensor data as inputs, computes the estimate of current state
and outputs the actuator control signals to achieve the desired state. For example, in
case of quadrotors, user may specify desired pitch, roll and yaw angles as desired
state and the flight controller may use sensor data from accelerometer and gyroscope
to estimate the current angles and finally compute the motor signals to achieve the
desired angles.

During simulation, the simulator provides the sensor data from the simulated
world to the flight controller. The flight controller outputs the actuator signals which
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Fig. 2 The architecture of the system that depicts the core components and their interactions

is taken as input by the vehicle model component of the simulator. The goal of
the vehicle model is to compute the forces and torques generated by the simulated
actuators. For example, in case of quadrotors, we compute the thrust and torques
produced by the propellers given the motor voltages. In addition, there may be forces
generated from drag, friction and gravity. These forces and torques are then taken
as inputs by the physics engine to compute the next kinematic state of bodies in the
simulated world. This kinematic state of bodies along with the environment models
for gravity, air density, air pressure, magnetic field and geographic location (GPS
coordinates) provides the ground truth for the simulated sensor models.

The desired state input to the flight controller can be set by human operator using
remote control or by a companion computer in the autonomous setting. The compan-
ion computer may perform expensive higher level computations such as determining
next desired waypoint, performing simultaneous localization and mapping (SLAM),
computing desired trajectory etc. The companion computer may have to process
large amount of data generated by the sensors such as vision cameras and lidars
which in turn requires that simulated environments have reasonable details. This has
been one of the challenging areas where we leverage recent advances in rendering
technologies implemented by platforms such as Unreal engine [12]. In addition, we
also utilize the underlying pipeline in the Unreal engine to detect collisions. The
companion computer interacts with the simulator via a set of APIs that allows it to
observe the sensor streams, vehicle state and send commands. These APIs are de-
signed such that it shields the companion computer from being aware of whether its
being run under simulation or in the real world. This is particularly important so that
one can develop and test algorithms in simulator and deploy to real vehicle without
having to make additional changes.
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The AirSim code base is implemented as a plugin for the Unreal engine that can
be dropped in to any Unreal project. The Unreal engine platform offers an elaborate
marketplace with hundreds of pre-made detailed environments, many created using
photogrammetry techniques [13] to generate reasonably faithful reconstruction of
real-world scenes.

Next, we provide more details on the individual components of the simulator.

3.1 Vehicle Model

AirSim provides an interface to define vehicle as a rigid body that may have arbitrary
number of actuators generating forces and torques. The vehicle model includes pa-
rameters such as mass, inertia, coefficients for linear and angular drag, coefficients
of friction and restitution which is used by the physics engine to compute rigid body
dynamics.

Formally, a vehicle is defined as a collection of K vertices placed at positions
{r1, . . . , rk} and normals {n1, . . . ,nk}, each of which experience a unitless vehicle
specific scaler control input {u1, . . . , uk}. The forces and torques from these vertices
are assumed to be generated in the direction of their normals. However note that the
positions as well as normals are allowed to change during the simulation.

Figure3 shows how a quadrotor can be depicted as a collection of four vertices.
The control input ui drives the rotational speed of the propellers located at the four
vertices. We compute the forces and torques produced by propellers using [14]:

Fig. 3 Vehicle model for the quadrotor. The four blue vertices experience the controls u1, . . . u4,
which in turn results in the forces F1, . . . ,F4 and the torques τ1, . . . , τ4
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Fi = CTρω2
max D

4ui and τi = 1

2π
Cpowρω2

max D
5ui .

Here CT and Cpow are the thrust and the power coefficients respectively and are
based on the physical characteristics of the propeller, ρ is the air density, D is the
propeller’s diameter and ωmax is the max angular velocity in revolutions per minute.
By allowing themovements of these vertices during the flight it is possible to simulate
the vehicles with capabilities such as Vertical Take-Off and Landing (VTOL) and
other recent quadrotors that change their configuration in flight.

The vehicle model abstract interface also provides a way to specify the cross
sectional area in body frame that in turn can be used by physics engine to compute
the linear and angular drag on the body.

3.2 Environment

The vehicle is exposed to various physical phenomena including gravity, air-density,
air pressure and magnetic field. While it is possible to produce computationally
expensive models of these phenomena that are very accurate, we focus our attention
to models that are accurate enough to allow a real-time operation with hardware-in-
the-loop. We describe these individual components of the environment below.

3.2.1 Gravity

Whilemanymodels use a constant number tomodel the gravity, it varies in a complex
manner as demonstrated by models such as GRACE [15]. For most ground based
or low altitude vehicles these variations may not be important; however, it is fairly
inexpensive to incorporate a more accurate model. Formally, we approximate the
gravitational acceleration g at height h by applying binomial theorem on Newton’s
law of gravity and neglecting the higher powers:

g = g0 · R2
e

(Re + h)2
≈ g0 ·

(
1 − 2

h

Re

)
.

Here Re is Earth’s radius and g0 is the gravitational constant measured at the surface.

3.2.2 Magnetic Field

Accuratelymodeling themagnetic field of a complex body such asEarth is a computa-
tionally expensive task. TheWorldMagneticModel (WMM)model [16] by National
Oceanic and Atmospheric Administration (NOAA) is one of the best known mag-
netic models of Earth. Unfortunately, the most recent model WMM2015 is fairly
complex and computationally expensive for real-time applications.
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We implemented the tilted dipolemodelwherewe assumeEarth as a perfect dipole
sphere [17, pp. 27–30]. This ignores all but the first order terms to derive magnetic
field estimate using the spherical geometry. Thismodel allows us to simulate variation
of the magnetic field as we move in space as well as areas that are often problematic
such as polar regions. Given a geographic latitude θ , longitude φ and altitude h (from
surface of the earth), we first compute the magnetic co-latitude θm using:

cos θm = cos θ cos θ0 + sin θ sin θ0 cos(φ − φ0).

where θ0 and φ0 denote the latitude and longitude of the true magnetic north pole.
Then, the total magnetic intensity |B| is computed as:

|B| = B0(
Re

Re + h
)3

√
1 + 3 cos2 θm

Here B0 is the mean value of themagnetic field at the magnetic equator on the Earth’s
surface, θm is the magnetic co-latitude and Re is the mean radius of the Earth. Next,
we determine the inclination α and declination β angles using:

tan α = 2 cot θm and sin β =
{
sin(φ − φ0) cos θ0

sin θm
, if cos θm > sin θ0 sin θ

cos(φ − φ0) cos θ0

sin θm
, otherwise.

Finally, we can compute the horizontal field intensity (H ), the latitudinal (X ), the
longitudinal (Y ) and the vertical field (Z ) components of the magnetic field vector
as follows:

H = |B| cosα Z = |B| sin α X = H cosβ Y = H sin β.

3.2.3 Air Pressure and Density

The relationship between the altitude and the pressure of the Earth’s atmosphere is
complicated due to the presence of many distinct layers, each with its own individual
properties. First we compute Standard Temperature T and Standard Pressure P using
1976 U.S. Standard Atmosphere model [18, Eqs. 1.16 and 1.17] for altitude below
51km and switch to the model in [19, Table4] beyond that up to 86 km. Then, the
air density is ρ = P

R·T (where R is the specific gas constant.)

3.3 Physics Engine

The kinematic state of the body is expressed using 6 quantities: position, orienta-
tion, linear velocity, linear acceleration, angular velocity and angular acceleration.
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The goal of the physics engine is to compute the next kinematic state for each body
given the forces and torques acting on it. We strive for an efficient physics engine that
can run its update loop at high frequency (1000Hz) which is desirable for enabling
real-time simulation scenarios such as high speed quadrotor control. Consequently,
we implement a physics engine that avoids the extra complexities of a generic engine
allowing us to tightly control the performance and make trade-offs that best meet our
requirements.

3.3.1 Linear and Angular Drag

Since the vehicle moves in the presence of air, the linear and the angular drag has a
significant effect on the dynamics of the body. The simulator computes themagnitude
|Fd | of the linear drag force on the body according to the drag equation [20]:

|Fd | = 1

2
ρ|v|2Clin A.

Here Clin is the linear air drag coefficient, A is the vehicle cross-section and ρ is the
air density. This drag force acts in the direction opposite to the velocity vector v.

Computing the angular drag for arbitrary shape remains complex and compu-
tationally intensive task. Many existing physics engines use a small but often an
arbitrary damping constant as a substitute for computing actual angular drag. We
provide simple but better approximations to model the angular drag.

Consider an infinitesimal surface area ds in the extremity of the body experiencing
the angular velocity ω. As the linear velocity dv experienced by ds is given by
rds × ω, we can now use the linear drag equation for ds [21, pp. 160–161]:

|dF| = 1

2
ρ|rds × ω|2Clinds, where direction ofdF is − rds × ω.

Now, the drag torque is computed by integrating over the entire surface: τd = ∫
S rds ×

dF. To simplify the implementation, we approximate the body of the vehicle as set
of connected faces which further can be approximated as a rectangular box for the
purpose of evaluating the integral.

3.3.2 Accelerations

In addition to the drag forces and torques, we also need to consider the forces Fi and
the torques τi present on the vehicle at the vertex located at ri relative to center of
gravity (see Sect. 3.1). We thus compute the net force and torque as:
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Fnet =
∑
i

Fi + Fd and τnet =
∑
i

[τi + ri × Fi ] + τd .

We obtain the linear acceleration by applying Newton’s second law and then adding
gravity vector to compute the net acceleration, a = Fnet/m + g. The angular accel-
eration in body frame is given by Euler’s rotation equation: α = I−1 · (τnet − (ω ×
(I · ω))), where, I is the inertia tensor and ω is angular velocity, both in body frame.

3.3.3 Integration

We update the position pk+1 of the body at time k + 1 by integrating the velocity and
the initial position p0. The first order integration algorithms such as Euler method
diverges quickly with unbounded error although very simple to implement. In our
implementation we use Velocity Verlet algorithm instead of Runge Kutta for its
computationally inexpensiveness and stability while still being second order method
[22]. Formally,

vk+1 = vk + ak + ak+1

2
· dt pk+1 = pk + vk · dt + 1

2
· ak · dt2

The angular velocity is updated in similar manner as linear velocity however up-
dating orientation isn’t straight forward. One of the approach is to maintains the
orientation as a rotation matrix that is updated every time step. However this causes
a slow drift whichmust be corrected by orthonormalization at regular intervals which
is expensive. Alternative approach is to maintain rotations as much more efficient
quaternions which are also numerically stable and trivially normalizable. One of the
problem, however, is that the orientation quaternion is maintained in the world frame
while the angular velocity is maintained in the body frame in our framework. To
update the orientation, we first compute the angle-axis pair (αdt ,u) where αdt is the
angle traversed around unit vector u. We can compute the angle αdt = |ω| · dt and
axis by u = ω/|ω|. This allows us to compute equivalent change in quaternion qdt
representing the change in orientation in time dt . As noted before, qdt is in body
frame while qk in world reference frame. The problem now remains that of adding
qdt to qk to obtain qk+1 which can be proven to given by relationship qk+1 = qk · qdt .

3.3.4 Collisions

Unreal engine offers a rich collision detection system optimized for different classes
of collision meshes and we directly use this feature for our needs. We receive the
impact position, impact normal and penetration depth for each collision that occurred
during the render interval. Our physics engine uses this data to compute the collision
response with Coulomb friction to modify both linear and angular kinematics [23].
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3.4 Sensors

AirSimoffers sensormodels for accelerometer, gyroscope, barometer,magnetometer
and GPS. All our sensor models are implemented as C++ header-only library and
can be independently used outside of AirSim. Like other components, sensor models
are expressed as abstract interfaces so it is easy to replace or add new sensors.

3.4.1 Barometer

To simulate barometer, we compute ground truth pressure using the detailed model
of atmosphere (Sect. 3.2.3) and model the drift in the pressure measurement over
time using Gaussian Markov process [24] for more realistic behavior in long flights.
Formally, if we denote the current bias factor as bk then the drift is modeled as:

bk+1 = w · bk + (1 − w) · η,where: w = e− dt
τ and η ∼ N (0, s2).

Here τ , is the time constant for the process and set to 1 h in our model. η is a
zero mean Gaussian noise with standard deviation that can be selected using the
data available in [25]. This pressure p is then added with white noise drawn from
zero mean Gaussian distribution with standard deviation set from datasheet of the
sensor (such as MEAS MS56112). Finally we convert the pressure to altitude using
barometric formula used by the sensor’s driver:

h = T0
a

[(
p

p0

)−( a·R
g )

− 1

]
,

here T0 is the reference temperature (15 ◦C), a = −6.5 × 10−3 is the temperature
gradient, g and R are the gravity and the specific gas constants, p0 is the current sea
level pressure and p is the measurement.

3.4.2 Gyroscope and Accelerometer

Gyroscope and accelerometers constitute the core of the inertial measurement unit
(IMU) [26]. We model these by adding white noise and bias drift over time to the
ground truth. For gyroscope, given the true angular velocity in body frame ω, we
compute the measurement ωout as,

ωout = ω + ηa + bt , where ηa ∼ N (0, ra) and

bt = bt−1 + ηb, where ηb ∼ N

(
0, b0

√
dt

ta

)
.
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Here parameters ra , biasb0 and the time constant for bias drift ta can either be obtained
from Allan variance plots or from datasheets. Accelerometer output is computed in
the similar manner except that we must first subtract gravity from the true linear
acceleration in the world frame and then convert the result to the body frame before
we add bias drift and noise.

3.4.3 Magnetometer

We use the tilted dipole model for Earth’s magnetic field Sect. 3.2.2, given the geo-
graphic coordinates to compute the components of the ground truth magnetic field
in body frame and add the white noise as specified in the datasheet.

3.4.4 Global Positioning System (GPS)

Our GPS model simulates latency (typically 200ms), slower update rates (typically
50Hz) and horizontal and vertical position error estimate decay rates to simulate
gaining fix over time. The decay rate is modeled using first order low pass filter
individually parameterized for horizontal and vertical fix.

3.5 Visual Rendering

Since advanced rendering and detailed environments have been a key requirement
for AirSim we chose Unreal Engine 4 (UE4) [12] as our rendering platform. UE4
offers several features that made it an attractive choice including it being an open
source and available on Linux,Windows aswell as OSX.UE4 brings some of the cut-
ting edge graphics features such as physically based materials, photometric lights,
planar reflections, ray traced distance field shadows, lit translucency etc. Figure1
shows a screen-shot from AirSim which highlight near photo-realistic rendering ca-
pabilities. Further, Unreal’s large onlineMarketplace has various pre-made elaborate
environments, many of which are created using photogrammetry techniques.

4 Experiments

We perform experiments primarily to evaluate how close the flight characteristic of a
quadrotor flying in real-world is to that of a simulation of the same vehicle in AirSim.
We also evaluate some of our sensor models against the real-world sensors.

Hardware Platform: Real-world flights were performed with the Pixhawk v2 flight
controller mounted on a Flamewheel quadrotor frame, together with a Gigabyte
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5500 Brix running Ubuntu 16.04. The sensor measurements were recorded on the
Pixhawk device itself. We configured the simulated quadrotor in AirSim using the
measured physical parameters and simulated sensor models configured using sensor
data sheets. The AirSim MavLinkTest application was used to perform repeatable
offboard control for both the real-world and the simulated flights.

Trajectory Evaluation: We fly the quadrotor in the simulator in two different pat-
terns: (1) trajectory in square shape with each side being 5m long (2) trajectory in
circle shape with radius being 10m long. We then use exact same commands to fly
the real vehicle. For both the simulation and the real-world flights, we collect location
of the vehicle in local NED coordinates along with timestamps.

Figures4c and b shows the time series of locations in simulated flight and the real
flight. Here, the horizontal axis represents the time and the vertical axis represent the
off-set in X and Y directions. We also compute the symmetric Hausdorff distance
between the real-world track and the track in simulation.We found that the simulation
and real-world trackswere fairly close both for the circle (Hausdorff distance between
simulated and real-world: 1.47 m) as well as the square (Hausdorff distance between
simulated and real-world: 0.65 m).

We also present visual comparison for this experiment for the circle and the square
patterns in Fig. 4a and d respectively. The simulated trajectory is shownwith a purple
linewhile the real trajectory is shownwith a red line.We can observe that qualitatively
the trajectories tracked by both the real-world and the simulated vehicle are close.
The small differences may have been caused by various factors such as integration
errors, vehicle model approximations and mild random winds.

Sensor Models: Besides evaluating the entire simulation pipeline we also investi-
gated individual component models, namely the barometer (MEASMS5611-01BA),
the magnetometer (Honeywell HMC5883) and the IMU (InvenSense MPU 6000).
Note that the simulated GPS model is currently simplistic, thus, we only focus on
the three more complex sensor models. For each of the above sensors we use the
manufacture specified datasheets to set the parameters in the sensor models.

• IMU:Wemeasured readings from the accelerometers and gyroscope as the vehicle
was stationary and flying. We observed that while the characteristics were similar
when the vehicle was stationary (gyro: simulated variance 2.47e − 7 rad2/s2, real-
world variance 6.71e − 7 rad2/s2, accel.: simulated variance 1.78e − 4 m2/s4,
real-world variance 1.93e − 4 m2/s4), the observed variance for an in-flight ve-
hicle was much higher than the simulated one (accel.: simulated 1.75e − 3 m2/s4

vs. real-world 9.46 m2/s4). This is likely in real-world the airframe vibrates when
the motors are running and that phenomenon is not yet modeled in AirSim.

• Barometer: We raised the sensor periodically between two fixed heights: ground
level and then elevated to 178 cm (both in simulation and real-world). Figure5a
shows both the measurements (green is simulated, blue is real-world) and we
observe that the signals have similar characteristics. Note that the offset between
the simulated and the real-world pressure is due the difference in absolute pressure
in the real-world and the one in the simulation. There is also a small increase in
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Fig. 4 Evaluating the differences between the simulated and the real-world flight. In top figures,
the purple and the red lines depict the track from simulation and the real-world flights respectively

Fig. 5 Figure5a and b show that barometer and the magnetometer characteristics in simulation
closely resemble that of the real world
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the middle due to a temperature increase, which wasn’t simulated. Overall, the
characteristics of the simulated sensor matches well to the real sensor.

