
Chapter 4
Dynamic Nonlinear Networks
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Simulated (blue) and experimental (red) limit cycle of a Van der
Pol oscillator derived from Chua’s circuit [1]

Abstract We will now learn about techniques for analyzing dynamic circuits, that
are governed by differential equations. We will emphasize fundamental concepts
behind dynamic nonlinear networks, time domain analysis of nth-order nonlinear
networks, frequency response concepts, circuit analysis techniques for memristive
networks and energy approaches (Lagrangian, Hamiltonian). We cannot hope to
cover all the analysis techniques for dynamic nonlinear networks in detail in
one chapter. Nevertheless, this chapter should prepare the reader for picking up
advanced techniques for analyzing dynamic nonlinear networks from any special-
ized references.

4.1 Basic Concepts of Dynamic Nonlinear Networks

Definition 4.1 A network D consisting of an arbitrary interconnection of a finite
number of four fundamental circuit elements, is called a dynamic nonlinear
network.

Before we begin, we ask the reader recall from Sect. 3.3, to not “lose sight of the
forest for its trees”. That is, one should not be so consumed by the systematic
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200 4 Dynamic Nonlinear Networks

techniques that we lose total insight into circuit behavior. Also recall that it is often
through the introduction of hypothetical, and sometimes pathological circuits, that
one gains an in-depth understanding of this subject.

By Definition 4.1, D represents the class of all nonlinear networks other than
resistive networks [3]. Since this class of dynamic networks is so much larger than
the class of resistive networks, it is virtually impossible for us to formulate a general
theory that is applicable to the solution of all dynamic networks. After all, it took
us an entire chapter just to give an overview of the analysis techniques for resistive
nonlinear circuits.

Hence in this chapter, we will primarily use two-terminal dynamic elements
and also restrict our discussion to fundamental concepts, starting with the order of
complexity.

4.1.1 Order of Complexity

Since the basic problem in dynamic nonlinear networks is to find the solution to a
system of nonlinear ordinary differential equations, it is more appropriate to classify
dynamic networks according to the “complexity” of their system of differential
equations. It is well known that the solution to any system of differential equations
can be found only to within a number of arbitrary constants k1, k2, · · · , kn. In
order to determine the n arbitrary constants, we must specify n independent initial
conditions.

Definition 4.2 A set of initial conditions is said to be independent if its values can
be arbitrarily chosen.

Two systems of differential equations requiring different numbers of initial condi-
tions are usually solved by quite different methods. Hence one meaningful basis
for classification of D can be stated in terms of the number of independent initial
conditions that must be specified in order to uniquely solve for the solution of the
network.

Definition 4.3 The order of complexity of a dynamic network is the minimum
number n of independent initial conditions that must be specified in terms of the
circuit variables in D , for completely describing the behavior of the network.

For convenience we shall refer to D as a first-order network if n = 1 and a
second-order network if n = 2. Since n ≥ 1 for any dynamic network, we might,
for the sake of completeness, refer to any resistive network as a zero-order network.

It is important to observe that Definition 4.3 requires that the number of initial
conditions be independent of one another. Definition 4.2 implies that none of the
specified initial conditions can be derived from the rest, as Example 4.1.1 illustrates.
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Fig. 4.1 Circuits for Example 4.1.1

Example 4.1.1 Determine the order of the two networks in Fig. 4.1.

Solution SinceDa contains only one storage element, we can easily infer that
Da is a first-order network. Now, since Db contains two storage elements, it
appears at first sight that we can specify two initial conditions, namely, the
voltage v1(t0) across capacitor C1 and the voltage v2(t0) across capacitor
C2 at some time t0. However, since by KVL v2 = v1 − vDC, the two
initial conditions are dependent because once v1(t0) is specified, v2(t0) is
constrained by v1(t0) − vDC, and hence v2(t0) cannot be specified arbitrarily.
ThereforeNb is a first-order network.

From the theory of differential equations in the normal form, it is known that
a system of n differential equations requires exactly n initial conditions for its
solution. Therefore, it is important that we understand Definition 4.4 for the normal
form.

Definition 4.4 The system of n first-order differential equations:

dx1

dt
= f1(x1, x2, · · · , xn)

dx2

dt
= f2(x1, x2, · · · , xn)

· · · · · · · · ·
dxn

dt
= fn(x2, x2, · · · , xn) (4.1)

is said to be in normal form because:

1. Only first-order time derivatives appear on the left-hand side of the equations.
2. No time derivatives appear on the right-hand side of the equations.
3. The dependent variables coincide with the state variables that appear on the

left-hand side.
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Fig. 4.2 Circuit for Example 4.1.2

Since the order of complexity is equal to the number of state variables when the
system equations are written in normal form, one approach to determining the order
of complexity would be to always write normal form equations for D , as shown in
Example 4.1.2.

Example 4.1.2 Determine the dynamic equations for the network in Fig. 4.2.
The characteristics of the various circuit elements are:

NC : q(v) = 2 − 3v3 + 5v5

NL : φ(i) = 1 + 2i − 3i2 + i3

NR : i1 = 1 + v1 + 3v1i
3
2 − 4i52

v2 = 4 − i2v1 − 2i22v
5
1 + v31 (4.2)

Solution For this circuit, we can determine the dynamic equations by
inspection, without resorting to advanced techniques like MNA that will be
discussed later in this chapter. Recall the memory property for inductors and
capacitors from Chap. 1: Eq. (1.63) implies that a current iL(t0) through an
inductor is an initial condition. By duality, Eq. (1.71) implies that a voltage
vC(t0) across a capacitor is another suitable initial condition. Hence let us
choose v3 and i4 to be the state variables. Hence the order of complexity is 2.
Thus we need to obtain the following normal form:

dv3

dt
= f1(v3, i4)

di4

dt
= f2(v3, i4) (4.3)

(continued)
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Example 4.1.2 (continued)
For NC , in terms of circuit variables the q3 − v3 characteristic is q3(v3) =
2−3v33 +5v53. Differentiating with respect to time and applying the chain rule
we get:

i3 = −9v23
dv3

dt
+ 25v43

dv3

dt
(4.4)

Since by KCL i3 = i1 and by KVL v1 = E−v3, we can simplify the equation
above as:

dv3

dt
= i1

v23

(
25v23 − 9

)

= 1 + v1 + 3v1i32 − 4i52
v23

(
25v23 − 9

)

= 1 + (E − v3) + 3(E − v3)i
3
2 − 4i52

v23

(
25v23 − 9

) (4.5)

From KCL at the output port of NR : i2 = −i4. Thus we have the dv3
dt

equation as:

dv3

dt
= 1 + (E − v3) − 3(E − v3)i

3
4 + 4i54

v23

(
25v23 − 9

) (4.6)

With respect to the second state equation, for NL in terms of circuit
variables the φ4 − i4 characteristic is: φ4(i4) = 1 + 2i4 − 3i24 + i34 . Taking
the derivative of this characteristic with respect to time and applying the chain
rule:

v4 = 2
di4

dt
− 6i4

di4

dt
+ 3i24

di4

dt
(4.7)

Rewriting in terms of di4
dt

and using the fact that by KVL v4 = v2, along with
the v2 definition fromNR, we get:

di4

dt
= 4 − i2v1 − 2i22v

5
1 + v31

2 − 6i4 + 3i24
(4.8)

Applying KCL: i2 = −i4, KVL: v1 = E − v3 and simplifying we get the
second state equation:

di4

dt
= 4 + i4(E − v3) − (2i24(E − v3)

2 + 1
)
(E − v3)

3

2 − 6i4 + 3i24
(4.9)
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We need to be aware that it may not be possible to write normal form equations,
given a specific choice of state variables. To demonstrate the difficulty involved, let
us examine Eq. (4.4) more closely. Observe that we were able to express i3 in terms
of v3 and v̇3 because NC was voltage controlled. Suppose instead NC was charge-
controlled: v3(q3) = q3

3 −q3. In this case, it is necessary that we express q3 in terms

of v3 before applying the chain rule (to evaluate dq3
dv3

). Unfortunately, this is not
possible because q3 is a multivalued function of v3. This is equivalent to saying that
the inverse function does not exist. In this case, the normal form equations cannot
be obtained, if we insist on v3 as the state variable.

There is, of course, no reason why we should insist on choosing only voltages
and currents as state variables. Any other set of variables x1, x2, · · · , xn is just as
valid, provided Definition 4.4 is satisfied.

Although we could always determine the order of complexity by writing the state
equations forD , we shall now develop a simple technique for determining the order
of complexity for a particular class1 of D by inspection, i.e., without writing down
any equation. In order to understand how this method works, it is important for us
to obtain a deeper understanding of why initial conditions are necessary from the
network’s point of view, and to understand which electrical variables qualify as an
appropriate set of initial conditions.

From the mathematical point of view, initial conditions are introduced as a “gim-
mick” for determining the values of the arbitrary constants associated with the solu-
tion to a system of differential equations. From the network’s point of view, initial
conditions are introduced because of our ignorance or incomplete knowledge of the
past history of excitations that have been applied to the network. In order to under-
stand the above reason, let us consider an arbitrary capacitor Cj of an arbitrary net-
workD . Suppose we want to find the charge qj (t) of this capacitor at time t , namely,

qj (t) =
t∫

−∞
ij (τ )dτ (4.10)

From Eq. (4.10) it is clear that qj (t) can be found only if we know the exact
waveform of the capacitor current ij (t) from t → −∞ up to the present time
t , that is, from the time the capacitor was manufactured. However, practically
speaking, in any physical network excitations are applied at some finite time in the
past, say t = t0. Hence we would usually have information on the excitation of
waveforms only for t ≥ t0. This ignorance of the past history of ij (t) prevents us
from determining qj (t). However, let us rewrite Eq. (4.10) in the form:

qj (t) =
t0∫

−∞
ij (τ )dτ +

t∫

t0

ij (τ )dτ (4.11)

1We mean a network containing only two-terminal fundamental circuit elements and independent
sources. No dependent sources, ideal transformers, gyrators, etc. are allowed.
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The second integral can be found because we know ij (t) for t ≥ t0. It is the first inte-
gral that is giving us trouble. Observe, however, that at t = t0 Eq. (4.10) becomes:

qj (t0) =
t0∫

−∞
ij (τ )dτ (4.12)

Hence Eq. (4.11) becomes:

qj (t) = qj (t0) +
t∫

t0

ij (τ )dτ (4.13)

where t ≥ t0. Equation (4.13) tells us that, provided we are interested only in
knowing qj (t) for t ≥ t0, it is not necessary to know the entire past history of ij (t)

for t < t0. Instead, we need to know only the value of the charge qj in the capacitor
at the initial time t0. This value qj (t0) is called the initial condition.

Let us now recall that a capacitor is characterized by a curve in the v − q plane,
and if we know v(t), we can find q(t) and vice versa. Since it is necessary to know
the initial condition q(t0) in order to find q(t) for t ≥ t0, it follows that it is necessary
to know v(t0) in order to find v(t) for t ≥ t0. However, since given v(t0) we can
find q(t0) and vice versa, it is sufficient to specify an initial condition either in terms
of capacitor charge or voltage at time t0. But, notice an examination of Eq. (4.13)
shows that specifying capacitor current ij (t0) would not do any good because one
cannot determine qj (t0) from this information alone. We conclude therefore that the
current in a capacitor is not an appropriate initial condition.

By exact dual arguments, we find that for an inductor:

φj (t) = φj (t0) +
t∫

t0

vj (τ )dτ (4.14)

Thus we can specify either the flux linkage φ(t0) or inductor current i(t0) as
appropriate initial conditions. The voltage across an inductor at t0 is not an
appropriate initial condition.

Let us now explore the concept of independent initial conditions in more detail.
We have already seen in Example 4.1.1 that the order of complexity of a dynamic
network may not be equal to the number of energy storage elements, because some
initial conditions may not be independently specified. In order to diagnose the
source of “dependency,” let us consider the more complicated networkD in Fig. 4.3.

SinceD contains ten energy-storage elements (six capacitors and four inductors),
it appears that we can specify 10 initial conditions, vC1, vC2, vC3, vC4, vC5, vC6,

iL1, iL2, iL3, and iL4. However a more careful inspection of the network shows that
not all these initial conditions are independent. For example, the loop consisting of
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Fig. 4.3 An example of the two possible sources of dependent initial conditions, namely, a loop
of capacitors and voltage sources, and a cut set of inductors and current sources

capacitors C1, C2, C3 and voltage source E0 imposes a constraint due to KVL:

vC1 + vC2 + vC3 = E0 (4.15)

This equation implies that only two of the three initial conditions vC1, vC2, and vC3
can be specified arbitrarily. We conclude that although there are six capacitors, only
five capacitor voltages are independent. Similarly, the cut set consisting of inductors
L2, L3, L4 and current source I0 imposes a constraint due to KCL:

iL2 + iL3 + iL4 = I0 (4.16)

Thus only two of three initial conditions iL2, iL3, iL4 can be specified arbitrarily.
Hence we conclude that although there are four inductors, only three inductor
currents are independent. The maximum number of initial conditions that can be
specified is therefore equal to 5 + 3 = 8.

Based on our discussion above, it is clear that a dependency exists whenever
it is possible to write a constraint involving only capacitor voltages and voltage
sources; therefore, we must subtract one initial condition from the total number of
energy-storage elements. Similarly, it is clear that a dependency exists whenever
it is possible to write a constraint involving only inductor currents and current
sources; therefore, we must likewise subtract one initial condition from the total
number of energy-storage elements. The first constraint involving only capacitor
voltages and voltage sources occurs if and only if there exists a loop in the network
containing only capacitors and independent voltage sources. A dual argument
applies to inductors and current sources: a constraint occurs if and only if there
exists a cut set in the network containing only inductors and current sources.
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Hence, we have the following theorem [4] for the order of complexity:

Theorem 4.1 (Order of Complexity) Let D be a network containing only two-
terminal fundamental circuit elements and independent sources. Then the order of
complexity m of D is given by:

m = (bL + bC + bM) − (nM + nCE + nLM) − (n̂M + n̂LJ + n̂CM) (4.17)

where:

1. bL is the total number of inductors
2. bC is the total number of capacitors
3. bM is the total number of memristors
4. nM is the number of independent loops containing only memristors
5. nCE is the number of independent loops containing only capacitors and voltage

sources
6. nLM is the number of independent loops containing only inductors and memris-

tors
7. n̂M is the number of independent cut sets containing only memristors
8. n̂LJ is the number of independent cut sets containing only inductors and current

sources
9. n̂CM is the number of independent cut sets containing only capacitors and

memristors

Proof 2

We have just discussed the order of complexity for D without memristors: m =
(bL + bC) − nCE − n̂LJ.

From the definition of a memristor, for a D with nM = nLM = n̂M = n̂CM = 0,
each memristor introduces a new state variable and we thus have: m = (bL + bC +
bM) − nCE − n̂LJ.

Observe next that a constraint among state variables occurs whenever an
independent loop consisting of elements corresponding to those specified in the
definition of nM and nLM is present in the network. This is because we assume
the algebraic sum of flux linkages around any loop (charges flowing into any node,
recall equivalence of KCL node to cut sets, Theorem 3.1) is zero. We now have:
m = (bL + bC + bM) − (nM + nCE + nLM) − n̂LJ.

Finally, by duality, a constraint among state variables again occurs whenever an
independent cut set consisting of elements corresponding to those specified in the
definition of n̂M and n̂CM is present in the network. We thus have: m = (bL + bC +
bM) − (nM + nCE + nLM) − (n̂M + n̂LJ + n̂CM). ��

2With respect to D with memristors, the concept of using (φM, qM) to determine the degree of
complexity and write network equations is further explored in Sect. 4.4.1.
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4.1.2 Principles of Duality

In light of the enormous solution space of dynamic nonlinear networks, it would be
instructive to check if there are techniques that help us reduce this solution space.
One such powerful technique is duality (alluded to in earlier chapters), and since
duality is particularly useful in the analysis of dynamic networks, we have deferred
a rigorous discussion of duality till this chapter.

A significant fact about dual networks is that once we know the solution of one
network, the solution of the dual network can be obtained immediately by simply
interchanging the symbols. This means that as soon as we know the behavior and
properties of one network, we immediately know the behavior of the properties
of dual network. Hence a lot of redundancy is avoided if we can recognize dual
networks.

Generally speaking, we say two systems or phenomena are duals of each other if
we can exhibit some kind of one-to-one correspondence between various quantities
or attributes of the two systems. For example, in physics, for each translational
system or problem there exists a corresponding rotational system or problem, and
they are usually referred to as dual systems. In mathematics, two equations which
differ only in symbols but are otherwise identical in form are said to be dual
equations. In electrical engineering, besides circuits, duality is widely used in digital
design because of dual Boolean relationships. The recognition of dual quantities,
attributes, phenomena, properties, or concepts often leads to the discovery and
invention of new ideas.

Before we render the concept of duality more precise, it is instructive to consider
first the two nonlinear networks shown in Fig. 4.4a and b. The laws of elements
and the laws of interconnection for these two networks are readily obtained and
tabulated in Table 4.1. A careful comparison of the expressions in the two columns
of this table reveals a one-to-one correspondence between the equations. As a matter
of fact, except for the symbols, the equations in the two columns are in identical
form. Observe that, had we replaced vj by i ′j , ij by v′

j , φj by q ′
j , qj by φ′

j for
the variables in the left column, the result would be identical with that in the right
column, and therefore the two networks are said to be dual networks. We are now
ready to precisely define the concept of duality.

Definition 4.5 (Duality) Let D and D ′ be a pair of networks each containing
b two-terminal network elements which are not controlled sources. Then D and
D ′ are dual networks if the elements in D and D’ can be labeled, respectively,
as b1, b2, · · · , bb and b′

1, b
′
2, · · · , b′

b such that the circuit equations for the two
networks are identical.

A few points to note from Definition 4.5:

1. It is possible to generalize the definition of dual networks to include controlled
sources. However, the procedure for constructing such networks is much more
complicated and will not be discussed in this book.
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Fig. 4.4 The dual of a series nonlinear network is a parallel nonlinear network

Table 4.1 Circuit equations
for the networks in Fig. 4.4

Network of Fig. 4.4a Network of Fig. 4.4b

Laws of elements Laws of elements

v1 = tanh i31

di2

dt
= v2

24i22
dv3

dt
= i3

2e2v3

v4 = f (t)

i′1 = tanh(v′
1)

3

dv′
2

dt
= i′2

24v′
2

di′3
dt

= v′
3

2e2i
′
3

i′4 = f (t)

Laws of interconnection Laws of interconnection

KVL: v1 + v2 + v3 − v4 = 0 KCL: i′1 + i′2 + i′3 − i′4 = 0

KCL: i1 + i4 = 0

i1 − i2 = 0

i2 − i3 = 0

KVL: v′
1 + v′

4 = 0

v′
1 − v′

2 = 0

v′
2 − v′

3 = 0

Note the derivative relationships in the laws of elements have
been written in normal form
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2. We have defined duality for dynamic networks, D , but it should be obvious that
the definition is also applicable to (nonlinear) resistive networksN .

3. In order to find D ′, we need to uncover the duality relationships that must be
satisfied by the laws of elements and the laws of interconnections. Due to space
limitations, we will only cover the laws of elements. With respect to duality
and the laws of interconnections, we will restrict our discussion to memristive
networks. For a general graph theoretic approach to duality relationships from
the laws of interconnections, the reader is referred to [3].

Definition 4.6 (Dual Resistor) If element bj is a two-terminal resistor in D
characterized by a curve Γ in the v − i plane, then the corresponding dual element
b′
j in D ′ must also be a two-terminal resistor characterized by the same curve Γ in

the i ′ − v′ plane.

For example, if element bj of D is a resistor characterized by ij = v3j − 3vj ,

then the dual resistor in D ′ is a resistor characterized by v′
j = i ′3j − 3i ′j . Observe

that the dual of a given resistor is a new resistor, which may need a new name
and a new symbol. However, there are some two-terminal elements which have the
interesting property that the dual of the element is the same element with its two
terminals interchanged. For such elements, a new symbol is obviously not needed.
The simplest example of this type of element is the ideal diode.

Definition 4.7 (Dual Inductor) If element bj in D is a two-terminal inductor
characterized by a curve Γ in the i − φ plane, then the corresponding dual element
b′
j inD

′ must be a capacitor characterized by the same curve Γ in the v′ − q ′ plane.

For example, the dual of an inductor characterized by φ = log i is a capacitor
characterized by q ′ = log v′.

Definition 4.8 (Dual Capacitor) If element bj in D is a two-terminal capacitor
characterized by a curve Γ in the v − q plane, then the corresponding dual element
b′
j in D

′ must be an inductor characterized by the same curve Γ in the i ′ −φ′ plane.

For example, the dual of a capacitor characterized by q = tanh v is an inductor
characterized by q ′ = log v′.

