
Chapter 5
Chaos

Simulated chaotic attractor from the Muthuswamy-Chua system
[19, 22]

Abstract So far we have studied the fundamentals of (nonlinear) circuit theory.
We have encountered a variety of multi-terminal elements and circuit analysis
techniques. In this final chapter, we will discuss the fascinating mathematical
concept of chaos. Notice we use the word mathematical: chaos has been largely
studied by mathematicians and scientists. Yet we conclude this book on circuit
theory with an advanced mathematical topic because chaos will prove invaluable
in integrating a majority of the concepts discussed in this book. Chaos is also
fundamentally restricted to nonlinear circuits, linear networks do not exhibit chaos.
So it is appropriate to conclude this book with a chapter on an exclusive property of
nonlinear circuits. For those mathematically familiar with chaos, this chapter takes
an “experimentalist” approach when discussing a variety of chaotic circuits.

5.1 An Introduction to Chaos

Chaotic circuits provide excellent examples for utilizing nonlinear elements in
topologically simple circuits,1 to study an interesting phenomenon.

Since a thorough treatment of chaos requires a book on its own, in this chapter
we will instead mainly focus on a fundamental idea discussed throughout the book:

1That is, most of the normal form equations can be derived by inspection.
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Fig. 5.1 Circuit model of the
Van der Pol oscillator

the concept of device modeling. Hence a recurring theme throughout this chapter
would be to first discuss a circuit that has been systematically designed to exhibit
chaotic behavior, and then discuss a circuit that exhibits chaos because of physical
nonlinearities. We will also focus on the PWL approximation technique, because
as we learned throughout the book, we can synthesize any PWL characteristic using
opamps, etc. We will design chaotic circuits using nonlinear resistors, capacitors,
and inductors. We will also discuss memristor and transistor based chaotic circuits.

We will be performing simulations of the (chaotic) circuits in QUCS and
normal form equations in SageMath. We will show implementation results only
for the Muthuswamy-Chua chaotic circuit,2 in order to encourage the reader to
investigate the physical implementation of other chaotic circuits, and hence “learn
by experimenting.” Also, many end-of-chapter exercises are essentially capstone
design problems. In other words the ideas discussed in this chapter should lead to
interesting research problems for the motivated reader, perhaps even resulting in
“good” publications.

We will start by revisiting the Van der Pol oscillator from Sect. 4.6.3. Reconsider
the schematic of the Van der Pol oscillator in Fig. 5.1. Note that we are using
the dual [3] of the series LCNR circuit from Sect. 4.6.3. We now have a voltage-
controlledNR:

iR(vC1) = avC1 + bv3C1 (5.1)

One could implement the cubic nonlinearity in Eq. (5.1) using the twin-tunnel-diode
circuit in Fig. 4.53 or by using analog multipliers as shown in Fig. 5.2 From Fig. 5.2
(see Exercise 5.1), we get:

iR(vC1) =
[
−vC1 +

(
1 + R5

R4

)
(vC1)

3

100

]
1

R3
(5.2)

However, as stated earlier, we will use a PWL approximation for the cubic
nonlinearity. Consider the QUCS schematic in Fig. 5.3. U1 and U2 are QUCS

2We picked this circuit to implement because it requires a memristor emulator that has the most
number of components of all the chaotic circuits discussed in this chapter.
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Fig. 5.2 A circuit implementation of NR from Fig. 5.1. All power supplies are ± 15V. Opamp
U1 acts as a current inverter when R1 = R2, U2 and U3 are analog multipliers
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Fig. 5.3 PWL approximation of the cubic nonlinearity. This circuit is called the “Chua diode” [6]
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Fig. 5.4 Chua diode DP characteristic. iSense is the current flowing (according to the passive sign
convention) through the vSense voltage source in Fig. 5.3

nonlinear model3 of opamps. We have specified an open-loop gain of 1e6 and
E = ± 9V. We will perform a parameter sweep simulation and plot the DP
characteristic. The result is shown in Fig. 5.4. Notice that opamp circuit is a parallel
combination of two nonlinear resistors. Each opamp is the voltage-controlled dual
of the opamp negative impedance converter from Fig. 2.41. Because of the parallel
combination of the resistors, we have two additional breakpoints4 in the negative
resistance region.

Next, we will simply add a resistor and capacitor (to make the system three
dimensional,5 in other words, the order of complexity is now three) as shown in
Fig. 5.5, to obtain Chua’s circuit [6]. The purpose of adding just two components
will be clear from simulating Chua’s circuit. The complete QUCS schematic for
simulation is shown in Fig. 5.6. Simulating the circuit in Fig. 5.6, we get the results
in Fig. 5.7.

3These can be found under Nonlinear Components in the components tab of QUCS. Note that
simulating chaotic circuits with a physical opamp (like μA741 models) from the Opamp QUCS
Library may not cause the simulation to converge for some circuits.
4The reason for breakpoints is to obtain chaos in a three-dimensional extension of the Van der Pol
oscillator. The justification is beyond the scope of this book, for details refer to [5].
5The minimal dimension of a continuous time chaotic system is usually said to be three because
of the Poincaré-Bendixson theorem. But there are unusual systems of lower order that violate this
theorem and exhibit chaos, see [27]. Moreover, even one-dimensional discrete-time systems (maps)
can exhibit chaotic behavior. Such maps will not be discussed in this book, although they appear
in very simple electric circuits, see [26].
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Fig. 5.5 Circuit model for Chua’s circuit. The only elements added to the Van der Pol oscillator
in Fig. 5.1 are highlighted in red
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Fig. 5.6 Chua’s circuit in QUCS setup for transient analysis

Fig. 5.7 Time domain plots of the voltages across the two capacitors. (a) t = 0 to t = 10ms. (b)
t = 0 to t = 20ms
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An important point is the issue of convergence in circuit simulation of nonlinear
(chaotic) circuits. Although this topic is beyond the scope of this text (see [23]),
one needs to pay attention to the log messages from the simulator to investigate
the source of the issue, and if the convergence error can be safely ignored. If the
simulation does not converge at all or seems to converge to incorrect results, the
warnings should be closely studied.

