
9© Springer International Publishing AG 2018 
J.V. Bono, R.D. Scott (eds.), Revision Total Knee Arthroplasty,  
https://doi.org/10.1007/978-3-319-67344-8_2

Implant Bearings in Total Knee 
Arthroplasty             

Christine S. Heim and A. Seth Greenwald

�The Enduring Goal

The enduring success of the low-friction arthro-
plasty, advanced by Sir John Charnley as a solu-
tion for hip arthrosis, may be appreciated by the 
fact that in 2016 almost 1.4 million primary and 
revision hip and knee arthroplasty procedures 
were performed in the United States, a num-
ber more than doubling on a global basis [1] 
(Table 2.1). Improvements in surgical technique 
and implant design over the last four decades 
have resulted in total knee arthroplasty (TKA) 
being deemed one of the most successful, con-
temporary orthopaedic procedures to effectively 
relieve pain and allow patients to resume the 
activities of their daily lives. The prevalence of 
aseptic loosening attributed to ultra-high molec-
ular weight polyethylene (UHMWPE) wear 
debris-induced osteolysis is in the single digits 
in most knee series, with some reports describ-
ing prosthesis survival beyond 20 years [2–25]. 
Despite this obvious success, UHMWPE wear 
is an inescapable consequence of total joint 
articulation and is of contemporary concern 
particularly as our population grays and life-

style demands increase [26–44]. Appreciating 
an orthopaedic triad where patient outcomes are 
not only dictated by the implant but are highly 
dependent on patient factors and technical pro-
ficiency assists the goal of avoiding total knee 
arthroplasty revision.

�The Triad: The Implant

�The Evolution of UHMWPE

The UHMWPE used in joint arthroplasty compo-
nents results from polymerization of ethylene gas 
into a fine resin powder of submicron and micron 
size distribution. A number of resin mixtures 
exist, but GUR 1020 and GUR 1050 are the prev-
alent polymers utilized in contemporary devices. 
They are consolidated with the use of ram extru-
sion or compression-molding techniques. 
Structurally, UHMWPE is made up of repeating 
carbon-hydrogen chains that are arranged in 
ordered (crystalline) and disordered (amorphous) 
regions [45]. While UHMWPE has remained the 
tibial insert and patellar component bearing 
material of choice over the last four decades, 
researchers are continually striving to increase its 
in-vivo longevity through alterations to process-
ing and/or sterilization techniques.

Short- to mid-term clinical reports of 
UHMWPE damage in the 1990s led to a review 
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of manufacturing processes and determined that 
inadequate quality control resulted in fusion 
defects arising from incomplete polymerization, 
voids, and foreign body inclusions [46–48]. 
Recognizing the direct impact of these variables 
on the in-vivo degradation of the final parts, 
orthopaedic device manufacturers addressed the 
allowable tolerances for these components, and 
these issues have not reappeared in the peer-
reviewed literature.

Previous attempts to improve UHMWPE per-
formance have included carbon fiber reinforce-
ment (Poly-II) [49] and polymer reprocessing by 
hot isostatic pressing (Hylamer) [50]. The former 
was withdrawn from the market because of an 
unexpectedly high wear rate [51] (Fig. 2.1), while 
the latter has been linked to debris-induced osteo-
lytic response, especially when sterilized by 
gamma irradiation in air [52] (Fig.  2.2). Heat 
pressing was yet another attempt to improve the 
finish of the articular surface, but was associated 
with UHMWPE fatigue and early delamination 
[53] (Fig.  2.3). These material innovations had 

checkered pasts as they moved from the labora-
tory to clinical application.

Gamma irradiation in air was the predominant 
method of UHMWPE component sterilization, 
and, to this day, represents the long-term standard 
against which contemporary material improve-
ments are measured. In the early 1990s, an increas-
ing prevalence of tibial component failures 
associated with debris-induced osteolysis raised 
concerns over the long-term durability of contem-
porary devices [54, 55]. A clinical follow-up study 
reported by Bohl et al. suggested that this may be 
accounted for by the prolonged shelf storage prior 
to implantation of UHMWPE components gamma 
irradiated in air [56]. A 12–20% reduction in in-
vivo survival was noted for shelf storage ranging 
from 4 to 11  years with a mean in-vivo time to 
revision of 2.5 years (Figs. 2.4 and 2.5).