Definition 4.9 (Dual IdealMemristor) If element bj inD is a two-terminal ideal
memristor characterized by a curve Γ in the φ − q plane, the corresponding dual
element b′

j in D ′ must be an ideal menductor characterized by the same curve Γ

in the q ′ − φ′ plane.

Note that by mutatis mutandis, we can define the dual of an ideal menductor.

Definition 4.10 (Dual Memristive Device) If element bj in D is a two-terminal
current-controlled (voltage-controlled) memristive device, the corresponding
dual element b′

j in D ′ must be a voltage-controlled (current-controlled) mem-
ristive device.
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current-controlled time-invariant
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Fig. 4.5 Circuit for Example 4.1.3

nth-order
voltage-controlled time-invariant
memristive one-port

i′N +

−

v′
N K M′

Fig. 4.6 Dual network D ′ for the circuit in Fig. 4.5

Example 4.1.3 Determine the dual of the memristive circuit in Fig. 4.5.

Solution Based on Definitions 4.8, 4.7, and 4.10, the dual of the circuit is
shown in Fig. 4.6.
In other words, the dual of a linear capacitor with capacitance N F (q − v

relationship: q = Nv) is a linear inductor with inductance N H (φ′ − i ′
relationship: φ′ = Ni ′). Analogously, the dual of a linear inductor with
inductance K H (φ − i relationship: φ = Ki) is a linear capacitor with
capacitance K F (q ′ − v′ relationship: q ′ = Kv′).
For the memristive device in D , we have (recall Eq. (1.86)):

v = R(x, i)i

ẋ = f (x, i) (4.18)

Hence the dual voltage-controlled equations are:

i ′ = G(x′, v′)v′

dx′

dt
= f (x′, v′) (4.19)

(continued)
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Example 4.1.3 (continued)
Since we have a series network for D , simple application of KVL and the
element laws gives:

dvN

dt
= i

N

di

dt
= 1

K
(vN + R(x, i)i)

dx
dt

= f (x, i) (4.20)

Notice we have normal form equations for the D . Using duality, we get:

di ′N
dt

= v′

N

dv′

dt
= 1

K

(
i ′N + G(x′, v′)v′)

dx′

dt
= f (x′, v′) (4.21)

Table 4.2 summarizes the dual relationships that we have discussed.
On a brief note, the question of existence and uniqueness theorems for dynamic

nonlinear networks does not carry much meaning [6], unlike linear dynamic
networks. Two reasons are: the solution of the normal form Eq. (4.1) can exhibit
many qualitatively different behaviors, depending only on the choice of the initial
state. The second reason is that some steady state behavior can be extremely
complicated (chaos in Chap. 5) precluding the existence of a closed form solution.

So, the correct approach is to study the qualitative behavior of dynamic
nonlinear networks. There are a variety of techniques, in the context of the scope
of this book, we will discuss impasse points later in Sect. 4.2.1.6. Other advanced
concepts can be found in [6].

4.2 Time Domain Analysis of nth-Order Nonlinear Networks

In this section, we will analyze nth-order dynamic nonlinear networks in the time
domain. That is, we will write differential equations as functions of time for the
dynamic networks in question. We will start with first-order networks because a
variety of important results can be easily understood using first-order networks [12].
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Table 4.2 Common dual quantities

Network D Network D ′

Current ij Voltage v′
j

Voltage vj Current i′j
Flux linkage φj Charge q ′

j

Charge qj Flux linkage φ′
j

Nonlinear resistor characterized by a curve
Γ in the v − i plane

Nonlinear resistor characterized by a curve
Γ in the i′ − v′ plane

Linear resistor with a resistance R Ω Linear resistor with a conductance R S

Nonlinear inductor characterized by a
curve Γ in the i − φ plane

Nonlinear capacitor characterized by a
curve Γ in the v′ − q ′ plane

Linear inductor with an inductance K H Linear capacitor with a capacitance K F

Nonlinear capacitor characterized by a
curve Γ in the v − q plane

Nonlinear inductor characterized by a
curve Γ in the i′ − φ′ plane

Linear capacitor with a capacitance N F Linear inductor with an inductance N H

Voltage source, vj = f (t) Current source, i′j = f (t)

Current source, ij = g(t) Voltage source, v′
j = g(t)

Short circuit Open circuit

Open circuit Short circuit

Series branches Parallel branches

Ideal memristor Ideal menductor

Current-controlled memristive device Voltage-controlled memristive device

Since circuit analysis techniques for memristor networks are still a topic of
active research, we will postpone discussion of such networks till Sect. 4.4. Hence
until then, our circuits will contain only capacitors and inductors as the dynamic
element(s).

4.2.1 First-Order Circuits

Circuits made of one capacitor,3 resistors, and independent sources are called first-
order circuits [8]. Note that “resistor” is understood in the broad sense: it includes
controlled sources, gyrators, ideal transformers, etc.

In this section,4 we study first-order circuits made of linear time-invariant
elements and independent sources. Any such circuit can be redrawn as shown in

3We will primarily focus on capacitor circuits in this section since the corresponding dual inductor
circuit(s) can be easily derived using the ideas of duality discussed in Sect. 4.1.2. The reader is
encouraged to derive the results for the dual inductor case as they read this section, to enhance
their conceptual understanding.
4It would be helpful to review Sect. 1.9.3, specifically the memory and continuity properties.



214 4 Dynamic Nonlinear Networks

+
−C

+
vC

−

+

vN

i

iC

−−
−

(a) (b)

voc(t)

Req

C
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−

Fig. 4.7 (a) First-order RC circuit. (b) Thévenin equivalent

Fig. 4.7a, where the one-port N is assumed to include all other elements (e.g.,
independent sources, resistors, controlled sources, gyrators, ideal transformers,
etc.). Applying the Thévenin equivalent one-port Theorem 3.6 from Chap. 3, we
can, in most instances, replace N by the equivalent circuit shown in Fig. 4.7b.

Applying KVL we obtain

Reqic + vC = voc(t) (4.22)

Substituting iC = C
•
vC and solving for

•
vC , we obtain:

•
vC = − vC

ReqC
+ voc(t)

ReqC
(4.23)

Since the first-order linear differential equation above is in normal form, vC(t) is
the state variable. Recall from our discussion of initial conditions in Sect. 4.1.1 that
vC(t) depends only on the initial condition vC(t0) and the waveform voc(·) over
[t0, t].

In Sect. 4.2.1.1 we show that the solution of any first-order linear circuit can
be found by inspection, provided N contains only DC sources. By repeated
application of this “inspection method,” Sect. 4.2.1.2 shows how the solution can
be easily found if N contains only piecewise-constant sources. This method is then
applied in Sect. 4.2.1.3 for finding the solution—called the impulse response—
when the circuit is driven by an impulse δ(t). Finally, Sect. 4.2.1.4 gives an explicit
integration formula for finding solutions under arbitrary excitations, which is then
applied in Sects. 4.2.1.5 and 4.2.1.6.

4.2.1.1 Circuits Driven by DC Sources

When N contains only DC sources, voc(t) = voc is a constant in Fig. 4.7b and in
Eq. (4.23). Let us rewrite the equation as follows:
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•
x = x

τ
+ x(t∞)

τ
(4.24)

where

x
�= vC

x(t∞)
�= voc

τ
�= ReqC (4.25)

Given any initial condition x = x(t0) at t = t0, Eq. (4.24) has the unique solution:

x(t) = x(t∞) + [x(t0) − x(t∞)]e −(t−t0)

τ (4.26)

which holds for all times t , i.e., −∞ < t < ∞. To verify that this is indeed the
solution, simply substitute Eq. (4.26) into Eq. (4.24) and show that both sides are
identical. Observe that at t = t0, Eq. (4.26) reduces to x(t) = x(t0), which makes
physical sense. Note also that the solution given by Eq. (4.26) is valid whether τ is
positive or negative.

The solution in Eq. (4.26) is determined only by three parameters x(t0), x(t∞)

and τ . We call them initial state, equilibrium state, and time constant, respec-
tively. To see why x(t∞) is called the equilibrium state, note that if x(t0) = x(t∞),

then Eq. (4.24) gives
•
x(t0) = 0 and thus x(t) = x(t∞) for all t . Hence the circuit

remains “motionless” or in equilibrium.
Since the inspection method to be developed in this section depends crucially

on the ability to sketch the exponential waveform quickly, the following properties
are extremely useful. These properties in turn depend on whether τ is positive or
negative. For τ > 0, the exponential waveform in Eq. (4.26) tends to a constant
as t → ∞. For τ < 0, the exponential waveform in Eq. (4.26) tends to ±∞, as
t → ∞. Hence it is convenient to consider the two cases separately.

Case 1: τ > 0 In this case Eq. (4.26) shows that x(t) − x(t∞), i.e., the distance
between the present state and the equilibrium state x(t∞) decreases exponentially.
For all initial states, the solution x(t) approaches equilibrium and |x(t) − x(t∞)|
decreases exponentially with a time constant τ . The solution in Eq. (4.26) for τ > 0
is sketched in Fig. 4.8 for two different initial states x(t0) and x̃(t0). Observe that
because τ is positive, x(t) → x(t∞) as t → ∞.

Thus when τ > 0 we say the system in Eq. (4.24) is stable,5 because any initial
deviation x(t0) − x(t∞) decays exponentially and x(t) → x(t∞) as t → ∞.

5Stability is a system property, not a signal property. We say the signals associated with a stable
system are bounded. In system terminology, we are using the concept of bounded-input bounded-
output (BIBO) stability.
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tt0 t0 +

x

x(t )

x(t0)

x̃(t0)

0

Solution with initial state x(t0) > x(t )

Solution with initial state x̃(t0) < x(t )

x1

x2

Fig. 4.8 The solution tends to the equilibrium state x(t∞) as t → ∞ when the time constant τ is
positive. Δx1 = 0.63[x(t0) − x(t∞)],Δx2 = 0.63[x(t∞) − x̃(t0)]

The exponential waveforms in Fig. 4.8 can be accurately sketched using the
following observations:

1. After one time constant τ , the distance between x(t) and x(t∞) decreases
approximately by 63% of the initial distance |x(t0) − x(t∞)|.

2. After five time constants, x(t) practically attains the equilibrium state (or steady-
state) value x(t∞) (e−5 ≈ 0.007).

Example 4.2.1 Recall the opamp voltage follower from Example 2.5.3, but
now we have a switch closing at t = 0 as shown in Fig. 4.9. Sketch vo(t) for
t ≥ 0.

Solution The switch shown models the fact that in practice, the output is
observed to reach the 10V solution after a small but finite time. In order to
predict this transient behavior before equilibrium is reached, we will use the

(continued)
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Example 4.2.1 (continued)
finite gain opamp model from Exercise 2.5, augmented with a capacitor, to
obtain the dynamic model shown in Fig. 4.10a.

To analyze this first-order circuit, we extract the capacitor and replace the
remaining circuit by its Thévenin equivalent as shown in Fig. 4.10b, where:

Req = R

A + 1
≈ R

A
since A >> 1

voc = 10A

A + 1
≈ 10 since A >> 1 (4.27)

Assuming A = 105, R = 100�,C = 3 F, we obtain Req ≈ 10−3 �

and voc ≈ 10V. Consequently, the time constant and equilibrium state are
given, respectively, by τ = ReqC = 3ms and vo(t∞) ≈ 10V. Assuming
the capacitor is initially uncharged, the resulting output voltage can be easily
sketched as shown in Fig. 4.11. Note that after five time constants or 15ms,
the output is practically equal to 10V.

Case 2: τ < 0 In this case Eq. (4.26) shows that the quantity x(t)−x(t∞) increases
exponentially for all initial states, i.e., the solution x(t) diverges from equilibrium
and hence the corresponding system is unstable. The solution for Eq. (4.26) is
sketched in Fig. 4.12 for two different initial states x(t0) and x̃(t0). Observe that
since the time constant τ is negative, as t → ∞, x(t) → ∞ if x(t0) > x(t∞) and
x(t) → −∞ if x(t0) < x(t∞).

However, if we run time “backward,” then x(t) → x(t∞) as t → −∞.
Consequently, x(t∞) can be interpreted as a virtual equilibrium state.

Fig. 4.9 Circuit for
Example 4.2.1

−

+
+
−

t = 0

10 V

vo 
(t)
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Req > 0

C

+

vo
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+

−
vd

i− = 0

i+ = 0

Fig. 4.10 (a) Dynamic opamp model (b) Thévenin equivalent, notice Req is positive

t, ms
6 9 12 15

vo 
(t), V

10

0 t0 + = 3

vo( )

Fig. 4.11 Exponential voltage waveform for Example 4.2.1

Analogous to the stable case, the exponential waveform can be accurately
sketched using the observation that at t = t0 +|τ |, the distance |x(t0+|τ |)−x(t∞)|
is approximately 1.72 times the initial distance |x(t0) − x(t∞)|.
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tt0 t0 + | |

x

x(t0)

x(t )

x̃(t0)

0

Solution with initial state x(t0) > x(t ) tends to +

Solution with initial state x̃(t0) < x(t ) tends to −

x1

x2

Fig. 4.12 The solution tends to the “virtual” equilibrium state x(t∞) as t → −∞ when the time
constant τ is negative. Δx1 = 1.72[x(t0) − x(t∞)],Δx2 = 1.72[x(t∞) − x̃(t0)]

+
−

−

+

t = 0

10 V

vo (t)

Fig. 4.13 Circuit for Example 4.2.2

Example 4.2.2 Consider the positive feedback opamp circuit shown in
Fig. 4.13. Determine vo(t) for t ≥ 0.

Solution The opamp circuit in Fig. 4.13 is identical to that of Fig. 4.9 except
for an interchange between the inverting (−) and noninverting (+) terminals.

(continued)
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Example 4.2.2 (continued)
Using the ideal opampmodel in the linear region, we would obtain exactly the
same answer as before, namely vo = 10V for t ≥ 0, provided Esat > 10V.

But, let us see what happens if the opamp is replaced by the dynamicmodel
adopted earlier, as shown in Fig. 4.14a.Note now the polarity of vd is reversed.
The parameters in the Thévenin equivalent circuit now become:

Req = − R

A − 1
≈ −R

A
since A >> 1

voc = 10A

A − 1
≈ 10 since A >> 1 (4.28)

Notice Req is now negative. Assuming the same parameter values as in
Example 4.2.1, we obtain Req = −10−3 � and voc ≈ 10V. Consequently,
the time constant and virtual equilibrium state are now given by τ ≈ −3ms
and voc(t∞) ≈ 10V, respectively. Hence the solution drastically differs from
that of Example 4.2.1:

vo(t) = 10
(
1 − e

t
3ms

)
(4.29)

vo(t) → −∞ as t → ∞. Of course, in practice, when vo(t) decreases to
−Esat, the opamp saturates and the solution would remain constant at −Esat.
The sketch of vo(t) is trivial and is left as an exercise for the reader.

Example 4.2.2 shows us why the “middle” segment in the positive feedback
circuit (Fig. 2.36) and Schmitt trigger VTCs from Sect. 2.5.3 are physically absent.

+
−

+
−

10 V

vo(t)

+
− C

R

Avd

(a)

Req < 0

C

+

vo

−voc

(b)

−

+

vd

i+ = 0

i− = 0

Fig. 4.14 (a) Dynamic opamp model (b) Thévenin equivalent, notice Req is negative
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Parasitic elements such as capacitors result in the opamp circuit model correspond-
ing to the “middle” segment to display unstable behavior. In other words, the Req
seen by the parasitic capacitor turns out to be negative. A detailed analysis is given
in [20].

We will often need to calculate the time interval between two prescribed points
on an exponential waveform. Given any two points [tj , x(tj )] and [tk, x(tk)] on an
exponential waveform (see for example Figs. 4.8 and 4.12), the time it takes to go
from x(tj ) to x(tk) is given by the elapsed time formula:

tk − tj = τ ln
x(tj ) − x(t∞)

x(tk) − x(t∞)
(4.30)

To derive Eq. (4.30), let t = tj and t = tk in Eq. (4.26), respectively:

x(tj ) − x(t∞) = [x(t0) − x(t∞)]e
−(tj−t0)

τ (4.31)

x(tk) − x(t∞) = [x(t0) − x(t∞)]e −(tk−t0)

τ (4.32)

Dividing Eq. (4.31) by (4.32) and taking the logarithm on both sides, we obtain
Eq. (4.30). Notice the derivation does not depend on whether τ is positive or
negative.

We are now ready to formally state the inspection method. Consider again the
first-order RC circuit from Fig. 4.7a where all independent sources inside N are DC
sources. Equation (4.26) gives us the voltage across the capacitor:

vC(t) = vC(t∞) + [vC(t0) − vC(t∞)]e− (t−t0)

τ (4.33)

Suppose we replace the capacitor with a voltage source defined by Eq. (4.33). Let
vjk denote the voltage across any pair of nodes j and k in N . Assume that N

contains α independent DC voltage sources Vs1, Vs2, · · · , Vsα and β independent
DC current sources Is1, Is2, · · · , Isβ . Applying the superposition theorem 3.5, we
know that the solution vjk(t) is given by an expression of the form:

vjk(t) = H0vC(t) +
α∑

j=1

HjVsj +
β∑

k=1

KjIsj (4.34)

where H0,Hj , and Kj are constants (which depend on element values and circuit
configuration). Substituting for vC(t) in Eq. (4.34) from (4.33) and rearranging the
terms, we obtain:

vjk(t) = vjk(t∞) + [vjk(t0) − vjk(t∞)]e− (t−t0)

τ (4.35)
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where

vjk(t∞)
�= H0vC(t∞) +

α∑

j=1

HjVsj +
β∑

j=1

KjIsj (4.36)

and

vjk(t0)
�= H0vC(t0) +

α∑

j=1

HjVsj +
β∑

j=1

KjIsj (4.37)

Since Eq. (4.35) has the exact same form as Eq. (4.26), and since nodes j and k

are arbitrary, we conclude that: the voltage vjk(t) across any pair of nodes in a
first-order RC circuit driven by DC sources is an exponential waveform having
the same time constant τ as vC(t). By the same reasoning, we can also conclude
that the current ij (t) in any branch j of a first-order RC circuit driven by DC sources
is an exponential waveform having the same constant τ as that of vC(t).

The above “exponential solution waveform” property of course assumes that the
first-order circuit is not degenerate, i.e., that it is uniquely solvable and 0 < |τ | <

∞. Also note that as we approach equilibrium, i.e., when t → +∞ (if τ > 0) or
t → −∞ (if τ < 0), the capacitor current tends to zero. This follows from Figs. 4.8

and 4.12, iC = C
•
vC .

Since an exponential waveform is uniquely determined by only three parameters
(initial state x(t0), equilibrium state x(t∞) and time constant τ ), we can now
formally state the inspection method for first-order RC circuits driven by DC
sources:

First-order Circuit Inspection Method:

1. Replace the capacitor by a DC voltage source with a terminal voltage equal
to vC(t0). Label the voltage across node-pair j , k as vjk(t0) and the current
ij as ij (t0). Solve the resulting resistive circuit for vjk(t0) and ij (t0). In
other words, we are solving for the initial state.

2. Replace the capacitor by an open circuit. Label the voltage across node-pair
j , k as vjk(t∞) and the current ij as ij (t∞). Solve the resulting resistive
circuit for vjk(t∞) and ij (t∞). In other words, we are solving for the
equilibrium state.

3. Find the Thévenin equivalent circuit of N , so that the time constant can be
computed as τ = ReqC.

The reader should use the above three parameters to make a quick sketch of the
exponential waveform, as a sanity check.
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4.2.1.2 Circuits Driven by Piecewise-Constant Signals

Consider next the case where the independent sources in N of Fig. 4.7a are
piecewise-constant for t > t0. This means that the semi-infinite time interval
t0 ≤ t < ∞ can be partitioned into subintervals [tj , tj+1), j = 1, 2, · · · such that all
sources assume a constant value during each subinterval. Hence we can analyze the
circuit as a sequence of first-order circuits driven by DC sources, each one analyzed
separately by the inspection method. Since the circuit remains unchanged except for
the sources, the time constant τ remains unchanged throughout the analysis.

The initial state x(t0) and equilibrium state x(t∞) will of course vary from one
subinterval to another. Although the inspection method holds in the determination
of x(t∞), one must be careful in calculating the initial value at the beginning of each
subinterval tj because at least once source changes its value discontinuously at each
boundary time tj . In general, x(t−j ) �= x(t+j ), where the − and + denote the usual
limit of x(t) as t → tj , from the left and from the right, respectively. The initial
value to be used in the calculation during the subinterval [tj , tj1) is x(t+j ).

Although in general both vjk(t) and ij (t) can jump, the continuity property from
Sect. 1.9.3 guarantees that in the usual case where the capacitor current (inductor
voltage) waveform is bounded, the capacitor voltage (inductor current) waveform is
a continuous function of time and therefore cannot jump. This property is the key to
finding the solution by inspection, as Example 4.2.3 illustrates.