In this case, the log messages show:

Listing 5.1 QUCS log from simulating Chua’s circuit

1 Output:
2 -------
3
4 Starting new simulation on Thu 11. Jan 2018 at 11:33:19:169
5
6 creating netlist... done.
7 Starting /usr/local/bin/qucsator
8
9 project location:
10 modules to load: 0
11 factorycreate.size() is 0
12 factorycreate has registered:
13 parsing netlist...
14 checking netlist...
15 checker notice, variable `vC1.Vt' in equation `vC2_vs_vC1'

not yet defined
16 checker notice, variable `vC2.Vt' in equation `vC2_vs_vC1'

not yet defined
17 netlist content
18 2 C instances
19 1 L instances
20 8 R instances
21 2 OpAmp instances
22 1 TR instances
23 creating netlist...
24 checker notice, variable `vC1.Vt' in equation `vC2_vs_vC1'

not yet defined
25 checker notice, variable `vC2.Vt' in equation `vC2_vs_vC1'

not yet defined
26 NOTIFY: TR1: average time-step 2.16797e-06, 4326 rejections
27 NOTIFY: TR1: average NR-iterations 3.10133, 947 non-

convergences
28
29 Simulation ended on Thu 11. Jan 2018 at 11:33:20:959
30 Ready.

We can see that there are non-convergencewarnings, in this case, they can be safely
ignored.

Comparing Fig. 5.7a, b, we may be tempted to conclude the transient response is
periodic. But closely examining the two time domain waveforms, we can see that
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Fig. 5.8 A phase portrait (plot) of (vC1(t), vC2(t)) from Fig. 5.7, plotted from t = 0 to t = 50ms

may not be true. For instance, they clearly show the number of “oscillating maxima
and minima” in each ms interval is different.

A more insightful picture is the phase portrait (plot) discussed in Sect. 4.6.3. The
vC1−vC2 phase plot is shown Fig. 5.8. We now see that there is a “structure,” called
a chaotic attractor, in phase space. It turns out the chaotic attractor is the steady-
state response for this circuit.

The structure is so named because it tends to “attract” points in a “basin of
attraction” into the attractor (see Exercise 5.2). The term “chaotic” or “chaos” was
coined by James Yorke and T.Y. Li [18]. Nevertheless, there is no agreed upon
definition of chaos, although researchers generally concur that a chaotic system
should satisfy the following properties:

1. Boundedness6

2. Aperiodicity
3. Sensitive dependence on initial conditions

6We add this property because without it, linear one-dimensional unstable systems could be
considered “chaotic” since they satisfy properties 2 and 3.
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We will not discuss property 1 in this chapter. Property 2 we have already
encountered in Fig. 5.7. Before we investigate property 3, a mindful reader should
have noticed that we seemingly have trajectories that are “crossing” each other in
Fig. 5.8, whereas in Sect. 4.6.3 we commented that this is not possible because our
system is deterministic. The reason why the trajectories seem to cross is because
we are looking at a projection on the 2D plane! To further investigate the third
seminal property of chaos and the actual structure of the chaotic attractor, it would
be helpful to invoke the idea of dimensionless scaling from Sect. 4.6.3. First, we can
easily write down the normal form equations for Chua’s circuit in Fig. 5.5 (assume
parasitic series resistance R8 of L is 0, see Exercise 5.3):

dvC1

dt
= 1

C1

[
vC2 − vC1

R
− g(vC1)

]

dvC2

dt
= 1

C2

[
vC1 − vC2

R
+ iL

]

diL

dt
= −vC2

L
(5.3)

The general nonlinear characteristic g(vR) of the Chua diode, shown in Fig. 5.9, is
given by:

g(vR) = GbvR + 1

2
(Ga − Gb)(|vR + Bp| − |vR − Bp |) (5.4)

Fig. 5.9 The five segment PWL characteristic from Fig. 5.4, with vC1 = vR . Note that NR is not
passive since we have segments in the second and fourth quadrant, which correspond to the active
regions of NR . The linear resistor R from Fig. 5.5 has been plotted as a load line at steady state.
For particular values of R, notice we get three equilibrium points, P +, 0, P −. This justifies our
choice of connecting two voltage-controlled nonlinear resistors in parallel in Fig. 5.3. Note that
NR eventually becomes strictly passive. Those segments are due to opamp saturation and should
not be included when deriving Eq. (5.4)
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We will now scale the equations from Chua’s circuit into dimensionless, as shown
in Example 5.1.1.

Example 5.1.1 Derive the dimensionless form for Eq. (5.3).

Solution Following the procedure in Sect. 4.6.3, let τ
�= t

RC2
. Replacing t in

Eq. (5.3), we get:

dvC1

dτ
= C2

C1
[(vC2 − vC1) − Rg(vC1)]

dvC2

dτ
= [(vC1 − vC2) + RiL]

diL

dτ
= RC2

(−vC2

iL

)
(5.5)

We will take the dimensionless time form in Eq. (5.5) and make the state
variables dimensionless as well. Hence we will finally get a dimensionless
state equation. To do this, consider the first equation, replacing g(vC1) from
Eq. (5.4):

dvC1

dτ
= C2

C1

[
(vC2 − vC1) − {RGbvC1 + R

2
(Ga − Gb)(|vC1 + Bp| − |vC1 − Bp|)}

]

(5.6)

Factoring out Bp (Bp > 0), we get:

dvC1/Bp

dτ
= C2

C1

[(
vC2

Bp
− vC1

Bp

)
− Rg

(
vC1

Bp

)]
(5.7)

Let: x
�= vC1

Bp
, y

�= vC2
Bp

, a
�= GaR, b

�= GbR, α
�= C2

C1
. Equation (5.7)

simplifies to:

dx

dτ
= α(y − x − f (x)) (5.8)

where f (x) = bx + 1
2 (a − b)(|x + 1| − |x − 1|).