Table 2.1  Hip and knee arthroplasty procedures per-
formed in the United States in 2016

Primary Revision Total

Knees 759,600 89,000 848,600
Hips 492,900 58,400 551,300
Total 1,252,500 147,400 1,399,900

Data from Orthopaedic Network News [1]

Fig. 2.1  A 5-year retrieval of a failed poly-II tibial insert 
demonstrating a high component wear rate with infiltra-
tion of carbon fibers and polyethylene debris into sur-
rounding tissue

Fig. 2.2  A 3-year retrieval of a failed Hylamer-M tibial 
plateau demonstrating an unexpectedly high wear rate 
with corresponding wear and debris-induced inflamma-
tory tissue response

Fig. 2.3  A 6-year retrieval of a heat-pressed tibial com-
ponent associated with polyethylene fatigue and early 
delamination
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Further, laboratory studies indicated that as shelf 
storage increased, the amount of UHMWPE 
exposed to high surface stresses during articulation 
increased dramatically and was a contributing fac-
tor to early in-vivo polymer failure [57–59] 
(Fig. 2.6).

The explanation for these observations lies in 
the mechanics of the sterilization process, which 
facilitates breakage of polymer chains by the 
incoming gamma radiation, creating free radicals, 
which preferentially combine with available oxy-
gen [60, 61] (Fig.  2.7). The onset of mass 
UHMWPE component production and device 
modularity resulted in extended component shelf 
storage before use. This was not a previous con-
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Fig. 2.4  The influence of shelf storage on survival of a 
prosthetic knee plateau following gamma irradiation in air 
(from Bohl JR, Bohl WR, Postak PD, et al. The effects of 

shelf life on clinical outcome for gamma sterilized poly-
ethylene tibial components. Clin Orthop Relat Res. 
1999;267:28–38, with permission)

Fig. 2.5  A group 2 plateau implanted after 7.6 years of 
shelf storage and retrieved 3.8  years after implantation. 
Gross delamination and pitting, characteristics of fatigue 
failure, are observed (from Bohl JR, Bohl WR, Postak PD, 
et  al. The effects of shelf life on clinical outcome for 
gamma sterilized polyethylene tibial components. Clin 
Orthop Relat Res. 1999;267:28–38, with permission)

sideration, but ongoing shelf life oxidation offered 
an explanation for mechanical compromise of the 
polymer in-situ [58, 60, 62, 63] (Fig. 2.8). It was 
also noted that in-vivo component oxidation 
occurred, but to a lesser degree [64].

At this point, attempts to remove oxygen from 
the sterilization process included the use of inert 
gas and vacuum environments or by avoiding 
gamma irradiation altogether through the use of 
ethylene oxide (EtO) or gas plasmas [65–67]. 
Acetabular components sterilized by these tech-
niques demonstrated a reduction in UHMWPE 
wear in hip simulation studies (Fig. 2.9). Today, 
orthopaedic device manufacturers avoid the use 
of an air environment when packaging UHMWPE 
components, and sterilization dates are standard 
on device package labeling.

It is now also quantitatively appreciated that 
increasing the gamma radiation dose above the 
2.5 Mrad level used in conventional UHMWPE 
component sterilization encourages free radicals 
to combine, creating cross-links between the 
molecules of adjacent chains, which is further 
enhanced in an oxygen-free environment [68–
70]. Figure 2.10 from McKellop and coworkers 
[69] is descriptive of this phenomenon in a simu-
lator comparison of acetabular cup components 
with the volumetric wear per million cycles dra-
matically reduced with increasing gamma radia-
tion exposure.