• Magnetometer: We placed the vehicle on the ground and then rotated it by 90◦
four times. Figure5b shows the real-world and the simulated measurements and
highlight that they are very similar in characteristic.

5 Conclusion and Future Work

AirSim offers hi-fidelity physical and visual simulation that allows to generate large
quantity of training data cheaply for building machine learning models. AirSim
API design allows developing algorithms against simulator and then deploy them
without change on real vehicles. The core components of AirSim including physics
engine, vehicle models, environment models and sensor models are designed to be
independently usable with minimal dependencies outside of AirSim and are easily
extensible. AirSim is inspired by the goal of developing reinforcement learning
algorithms for the autonomous agents that can operate in the real world.

The task of mimicking the real-world in real-time simulation is a challenging
endeavor. There are a number of things that can be improved. Currently we do not
simulate richer collision response or advanced ground interaction models which
may be possible in future by implementing our physics engine interface for NVIDIA
PhysX and utilizing features such as physics sub-stepping. Also we do not simulate
various oddities in camera sensors except those directly available in Unreal engine.
We plan to add advanced noise models and lens models in future. The degradation
of GPS signal due to obstacles is not simulated yet which we plan to add using
ray tracing methods. We also plan to add more advanced wind effects and thermal
simulations for fixed wing vehicles. Our extensibility APIs have been designed with
above future work in mind and can also be used to realize other vehicle types.
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Design and Development of Tether-Powered
Multirotor Micro Unmanned Aerial Vehicle
System for Remote-Controlled Construction
Machine

Seiga Kiribayashi, Kaede Yakushigawa and Keiji Nagatani

Abstract In Japan, several types of natural disasters such as floods, earthquakes,
and volcanic eruptions have occurred and will likely occur in the future. Therefore,
civil engineering works are required for restoration after such natural disasters, and
teleoperated construction machines have been developed to facilitate such works.
During the operation of teleoperated construction machines, images from various
viewpoints e.g., an image from the perspective of the machines or that from the side
of the bucket is essential for carrying out tasks efficiently. However, in the case of
the initial response to natural disasters, it is difficult to use dedicated, conventional
camera-equipped vehicles and fixed cameras on external towers to obtain such per-
spective images, particularly within a month after the disaster. Therefore, in this
research, we propose a tether-powered multirotor micro unmanned aerial vehicle
(MUAV) system to obtain images from various perspectives for the operator of a
teleoperated construction machine. The features of the proposed system are (1) high
voltage for transmitting electric power through thin tether, (2) tension control of
the tether in vibration and inclined conditions, and (3) wired VDSL communication
between the MUAV and the helipad. In this paper, we introduce the design and im-
plementation of the proposed system. In addition, we report the results of the field
test of the tethered MUAV mounted on a construction machine.

1 Introduction

In Japan, several natural disasters have occurred and will likely occur even in the
future. In the case of large-scale catastrophes caused by earthquakes, heavy rain, or
volcanic eruptions, civil-engineering work with construction machinery is required
for restoration. However, the restoration work at a disaster site is quite dangerous for
operator, and a secondary disastermayoccur at the site. Therefore, to ensure the safety
of the operators, unmanned construction technology has been developed and used in
practical situations in Japan. As a representative example, the Tele-earthwork system
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[1] developed teleoperated constructionmachinery to excavate volcanic products and
to construct mud-control dams after the eruptions of Mt. Unzen-Fugen that occurred
in the 1990s. Such a system was also used for restoration work in the 2011 Great
East Japan Earthquake [2].

Although this system worked effectively in long-term restoration work, it is diffi-
cult tomake use of such dedicatedmachines in the initial response of natural disasters,
particularly within 1month after the disaster. This is because (1) teleoperated con-
struction machines require much preparation before operation, (2) the number of
teleoperated construction machines is small, and (3) it takes a considerable amount
of time to transport the machines to the disaster site. A teleoperation technology for
“general” construction machinery is required for the initial response to disasters.

As general construction machines are used for various constructions in several
places in Japan, their transportation is easy, and the number of machines is large.
However, teleoperation cannot be performed with general construction machines.
Therefore,much research and developments have been carried out tomount hardware
on the cockpit of a general-construction machine and enable its remote control [3–5].
With the help of the above technologies, operators can control a general construction
machine by teleoperation. However, they typically use on-vehicle cameras only. It
is well-known that visual information obtained from various viewpoints is effective
for the teleoperation of construction machines, e.g., the image of a bird view of
the machines or that from the side of the bucket. Therefore, in restoration works at

Fig. 1 Developed system on a teleoperated small construction machine
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Mt.Unzen-Fugen, dedicated camera-equippedvehicles andfixed cameras on external
towers were used to obtain images from various viewpoints. However, it is difficult to
install them for the purpose of an initial response within a month of the occurrence of
a natural disaster. In addition, there are limitations to the arrangement of the cameras.

As a solution to the aforementioned issues, we have been researching and de-
veloping a system that use a multirotor micro unmanned aerial vehicle (MUAV) as
an external camera carrier to obtain images from various viewpoints. The system is
consisting of a tether-powered multirotor MUAV and a helipad that have a tension
controlable winch to windup a tether.

By installing the tether-powered multirotor MUAV system on a general-
construction machine and mounting conventional teleoperation hardware on the
cockpit, it is possible to realize an instant teleoperated construction machine that
can obtain images from various viewpoints by itself. Figure1 shows our recent ver-
sion of the tether-powered multirotor MUAV and helipad on a construction machine.

In this paper, we present our research on and development of the proposed system
and report the results of our field tests on the actual construction machine.

2 Tether Powered Multirotor MUAV System

2.1 Proposal

The most important information for the teleoperation of a construction machine
is visual information. In teleoperated restoration works at Mt. Unzen-Fugen, the
operator uses not only images from the perspective of the cockpit, but also images
from various perspectives obtained from dedicated camera-equipped vehicles and
fixed cameras on external towers [1]. The images from the latter can compensate
for the blind spot in the cockpit view, and it enables the operators to directly grasp
the motion of the construction machine. In particular, the images are used to grasp
a details of the distance between the operating device (e.g., bucket) and the target
(e.g., volcanic rocks).

For developing images from various viewpoints, Sato et al. developed a system
with multiple on-vehicle fisheye cameras [6]. It is effective for an initial response
because it does not require any external camera installation in the target environment.
Nevertheless, blind spots exist on the image obtained from the construction machine.
Moreover, a typical constructionmachine has an arm and projections that cause blind
spots.

Therefore, in this research, we aimed to develop a system to use a multirotor
MUAV as an external camera carrier to obtain images from various viewpoints. It is
now matured technologies to obtain images by MUAV from the air. However, there
still exist some problems with this system, and one of these problems is its short
flight time. Therefore, we have been researching and developing a system for the
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use of a tether-powered multirotor MUAV. The following are the advantages of the
proposed MUAV:

1. Within the tether length, the multirotor MUAV can stay at arbitrary positions to
obtain alternate viewpoints without being affected by the rough terrain.

2. The flight time of the tether-powered MUAV is much longer than that for a
typical MUAV because a power-feeding tether is used to supply electric power
from the helipad.

3. In case the multirotor MUAV is out of control, it flies only within the range of
its tether length. Thus, the damage to the environment can be minimized.

4. It helps secure pinpoint landings of the multirotor MUAV by forcefully winding
the tether.

There are some researches on tether-powered multirotor MUAVs [7, 8], and some
have been recently used in practical applications [9]. However, the flight range of
the tethered MUAV has a limitation because of its tether length. In order to allow an
external camera carrier to obtain images from various viewpoints, we have developed
a tethered MUAV helipad that can be mounted on a construction machine. The
proposed system is effective for an initial response for disaster because the system
enables long-time flight, and it requires no external camera installation to teleoperate
a construction machine in the target environment.

There exist some problems in the realization of the system, and one of these
problems is large vibrations in the construction machines. Therefore, we organized
the problem and implemented countermeasures as described in the next subsection.

2.2 Challenges of the System

The tether-powered multirotor MUAV system has three major challenges to install
it to the construction machine as we proposed.

The first challenge is the flight range. A typical objective of tether-powered mul-
tirotor MUAVs in general use is a fixed-point observation, and the MUAV is not
required to move dynamically. However, for teleoperation of the construction ma-
chines, the viewpoint of theMUAVshould be changedbased on the task. For example,
to take an image of an excavator, the MUAV had better locate at directly above of the
machine for its navigation, or the MUAV had better locate at the side of the bucket
when it excavates the ground. In addition, when theMUAVfly horizontal, the power-
feeding tether may slack and come into contact with the environment. The greater
the tension in the tether, the lesser is the looseness in the tether becomes. However,
the thrust required for the MUAV’s flight increases, and the controllability of the
MUAV decreases. Therefore, appropriate tension control of the tether is required.

The second challenge is a power source. A typical power-feeding tether system
uses an AC power supply from the ground station. However, in the proposed system,
an independent power source is required to fly the tether-powered multirotor MUAV
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because the helipad that works as typical ground station is mounted on the construc-
tion machine. In addition, a lightweight, thin tether is required to reduce the load on
the MUAV. In this case, it requires a high-voltage supply, but the MUAV requires a
voltage step-down circuit if use a high-voltage, which implies an additional payload
to drive propellers’ motors. Considering the above trade-off, it is necessary to select
an appropriate power supply method.

The third challenge is the vibration and inclination of the construction
machine.As the power for a general constructionmachine is obtained froman engine,
the construction machine vibrates, which also affects the equipment installed on
the machine. Furthermore, the target environment is natural uneven terrain. Thus,
the vibration and inclination caused by the machine navigation on such rough terrain
affect the equipment of the machine. Therefore, it requires a system that is robust
against vibration and inclination.

In keeping with to the above challenges, we consider that the helipad has several
development factors. Therefore, in the first stage of our development, we developed a
novel helipad for a tether-powered multirotor MUAV that can works on construction
machine. We used a conventional airframe as the multirotor MUAV, and controlled
it manually under direct visual.

3 Development of the System

The tether-powered multirotor MUAV is controlled manually based on the flight
controller inside theMUAVand the radio control transmitter. The tension of the tether
is controlled independently using a winch mounted on the helipad. The operators
control both the systems and camera gimbals mounted on the MUAV. Figure2 is a
block diagram of the system. In this paper, we do not describe in detail the camera
gimbals’ system. In the following subsections, we introduce the “power system”,
“winch with controllable tether tension”, and “wireless communication”.

3.1 Power System

A multirotor MUAV requires an electric power source. For example, the typical
MUAV developed in this study (quad-rotor MUAVwith 15-in. propellers, of approx-
imately 3.0kg) requires 400W for hovering, and 800W for moving or dealing with
a disturbance, in our experience. The required electric power mainly depends on the
weight and the rotors’ diameter. Therefore, even if the MUAV itself is improved, it
will not be possible to reduce the power consumption drastically. When such a large
electric power is used, the power loss in the power-feeding tether is critical. Based
on Ohm’s law, the loss due to the electric resistance in the power-feeding tether
is proportional to the square of the current. Therefore, to obtain the same electric
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Fig. 2 Block diagram of the tether powered multirotor MUAV system

power, a high-voltage and low-current system is required to be configured for the
power supplied through the tether.

On themultirotorMUAVside, we use a voltage step-down converter that allows an
input between DC200 V and 420 V. A continuous output of 600W is possible for one
converter. Therefore, we use two converters in parallel to obtain an output of 1200W.
The converter was selected by the considerations of the weight and availability. The
voltage step-down converter is installed on the side opposite to the camera gimbals to
balance the center of gravity, and the converter is cooled by a downstream flow from
the rotors. Figure3a shows an appearance of the MUAV, Fig. 3b shows the setup of
the voltage step-down converter on the MUAV, and Figure 3c shows the converter
itself.

The weight of each module is 160 g, and the total weight of the two converters
is lighter than the weight of the batteries normally used for its flight. The weight of
the MUAV before installing any equipment is about 2.5kg, and after installed, it is
about 3.2kg. The payload capacity of the MUAV is over 3kg, thus the MUAV have
more than 1kg payload even consider about tension and weight of a tether.

Next, we describe the power system in the helipad side. Typically, a commercial
power source was used to handle a large power consumption in previous researches.
However, in a disaster environment, it is impossible to use such a commercial power
source. Therefore, a small-sized power source that has a sufficient power capacity is
required to be mounted on the construction machine. In addition, the power source
is required to be used in the vibration and inclination conditions.

There were two realistic candidates for the supply of 800W of electricity: the
battery type and gas-powered generator type power supply. In the case of the gas-
powered generator type, it is difficult to estimate the remaining working time and to
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Fig. 3 Developed tether powered multirotor MUAV

use it in the inclined condition. Therefore, we chose the battery type power supply
in our implementation.

In the case of the battery type, there are two methods to obtain a high voltage to
tether power feeding: (1) boosting the voltage from a battery with a voltage converter
and (2) using a series connection of batteries. In the former case, it is possible to
increase the choices of batteries. However, conversion loss occurs in the converter.
In the latter case, there is no conversion loss, but the total voltage fluctuates greatly
depending on the remaining battery power. As mentioned above, the chosen voltage
step-down converter installed on the MUAV allows a wide-range input of between
DC200 V and 420 V. Therefore, we chose the latter method.

According to the required conditions—low weight and possibility of use in the
inclined condition–we did not choose lead batteries but lithiumbatteries. Specifically,
lithium ion battery packs (23.1 V, 127 Wh, 62KSP545483-2, Hitachi Maxell, Ltd.)
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are chosen. This includes the circuit used for the estimation of the remaining battery
level. In this research, we connected twelve packs in serial and use as a large battery
unit (277.2 V, 1,524 Wh). It enabled over 3h of operation, i.e., hovering, for our
multirotor MUAV.

3.2 Winch with Controllable Tether Tension

To enable the appropriate control of the tether tension, we developed a winch with a
controllable tether tension located on the helipad.

When both endpoints of a string-like object are fixed at any two points, the object
forms a catenary curve. Our tether is sufficiently thin (approximately 5mm outer
diameter) and soft, such that the tether also shapes a catenary curve. When the lower
side of the tether is fixed at the helipad, and the upper side of the tether is connected
to the multirotor MUAV, the angle formed by the tether and helipad is expressed as
a function of the tether tension. Therefore, the helipad can control the shape of the
tether by controlling the tether tension, and it can avoid the contact of the tether with
the surrounding objects.

The general tension control uses feedback control based on a tension measure-
ment. The tension measurement is typically conducted by measuring the displace-
ment of a movable pulley to which a spring is connected. However, when the acceler-
ation is applied to the measurement device, it measures the total of the tether tension
and acceleration. Furthermore, when the helipad is in an inclined condition, gravity
acceleration is affected, and a measurement error occurs. Therefore, it is difficult to
apply the typical feedback control method to our system.

To solve the above problem, we chose to use a powder clutch that can specify
the arbitrary torque with the open loop control, instead of a tension measurement
of the tether. Figure4a shows a CAD model of our winch that includes a powder

Fig. 4 Winch with controllable tether tension on helipad
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clutch. The powder clutch uses magnetic powder, and it transmits torque from the
motor to the spool according to the current. Once the torque control of the winch is
realized, the tension of the tether is calculated based on the spool torque and spool
radius. To estimate the tether tension accurately, an estimation of the spool radius,
which changes according to the extended tether length, is very important. Therefore,
in this research, we developed a mechanism to wind up the tether densely to estimate
the winding position of the tether. With this mechanism, the helipad can accurately
generate an arbitrary tension in the tether at any time, even under the conditions of
vibration and inclination.

3.3 Communication System

In our system, control PCs are located at both the MUAV and helipad, and both
the PCs should communicate with each other. On the other hand, it is necessary to
establish a wireless communication between the operation room and the construction
machine for teleoperation. To secure the wireless bandwidth, it was decided that the
communication between the MUAV and the helipad should be wired.

The weight of the wires for the communication significantly affects the payload
of the MUAV, and therefore, we chose a VDSL communication system that can be
realized with only two metal lines. We mounted the VDSL modems on both the
multirotor MUAV and the helipad and enabled a mutual conversion of the VDSL
and Ethernet. The control signals for the flight and camera gimbals are sent from the
helipad to the MUAV through the VDSL communication.

All the control signals are gathered in the control PC on the helipad, and the PC
communicates with the operator’s PC on the wireless LAN. Based on the proposed
communication system, various external communication devices can be used, and
their integration with other systems on the construction machine becomes easy.

4 Field Test

In November 2016, we integrated our system on the teleoperated construction ma-
chine developed in the Impulsing Paradigm Change through Disruptive Technolo-
gies Program (ImPACT) and conducted an operation verification test of the proposed
system. The objective of the test of the ImPACT Program was to confirm the effi-
cient work made possible using a teleoperated construction machine in the case of
a disaster situation, and the objective of the test of us was to provide images from
various viewpoints to the operators by our proposed system. In this test, tether length
is limited to 12m for safety reasons. Also, our developed system fly over an hour
continuously and battery capacity remains over 60% after the test.
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Fig. 5 Test flight overview images in case of MUAV’s middle flight altitude

Fig. 6 Test flight overview images in case of MUAV’s high flight altitude

Figures5, 6 and 7 shows the photographs of the test. The photographs in the left
column are taken from the outside, and the photographs in the right column show
the images obtained from the multirotor MUAV. Figure6 show the outside view and
obtained image from the high flight altitude of the MUAV. Figure7 show the outside
view and obtained image from the low flight altitude and long horizontal length.
In the last case, the tether is not slackened or tightened too much because of the
appropriate tension control by the winch.