(continued)
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Example 5.1.1 (continued)
Notice all the parameters defined above are dimensionless. Multiplying and
dividing dvC2

dτ
in Eq. (5.5) by Bp:

dvC2/Bp

dτ
=

[(
vC1

Bp

− vC2

Bp

)
+ RiL

Bp

]
(5.9)

Let: z
�= iLR

Bp
. We thus have:

dy

dτ
= x − y + z (5.10)

Finally, if we define β
�= R2C2

L
, diL

dτ
in Eq. (5.5) becomes:

dz

dτ
= −βy (5.11)

Hence, the dimensionless form of Chua’s circuit equations are:

dx

dτ
= α(y − x − f (x))

dy

dτ
= x − y + z

dz

dτ
= −βy (5.12)

Some observations from the dimensionless form:

1. Example 5.1.1 illustrates a semi-systematic procedure for obtaining dimension-
less normal form: we always start by scaling the time variable. The justification
is that there are three choices for scaling to dimensionless time: τ = t

RnCn
,

τ = t
Ln/Rn

or τ = t√
LnCn

. After scaling time, the actual scaling of the state

variables, parameters, and nonlinearities depend on the particular system. Hence,
the procedure is “semi-systematic.”

2. Equation (5.12) has four parameters that can be tuned: α, β, a, b. In contrast,
Eq. (5.3) has seven parameters: R,C1, C2, L,Ga,Gb,Bp . Hence it is always
convenient to scale circuit equations to dimensionless form.

SageMath simulation results for Eq. (5.12) with two different initial conditions
([0.1, 0, 0.1], [0.1, 0, 0.01]) are shown in Fig. 5.10. SageMath code is shown in
Listing 5.2.
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Fig. 5.10 The result of simulating with two different initial conditions are shown in different
colors. Notice that the trajectories do not superimpose

Listing 5.2 SageMath code

1 # Simulate the autonomous Chua oscillator (dimensionless form
)

2 from scipy.integrate import odeint
3 from matplotlib import pyplot as plt
4 plt.rcParams['figure.figsize'] = (8.0,8.0)
5 plt.rc('text', usetex=True)
6 plt.rc('font', family='serif')
7 from mpl_toolkits.mplot3d import Axes3D
8 # Circuit parameters
9 C1=10e-9
10 C2=100e-9
11 L=18e-3
12 R=1514
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13 Bp=1
14 Ga=(0.864e-3+0.864e-3)/(-1.14-1.14)
15 Gb=(2.94e-3-0.864e-3)/(-8.36+1.14)
16 #dimensionless parameters
17 a=Ga*R
18 b=Gb*R
19 alpha=C2/C1
20 beta=((R**2)*C2)/L
21 # system
22 def f(x,a,b):
23 return b*x+0.5*(a-b)*(abs(x+1)-abs(x-1))
24 def chuaDimensionless(previousState,t):
25 # Let previousState = [x(t-dt),y(t-dt),z(t-dt)].
26 # Hence, we are going to return the normal form equations

to be integrated
27 # by odeint:
28 # x(t) = f_1(x(t-dt),y(t-dt),z(t-dt))
29 # y(t) = f_2(x(t-dt),y(t-dt),z(t-dt))
30 # z(t) = f_3(x(t-dt),y(t-dt),z(t-dt))
31 x,y,z=previousState
32 return (alpha*(y-x-f(x,a,b)),x-y+z,-beta*y)
33 # setup and run simulation
34 times=srange(0,500,0.01)
35 ics=[0.1,0,0.1]
36 chuaDimensionlessSolIC1=odeint(chuaDimensionless,ics,times,

rtol=1e-14,atol=1e-13)
37 chuaDimensionlessSolIC2=odeint(chuaDimensionless,[0.1,0,0.01

],times,rtol=1e-14,atol=1e-13)
38 # make sure we obtain STEADY STATE values of (x,y,z)
39 x1=chuaDimensionlessSolIC1[30000:45000,0]
40 y1=chuaDimensionlessSolIC1[30000:45000,1]
41 z1=chuaDimensionlessSolIC1[30000:45000,2]
42 x2=chuaDimensionlessSolIC2[30000:45000,0]
43 y2=chuaDimensionlessSolIC2[30000:45000,1]
44 z2=chuaDimensionlessSolIC2[30000:45000,2]
45 # 2D plot
46 plt.plot(x1,y1,'b',x2,y2,'r')
47 plt.xlabel('$x$',fontsize=16)
48 plt.ylabel('$y$',fontsize=16)
49 plt.title('Example of sensitive dependence on initial

conditions')
50 plt.show()
51 # 3D plot
52 fig = plt.figure()
53 ax = fig.add_subplot(111, projection='3d')
54 ax.view_init(20,70)
55 plt.xlabel('$x$',fontsize=16)
56 plt.ylabel('$y$',fontsize=16)
57 plt.ylabel('$z$',fontsize=16)
58 plt.plot(x,y,z)
59 plt.show()

Figure 5.11 shows a 3D plot. Notice how the chaotic attractor trajectories clearly
will not self-intersect in three dimensions, consistent with our explanation in
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Fig. 5.11 Chaotic attractor in 3D

Sect. 4.6.3. In fact, the chaotic attractor has a fractional Kaplan-Yorke dimension
between 2 and 3. For details on computing measures for chaotic systems such as the
(Kaplan-Yorke) dimension, Lyapunov exponents, etc., see [27]. Browsing through
the simulation code shows a very important point: we have to be careful before
declaring a system to be chaotic from simulation results alone. It could be the
steady state solution is (very) long-term periodic, or we may be looking at a transient
response. Although a variety of mathematical techniques exist that can be used to
rigorously prove chaos, they are beyond the scope of this book. For a very good
overview of the different techniques available, with a circuit theoretic emphasis, see
related chapters in [1]. However, we can easily avoid the trap of misidentifying
a transient response as the steady state solution by simply plotting the phase
portrait with different time ranges. In this case, we chose to plot the range
[30,000 : 45,000].