There are clinical reports attributed to Oonishi 
and Grobbelaar, which describe in-vivo UHMWPE 
wear reduction in acetabular components realized 
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through increased cross-linking [71–76]. However, 
these studies employed large doses of gamma radi-
ation (>50 Mrad), which are known to cause poly-
mer embrittlement and yellowing. Wroblewski, 
employing a chemically enhanced cross-linked 
polymer, achieved similar findings both in-vivo 
and in-vitro, when coupled with an alumina articu-
lation [77].

These isolated studies pointed the way to a 
new class of UHMWPEs, whose common denom-
inator was an appreciation of the importance of 
increased cross-linking while minimizing oxida-
tive degradation to reduce wear. Initial methods 
used to manufacture these moderately to highly 
cross-linked UHMWPEs included (1) heating 
above or below the melt temperature of the poly-
ethylene, (2) the type of radiation employed, (3) 
the radiation dose level, (4) the sequence of step-
wise application, and (5) the endpoint steriliza-
tion. The one common factor is that radiation was 
integrated into the manufacturing process. All 
received U.S.  Food and Drug Administration 
510[k] clearance, allowing commercial distribu-
tion for both hip and knee components (Table 2.2).

However, changes in the mechanical proper-
ties of these materials, particularly in their 
reduced resistance to fatigue crack propagation 
(fracture toughness), raised concerns about their 
long-term suitability in hip and knee components 
where locking mechanisms offered foci for stress 
risers [78–81] (Figs. 2.11, 2.12, and 2.13). Short-
term clinical reports for total hip arthroplasty 
demonstrated a significant reduction in wear vol-
ume and rate for these polymers [82–87], which 
supported the impressive preclinical hip simula-
tion laboratory data [88–92]. However, the nega-
tive impact of extreme component positioning on 
outcome was also demonstrated through case and 
retrieval reports at this time [80, 93, 94].

An appreciation of the differing modes of 
hip (abrasion and adhesion) and knee (pitting 
and delamination) failure, confirmed through 

Shelf Storage Duration (Years)
C

on
ta

ct
 A

re
a 

[m
m

2 ]

n = 20

y = 6.80x + 3.94
R2 = 0.659

3 4 5 6 7 8

100

80

60

40

20

0

Fig. 2.6  Tibial-femoral 
contact area for a 
5.6-mm thick tibial 
plateau carrying 
>20 MPa stresses during 
articulation dramatically 
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Table 2.2  Moderately to highly cross-linked UHMWPEs

Manufacturer UHMWPE trade name

Biomet ArComXL

DePuy/J&J Marathon
AltrX

Smith + Nephew XLPE
Stryker Crossfire

X3
Zimmer Durasul

Longevity
Prolong

Fig. 2.8  A 3-year retrieval of a fully oxidized, gamma 
irradiated in air, UHMWPE tibial component demonstrat-
ing a circumferential white band indicative of polymer 

embrittlement after prolonged shelf life. Fusion defects 
from incomplete consolidation are noted

Fig. 2.9  Hip simulator weight-loss comparison for aged 
(25 days at 78 degrees Celsius in O2) compression-
molded cup components: (a) gamma irradiated in air; (b) 
sterilized with ethylene oxide; and (c) gamma irradiated 
in a vacuum environment and use of barrier packaging. 
(From Greer, Schmidt, Hamilton,66 by permission of 
Trans Orthop Res Soc.)
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Fig. 2.10  Mean acetabular cup wear rates versus gamma 
dose level (from McKellop H, Shen FW, Lu B, et  al. 
Development of an extremely wear-resistant ultra-high 
molecular weight polyethylene for total hip replacements. 
J Orthop Res. 1999;17(2):157–167, with permission)

Fig. 2.11  A 1-year conventional UHMWPE, primary ace-
tabular liner demonstrating crack initiation and propagation. 
Failure initiated at a sharp edge of a locking point (from 
Tradonsky S, Postak PD, Froimson AI, et al. A comparison of 
disassociation strength of modular acetabular components. 
Clin Orthop Relat Res. 1993;296:154–160, with permission)
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conventional UHMWPE component retrieval 
[95–97], also suggested that a universal, mod-
erately to highly cross-linked polymer may not 
be appropriate. To counter the reported degra-
dation in material properties, “enhanced” 
UHMWPEs now have antioxidants, predomi-
nantly vitamin E, infused or blended into the 

resin powder during the manufacturing process 
(Table 2.3). Laboratory studies have confirmed 
the maintenance of UHMWPE mechanical 
properties and wear resistance in addition to 
prevention of oxidative degradation for these 
polymers [98–105].