Example 4.2.3 Find and sketch vC(t), iC(t) and vR(t) in Fig. 4.15 by inspec-
tion, for t ≥ 0. Assume vC(0) = 0V (capacitor is initially discharged).

Solution Since vC(0) = 0 and vs(t) = 0 for t ≤ 0, it follows that iC(t) =
0, vC(t) = 0, vR(t) = 0 for t ≤ 0.

The solution waveforms for t > 0 obviously consists of exponentials with
a time constant t = RC. At t = 0+, using the continuity property, we have
vC(0+) = vC(0−) = 0. Therefore, by KVL, vR(0+) = vs(0+)−vC(0+) = E

and iC(0+) = E/R, by Ohm’s law. To find the equilibrium state, we open the
capacitor and hence find that iC(t∞) = 0, vC(t∞) = E, vR(t∞) = 0. We now
have enough information to determine the expressions (t ≥ 0) as:

vC(t) = E
(
1 − e− t

RC

)

iC(t) = E

R

(
e− t

RC

)

vR(t) = E
(
e− t

RC

)
(4.38)

The waveforms are sketched in Fig. 4.16. Note that iC(t) = CdvC(t)/dt and
vR(t)+vC(t) = E for t ≥ 0, as they should. Also observe that whereas vR(t)

and iC(t) are discontinuous at t = 0, vC(t) is continuous for all t as expected.
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Fig. 4.15 Circuit for Example 4.2.3

The circuit in Fig. 4.15 is often used to model the situation where a DC voltage
source is suddenly connected across a resistive circuit which normally draws a zero-
input current. The linear capacitor in this case is used to model the small parasitic
capacitance between the connecting wires. Without this capacitor, the input voltage
would be identical to vs(t). However, in practice, a “transient” is always observed
and the circuit in Fig. 4.15 represents a more realistic situation. In this case, the time
constant τ gives a measure of how “fast” the circuit can respond to a step input.
Such a measure is of crucial importance in the design of high-speed circuits.

Since the term time constant is meaningful only for first-order circuits, a more
general measure of such “response speed” called the rise time is used. The rise time
tr is defined as the time it takes the output waveform to rise from 10% to 90% of
the steady-state value after application of a step input. For first-order circuits, tr is
easily calculated from the elapsed time formula in Eq. (4.30):

tr = τ ln
0.1E − E

0.9E − E

= τ ln 9

≈ 2.2τ (4.39)

4.2.1.3 Linear Time-Invariant Circuits Driven by an Impulse

Consider the RC circuit shown in Fig. 4.17. Let the input voltage source vs(t)

be a square pulse pΔ(t) of width Δ and height 1/Δ, as shown in Fig. 4.18a.
Assuming zero initial state (i.e., vC(0−) = 0), the response voltage vC(t) is shown
in Fig. 4.18b. We define:

hΔ(Δ)
�= 1 − e

−Δ
τ

Δ

�= f (Δ)

g(Δ)
(4.40)
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Fig. 4.16 Exponential
waveforms for Example 4.2.3
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Fig. 4.17 Various vs(t)

inputs are shown in Fig. 4.18

+
−

R

vs(t)
C

+

vC

−

The input and response corresponding to Δ = 1, 1
2 ,

1
3 are shown in Fig. 4.18c and

d, respectively. Note that as Δ → 0, pΔ(t) tends to the unit impulse shown in
Fig. 4.18e. The unit impulse or the Dirac delta function6 tends to infinity at t = 0
and to zero elsewhere, while the area under the pulse is unity. More precisely, the
unit impulse is defined such that the following two properties are satisfied:

1. δ(t)
�=
{
singular t = 0

0 t �= 0
(4.41)

2.

ε2∫

−ε1

δ(t)dt = 1 for any ε1 > 0, ε2 > 0 (4.42)

The derivative “in the distribution sense”7 of δ(t) is the unit step function defined
as:

u(t)
�=
{
0 t < 0

1 t ≥ 0
(4.43)

Note that the “peak” value hΔ(Δ) of the response waveform in Fig. 4.18b increases
as Δ increases. To obtain the limiting value of hΔ(Δ) as Δ → 0, we apply
L’Hospital’s rule:

lim
Δ→0

hΔ(Δ) = lim
Δ→0

f ′(Δ)

g′(Δ)

= lim
Δ→0

(1/τ)e(−Δ/τ)

1

= 1

τ
(4.44)

6The delta function is used to model point charges in physics. Using the theory of distributions
from advanced mathematics, the unit impulse can be rigorously defined as a “generalized” function
imbued with most of the standard properties of a function. In particular, most of the time, δ(t) can
be manipulated like an ordinary function.
7We say “differentiating in the distribution sense” to emphasize that whenever we differentiate a
function which has a jump discontinuity at t = t0, i.e., f (t) jumps from f (t−0 ) to f (t+0 ), we must
include the corresponding impulse in the derivative:f ′(t0) = [f (t+0 )] − f (t−0 )]δ(t − t0).
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Fig. 4.18 As Δ → 0, the square pulse tends to the unit impulse δ(·). The corresponding response
tends to the impulse response h
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Hence the response waveforms in Fig. 4.18d tend to the exponential waveform for
t ≥ 0 shown in Fig. 4.18f, compactly written using the unit step function defined
earlier as:

h(t) = 1

τ
e−t/τu(t) (4.45)

Because h(t) is the response of the circuit when driven by a unit impulse under zero
initial conditions, it is called the impulse response. In Sect. 4.3.3, we will show
that given the impulse response of any linear time-invariant circuit, we can use it to
calculate the response when the circuit is driven by any other input waveform.

4.2.1.4 Circuits Driven by Arbitrary Signals

Let us consider now the general case where the one-port N in Fig. 4.7a contains
arbitrary independent sources. This means that the Thévenin equivalent voltage
source voc(t) in Fig. 4.7b can be any function of time, say, a PWL function, a sine
wave, etc. Our objective is to derive an explicit solution and draw conclusions from
our result.

Consider the RC circuit in Fig. 4.7b whose state equation is:

•
vC(t) = −vC(t)

τ
+ voc(t)

τ
(4.46)

where τ
�= ReqC.

Theorem 4.2 (Explicit Solution for First-Order Linear Time-Invariant RC
Circuits) Given any prescribed waveform voc(t), the solution of Eq. (4.46)
corresponding to any initial state vC(t0) at t = t0 is given by

vC(t) = vC(t0)e
− (t−t0)

τ

︸ ︷︷ ︸
zero-input response

+
t∫

t0

1

τ
e− (t−t ′)

τ voc(t
′)dt ′

︸ ︷︷ ︸
zero-state response

(4.47)

∀t ≥ t0. Here τ = ReqC.

Proof

(a) At t = t0 , Eq. (4.47) reduces to

vC(t)

∣∣
∣
t=t0

= vC(t0) (4.48)

Hence Eq. (4.47) has the correct initial condition.
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(b) To prove that Eq. (4.47) is a solution of Eq. (4.46), differentiate both sides of
Eq. (4.47) with respect to t . First, we rewrite Eq. (4.47) as:

vC(t) = vC(t0)e
− (t−t0)

τ + 1

τ
e−t/τ

t∫

t0

et ′/τ voc(t
′)dt ′ (4.49)

Then upon differentiating with respect to t , we obtain for t > 0:

•
vC(t) = −1

τ
vC(t0)e

− (t−t0)

τ +
(

− 1

τ 2
e

−t
τ

) t∫

t0

et ′/τ voc(t ′)dt ′

+
(
1

τ
e

−t
τ

)[
e

t
τ voc(t)

]
(4.50)

where we used the second fundamental theorem of calculus [29]:

d

dt

t∫

a

f (t ′)dt = f (t) (4.51)

Simplifying Eq. (4.50), we obtain:

•
vC(t) = −1

τ
vC(t0)e

−(t−t0)

τ − 1

τ

⎡

⎣
t∫

t0

1

τ
e

−(t−t ′)
τ voc(t

′)dt ′
⎤

⎦+ 1

τ
voc(t)

= −vC(t)

τ
+ voc(t)

τ
(4.52)

Hence Eq. (4.47) is a solution of Eq. (4.46).
(c) From our basic calculus courses, we know that the differential equation (4.46)

has a unique solution. Hence Eq. (4.47) is indeed the solution. ��
The solution Eq. (4.47) consists of two terms. The first term is called the zero-

input response because when all independent sources in N are set to zero, we have
voc(t) = 0 for all times and vC(t) reduces to the first term only. The second term
is called the zero-state response because when the initial state vC(t0) = 0, vC(t)

reduces to the second term only.
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Example 4.2.4 Find the solution vC(t) in Fig. 4.15, using Eq. (4.47).

Solution In this case we have: vC(t0) = 0, t0 = 0, τ = RC and voc(t) =
E, t ≥ 0. Substituting these parameters in Eq. (4.47) and simplifying, we get:

vC(t) = E
(
1 − e

−t
RC

)
(4.53)

which coincides with the solutions in Example 4.2.3, as it should.

Note that in Eq. (4.47), the total response can be interpreted as the superposition
of two terms, one due to the initial condition acting alone (with all independent
sources set to zero) and the other due to the input acting alone (with the initial
condition set to zero). Also, the equation is valid for both τ > 0 and τ < 0. Consider

the case τ > 0. For all values t ′ such that t − t ′ >> τ , the factor e
−(t−t ′)

τ is very
small; consequently, the values of voc(t) for such times contribute almost nothing to
the integral in Eq. (4.47). In other words, the stable RC circuit has a fading memory.
Inputs that have occurred many time constants ago have practically no effect at the
present time. Thus we may say that the time constant τ is a measure of the memory
time of the circuit.

4.2.1.5 First-Order Linear Switching Circuits

Suppose now that the one-port N in Fig. 4.7a contains one or more switches, where
the state (open or closed) of each switch is specified for all t ≥ t0. Typically, a switch
may be open over several disjoint time intervals, and closed during the remaining
times. Although a switch is a time-varying linear resistor, such a linear switching
circuit may be analyzed as a sequence of first-order linear time-invariant circuits,
each one valid over a time interval where all switches remain in a given state. This
class of circuits can therefore be analyzed by the procedures given in the previous
sections. The only difference here is that the time constant τ will generally vary
whenever a switch changes, as demonstrated in Example 4.2.5.

Example 4.2.5 Determine vo(t), t ≥ 0 for the circuit in Fig. 4.19. Assume
that the switch S has been open for a long time prior to t = 0.

Solution Given that the switch is closed at t = 1 s and then reopened at
t = 2 s, our objective is to first find vC(t) (since voltage across a capacitor
should be a continuous function of time) and then find vo(t).

(continued)
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Example 4.2.5 (continued)
Since we are only interested in vC(t) and vo(t), let us replace the remaining

part of the circuit by its Thévenin equivalent circuit. The result is shown
in Fig. 4.20a and b, corresponding to the case when S is open or closed,
respectively. The corresponding τ s are τ2 = 1 s and τ1 = 0.9 s, respectively.

Since the switch is initially open and the capacitor is initially in equilib-
rium, it follows from Fig. 4.20a that vC(t) = 6V and vo(t) = 0V for t ≤ 1 s.
At t = 1+, we change the equivalent circuit to Fig. 4.20b. Since by continuity,
vC(1+) = vC(1−) = 6V, we have iC(1+) = (10 − 6)V/(2 + 1.6) k� ≈
1.11mA and hence vo(1+) = (1.6 k�)(1.11mA) ≈ 1.78V. Note that we
have obviously used the passive sign conventionwhen computing the currents.

To determine vC(t∞) and vo(t∞) for the equivalent circuit in Fig. 4.20b,
we replace the capacitor with an open circuit and obtain vC(t∞) = 10V and
vo(t∞) = 0V. The waveforms of vC and vo during [1, 2) are drawn as solid
lines in Fig. 4.21a and b, respectively. The dashed portion shows the respective
waveform if S had been left closed ∀ t ≥ 1 s.

Since S is closed at t = 2 s, we must write the equation of these two
waveforms to calculate vC(2−) ≈ 8.68V and vo(2−) ≈ 0.59V (we leave
the verification of these calculations to the reader). At t = 2+, we return
to the equivalent circuit in Fig. 4.20a. Since vC(2−) = vC(2+) ≈ 8.68V,
we have iC(2+) = (6 − 8.68)/(2.4 + 1.6)mA ≈ −0.67mA and vo(2+) =
(1.6 k�)(−0.67mA) ≈ −1.07V. Note that vo has a discontinuous jump at
t = 2 s.

To determine vC(t∞) and vo(t∞) for the circuit in Fig. 4.20a, we again
replace the capacitor with an open circuit to obtain vC(t∞) = 6V and
vo(t∞) = 0V. We have completed the waveform plots in Fig. 4.21.

Fig. 4.19 An RC switching
circuit, where S is open
during t < 1 s and t ≥ 2 s,
and closed during 1 ≤ t < 2

+
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3 k
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−

+ vC −
S
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Fig. 4.20 Equivalent circuits from Fig. 4.19 when (a) switch is open, (b) switch is closed
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Fig. 4.21 (a) vC(t) and (b) vo(t) plots for Example 4.2.5
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Fig. 4.22 A PWL RC circuit

4.2.1.6 First-Order PWL Circuits: Dynamic Route, Jump Phenomenon,
and Relaxation Oscillations

Consider the first-order circuit in Fig. 4.22 where the nonlinear resistive one-
port NR may now contain nonlinear resistors (in addition to linear resistors
and DC sources). As before, all resistors and the capacitor are time-invariant.
This class of circuits includes many important nonlinear electronic circuits such
as multivibrators, relaxation oscillators, etc. In this section, we assume that all
nonlinear elements inside NR are PWL so that the one-port is described by a PWL
DP characteristic.

Our main problem is to find the solution vC(t) for the RC circuit, subject
to any given initial state. Since the corresponding port variables of NR , namely
[v(t), i(t)], must fall on the DP characteristic of NR, the evolution of [v(t), i(t)]
can be visualized as the motion of a point on the characteristic starting from a given
initial point.

Since the DP characteristic is PWL, the solution [v(t), i(t)] can thus be found
by determining first the specific “route” and “direction,” henceforth called as the
dynamic route, along the characteristic where the motion actually takes place.
Once this route is identified, we can apply the “inspection method” developed in
Sect. 4.2.1.1 to obtain the solution traversing along each segment separately, as
illustrated in Example 4.2.6.

Example 4.2.6 Given the circuit in Fig. 4.22 and the associated DP character-
istic forNR in Fig. 4.23, determine vC(t) ∀t ≥ 0. Let vC(0) = 2.5V.

Solution Step 1: Identify the initial point. Since v(t) = vC(t), for all
t , initially v(0) = vC(0) = 2.5V. Hence the initial point on the DP
characteristic is P0, as shown in Fig. 4.23.

Step 2: Determine the dynamic route. The dynamic route starting from
P0 contains two pieces of information: (a) the route traversed and (b) the
direction of motion. They are determined from the following information:
Key to dynamic route for RC circuit:

(continued)
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Example 4.2.6 (continued)
1. The DP characteristic ofNR .
2.

•
v(t) = − i(t )

C
.

Since
•
v = −i/C < 0 whenever i > 0, the voltage v(t) decreases as long as

the associated current i(t) is positive. Hence for i(t) > 0, the dynamic route
starting at P0 must always move along the v − i curve toward the left, as
indicated by the red directed (red) line segments P0 → P1 and P1 → P2 in
Fig. 4.23. The dynamic route for this circuit ends at P2 because at P2, i = 0,
so

•
v = 0. Hence the capacitor is in equilibrium at P2.
Step 3: Obtain the solution for each straight line segment. Replace

NR by a sequence of Thévenin equivalent circuits corresponding to each
line segment in the dynamic route. Using the method from Sect. 4.2.1.1,
find a sequence of solutions vC(t). For this example, the dynamic route
P0 → P1 → P2 consists of only two segments. The corresponding equivalent
circuits are shown in Fig. 4.24a and b, respectively.

To obtain vC(t) for segment P0 → P1, we calculate τ = −62.5 μs.
vC(0) = 2.5V and vC(t∞) = 3.25V. Since the time constant in this case
is negative, the corresponding circuit is unstable and hence the exponential is
unbounded.We leave it to the reader to verify that vC(t) for P0 → P1 is given
by:

vC(t) = 3.25 − 0.75e
t

62.5μs (4.54)

Since vC(t) = 2V at P1, we can use the expression above to find the time
t ≈ 31.9 μs when vC(t) = 2V. We hence use vC(0) = 2V for the following
bounded exponential from P1 → P2:

vC(t) = 2e
−t

100μs (4.55)

A plot of vC(t) is given in Fig. 4.25.

After some practice, one can obtain the solution in Fig. 4.25 directly from the
dynamic route, i.e., without drawing the Thévenin equivalent. Note that in the RC

case, the dynamic route always terminates upon intersecting the v axis (i = 0).
We will now discuss a very important application of the dynamic route

technique—the opamp relaxation oscillator. Oscillation is one of the most
important and exciting phenomena that occurs in physical systems (e.g., electronic
watch) and in nature (e.g., planetary motions). In this section, we will focus on
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0

P2
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Fig. 4.23 DP characteristic of NR , with dynamic route (red) indicated, for Example 4.2.6

Fig. 4.24 (a) Equivalent circuit corresponding to P0 → P1 (b) Equivalent circuit corresponding
to P1 → P2

a particular type of oscillator, the relaxation oscillator.8 Section 4.6.3 will further
explore the ideas behind nonlinear oscillators.

Consider the RC opamp circuit shown in Fig. 4.26a. The DP characteristic of the
resistive one-port NR was derived in Sect. 2.5.3.2, and is reproduced in Fig. 4.26b
for convenience.

8Historically, relaxation oscillators were designed using only two vacuum tubes, or two transistors,
such that one device is operating in a “cut-off” or relaxing mode, while the other device is operating
in an “active” or “saturation” mode.
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Fig. 4.25 vC(t) for
Example 4.2.6, unbounded
(red) and bounded (blue)
exponential functions
corresponding to the unstable
and stable circuits in
Fig. 4.24a,b respectively

t,31.9

vC, V
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2

2.5

3.25

0

P0

P1

Consider the four different initial points Q1,Q2,Q3,Q4 (corresponding to four
different initial capacitor voltages at t = 0) on this characteristic. Since

•
v(t) =

•
vC(t) = −i/C and C > 0, we have:

•
v(t) > 0 for all t such that i(t) < 0 (4.56)

and

•
v(t) < 0 for all t such that i(t) > 0 (4.57)

Hence the dynamic route from any initial point must move toward the left in the
upper half plane, and towards the right in the lower half plane, as indicated by the
arrowheads in Fig. 4.26b.

Since i �= 0 at the two breakpoints QA and QB , they are not equilibrium points
of the circuit. It follows from Eq. (4.30) that the amount of time T it takes to go
from any initial point to QA or QB is finite because x(tk) �= x(t∞).

Since the arrowheads from Q1 and Q2 (or from Q3 and Q4) are oppositely
directed, it is impossible to continue drawing the dynamic route beyond QA or QB .
In other words, an impasse is reached whenever the solution reaches QA or QB .

Any circuit which exhibits an impasse is the result of poor modeling. For the
circuit of Fig. 4.26a, the impasse can be resolved by inserting a small linear inductor
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Fig. 4.26 (a) RC opamp circuit. (b) DP characteristic ofNR . (c) Solution locus of (v(t), i(t)) for
the remodeled circuit. (d) Dynamic route for the limiting case

in series with the capacitor; this inductor models the inductanceL of the connecting
wires. As will be shown in Sect. 4.6.3, the remodeled circuit has a well-defined
solution ∀ t ≥ 0, so long as L > 0. A typical solution locus of (v(t), i(t))

corresponding to the initial condition at P0 is shown in Fig. 4.26c. Our analysis
in Sect. 4.6.3 will show that the transition time from P1 to P2, or from P3 to P4,
decreases with L. In the limit L → 0, the solution locus tends to the limiting case
shown in Fig. 4.26d with a zero transition time. In other words in the limit where
L decreases to zero, the solution jumps from the impasse point P1 to P2, and from
the impasse point P3 to P4. We have used arrows to emphasize the instantaneous
transition.
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Both analytical and experimental studies [20] support the existence of a jump
phenomenon, such as the one depicted in Fig. 4.26d, whenever a solution reaches an
impasse point. This observation allows us to state the following rule which greatly
simplifies the solution procedure.

Jump Rule
Let Q be an impasse point of any first-order RC circuit (respectively, RL

circuit). Upon reaching Q at t = T , the dynamic route can be continued by
jumping (instantaneously) to another point Q′ on the DP characteristic of NR

such that vC(T +) = vC(T −) [respectively, iL(T +) = iL(T −)] provided Q′ is
the only point satisfying the continuity property.