Another point to note are the parameters we chose. Since the parasitic series
resistance of L was chosen to be zero, we added 14� to R because at DC, we get a
load line using R = 1514�, consistent with the circuit in Fig. 5.6.
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Fig. 5.12 Plot (in red) of the Fourier transform of the voltage across a capacitor from the
Muthuswamy-Chua circuit (to be discussed in Sect. 5.4.1). Notice how the signal has content across
a wide range of frequencies

A very important property of chaos that is beyond the scope of this book is
the frequency content of chaotic signals. It turns out that chaotic signals possess
a wideband frequency content. An example is shown in Fig. 5.12. As a result
chaos can be easily confused with noise. Hence, before the advent of computer
simulations, chaos was observed but not identified in a variety of circuits and
systems. We will now look at a very brief history of chaos and see circuits where
chaos was observed but not identified.

5.2 A History of Chaos in Circuit Theory

In 1922, Armstrong invented the (super)regenerative circuit as a detector with high
sensitivity and selectivity as compared to other types of receivers [16]. In the early
days of radio engineering, this type of detection was frequently used. Nowadays,
regenerative devices are still used as predetection systems when very high fre-
quencies (e.g., microwave communication) are involved. The regenerative detector
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Fig. 5.14 Sinusoidally forced Van der Pol oscillator that displays chaotic behavior, is(t) =
A cos(ωt), see [27]

is favorably used in applications where simplicity and compactness outweigh the
need for low noise reception. These circuits use a three terminal vacuum tube, as
a receiver as well as in the transmitter, with inductive coupling. Figure 5.13 shows
the grid oscillator, a good model for studying chaos in Armstrong’s circuit. It turns
out that in a simplified model of the circuit above, one can show that the current i

behaves chaotically during a small period in time after which the circuit becomes an
oscillator. Armstrong was not aware of the circuits’ chaotic behavior, but reported
“strange irregular startups of the oscillator.” It also turns out that during the period
in which irregularities appear, the amplification of the circuit is maximal. Hence
Armstrong’s circuit is an example application of chaos to signal amplification.

Van der Pol in fact also observed similar phenomena, i.e. “irregular noise,” when
he forced his oscillator with a sinusoidal signal (Fig. 5.14). Unfortunately, he also
dismissed chaos as “noise” and did not study the phenomenon further. Note that the
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nonautonomous Van der Pol equations for the circuit in Fig. 5.14:

diL

dt
= v

L

dv

dt
= −iL − iR + A cos(ωt)

C
(5.13)

can be put it into autonomous normal form by a simple change of variables. If z
�=

ωt , we get:

iL

dt
= v

L

dv

dt
= −iL − iR + A cos(z)

C

dz

dt
= ω (5.14)

A variety of “near-misses” also occurred with respect to chaos when investigating
nonlinear circuits. Ueda studied combinations such as the Duffing7-Van der Pol
oscillator by means of analog and digital computers as early as 1961 while he was
a graduate student but did not publish results [27]. Many investigations into chaotic
circuits in the 1970s were focused on the nonautonomous type, where an external
(usually sinusoidal) forcing function was used.

In 1983, while on a visit to Dr. Matsumoto’s lab in Waseda University, Dr. Leon
O. Chua witnessed his colleague unable to reproduce chaos in a physical circuit
implementation of the Lorenz chaotic system. Chua realized that the issue at hand
was the use of analogmultipliers, which were not reliable in the early 1980s [5]. As a
result of the failure, Dr. Chua systematically designed an autonomous circuit that
could potentially reproduce chaotic behavior physically. The core concept was to
make use of theNR shown in Fig. 5.9 such that at equilibrium, the circuit possessed
three unstable equilibrium points, as Example 5.2.1 shows.

Example 5.2.1 Using the dimensionless formulation of Chua’s circuit from
Eq. (5.12) in Example 5.1.1, determine the equilibrium points for the param-
eter values from Fig. 5.6 and classify them as unstable or stable.

Solution The equilibrium points are simply found by setting the derivatives
equal to zero and solving the resulting system of nonlinear equations. Thus, if

(continued)

7We will study the Duffing oscillator in Sect. 5.5.



5.2 A History of Chaos in Circuit Theory 331

Example 5.2.1 (continued)
the equilibrium points are (x∗, y∗, z∗), we have:

α(y∗ − x∗ − f (x∗)) = 0

x∗ − y∗ + z∗ = 0

βy∗ = 0 (5.15)

Simplifying:

x∗ = −f (x∗)

x∗ = −z∗

y∗ = 0 (5.16)

Solving the above equations, we get the equilibrium points (0, 0, 0),
(+1.261, 0,−1.261), (−1.261, 0, 1.261). When |x(t)| < 1, the nonlinear
function is: f (x) = ax. Thus the Jacobian matrix J0 is:

J0 =
⎡
⎣−α − α · a α 0

1 −1 1
0 −β 0

⎤
⎦ (5.17)

When |x(t)| > 1, the nonlinear function is: f (x) = bx±(a−b). the Jacobian
matrices J±1 are both:

J±1 =
⎡
⎣−α − α · b α 0

1 −1 1
0 −β 0

⎤
⎦ (5.18)

Notice J0 and J±1 do not depend on the values of the equilibrium points, but
only the parameters. For J0, the eigenvalues are λ1 ≈ 2.659, λ2,3 ≈ −1.092±
2.423j . For J±1, the eigenvalues are λ1 ≈ −6.937, λ2,3 ≈ 0.143 ± 3.217j .