Contemporary peer-reviewed literature for the 
moderately to highly cross-linked UHMWPEs in 
total hip arthroplasty is reporting dramatic reduc-
tion of wear rate when compared to conventional 
UHMWPE in mid- to long-term follow-up stud-
ies with metal femoral heads [106–121]. Total 
knee arthroplasty clinical reporting focuses on 
aseptic loosening and mechanical failures rather 
than wear rate, but again, in short- to mid-term 
studies, these UHMWPEs are demonstrating effi-
cacy [122–126]. While short- to mid-term clinical 
studies supporting the further advantages of the 
antioxidant-infused UHMWPEs in total hip 
arthroplasty are increasing [127–131], reporting 
for total knee arthroplasty has just begun [132]. 
While the overall clinical gains of these enhance-
ments have been questioned [133], the passage of 
in-vivo time will be, as has always been, the 
defining factor in the continued use of these mod-
erately to highly cross-linked UHMWPEs with 
or without antioxidants.

�The Femoral Side

While the predominant focus for increasing the 
in-vivo longevity of total knee arthroplasty is 
alteration of the UHMWPE tibial insert, there are 
alternative bearing options for the femoral com-
ponent as well. As example, oxidized zirconium, 
marketed under the trade name Oxinium (Smith 
+ Nephew, Memphis, TN) in the United States, 
has the strength of metallic cobalt-chromium 

Fig. 2.12  A 10-month cross-linked UHMWPE, revision 
acetabular liner demonstrating crack initiation and propa-
gation. The decision to retain the acetabular shell in an 
almost vertical and anteverted position contributed to this 
early failure, which was compounded by the decision to 
use a 40-mm femoral head and a correspondingly thin 
liner (from Halley D, Glassman A, Crowninshield 
RD. Recurrent dislocation after revision total hip replace-
ment with a large prosthetic femoral head. J Bone Joint 
Surg Am. 2004;86(4):827–830, with permission)

Fig. 2.13  A 3-year failure of a constrained condylar con-
ventional UHMWPE tibial insert. Failure of the posterior 
locking mechanism resulted in posterior component lift-
off (from Ries MD. Dissociation of an ultra-high molecu-
lar weight polyethylene insert from the tibial baseplate 
after total knee arthroplasty. J Bone Joint Surg Am. 
2004;86(7):1522–24, with permission)

Table 2.3  Contemporary antioxidant-infused UHMWPEs

Manufacturer UHMWPE trade name

Biomet E1
Corin ECIMA
DePuy Synthes AOX
DJO global E+
StelKast EXp
Zimmer Vivacit-E
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femoral components with the wear characteris-
tics of ceramics [134], as has been shown in labo-
ratory simulators for pairings with both 
conventional and highly cross-linked UHMWPE 
[135, 136]. The uniqueness of this material is that 
it offers patients with metal hypersensitivity, 
particularly to nickel, an implant option that has 
been shown to be clinically equivalent to cobalt-
chromium femoral components [137–142].

�The Tibial-Femoral Geometries

As knee designs have evolved, a growing appre-
ciation of the avoidance of round-on-flat geome-
tries through the ranges of knee flexion in favor 
of round-on-curved surfaces emerged [54]. The 
ability of a given design to minimize contact 
stresses during walking gait contributes to 
UHMWPE tibial component longevity [143]. 
With this, the trend toward more conforming 
design geometries also has associated with it the 
expectation that femoral component tolerances 
be maintained during the manufacturing process. 
Failure to achieve this can dramatically decrease 
contact surfaces, elevate peak stresses, and, con-
current with articulation, is the harbinger of 
material damage [144] (Fig. 2.14).