The above results showed that the developed system worked as expected without
the occurrence of any problems.
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Fig. 7 Test flight overview images in case of MUAV’s low flight altitude and long horizontal
distance from helipad

5 Conclusion

In this paper, we introduced the design and implementation of a tether-powered mul-
tirotor MUAV system to obtain images from various viewpoints for the teleoperation
of a construction machine. The features of the system are as follows:

1. high voltage battery is used to transmit electric power through thin cables,
2. a powder clutch is used for the winch to enable tension control in the vibration

and inclined conditions, and
3. a VDSL communication system is used for communication between the multi-

rotor MUAV and the helipad.

Finally, we conducted an operation verification test of the proposed system to provide
images from various viewpoints to the operator.

In future works, we intend to evaluate this system in detail and develop a rela-
tive positioning method for the MUAV based on the tether information to realize
autonomous MUAV flights.
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Human-Robot Teaming: Concepts and
Components for Design

Lanssie Mingyue Ma, Terrence Fong,
Mark J. Micire, Yun Kyung Kim and Karen Feigh

Abstract In the past, robots were used primarily as “tools for humans.” As robotics
technology has advanced, however, robots have increasingly become capable of as-
sisting humans as partners, or peers, working together to accomplish joint work. This
new relationship creates a new host of interdependencies and teamwork questions
that need to be addressed in order for human-robot teams to be effective. In this pa-
per, we define communication, coordination, and collaboration as the cornerstones
for human-robot teamwork. We then describe the components of teaming, including
agent abilities, taskwork, metrics, and peer-to-peer interactions. Our purpose is to
enable system designers to understand the factors that influence teamwork and how
to structure human-robot teams to facilitate effective teaming.

1 Introduction

The role of robots in human-robot (HR) teams has begun to shift from an extension
tool to a peer-like teammate that is able to assist with and complete joint tasks [8, 13].
Human-robot teams are groupings of humans and robotic systems who communi-
cate, coordinate and collaborate together to perform a joint activity [8, 14]. The role
of robots as teammates in human teams will allow for more collaboration and perfor-
mance on joint activities. For example, robots in space exploration environments are
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placed in a variety of applications where humans cannot operate alone and require
assistance [2, 13, 14]. Research geared towards studying the effect this newer per-
spective has on teaming design and approaches in Human-Robot Interaction (HRI)
will be beneficial.

As NASA moves toward future deep space missions, taskwork will be given
to human-robot teams for mission safety and success [13, 14]. Longer space mis-
sions are more dangerous to humans as astronauts must operate autonomously from
ground. Astronauts are limited by time and physical constraints and will need to
rely on robot systems to assist in joint tasks that require both agents to be involved.
To effectively complete joint activities, however, requires an understanding of how
interdependencies between team members affect the execution of tasks. Creating
and structuring an effective team and assigning work to each agent in the team is
imperative to mission success and proper task execution [31].

DevelopingHRI by focusing on teamperformance for joint activities is imperative
to developing better systems. Systems must evaluate the changing capabilities of
each team member and their distinct roles in the team composition. While previous
research and surveys of HRI describe different methodologies on developing human-
robot systems, there is still a lack of convergence on HR teaming design.

This paper surveys various ways to build and construct HR teams. The goal of this
survey is to provide system designers better insight into HR teaming, particularly
regarding methods that can be used for HR team design. We first elaborate on the
background of teams and prior research in HR teaming. Next, we describe how
designers should consider taskwork, agent abilities, designmetrics, and dependencies
when composing HR teams. Lastly, we discuss open issues in HR teaming that
warrant additional research.

2 Motivation

The central concept behind this paper is the concept of a team—interdependent
members who share a common goal, have common ground, and trust in between
them [13–15]. Teams are structurally organized include members who have their
expertise and background; each member brings their own skills and background to
the team. Teamwork is a fluid, context-dependent activity. Teamwork is composed
of a variety of factors; the combination and effective of which can greatly affect the
structure of teamwork [10]. High-performing teams operate with dynamic skillsets,
including anticipation and prediction, to handle more complicated scenarios and
workflow [24, 28]. While teamwork might seem to be an obvious detail in HRI
design, system’s designers must consider a variety of factors that affect the structure
of teamwork from team compositions to the resulting dependencies.

Neither HR team design nor effective ways of measuring its success have been
well defined in the literature. Prior research in developing human-robot teams has
been widely vetted from human factors perspective [30]. Moreover, there has been
little to no translation of HR teaming theory into real-world application. To close
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the gap between theory and practice, system designers need to develop effective
teamwork designs, methods, and protocols.

Creating effective HR teams is challenging because robotic capabilities are con-
tinually advancing—leading to better physical abilities, cognition, and awareness.
Despite these advances, we expect that robots will always have limitations, par-
ticularly when faced with anomalies, edge cases, and corner cases. Humanoid ro-
bot appearances can disillusion humans as they appear human-like but lack human
capabilities [23]. Humans face difficulty in creating mental models of robots and
managing their expectations for their robot companion’s behavior and performance.
Robots struggle to recognize human intent, which causes incorrect or poorly timed
responses, as well as slow and jittery interaction. These issues result in an unnatural
and inefficient teamwork with high human workload [14, 23]. Future HR teams need
to consider robots as trustworthy team members despite their limits.

Given the difficulties of creating human-robot teams, it is clear placing a well-
designed robot with a human to complete a task is not enough to ensure good
teamwork and task execution. Design for HR teams must understand the context
of human-robot relationships and the dependencies that form as they work together
[25]. In joint activity, understanding interdependencies between team members will
reinforce better human-machine systems design decisions [25]. FutureHR teamswill
need to understand how teammates can communication, coordinate, and collaborate
effectively for mission success.

3 The Components of Teamwork

3.1 Communication

Communication is the expression or exchange of information between two (or more)
parties [5, 18, 37]. For example, robots requesting help communicate: (1) getting
attention, (2) alerting that help is needed, and (3) requesting help [5]. Any robotic cue
provides pertinent information about its state and current action. While humanoid
robots have a larger breath of communication means, non-humanoid robots are more
goal driven and requiremore planning to take human collaborators into consideration
[5]. Even robots that are capable of speech or text (on screen) lose the subtlety, tone,
and context of human speech.

Communication can extend between various pairings in teams, between robots
through a shared network, or to humans through various means. To do the latter,
they require more signal types to be more informative and develop richer intuition.
Signals are very limited in content (up to a few bits), but they are capable of convey-
ing awareness, intent, and state. Numerous mechanisms support this by combining
redundancy with emphasis through auditory, gaze, gesture, and motion. Signals can
involve lights, sounds, haptic feedback, andmore depending on the system. Language



652 L. Mingyue Ma et al.

is highly extensive and conveys a high level of detail, however, whether language is
specific or general is dependent on task, domain and other factors [5].

3.2 Coordination

Coordination is the harmonious functioning of the group or ensuring that two ormore
people or groups can work together properly throughout the mission [12, 37]. It re-
quires integration of activities and responsibilities for resources to be used efficiently
[23]. Coordination requires cooperating with foresight and planning to set, organize,
and monitor activity. Effective coordination requires (1) Common Ground, where
mutual knowledge supports joint activity, (2) Directability, assessing and modifying
individual actions within a joint activity, and (3) Intepredictability, being able to pre-
dict what others will do [23, 25]. These traits are more measurable and support the
goal of teammates that can do work together successfully.

3.3 Collaboration

Collaboration is a joint activity involving two (or more) parties working collectively
to achieve a common goal [9, 23, 25]. Joint work requiresmultiplemembers working
together to achieve a shared objective and is dependent on communication and coordi-
nation.Members share of knowledge, intention, and goals between themselves—like
two agents working together to build a bookshelf. Collaborative tasks can be tightly
or loosely coupled, as well as planned or spontaneous [20, 23, 40]. In tightly cou-
pled work, each member’s actions depends on each other. In loosely coupled work,
members engage in complementary actions towards a common goal. The difference
between planned and spontaneous work is acutely dependent on the environment,
situation, task, and more. In scavenger hunt (a collaborative task), teammates have a
common goal (find all items) but do so separately.

4 Considerations for Designing Human-Robot Teams

It is essential to consider a variety of factors to design an effective HR team. These
include the pitfalls that HR teams designers should keep in mind pitfalls HR teams
can fall into, the task work scope for the team to complete, limitations of and support
for teammembers, metrics for evaluating teams, and how to facilitate effective team-
work. These following sections discuss the importance of these considerations for
taskwork, team composition, and structuring teamwork. Figure1 shows these factors
outside the team and between the agents. The context of themission, the environment
the team is in, and the tasks to complete are external factors that impact the design
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Fig. 1 Factors that are
influences on Human-Robot
Teaming from external to
internal within a team

of a team to fully capable of completing the work. Humans and robots have vary-
ing abilities, and the depedencies that arise between these agents as team members
creates interdependencies within the team. Human-robot teams must have excellent
communication, coordination, and collaboration in order to work effectively together
amongst these factors of influence.

4.1 Pitfalls for Human-Robot Teams

A variety of macro and micro factors like the human(s), robot(s), remote users, con-
trols, environments, and task context, affect the relationships between teammembers
and the resulting teamwork [36].

Barriers of Communication High time delays in communication or even team
members’ inability to understand each other can cause collapses in teamwork.
Barriers are a result of unintuitive or improper modes of communication when
processing human attention, predicting actions, and understanding intent from
others [35].

Inefficient Collaboration Teammembers with different goals work divergently re-
sult in delays in task completion and poor quality of work. Users who fail to
check for qualifying capabilities or lack training and proficiency cause improper
handoffs or transfer of control between users [36].

Poor Coordination A mismatch of individual abilities can cause poor cooperation
when trying to coordinate activity, especially in cases where team members have
gaps in their capabilities or uncomplimentary skills. A poor team composition
results in a lack of trust between the members that can be detrimental to the
coordination [31].

Bad Leadership A leader lacking leadership can steer a team into disarray. In im-
perfect scenarios, an inadequate leader may struggle to redirect the team or adjust
the taskwork goals.

Lack of Management Adjacent to bad leadership is poor management, which can
cause teams to become confused or lose sight of the work to be done. Managing
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the team also requires managing the team’s environment, continuously planning,
and ensuring that the team is on track.

Workload Issues Task demands, temporal demands, and task structure causework-
load issues [22]. The complexity of themission and the consequences of its failure
need to be considered while designing HR teams. The task constraints and pres-
sure, task interruptions and ill-defined tasks are setbacks that can confused team
members [22].

Forgetting Environmental Factors Visibility, complexity, uncertainty and stressors
factor in team interactions with the environment and each other [22]. Failure to
consider the context-dependent factors result in teaming that is unprepared to
work in its environment.

4.2 Taskwork for Teams

Taskwork is a key component of HR team design consideration as it is the breakdown
of work teams need to complete to achieve their goal. Taskwork is also situational
and context-dependent; the flow of teamwork and operator workload is dependent
on it [22, 40]. Taskwork can determine how teams should be structured and put to-
gether; completing it requires varying levels of user performance, fault management,
multiple team members, and for some tasks, multitasking. Scheduling and depen-
dencies on other system components also constrain how taskwork can be assigned
and managed. The type of taskwork and its criticality are important to review. For
example, the individual actions exploring planetary surfaces vary and depend on the
density of route waypoints, hazards, and obstructions. Properly valuing taskwork’s
complexity and fully scoping will lay out the groundwork for designing an HR Team
to complete it [22, 25, 40].

4.3 The Structure of Teams

The structure, or composition, of an HR team, helps construct effective teamwork
and is determined by the physical makeup of a team, as well as each individual’s
abilities [39, 40]. Team structure involves finding the proper team size to fit the
mission goals and teammates who have complimentary skill sets to coordinate and
collaborate effectively. The ratio of humans to robots is also important to consider,
be it homogeneous (human-only, robot-only) or heterogeneous (mix of humans and
robots) [39]. Team composition shapes interactions that vary based on the ratio from
one human, one robot; one human, robot team; one human, multiple robots; human
team, one robot; multiple humans, one robot; human team, robot team; human team,
multiple robots; and multiple humans, robot team [40].
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4.3.1 Agent Abilities and Team Abilities

Each agent’s abilities and the overall team capabilities should compliment each other.
Robot abilities are based on factors of the work they are given and their capabilities
depend on the concept of capacity [25].

Capacity is the total set of inherent things (e.g., knowledge, skills, abilities, and resources)
that an entity requires to competently perform an activity individually. (p. 47)

This concept of capacity implies a limit to a robot’s capacity—specifically, their
ability to extend their capabilities beyond engineered abilities and to possessing a
certain level of autonomy or cognition. Autonomy for robots has been previously
defined from a variety of perspective, from teleoperation to ‘full autonomy’. Desai
wrote the resulting interaction between HR teams is dependent on this level of robot
autonomy [6]. Goodrich defines autonomy as the measure of neglect a system can
take—the more autonomous, the fewer interactions [18–20]. Brum’s sliding scale
of autonomy was a large step in the understanding robot autonomy is not simply a
single discrete mode, but adjustable depending on circumstances [3]. While there are
many varieties of robot autonomy, it is clear that successful HR teams take shifting
context-dependent autonomy into consideration for team design [14, 18].

Autonomy is a relative concept and a robot’s autonomy should be defined respec-
tive to another system’s autonomy [25]. One step further is recognizing autonomy is
a function of the team’s capacity together, not just a robot’s cognition agents alone.
We frame Team Autonomy to be an HR team’s capability to operate as a single
unit. HR team designers should understand this parallel concept of autonomy from
a robot’s shifting autonomy and the overall Team Autonomy.

4.4 Measuring Human-Robot Team Performance

Metrics are central to good design as they describe how to measure team design
[32]. Metrics for team performance can be considered qualitative or quantitative,
but identifying the best metrics is essential to assess effective teamwork. Working
effectively as a team is benchmarked not only on the success of completing the
mission but also the quality of teamwork.

Evaluating HR teams can be from a (1) high-performance perspective, through
quantitative analysis and formal methods, (2) user perspective, through the usabil-
ity, overall effectiveness, and satisfaction, or (3) team perspective through fluidity,
team workload, or interaction between team members [29, 41]. Quantitative metrics
measure efficiency and productivity by time to complete tasks, idle time for each
member, and the total mission time [1]. Qualitative metrics assess social measures,
teamflexibility, adaptability, and robustness or resilience to errors in the environment.
Several authors with different perspectives have identified metrics to measuring HRI
through task, common, or interaction metrics [1, 32]. Steinfeld and Fong compare
three common metrics that emphasize the HR team and interactions [32].
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System performance This group is comprised of quantitative performance which
evaluates effectiveness (% of mission completed) and efficiency (time taken to
complete a task), subjective ratings, where indirect and direct factors impact ef-
fectiveness and mixed-initiative utilization, which includes the effort to regulate
the control and interaction efforts had between robots and humans through inter-
ruptions, requests for help, etc. [32].

Operator performance This focuses on the system operator, considering situa-
tional awareness which impacts decision-making, performance and handling
dynamic tasks, workload, which assesses multidimensional workload balancing
techniques and operator stress, and mental model accuracy, which tracks how
much the interface affects user performance [32].

Robot performance This examines self awareness, which is a degree by which a
robot could assess itself through knowing its capacities, monitoring itself through
tasks, and recovering from faults, human awareness, which is how a robot may
be able to perceive humans and predict and read human behaviors, and autonomy,
whereby a robot can function as a unit comparatively to a measure [32].

While these common metrics assess the components of a team, they do not iden-
tify a team metric. System performance describes how to quantitatively assess the
overall system, but does not consider the interaction that can be measured amongst
the teammembers. From a task perspective, Steinfeld and Fong continue to dive into
“task metrics” which cover the span of robot capabilities and provide a more granu-
lar taxonomy on appropriate metrics for specific robot task performance (navigation,
perception, management, manipulation, and social) [32]. Shah et al. describes quan-
titative cognitive and physical interaction metrics that can be gleaned from instances
of active communication, coordination and collaboration within an HR team [1].

Physical Interaction metrics Physical interaction can be easily taken from systems
through various metrics such as response time, availability, proximity of physical
interaction, and duration of physical interaction.

Cognitive Interaction metrics Cognitive interaction is more difficult to measure
but depends highly on the system used to evaluate HRI. These metrics include
information exchange and assessment, decision and action selection, inherent lag,
and command specifications as primary metrics to capture.

Freedy et al.’s Collaborative Mixed-Initiative System describe qualitative mea-
surements allow for team assessment through evaluating how teammates predict
each other’s actions, collaborate together and develop trust between members [15].

1. Measures of Performance: These measures are observable and come from the
operators’ task skills, strategies, steps or procedures used to accomplish tasks.
These consists of human team, UV control, and human/robot team processes.
The HR team process consists specifically of shared mental models, human to
robot ratio, level of trust, behavior acceptance and observability, human-robot
coordination, and mixed initiative efficiency [15].

2. Measures of Effectiveness: These measures note the ‘goodness’ of the quality and
execution of tasks but depend on environment and luck. This condenses down
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Fig. 2 Comparison of fourmetrics as team or individual focused, and quantitative versus qualitative

into mission and team behavioral effectiveness (collective conformity, latency,
decision quality, and comparative performance amongst teams) [15].

The metrics above have distinct and different focuses on components of HRI and HR
teaming. These differences and similarities are captured in the Fig. 2. HR teaming
should use metrics that capture both the perspective of the team while balancing
quantitative and qualitative metrics.

5 Structuring Effective Teamwork

This section brings together the previous investigation in workload and agent ca-
pabilities to demonstrate how to structure teams. Teaming is a dynamic structure
where changing agent roles, task definition and requirements, environment context
and circumstances affect how the team does work. The structure of the team affects
when (pre, during, post), where, and how robots do their work.