Notice how the Jacobian shows all three equilibrium points are unstable. But,
since NR in Fig. 5.9 is eventually passive, the circuit variables cannot arbitrarily
increase. Hence, the circuit eventually settles into a strange attractor.8

8There is another very important criterion for a chaotic attractor in Chua’s circuit—the homoclinic
orbit. For details, see [1].
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Although Chua’s circuit has more components than required for a chaotic
electronic circuit, its significance is the fact that since it was systematically
designed, a rigorous proof of chaos was quickly possible within only 2 years after
its invention [1]. Moreover, systematically understanding how chaos is produced
in Chua’s circuit will help in approaching the study of chaos in other “simpler”
electronic circuits. This is because of the fact that Chua used PWL analysis in
designing the Chua diode. So, when possible, we encourage the reader to use a PWL
approximation of a nonlinear function in order to not only implement the function
physically, but also to aid in the mathematical analysis of the underlying differential
equations.

For instance, in the next section, we will list two circuits which have very simple
topologies, but they produce “rich” chaotic behavior. Also, the underlying nonlinear
device model that gives rise to chaotic behavior is still a subject of active research.

5.3 Chaos from Physical Nonlinearities: pn-Junctions
and PWL Inductors

5.3.1 RLD Chaotic Circuit

Consider the QUCS schematic of the RLD circuit in Fig. 5.15. A chaotic time-
domain waveform is shown in Fig. 5.16. Investigations into the physical source of
chaos in the diode for the circuit from Fig. 5.15 focus on the nonlinear junction
capacitance. In fact, [20] has an elegant PWL model for the nonlinear junction
capacitance. Hence a circuit that uses a nonlinear capacitor to produce chaotic

V1
U=1.9V
f=700kHz

D_1N4148_1
Is=222p
N=1.65

L1
L=100 uH

vR1

R1
R=50 Ohm TR1

Type=lin
Start=0
Stop=5 ms

+

–

transient
simulation

Fig. 5.15 Chaotic circuit from a forced diode resonator
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Fig. 5.16 The voltage across the 50� resistor from Fig. 5.16 as a function of time
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Fig. 5.17 PWL capacitor used to model the diode in the RLD chaotic circuit

behavior is shown in Fig. 5.17. The circuit equations for the PWL model are:

dq

dt
= i

di

dt
= − 1

L
(iR + f (q) − E sin(ωt)) (5.19)

where:

f (q) = a|q| + bq + E0 (5.20)

a = C2−C1
2C1C2

, b = C1+C2
2C1C2

. Chaos has been observed by fixing R = 60�,L =
100 μH, C1 = 0.1 μF, C2 = 400 pF, ω/2π = 700 kHz, E0 = 0.1V and varying E

from 0 to 2.0V. We leave the exploration to the reader.
But, there are a variety of nonlinearities present in the junction diode, besides

capacitance. For example, the conductivity modulation effect present in diodes is
due to memristance [7]. Hence an interesting avenue for further research would be
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to examine if the memristor’s nonlinearity plays any role in chaos in the RLD circuit
(under appropriate range of parameters).

5.3.2 PWL Inductor Circuit

If we make only the inductor nonlinear in an RLC circuit by introducing hysteresis
(example: iron core inductors), chaos can occur [8]. The PWL schematic for the
circuit is shown in Fig. 5.18.NL is defined by the following PWL function:

i(φ) =

⎧⎪⎪⎨
⎪⎪⎩

φ−φ1
L1

for φ > φ0
φ
L0

for |φ| < φ0
φ+φ1
L1

for φ < −φ0

(5.21)

where

φ1 = φ0

(
1 − L1

L0

)
(5.22)

Practically, 0 < L1 < L0. The circuit equations are:

dφ

dt
= R1R2

R1 + R2
i(φ) − R2

R1 + R2
(v − E cos(ωt))

dv

dt
= 1

C

[
R2

R1 + R2
i(φ) − 1

R1 + R2
(v − E cos(ωt))

]
(5.23)

Circuit parameters used for simulation are: ω/2π = 50Hz, R1 = 50Ω,R2 =
10 k�,C = 1.69 μF, L0 = 33.33H, L1 = 1.28H, φ0 = 0.92Vs. Varying E

should produce chaotic behavior, we also leave this exploration to the reader. What
is interesting however is the physical mechanism of chaos in this circuit is still
unknown.

Fig. 5.18 A nonlinear
resonant circuit

E cos ωt

R1 C

L

R2( )
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Fig. 5.19 Canonical Chua’s
oscillator with a
flux-controlled memristor

G C1C2
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M

v2 v1
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5.4 Memristor Based Chaotic Circuits

We will now discuss chaotic circuits using the fourth fundamental circuit element,
the memristor. Consider the canonical Chua’s circuit9 in Fig. 5.19, withNR replaced
by NM [13]. However, one has to use caution when deriving the circuit equations.
This is because simply writing the equations in terms of current and voltage would
give:

di

dt
= 1

L
(v2 − v1)

dv2

dt
= 1

C2
(Gv2 − i)

dv1

dt
= 1

C1
(i − W(φ1)v1)

dφ1

dt

�= v1 (5.24)

Exercise 5.5 asks you to rewrite the system equations in terms of charge and flux,
so the number of ODEs is reduced by one.

A variety of chaotic attractors have been derived for the circuit in Fig. 5.19. What
is interesting however is that we only need one capacitor, one inductor, and one
memristor to obtain a chaotic circuit, as the next section illustrates.