The attainment of femoral component toler-
ances has markedly improved with the use of com-
puter-aided precision grinding as a standard 
finishing technique for metallic femoral knee com-
ponents. This is particularly beneficial where small 
variations in surface contours have large effects on 
contact areas and surface stresses (Fig. 2.15). The 
implications of this technique have potentially far-
reaching consequences. As design specifications 
are produced with tighter tolerances, the need for 
precision manufacturing is imperative (Fig. 2.16).

�The Wear Particles Produced

Conventional wisdom and our experience partic-
ular to hip arthroplasty suggest that osteolytic 
response is associated with both particle size and 

Fig. 2.14  Finite element analysis of tibial-femoral con-
tact areas and surface stresses of a contemporary mobile 
bearing knee design at 0° extension. Poor mating of the 
articulating surfaces is observed resulting in peripheral 
contact with damaging stress levels
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Fig. 2.15  A comparison of tibial-femoral contact areas 
by surface stress range for belt finishing and computer-
aided precision grinding techniques of a single femoral 
component design at 0° extension. The overall bar height 
depicts the total contact area (from Heim CS, Postak PD, 
Greenwald AS.  Factors Influencing the longevity of 
UHMWPE tibial components. In: Pritchard D, editor. 
Instructional Course Lectures, vol 45. Chicago, IL: 
American Academy of Orthopaedic Surgeons; 1996, with 
permission)
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debris volume. Laboratory hip simulator experi-
ments have shown that UHMWPE particle vol-
umes in various size ranges are dependent on 
radiation dose [145] (Figs.  2.17 and 2.18). The 
greatest potential for cytokine release, the first 
step in the sequelae leading to osteolysis, follow-
ing macrophage debris encapsulation is at the 
<1 μm level. Ingram et al. suggested that highly 
cross-linked UHMWPE debris obtained from 
scratched surface articulation was bioreactive 
when placed in culture medium and appeared to 
be volume dependent [146].

The influence of surface roughness was further 
investigated by Scott et al. in a hip simulator com-
parison between conventional, EtO, and 10 Mrad 
UHMWPE components [147]. As one appreciates 
from Fig. 2.19, roughened surfaces have a nega-
tive influence on particle production where highly 
cross-linked UHMWPEs are employed. This was 
challenged by Muratoglu et al. in a study in which 
retrieved femoral components were articulated in 

Fig. 2.16  Finite element analysis demonstrating the opti-
mization of tibial-femoral contact areas and surface 
stresses resulting from quality controlled finishing of the 
component demonstrated earlier in Fig. 2.14. It is appar-
ent that use of the conforming geometries has been 
achieved with the resulting diminishment of peak contact 
stresses
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Fig. 2.17  Comparative volumes of acetabular particle 
generation for different size ranges per million cycles for 
conventional and highly cross-linked UHMWPEs at 5 and 
10 Mrads resulting from hip simulation. ECD, equivalent 
circular diameter (from Ries MD, Scott ML, Jani 

S.  Relationship between gravimetric wear and particle 
generation in hip simulator: conventional compared with 
cross-linked polyethylene. J Bone Joint Surg Am. 
2001;83(Suppl 2, Pt 2):116–122, with permission)
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Fig. 2.18  Corresponding SEM visualization (10000×) of 
particle distribution for (a) conventional and (b and c) 
highly cross-linked UHMWPEs at 5 and 10  Mrads, 
respectively, employing a 0.05-μm filter. The particles are 
highlighted for appreciation (from Ries MD, Scott ML, 