First, system designers need to consider the roles each member will play and any
occurring interdependencies as team members work together. Fong’s collaborative
control points to the importance of humans as collaborators instead of controllers
[11]. Scholtz et al. notes five roles that humans take on when interacting with ro-
bots: supervisor, operator, teammate(peer), mechanic, and bystander [30]. Members’
roles may shift as circumstances change, which reshapes the team structure and dy-
namics. Interactions change depending on the roles humans and robots take on in a
team; these greatly impact how to foster teamwork effectively [30, 40]. A natural
progression as humans and robots work closely is the occurrence of interdependence
[20, 25]. Interdependencies and relationships structure teamwork from influences of
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the external (environment, taskwork, and context) forces, and the internal (abilities,
capabilities) [25].

interdependence describes the set of complementary relationships that two or more parties
rely on tomanage requires (hard) or opportunistic (soft) dependencies in joint activity. (p.47)

With that in mind, teamwork can be structured in the following ways:

1. A “Play” or sequence structure assigns work to users to follow the “play” (i.e.
military plays, football plays). These types of plans are pre-thought out and simply
need to be carried out with some room for mild adaptation given a non-nominal
circumstance [16]. Plays provide a breakdown of the task into several appropriate
metrics like time to complete and task allocation, offering a full blo-byblow
description. This level is detail can fit certain types of task where the mission
may be very specific and distinct. Overall, a play can be a strategy but if too
constrained, it is not flexible to handle variances in scenarios.

2. Function Allocation (FA) first decides the work to be done then allocates that
work to the agents in the system [38]. FA asks the questions who can do what task
and describes how to make that decision; it determines the best fit for a user to a
task before or during real-life execution. FA can be evaluated through modeling
and simulation to vet a series of work allocations, using varying analytics to
assess the best distributions of tasks. This process can be methodical, and has
opportunity to use formal modeling tools to quantitatively analyze results. This
type of work is best for evaluating teams when early-in-design to fully explore
the potential combinations of teamwork.

3. Bidding allows agents bid on clearly delineated tasks [7]. Agents are responsible
for task allocation and bid considering their availability, skill set, and time to
complete the task. Team designers determine winners from variety of measures
based on preference and appropriateness. This structure works well for teams
with agents that have specific abilities and bidding measures are clearly defined.

4. Interdependencies implies both robot autonomy and the interface should be
designed together to manage dependencies [25]. Given taskwork and team capa-
bilities, work is assigned effectively for joint activities through interdependence
requirements (observability, predictability, and directability) [11, 25]. Human-
robot teams must be able to observe and understand their teammates actions,
predict their teammates next moves, and direct each other to do work [27]. Teams
cognition is key here in order to have the same shared mental model to facilitate
communication and coordination [33].

The following examples of HR team scenarios show various types of team struc-
tures, ratios of humans to robots, and use cases of teams in a space exploration
application. These structures demonstrate the breadth of work HR can accomplish
[4, 14]. In Fig. 3, we show these four examples as the team works through the work-
load and the changing dynamics of the team.

1. Robotic Scouting involves a human remotely controlling a rover to scout plane-
tary surfaces for scientific and technical progress. In this example, there is a 1:1
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Fig. 3 Four different types of team structures that are possible build from a variety of factors

communication line between the human and robot. The work is completed before
humans take action as a precursor to human workload. Additionally, the robot
can work alone but needs to have strong capabilities in maneuvering and fault
recovering from environmental factors. These twomembersmust have good coor-
dination and communication to efficiently explore and inform the most impactful
information [14].

a. Ex. 1 For a single task, a robot works in solitary scouting mission until it
requests for human help or alert it has completed the task. The robot requests
for help on a task and requires human intervention to work closely on a joint
task. It interacts through communicating its progression through the task
and completes the task 1:1 with the human thereafter. The robot here would
require high capacity for communication, coordination, and collaboration.

2. Robotic Followup involves humans working first, then robots following up after
to further investigate andfinish the task.Theremaybe a transfer of control between
the humans and robots collaborating loosely together to finish the subsequent
work. Teaming here revolves around coordinating this transfer and a follow-up
of completing the task, see Fig. 3 [14].

a. Ex. 2 Two humans complete task 1 and communicate with the two-robot
team the remainder of the task. The robot team then complete task 2. At the
transition phase, communication of the remainder of the task and coordi-
nation in shifting authority of the task will impact the mission success and
metrics.

3. Multiple Astrobees with Crew, up to three Astrobees are capable of flying
through the International Space Station and assist astronauts on board with re-
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search activities.Members can remotely direct the bees to do specific actions (like
navigation), or command them through a series of sequences (similarly to ‘plays’)
to work directly with the crew [4].Work between astronauts andAstrobees ranges
from tightly compacted to more dispersed, see Fig. 3.

a. Ex. 3 Shifting abilities and dynamic task requirements can alter groupings
within a team of two humans and three robots [8]. At t = x, one human is
working with three bees and another human is working alone. At some time
t = x + c (where c is the time it takes to complete tasks 1 and 2), one of the
robot bees moves to the other human to take on task 4 together while the
remaining bees stay to finish task 3. Here the successful coordination and
collaboration allows the flexibility of the bee to traverse between human
teammates and take on different team tasks.

4. Planetary Exploration with HR teams may be far off in the future but under-
standing the implications of close-knit teamwork on team success is important
for homologous real life scenarios. Fong et al. provides several real-life examples
of closely coupled HR teams co-located and responsible for a multitude of joint
tasks [14]. These robots are highly dexterous and capable of assorted collabora-
tive tasks. They are remotely controlled or somewhat autonomous and have strong
skills in communication through voice and gesture recognition. Their capabilities
enable collaboration between HR teammates and provide insight for culminating
interdependencies from close conduct.

a. Ex. 4At t = x, a robot team and a human teamwork loosely coupled on tasks
1 and 2 respectively. At t = x+c, the teams shift partners into two single HR
teams andwork on the tasks 3 and 4 in tightly coupled teams.Here, teamwork
is highly dynamic and the modification of teams is necessary to coordinate
effectively [8]. Robots and humans need complimentary skillsets and adapt
to new scenarios and unpredictable contexts easily.

6 Future of Human-Robot Teaming

This paper discusses varies factors that impact building effective teamwork in HR
teams by investigating the components of teaming of taskwork, capabilities, de-
pendencies. However, future work can continue to provide insight on this topic by
exploring the effect of communication, coordination, and collaboration on team per-
formance. As the need for effective HR teams grows, analyzing these design consid-
erationswill allow for these heterogeneous teams to advance from a teamperspective.
Agent capabilities, taskwork breakdowns, metrics for valuable measurements, team
autonomy and teamwork structuring are all areas that have room to expand our un-
derstanding of HR teaming. The goal of this paper is to highlight that designing for
human-robot teams is important for effective teamwork. Building successful teams
goes beyond considerations for individuals and extends to the team’s combined ca-
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pabilities and deepening our knowledge of team member relationships. Designing
teams where robots are not tools, but peers, is a start to designing effective teamwork
and structuring future HR teams to be more successful in their endeavors.
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An Analysis of Degraded Communication
Channels in Human-Robot Teaming and
Implications for Dynamic Autonomy
Allocation

Michael Young, Mahdieh Nejati, Ahmetcan Erdogan
and Brenna Argall

Abstract The quality of the communication channel between human-robot team-
mates critically influences the team’s ability to perform a task safely and effectively.
In this paper,we present a nine person pilot study that investigates the effects of differ-
ent degradations of that communication channel, and within three shared-autonomy
paradigms that differ according to how and at what level control is partitioned be-
tween the human and the autonomy. Accordingly, the rate and granularity of the
human input differs for each shared-autonomy paradigm. We refer to each para-
digm according to the input expected from the user, namely high-level, mid-level
and low-level control paradigms. We find three primary insights. First, interrup-
tions in the signal transmission (dropped signals) decrease safety and performance
in modes where continuous and high-bandwidth inputs from the human are ex-
pected. Second, decreased transmission frequency offers a trade-off between safety
and performance for low-level and mid-level control paradigms. Lastly, noise alters
the safety of high-level input since the user is not continually correcting the signal.
These insights inform us when to shift autonomy levels depending on the quality of
the communication channel, which can vary with time. Knowing the ground truth
of how the signal was degraded, we evaluate a recurrent neural network’s ability to
classify whether the communication channel is experiencing lowered transmission
frequency, dropped signals or noise, and we find an accuracy of 90%when operating
with low-level commands. Combined with the key insights, our results indicate that
a framework to dynamically allocate autonomy between the user and robot could
improve overall performance.
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1 Introduction

In recent years, the world increasingly relies on human-robot teams to perform vari-
ous functions in defense, human assistance and field operations. In these teams, the
human operator interacts differently with the robotic system depending on the task.
In some cases, the user issues low-level commands where they are in charge of the
majority of control. In others, the user provides high-level commands, such as goals,
which the robot works towards achieving. Indeed, there are a multitude of control
levels in between and the level is typically set before the team sets out to accomplish a
given task. However, there are many scenarios in which performance might improve
if the control allocation shifted online between the two entities.

One reason that autonomy levels might benefit from shifts is signal degradation.
In the domain of user-operated assistive robots, such as a robotic wheelchair, the
commands issued by the user may degrade due to human motor impairment, fatigue
or pain. There is a parallel to field robotics where the user operates a robot at a
distance. In this case, the signal may degrade due to barriers between the robot and
operator or environment changes such as severe weather. In both scenarios, operators
are susceptible to distraction or work overload that may affect performance and
transmit through the control signal. Other reasons to shift autonomy may include
hardware issues or changes in the environment that prevent either the robot or the
user from providing reliable control signals. For example, a person using a powered
wheelchair maymove from indoors to a busy sidewalk where more moving obstacles
are present and the subject can no longer avoid collisions independently.

In the domain of assistive robots, the signals provided by motor-impaired users in
many ways mirror those of compromised communication channels: the user signals
are often noisy due to artifacts left by their impairment (noise), limb weakness may
result in undetectable commands by the interface (dropped signal) and the rate at
which the user provides commands may also vary due to factors like fatigue and pain
(transmission frequency).

To study how shared-autonomy performance changes with signal degradation on
the communication channel between the human and the autonomy, we conduct a nine
person pilot study to inform future decisions on how autonomy should be allocated.
In the study, subjects use three levels of control to perform daily-life tasks with a
robotic wheelchair while we modulate the signal to simulate real-world challenges.
Furthermore, we assess the feasibility of detection of a degraded communication
channel so that we can switch autonomy automatically when necessary. The end goal
is to provide a dynamic autonomy allocation framework that will improve the safety
and performance of human-robot teams in both field and service robot applications.
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2 Related Work

Here we review related literature on autonomy allocation. Much of the literature
develops paradigms for determining beforehand which autonomy level to use [2,
11]. These take into account factors such as task criticality, task accountability and
environment complexity. However, these static, a priorimethods are often not robust
to the varying mental load of the user and changing environment.

Other works [15–17] investigate physiological parameters, using sensors such as
EEG and ECG, as an indication of a user’s cognitive load. (Cognitive load can play a
critical role in successful teleoperation and control of robots [9].) The physiological
parameters are used to indicate when the autonomy should change control levels. For
the domain of these works (pilots and military), to expect the physiological signals
is reasonable, as soldiers and military pilots already wear highly instrumented and
sensorized gear. For assistive robotics however, it is unlikely that we would have
access to such signals due to both fiscal constraints and user preference.

Trust between the user and robot has drawn interest from researchers as a metric
to allocate autonomy. In the field of human-robot interaction, several studies [4, 7, 8]
outline key factors, such as feedback, environment and age, that influence a human’s
trust in automation, which ultimately affects the team’s performance. In other work,
researchers calculate trust in both the robot and the human through performance-
based metrics [13] and by comparing the autonomy signal and the user input [3].
Trust shows promise as a factor to influence autonomy allocation, and we expect
other metrics may also play a role, such as communication channel quality.

Most similar to our work, Choiu et al. [5] perform a virtual experiment where
subjects navigate a mobile robot through an obstacle course while noise is added at a
specific section of themap. The users operate in threemodes (1) full teleoperation (2)
goal selection and (3)manual switching between goal selection and full teleoperation.
Theydemonstrate that a dynamic allocationof autonomycontrolled by the user (mode
3) outperforms the other two modes when faced with a distraction task.

Our work differs from the state of the art in several ways. We conduct an ex-
periment using a physical system and modulate the signal with three degradation
schemes: dropped signals, transmission frequency and noise. This helps us to iden-
tify when performance or safety has declined, and we furthermore do so for multiple
levels of (static) autonomy allocation. From these results, we gather insights for
a dynamic autonomy allocation framework and demonstrate a signal degradation
detection technique to be used within said framework.

3 Methods and Design

The focus of this study is human-robot teams in which the robot is jointly controlled
by robotics autonomy and a human operator. In these scenarios, the robot relies
on the control commands from the human operator and its own sensor readings.



668 M. Young et al.

The quality of the communication channel which relays this information between
the operator and the robot impacts the team’s interaction. If degraded, it can obstruct
the transmission of information needed for successful task completion.

The human operator can control the robot with different levels of command gran-
ularity: from low-level commands using teleoperation, through increasingly higher
levels of commands until (nearly) full autonomy.While low-level commands give the
human operator more control over the minutia of task execution, higher-level com-
mands may be all that are practical when the communication channel is degraded—
for example, due to increased distance of communication, human fatigue or other
external factors.

The purpose of this study is to investigate the effect of various degradations of
the signal coming from the human and how this changes with various control levels
(autonomy allocations)—that is, which control levels are invariant or particularly
susceptible to a given signal degradation. We design an experiment to investigate
this scenario in a controlled laboratory environment. Towards this aim, nine subjects
control the navigation of a mobile robot to multiple goal locations. The robot is
commanded with three different levels of control granularity, while the signal is
artificiallymodulated to capture different features of communication channel quality.
The task performance, safety, control signals and human attention are monitored
during task execution. The following subsections elaborate on details of the design
and protocol.

3.1 Control Level

Humans command mobile robots using different control levels with varying degrees
of command granularity, typically dictated by the task, environment and/or the user’s
cognitive load. The user signal might encode low-level control commands—for ex-
ample, the speed and direction at every instance in the trajectory. Commonly, for
low-level control the user operates the mobile robot using an interface like a joy-
stick with some visual information provided by their own eyes, on-board cameras
or a sensorized environment. In other formulations, the operator may provide mid-
level control commands—for example, discrete longer-duration actions such as turn
right or go forward. Such commands might be provided via switches, button presses
or voice, to name a few. In high-level control, the operator provides even higher
level information—for example, the human might indicate a task or goal, through
selections on a screen or natural language, for example.

In this study, we consider three levels of shared control:

1. Low-level Control (CL ): Using a PS3 controller joystick, the user provides a con-
tinuous stream of linear and angular velocities to control the robot. The autonomy
steps in only to prevent collisions [1], and the execution trajectory otherwise is
determined by the human operator.
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2. Mid-level Control (CM ): Using the PS3 controller buttons, the user provides
discrete directional commands: such as “turn left” and “forward”. The autonomy
executes these commands, taking care also to avoid obstacles.1

3. High-level Control (CH ): The user provides end goals or waypoints for the
robot to navigate towards via a point-and-click visual interface using RVIZ.2 An
autonomous path planner calculates a safe trajectory from the current robot pose
to the human-provided target pose, while avoiding obstacles.

3.2 Signal Modulation

The quality of signals received from the human by the robotic system depends on
the quality of the communication channel between them, which can be influenced
by human and environmental factors. In various scenarios involving a mobile robot,
the signals may be sent over wireless networks. The wireless signals can be affected
by many external factors such as weather, electrical interference, radio frequency
interference and distance, to name a few.

Signal quality can be quantified according to different properties such as the signal
frequency, transmission frequency and noise. In this study, we replicate these factors
in a controlled setting, where three signal properties are individually modulated.
For each of the following signal properties, we test three different levels of signal
modulation by changing the threshold values: lowmodulation, moderate modulation
and a high level of modulation. The thresholds which determine the modulation
settings were chosen empirically during the experiment design phase.

1. Dropped Signals: Every input signal is assigned a random number η sampled
from a Gaussian distribution η ∼ N (0, 1/3). If η is greater than a preset thresh-
old, the corresponding input signal is dropped. (In our implementation, the three
thresholds were [0.6, 0.5, 0.4].) The result is lost information.

2. Transmission Frequency: The rate ρ at which the robot receives the user’s com-
mand over the communication channel is varied, within a preset range. (In our
implementation, the three values of ρ were [5, 10, 15] Hz.) The result is a delay
in the receipt of information.

3. Noise: A random value ε is sampled from a zero-mean Gaussian distribution,
with a different variance σ2 for each combination of control level and modulation
level. The noise is implemented differently depending on the control level:

a. Low-level control (CL ): ε is continuously added to the control signal at
low, moderate and high levels of variance. (In our implementation, σ2 =
[0.6, 0.8, 1.0].)

1Note the primary differences between CL and CM are the discrete input and the rate of input.
2RVIZ is a 3D visualization tool distributed with the Robot Operating System (ROS).
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b. Mid-level control (CM ): If ε is greater than the preset noise threshold, one of
the commands is chosen randomly. (In our implementation, the thresholds
were [1.0, 0.92, 0.85] and σ2 = 1/3.)

c. High-level control (CH ): ε is multiplied by a distance value d dictated by
the task, and d·ε is added to the goal position provided by the user. (In our
implementation, d is set at [6, 8, 10] cm and σ2 = 1.)

Participants perform each task under 10 experimental conditions: three modu-
lation levels for each of three signal properties (dropped signals, transmission fre-
quency, noise), plus an unmodulated (clean) signal.

3.3 Experimental Setup and Tasks

We use a robotic powered wheelchair in this experiment. This wheelchair, shown
in Fig. 1, is a commercially available Permobile wheelchair that we retrofit with a
laser scanner, RGB-depth sensor and on-board computer. These components plus our

Fig. 1 Robotic wheelchair
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(a) (b)

(c)

Fig. 2 Experimental setup. a Task layout: (G1) Docking station. (G2) Turn in place for orientation,
(G3) Doorway traversal, (G4) Left turn (wide), (G5) Right turn (tight), (OS) Operator Station. b
Layout diagram showing five goals. c Operator station

software suite provide additional autonomous capabilities such as doorway detection,
obstacle avoidance and path-planning, to name a few.