5.4.1 Muthuswamy-Chua Circuit

Let us play the same “trick” that we used in Chua’s circuit, of replacing NR

with NM , but in the topologically simpler (series) Van der Pol oscillator. We
consider the series implementation in this section because Muthuswamy and Chua
systematically obtained chaos [22] in the circuit shown in Fig. 5.20, called the
Muthuswamy-Chua circuit [19]. Assuming a current-controlledNM with only one

9This circuit is slightly different from the circuit we discussed in Sect. 5.1.
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Fig. 5.20 The
Muthuswamy-Chua circuit
[22]

vC

C

L

M

iL iM

vM

internal state z,10 the system equations for the circuit can be trivially derived:

dvC

dt
= iL

C

diL

dt
= − 1

L
(vC + R(z, iL)iL)

dz

dt

�= f (z, i) (5.25)

The significance of the Muthuswamy-Chua circuit is that it is the simplest known
chaotic circuit that uses only the fundamental circuit elements. Also, only the
memristor is nonlinear.11 Consider the following specific system equations derived
from Eq. (5.25). We have assumed x = vC, y = iL.

dx

dt
= y

C

dy

dt
= − 1

L

(
x + β(z2 − 1)y

)

dz

dt
= −y − αz + yz (5.26)

Inspired by Rössler’s intuitive arguments in deriving his namesake chaotic equation,
the memristance and state functions in Eq. (5.26) were systematically derived by Dr.
Muthuswamy for producing chaotic behavior. Assuming β > 0,R(z) = β(z2−1) is
negative for |z| < 1. Hence when we “power on” the circuit in Fig. 5.20, since initial
memristor state variable will naturally be assumed to be close to zero, we have a

10The system of equations is autonomous and the minimum number of state variables to obtain
chaos in a continuous time autonomous system is three. Hence we need only one internal state
for the memristor to have a three-dimensional autonomous ODE model of the Muthuswamy-Chua
circuit.
11Of course, we know by definition a linear memristor is simply a resistor.
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Fig. 5.21 x − y phase plot resulting from simulating Eq. (5.26) with parameters C = 1, L =
3.3, β = 1.7, α = 0.2. We chose an appropriate interval to avoid transient and plot the “steady-
state” chaotic attractor

negative memristance. Hence the circuit is unstable and the voltage, current values
start increasing. In the RHS of the

•
z Eq. (5.26), we can see the product yz also starts

increasing. But, if |z| > 1, the memristance is positive and hence the circuit becomes
stable. Furthermore, the −y −αz will also eventually cause trajectories in z to head
back to the origin, until the circuit becomes unstable again. This alternating unstable
and stable behavior leads to limit cycles (similar to our discussion in Sect. 4.6.3)
for some parameter values, and chaos for other (systematically chosen) parameter
values. In fact, it has been rigorously proved [12] that the chaotic attractor shown in
Fig. 5.21 is topologically the same as the Rössler attractor.

We will now discuss the implementation of the Muthuswamy-Chua circuit in
detail since we have to emulate the memristor. Consider the schematic Fig. 5.22.
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Fig. 5.22 Circuit for emulating NM from Fig. 5.20

The first step is to sense the current using a “sense” resistor Rs . This resistor
must be “small enough” so it does not affect the dynamics of the circuit. In our case
we have Rs = 100� connected to the difference amplifier U3B. Hence the output
of U3B is:

v0 = Rs1

Rs2
RsiM = −RscaleiL (5.27)

Thus we have scaled and mapped the current into a voltage v0, so that we can easily
use components such as analog multipliers, which are voltage based.

The next step is to realize the memristor function R(x) = β(x2 − 1),12 using
opamp U3A, multipliers U4,U5. Using the datasheets of the multipliers and the

12We will use x instead of z for the memristor state in the implementation discussion, to be
consistent with the original publication [22].
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Fig. 5.23 Experimental plot of R(x) = 1.5(x2 − 1). Horizontal axis scale is 0.5V/division;
vertical axis scale is 1.00V/division. The experimental curve crosses the horizontal axis at −1V
and approximately 0.9V

connections shown in the schematic, we can infer that:

vM = −β5kpot

R6
v0 − β5kpot

R5
(−x2v0) (5.28)

We will chooseR5 = R6 = R = 1k and β
�= β5kpot

R
. Replacing v0 in Eq. (5.28) from

Eq. (5.27) and simplifying, we get:

vM = βRscale(x
2 − 1)iL (5.29)

A plot of R(x) obtained from the circuit is shown in Fig. 5.23. The reader should
have noticed that R is not PWL. A good avenue for further research would be to
consider PWL versions of R.

The final step is to realize the memristor internal state equation. This is done by
means of opamps U2B,U2A. The output x of opamp U2B is given by:

dx

dt
= 1

Cf

[
v0

Rb

− x

α10kpot
− xv0

Ra

]
(5.30)
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Fig. 5.24 Memristor pinched hysteresis loop (Lissajous figures). Axes scales are 0.5V/division
for horizontal axis (iM ), 1.00V/division for vertical axis (vM ). (a) 3 kHz. (b) 35 kHz

Substituting for v0 from Eq. (5.27), we get:

dx

dt
= 1

Cf

[
−RscaleiL

Rb

− x

α10kpot
+ RscaleiLx

Ra

]
(5.31)

Let us check memristor pinched-hysteresis v − i characteristics, based on our
discussions in Sect. 4.4.2. Results are shown in Fig. 5.24a, b. The DC characteristic
has already been verified in Fig. 4.41. Notice that as ω → ∞, the hysteresis
loop degenerates to that of a linear resistor, as required. Let us now consider the
memristor emulator connected to a physical Cn and Ln. Circuit equations are:

dvC

dt
= iL

Cn

diL

dt
= − 1

Ln

[
vC + βRscale(x

2 − 1)iL + RsiL

]

dx

dt
= 1

Cf

[
−RscaleiL

Rb

− x

α10kpot
+ RscaleiLx

Ra

]
(5.32)

Notice that we have included the effect of the sense resistor Rs in the
•
iL equation

above.
We finally need to convert the circuit equations into the system Eq. (5.26). To do

this, we will first perform the time scaling as τ
�= Tst = 105t . In this case, we do

not perform a dimensionless scaling using τ = t√
LC

. The reason is that choosing
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this time scale would eventually make L = C in Eq. (5.26). We will also scale y(τ)

to hundreds of microamps, for physical implementation. Thus, we have:

x(τ)
�= vC(t)

y(τ )
�= RscaleiL(t)

z(τ )
�= x(t) (5.33)