Note that the jump rule is also consistent with the continuity property of vC or iL.
Also, the concepts of an impasse point and the jump rule are applicable regardless of
whether the DP characteristic of NR is PWL or not. A first-order RC circuit has at
least one impasse point if NR is described by a continuous nonmonotonic current-
controlled DP characteristic. The instantaneous transition in this case consists of a
vertical jump in the v − i plane, assuming i is the vertical axis. A dual argument is
applicable to a first-order RL circuit. Once the dynamic route is determined, with
the help of the jump rule, for all t > t0, the solution waveforms of v(t) and i(t)

can be determined by inspection, refer to Exercise 4.7. This exercise should also
enlighten the reader as to why the circuit in Fig. 4.26a is a prototypical9 relaxation
oscillator.

4.2.2 General Dynamic Circuits

So far we have analyzed first-order capacitor networks. As we transition from first to
second (and higher) order nonlinear circuits, the complexity of steady-state behavior
increases tremendously. In fact, third (and higher) order nonlinear continuous-time
circuits exhibit the fascinating phenomenon of chaos (to be studied in Chap. 5).

Since it is impossible to cover all the techniques for general dynamic circuits in
one section, we will instead present techniques that will help the reader formulate
the equations governing such circuits. This is tremendously helpful because:

1. The reader will notice that we will extend the primary techniques from Chap. 3,
nodal and tableau analysis, to cover dynamic networks.

2. Formulating the dynamic equations is the first (and probably most important)
step in using a computer to simulate the associated network. Due to the complex
behavior of third (and higher order) networks, computer simulations play an

9In fact, Fig. 4.26a could model the classic 555 timer, since the nonlinear DP characteristic can
also be obtained by simply using two BJTs.
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important role in studying such networks. Hence it is vital that the reader
understand how to obtain the associated circuit equations.

4.2.2.1 Modified Nodal Analysis (MNA)

In Sect. 3.4, we studied node analysis for resistive circuits. For any resistive circuit
made up of voltage-controlled resistors, we can write the node equations by
inspection. MNA is based on node analysis but is suitably modified so that it can
be used on any dynamic circuit. The goal of MNA is to obtain a set of coupled
algebraic and differential equations. Consequently to specify a linear time-invariant
inductor we use the differential equation

v(t) = L
di

dt
(4.58)

rather than the integral equation

i(t) = i(t0) + 1

L

t∫

t0

v(t ′)dt ′ (4.59)

The underlying ideas of MNA are:

1. Write node equations using node voltages as variables.
2. Whenever an element is encountered that is not voltage-controlled, introduce in

the node equation the corresponding branch current as a new variable and add,
as a new equation, the branch equation of that element.

The result is a system of equations where the unknowns are node voltages and some
selected branch currents.

The equations of MNA can be written down by inspection. The number of
equations is always smaller than that of tableau analysis (Sect. 4.2.2.2). But since
MNA equations contain information about the interconnection as well as the nature
of the branches, the equations of MNA do not have the conceptual clarity of the
tableau equations. Many circuit analysis programs use MNA, SPICE in particular.
As in the case of Chap. 3 we will first use example(s) to illustrate the ideas and then
detail the algorithm.
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Fig. 4.27 Circuit for
Example 4.2.7
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Example 4.2.7 Write MNA equations for the circuit in Fig. 4.27.

Solution The circuit shown in Fig. 4.27 includes an independent voltage
source, a pair of coupled inductors (with mutual inductance M , self-
inductances L11, L12), two resistors and a capacitor. We have b = 6 and
n = 4. In writing the node equation for node 1, since the independent source is
not voltage-controlled, we have inserted the branch current i6. In considering
nodes 2 and 3, we introduce inductor currents i1 and i2. We append these three
suitably modified node equations with the branch equations of the voltage
source and of the two (coupled) inductors. The result is:

Node Equations:

⎧
⎪⎪⎨

⎪⎪⎩

G3e1 − G3e2 + i6 = 0

− G3e1 + G3e2 + i1 = 0

C
•
e3 + G5e3 + i2 = 0

Coupled inductors:

⎧
⎨

⎩
−e2 + L11

•
i1 + M

•
i2 = 0

−e3 + M
•
i1 + L22

•
i2 = 0

(4.60)

Voltage Source: e1 = es(t)

MNA gives six equations in the node voltages e1, e2, and e3 and in the selected
currents i1, i2, and i6. Eq. (4.60) forms the required set of coupled algebraic
and differential equations.

Example 4.2.8 shows that the basic idea of MNA works quite easily for nonlinear
circuits.
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Fig. 4.28 Circuit for Example 4.2.8

Example 4.2.8 Write MNA equations for the circuit in Fig. 4.28. For the
opamp, we will use the finite-gain model from Exercise 2.5, the nonlinear
capacitor is specified by its small-signal capacitance C(·), the nonlinear
inductor by its small-signal inductance L(·), and the current-controlled
nonlinear resistor is specified by its characteristic v̂6(·).
Solution Recall that the finite-gain model of an opamp:

vo(vd) = A

2
|vd + ε| − A

2
|vd − ε| (4.61)

where vo is the output voltage of the opamp and vd
�= v+ − v−. The MNA

equations can be easily written by inspection:

Node Eqs.:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Ge1 − Ge2 + i7 = 0

− Ge1 + Ge2 + C(e2 − e3)
•
e2 − C(e2 − e3)

•
e3 + i2 = 0

− C(e2 − e3)
•
e2 + C(e2 − e3)

•
e3 + i4 + i5 = 0

− i5 + i6 = 0

Opamp:

⎧
⎨

⎩
i2 = 0

−vo(−e2) + e3 = 0
(4.62)

NL :
{
−e3 + e4 + L(i5)

•
i5 = 0

(continued)
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Example 4.2.8 (continued)

NR :
{
e4 − v̂6(i6) = 0

Voltage source: e1 = es

Equation (4.62) constitutes a set of nine coupled algebraic and
differential equations in nine unknown functions: the four node
voltages e1(·), e2(·), e3(·), e4(·) and the five selected currents
i2(·), i4(·), i5(·), i6(·), i7(·). Note that the variable i4, the opamp output
current, appears only in the third node equation. This node equation is thus a
recipe for calculating i4, once e2, e3, and i5 are known. If i4 is not required,
the third node equation can be dropped.

Examples 4.2.7 and 4.2.8 have shown how easy it is to write MNA equations for
any circuit, the algorithm is summarized below.

MNA Algorithm:
Data:

• Circuit diagram with assigned node numbers and assigned current reference
directions

• Branch equation(s) for each element of the circuit

Steps:

1. Choose a ground node, say n and draw a connected digraph (may require
hinging some nodes).

2. For k = 1, 2, · · · , n − 1, write KCL for node k using the node-to-ground
voltages as variables, keeping in mind that a if one or more inductors are
connected to node k, then the branch currents of that inductor is entered in
the node equation and the branch equation of the inductor is appended to
the n − 1 node equation; b if one or more branches which are not voltage-
controlled are connected to node k, then the corresponding branch current
is entered in the node equation and the corresponding branch equation is
appended to the n − 1 node equations.

4.2.2.2 Tableau Analysis

Tableau analysis is the second method for writing dynamic circuit equations. The
method essentially mirrors the technique in Sect. 3.5, hence we will simply show
a nonlinear example (very similar to Example 4.2.8) and then discuss the general
technique.
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Fig. 4.29 Circuit for Example 4.2.9

Example 4.2.9 Write tableau equations for the circuit in Fig. 4.29.

Solution We will assume that NR is voltage-controlled. We will assume the
same characteristics forNL and the opamp as Example 4.28.

By inspection we can write KCL and KVL for the circuit:

Ai(t) = 0

v(t) − AT e(t) = 0 (4.63)

using the suitable reduced incidence matrix A. Using the branch equations
from the circuit, we get:

v1 − R1i1 = 0

i2 = 0

C
•
v3 − i3 = 0

v4 − vo(−v2) = 0

L(i5)
•
i5 − v5 = 0

i6 − •
i6(v6) = 0

v7 = es(t) (4.64)

(continued)
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Example 4.2.9 (continued)

In Eq. (4.64), we know the constants R1, C and the functions vo(·), L(·), î6(·)
and es(·). The unknown functions are e(·), v(·), and i(·). Equations (4.63)
and (4.64) are the tableau equations for the given circuit.

In general, the tableau equations for a nonlinear dynamic circuit are:

KCL: Ai(t) = 0

KVL: v(t) − AT e(t) = 0

Branch eqs.: h(
•
v(t), v(t),

•
i(t), , i(t), t) = 0 (4.65)

Comparing Eqs. (3.121) and (4.65), we see that for the dynamic case we have
derivatives in the branch equation.

For a connected digraph of b branches and n nodes, the tableau equations (4.65)
constitute a system of 2b + n− 1 scalar equations in 2b + n − 1 unknown functions
ej (·), j = 1, 2, · · · , n − 1, vk(·), k = 1, 2, · · · , b and il(·), l = 1, 2, · · · , b.

In the derivation of the tableau equations (4.65) we considered only a nonlinear
inductor specified by its small-signal inductance L(i). The dual case would be a
nonlinear capacitor specified by its small-signal capacitance C(v).

Suppose, however, we have a capacitor that is charge-controlled (vC = v̂(q)) and
an inductor that is flux-controlled (iL = î(φ)). If we use the chain rule as before,
we are stuck because q and φ appear as arguments in v̂′(q) and î ′(φ). The remedy
is to use q and φ as additional variables and to describe the capacitor by:

vC = v̂(q)

•
q = iC (4.66)

and the inductor by:

iL = î(φ)

•
φ = −vL (4.67)

4.2.2.3 Small Signal Analysis Revisited

We have already encountered the concept of small-signal analysis with respect
to NR in Sect. 3.1.1. We will see in this section that the method of small-signal
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Fig. 4.30 Nonlinear time-invariant circuit D driven by the DC source Es and the AC source es(·)

analysis, when applied to dynamic circuits10 helps reduce the analysis of a nonlinear
dynamic circuit to that of a nonlinear resistive circuit, then to that of a linear dynamic
circuit. The goal of this section is to state and justify the algorithm which delivers
the small-signal equivalent circuit of any nonlinear time-invariant dynamic circuit
about a fixed operating point.

In order to avoid complicated notations, this section studies the circuit shown
in Fig. 4.30. We have chosen this circuit so that it includes most of the analyses
required for obtaining a small-signal equivalent circuit. The aim of small-signal
analysis is to take advantage of the fact that es(·) is small (in the sense that, for
all t ≥ 0, the values of |es(t)| are small: higher order terms of any nonlinear
expression are negligible). The circuit D includes a linear resistor R, a linear
capacitor C, a linear inductor L, a nonlinear VCCS specified by its characteristic
f0(·), a nonlinear current-controlled inductor specified by φ̂6(·), a nonlinear voltage-
controlled capacitor specified by q̂7(·), and a nonlinear voltage-controlled resistor
specified by î2.

The tableau equations of D can be written as:

KCL: Ai(t) = 0

KVL: v(t) − AT e(t) = 0

Branch eqs.: f(
•
v(t), v(t),

•
i(t), i(t)) = us (t) (4.68)

10We will utilize the ideas from this section and Sect. 4.3 to derive important small-signal AC
characteristics of memristors in Sect. 4.4.2.
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Notice that Eq. (4.68) is slightly different from Eq. (4.65): we emphasize the fact
that f does not depend explicitly on time. Column vector us (t) bookkeeps the
contribution of the independent sources: Es + es(t).

In order to derive approximate equations representing D we proceed in three
steps:

Step 1. Calculate the DC Operating Point Q, i.e., EQ,VQ, IQ
Set the AC source es(·) to zero, turn on the DC source, and call EQ,VQ, IQ the

resulting DC steady-state. The corresponding tableau equations read:

KCL: AIQ = 0

KVL: VQ − AT EQ = 0

Branch eqs.: f(0,VQ, 0, IQ) = Us (4.69)

where Us denotes the contribution of the DC source Es . Since VQ and IQ are

constant vectors,
•
VQ = 0 and

•
IQ = 0. For this particular circuit, the branch

equations read:

V1 = Es

î2(V2) − I2 = 0

−f0(V2) + I3 = 0

V4 = 0 (because
dI4

dt
= 0)

I5 = 0 (because
dV5

dt
= 0)

V6 = 0 (because
dI6

dt
= 0)

I7 = 0 (because
dV7

dt
= 0)

V8 − RI8 = 0 (4.70)

From Eq. (4.70), we see that to calculate the DC operating point, (a) we replace each
inductor by a short circuit and (b) we replace each capacitor by an open circuit; (c)
we solve the resulting nonlinear resistive circuit, shown in Fig. 4.31. In the next step,
we assume that EQ,VQ, IQ are known.11

11If Eq. (4.69) have several solutions, we choose one and stick to it.
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Fig. 4.31 Nonlinear resistive circuit whose solution V1, V2, · · · , I1, I2, · · · specifies the operating
point Q. Note the inductors have been replaced by short circuits and the capacitors by open circuits

Step 2. Change of Variables
The idea is to use the fact that the AC source is small, and consequently12 the

actual node voltages e(t) will be close to EQ, v(t) will be close to VQ and i(t) will
be close to IQ. So we write:

e(t) = EQ + ẽ(t)

v(t) = VQ + ṽ(t)

i(t) = IQ + ĩ(t) (4.71)

The point is that ẽ(t), ṽ(t), ĩ(t) are small deviations from the operating point
EQ,VQ, IQ, respectively. If we substitute the expressions for e, v, i from Eq. (4.71)
into the KCL Eq. (4.68) and the KVL Eq. (4.68) while taking into account the
corresponding tableau KCL, KVL Eq. (4.69) about the DC operating point, we
obtain:

Aĩ(t) = 0

ṽ(t) − AT ẽ(t) = 0 (4.72)

Note that the equations above are exact, no approximation is involved.

12We will implicitly assume that the system is stable in the neighborhood of Q. For details, please
refer to [12].
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Fig. 4.32 The small-signal linear time-invariant circuit of D about the operating point (VQ, IQ)

We could perform the same substitution in the branch Eq. (4.68) and use
Eq. (4.69) to obtain:

f

(
•
ṽ(t),VQ + ṽ(t),

•
ĩ(t), IQ + ĩ(t)

)

− f(0,VQ, 0, IQ) = us (t) − Us (4.73)

However it is more instructive to proceed by considering one branch at a time,
because Eq. (4.73) is still a nonlinear equation and we would like to linearize it
by using Taylor series (since ẽ(t), ṽ(t), ĩ(t) are small).

Step 3. Obtain Approximate Branch Equations
We consider successively resistors, controlled sources, capacitors, and indepen-

dent sources. Since inductors are the dual of capacitors, the corresponding derivation
is trivial and is left as an exercise for the reader.

The final result will be obtained by using a Taylor series expansion and dropping
the higher-order terms. The result is a set of approximate linear time-invariant
equations relating ṽ(t), ĩ(t) and the AC source. The linear small-signal circuit
corresponding to D is shown in Fig. 4.32.

For the nonlinear resistor, we have:

i2(t) = î2(v2(t)) (4.74)

Substituting for i2(t) and v2(t), we get:

I2 + ĩ2(t) = î2(V2 + ṽ2(t)) (4.75)
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Expanding the RHS using Taylor series, we get:

I2 + ĩ2(t) = î2(V2) + dî2

dv

∣
∣
∣
V2

ṽ2(t) + higher order terms (4.76)

Now if ṽ2(t) is small, we may neglect the higher order terms and since I2 = î2(V2),
we get:

ĩ2(t) = dî2

dv

∣
∣
∣
V2

ṽ2(t) (4.77)

Equation (4.77) is the equation of a linear time-invariant resistor with conductance
dî2
dv

∣
∣
∣
V2
, the slope of the resistor characteristic at its operating point. Note that for a

linear resistor, dî2
dv

∣
∣∣
V2

= 1
R
. Hence, comparing Figs. 4.30 and 4.32, we see that the

linear resistor remains.13

For the controlled source, we have:

i3(t) = f0(v2(t)) (4.78)

Substituting for i3(t) and v2(t), we get:

I3 + ĩ3(t) = f0(V2 + ṽ2(t)) (4.79)

Expanding the RHS using Taylor series, we get:

I3 + ĩ3(t) = f0(V2) + df0

dv

∣
∣
∣
V2

ṽ2(t) + higher order terms (4.80)

Now if ṽ2(t) is small, we may neglect the higher order terms to get:

ĩ3(t) = df0

dv

∣
∣
∣
V2

ṽ2(t) (4.81)

Equation (4.81) is the equation of a linear time-invariant VCCS.
For the nonlinear capacitor, we have:

q7(t) = q̂7(v7(t)) (4.82)

Using the chain rule and substituting for v7(t), we get:

ĩ7(t) = q̂ ′
7(V7 + ṽ7(t)) ·

•
ṽ7(t) (4.83)

13In fact, this is also true for linear capacitors and inductors.
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Expanding the RHS using Taylor series, dropping the higher order terms and using
the fact that the DC equivalent of a capacitor is an open circuit, we get:

ĩ7(t) = dq̂7

dv

∣
∣∣
V7

·
•
ṽ7(t) (4.84)

Equation (4.84) is the slope of the nonlinear capacitor at the operating point V7.
For the independent AC source, we trivially get: ṽ1(t) = es(t).
Hence the resulting branch equations for the small-signal linear time-invariant

circuit in Fig. 4.32:

ṽ1(t) = es(t)

ĩ2(t) − î ′2(V2)ṽ2(t) = 0

ĩ3(t) − f ′
0(V2)ṽ2(t) = 0

ṽ4(t) − L

•
ĩ4(t) = 0

ĩ5(t) − C
•
ṽ5(t) = 0

ṽ6(t) − φ̂′
6(I6)

•
ĩ6(t) = 0

ĩ7(t) − q̂ ′
7(V7)

•
ṽ7(t) = 0

ṽ8(t) − Rĩ8(t) = 0 (4.85)

Let us abbreviate these equations in the form:

(M0QD + M1Q)ṽ(t) + (N0QD + N1Q)ĩ(t) = ũs (t) (4.86)

where the constant matricesM0Q,M1Q,N0Q,N1Q are directly read from Eq. (4.85)
and ũs (t) is the column vector of AC sources in Eq. (4.85).

Conclusion
If we collect KCL, KVL from Eqs. (4.72) and (4.86), we get the tableau

equation of a small-signal equivalent circuit:

Aĩ(t) = 0

ṽ(t) − AT ẽ(t) = 0

(M0QD + M1Q)ṽ(t) + (N0QD + N1Q)ĩ(t) = ũs (t) (4.87)
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We will denote the small-signal equivalent circuit as LQ. Since the concept of
small-signal equivalent circuits is very important, we summarize the procedure in
detail by the following algorithm.

Algorithm to obtain the small-signal equivalent circuitLQ of D
Data

• Circuit diagram of the nonlinear time-invariant circuit D driven by DC and
AC sources, with nodes numbered and with current reference directions

• Branch equations for each element in D

First we determine the operating point Q

1. In D , set all AC independent sources to zero.
2. Replace all inductors by short circuits and all capacitors by open circuits.
3. Solve the resulting resistive circuit, which is now driven by DC sources only.

Call Q the resulting operating point specified by the solution (VQ, IQ). If
there are multiple operating points, we choose the one of interest and study
the dynamics of the circuit about that operating point.

Second, we determineLQ

1. In D , set all DC independent sources to zero.
2. Leave all linear elements.
3. Replace every nonlinear element by its (linear) small-signal equivalent

circuit about the operating point found in step 3. The resulting linear time-
invariant circuit is LQ, the small-signal equivalent circuit of D about the
operating point Q.

4.3 Frequency Domain Analysis of Linear Time-Invariant
Circuits

In this section, we consider exclusively linear time-invariant circuits and we
concentrate on their sinusoidal steady-state behavior, that is, their behavior when
they are driven by one or more sinusoidal sources at some frequency ω and when,
after all “transients” have died down, all currents and voltages are sinusoidal at
frequency ω.

This section has a somewhat narrow focus in the sense that we do not discuss
nonlinear circuits. However, the concepts and techniques this section covers are
fundamental to science, in the sense that frequency domain analysis helps transform
the analysis of differential equations from the time domain (Sect. 4.2), into analysis
of algebraic (albeit complex) equations in the frequency domain. Also, we will
see later in this chapter that a variety of small-signal AC analysis techniques
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(for example, with higher-order circuit elements in Sect. 4.6.2) will make use of
frequency response concepts.

Moreover, discussing frequency domain techniques for nonlinear circuits is
beyond the scope of this book, as we need to develop the mathematical machinery
(such as describing functions) first. We plan to add this topic as part of our follow-up
advanced volume on nonlinear circuits and networks.

The analysis techniquewhen sinusoidal inputs are applied to linear time-invariant
circuits is called AC analysis or sinusoidal steady-state analysis. Our first task
would be to systematically develop the concept of a phasor: to each sine wave (of
voltage or current) we associate a complex number, to encode both the magnitude
and the phase.