The test environment is located in the Assistive and Rehabilitation Robotics Lab-
oratory at the Rehabilitation Institute of Chicago. The setup consists of an obstacle
course as shown in Fig. 2. The operator is positioned at the operator station3 (Fig. 2c)
and can clearly observe the robotic wheelchair for each task.

Wheelchair tasks are chosen for measuring task performance, safety and control
signals. A distraction task is also included for measuring human attention.

Wheelchair Tasks. The tasks are selected to cover a range of commands and
non-trivial control strategies. In the domain of assistive powered wheelchairs, some
of the challenging daily tasks include obstacle avoidance, navigating through tight
spaces and correcting orientation for a desired pose. The following five tasks are
selected from the Wheelchair Skills Test (WST) [14] and illustrated in Fig. 2b: (G1)
Dock at a table (G2) Turn in place for orientation correction (G3) Doorway traversal
(G4) Wide left turn and (G5) Tight right turn.

The goals are located such that the distance traversed from the center of the room
to each of the five goal positions is equal. Achieving the above goals requires careful
maneuvering around obstacles and controlling the linear and angular velocity of the
robot’s trajectory.

As seen in Fig. 2a, blue tape lines on the floor mark the goals. In order for the
goal to be considered as successful, the wheelchair frame needs to fully cross the

3We have the subjects stand at a static operator station, instead of riding the wheelchair, in order to
allow for the assessment of subject attention using an established distraction task [12] that is well-
studied within the human factors literature. This task requires the subject to monitor a screen and
interact with a keyboard, which was an overly cumbersome setup to have onboard the wheelchair.
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Fig. 3 Distraction Task

blue line. The operator is located at the operator station and has full visibility of the
wheelchair for all five goals.

Distraction Task. Tomeasure and evaluate the operator’s cognitive workload and
strategic behavior, we include a distraction task in the experiments. Distraction tasks
such as this are commonly employed in psychophysiological studies.

We use the U.S. Air ForceMulti-Attribute Task Battery (USAF_MATB) software
developed and distributed publicly by the U.S. Air Force Research Laboratory [12]
andwell-studied throughout the human factors literature. For this study, the “Gauges”
subtask from System Monitoring is selected (Fig. 3). In normal operating behavior,
the yellow gauge indicator fluctuates within one tick of the center gauge. A mal-
functioning gauge goes beyond this normal operating range. The user’s task is to
monitor the gauges and send a correcting signal when a gauge has malfunctioned
by pressing the corresponding key (i.e. F1, F2, F3 or F4). The speed of the gauges
and the rate of malfunction are tunable.4 All other adjustable parameters were kept
at default settings.

3.4 Procedure

The experimental protocol and consent form was approved by Northwestern’s Insti-
tutional Review Board (IRB). The full session lasted for approximately two hours.

Participants. Nine consenting able-bodied adults (age range: 21–28) participated
in the experiments. The subjects included those with varying levels of skill and
experience with robotic devices: from no experience to regular usage.

4For this study, we use the following System Monitoring Subtask Basic Parameters: (a) Gauge
Speed Lower Limit = 2, (b) Gauge Speed Upper Limit = 4, (c) Correct Fault Identification Pause
= 10 and (d) Gauge Malfunction Timeout = 10. We use the keyboard as the only input option.
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Protocol. The participants were introduced to the mobile robot and given an
overview of the experiment and the wheelchair tasks. Theywere shown each task and
given complete instructions on what constituted a completed goal. Then they were
introduced to the distraction task. They were instructed on the normal operating
behavior of the gauge and what was considered a malfunction. They were shown
how to respond appropriately and given time to practice monitoring and operating
the distraction task. It was stressed to the users that they should treat both wheelchair
and distraction tasks with equal importance. The session began after the participant
became familiar with each task and the nature of the experiment. Theywere informed
that their control input may be randomly varied, but they were not given the details
about what features of the signal would be varied or how.

Each session consisted of three sections corresponding to the three control levels:
CL ,CM , andCH . For each of three control levels, 30 trials were performed, covering
all 10 combinations of modulation type-level (3 modulation types × 3 modulation
levels + 1 clean run) with 3 tasks executed per combination. (Which 3 tasks were
randomly assigned and balanced, such that across subjects each combination was
performed the same number of times for each task, and within a given subject across
all combinations each task was performed the same number of times.) The order of
the control levels, modulations and modulation levels was randomized and balanced
across participants in order to minimize bias due to fatigue.

Each section of the experiment consisted of two phases: (1) an instruction phase
and (2) a test phase. In the instruction phase, the participant was shown how to use
the control level for the current section of the experiment and allowed time to become
familiar with its operation. This time varied for each participant. After the participant
was comfortable, the 30 trials of the test phase began. For each trial, the subjects
were given their next goal after the completion of the current one. Subjects were not
aware of which modulation setting was applied to their control signals. For safety,
collision avoidance remained on at all times.

Metrics. In accordance with the literature on assistive and mobile robotics, we
chose two metrics:

1. Performance: Calculated as the time from task initiation until the goal was
reached. This metric is important for scenarios where the objective is to opti-
mize time, for example crossing a busy road in a timely manner.

2. Safety: Calculated as the average distance from the closest obstacle to the robot
at each time-step of the task execution. This metric is useful when physical safety
is a priority; for example, operation in a crowd where the user and those around
them are safer the farther the wheelchair is from any person or object.

4 Experiment Results

This section highlights key results from our pilot experiment for each metric. Statis-
tical analysis is performed using analysis of variance (ANOVA) where group labels
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are either modulation level or shared-control paradigm. If statistical significance is
found (p < 0.05), a pairwise t-test is performed and results are indicated in Figs. 4,
5 and 6. For all plots, * denotes p < 0.05, ** p < 0.01 and *** p < 0.001.

Dropped Signals. Looking at performance for control level CL , we notice that
dropping the signal significantly alters a user’s ability to complete a task within a
reasonable time frame, shown in Fig. 4a. Namely, a statistically significant differ-
ence in task time is found between the low and high modulation levels (p < 0.05).
Figure4b shows that safety is also significantly compromised with a dropped signal
(p < 0.05).

Conversely, dropped signals do not appear to significantly affect control levels
CM and CH . This suggests that when the signal is degraded by drop, the autonomy
should switch away from CL since both safety and performance are compromised.
The results further suggest that an appropriate threshold, above which the amount
of dropped signal is considered too damaging for CL , should be set between the low
and moderate modulation levels.

Channel Frequency. The results of lowered channel frequency suggest some
trade-offs between safety and performance. Figure 5a indicates CL provides the best
task time performance across all modulation levels, and significantly so for highly
delayed signals (p < 0.05). However, Fig. 5b shows that CM is safer as users tend
to operate farther from obstacles, significantly so at moderate modulation levels
(p < 0.01).

Signal Noise. Signals degraded by noise can play a role in the safe operation of
the robot. Safety is more compromised across all noise levels in CH compared to
both CL and CM . While this difference is not statistically significant, it likely would
have practical implications. On average, the robot moves 3.6 cm closer to obstacles
when operating under CH with noise at all levels, as shown in Fig. 6b. For context,
the ADA requires doorways to be only 11 cm wider than our Permobil wheelchair,
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so 3.6 cm can be significant. Somewhat surprisingly, noise otherwise appears to have
little effect on performance or safety for control levels CL and CM .

Distraction Task. The results of ANOVA on the distraction task performance
do not indicate any statistical significance across control levels or modulation levels.
Across all paradigms, the percent correct gauge responses of triggered faults is 62.0%
± 26.4%.
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5 Signal Degradation Detection

The results of the experiment suggest that the signal quality influences both the
performance and safety of the user differently in each control level. In real-world
scenarios, operating in a degraded state could lead to a mission-critical failure or
compromise the safety of a patient. Thus, it is important to allocate control and
autonomyappropriately in real-time. Thefirst step is to detect the quality of the signal.
This section outlines the use of specific machine learning techniques to classify the
state of the signal’s degradation.

When in CL or CM the robot receives from the user only motion commands. In
CH , the robot receives only a goal. If the communication channel has degraded at
all, the robot would need to detect the channel quality using only this information.

We choose a recursive neural network (RNN) structure using long short-term
memory cells (LSTM) that classifies the user’s commands over a set time period as
either clean, noisy, dropped or lowered transmission frequency. The RNN LSTM is
chosen because of its ability to retain information about the previous state or input.
Moreover, results in speech processing show that a bidirectional LSTM (BLSTM)
structure which shares information about future states, improves the classification
rate [6]. We test both in our analysis (since there is additional computational com-
plexity associated with the BLSTM). In our implementation, a snapshot of the signal
from the human—continuous velocity commands, discrete motion commands or
goal positions, depending on the control level—for a designated number of samples
is the input to the RNN, which outputs a classification of the signal’s state.

To obtain unbiased results, we use three-fold cross validation where, in each fold,
6 subjects (randomly balanced) are used to train and the 3 remaining subjects to
test. The reported accuracy in Table1 is the average of the three models from the
cross validation. The data is split into samples of 30 consecutive points in time and
then randomized for both training and testing. We also ensure the data is split using
approximately equal amounts of all classes. The algorithm used for training is Adam
[10] with a maximum of 200 epochs. This process is repeated for each control level.
Since the signal type is different for each control level and robot will always know
its current control level, it is necessary and reasonable to train separate networks.

When operating under CL , it is critical to determine when the signal is drop-
ping because of the significant decrease in safety and increase in average task time.
In Table1, both the unidirectional and bidirectional LSTM achieve a classification
accuracy between 70 and 80% when classifying all 4 possible signal states.

The results, however, indicate that primary source of error is false positives be-
tween the clean and lowered transmission frequency samples—the network could
not differentiate reliably between the two. Since for CL lowered transmission fre-
quency does not appear to affect performance or safety (Fig. 5), both transmission
frequency and clean modulations can be bundled into a single class, which increases
the accuracy to ∼90% for both models. This 10% error might further be reduced by
taking an ensemble approach or the mean over several time intervals rather than a
single 30 sample segment, for example.
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Table 1 Prediction accuracy results for single-layer 128-cell LSTM and BLSTM architectures

Architecture Classes Accuracy (%)

CL CM CH

LSTM 4 73.1 27.7 26.2

BLSTM 4 75.8 30.8 28.7

LSTM 3 89.8 46.8 47.7

BLSTM 3 89.8 46.7 52.5

When predicting degradation in control levels CM and CH , the network could not
accurately differentiate between the different signal degradation types. On average,
it achieved a classification accuracy of around 25% (where random performance is
also 25%). The user inputs are at a lower frequency in these two control levels, which
causes the data to be sparse and have long periods of time without a command. This
sparsity and time between commands is likely the primary issue with this approach.
Thus, other methods will need to be explored in the future to determine when the
signal has degraded when in control levels CM and CH .

In summary, we have developed a general model able to classify the signal of
users whose data has not yet been observed, which performs well under low-level
shared-control paradigms. Also, we see that the bidirectional model does not provide
much improvement in the 3-class formulation. Therefore, if computational power is
a limiting factor, the unidirectional model provides comparable results.

6 Insights for a Dynamic Autonomy Allocation Framework

In human-robot teams, mobile in particular, signal quality and human attention,
awareness and workload changes constantly. Thus, it is vital that the robot can detect
when the user is hindered or if the autonomy cannot succeed in performing the desired
task.With this knowledge, control can be allocated in real-time to either the human or
robot, or somemix of the two. Knowing that the prediction of signal degradation type
is feasible for a low-level control command, we will use the results of the experiment
to provide insight into when and how autonomy should be allocated for use in a
dynamic autonomy allocation framework.

When the communication channel is dropping signals, the human-robot team
should shift away from a low-level shared-control paradigm. In the low-level
paradigm, the operator can continuously correct their commands to adjust the robot’s
behavior. The more often the signal is dropped, the less often the user can correct
the behavior of the robot, leading to both performance and safety decreases (Fig. 4).
Based on our results, the autonomy should shift when the dropped rate surpasses a
threshold between the low and moderate modulation amounts.
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A reduction in transmission frequency requires the design to prioritize either
safety or performance. Our results show that low-level control provides the best
performancewhen the channel frequencydrops a lot to the highmodulation frequency
level. Conversely, safety is significantly improved by operating at moderate levels
in a mid-level shared-control paradigm. If a reduced channel frequency is detected
and the level is known, the autonomy can shift between CM and CL . If the level is
unknown, the designer will need to prioritize safety or performance to decide which
paradigm to use.

The autonomy should shift from high-level control when the communication
channel is noisy. Lack of continuous correction may also have impacted the safety
in the high-level shared-control paradigms when afflicted by a noisy communication
channel. Here, the user provides only a goal for the mobile robot, and noise may
place the goal closer to an obstacle. Moreover, we found that noise did not affect
performance or safety in CL (despite many subjects expressing a less enjoyable
experience). Thus, if avoiding hazards is a critical component of the function of
the robot, detecting noise and moving to a paradigm that allows for more operator
correction may prove helpful.

7 Conclusion

The experimental results demonstrate the need for a framework that can dynami-
cally allocate autonomy between the user and robot to optimize both performance
and safety. Based on an analysis of the data, some control levels are explicitly better
than others under certain degraded states of the communication channel between the
human and the robot.We hypothesize that the rate at which a user can send corrective
signals—which is dictated by the specific shared-control paradigm—explains these
findings. Additionally, the experimental results suggest that a designer may need to
choose between safety and performance when the transmission frequency is lowered.
The results provide insight that can inform the design of a framework to dynami-
cally adjust the control level when the quality of the signal changes in real-time.
The first step in the design of such framework is to identify the degradation state of
the signal. When in lower-level control, RNN LSTMs can reliably predict the state
of the communication channel. However, more work is needed for classifying the
signal in the other shared-control paradigms. This work lays the foundation for a
framework that will be able to optimize the safety and performance of patients using
assistive devices as well as human mobile robot teams.
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LEAF: Using Semantic Based Experience
to Prevent Task Failures

Nathan Ramoly, Hela Sfar, Amel Bouzeghoub and Beatrice Finance

Abstract Using service robots at home is becoming more and more popular in
order to help people in their life routine. Such robots are required to do various
tasks, from user notification to devices manipulation. However, in such complex
environments, robots sometimes fail to achieve one task. Failing is problematic as it
is unpleasant for the user and may cause critical situations. Therefore, understanding
and preventing failures is a challenging need. In this paper, we propose LEAF, an
experience based approach to prevent task failure. LEAF relies on both semantic
context knowledge through ontology and user validation, allowing LEAF to have
an accurate understanding of failures. It then uses this new knowledge to adapt a
Hierarchical Task Network (HTN) in order to prevent selecting tasks that have a high
risk of failure in the plan. LEAF was tested in the Hadaptic platform and evaluated
using a randomly generated dataset.

1 Introduction

Nowadays, we are facing an emergence of use of robots and smart homes. As there
is a growing need for domestic health-care, in particular for elderly people, service
robots provide a welcomed help. During their everyday routine, such robots perform
various tasks, from reminding the user to take his/hermedicine to using some devices.
However, in home environment, multiple problems can block the robots’ task plan.
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For example, it may encounter a breakdown or have to difficulty to properly under-
stand the context. In a nutshell, the robot is likely to encounter Failure Situations in
its plan.

Overcoming failures is a common problem in robotics. Most works tackle this
issue by reacting to it [8, 17]. In those cases, whenever the robot fails, it understands
the cause and tries to find an alternative solution by generating a new plan. However,
doing so is energy and time consuming [6] and it delays the reach of the goal. By
proactively avoiding a failure instead of reacting, the robot can be quicker and more
efficient to reach its goal, which is essential for domestic health-care application.
To do so, the robot has to understand the cause of the failure and adapt its planning
when it encounters them again. Some works have addressed this issue [9, 16], but the
constraints of the home environment induce more challenges. For such application,
it is essential to satisfy the user needs and to consider various and highly semantic
data.

In this paper, we propose a solution to learn failure causes, evaluate them and
prevent further failure called LEAF (Learning, Evaluating and Avoiding Failures).
LEAF aims to learn failures’ causes from previous encountered situations in order to
prevent repeating them in future plans. It uses reasoning on semantic based context
knowledge as well as a user validation to ensure the efficiency and accuracy of cause
identification. LEAF also adjusts the planning phase to generate failure-free plans.

The main contributions of the paper are as follows:

1. A semantic model to represent and store situations that enables reasoning and
interoperability with other systems.

2. A method to extract the causes of failures that includes the user in the loop to
guarantee the quality of causes identification.

3. An improvement of HTN planner that takes into account the detected causes and
to select safer sub-plans (i.e. avoiding task failures).

The remaining of the paper is divided as follows. Section2 illustrates our needs
through a scenario. Section3 reviews the related works and points out their limits.
Section4 presents definitions and notions required for the understanding of our work.
The contributions are described in Sect. 5, while the experiments are addressed in
Sect. 6. Finally Sect. 7 concludes the paper.