To be clear, the dimension of x, y, z are all volts. Substituting the definitions above
into Eq. (5.32) and simplifying using the component values from the emulator we
get:

dx

dτ
= y

C

dy

dτ
= − 1

L

(
x + β(z2 − 1)y + 0.01y

)

dz

dτ
= −y − αz + yz (5.34)

where:

C = RscaleCnTs

L = LnTs

Rscale

β = β5kpot

R

α = 1

TsCf α10kpot
(5.35)

Choosing Cn = 1 nF, Ln = 330mH and β5kpot = 1.7k, α10kpot = 5k, we get:
C = 1, L = 3.3, β = 1.7, α = 0.2. The attractor obtained from the physical
circuit is shown in Fig. 5.25. Based on our experience with the memristor emulator,
a natural follow-up question is: are there chaotic circuits where physical memristor
nonlinearities cause chaos? As of the writing of this book (January 2018), no one has
explicitly found such a circuit. But, there are a variety of candidates. One promising
candidate is Theodorchik’s oscillator [2] shown in Fig. 5.26. Anischenko et. al. [2]
do not explicitly state theR(T ) modeled by a thermistor, is a memristor. They rather
assume the memristance to be a linear function of temperature. They modify the
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Fig. 5.25 Experimental chaotic attractor, axes scales are 0.5V/division. We used a current probe
to measure the current iL through the inductor. In the experimental plot, (0, 0) has been shifted to
the right for clarity on the oscilloscope. Compare to Fig. 5.21

M

L1 L

R T

C Amplifier

( )

Fig. 5.26 Theodorchik’s oscillator with “inertial nonlinearity”

oscillator in Fig. 5.26 by adding more amplifier stages, assume the amplifier to be
nonlinear and obtain chaos. It would be interesting for the reader to investigate this
problem further (see Exercise 5.7).
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5.5 Implementing the Duffing Oscillator Using
a Higher-Order Element

Having obtained chaotic circuits by using all four fundamental circuit elements, we
will next propose a chaotic circuit using a higher-order circuit element. We alluded
to this in earlier chapters, recall the Duffing oscillator equation from Chap. 1:

v̈ + cv̇ + v(b + a · v2) = i(t) (5.36)

We discussed that we will use a (0,−2) element to implement v̈ and proposed
a schematic in Sect. 4.6.2, reproduced in Fig. 5.27. Consider now the circuit in
Fig. 5.28. From the U2 voltage follower, we get: v1 = v2.

The voltage drop across R is i2R, since the current into the noninverting input
of U3 is zero. Also, since the noninverting input of U3 is at virtual ground, we have
the noninverting input voltage of U1 to be equal to i2R. Hence:

i3 = −C3
di2R

dt

= RC2C3
d2v2

dt2

= RC2C3
d2v1

dt2
(5.37)

Since the current into the noninverting input of U2 is also zero, the CFOA ensures
i1 = i3. So we finally have:

i1 = RC2C3
d2v1

dt2
(5.38)

Fig. 5.27 A mutator for
synthesizing (0,−2) from a
(0,−1) element (capacitor C2
at port 2)
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+

+
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Fig. 5.28 One implementation of Fig. 4.51

Notice the equation above is dimensionally consistent. Exercise 5.4 asks you
to complete the implementation of the Duffing oscillator using the higher-order
element we implemented above.

5.6 Transistor Based Chaotic Circuits

Consider13 the Colpitts Chaotic Oscillator[14] QUCS schematic shown in Fig. 5.29.
Simulation results are shown in Fig. 5.30. The PWL equivalent circuit is shown in
Fig. 5.31. The circuit equations based on the PWL model are:

dVCE

dt
= 1

C1
(IL − IC)

dVBE

dt
= − 1

C2

(
VEE + VBE

REE

+ IL + IB

)

dIL

dt
= 1

L
(VCC − VCE + VBE − ILRL) (5.39)

13This is another example of a circuit where a physical nonlinearity is the cause of chaos.
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Vee
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Fig. 5.29 A chaotic Colpitts oscillator

Fig. 5.30 QUCS simulated chaotic attractor. y-axis is vBE , x-axis is vCE . Notice the initial
transient settling into the chaotic attractor
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Fig. 5.31 PWL model of the
Colpitts chaotic oscillator
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Experimentally, it has been observed that the transistor is operating in either forward
active or cutoff. Consequently, the following PWL linear function for IB is used
(compare to Fig. 2.18):

IB =
{
0 if VBE ≤ VT H

VBE−VT H

RON
if VBE > VT H

(5.40)

IC = βF IB (5.41)

where VT H ≈ 0.75V is the threshold voltage,RON is the small-signal on-resistance
of the base-emitter junction, and βF is the forward current gain of the device.

We would like to conclude this chapter by illustrating the elegance of dimen-
sionless scaling. We will only highlight the main concepts, leaving the actual
dimensionless scaling of the equations to the reader.

There are a variety of concepts that need to be taken into account for dimen-
sionless scaling of Eq. (5.39). The first is the time scale. There is every possible

combination of time scaling: τ
�= t

RLC1 , τ
�= t

L/RL
, etc. in the circuit. So let us take

a step back and understand the problem.14 It seems like the primary mechanism
of chaos should involve the inductor and both capacitor(s), as they are the dynamic
elements in our PWL model. Hence a logical choice for time scale should involve
some combination of L,C1, C2. Again from experience, the reader will realize by

14The reader has hopefully been applying the steps to problem solving elucidated in Exam-
ple 1.10.2 throughout the book.
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looking at the form of the RHS in Eq. (5.39) that:

τ
�=

√
LC1C2

C1 + C2
(5.42)

is a “good” choice. Next, let us examine the IB nonlinearity. Notice it can be
rewritten as:

IB =
{
0 if VBE/VT H ≤ 1
VT H (VBE/VT H −1)

RON
if VBE/VT H > 1

(5.43)

The justification for doing so is to define (for the second state equation in Eq. (5.39))

y
�= VBE

VT H
. But notice we can carry the simplification above for the PWL one step

further:

IBRON

VT H

=
{
0 if VBE/VT H ≤ 1

VBE/VT H − 1 if VBE/VT H > 1
(5.44)

The LHS of the equation above gives us a hint that:

z
�= ILRON

VT H

(5.45)

Moreover, the nonlinear function simply becomes:

f (y) =
{
0 if y ≤ 1

y − 1 if y > 1
(5.46)

We have now the dimensionless definitions for time, all state variables and the
nonlinearity!