4.3.1 Complex Numbers and Phasors

We will first discuss some important ideas regarding complex numbers. We would
like to emphasize that our approach to deriving the phasor concept from complex
numbers is probably unique because we use a historical approach [18], covering
important concepts along the way. Hence we encourage readers who are familiar
with complex numbers to at least glance through this section to make sure that they
do not miss out some on fascinating facts. Many texts seek to introduce complex
numbers with a convenient historical fiction based on solving quadratic equations14

[25]:

x2 = mx + c (4.88)

Two thousand years BC, it was already known that such equations could be solved
using a method that is equivalent to the modern formula:

x1,2 = m ± √
m2 + 4c

2
(4.89)

But what if m2 + 4c (discriminant) is negative? This is where many textbooks
are historically inaccurate in the sense that they state: the need for Eq. (4.88) to
always have a solution forced mathematicians to take complex numbers seriously
for negative discriminants.

But that is simply false. For the ancient Greeks mathematics was synonymous
with geometry. Thus an algebraic relation such as Eq. (4.88) was not so much
thought of as a problem in its own right, but rather as a mere vehicle for solving
a genuine problem in geometry. In other words, Eq. (4.88) was simply seen to

14Dr. Muthuswamy thanks Dr. Jevtic for valuable discussions over the years, including suggesting
Needham’s excellent text on “Visual Complex Analysis.”



4.3 Frequency Domain Analysis of Linear Time-Invariant Circuits 253

represent the problem of finding the intersection points of the parabola y = x2

with the line y = mx + c. Thus, depending on the sign of the discriminant, the
equation either had two, one, or no real solutions. So, if the solution was absent,
then it was correctly manifested by the occurrence of “impossible” (now known as
complex) numbers in the formula.

It was not the quadratic that forced complex numbers to be taken seriously, it
was the cubic:

x3 = 3px + 2q (4.90)

Exercise 4.9 shows that any cubic equation can be reduced to the form above. This
equation represents the analogous problem of finding the intersection points of the
cubic y = x3 with the line y = 3px + 2q . Girolamo Cardano in his Ars Magna
(which appeared in 1545) showed that this equation could be solved by means of
the elegant formula (see Exercise 4.10):

x = s + t

where: s3 = q +
√

q2 − p3 t3 = q −
√

q2 − p3 (4.91)

Some 30 years after this formula appeared, Rafael Bombelli in L’Algebra recog-
nized that there was something strange and paradoxical about it. First note that if
the line y = 3px + 2q is such that p3 > q2 then the formula involves complex
numbers. For example, Bombelli considered x3 = 15x + 4 which yields as one of
the solutions:

x = 3√
2 + 11j + 3√

2 − 11j (4.92)

In the previous case of the quadratic, this merely signaled that the geometric
problem had no solution but in the case of the cubic, the line will always15 hit
the curve. In fact, we can (graphically) show that Bombelli’s example yields the
solution x = 4.

As he struggled to resolve this paradox, Bombelli had what he called a “wild
thought”: perhaps the solution x = 4 could be recovered from the above expression
if 3√2 + 11j = 2 + nj and 3√2 + 11j = 2 − nj . Of course for this to work he
would have to assume that the addition of two complex numbers A = a + j ã and
B = b + j b̃ obeyed the plausible rule,

A + B = (a + j ã) + (b + j b̃)

= (a + b) + j (ã + b̃) (4.93)

15This is a consequence of the Fundamental Theorem of Algebra: a cubic will have at least one
real root.
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Table 4.3 Complex numbers terminology

Name Meaning Notation

Modulus of z Length r of z |z|
Argument of z Angle θ of z arg(z)

Real part of z x coordinate of z Re(z)

Imaginary part of z y coordinate of z Im(z)

Imaginary number Real multiple of j

Real axis Set of real numbers

Imaginary axis Set of imaginary numbers

Complex conjugate of z Reflection of z in the real axis z̄

Next, to see if there was indeed a value of n for which 3√2 + 11j = 2 + nj , he
needed to calculate (2 + jn)3. To do so he assumed that he could multiply out the
brackets as in ordinary algebra and assuming j2 = −1:

(a + j ã)(b + j b̃) = ab + j (ab̃ + ãb) + j2ãb̃

= (ab − ãb̃) + j (ab̃ + ãb) (4.94)

This rule vindicated his “wild thought,” for he was now able to show that (2±j)3 =
2 ± 11j .

While complex numbers themselves remained mysterious, Bombelli’s16 work
on cubic equations thus established that perfectly real problems requires complex
arithmetic for their solution. This justifies our use of complex arithmetic in AC
circuit analysis: complex numbers provide an elegant way to encode both the
magnitude and phase of a sinusoid. In fact, the subsequent development of the
theory of complex numbers was bound with progress in other areas of physics and
mathematics. That discussion is beyond the scope of this book, the interested reader
is referred to [25].

We will now introduce the modern terminology and notation for complex
numbers. Throughout this discussion, refer to Table 4.3 and Fig. 4.33.

It is valuable to grasp from the outset that (according to the geometric view) a
complex number is a single, indivisible entity—a point in the plane. Only when
we choose to describe such a point with numerical coordinates does a complex
number appear to be compounded or “complex.” More precisely, C is said to be
two dimensional, meaning that two real numbers (coordinates) are needed to label
a point within it, but exactly how the labeling is done is entirely up to us.

One way is to label the points with Cartesian coordinates (the real part x and
imaginary part y), the complex number being written as z = x + jy. This form,
called the standard form (encountered earlier via Bombelli’s work), is the “natural”

16Bombelli is generally regarded as the father of complex numbers.
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Fig. 4.33 Complex numbers terminology (contd.)

labeling when dealing with addition (or subtraction) of two complex numbers z1 =
a + jb, z2 = c + jd:

z1 + z2 = (a + c) + j (b + d) (4.95)

We simply add the real parts to get the real part for the sum, and add the imaginary
parts to get the imaginary part for the sum.

But, when multiplying (or dividing) two complex numbers, the standard form is
cumbersome. To emphasize this point, let us again multiply two complex numbers
in standard form:

z1 ∗ z2 = (a + jb) ∗ (c + jd)

= (ac − bd) + j (ad + bc) (j2 = −1) (4.96)

There is a more elegant way to multiply (divide) complex numbers. We will simply
state the rule since a detailed explanation is beyond the scope of this book: labeling
z with its polar coordinates, r = |z|, θ = arg(z), we can now write z = r � θ where
the symbol � serves to remind us that θ is the angle of z.

The geometry multiplication rule takes the simple form:

(R � φ)(r � θ) = (Rr) � (φ + θ) (4.97)
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In words: The length of z1z2 is the product of the lengths of z1 and z2, and the
angle of z1z2 is the sum of the angles of z1 and z2.

Complex division can now be defined in a simple manner:

R � φ

r � θ
= R

r
� (φ − θ) (4.98)

One important concept is that: in common with the Cartesian label x + jy, a
given polar label r � θ specifies a unique point, but (unlike the Cartesian case) a
given point does not have a unique polar label! Since any two angles that differ
by a multiple of 2π correspond to the same direction, a given point has infinitely
many labels:

· · · = r � (θ − 4π)= r � (θ − 2π) = r � θ= r � (θ + 2π) = r � (θ + 4π)= · · ·
(4.99)

This simple fact about angles is one of the most important concepts in complex
numbers that is encountered many times in science and engineering. Before
proceeding, you should solve Exercise 4.11 so that you thoroughly understand and
are comfortable with the concepts, terminology and notation for complex numbers.

We are now in a position to look at probably the most elegant formula in
mathematics, called Euler’s formula:

ejθ = cos(θ) + j sin(θ) (4.100)

Simply stated, “Euler’s formula relates polar form to standard form.” But this does
not help us understand what the formula means. Simply stating “Euler’s formula
relates polar form to standard form” reduces one of Euler’s greatest achievements
to a mere tautology. Perhaps the best approach to understanding Euler’s formula
is to go visualize ejθ in the complex plane, as shown in Fig. 4.34. Given the fact
that the complex number ejθ in standard form is x + jy, we can see from Fig. 4.34
that since the magnitude of ejθ is 1, x = cos(θ), y = sin(θ) by the definition of
the trigonometric functions from a right-angled triangle. Obviously, if we scale the
magnitude of a complex number by r , Fig. 4.34 shows rejθ = r cos(θ) + jr sin(θ).

Now, we are ready to discuss the concept of a phasor.

Definition 4.11 A sinusoid of angular frequency ω (rad/s) is by definition a
function of the form Am cos(ωt + θ) where the amplitude Am, phase θ , and the
frequency ω are real constants. The amplitude Am is always taken to be positive.
The period T = 2π/ω is in seconds. Also note that given a frequency f in Hz,
ω = 2πf .

Definition 4.12 To the sinusoid in Definition 4.11, we associate a complex number

A called the phasor17 (of that sinusoid) according to the rule: A
�= Amejθ .

17A phasor is essentially a complex number written in exponential or Euler form.
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Fig. 4.34 Interpreting Euler’s formula via the complex plane

It is crucial to note that the phasor does not explicitly involve ωt! The best way
to understand this is visually, refer to Fig. 4.35, called the phasor diagram. We plot
the phasor A in the complex plane as a vector from the origin to the point A =
Amejθ . We now imagine the vector rotating counterclockwise at angular velocity
of ω rad/s, namely, we consider Aejωt as t increases. Whenever we want x(t), we
project orthogonally on the x-axis the tip of the vector.

In other words, knowing the frequency ω, the phasor A specifies uniquely the
sinusoid by the formula:

Re[Aejωt ] = Re[Amej(ωt+θ)]
= Am cos(ωt + θ) (4.101)

In summary, there is a one-to-one correspondence between sinusoids (at fre-
quency ω) and phasors:

Sinusoid Phasor

Am cos(ωt + θ)

= (Am cos θ) cosωt

+(−Am sin θ) sinωt

⎫
⎪⎪⎬

⎪⎪⎭
⇔
{

A = Amejθ

= (Am cos θ) + j (Am sin θ)
(4.102)
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Fig. 4.35 The sinusoid x(t) = Am cos(ωt + θ) is viewed as being generated by the projection of
the tip of the “rotating phasor” Aejωt

Equivalent (4.102) states that

Am cos(ωt + θ) = Re[A] cosωt − Im[A] sinωt (4.103)

4.3.2 Sinusoidal Steady-State Analysis Using Phasors

The use of phasors in the analysis of linear time-invariant circuits in sinusoidal
steady-state becomes completely obvious once the following lemmas are thoroughly
understood.

Lemma 4.1 (Uniqueness) Two sinusoids are equal iff they are represented by the
same phasor; symbolically for all t ,

Re(Aejωt ) = Re(Bejωt ) ⇔ A = B (4.104)

Proof

(a) Assume A = B. Consequently, for all t ,

Aejωt = Bejωt and Re(Aejωt ) = Re(Bejωt )

(b) Assume, for all t:

Re(Aejωt ) = Re(Bejωt ) (4.105)
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In particular, for t = 0, we get: Re(A) = Re(B). Similarly for t0 = π/(2ω),
ejωt0 = ejπ/2 = j . Thus Re(Aj) = −Im(A) and hence Eq. (4.105) gives
Im(A) = Im(B). Therefore:

A = Re(A) + j Im(A)

= Re(B) + j Im(B)

= B (4.106)

��
Lemma 4.2 (Linearity) The phasor representing a linear combination of sinu-
soids (with real coefficients) is equal to the same linear combination of the phasors
representing the individual sinusoids. Symbolically, let the sinusoids be

x1(t) = Re[A1e
jωt ] and x2(t) = Re[A2e

jωt ]

Thus the phasor A1 represents sinusoid x1(t) and the phasor A2 represents x2(t).
Let a1, a2 ∈ �; then the sinusoid a1x1(t) + a2x2(t) is represented by the phasor
a1A1 + a2A2.

Proof We verify the assertion by computation:

a1x1(t) + a2x2(t) = a1Re[A1e
jωt ] + a2Re[A2e

jωt ] (4.107)

Now a1 and a2 are real numbers, hence for any complex numbers z1 and z2,

aiRe[zi] = Re[aizi] i = 1, 2

and a1Re[z1] + a2Re[z2] = Re[a1z1 + a2z2] (4.108)

Now applying this fact to Eq. (4.107) we have:

a1Re[A1e
jωt ] + a2Re[A2e

jωt ] = Re[(a1A1 + a2A2)e
jωt ] (4.109)

Combining the equation above with Eq. (4.107) we get:

a1x1(t) + a2x2(t) = Re[(a1A1 + a2A2)e
jωt ] (4.110)

��
The proof is easily extended to a linear combination (with real coefficients) of n

sinusoids.
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Lemma 4.3 (Phasor Differentiation) A is the phasor of a given sinusoid
Am cos(ωt + θ) iff jωA is the phasor of its derivative, d

dt
[Am cos(ωt + θ)].

Symbolically,

Re[jωAejωt ] = d

dt
[Re(Aejωt )] (4.111)

Proof Note that it is convenient to think of Eq. (4.111) as stating that the linear
operators Re and d

dt
commute:

Re

[
d

dt
(Aejωt )

]
= Re[jωAejωt ] = d

dt
[Re(Aejωt )]

Now:

d

dt
[Re(Aejωt )] = d

dt
[Re(Amej (ωt+θ))]

= d

dt
[Am cos(ωt + θ)]

= −Amω sin(ωt + θ)

= Re[jωAmej (ωt+θ)]
= Re[Aejωt ] (4.112)

��

Example 4.3.1 Simplify: 12 cos(ωt+23◦)+7 cos(ωt−57◦)+ d
dt

(0.2 cos(ωt+
71◦))

Solution We could combine all the functions using trigonometric formulae,
however, this approach gets very complicated. Instead let us use the phasor
rules we just learned, understanding thatω for all the functions is the same.
Let ω = 377 rad/s. Hence, the phasor formulation for each function is:

A1 = 12ej23◦

A2 = 7e−j57◦

A3 = jω0.2ej71◦ = 75.4ej161◦
(4.113)

(continued)
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Example 4.3.1 (continued)
For A3, we used the differentiation rule. Since we are going to be adding
complex numbers, let us write each of the phasor in standard form:

A1 ≈ 11.05+ j4.69

A2 ≈ 3.81 − j5.87

A3 ≈ −71.29+ j24.55 (4.114)

We will add and convert back to phasor form, so we can interpret the result as
a sinusoid:

A1 + A2 + A3 = −56.43+ j23.34

= 61.08ej157.51◦

�= A (4.115)

Thus the resulting sinusoid is: Re[Aejωt ] = 61.08 cos(377t + 157.51◦).

We will now solve a differential equation using phasor formulation.

Example 4.3.2 Given the circuit in Fig. 4.36, determine iL(t) for all t . is(t) =
Ism cos(ωt + � Is). Assume L > 0, R > 0, C > 0.

Solution The time domain equation for iL(t) can be easily found via
inspection as:

d2

dt2
iL(t) + 2α

•
iL(t) + ω2

0iL(t) = ω2
0is(t) (4.116)

w2
0 = 1/LC, 2α = 1/RC. Let the phasor representation of the sinusoidal

current source be Is = Ismej � Is . Since a phasor is an exponential function and
Eq. (4.116) is a linear ODE, we try the solution Re(ILejωt )where the complex
number IL is the yet-undetermined phasor which specifies this particular
sinusoidal solution. Substituting into Eq. (4.116) we obtain for all t :

d2

dt2
[Re(ILejωt )] + 2α

d

dt
[Re(ILejωt )] + ω2

0Re(ILejωt ) = ω2
0Re(Ise

jωt )

(4.117)

(continued)
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Example 4.3.2 (continued)

1. Using the differentiation lemma three times, we get:

Re[(jω)2ILejωt ] + 2αRe[(jω)ILejωt ] + ω2
0Re(ILejωt ) = ω2

0Re(Ise
jωt )

2. Using the linearity lemma we obtain (since α and ω2
0 are real):

Re[(jω)2 + 2α(jω) + w2
0]ILejωt = ω2

0Re(Ise
jωt )

3. Using uniqueness lemma, we obtain an algebraic equation for IL:

[(jω)2 + 2α(jω) + ω2
0]IL = ω2

0Is (4.118)

Hence

IL = ω2
0Is

(ω2
0 − ω2) + 2αjω

�= ILmej (θL+� Is ) (4.119)

with

ILm = ω2
0√

(ω2
0 − ω2)2 + (2αω)2

Ism θL = − tan−1 2αω

ω2
0 − ω2

The sinusoidal solution is then:

iLp(t) = ω2
0Ism√

(ω2
0 − ω2)2 + (2αω)2

cos(ωt + � Is + θL) (4.120)

where the subscript p reminds us that iLp is the sinusoidal particular solution.
The physical meaning of this particular solution is the following: since
R,L,C are positive constants, it follows that α > 0 and ω2

0 > 0.
Consequently, the two natural frequencies s1, s2 of the circuit, i.e., the zeros
of its characteristic polynomial C(s) = s2 + 2αs + ω2

0 have negative real
parts. Therefore, any solution of Eq. (4.116) starting at any t0 from any initial
condition has the form:

iL(t) = k1e
s1(t−t0) + k2e

s2(t−t0) + iLp(t) (4.121)

Note that we have assumed s1 �= s2.
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Fig. 4.36 Circuit for
Example 4.3.2
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iL iR iC

Example 4.3.2 illustrates the following ideas:

1. Since Re(s1) < 0,Re(s2) < 0, as t → x, iL(t) → iLp(t). This particular solution
is called the sinusoidal steady-state solution of the circuit. The difference
between the total response iL(t) given by Eq. (4.121) and the particular solution
given by Eq. (4.120) is called the transient response.

2. Note that the frequency of the output is the same as the frequency of the input.
This property is true in general for any linear time-invariant circuit: if all its
natural frequencies have negative real parts, then for any initial conditions and
for any set of independent sources, each one sinusoidal at the same frequency
ω, all currents and all voltages will tend exponentially as t → ∞ to sinusoidal
waveforms at frequency ω. When that situation occurs the circuit is said to be
in the sinusoidal steady-state. Note that sinusoidal steady-state does not depend
on the initial conditions. A general proof is beyond the scope of this book, the
interested reader is referred to [12].

3. Comparing Eqs. (4.116) and (4.118) we see that a differential equation in the time
domain has been converted to a complex algebraic equation in the phasor domain.
So a natural question is: can we obtain the algebraic equation in the phasor
domain directly from the circuit, instead of writing the time domain differential
equation?

The answer is yes, and simply involves reformulating the laws of interconnec-
tions (KCL, KVL) and laws of elements in the phasor domain.

For example, in Fig. 4.36, KCL reads for all t:

iL(t) + iR(t) + iC(t) = 0 (4.122)

For k = L,R,C, let Ik be the phasor representing the sinusoid ik(t). Thus,
Eq. (4.122) gives, for all t:

Re(ILejωt ) + Re(IRejωt ) + Re(ICejωt ) = 0 (4.123)

Using the linearity and uniqueness lemmas, we obtain:

IL + IR + IC = 0 (4.124)
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Since the reasoning is quite general, we can state the following conclusion.

Theorem 4.3 (KCL in the Phasor Domain) In the sinusoidal steady-state,
for any connected circuit D , KCL reads:

AĪ = 0 (4.125)

where A is the (n−1)×b reduced incidence matrix of real numbers and Ī is an
b-vector current phasor. We use Ī to avoid confusion with the identity matrix.

We can make a similar argument for KVL and hence we get:

Theorem 4.4 (KVL in the Phasor Domain) In the sinusoidal steady-state,
for any connected circuit D , KVL reads:

V = AT E (4.126)

where A is the (n − 1) × b reduced incidence matrix of real numbers and E
is a (n − 1)-vector voltage phasor. Notice that V is a matrix with complex
components.

The laws of elements in the phasor domain can also be derived in a straightfor-
ward manner by application of the three lemmas to the time domain element laws.
Table 4.4 has the results. The expressions R, jωL and 1

jωC
, are the impedances

at frequency ω of the circuit elements R,L, and C, respectively; 1
R

, 1
jωL

, jωC are
the corresponding admittances; μ is a voltage gain; α is a current gain; gm is a
transconductance, and rm is a transresistance. The crucial point again is that in
terms of phasors, the branch equations become algebraic equations with complex
coefficients in the phasor domain.

Also, as shown in Fig. 4.35, it is common to visualize phasors as rotating
counterclockwise. Hence, referring to the phasor domain constitutive relations for
the inductor and capacitor, we say the inductor current phasor IL lags the
inductor voltage phasor VL by 90◦ and the capacitor current phasor IC leads the
capacitor voltage phasorVC by 90◦.18 We will see in Sect. 4.4.2 that capacitive and
inductive parasitic effects in physical memristors lead to “unpinching” of memristor
hysteresis loops, due to the leading (or lagging) behavior of current and voltage
variables (under sinusoidal excitation).