2 Motivating Scenario

In order to motivate our proposal, let us consider this scenario:
Scenario 1: Nono, a service robot, operates in the home of a user named Katleen.
Her house is equipped with various sensors, including motion sensors, microphones
and Katleen’s smart phone. One of the main role of Nono is to remind Katleen to
take her medicine. Based on a schedule, the robot decides when it must vocally alert
Katleen. Whenever it has to do so, it generates a plan to achieve this task. Nono
has two options to alert Katleen. Firstly, if it knows the location of Katleen, it can
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Table 1 History of task ‘vocal alert’

Sit. Status Start End Observed context data (failure causes are bold,
inferred data are italic)

S1 Failure 18/03/17
18:30:50

18/03/17
18:40:55

(katleen isLocatedIn livingroom), (katleen
isDoing music), (livingroom hasSoundLevel
5db), (nono hasVolumeLevel 30db)

S2 Failure 18/03/17
20:10:30

18/03/17
20:15:30

(katleen isLocatedIn livingroom), (katleen
isDoing tv), (livingroom hasSoundLevel 75db),
(nono hasVolumeLevel 30db), (katleen
vocUnreachTo nono)

S3 Success 19/03/17
10:30:50

19/03/17
10:34:15

(katleen isLocatedIn livingroom), (katleen
isDoing tv), (livingroom hasSoundLevel 40db),
(nono hasVolumeLevel 30db)

S4 Failure 19/03/17
11:00:50

19/03/17
11:03:55

(katleen isLocatedIn livingroom), (katleen
isDoing music), (livingroom hasSoundLevel
20db), (nono hasVolumeLevel 30db)

S5 Success 19/03/17
15:06:35

19/03/17
15:08:55

(katleen isLocatedIn bedroom), (katleen isDoing
reading), (livingroom hasSoundLevel 25db),
(nono hasVolumeLevel 30db)

S6 Failure 20/03/17
10:15:50

20/03/17
10:18:00

(katleen isLocatedIn livingroom), (katleen
isDoing phoning), (livingroom hasSoundLevel
65db), (nono hasVolumeLevel 30db), (katleen
vocUnreachTo nono)

go directly to her and talk to her. This is the prior solution as it is direct and has
impact on the user. Secondly, if it doesn’t know her location, it can send a message
to her phone. For both cases, the user is expected to provide an acknowledgement.
However, sometimes Nono tries but fails to vocally alert the user. This can be due
to various causes. Let us consider two examples of failure situations: (1) Katleen is
listening to music through her phone with headsets. Therefore, she may not hear the
voice of the robot; (2) the roommay be filled with noise, for example from television
or phone discussions. Hence, if the volume of the robot is set to a low value, Katleen
may not hear Nono. After executing several times the task ‘vocal alert’, Nono obtains
a history of situations for this task, represented in Table1.

The aim of this work is to prevent the failure situations. To achieve this, we aim to
identify causes, using history, in order to prevent task execution when failure causes
are observed again. In scenario 1, Nono shall be able to identify context data (katleen
isDoing music) (katleen vocUnreachTo nono) as failing causes for the task ‘vocal
alert’. Thus, if a situation S = (katleen isLocatedIn livingroom), (katleen isDoing
music), (livingroom hasSoundLevel 20db), (nono hasVolumeLevel 30db) occurs,
the robot would understand that the task ‘vocal alert’ is likely to fail, thus would opt
for the text message solution. By doing so, Nono avoids wasting time going to the
user and trying to alert Katleen.
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3 Related Work

Understanding and explaining plans and failures is an active research direction. In
this section, we discuss some of the works that are related to our proposition.

The work proposed by Hanheide et al. [8] aims to provide a global planning solu-
tion for robots operating in an open and uncertain environment, such as a smart home.
They address the issue of explaining task failure. To do so, they compare the actual
and expected context observations. The idea is to discoverwhat particular unexpected
data caused the failure of the task. To do so, the robot generates a dedicated plan and
relies on a diagnostic knowledge. Afterwards, the robot is able to make a new plan
that avoids the identified causes. Although this technique is able to adapt the plan by
understanding the missing elements, it does not learn from previous failures in order
to prevent the occurrence of future failures.

The proposition of Sariel and Kapotoglu [9, 16] shares similar objective from our
proposal. To the best of our knowledge, it is themainwork about learning causes from
previous experiences to prevent future failure. In this approach, based on previous
failed situations, the robot is able to determine failure causes and avoid using tasks
that are expected to fail. Todo so, the authors use InductiveLogicProgramming (ILP),
an experiential learning framework that builds an experience by deriving hypothesis
from failure situations. Context observations are stored and labeled as success or
failure. The hypotheses are then adjusted and associated with a probability. A low
probability implies there was a lot of ambiguity. With these hypotheses, the planning
process is adjusted to prevent future failing situations. This technique improves the
efficiency of planning for the object manipulation case study.

However, such a solution faces numerous issues. First, this solution relies on a
simple model that does not include any reasoning. Reasoning would allow to infer
further data from already acquired context data. For instance, in scenario 1, if the vol-
ume difference between the robot and the ambient noises is too low, the user can not
be vocally reached. Sariel’s solution however, does not consider ‘relations’ between
context data as possible failure. Secondly, depending on the situations available in
the history, this solution can be biased. For example, it may identify two context
data as cause while only one actually explains the failure. Lastly, by encountering
redundant, yet non related to failure, context data, the solution of Sariel et al. can
identify wrong causes of failure.

To overcome these limitations, we propose a system, named LEAF, to identify
failures. Firstly (i), LEAF relies on an ontological representation, that enables rea-
soning on context data. Furthermore (ii), it considers each context data independently
to prevent bias. In fact, by doing so, non related context data are not associated to
potential real cause, as it is in [9, 16]. Indeed, if a situation can be explained by
multiple context data, each of them is considered as a potential cause. Moreover, (iii)
it relies on user validation. By relying on user’s feedback, our solution ensures the
quality of the identification of the failure causes. Finally, (iv) it provides an adjust-
ment of the HTN planner to take into account the causes in the planning process. The
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overall proposition is detailed in Sect. 5. Additionally, the next section introduces
some background and definitions for a better understanding.

4 Background

4.1 Ontology

An ontology is generally defined as representation of a shared conceptualization of
a particular domain. It can easily be shared across people and application systems. It
relies on the Resource Description Framework (RDF) [11]. An ontology is described
through a set of RDF triples (subject, predicate, object). The set of all triples can be
seen as a graph where nodes are concepts or instances and vertices are predicates
among them. Using ontologies has multiple benefits, such as the inference of fur-
ther data. In our work, we use the ontology in order to model Context Data (CD,
Definition1), Situation (ST, Definition2), and Causes of Failure (CE, Definition3).

4.2 Definitions

In this section, we define the concepts required for comprehension of our work.

Definition 1 Context data (CD): a context data is a piece of information about
the environment provided by robots’ sensors, environment’s sensors (smart devices)
or a knowledge base. Formally, it is a 4-tuple (subject, predicate, object, t). subject
is an entity of the environment (i.e. user, robot or thing (physical object)), object is
a context data about the subject , predicate is the relation between the subject and
the object , and t is the timestamp of observation of this contextual data.

A CD is modeled as a RDF triple annotated with t . We distinguish two types of CD:
High level CD and Low level CD. Low level CD are numeric observables generated
from sensors; while high level CD are symbolic observables at the appropriate level
of abstraction to make sense.

Property 1 An activity is a high level CD where subject can be either a user or a
robot and predicate is equal to “isDoing”.

Example 1 In Table1, for S1, (katleen isDoing music) is a high level context data
obtained through a complex activity recognition process.While (katleen isLocatedIn
livingroom) is a low level context data given by, possibly, a single sensor.

Definition 2 Situation (ST): A situation is a set of CD that have occurred at a
given time interval. In this work, we are interested in the situation during one robot’s
task. A situation can be seen as a ‘snapshot’ of the state of the environment during
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one task. Formally, we define a situation as a 5-tuple ({CDi }, status, task, ts, te).
{CDi } is a set of context data captured during a time interval [ts, te]; task is the task
the robot was doing during this situation; status is the outcome of the execution of
the task, it is set to “null” when the situation is created and is set either to “success”
or “failure” after the task execution; ts is the start time of the execution of the task
and te is the end time of its execution. In the rest of the paper, we refer to situations as
either failure situation or success situation when their status are respectively equal
to failure or success.

Definition 3 Cause (C): A cause is a CD that fully or partially explains a failure
situation. Formally, we define a cause as a couple (CD, ST )whereCD is the context
data that causes the failure of the situation ST .

All observed situations are stored in an history H . We denote the history for one
task t as Ht . We denote all the causes of one task t as Ct . Each task relies on an
ontology Ot that includes both Ht and Ct .

Example 2 let us consider this situation: ({(katleen, isLocated In, ki tchen,

15 : 01 : 10), (katleen, isDoing,music, 15 : 3 : 44)}, Failure, Alert, 15:00:52,
15:03:00). This is a failure situation caused by the ‘music’ activity of the user.

4.3 Planner

In this work, we rely on the Hierarchical Task Network (HTN) planner. HTN aims
to find a solution to a planning problem by decomposing tasks into subtasks. HTN
relies on two types of tasks: primitive tasks and compound tasks. Compound tasks
are realized by subtasks, while primitive tasks are ‘ready-to-run’ non-decomposable
tasks. The result of the planning process is called solution, and is a totally ordered set
of primitive tasks. Amethod indicates how to decompose a compound task a sequence
of subtasks, primitive or compound, based on preconditions. HTNplanning consist in
selecting amethod for each compound task. The selection is perform by checking the
validity of method’s preconditions. For example in scenario 1, if Katleen’s location
is known, meaning there is a predicate (katleen isLocatedIn room), the robot can use
the ’vocal alert’ branch. For a more detailed overview and definition of HTN please
refer to dedicated works [5]. HTN was selected for various reasons. Firstly, it offers
good performance by having a reduced search space compared to other planners,
such as STRIPS-like solutions [3]. Moreover, it is a popular planner as it is used for
several applications [5, 14], particularly in robotics [10, 13, 15, 17]. Furthermore
By using HTN, LEAF has the possibility to be easily integrated with some of these
works.
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5 Proposition

In this section, each component of our contribution, LEAF, is presented. It relies on
three independent steps, depicted in Fig. 1, namely:

1. AcquiringSituations: The robot acquires situations and stores them in the history
whenever a task ends.

2. Extracting Failure Causes: Causes are extracted based on the history and vali-
dated by the user.

3. Enhancing Planner: The extracted causes are then taken into account to enhance
the planning process through an upgraded HTN.

5.1 Acquiring situations

The first step of our approach is to acquire the current situation. Whenever the
robot finishes a task t , it stores the corresponding situation in an ontology. This
ontology was designed from a previous work [1] and enhanced with new concepts
and relations, such as Activity. The observed CD are inserted in the ontology under
the Context Data concept. An exemplary representation of a subset of a situation
can be found in Fig. 2. The property of the Situation concept are also stored in the
ontology (not represented in Fig. 2)

Fig. 1 The architecture of LEAF
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Fig. 2 Ontological representation of a subset of S1

Once the situation is acquired, a rule based reasoning is applied to infer new
data. It is essential to have a complete understanding of the context. These rules are
provided by an expert. For example, let us consider situation S2 in Table1 where
(katleen vocUnreachTo nono) is inferred by applying the following rule using Jena’s
formalism1:

ruleVocUnreachable: (?user isLocatedIn ?room)∧ (?room hasSoundLevel ?sndLvl)
∧ (?robot hasVolumeLevel ?robotLvl) ∧ difference(?sndLvl ?robotLvel ?soundDiff)
∧ greaterThan(?soundDiff 25) → (?user vocUnreachTo ?robot)

This rule states that if a user is in a room that is too loud for the current speaking
volume of the robot, then the user cannot be reached vocally by the robot.

After applying these rules, more contextual data are generated. The enriched
situation is then stored in the history H .

5.2 Extracting Failing Causes

Whenever a task fails, the robot tries to identify the causes of the failure.
In our approach, based on the history of situations and the previous identified

causes, the robot identifies possible causes and asks for confirmation from the user.
Through the involvement of the user in the process, we aim to provide high quality
learning that is compliant with the user. The process of extracting the failing causes
is composed of three steps: (1) Selecting data to be validated by the user: the robot
selects context data (possible causes) that are to be validated by the user according to
to the robot’s current needs for the learning process. (2) Requesting user validation:
the robot requests the user to provide validation about the selection of context data.

1https://jena.apache.org/documentation/inference/.

https://jena.apache.org/documentation/inference/


LEAF: Using Semantic Based Experience to Prevent Task Failures 689

(3) Getting user feedback: the robot receives the user feedbacks and updates its
knowledge accordingly. The following subsections are reviewing each steps.

5.2.1 Selecting Context Data to Be Validated by the User

In order to build its experience, the robot requires user validation concerning possible
causes. Thefirst step is to identifywhat are the possible causes to be validated. In other
words, the objective is to extract some context data that may are possible causes of
the failure. This selection is important to quickly identify the causes without wasting
user’s validations. We consider that the robot should ask only a few validations from
the user in order not to disturb him/her. This selection of causes has two modes: cold
start and warm process. They are described below.
Cold start:
LEAF is subjected to the problem of cold start or cold boot. In fact, despite the
main process relying on the history and previously identified causes, it also needs a
procedure to start the learning process without any prior knowledge. Thus, the selec-
tion of context data to be validated is particular for the first encountered situations.
The cold start procedure is applied once a minimum number of failing situations
are encountered to a task t . In our experiments, we launched the procedure after 3
failure situations. The principle of the cold start procedure is to compute a ‘causality’
score for each context data based on its occurrence in the situations belonging to the
history of the task. For one given context data cd, the ‘causality’ score scorecd is
computed as expressed in Eq.1.

Let Ssucccd be the set of all successful situations in the history Ht that contains the
context data cd: Ssucccd ⊂ Ht ,∀S∈ Ssucccd where cd ∈ S. Let S f ailcd be the set of
all failure situations in Ht : S f ailcd ⊂ Ht , ∀ S∈ S f ailcd where cd ∈ S. Consequently,
| Ssucccd | and | S f ailcd | are respectively the number of success situations and the
number of failure situations containing the cd, and | S f ailcd + Ssucccd | is the total
number of situations in Ht containing cd. Finally, the scorecd is computed as follows:

scorecd = (| S f ailcd | − | Ssucccd |)/(| S f ailcd + Ssucccd |) (1)

For example, let us suppose that the robot has just encountered the situation S4 in
Table1 and has previously encountered S1, S2 and S3. The context data cd1 = (katleen
isLocatedIn livingroom), by applying Eq.1, will have the causality score: scorecd1 =
(3 − 1)/(3 + 1) = 0.5, since there was 3 failure situations and 1 success situation.
On the other hand, the piece of context data cd2 = (katleen isDoing music), which
is a failure cause for the current situation, will have a causality score: scorecd2 =
(2 − 0)/(2 + 0) = 1. The context data with the highest causality scores are then
selected to be checked by the user. In the previous example, cd2 would be selected
over cd1 for validation.
Warm process:
Once the cold start procedure is executed, the robot has some initial experience and
can use the new knowledge to identify new causes. Whenever the robot is facing a
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failure situation, it has two options for selecting context data to be validated as a cause
by the user: either already identified causes or not registered context data that may be
novel causes. The first option consolidates its knowledge while the other allows to
explore new possible causes. It important to remember that the number of validations
performed by the user is limited. Therefore, this process can be described as amulti-
armed bandit problem [12]. Multi-armed bandit solvers aim to maximize reward
by efficiently choosing between exploration, i.e. using resources to explore new
possibilities of gain, or exploitation, i.e. ensure gain by using resources from reliable
sources. In our case of study, checking an already encountered cause corresponds
to the exploitation phase, while checking a new possible cause corresponds to the
exploration.

Our proposition is to use a multi-armed bandit approach to select the cause to be
asked to the user. The selection of the strategy to choose depends on the context.
In fact, if the robot is used to succeed the execution of a particular task and it fails
to achieve this task for the first time, this means that probably there is a new cause
of failure. Hence, the robot should prioritize exploration of a new cause. On the
other hand, if the robot fails multiple times in a row, it implies the robot’s current
knowledge of causes is not accurate, hence the robot should focus on adjusting its
knowledge and exploit.

In this work, we are using a variation of R-UCB [2], that is an improvement of
the Upper Confidence Bound (UCB) algorithm [4]. UCB is a well known solution
for tackling multi-armed bandit problems. It allows to select the context data with
the higher upper confidence bound when exploiting. In other words, when the robot
observes multiple causes, it selects the most relevant one by applying the following
formula described in Eq.4. In UCB, the selection between exploration and exploita-
tion is performed randomly by following a fixed rate. R-UCB improves the UCB by
adapting the exploration/exploitation rate according to the current ‘risk’. In R-UCB,
the selection rate ε is dynamic and depends on the risk: the higher the risk is, the less
the exploration is performed. In this work, we use the notion of reliability instead of
the risk. The more the robot has previously failed, the lower the reliability is. If the
reliability is low, more exploitation is required as the current knowledge of cause is
not good enough to prevent failure. LEAF uses the Eq.2 for computing ε:

ε = εmax − (1 − R) ∗ (εmax − εmin) (2)

where R is the reliability that represents the success rate of a task t over the past N
situations. R is computed through Eq.3:

R = nbr SuccN/N (3)

where nbr SuccN is the number of successful situations in the past N situations in
Ht . For instance, for N = 4, with the Ht presented in Table1, thus considering S6,
S5, S4 and S3, we obtain R = 2/4 = 0.5. By using this process, LEAF is able to
efficiently balance exploration and exploitation.When exploring, a random context
data in the situation, that was not previously identified as a cause, is selected.When
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exploiting, the R-UCB algorithm selects the context data with the highest upper
confidence bound dcd . dcd represents the confidence in the selection of cd according
to its current CB, its occurrence and the number of feedback already provided by the
user. A high dcd means cd needs to be check in priority. It is computed as follows:

dcd = CBcd ∗ √
log(Ft)/Ncd (4)

where CBcd is the current causality belief of context data cd (see Sect. 5.3.3 for
belief computation), F is the number of failure situations for the current task t ,
and Ncd is the number of feedback provided by the user for causality of context
data cd (for task t). For instance, let us consider that the robot is in the situation
S12 =(katleen isLocatedIn livingroom), (katleen isDoing music) with the history Ht

presented in Table1 and cd = (katleen isLocatedIn livingroom); let us assume the
user provided feedback eight times for cd, Ncd = 8, and that the resulting causality
belief is CBcd = 0.75, in that case: dcd = 0.75 ∗ √

log(4)/8 = 0.21. The context
data cd with the highest dcd are the best candidate to be user checked.