5.7 Conclusion to This Book

In this book we have covered lumped circuit theory. A reader who is probably
familiar with classic linear circuit theory should hopefully now appreciate the
advantage of following a “top-down” general approach to circuit theory: it enables
them to properly analyze a very broad class of circuits. For example, consider our
discussion of on opamps in Sect. 2.5. The reason we were able to properly analyze
negative and positive feedback circuits is because we clearly (and correctly) sepa-
rate static behavior from dynamic circuit behavior. Thus, the concept of instability in
positive feedback circuits (opamp or otherwise) requires us to introduce (parasitic)
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dynamic v − i components such as capacitors and inductors (perhaps even the
memristor for a hitherto undiscovered circuit). In this chapter, we saw how all the
concepts integrated together in the form of chaotic circuits using fundamental circuit
elements, opamps and transistors.

So, having been armed with the proper approach to circuit theory, where does a
reader go from here? An answer to this question is for the reader to follow up on
particular concepts of interest. Some (by no means, exhaustive) examples:

1. Recall the Simultaneity Postulate from Sect. 1.3. This postulate dictates when the
techniques in this book are valid. Hence, a natural follow-up for the interested
reader would be on distributed circuits,15 where the simultaneity postulate is
inapplicable.

2. Another approach would be to pick up books that exhaustively cover the
ideas introduced here. For example, the graph theoretic approach to circuits is
extensively covered in [4]. Another excellent very recent volume on the topic is
[24].

3. Chaotic systems are the subject of many excellent books. An excellent starting
point is [27]. Sprott has a chapter devoted exclusively to chaotic electrical
circuits.

Exercises

5.1 Show that Fig. 5.2 (assuming R1 = R2) gives Eq. (5.2).

5.2 NOTE: This is an open-ended problem
Systematically change the values of the initial conditions; inductor, capacitor(s)
values and the DP characteristic of NR , to obtain different behaviors in Chua’s
circuit. What happens in Fig. 5.6 if the parasitic series resistance for the inductor is
removed? Does the simulation converge?

The reader should notice that it is much easier to simulate the dimensionless form
in a mathematical package such as SageMath, rather than obtaining results from the
circuit simulator. Why do you think this is the case? Think about all reasons. Also
think about advantages of simulating the circuit equations.

5.3 Derive the circuit Eq. (5.3) for Fig. 5.5. Use Sect. 1.9.1.2 to derive the NR

characteristics in Eq. (5.4) from Fig. 5.9.

15We (Dr. Muthuswamy and Dr. Banerjee) are planning to write such a follow-up volume to this
book, tentatively titled: “Advanced Nonlinear Circuits and Networks.” In the follow-up book, we
plan to first discuss rigorously how circuit theory is an approximation of electromagnetic field
theory. This would then set us up nicely to discuss distributed circuits.



5.7 Conclusion to This Book 349

5.4 NOTE: This is an open-ended problem
Synthesize the Duffing oscillator from Sect. 5.5. We recommend approximating the
cubic using a simple PWL nonlinearity (realized using one opamp).

5.5 Write system equations for the Chua oscillator from Fig. 5.19 in terms of charge
and flux, using the ideas from Sect. 4.4.1.

5.6 NOTE: This is an open-ended problem
Design and implement a memristor simulation library for QUCS.

5.7 NOTE: This is an open-ended problem
Investigate chaotic circuit implementations where the source of chaos is a physical
(not emulated) memristor’s nonlinearity. As a starting point, we know of three
devices that can be modeled by memristors: pn-junction diodes, thermistors, and
discharge tubes. Hence a good approach would be to investigate existing chaotic
circuits based on these devices and check if the underlying memristor nonlinearity
is the cause of chaos.

Lab 5: Capstone Chaos Project(s)

In this final “lab,” we will give some further suggestions for capstone projects. Note
again that most of the exercises above are capstone projects.

1. At the turn of the twenty-first century, an active area of research in chaotic
circuits (systems) is the notion of classifying chaotic attractors into “self-excited”
and “hidden.” We have discussed “self-excited” chaotic attractors: those that
arise due to unstable equilibrium points. Kuznetsov et. al. coined the notion
of “hidden” attractors, so named because they are present in a neighborhood
of stable equilibrium points. An excellent starting point is the survey paper
by Leonov and Kuznetsov [17]. Physically implementing chaotic circuits that
exhibit hidden attractors are tricky because they exist close to stable equilibrium
points, for a good example, see [28].

2. Mathematically investigating chaotic circuits is difficult because one has to be
well-versed in the theory of dynamical systems. But, excellent works abound
online. A good tractable starting point for the curious undergraduate would be
the papers on interval arithmetic by Galias [11].

3. There has been no experimental confirmation of chaos from a physical (Joseph-
son junction, pn-junctions, thermistor, discharge tube) memristor.

4. An energy approach to the study of chaotic systems.
5. Chaotic circuits with time delay, see [27], although a realistic circuit representa-

tion of chaotic time delay systems should probably use distributed components
such as waveguides.

6. We also encourage the reader to look through some of the references in this
chapter for exciting ideas related to chaotic circuits.

7. Further references for projects are [9, 10, 15, 21, 25].
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