Thus we have in essence “resistive” circuits in the frequency domain, except
now our resistances are in the form of frequency-dependent impedances. Therefore,

18The convention is to say “current leads/lags voltage,”’ not “voltage lags/leads current.”
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Table 4.4 Laws of elements in the time domain and phasor domain

Time domain Phasor domain

Element Constitutive relation Constitutive relation

Resistor v(t) = Ri(t) V = RI

Inductor v(t) = Ldi
dt

V = jωLI

Capacitor i(t) = C dv
dt

I = jωCV

VCVS v3(t) = μv1(t) V3 = μV1

VCCS i4(t) = gmv5(t) I4 = gmV5

CCVS v6(t) = rmi5(t) V6 = rmI5

CCCS i8(t) = αi7(t) I8 = αI7

Gyrator i9(t) = Gv10(t) I9 = GV10

i10(t) = −Gv9(t) I10 = −GV9

Ideal transformer v1(t) = 1
n
v2(t) V1 = 1

n
V2

i1(t) = −ni2(t) I1 = −nI2

techniques such as tableau analysis are applicable and to avoid repeating the
concepts from Chap. 3, we will simply summarize the main ideas, by drawing an
analogy with tableau analysis for resistive circuits.

Let NR be a linear time-invariant resistive circuit with a connected graph
having n nodes and b branches. Suppose that we first replace a number of
resistors of NR by inductors or capacitors, and second, drive the resulting
circuit by sinusoidal sources all operating at the same frequency ω. Assume
that the resulting circuit is in the sinusoidal steady-state and call the circuit Nω.
We have chosen this label to emphasize that we consider its sinusoidal steady
at frequency ω.

Linear time-invariant resistive circuit NR (see Eq. (3.115))

⎡

⎣
0 0 A

−AT I 0
0 M(t) N(t)

⎤

⎦

⎡

⎣
e(t)
v(t)
i(t)

⎤

⎦ =
⎡

⎣
0
0

us(t)

⎤

⎦ (4.127)

1. e(·), v(·), i(·),us (·) are vector-valued functions of time.
2. The tableau matrix T has real entries.
3. NR is completely described by Eq. (4.127), i.e., a set of linear algebraic equations

with real coefficients.
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Linear time-invariant circuit Nω operating in the sinusoidal steady-state

⎡

⎣
0 0 A

−AT I 0
0 M(jω) N(jω)

⎤

⎦

⎡

⎣
E
V
Ī

⎤

⎦

=
⎡

⎣
0
0
Us

⎤

⎦ (4.128)

1. E,V, Ī,Us are vectors whose components are phasors.
2. The tableau matrix T(jω) has complex entries in its bottom b rows.
3. Nω is completely described by Eq. (4.128), i.e., a set of linear algebraic equations

with complex coefficients.

Moreover:

1. The superposition theorem holds for Nω: provided det[T(jω)] �= 0, the
sinusoidal steady-state (at frequenciesω) due to several independent sources
(at frequency ω) is equal to the sum of the sinusoidal steady-states due to
each independent source acting alone (see Sect. 3.6.1).

2. Thévenin-Norton equivalent: For example, if the DP characteristic of Nω

at a pair of terminals 1,1′ is current-controlled, then the resulting one-port
may be replaced by a Thévenin equivalent, but with a Voc that is the phasor
representing the open-circuit voltage at 1, 1′ and Zeq is the impedance of
Nω0 seen at 1, 1′, ω0 is the particularly forcing frequency at which the
impedance is determined (see Sect. 3.6.2).

4.3.3 Laplace Transforms

In the preceding section, we studied linear time invariant circuits in the sinusoidal
steady-state, and our main tool was phasor analysis. In this section, we continue
to study linear time-invariant circuits, but we do it now under general excitation.
We will again encounter a number of basic concepts and properties that are
indispensable to the solution of many scientific problems.

Since the Laplace transform is a generalization of the phasor concept, we will
avoid repetition and discuss the main differences in this section between the Laplace
transform and phasors through examples. Particularly:

1. The Laplace transform can be utilized to obtain both the transient and steady-
state response.
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2. Inverse Laplace transforms (usually by partial fraction expansion) are needed to
obtain the corresponding time-response.

Throughout this section, the variable s will be a complex variable expressed in
standard form: s = σ + jω, σ, ω ∈ �. We view s as a point in the complex plane:
σ is its abscissa and ω is its ordinate. The (one-sided) Laplace transform of a time
domain function f (t) is defined as:

F(s)
�=

∞∫

0−
f (t)e−st dt (4.129)

In the integral above, t is the integration variable and hence the integral depends only
on the time function f (·) and on a particular value of s, the complex frequency.
Few remarks:

1. The lower limit of integration is chosen to be 0− so that whenever f (t)

includes an impulse at the origin, it is included in the interval of integration (see
Example 4.3.5).

2. The operation of taking the Laplace transform is denoted by L , thus we write:
F(s) = L {f }(s).

3. The operation of taking the inverse Laplace transform is denoted by L −1:
f (t) = L −1{F }(t).

4. If we take the Laplace transform of a voltage v(t) or current i(t), we denote them
by V (s) and I (s). Thus we use uppercase letters to denote Laplace transforms.

Example 4.3.3 Show that the Laplace transform of the impulse function δ(t)

is L (δ) = 1.

Solution Let us approximate δ(t) by using the procedure from Sect. 4.2.1.3.
Consider the unit area rectangular pulse pΔ(t):

pΔ(t) =
{

1
Δ

for 0 ≤ t ≤ Δ

0 elsewhere

Using pΔ in the definition of the Laplace transform in Eq. (4.129) and
simplifying:

∞∫

0

pΔ(t)e−st dt =
Δ∫

0

1

Δ
e−stdt

= e−st

−sΔ

∣
∣
∣
Δ

0

(continued)
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Example 4.3.3 (continued)

= 1 − e−sΔ

Δ

Now let Δ → 0, then pΔ(t) → δ(t) andL {pΔ} → L {δ}. Thus we have:

L {δ} = lim
Δ→0

1 − e−sΔ

sΔ

= lim
Δ→0

1 − (1 − sΔ + s2Δ2/2 − · · · )
sΔ

= 1

Example 4.3.3 shows the significance of the impulse response: since the Laplace
transform of δ is unity, from a (complex) frequency standpoint, we say δ(t) contains
“all frequencies.” Hence the impulse response of a linear time-invariant circuit
(system) contains all information about the system.

There are also a variety of properties of Laplace transforms that follow from
phasors: linearity, etc. But the uniqueness property of Laplace transforms is general
in the sense Eq. (4.129) establishes a one-to-one correspondence between f and F .
This is a deep theorem of mathematical analysis, whose proof is beyond the scope
of this text. But it is extremely useful and justifies the fact that we can transform
a time-domain problem into a frequency-domain problem, solve it in the frequency
domain, and then go back to the time-domain solution. The uniqueness of Laplace
transforms guarantees that the procedure gives the solution of the original problem.

The important difference of Laplace transforms being able to “handle” initial
conditions (as opposed to phasors) is illustrated by Example 4.3.4.

Example 4.3.4 Show that: L { d
dt

f (t)} = sF (s) − f (0−).

Solution Using integration by parts in the definition of the Laplace trans-
form:

∞∫

0−
e−stdt︸ ︷︷ ︸

u

•
f (t)
︸︷︷︸
dv

= e−st
︸︷︷︸

u

f (t)
︸︷︷︸

v

∣
∣
∣
∞
0− −

∞∫

0−
f (t)
︸︷︷︸

v

(−se−st)
︸ ︷︷ ︸

du

dt

= −f (0−) + s

∞∫

0−
f (t)e−st dt

= sF (s) − f (0−) (4.130)

(continued)
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Example 4.3.4 (continued)
To obtain the final result note that we have used the fact that Re(s) is
sufficiently large so that f (t)e−st → 0 at t → ∞. This is true for all non-
pathological physical functions f (t).

Exercise 4.14 generalizes Example 4.3.4 to nth-order.
The analysis of a circuit by Laplace transforms yields the transform of the output

variable. The next step is to go from the Laplace transform back to the time function,
or as engineers say, from the frequency domain to the time domain. An extremely
useful technique is the partial fraction expansion.

Suppose we are given a Laplace transform F0(s) which is a rational function
n0(s)/d0(s), where n0(s) and d0(s) are polynomials with real coefficients. We
further assume that n0(s) and d0(s) are coprime, that is, any nontrivial common
factor has been canceled out.

If the degree of n0 is greater than or equal to the degree of d0, we first divide the
polynomial n0(s) by d0(s) to obtain the quotient polynomial q(s) and the remainder
polynomial r(s). For example:

2s2 + 8s + 7

(s + 1)(s + 3)
= 2 + 1

(s + 1)(s + 3)

with q(s) = 2, r(s) = 1. Since the property of linearity carries over to the Laplace
transform from phasors:

L −1
(

2s2 + 8s + 7

(s + 1)(s + 3)

)
= L −1(2) + L −1

(
1

(s + 1)(s + 3)

)

The inverse Laplace transform can be looked up from tables, but we know from
Example 4.3.3 that:

L −1(2) = 2δ(t)

To determine the inverse Laplace transform of 1
(s+1)(s+3) , we know from basic

algebra that:

1

(s + 1)(s + 3)
= A

s + 1
+ B

s + 3

We can solve for A and B by any convenient technique. We thus have:

1

(s + 1)(s + 3)
= 0.5

s + 1
− 0.5

s + 3
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From Laplace transform tables (or the reader can easily derive the expression below
from the Laplace transform definition), we get:

L −1
(

k

s + a

)
= ke−atu(t)

We insert the unit step function to remind ourselves that f (t) < 0 for t < 0 (we
have not defined the double-sided Laplace transform). Thus:

L −1
(

2s2 + 8s + 7

(s + 1)(s + 3)

)
= 2δ(t) + (0.5e−t − 0.5e−3t )u(t) (4.131)

The subject of partial fraction expansion as applied to Laplace transforms can be
found in any text on electrical engineering. Hence, we will not discuss the topic
further and instead we will now illustrate how to reformulate a linear time-invariant
circuit in the frequency domain using Laplace transforms, with Example 4.3.5.

Example 4.3.5 Reconsider the series RC circuit from Sect. 4.2.1.3. Derive
the impulse response.

Solution Consider the element law (following the passive sign convention)
for the linear capacitor:

i = C
dv

dt
(4.132)

Assuming zero initial conditions, taking Laplace transforms on both sides and
using the differentiation rule, we get:

I (s) = sCV (s) (4.133)

For a linear resistor, the V (s) − I (s) relationship is trivial: V (s) = RI(s).
Therefore, the circuit in Sect. 4.2.1.3 can be transformed to the Laplace
domain as shown in Fig. 4.37. As stated earlier, since the Laplace transform is
a generalization of the phasor technique, KCL, KVL, etc. are all valid in the
Laplace domain. Therefore, using voltage divider and simplifying:

VC(s) = 1/sC

R + 1/sC

= 1

1 + sRC

= 1/RC

s + 1/RC
(4.134)

(continued)
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Example 4.3.5 (continued)
Using inverse Laplace transform:

vC(t) = 1

RC
e−t/RCu(t) (4.135)

which is exactly Eq. (4.45), since τ = RC.

Note Example 4.3.5 shows the Laplace transform is applicable even when the
input is nonsinusoidal. Example 4.3.5 also shows that provided all time functions
are 0 at t = 0− (equivalently, all initial conditions are zero at t = 0−) the rules for
manipulating phasors and the rules for manipulating Laplace transforms are
identical, except for replacing jω by s. Example 4.3.6 further illustrates this point.

Example 4.3.6 Reconsider the RLC circuit from Example 4.3.2. Determine
IL(s).

Solution We can redraw the RLC circuit in the Laplace domain and solve
for IL(s). But, let us simply take the differential equation from Example 4.3.2:

d2

dt2
iL(t) + 2α

•
iL(t) + ω2

0iL(t) = ω2
0is(t)

and take its Laplace transform (assuming zero initial conditions):

(s2 + 2αs + ω2
0)IL(s) = ω2

0Is(s) (4.136)

We have used Exercise 4.14 for the Laplace transform of the second deriva-
tive. Simplifying:

IL(s) = ω2
0Is(s)

(s2 + 2αs + ω2
0)

(4.137)

Fig. 4.37 Circuit for
Example 4.3.5
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−
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The phasor Eq. (4.118) and the Laplace Eq. (4.136) have the exact same form
except for jω being replaced by s. But, we would like to again emphasize
that the two equations have different meanings: Eq. (4.118) is only valid for
sinusoidal inputs at steady-state. The Laplace Eq. (4.136) is valid for arbitrary
inputs. Moreover, Exercise 4.15 generalizes Example 4.3.6 to the case when the
initial conditions are not zero.

Example 4.3.6 also shows an example of a network function. A detailed
discussion is beyond the scope of this book but can be found in excellent references
such as [12].

However, one can understand the concept by considering H(s)
�= IL(s)/Is (s) in

Eq. (4.137). Notice H(s) (or the current transfer function) depends only on the
circuit parameters, it does not depend on Is(s) (the input). Thus, we will adopt the
following general definition of a network function, which basically describes the
properties of the circuit:

Network Function
�= L (zero-state response)

L (input)
(4.138)

For example, Exercise 4.16 asks you to derive the input impedance of a gyrator,
which is a network function.

4.4 Memristive Networks

We will now discuss memristive networks. We will split the discussion into two
parts—discussion of ideal memristors and memristive devices. For the ideal mem-
ristors, we will introduce the Flux-Charge Analysis Method (FCAM) developed by
Fernando Corinto and Mauro Forti [13], that helps us write minimal number of
ODEs for ideal memristive networks. For memristive devices, we will study some
very fundamental properties related to sinusoidal excitation. We will also use only
linear L, R, C in memristor networks.

4.4.1 Flux-Charge Analysis Method (FCAM)

Example 4.4.1 illustrates the main concept behind FCAM: the idea of an incremental
flux (charge).
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Fig. 4.38 Circuit for
Example 4.4.1 qM

M

L

iL

iL(t0) = iL0

qM(t0) = qM0

Example 4.4.1 Derive circuit equations for the L − M network in Fig. 4.38.
Notice that we have a charge-controlled memristor.

Solution We can easily derive the normal form circuit equations by inspec-
tion:

diL

dt
= −R(qM)iL

L
(4.139)

dqM

dt

�= iL (4.140)

with the given initial conditions. Notice, however, that Eq. (4.139) can be
rewritten using the fact that φ = s(qM) (Sect. 1.9.4) forNM :

diL

dt
= 1

L

d

dt
s(qM(t)) (4.141)

Note from the passive sign convention: dqM

dt
= −iL. Integrating both sides

from t0 to t and applying the first fundamental theorem of calculus, we get:

iL(t) − iL(t0) = 1

L
(s(qM(t)) − s(qM(t0))) (4.142)

In other words, we have the following first-order ODE (with two initial
conditions):

dqM(t)

dt
= − s(qM(t))

L
+ s(qM0)

L
− iL0

qM(t0) = qM0 (4.143)

Example 4.4.1 shows that for ideal memristor networks, an nth-order ODE
in the (v, i) domain can be reduced to an (n − 1)th-order ODE in the (φ, q)

domain. But, the order of complexity is still n, because we still need n initial
conditions.
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The example also shows that the fundamental step in reducing the number of
ODES by one is the integral of KVL in (t0, t), referred to as KφL [13]. Formally:

Definition 4.13 (KφL) The algebraic sum of incremental flux around any
closed circuit is zero.

With respect to Example 4.4.1, Eq. (4.142) can be written as:

LiL(t) − LiL(t0) − [s(qM(t)) − s(qM(t0))] = 0

φL(t; t0) − φM(t; t0) = 0 (4.144)

where we have used the notation: φL(t; t0)
�= LiL(t) − LiL(t0) (similar notation

for φM(t; t0)). Notice as expected KφL is simply the equivalent of KVL in the flux
domain: there is only one flux in the circuit of Fig. 4.38 since the voltage across both
elements is equal. By duality, we have KqL:

Definition 4.14 (KqL) The algebraic sum of incremental charge in a closed
surface is zero.

Now that we have the laws of interconnections for ideal memristor networks, we
can easily reformulate the fundamental circuit elements in the (φ, q) domain [13]
as shown in Fig. 4.39. In Fig. 4.39, we have:

(a) Ideal voltage source: φ(t; t0) = φe(t; t0), ∀qe(t; t0)

(b) Ideal current source: q(t; t0) = qa(t; t0), ∀φa(t; t0)

(c) R: φR(t; t0) = RqR(t; t0)

(d) L: φL(t) = L d
dt

(qL(t)) φL(t; t0) = −φL0 + L d
dt

(qL(t; t0))

(e) C: qC(t) = C d
dt

(φC(t)) qC(t; t0) = −qC0 + C d
dt

(φC(t; t0))

(f) Flux-controlledNM : qM(t; t0) = f (φM(t; t0) + φM0) − qM0

(g) Charge-controlledNM : φM(t; t0) = h(qM(t; t0) + qM0) − φM0

Although we could have reduced the number of relationships above by invoking
duality, we would like for the reader to have a complete reference for FCAM.

4.4.2 Memristive Devices

It is possible to systematically derive differential-algebraic equations for memristive
devices, based on tableau analysis, see [27]. But since this topic is beyond the
scope of this book, we will simply obtain the circuit equations for networks with
memristive devices in the (v, i) domain by inspection.
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Fig. 4.39 The various two-terminal circuit element equivalents in the (φ, q) domain

We will also focus on passivity and frequency-characteristics19 theorems the
memristor. These theorems will help us identify physical memristors. We will not
rigorously prove these theorems as all the proofs can be found in [9]. Rather, we
will give examples from physical memristors. We will state all theorems for current-
controlled (recall Eq. (1.86)) memristive devices:

ẋ = f (x, i, t)

v = R(x, i, t)i (4.145)

The theorems are valid for voltage-controlled memristive devices, by duality.

19It is important to note that we do not say frequency response since that is a term reserved for
linear systems.
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Fig. 4.40 Measured
discharge tube characteristics

Theorem 4.5 (Passivity Criterion) Let a current-controlled memristive one-
port be time-invariant and let its nonlinear memristance function R(·) satisfy
the constraint R(x, i) = 0 only if i = 0. Then the one-port is passive iff
R(x, i) ≥ 0 for any admissible input current i(t), for all t ≥ t0 where t0 is
chosen such that x(t0) = x∗, where x∗ is the state of minimum energy storage.

This theorem essentially says that for a memristor to be passive, its (v, i)

characteristic should lie in the first and third quadrant. For example, consider the
discharge tube v−i fromChap. 1, reproduced in Fig. 4.40. Notice how the Lissajous
figure is only present in the first and third quadrants, hence the discharge tube is a
passive memristor.However, in each quadrant, the curve is passive but not strictly
passive.

Theorem 4.6 (DC Characteristics) A time-invariant current-controlled
memristive one-port under DC operation is equivalent to a time-invariant
current-controlled nonlinear resistor if f (x, I) ≈ 0 has a unique solution
x = X(I) such that for each value of I ∈ �, the equilibrium point x = X(I)

is globally asymptotically stable.
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Fig. 4.41 Measured DC memristor characteristics. Experimental oscilloscope picture has been
offset for clarity, the x axis is current mapped to voltage. We have marked axes in blue

An example of DC characteristics is shown in Fig. 4.41 for an emulated
memristor [23] that is used in the Muthuswamy-Chua (Sect. 5.4.1) chaotic circuit.

Theorem 4.7 (Double-Valued Lissajous Figure) A current-controlled mem-
ristive one-port under periodic operation (i.e., response is periodic with same
period as input) with i(t) = I cos(ωt) always gives rise to a v − i Lissajous
figure whose voltage v is at most a double-valued function of i.

Figure 4.40 shows the classic pinched-hysteresis fingerprint of a memristor.

Theorem 4.8 (Limiting Linear Characteristics) If a time-invariant current-
controlled memristive one-port described by Eq. (4.145) is BIBO stable, then
under periodic operation it degenerates into a linear time-invariant resistor as
the excitation frequency increases towards infinity.

The effect of limiting linear characteristics is shown in Fig. 4.42. Notice from
Fig. 4.42 that we have “lost” the limiting linear characteristics as the frequency
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Fig. 4.42 Experimental measurements and corresponding simulated results (red) [28] of Ther-
mometric’s NTC diode thermistors (NTC-3.896KGJG), illustrating Theorem 4.8. The input is a
sinusoidal source with amplitude A = 5V. The experiment on the NTC thermistor was conducted
at room temperature. The parameters used for simulations of the generic memristor device model of
the NTC thermistor are: T0N = 300 K, R0N = 3.89K�,HCN = 0.14 J/K, δN = 0.1W/K, βN =
5 × 105 K. For parasitic effects (Fig. 4.43), CP = 5 nF, Lp = 2mH, EP = 0V, IP = 0A

increases. This does not imply Theorem 4.8 is invalid. Rather, a physical memristor
is not exactly modeled by Eq. (4.145).