5.2.2 Getting User Feedback

Once LEAF has determined what are the context data that require user validation
about their causality, it requests feedbacks from the user. We consider five different
user’s answers ordered by confidence: {‘Yes’, ‘Probably’, ‘Partially’, ‘Possibly’,
‘No’}; each is respectively associated to a belief value: {1.0, 0.75, 0.5, 0.25, 0.0}.
Based on these feedbacks, the asked context data is associated to a causality belief
CB and stored in a knowledge base. This causality belief is set as follows: Let B
be the belief value from the user’s answer. If the context data is new and does not
have causality belief CBcd yet, its causality belief is set to B. If the context data was
already identified as a cause and has a causality belief, the latter is updated using
Eq.5:

newCB = (oldCB ∗ N + B)/(N + 1) (5)

where newCB is the adapted causality belief of the context data and N is the number
of previous user answers for this context data (for task t). Let us suppose that the robot
asks the user for validation about the context data cda=(katleen isDoing music) after
the failure of the situation S4. The user answers ‘Probably’, cda was not identified
as a cause yet, thus CBcda = 0.75 (cold start process starts after at least 2 failures).
Now, let us suppose that the robot has encountered a similar situation some time
later. However, this time the user is more confident and answers ‘Yes’. Hence, the
causality belief of cda is updated as CBcda = (0.75 ∗ 1 + 1)/(1 + 1) = 0.875.

After analyzing user’s answers, the robot has identified causes and associated each
one with a causality belief. These beliefs are used in the extracted belief, where they
can be seen as ‘rewards’. In addition, they are used to adapt the planning process in
order to prevent further failures.
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5.3 Checking Current Context

Once the causes are identified and associated to a causality belief, they are used in the
planning process—HTN in our case. The objective is to take into account these causes
in the planning process: if failure causes for a task t are observed, then t should be
avoided in the plan. To do so, HTNwas enhanced with an altered planning processes.
Indeed, whenever HTN is decomposing, it not only checks the preconditions, but also
the failing of subtasks. When a method has to be selected for a compound task ct in
the planning phase, the following process is executed. We denote Mct the set of all
method realizing ct .

The first step of the process is to merge failure causes Cti of all subtasks ti of
method m. The merging is quite simple: all the identified causes of subtasks ti ∈ m
are extracted from Oti and put in a setCm that carries all failure causes of the method
m. If a context data is a failure cause for multiple tasks in m, the maximum CB is
selected. Please note that compound methods are not taken into account: they are
tackled when the planning algorithm decomposes them. For example, regarding the
task ‘alert’, the robot has two methods:m1 = go to user, vocal alert andm2 = phone
alert. The robot has the history presented in Table1, through the cause extraction
process, for task ‘vocal alert’. Two causes were identified: cda = (katleen isDoing
listeningMusic) and cdb =(katleen vocUnreachTo nono) with CBcda = 0.875 and
CBcdb = 1.0. Thus, in that case Cm1 contains cda and cdb.

Once Cm are generated for each possible method m in Mct , methods’ conditions
are checked. Methods whom conditions are not verified are excluded, the remaining
set is labeled M∗

ct . The remaining methods’ failure causes are then checked. The idea
is to check if the method would succeed in the current context. Let W be the current
context (world). And let Cobs the set of currently observed causes Cobs = W ∩ Cm .
Let A be a constant. For each method m ∈ M∗

ct , a confidence value is computed
through a following logistic differential presented in Eq.6:

con fm = 1 − 1/(1 + e−ln(A∗∑
cd∈Cobs CBcd )) (6)

Equation6 allows to compute a [0, 1] confidence value based on any number of
causality belief. With a sum of causality belief of 0, the function return 1, mean-
ing the task can be safely executed. The confidence then quickly decrease as the
sum of causality belief increases and has an asymptote at 0. Thanks to this func-
tion, one cause with a high causality belief is enough to compute a low confi-
dence, thus preventing execution. The more the causality is high, the lower the
confidence is, this enables the comparison of tasks’ confidences. For example,
if the robot is trying to generate a plan in situation S13 = (katleen isLocatedIn
livingroom), (katleen isDoing music), for A = 0.75 confidence value of m1 is:
con fm1 = 1 − 1/(1 + e−ln(1∗0.875)) = 0.6. In situation S14 (katleen isLocatedIn liv-
ingroom), (katleen isDoing music), (katleen vocUnreachTo nono), where two
causes are observed, thus the task is more unlikely to succeed, for A = 0.75 confi-
dence value of m1 is: con fm1 = 1 − 1/(1 + e−ln(1∗(0.875+1.0))) = 0.41.
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Having the confidence values for each computed method in M∗
ct , the method

with the highest confidence value is selected for decomposition. Within the standard
HTN, the first method matching the conditions would have been selected. However,
a final checking is done before decomposing. In fact, if the confidence value is below
25%, meaning there is 75% of chance the robot won’t succeed, the decomposition
is aborted. As all other methods are less reliable, the compound task ct is marked
to be non-executable. Thus, HTN will backtrack and try to find another option. If a
method is successfully selected, HTN can continue its process. In the end, a plan is
generated and HTN has checked the possibilities of failures, minimizing the risk of
encountering a failing situation.

6 Experiments

6.1 Implementation

LEAF has been implemented in Java and relies on Jena2 to manage ontologies and
reasoning. The core code of LEAF is available on github.3 The implementation is
independent from any robots and/or smart environment and holds to the description
in Sect. 5. Nevertheless, we integrated LEAF on a Nao robot [7] using ROS (Robot
Operating System) Indigo.4 Nao is a small robot that is able to walk, identify persons
and talk with users. It gathered user validation through vocal interaction thanks to
the NaoQi API. The robot was equipped with a DHTN [15] planner. As a proof of
concept, we tested our scenario in the Hadaptic5 platform, that includes a modular
room and various sensors. Videos can be found online6 (Fig. 3).

6.2 Evaluation

In order to evaluate LEAF learning capabilities, it was applied on a randomly gener-
ated dataset. The principle of these evaluations is to simulate various situations and
evaluate how LEAF is able to learn the causes and prevent failure situations. The
evaluation process is the following. First, a situation is generated and associated with
the expected results of tasks’ execution. LEAF is then asked to check if a given task
will fail or not in this situation. LEAF’s answer is compared to the expected result:
if it is correct, the situation is tagged as successful; otherwise, the situation is tagged

2https://jena.apache.org/.
3https://github.com/Nath-R/LEAF.
4http://wiki.ros.org/indigo.
5http://hadaptic.telecom-sudparis.eu.
6http://nara.wp.tem-tsp.eu/what-is-my-work-about/leaf/.

https://jena.apache.org/
https://github.com/Nath-R/LEAF
http://wiki.ros.org/indigo
http://hadaptic.telecom-sudparis.eu
http://nara.wp.tem-tsp.eu/what-is-my-work-about/leaf/
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as failure and LEAF starts the learning process: it determines possible causes to be
validated by the user and gets the feedbacks from a virtual user (no human in the
simulation process). The process is then repeated on a new situation. The situation
generation process consists in feeding the live situation with random, yet controlled,
context data such as user’s location, object position or user’s activity. In our experi-
ments, we considered the Scenario 1 and Scenario 3 possible failure causes. We also
created 2 ontological rules, further could have been created, but would have been
irrelevant in these experiments. One evaluation run is composed of 100 generated
situations. For each step, the correctness is computed as the number of true posi-
tive and true negative answers based on the total number of answers. There was 20
runs conducted (for each variant, see below) and the average results are presented in
Fig. 4. Experiments are divided in two parts: (a) comparing LEAF to the literature,
(b) Evaluating RUCB contribution.

LEAF was compared to a state-of-the-art like approach in Fig. 4a. We used an
implication based approach similar to the one proposed by Sariel et al. [9, 16]. It
infers implication between data and task’s outcomes based on previous encountered
situations without the user being in the loop. Results show that the state-of-the-art
approach learns quicker and reach its asymptote after 10 situations with a correct-
ness of 75%. In the meantime, LEAF achieves only 50% of correctness for the

Fig. 3 Picture of the
realized tests
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Fig. 4 Correctness of task’s
risk evaluation according to
the number of situations
encountered. a Comparison
to literature: LEAF versus
implication based approach.
b Comparison for CD
validation: LEAF (RUCB)
versus randomly selected
cause

same amount of learning data. Although LEAF is slower to learn, it reaches a bet-
ter correctness after 22 situations and reaches its asymptote after 40 situations with
a correctness of 95%. Such a difference can be explained by the validation phase.
In fact, it needs to have enough user feedbacks in order to reach efficient results. In
these evaluations, three validations were asked per failing situation. This explains the
slow increase compared to the implication based approaches. Nevertheless, by asking
the user, LEAF reaches extremely precise results: when trained, LEAF outclassed
the state-of-the-art approach by almost 20%. In fact, the implication based learning
process suffers of all the limits described in Sect. 3. These experiments underline that
LEAF is efficient once trained, but needs to be improved in order to learn quicker.
Using a higher number of user validations when the robot is not experienced is a
possible way to solve this shortcoming.

Determining what to ask to the user is essential for the efficiency of LEAF. Partic-
ularly, LEAF selects between exploration and exploitation, in other word, exploring
new causes or improving already identified ones. RUCB (used by LEAF) was com-
pared to a random data selection. Results presented in Fig. 4b show that RUCB allows
for a quicker learning in comparison a randomly selected data: it is 10%more correct
between 4 and 16 situations. After 20 situations, the two approaches obtain similar
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correctness and, as expected, have the same asymptote around 95% (when experi-
enced, both approaches are similar). RUCB efficiently selects the causes to validate,
thus it learns quicker than the random based approach as it does not ‘waste’ questions
to user. It proves RUCB to be pertinent to reach decent correctness faster.

7 Conclusion

In this paper, we presented a novel approach to prevent encountering failure situ-
ations and thus enhancing the efficiency of domestic robots. Our solution is based
on a live learning process that analyses the failures. We described how failing situa-
tions were modeled and how failing causes were extracted using user validation. We
enhanced HTN by enabling it to check failing risk when decomposing, ensuring sub-
tasks success when executed. Furthermore, we implemented and tested our approach
with a Nao robot and the Hadaptic smart platform. Results underline the validity of
our contribution, however further experimentations in real case scenarios using the
Evident7 platform, a fully equipped smart apartment, are to ought be performed.
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State Estimation and Localization
for ROV-Based Reactor Pressure Vessel
Inspection

Timothy E. Lee and Nathan Michael

Abstract A vision-based extended Kalman filter is proposed to estimate the state of
a remotely operated vehicle (ROV) used for inspection of a nuclear reactor pressure
vessel. The state estimation framework employs an overhead, pan-tilt-zoom (PTZ)
camera as the primary sensing modality. In addition to the camera state, a map of
the nuclear reactor vessel is also estimated from a prior. We conduct experiments to
validate the framework in terms of accuracy and robustness to environmental image
degradation due to speckling and color attenuation. Subscale mockup experiments
highlight estimate consistency as compared to ground truth despite visually degraded
operating conditions. Full-scale platform experiments are conducted using the actual
inspection system in a dry setting. In this case, the ROV achieves a lower state uncer-
tainty as compared to subscale mockup evaluation. For both subscale and full-scale
experiments, the state uncertainty was robust to environmental image degradation
effects.

1 Introduction

We propose a vision-based state estimation and localization framework to enable
submersible robots to conduct inspection of nuclear reactor pressure vessels. The
framework is formulated as an extended Kalman filter (EKF) that is robust to sensor
degradation and image corruption that may occur due to environmental effects, such
as radiation and color attenuation. The proposed framework relies on a pan-tilt-zoom
(PTZ) camera, fixedwith respect to the vessel frame, that is autonomously controlled.
To model the reactor vessel, we propose the use of a sparse map that concisely
represents the vessel geometry as a series of planes and landmarks. The map is
assumed to be known in advance with limited uncertainty arising from differences
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Fig. 1 This submersible
robot is used to inspect
reactor pressure vessels.
Note the planar structure of
the vessel and the geometric
features located on the walls
and floor. The robot is
equipped with three red
fiducial markers that are used
for pose estimation. A tether
is used to transmit robot
control signals from the
control station

between engineering blueprints and construction. The map is estimated in the state
to enable corrections based on projections of vessel landmarks (points and lines) in
the camera image space.

A submersible robot that is used to inspect a nuclear reactor pressure vessel is
shown in Fig. 1. The robot and vessel are monitored by an external PTZ camera,
which is the primary sensing modality of the framework. The key advantage of using
this camera is its zoom capability. High optical resolution images of the scene are
still obtained via zoom despite the camera being positioned relatively farther from
the reactor, which mitigates the adverse effects of radiation. Indeed, the existence
of radiation in this environment restricts the use of other sensors for the framework.
Significant radiation exposure excludes the use of localization sensors with sensitive
electronics, such as inertial measurement units or depth sensors. Indeed, radiation-
sensitive electronics can degrade and fail with exposure of a few krad [21], which is
below the expected exposure dosage in this setting. The underwater setting excludes
the use ofGPS, andwater attenuation excludes sensingdepth usingprojective infrared
light without the use of an external light source [25]. However, the underwater setting
lacks turbidity, so vision-based perception is viable.

The use of vision for underwater robots has been studied both in laboratory exper-
iments and in deployed field robots. Although submersible robots can utilize a range
of sensing modalities [15], radiation exposure from the nuclear reactor restricts us to
considering systems where vision is the primary sensing modality. A visual SLAM
formulationwith pose-graph optimizationwas utilized to construct a texture-mapped,
three-dimensional model of a ship hull for inspection purposes [14]. An EKF state
estimation formulation that includes vision and inertial measurements was found to
be successful in underwater navigation of a submersible robot [22]. Another study
demonstrated a localization solution for a AUV using acoustic sensors and visual
odometry [7]. Our use of structural landmarks is similar to previous work in local-
izing an underwater robot in a structured environment using only visual perception
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(an onboard camera) [4], but our study differs in that robot localization is achieved
through a fixed, external camera.

Deployed field inspection robots that utilize vision have conducted subsurface
bridge inspection [19] and shiphull inspection [11],with sonar imaging as theprimary
inspection modality in these cases. In the domain of nuclear reactor inspection, the
use of cameras and robotics for inspection has been studied [18, 20]. A previous
study estimated the x- and y-position and yaw angle of a submersible robot within
a reactor vessel by observing eight LEDs located on the vehicle with an external
camera (primarily using a depth sensor for the z-position) [5]; our work differs by
estimating both the robot and camera pose with six degrees of freedom.

Regarding PTZ cameras, we note that the movement of a small unmanned system
with a pan-tilt camera has been estimated using an EKF [8]. This study estimates the
projection of the system in the camera image space, not in three dimensions as our
framework does. Jain and Neumann [12] employ an EKF to estimate the pose and
focal length of a PTZ camera.

2 System Overview

The robotic inspection system consists of a submerged PTZ camera that monitors a
ROV operating in a reactor pressure vessel. The robot is equipped with three fiducial
markers. Figure2 illustrates the system and depicts three distinct reference frames:

1. the body frame {B}, located at the robot center of mass;
2. the external camera frame {E}, located at the optical center of the camera; and
3. the inertial world frame {W}, which is the reference frame for the vessel map.

Fig. 2 System representation and landmarks: (left) in three dimensions; (right) in the two dimen-
sional image space of the external camera. The intersections of vessel planesπi andπ j yield Plücker
lines that project as lines �i j . Similarly, three-dimensional points P i project to two-dimensional
points pi in the image space
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Fig. 3 The system diagram of the state estimation framework

The robot pose, camera pose, and camera focal length are estimated using an EKF.
To account for uncertainties in the vessel geometry, the map representation of the
vessel is also estimated in the state. The resulting framework is shown in Fig. 3.

The remainder of this section will address system models and methods: the exter-
nal camera (Sect. 2.1), the submersible robot (Sect. 2.2), the map representation of
the vessel (Sect. 2.3), a method for camera rotation inference via homography-based
image registration (Sect. 2.4), and a method for incorporation of landmark projec-
tions into the sparse map (Sect. 2.5). The EKF formulation detailed in Sect. 3 will
leverage these models and methods to enable ROV state estimation.

2.1 External PTZ Camera

APTZ camera is utilized tomonitor the robot and vessel during infrastructure inspec-
tion and is mounted to the vessel, external to the robot. The camera is controlled via
visual servoing such that the robot is always in view with reasonable magnification.
The PTZ images are used for inference of camera rotation (Sect. 2.4), camera-to-
robot localization (Sect. 2.2), and camera-to-world localization using projections of
structural landmarks in the image space (Sect. 2.5). We assume pinhole projection
as the underlying camera model that relates a three-dimensional point in homoge-
neous coordinates ˜P ∼ [ PT, 1 ]T to its image projection in homogeneous coordi-
nates p̃ ∼ [ pT, 1 ]T, where R and t represent the transformation from the point frame
to the camera frame:

p̃ ∼ K [ R | t ]˜P (1)
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K =
⎡

⎣

fx 0 cx
0 fy cy
0 0 1

⎤

⎦ (2)

2.2 Submersible Robot and Fiducial Markers

The submersible robot (Fig. 1) is equipped with three fiducial markers to enable pose
estimation from the marker projections in the camera image space. These projec-
tions (mi = [ ui , vi ]T, i = {1, 2, 3}) provide corrections between the external cam-
era and the robot frames. The markers are detected using the K-means clustering
algorithm [1] and assigned based on the estimated robot pose.

The position of the markers (Mb
i ) with respect to the body frame {B} is static

and known from robot measurements. The marker positions provide the visual scale
that is necessary to infer the three-dimensional pose of the robot from the marker
projections. These projections arise in the external camera image space as follows:

m̃i ∼ K [ Re
w | tew ] Tw

b
˜M

b
i (3)

In thismodel, Tw
b is the rigid body transformationmatrix that relates points expressed

in the body frame to the world frame, calculated from the robot pose estimate
(pwb , q̄

w
b ). Similarly, the extrinsic calibration matrix [ Re

w | tew ] is determined from
the pose estimate of the external camera (pwe , q̄

w
e ).