Jani S. Relationship between gravimetric wear and parti-
cle generation in hip simulator: conventional compared 
with cross-linked polyethylene. J Bone Joint Surg Am. 
2001;83(Suppl 2, Pt 2):116–122, with permission)
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Fig. 2.19  The influence 
of smooth and roughened 
femoral head surfaces on 
particle generation for 
conventional and highly 
cross-linked UHMWPE 
acetabular components 
resulting from hip 
simulation (from Good 
V, Ries M, Barrack RL, 
et al. Reduced wear with 
oxidized zirconium 
femoral heads. J Bone 
Joint Surg Am. 
2003;85(Suppl 
4):105–110, with 
permission)
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knee simulation against a highly cross-linked 
UHMWPE [148]. Further, retrieved oxidized zir-
conium femoral components have demonstrated 
decreased surface roughness with time in-vivo, 
suggesting another benefit of this cobalt-chro-
mium alternative for improving the long-term 
viability of knee articulations [149–152].

�The Triad: The Patient

Overenthusiastic patient use following total knee 
arthroplasty has been cited as a factor influencing 
failure [153–155]. Its occurrence, however, has 
generally been described in singular case reports 
in much the same way as failure attributed to 
obesity. Series reports do not support a relation-
ship between increased body mass index and 
device failure following arthroplasty [156–161]. 
Surgical preference, however, weighs in favor of 
the lightweight patient as the ideal arthroplasty 
candidate [162]. It is also known from both 
physical laboratory testing and finite element 
analysis that load magnitude in combination with 
displacement are factors influencing UHMWPE 
damage [163–170]. While a recommendation for 
patient weight loss before surgery may be justi-
fied from these laboratory investigations, the 
clinical reality of achieving this does not lie in the 
patient’s or surgeon’s favor [171].

With the patient population pursuing total 
knee arthroplasty getting younger and living lon-
ger, it is imperative that contemporary implant 
bearing materials address these increasing 
demands [172]. Clinical studies are now focusing 
more on patient-reported outcomes and relating 
them to comorbidities in an effort to align expec-
tations for both the patient and the surgeon 
[173–175].

�The Triad: The Surgery

The forces and torques that occur during walking 
gait, particularly during toe-off, promote articu-
lation in the posteromedial quadrant of tibial 
inserts [176–180]. Retrieved components of 
failed knee arthroplasties demonstrate UHMWPE 

damage patterns in this area [181–185] 
(Fig.  2.20). Notwithstanding poor component 
design, causal factors include overloading the 
medial compartment, improper surgical correc-
tion or alignment of the bony structures, insuffi-
cient soft tissue balance and release, polyethylene 
cold flow near the edge of the tibial plateau, and 
surgical malrotation of the components [181–
185]. In addition, the dynamic effects of lift-off 
and subsequent impact loading and unusual 
patient kinematics further increase the potential 
for posteromedial failures [186]. The influence of 
surgical malrotation may be appreciated in 
Fig.  2.21a, b, which demonstrate dramatic 
changes in  location, contact area, and peak 
stresses for a PCL preserving knee in a laboratory 
investigation [187].

The continual emphasis on templating and the 
technological advances in computer-assisted and 
robotic navigation systems, intraoperative sen-
sors as well as patient-specific instrumentation 
offer the promise that component malalignment 
may ultimately be minimized and patient satis-
faction increased [188–194]. Eliminating the out-
liers in component placement will contribute to 
diminishing UHMWPE material damage in knee 
arthroplasty, however, the best technology to uti-
lize in the achievement of this goal, is yet to be 
defined [195–197].

Fig. 2.20  UHMWPE tibial component retrieval showing 
deformation and wear in the posteromedial portion of the 
insert (from Swany MR, Scott RD. Posterior polyethylene 
wear in posterior cruciate ligament-retaining total knee 
arthroplasty: a case study. J Arthroplasty. 1993;8:439–
846, with permission)
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�The Enduring Promise

The previous remarks have attempted to define 
problems, solutions, and unknown performance 
factors of bearing materials currently utilized in 
total knee arthroplasty as they relate to the 
implant, the patient, and the surgery. What is 
important for the reader to appreciate is that this 
is a continually evolving experience, which will 
find advocacy or limitations, with the passage of 
in-vivo time.
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