Recall from Sect. 1.7.1 about the essence of modeling: we extract the essential
factors of the device based on the circuit in question. In the case of physical
memristive devices, we need a generic device model since measured pinched-
hysteresis loops need not pass through the origin due to parasitics. This generic
device model is shown in Fig. 4.43 [28] and has been used in the simulation results
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Fig. 4.43 Generic memristor
device model
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for Fig. 4.42. The NTC thermistor model used in the circuit of Fig. 4.43 for obtaining
Fig. 4.42 is given by Eqs. (4.146) and (4.147).

W(TN)
�=
(

R0Ne
−βN

(
1

TN
− 1

T0N

))−1

iN = W(TN)vN (4.146)

dTN

dt
= δN

HCN
(T0N − TN) + W(TN)

HCN
v2N (4.147)

We will now examine another example of Fig. 4.43, detailed analysis can be found
in [28]. Consider two simulated pinched-hysteresis loops for the discharge tube
memristor, shown in Fig. 4.44a and b [24]. Experimental confirmation can be found
in [24].

If we have a parasitic inductor in series with a memristor, as in Fig. 4.44a, we
know that an inductor causes current to start lagging voltage. Hence when iM =
0, if vM > 0, then vM should be increasing because current is lagging voltage.

Thus
•
vM > 0. Similarly, when iM = 0 and vM < 0, then vM should continue

to decrease and thus
•
vM < 0. Hence the parasitic pinched-hysteresis loop ends up

having no “crossings.” A dual argument applies to Fig. 4.44b but in this case we get
two “crossings.”

Another very important point about modeling: it is irrelevant with respect
to terminal behavior how the internal state of a memristor is represented. For
example, there are two known internal state variables for the memristive model of a
discharge tube: the number of conduction electrons n [11]:

v = M(n)i (4.148)

dn

dt
= −βn + αM(n)i2 (4.149)
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Fig. 4.44 Simulation parameters for the discharge tube model in Eqs. (4.148) and (4.149) are:
β = 0.1, α = 0.1, F = 1, ω = 0.063. (a) Simulated iM − vM curve for an inductor Lp = 5H
in series with a memristive discharge tube. The arrows indicate the trajectory of (iM(t), vM(t)) at
t → ∞. We have assumed Ep = 0, Ip = 0 and |ZCp

(jω)| → ∞. (b) Simulated iM − vM curve
for a capacitor Cp = 1 F in parallel with a memristive discharge tube. The arrows indicate the
trajectory of (iM(t), vM(t)) at t → ∞. We have assumed Ep = 0, Ip = 0 and |ZLp

| → 0

or tube temperature T [21]:

R(T )
�= a5T

−3/4 exp(ea6/2kT ) (4.150)

v(t) = R(T )i(t) (4.151)

dT

dt
= a1[i2R(T ) − a2 exp(−ea3/kT ) − a4 exp(T − T0)] (4.152)

The values of the constants and the physical meaning of the variables in Eqs. (4.151)
and (4.152) depend on whether the discharge tube being modeled is either a high-
pressure lamp or a low-pressure lamp. For instance, for high pressure lamps, T is
the gas temperature Tg and T0 is the tube-wall temperature. a1 = 20976.1, a2 =
54350.4, a3 = 0.986, a4 = 0.128, a5 = 2012.0, a6 = 0.375, T0 = 1000K. e =
1.6 × 10−19 C is the electron charge and k = 1.38 × 10−23 J/K is Boltzmann’s
constant.

Irrespective of the choice of the internal state variable for the memristive model
of the discharge tube, the v− i terminal behavior still shows pinched-hysteresis. For
investigating the parasitic behavior, we chose the simpler of the two models: the
internal state being a function of the number of conduction electrons [24]. This point
bolsters our theme of modeling throughout the book, which is summarized by a
quote from Einstein: “It can scarcely be denied that the supreme goal of theory is to
make irreducible basic elements as simple and as few as possible without having
to surrender the adequate representation of a single datum of experience” [2].
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Fig. 4.45 The small-signal
AC equivalent circuit for
Eq. (4.145)

ZQ(s)

R0(X̃ , I) R1(X̃ , I) Rn(X̃ , I)

C0(X̃ , I) C1(X̃ , I) Cn(X̃ , I)

Fig. 4.46 The small-signal
AC equivalent circuit of a
thermistor [9]

C1 R1

R0(T )

Theorem 4.9 (Small-Signal AC Characteristics) If a time-invariant current-
controlled memristive one-port is globally asymptotically stable for all DC
input current I , then its small-signal equivalent circuit about the DC operating
point is shown in Fig. 4.45, with a small-signal impedance given by:

ZQ(s)
�= ΔV (s)

ΔI (s)
= ∂R(X, I)I

∂i
+ β1s

n−1 + β2s
n−2 + · · · + βn−1s + βn

sn−1 + α1sn−1 + · · · + αn−1s + αn

(4.153)

A small-signal equivalent for the thermistor is shown in Fig. 4.46, where:

C1 = C

2αPR(T )

�= Ĉ1(T , I)

R1 = 2αPR(T )

δN − αP

�= R̂1(T , I)

α =�= −βN

T 2
< 0, P

�= V I = R(T )I 2

Since C1 is negative, the thermistor is inductive under small-signal operation.
The reader should hence realize from this section that a memristor is described

by two concepts:memory and resistance. Memory occurs in the form of hysteresis
in a v − i plot, resistance in the form of pinching behavior at the origin in the v − i

plot. Note that memory need not imply “storage” in the sense of a capacitor or
inductor. Rather, a memristor’s resistance (conductance) depends on past history of
a particular state variable.
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Therefore, in conclusion to this section, we have the following working hypoth-
esis for memristors:

Since a memristor is described by two concepts: memory and resistance,
memristor physics cannot be fully explained by electromagnetic field the-
ory. Specifically, the memristor state equation requires another branch of
science. This is in sharp contrast to resistors, capacitors, and inductors, whose
material behavior is the subject of electromagnetic fields in matter (conductive,
dielectric, and ferromagnetic media respectively).

For example:

1. The Josephson junction ideal menductance is described using superconductivity
(and hence quantum mechanics).

2. Discharge tube state equation is described using plasma physics.
3. pn-junction diode memristance requires junction physics. In fact, the memris-

tance arises because the semiconductor bulk resistance is not a constant, but a
function of the charge flowing through it [11, 26].

We encourage readers to rigorously investigate and prove or disprove the hypothesis
above.

4.5 Energy Approach: Lagrangian and Hamiltonian

In this section,20 we will start out by discussing energy expressions for two-terminal
resistor, capacitor, and inductor.21 As examples, we will obtain system equations
for a circuit using the Lagrangian and Hamiltonian. The purpose of doing so is
to provide the reader with a third (in addition to time and frequency) approach to
writing circuit equations.

A key aspect of the Lagrangian and Hamiltonian frameworks is that they bring
to forefront one of the most fundamental concepts in physics—energy. A second
motivation is that the energy based approach helps us to view a circuit as a
(usually simpler) set of subsystems that exchange energy among themselves and
the environment. Unfortunately, we can only scratch the surface of this fascinating
topic in this section. The interested reader is referred to [19] and [17] as starting
points.

20Many thanks to Dr. Jevtic and Dr. Thomas for reviewing and correcting errors in this section.
21We will only focus on linear elements, for brevity. Specifically with respect to action and coaction
definitions for the memristor, please see [4, 22].
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We know from basic physics that energy is defined as the integral of power:

w(t1, t2) =
t2∫

t1

p(τ)dτ (4.154)

From the definition of power for a two-terminal element, we get:

w(t1, t2) =
t2∫

t1

v(τ )i(τ )dτ (4.155)

With respect to a resistor, Eq. (4.155) would imply that no energy is stored. For
example, for a linear resistor, we get:

wR(t1, t2) =
t2∫

t1

[i(τ )R]i(τ )dτ

= R

t2∫

t1

i2(τ )dτ

= 1

R

t2∫

t1

v2(τ )dτ (4.156)

If R > 0, the energy is dissipated usually in the form of heat and is lost as far as the
circuit is concerned. Such an element is therefore said to be lossy.

In contrast, capacitors and inductors store energy. The energy wc(t1, t2) entering
a charge-controlled capacitor during any time interval [t1, t2] is independent of
the capacitor voltage or current waveforms: It is uniquely determined by the
capacitor charge at the end points, namely, q(t1) and q(t2):

wc(t1, t2) =
t2∫

t1

v̂(q(t))
dq

dt
dt

=
q(t2)∫

q(t1)

v̂(q)dq (4.157)

Suppose we have a C-F linear capacitor having an initial voltage v(t1) = V and
initial charge q(t1) = Q = CV at t = t1. Let the capacitor be connected to an
external circuit at t = t1. The energy entering the capacitor during [t1, t2] is given
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by Eq. (4.157):

wC(t1, t2) = 1

2C
[q2(t2) − Q2]

= 1

2
C[v2(t2) − V 2] (4.158)

Note that whenever q(t2) < Q or v(t2) < V , then wC(t1, t2) < 0. This means
energy is actually being sent out of the capacitor and returned to the external circuit.
It follows from Eq. (4.158) that wC(t1, t2) is most negative when q(t2) = v(t2) =
0, whereupon wc(t1, t2) = −Q2

2C = − 1
2CV 2. Since this represents the maximum

amount of energy that could be extracted from the capacitor, it is natural to say that
an energy equal to

EC(Q) = Q2

2C

= 1

2
CV 2 (4.159)

is stored in a linear capacitor C having an initial voltage v(t1) = V or initial charge
q(t1) = Q = CV .

By duality, an energy equal to:

EL(φ) = 1

2L
φ2

= 1

2
LI 2 (4.160)

is stored in a linear inductor L having an initial current i(t1) = I or initial flux
φ(t1) = φ = LI .

Now that we have expressions for the energy stored in a (linear) capacitor or
inductor, we need to understand the meaning of “kinetic” and “potential” energy
in electric circuits, before we can discuss how to obtain circuit equations via
the Lagrangian and the Hamiltonian. To do this, we will appeal to the reader’s
“natural intelligence” with respect to (translational) mechanical systems. Consider
the following (we will again assume all mechanical elements are linear and we will
not worry about relativistic effects):

• m (mass)—Characteristic Equation: p = mv, p: linear momentum, v: velocity
• k (Spring constant)—Characteristic Equation: F = kx, F : force, x: displace-

ment

We know the energy expressions for a mass and spring as:

• m: Em = 1
2mv2

• k: Ek = 1
2kx2
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Obviously, a moving mass has a kinetic energy Em and a compressed spring has
a potential energy Ek. Now consider the energy expressions for L and C:

• L: EL = 1
2LI 2

• C: EC = 1
2CV 2

It should now be clear that since an inductor’s stored energy is due to current
or moving charge, our mechanical analog of an inductor is the mass. Since a
capacitor’s stored energy is due to electrostatic potential, our mechanical analog
of a capacitor is the spring. Hence (←→ stands for analog):

p (momentum) ←→ φ (flux) (4.161)

v (velocity) ←→ i (current) (4.162)

x (displacement) ←→ q (charge) (4.163)

F (force) ←→ v (voltage) (4.164)

Next, let x = [x1, · · · , xn]T denote a column vector and V (x) denote a scalar
function V : �n → R. The gradient of V (x) with respect to x is denoted by:

∇Vx(x)
�=

⎡

⎢
⎢
⎢
⎢⎢
⎢
⎢
⎣

∂V
∂x1
∂V
∂x2

·
·
·

∂V
∂xn

⎤

⎥
⎥
⎥
⎥⎥
⎥
⎥
⎦

(4.165)

Mechanically, the Lagrangian and Hamiltonian are described in terms of general-
ized coordinates. In the case of electric circuits, we will use q (capacitor charge(s))

and consequently
•
q as our generalized coordinates. The formalism requires that the

Lagrangian L be expressed in terms of q and
•
q:

L(q,
•
q) = EL − EC (4.166)

where EL represents the total energy stored in inductor(s) and EC represents the
total energy stored in capacitor(s). Notice this is equivalent to the definition from
mechanics, if we consider energy stored in inductor(s) as “kinetic” energy and
energy stored in capacitor(s) as “potential” energy.

The total energy of the capacitors EC can be readily expressed in terms of charge:

EC(q) =
NC∑

n=1

q2
n

2Cn

(4.167)
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Fig. 4.47 Circuit for
Example 4.5.1

L1 L2

+

−

+

−
q1 q2

C1 C2

i1 i2

where NC is the total number of capacitors in the circuit. However the total energy
of the inductors EL is usually expressed in terms of inductor currents i:

EL(i) =
NL∑

n=1

1

2
Lni

2
n (4.168)

where NL is the total number of inductors in the circuit. We must therefore first
express the inductor currents i in terms of

•
q:

i = A
•
q (4.169)

where A is an NL × NC matrix. This can be done using KCL (as shown in Exam-
ple 4.5.1). Now, we can write Lagrange’s equations in terms of the Lagrangian:

d

dt
∇L•

q
(q,

•
q) − ∇Lq(q,

•
q) = 0 (4.170)

where L(q,
•
q) = EL(A

•
q) − EC(q).

Example 4.5.1 Write system equations for the circuit in Fig. 4.47 using the
Lagrangian, for t ≥ 0. Assume the inductors have initial current i1(0), i2(0)
and capacitors have initial charge q1(0), q2(0) at t = 0.

Solution For the circuit, we have:

EL − EC = 1

2
L1i

2
1 + 1

2
L2i

2
2 − q2

1

2C1
− q2

2

2C2
(4.171)

(continued)
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Example 4.5.1 (continued)

We need to rewrite the energy expression above in terms of (q,
•
q) for the

Lagrangian, where q =
[
q1

q2

]
. From KCL:

i1 = −•
q1 − •

q2

i2 = •
q2 (4.172)

Thus the Lagrangian for the circuit is:

L(q,
•
q) = 1

2
L1(

•
q1 + •

q2)
2 + 1

2
L2

•
q
2

2 − q2
1

2C1
− q2

2

2C2
(4.173)

Hence we have:

d

dt
∇L•

q
(q,

•
q) − ∇Lq(q,

•
q) = d

dt

⎡

⎣
∂L

∂
•
q1

∂L

∂
•
q2

⎤

⎦−
[

∂L
∂q1
∂L
∂q2

]

= d

dt

[
L1(

•
q1 + •

q2)

L1(
•
q1 + •

q2) + L2
•
q2

]

−
[
− q1

C1

− q2
C2

]

=
⎡

⎣ −L1
•
i1 + q1

C1

−L1
•
i1 + L2

•
i2 + q2

C2

⎤

⎦ (4.174)

Therefore Lagrange’s equations give us:

−L1
•
i1 + q1

C1
= 0

−L1
•
i1 + L2

•
i2 + q2

C2
= 0 (4.175)

Notice Lagrange’s equations give rise to the KVL equations for the circuit.

By applying a (Legendre) transformation Lagrange’s Eq. (4.170), we get the
Hamiltonian. We first define ψ as the conjugate momenta to q:

ψ
�= ∇•

q
L(q,

•
q) (4.176)
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Notice that ψ has the same number of components as q, i.e., NC components while
there are NL inductor fluxes: φ = ∇iEL(i). In general, ψn �= φn. Specifically, using
the chain rule:

ψ = ∇•
q
L(q,

•
q)

= ∇•
q
EL(A

•
q)

= ∇•
q
(A

•
q)∇

A
•
q
EL(A

•
q)

= AT ∇iEL(i) (4.177)

Thus: ψ = AT φ. The Hamiltonian formalism requires that the Hamiltonian
function H be expressed in terms of the generalized coordinates q (capacitor
charges) and their conjugate momenta ψ:

H(q,ψ) = EL(ψ) + EC(q) (4.178)

Hamilton’s equations are hence given by:

•
q = ∇ψH(q,ψ) (4.179)

•
ψ = −∇qH(q,ψ) (4.180)

Example 4.5.2 Write system equations for the circuit in Fig. 4.47 using the
Hamiltonian, for t ≥ 0. Assume again the inductors have initial current
i1(0), i2(0) and capacitors have initial charge q1(0), q2(0) at t = 0.

Solution In Example 4.5.1, we derived the Lagrangian as:

L(q,
•
q) = 1

2
L1(

•
q1 + •

q2)
2 + 1

2
L2

•
q
2
2 − q2

1

2C1
− q2

2

2C2
(4.181)

We can now find the conjugate momenta:

ψ1 = ∂L

∂
•
q1

= L1(
•
q1 + •

q2)

= −L1i1

= −φ1 (4.182)

(continued)
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Example 4.5.2 (continued)

ψ2 = ∂L

∂
•
q2

= L1(
•
q1 + •

q2) + L2
•
q2

= −L1i1 + L2i2

= −φ1 + φ2 (4.183)

The total energy is:

EL + EC = φ2
1

2L1
+ φ2

2

2L2
+ q2

1

2C1
+ q2

2

2C2
(4.184)

The Hamiltonian is:

H(q,ψ) = ψ2
1

2L1
+ (ψ2 − ψ1)

2

2L2
+ q2

1

2C1
+ q2

2

2C2
(4.185)

Hamilton’s equations give:

•
q1 = ∂H

∂ψ1

= ψ1

L1
− ψ2 − ψ1

L2
(4.186)

•
q2 = ∂H

∂ψ2

= ψ2 − ψ1

L2
(4.187)

•
ψ1 = −∂H

∂q1

= − q1

C1
(4.188)

•
ψ2 = −∂H

∂q2

= − q2

C2
(4.189)

It is trivial to verify that Eqs. (4.186) through (4.189) give rise to KCL and
KVL.
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4.6 Miscellaneous Topics

We would like to wrap up this chapter by discussing three important and fundamen-
tal concepts.

4.6.1 Reciprocity

The reciprocity theorem appears in various fields of science and engineering:
physics, mechanics, acoustics, electromagnetic waves, and electric circuits [12].
Roughly speaking, it deals with the symmetric role played by the input and output
of a physical system. In electric circuits, reciprocity holds for a subclass of linear
and nonlinear circuits. In this section, we will only focus on linear time-invariant
circuits. Reciprocity with respect to memristors is an active area of research,
see [16]. We will simply give three statements of the theorem and illustrate an
application of one of the statements with an example [14].

Consider a linear time-invariant network N which consists of resistors, induc-
tors, mutual inductors, capacitors, and transformers only. N is in steady-state and
not degenerate. Connect four wires toN obtaining two pairs of terminals 1, 1′ and
2, 2′.

Theorem 4.10 (Reciprocity Theorem Statement 1) Connect a voltage source
e0(·) to terminals 1, 1′ and observe the zero-state current response j2(·) in a short
circuit connected to 2, 2′ (see Fig. 4.48a). Next, connect the same voltage source
e0(·) to terminals 2, 2′ and observe the zero-state current response ĵ1(·) in a short
circuit connected to 1, 1′ (see Fig. 4.48b). The reciprocity theorem asserts that
whatever the topology and element values of N and whatever the waveform e0(·),
j2(t) = ĵ1(t) ∀t .

In the statement above, we are essentially saying that if the voltage source is
interchanged for a zero-impedance ammeter, the reading of the ammeter will not
change.

Theorem 4.11 (Reciprocity Theorem Statement 2) Connect a current source
i0(·) to terminals 1, 1′ and observe the zero-state voltage response v2(·) in an open
circuit connected to 2, 2′ (see Fig. 4.48c). Next, connect the same current source
i0(·) to terminals 2, 2′ and observe the zero-state voltage response v̂1(·) in an
open circuit connected to 1, 1′ (see Fig. 4.48d). The reciprocity theorem asserts that
whatever the topology and element values of N and whatever the waveform i0(·),
v2(t) = v̂1(t) ∀t .

In the statement above, we are observing open circuit voltages.

Theorem 4.12 (Reciprocity Theorem Statement 3) Connect a current source
i0(·) to terminals 1, 1′ and observe the zero-state current response j2(·) in a short
circuit connected to 2, 2′ (see Fig. 4.48e). Next, connect a voltage source e0(·) to
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Fig. 4.48 (a), (b): Reciprocity theorem statement 1, (c), (d): Reciprocity theorem statement 2, (e),
(f): Reciprocity theorem statement 3

terminals 2, 2′ and observe the zero-state voltage response v̂1(·) in an open circuit
connected to 1, 1′ (see Fig. 4.48f). The reciprocity theorem asserts that whatever the
topology and element values of N , whenever i0(t) = e0(t), v̂1(t) = j2(t) ∀t .

In the statement above, for both measurements, there is an “infinite impedance”
connected to 1, 1′ and a “zero impedance” connected to 2, 2′. The reader should
have noticed that since the reciprocity theorem deals exclusively with the zero-state
response (including steady-state response as t → ∞) of a linear time-invariant
network, it is convenient to describe it in terms of network functions. We will
illustrate the idea in Example 4.6.1 for statement 3 from Theorem 4.12.