2.3 Sparse Map from Structural Elements

As shown in Fig. 1, the characteristic geometric appearance of the reactor pressure
vessel structure can be described as a series of intersecting planes, with landmarks
that exist on these planes. These three-dimensional geometric entities (planes and
points) form two types of landmarks in the image space: lines and points. The vessel
geometry is specified in the world frame {W}.

Eachplaneπ = [ n̄T, d ]T ∈ R
4 is described by aunit normal vector n̄ anddistance

d. The three-dimensional line that arises from the intersection of two adjacent planes,
πi and π j , is represented in Plücker coordinates Li j = πi ∧ π j , where L ∈ P

5.
The infrastructure contains landmarks, which are engineered structural elements

such as relief holes, cavities, or bolts that can be represented as a three-dimensional
point, P . Specifically, we note the prominence of repeated point elements such as
flow holes on the reactor core floor (Fig. 1, c.f. Fig. 5) and bolts (c.f. Fig. 8). These
landmarks exist on a plane, as represented by the constraint π · ˜P = 0.
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2.4 Homography-Based Inference of Camera Rotation

To infer the change of the external camera rotation, a homography-based method-
ology is used that leverages image registration. The pixel coordinates of successive
images from the external camera are mapped by a homography [23]:

x̃′ = H x̃ (4)

where x̃ is the homogeneous pixel coordinates, i.e., x̃ = [ u, v, 1 ]T. Because the
external camera does not translate, image pixel displacements do not depend on
scene structure [6]. Specifically, this homography H is the infinite homography
H∞ induced by the plane of rotation at infinity [10]. Between frames i and j , this
homography has one of two structures, Hstatic and Hrot , depending on whether the
camera is static or rotating, respectively:

Hstatic = I3×3 (5)

Hrot = K Ri j K
−1 (6)

The homography, H , is calculated via intensity-based image registration between
consecutive frames. The resulting camera rotation Ri j is then used to drive the process
model of the external camera in the state estimation framework.

2.5 Projections of Structural Elements

The projections of structural elements that compose the map are observable from
the external camera image space (Fig. 2). Landmarks (points and lines) are used for
correcting the state estimate by identifying and associating them in the image space.
These projections are utilized for localization between the robot and the world, as
well as for localization between the external camera and the world.

Landmarks are identified and associated first using feature detection based on
geometric shape. Lines are detected using the Canny filter [3] and the probabilistic
Hough transform [17]. Points are detected using blob detection and, in the case of
circular elements, the Hough transform [26]. After detection, data association is
performed by first projecting map elements into the image space, and comparing
them against candidate detected landmarks. The closest detected landmark (within
a heuristic threshold) is then associated to a projected landmark.

Three-dimensional points and their projections in the image space are related by

p̃i ∼ K [ Re
w | tew ] ˜P

w

i (7)
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For lines, the Plücker lineLi j = πi ∧ π j formed from the intersection of adjacent
planes defined in the world coordinate frame are projected in the external camera
image space as a line �i j ∈ P

2:

�i j ∼ KLe
wLw

i j (8)

The matrix Le
w is the rigid displacement matrix for lines, andK is the perspective

projection matrix for lines [2].

3 EKF Methodology

We estimate the non-linear state of the system (robot, camera, and map) using a
discrete extended Kalman filter (EKF) with quaternions [16] to obtain a recursive
state estimate. This state estimation framework leverages the algorithms described
in Sect. 2 (Fig. 3) and requires as priors the position of the fiducial markers on the
robot, the vessel geometry as obtained from blueprint specifications within a limited
degree of uncertainty, and the camera radial and tangential distortion parameters,
obtained via a previously known calibration. We assume from this point forward that
the external camera images are unwarped following a transformation to reverse the
lens distortion. To initialize the filter, we optimize the initial position of the external
camera and focal length to minimize the reprojection error between the observed and
predicted vessel landmarks. Thereafter, the initial pose of the robot may be estimated
from the marker projections from constrained optimization.

3.1 System Parameterization

The non-linear state of the inspection system X(t) is estimated via an extended
Kalman filter with inputs u(t) ∈ R

3 and a variable number of measurements z(t),
depending on the scene. The system state encompasses the state of the inspection
system (robot and external camera) XS(t) and the map of the vessel XM :

X(t) = [XS(t)T, XM
T ]T (9)

3.1.1 Inspection System State

The state of the system is represented by

XS(t) = [pwb (t)T, q̄w
b (t)

T, pwe
T, q̄w

e (t)
T, f e(t)

T ]T (10)

where pwb (t) = [ xwb (t), ywb (t), zwb (t) ]T and q̄w
b (t) are the position and orientation

(respectively) of the robot with respect to the world frame, pwe = [ xwe , ywe , zwe ]T and
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q̄w
e (t) are the (static) position and orientation of the external camera with respect to
the world, and f e(t) = [ fx (t), fy(t) ]T is the vector of focal length components.

3.1.2 Map State

Theworld structure is represented by amap in the state estimateXM that encompasses
the vessel planes and three-dimensional landmarks that exist on these planes. Each
plane π = [ n̄T, d ]T is described by the unit normal vector n̄ and distance d.

We propose a minimal representation for utilizing a map of the reactor in the EKF
framework by extending the geometric representation described in Sect. 2.3. Assum-
ing that the walls of the vessel are orthogonal to the floor, planes are specified by
their rotational degree of freedom (θ) about the world z-axis and translational degree
of freedom (d). Therefore, the unit normal for each wall is n̄ = [ cos θ, sin θ, 0 ]T.
For the floor of the vessel, only the height of the vessel h is needed in the state, for
n̄ = [ 0, 0, 1 ]T and d = −h. Therefore, if the vessel consists of N walls, 2N + 1
parameters are needed for the planar structure of the vessel.

Although landmark points are three-dimensional, they all must exist on a plane. To
enforce the coplanarity of a landmark with its associated plane, a point is represented
by two translational degrees of freedom within in the plane, δ1 and δ2, relative to
the point −n̄d, which is the point on the plane closest to the origin of the world
frame {W}. These represent the two-dimensional position of the landmark in the
two-dimensional subspace ofR3 formed by π. When considering n̄ as one axis of an
orthonormal basis of the plane, the other two axes are v̄1 = [ − sin θ, cos θ, 0 ]T and
v̄2 = [ 1, 0, 0 ]T for walls, and v̄1 = [ 1, 0, 0 ]T and v̄2 = [ 0, 1, 0 ]T for the floor.

A landmark’s three-dimensional position in theworld frame {W} can be recovered
from its coincident plane and two-dimensional position within this plane:

P = −n̄d + δ1v̄1 + δ2v̄2 (11)

It follows from Eq.11 that the coplanarity constraint of the landmark, π · ˜P = 0,
is always satisfied for any choice of θ, d, δ1, or δ2.

With this minimal geometric representation, the map state XM ∈ R
2N+1+2L for

N planes and L points is as follows:

XM = [ θ1, d1, . . . , θN , dN , h, δ1,1, δ1,2, . . . , δL ,1, δL ,2 ]T (12)

3.2 Process Models

The system process model characterizes the temporal evolution of the state. The
process input,u(t), consists of the angular velocity of the external camerawith respect
to its reference frame,ωw

e (t). The entire process model expressed in continuous time
is
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ṗwb (t) = 0 (13)

˙̄qw
b (t) = 0 (14)

ṗwe = 0 (15)

˙̄qw
e (t) = 1

2 Q(ωw
e (t)) q̄

w
e (t) (16)

ḟ e(t) = 0 (17)

π̇ = 0 (18)

Ṗ = 0 (19)

These continuous time update equations are converted into discrete time using
Euler discretization. We model the robot’s state evolution as being driven forward
by a random walk. For the external camera process, the position of the external
camera pwe is static. The external camera rotates with an average angular velocity
ωw

e (t) determined from the output of the homography (Sect. 2.4). Q(ω(t)) is the
quaternion kinematic matrix [13] that relates angular velocity in a body-referenced
frame and quaternion orientation to quaternion rate. Lastly, the map is static as it is
defined in the world frame {W}.

3.3 Measurement Models

All system measurements z(t) consist of projections into the external camera image
space. The measurements can be categorized into two types: 1) zeb(t), relating the
robot body frame {B} to the external camera frame {E}; and 2) zwe (t), which relates
the external camera frame {E} to the world frame {W}:

z(t) = [ zeb(t)T, zwe (t)T ]T (20)

The body-to-external-camera measurements, zeb(t), are determined through robot
fiducial marker detection (Sect. 2.2):

zeb(t) = [m1(t)T, m2(t)T, m3(t)T ]T (21)
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Fig. 4 Quantifying error
between a predicted line �̂

and an observed line
segment �. Points p̂A and p̂B
are the closest points on line
�̂ to points pA and pB ,
respectively, that define line
segment �

Projections of structural elements (Sect. 2.5) provide observations for external-
camera-to-world localization and robot-to-world localization. While the number of
marker corrections is fixed while the robot is in view, the number of landmark cor-
rections will vary depending on the scene. All measurements assume σ = 3 noise.

The predictions for these measurements, ẑ(t), utilize an ideal projective camera
model as detailed in Sect. 2. For points, the correction model is simply the predicted
landmark projection in the image space. For lines, we adopt the line error formulation
as shown in Fig. 4, which is based on the distance from each point of the detected
line to its nearest point on the predicted line [24].

4 Results

We conduct experiments to demonstrate the correctness, accuracy, and robustness of
the state estimation framework. Experimental datasets are representative of actual
infrastructure for which the framework was designed. We pursue experiments of
two different types: (1) camera experiments with a subscale mockup infrastructure
system; and (2) platform experiments using the inspection system with a to-scale
reactor vessel mockup.

The robustness of the state estimate is assessed against speckling, which is
radiation-induced chromatic image noise (Fig. 5). Speckling is characterized by the
random occurrence of clusters of pixels to become activated with a high color inten-
sity that persists for only one frame. A probabilistic speckling model was quan-
tified using 549 frames from an inspection dataset with speckling. Table1 shows
the distribution for the number of speckles per frame, n f rame (normalized by total
number of pixels) and size of the speckle in pixels, ssize. All experimental datasets
were processed twice: (1) “clean” (no speckling); and (2) “degraded,” with artificial
speckling and color attenuation to emulate the environmental image effects that are
expected when deployed in a nuclear reactor vessel.
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Fig. 5 Speckling
(radiation-induced chromatic
image noise) observed
during a reactor pressure
vessel inspection. Speckle
clusters are circled in yellow
for ease in viewing

Table 1 Speckling model

Parameter Value

n f rame ∼ N (μ,σ2)

μ 6.4655e−5

σ2 3.0493e−10

ssi ze ∼ Cat (Ki , pi )

i = {1, . . . , 6}, Ki = i

p1 0.4034

p2 0.4087

p3 0.1021

p4 0.0542

p5 0.0200

p6 0.0116

4.1 Camera Experiments with a Subscale Mockup Structure

We perform camera experiments using a subscale mockup system (Fig. 6) that is
designed to replicate the geometry of a generic reactor pressure vessel on a smaller
scale. A frame with markers is used as a mockup for the submersible robot. An
Axis V5915 PTZ camera is used for the external camera. We use a Vicon motion
capture system to obtain ground truth pose measurements of the robot. We calibrate
the external camera assuming a projective pinhole model and radial and tangential
distortion coefficients using the Kalibr calibration toolbox [9].

In this experiment, the robot is translated in a motion that is representative of
inspection robot motion. The results of state estimate are shown in Fig. 7 and Table2.
From ground truth, we calculate that the framework has mean-squared error (MSE)
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Fig. 6 Subscale mockup system: (far left) experimental setup shown with the subscale mockup
of a reactor pressure vessel; (middle left) external camera; (middle right) subscale mockup of
the inspection robot; (far right) image of the subscale system from the external camera. Note the
complete lack of visual texture on the structure

Fig. 7 Path of the robot
relative to the subscale
mockup structure. Shown are
the estimated paths for the
clean (red) and degraded
(blue) cases. The ground
truth path (black) is from
motion capture

in position of under 2.9e−4 m2 in x , 3.1e−4 m2 in y, 1.7e−3 m2 in z. Using ZY X
Tait-Bryan Euler angles, the angular position MSE is under 3.8e−4 rad2 in roll,
1.3e−3 rad2 in pitch, and 6.7e−4 rad2 in yaw. Qualitatively, good agreement is
observed between the ground truth and estimated paths as shown in Fig. 7, and the
state estimate is shown to be robust to images degraded by environmental effects.

The uncertainty of the state estimate is also shown in Table2. The±3σ uncertainty
for the robot within the xy-plane is under 4.7cm and under 10cm vertically. For the
external camera, the lateral ±3σ uncertainty is 0.5cm and 4.2cm vertically.
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Table 2 Accuracy and uncertainty for subscale experiments

Parameter Value (Clean) Value (Degraded)

Accuracy (MSE), m2 or rad2

xwb 2.7515e−4 2.8637e−4

ywb 3.0282e−4 3.0809e−4

zwb 1.6192e−3 1.6982e−3

θwe 3.6473e−4 3.7681e−4

φw
e 1.1025e−3 1.2869e−3

ψw
e 6.0344e−4 6.7328e−4

Uncertainty (±3σ), m or rad

Robot, {B}

xwb 0.0435 0.0434

ywb 0.0174 0.0175

zwb 0.0961 0.0960

θwb 0.1361 0.1358

φw
b 0.1101 0.1118

ψw
b 0.0527 0.0520

External camera, {E}

xwe 0.0028 0.0037

ywe 0.0021 0.0034

zwe 0.0393 0.0424

θwe 0.0053 0.0056

φw
e 0.0048 0.0051

ψw
e 0.0162 0.0172

The relatively higher error and uncertainty in the z-direction for both the robot
and the external camera is a direct result of the subscale vessel. The subscale vessel
by design has no landmarks or visual texture on the walls, which is representative

Fig. 8 External camera images fromplatform testing: (left) clean and (right) degradedwith artificial
environmental image effects (speckling and color attenuation)
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of the most challenging types of reactor vessels for this system. In contrast with this
vessel, the to-scale mockup shown in Fig. 8 contains landmarks on the walls that
improve localization in the z-direction. For this reason, we expect that observing
wall landmarks or the top edge of the reactor will improve the uncertainty in this
dimension. Nonetheless, we note that the error and uncertainty in the xy-plane are
still suitable for coarse localization of the robot within the vessel.

4.2 Platform Experiments with Inspection System

Next, we demonstrate the capability for estimating the state of the inspection sys-
tem platform. We perform motion experiments with the inspection system platform
hoisted by a crane and translated relative to a (to-scale) reactor vessel quarter mockup
(Fig. 8).

Fig. 9 Estimated path of the
inspection robot relative to a
quarter mockup of a reactor
vessel for the clean (red) and
degraded (blue) cases
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Table 3 Uncertainty for platform experiments

Parameter Value (clean) Value (degraded)

Uncertainty (±3σ), m or rad

Robot, {B}

xwb 0.0085 0.0084

ywb 0.0161 0.0162

zwb 0.0241 0.0237

θwb 0.0687 0.0727

φw
b 0.0395 0.0406

ψw
b 0.0214 0.0225

External camera, {E}

xwe 0.0031 0.0031

ywe 0.0036 0.0036

zwe 0.0166 0.0190

θwe 0.0035 0.0039

φw
e 0.0033 0.0035

ψw
e 0.0092 0.0097

We present the results for a 26s test where the robot was translated vertically by
approximately 1.42m. The external camera rotates during this experiment to keep the
ROV in view. Figure9 shows the estimated path of the robot for this test. As shown in
Table3, the state estimation framework estimates the pose of the robot with sufficient
uncertainty for coarse localization of the robot within the vessel. Specifically, we
note that within the xy-plane the robot uncertainty (±3σ) is under 1.8 and 2.4cm
vertically. For the external camera, the ±3σ uncertainty is under 0.5cm within the
xy-plane and under 1.9cm vertically, with total rotational uncertainty (in terms of
Euler angles) to be approximately 0.01 rad.

We note that the uncertainty estimates were lower overall for the platform exper-
iments as compared to the subscale mockup experiments, due to utilizing wall land-
marks on the vesselmockup.Additionally, as in the subscalemockup experiments,we
observe that the framework is robust to image degradation effects, with little signifi-
cant effect on state uncertainty. Although ground truth position data is not available
for this experiment, cross-referencing the estimated position against images from a
camera installed on-board the robot suggests good agreement between the actual and
estimated path.

5 Conclusion and Future Work

In this work, we have proposed a state estimation and localization framework
designed for coarse localization of a submersible robot within a nuclear reactor



714 T. E. Lee and N. Michael

pressure vessel that primarily utilizes a PTZ camera. We have proposed a map repre-
sentation for reactor pressure vessels that models the structure as a series of orthogo-
nal planes, with structural points of interest that exist on the planes. The intersection
of vessel planes project to lines in the camera image space. These lines, as well as the
points of interest on the planes, serve as landmarks for correcting the state estimate.
The rotational motion of the camera is inferred from intensity-based homography.

We have shown that the proposed framework is suitable for coarse localization by
conducting two types of experiments. First, we confirmed the accuracy of the filter for
localizing the robot with respect to a challenging vessel with no visual texture of wall
landmarks. Second, we validated the framework using the actual inspection system,
showing that the estimated path uncertainty (±3σ) is under 1.8cm in the xy-plane
and 2.4cm vertically. For the camera, the position uncertainty (±3σ) is under 0.5cm
in the xy-plane and under 1.9cm vertically, with total rotational uncertainty (±3σ) of
about 0.01 rad. We verified that our framework is robust to the environmental image
effects (speckling and color attenuation) that are expected to degrade the system
sensing when operating in the reactor vessel.

Our current work has shown the capability of this framework for state estimation
and localization to enable ROV-based inspections of nuclear reactor vessels. For
future work, we will investigate how image-based registration could also be used to
model variations in zoom setting of the PTZ camera. Additionally, we will pursue an
automated EKF initialization procedure that bootstraps the filter with minimal effort
from inspection personnel. We will also pursue testing of our framework in real-time
during an inspection of a reactor pressure vessel.
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