Example 4.6.1 Confirm if statement 3 of the reciprocity theorem is true for
the circuit shown in Fig. 4.49.

Solution We have defined the ports 1, 1′ and 2, 2′ as shown in Fig. 4.49b and
c, respectively. We are going to find the impulse response and since we do
not have any other source, we know at steady state all voltages and currents
must tend to zero (this will serve as a “sanity check”). By node analysis and

(continued)
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Example 4.6.1 (continued)
Laplace transform in Fig. 4.49b we obtain:

[
0.2 + s + 1

s
− 1

s

− 1
s

1 + 1
s

] [
V1(s)

V2(s)

]
=
[
1
0

]
(4.190)

Hence:

V2(s) = 1/s

(0.2 + s + 1/s)(1 + 1/s) − (1/s)2
= 1

s2 + 1.2s + 1.2
(4.191)

Taking the inverse Laplace transform (using reliable online tables) and noting
that j2(t) = 1 ∗ v2(t), we obtain:

j2(t) = 1.09e−0.6t sin(0.916t) t ≥ 0 (4.192)

For the network in Fig. 4.49c, we will set up circuit equations in terms of
Î1(s), Î2(s) (this is called mesh analysis). The matrix equations are:

[
5 + 1

s
− 1

s

− 1
s

1 + s + 1
s

] [
Î1(s)

Î2(s)

]
=
[
0
1

]
(4.193)

Thus:

Î1(s) = 1/s

(5 + 1/s)(s + 1 + 1/s) − (1/s)2
(4.194)

Since v̂1(t) = 5î1(t), we have:

V̂1(s) = 5

(5s + 1)(s + 1 + 1/s) − 1/s

= 5

5s2 + 6s + 6

= 1

s2 + 1.2s + 1.2
(4.195)

Recognizing this function of s to be the transform of j2(t), we use previous
calculations and conclude that:

v̂1(t) = 1.09e−0.6t sin(0.916t) t ≥ 0 (4.196)

Thus, the two responses are equal, as required by the reciprocity theorem.
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Fig. 4.49 Circuit(s) for Example 4.6.1

4.6.2 Synthesis of Higher-Order Circuit Elements

Recall from Chap. 1 that we defined (α, β) circuit elements as a “natural extension”
of the four fundamental circuit elements. We have reproduced Fig. 1.40 in Fig. 4.50
for ease of discussion.

In order to give some physical meaning to each higher order element E , it is
convenient [5] to examine its small-signal behavior about an operating point Q on
the associated v(α)−i(β) curve. Assuming that E is characterized by v(α) = f (i(β)),
the small-signal behavior of E about Q is described by:

δv(α)(t) = mQδi(β)(t) (4.197)

where mQ denotes the slope f ′(i(β)) at Q. We can define the AC small-signal
impedance Z(jω) associated with Eq. (4.197) by taking the Laplace transform of
Eq. (4.197) and letting s = jω:

L {δv} = Z(s)L {δi} (4.198)
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Fig. 4.50 The “periodic table” of all two-terminal (α, β) elements, with a frequency based
interpretation

where:

Z(jω) = (jω)β−αmQ (4.199)

Notice we obtained Eq. (4.199) by simply understanding the fact that each
derivative constitutes one jω. We can interpret Eq. (4.199) as the impedance of
an associated linearized element EQ. Since (β − α) can be any positive, zero, or
negative integer, there are four interesting cases to consider22:

• Case 1: β − α = ±2n, n = even integer

In this case, Z(jω) = ωβ−αmQ
�= R(ω) is a real positive function and hence

EQ is purely resistive. We can interpret, therefore, EQ as a frequency-dependent
resistor (red) in Fig. 4.50.

22The following interpretations are meaningful only for small-signal sinusoidal excitations at
a fixed frequency. Such interpretations however often provide valuable information for circuit
designers in their analysis of physical nonlinearities. The main point is: depending on the operating
point and the operating frequency, the small-signal model of a device may be either resistive,
inductive, or capacitive.
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• Case 2: β − α = ±2n, n = odd integer

In this case, Z(jω) = −ωβ−αmQ
�= R∗(ω) is a real negative function and

hence EQ is purely resistive. We can interpret, therefore, EQ as a frequency-
dependent negative resistor (orange) in Fig. 4.50.

• Case 3: β − α = (−1)n(2n + 1), n = 0, 1, 2, · · ·
In this case, Z(jω) = jωL(ω) is an imaginary number where

L(ω)
�=
{

ω2nmQ, when n even

ω−2(n+1)mQ, when n odd
(4.200)

and hence EQ is purely inductive, providedmQ > 0.We can interpret, therefore,
EQ as a frequency-dependent inductor (BlueGreen) in Fig. 4.50.

• Case 4: β − α = (−1)n+1(2n + 1), n = 0, 1, 2, · · ·
In this case, Z(jω) = −j

(
1

ωC(ω)

)
is an imaginary number where

C(ω)
�=
⎧
⎨

⎩

ω2n

mQ
, when n even

ω−2(n+1)

mQ
, when n odd

(4.201)

and hence EQ is purely capacitive, provided mQ > 0. We can interpret,
therefore, EQ as a frequency-dependent capacitor (OliveGreen) in Fig. 4.50.

Two applications of the interpretation above: a memristor M characterized as a
(−1,−1) element is classified as a frequency-dependent resistor (red) because the
area of the pinched-hysteresis v − i loop is a function of frequency [7]. A second
application is in interpreting (0,−2) element as a frequency-dependent negative
resistor (orange) or FDNR, see [15].

We will however use the time domain to synthesize the particular higher-order
element (0,−2), motivated by the fact that we need i = v̈ for the Duffing
oscillator implementation in Sect. 5.5, not i = −v̈ as given by an FDNR.
Consider the schematic in Fig. 4.51. The concept behind Fig. 4.51 is rooted in

Fig. 4.51 A mutator for
synthesizing (0,−2) from a
(0,−1) element (capacitor C2
at port 2)

+

+

C

i

C2

+

−

i2

v2v1i

i1
+

−

v1
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Sect. 2.5.4, specifically Fig. 2.42. Instead of connecting a nonlinear resistor, we have
used a linear capacitor C2. Based on Sect. 2.5.4, we want the following two-port
relationship:

v1 = v2

i1 = k
d2

dt2
v2 (4.202)

By the VCVS at port 2, we trivially obtain v2 = v1. From the VCCS across C, we
have:

i = −αC
di2

dt
(4.203)

Dimensionally, [α] = Ω . By the CCCS at port 1, we trivially obtain: i1 = i. Using
the expression for i above and the fact the v1 = v2, we get the desired relationship
at port 1:

i1 = −αC
di2

dt

= αCC2
d2

dt2
v2

= αCC2
d2

dt2
v1 (4.204)

We will synthesize the mutator in Fig. 4.51 by using two opamps and one
CFOA in Sect. 5.5. For the general concept for synthesizing higher-order nonlinear
elements, the interested reader can refer to [10].

4.6.3 Limit Cycles

In Sect. 4.2.1.6, we have already seen how a simple first-order opamp circuit could
burst into a relaxation oscillation. Our analysis of this phenomenondepends on a key
assumption, namely, the jump rule. Our objective in this final section is to justify this
rule.

Every electronic oscillator requires at least two energy-storage elements and
at least one nonlinear element [12]. We will therefore begin with the simplest
nonlinear oscillator circuit, analyze its qualitative behavior, and then examine how
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Fig. 4.52 Basic oscillator
circuit

L > 0

C > 0

+ vL −
+

vC

−

+

−

v

iL i

the oscillation waveform varies as we tune a parameter, say the inductance.23 We
will then show that as the inductance decreases, the oscillation changes from a
nearly “sinusoidal” waveform into a nearly “discontinuous” waveform. In the limit,
when the inductance tends to zero, the waveform becomes discontinuous and we
obtain the jump rule. Fig. 4.52 shows the basic structure of an important class of
electronic oscillators. Since both the inductor and capacitor are linear and passive
(i.e.,L > 0, C > 0), we claim that the resistive one-portNR must be active (i.e., the
DP characteristic contains at least some points in the second and/or fourth quadrant
of the v − i plane) in order for oscillation to be possible.

To see whyNR must be active, suppose it is strictly passive so that v(t)i(t) > 0
for all t ; then the energy will continually enter NR , only to be dissipated in the
form of heat.24 This dissipated energy must of course come from the initial energy
stored in the capacitor and inductor. Hence, as t → ∞, the total energy stored
in the capacitor and inductor will decrease continuously till it becomes completely
dissipated. Since the instantaneous energy stored in the capacitor and inductor is
EC(t) = 1

2Cv2C(t),EL(t) = 1
2Li2L(t) (recall Sect. 4.5), it follows that:

Total energy = 1

2
Cv2C(t) + 1

2
Li2L(t) → 0 as t → ∞ (4.205)

Hence both vC(t) and iL(t) must eventually tend to zero and no sustained oscillation
is possible.

A typical active resistive one-port has already been described by the three-
segment PWL negative resistance characteristic in Fig. 4.26b. In general, any
continuous nonmonotonic current-controlled v − i characteristic described by v =
v̂(i) satisfying the conditions:

v̂(0) = 0

v̂′(0) < 0

23This change in the steady-state dynamic behavior of a circuit as one (or more) parameters
are varied is called a bifurcation. The parameter that is being varied is called the bifurcation
parameter. A detailed study of bifurcations is beyond the scope of this book.
24Although the circuit could theoretically oscillate when NR is a short circuit (passive but not
strictly passive), no oscillation is possible in practice because the connecting wire always has some
small but nonzero resistance.
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v̂(i) → ∞ as i → ∞
v̂(i) → −∞ as i → −∞ (4.206)

would cause the circuit in Fig. 4.52 to oscillate. This statement can be proved
rigorously, see [12].

Indeed, the conditions in Eq. (4.206) are satisfied by many electronic circuits.
For example, the DP characteristic in Fig. 4.54 of the twin-tunnel-diode circuit in
Fig. 4.53 clearly satisfies the conditions in Eq. (4.206).

We will now consider the physical mechanisms of oscillation in the simple series
NRLC circuit from Fig. 4.52.We can write the normal form equations for the circuit
by inspection (Fig. 4.54):

•
vC = −iL

C

�= f1(vC, iL)

•
iL = vC − v̂(iL)

L

�= f2(vC, iL) (4.207)

Fig. 4.53 A negative
resistance twin-tunnel-diode
circuit

i

+

−

v

0.3 V 0.3 V

Fig. 4.54 Typical DP
characteristic of the circuit in
Fig. 4.53

v, V

i, mA

0-0.3 0.3

-0.4

0.4



4.6 Miscellaneous Topics 299

Assuming only that v̂(iL) satisfies the conditions in Eq. (4.206) it is possible to
derive general qualitative behaviors for this circuit. Indeed, equating f1(·) and f2(·)
to zero in Eq. (4.207), we get the unique equilibrium point located at the origin:
vCQ = 0, iCQ = 0.

Now, in order to determine if (0, 0) is a stable or unstable equilibrium point, we
can perform a small-signal analysis of the circuit about the DC operating point Q

(in this case, (0, 0)). But, we will now take the opportunity to introduce the concept
of the Jacobian matrix: if we linearize the RHS of Eq. (4.207) (or any nth-order
normal form equations) and ignore the quadratic and other higher order terms, we
would get the following result (given for a 2nd-order system such as Eq. (4.207)):

⎡

⎣
•
x̄1•
x̄2

⎤

⎦ =
[
a11 a12

a21 a22

] [
x̄1

x̄2

]
(4.208)

where x̄1
�= x1 − x1Q and x̄2

�= x2 − x2Q represent the small-signal deviation from
the operating point. From Taylor series, we know:

[
a11 a12

a21 a22

]
=
⎡

⎢
⎣

∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

⎤

⎥
⎦

x=xQ

(4.209)

The matrix on the RHS of Eq. (4.209) is the Jacobian matrix J. For any nth-order
system in normal form, we can generalize J to:

J =

⎡

⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎣

∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn

· · · ·
· · · ·
· · · ·

∂fn

∂x1

∂fn

∂x2
· · · ∂fn

∂xn

⎤

⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎦

x=xQ

(4.210)

For the second order Jacobian in Eq. (4.209), we gather from the Hartman-Grobman
theorem [12], that the qualitative behavior (stable, unstable) of the associated
nonlinear system will be “similar” to the linearized system about an equilibrium
point.

For the oscillator described by Eq. (4.207), the Jacobian matrix evaluates to:

J =
⎡

⎢
⎣
0 −1

C

1
L

−v̂′(0)
L

⎤

⎥
⎦ (4.211)



300 4 Dynamic Nonlinear Networks

We know from our basic calculus courses that the general solution of the linear ODE
in Eq. (4.208) is given by:

x̄(t) = (k1e
λ1t )η1 + (k2e

λ2t )η2 (4.212)

where λ1, λ2 are the eigenvalues of J and η1, η2 are the associated eigenvectors.
Also from our basic calculus courses, we know that if Re(λ1) < 0, Re(λ2) < 0
the system associated with Eq. (4.208) is stable, etc. Since instead of using the
eigenvalues, we can utilize the trace and determinant of J:

T = a11 + a22 = −v̂′(0)
L

Δ = a11a22 − a12a21 = 1

LC
(4.213)

Since Δ > 0 and by the second condition in Eq. (4.206), T > 0, we have
the following relation for the equilibrium point (origin) of the oscillator to be an
unstable:

1

LC
>

1

4

[−v̂′(0)
L

]2
(4.214)

or equivalently:

|v̂′(0)| < 2

√
L

C
(4.215)

So all trajectories starting near the origin would diverge from it and head toward
infinity. But, just like the relaxation oscillator we studied earlier, NR is eventually
passive (i.e. the v − i characteristic must lie in the first and third quadrants beyond
a certain finite distance from the origin). Thus, in view of conditions 3 and 4 in
Eq. (4.206),NR will start absorbing energy from the external world—the capacitor
and inductor in this case.

Consequently, the energy initially supplied by the “active” NR (when the
(vC, iL) is near the “unstable” origin) to propel the trajectory toward infinity
eventually fizzles as NR becomes passive and begins to absorb energy instead.
Therefore, the initial outward motion of the trajectory will be damped out by losses
due to power dissipated inside NR when the trajectory is sufficiently far out. Soon,
the trajectory must “grind to a halt” and start “falling” back toward the origin.

The above scenario is depicted in Fig. 4.55, where we have included a cubic

v(i) = i3

3 − i. The parametric plot of (i(t), v(t)) is called a phase portrait, so
named because the x − y plane is historically called the phase plane.

Observe that since the circuit has only one equilibrium state, and since it is
unstable, there is no point where any trajectory could come to rest. Therefore all
trajectories must continue to move at all times. Since they cannot stray too far
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(not part of phase portrait)

in this region to contract and
return to the active region on
the right

DP characteristic

v

i

Active region Passive regionPassive region

Limit cycle

NR absorbs
energy from capacitor
and inductor, causing
trajectories in this region to contract
and return to the active region on the left

NR supplies
energy to capacitor and
inductor, causing trajectories
in this region to expand and
spin outwards

NR absorbs
energy from capacitor and
inductor, causing trajectories

(vi > 0)(vi > 0) (vi < 0)

Fig. 4.55 Physical mechanism for oscillation

beyond the active region and since no trajectory of any autonomous state equation
can intersect itself,25 except at equilibrium points, each trajectory must eventually
tend toward some limiting orbit,26 henceforth called a limit cycle. Note that a limit
cycle is a periodic trajectory that is unique to a nonlinear system. By definition,
linear oscillations are not limit cycles, because linear oscillations are a continuum
of orbits. A limit cycle Γ must contain no other closed trajectories in a small band
around Γ .

Specifically, let us now discuss the phase portrait of the typical Van der Pol
oscillator, which helps us derive the generic jump rule. Suppose we choose v̂(i) =
i3

3 − i. Then Eq. (4.207) reads:

•
vC = −iL

C

•
iL =

vC −
(
1
3 i

3
L − iL

)

L
(4.216)

25If a trajectory were to intersect itself at (x̂1, x̂2), then its slope dx2
dx1

would have two different
values at (x̂1, x̂2). This is impossible since our system of equations is deterministic, not stochastic.
26Our reasoning does not prove that all trajectories must tend towards a unique limit cycle, although
this is actually the case for the particular v− i characteristic. The particular question of the number
of limit cycles for a second order autonomous ODE is unsolved and is famously referred to as
“Hilbert’s sixteenth problem.”
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Fig. 4.56 Simulated
(ProcessBlue) and physical
(Red) limit cycles from an
implementation (to be
discussed in Sect. 5.1) of the
Van der Pol oscillator
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For fixed values of L and C, we could use a computer to generate the phase portrait
of Eq. (4.216). One such phase portrait is shown in Fig. 4.56 But how does the phase
portrait change (or bifurcate) as we vary parameters L and C? In more complicated
state equations, this question can only be answered in general by a brute-force
computer simulation method. But, we can often reduce the number of parameters
without loss of generality by writing the equations in terms of dimensionless
variables. For the Van der Pol oscillator, let us introduce the following “scaled”
time variables:

τ
�= 1√

LC
t (4.217)

Note that since
√

LC has the dimensions of time, τ is dimensionless and will
henceforth be called “dimensionless time.” Note that this τ is unrelated to the time
constant that we had defined earlier.

Observe that:

•
vC = dvC

dτ

dτ

dt
= 1√

LC

dvC

dτ

•
iL = diL

dτ

dτ

dt
= 1√

LC

diL

dτ
(4.218)

Substituting Eq. (4.216) into Eq. (4.218), we obtain the following equivalent state
equation in terms of dimensionless time variable τ :

dvC

dτ
= −1

ε
iL
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diL

dτ
= ε

[
vC −

(
1

3
i3L − iL

)]
(4.219)

where

ε
�=
√

C

L
(4.220)

Observe that Eq. (4.219) now contains only one parameter, ε, as defined by
Eq. (4.220). In fact, Fig. 4.56 uses the dimensionless time form of the Van der Pol
equation. The dimensionless form not only reduces the number of parameters, but
also has the added advantage for computer simulation of scaling. In the case of
time for instance, by going from say μs to s, we can use a more realistic time step
for the numerical algorithm to avoid convergence issues. We will further explore
dimensionless normal form in Chap. 5.

Suppose ε → ∞, Eq. (4.220) implies L → 0. But, from the physical Van der Pol
Eq. (4.216), we see that L → 0 implies diL

dt
→ ∞. In other words we will have a

vertical jump in the v− i plane, assuming i is the vertical axis, just as we discussed
in Sect. 4.2.1.6.

Let us now consider the general Eq. (4.207) of a series oscillator:

•
vC = − iL

C
(4.221)

•
iL = 1

L
[vC − v̂(iL)] (4.222)

The function v̂(·) representing the nonlinear resistor characteristic can be quite
arbitrary except that it satisfies the conditions in Eq. (4.206). This class, as discussed
earlier, includes the negative resistance opamp relaxation oscillator.

Dividing Eq. (4.222) by Eq. (4.221), we obtain the slope:

m(P)
�= diL

dvC
= −C

L

[
vC − v̂(iL)

iL

]
(4.223)

of the tangent vector at any point P
�= (vC, iL) on a trajectory in the vC − iL plane.

Thus, we have:

1. As L → 0 in Eq. (4.223), the limiting slope |m(P)| → ∞, as long as v(C) �=
v̂(iL). Thus all trajectories, except on the DP characteristic, will tend to vertical
line segments as L → 0. In particular, at the impasse points, we will have a jump
discontinuity.

2. Note that from Eq. (4.222),
•
iL > 0, if vC > v̂(iL) and vice versa. In other

words, this gives us the condition for the dynamic route derived in Sect. 4.2.1.6.
3. To complete our analysis of the jump phenomenon, we must estimate the amount

of time it takes a trajectory line segment to go from one branch of the DP plot
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to another. This is easily found from the velocity along the vertical direction as

specified by Eq. (4.222), namely, lim
L→0

∣
∣
∣
∣
diL

dt

∣
∣
∣
∣ → ∞, provided again we are not

on the DP characteristic. In particular, the trajectory through each impasse point
must execute a vertical instantaneous jump as L → 0.

We have thus formally justified the introduction of the jump rule in Sect. 4.2.1.6.

4.7 Conclusion

As a concluding note to this chapter, let us recall the overall idea behind this chapter
was to analyze dynamic nonlinear networks. We essentially had three approaches:
time domain, frequency domain, and energy. We restricted our discussion of
frequency domain techniques to linear time-invariant circuits but learned about the
powerful concepts of phasors and Laplace transforms. The mindful reader would
have noticed that many of the ideas involved studying an associated linear system
about a particular operating point. Althoughmuch insight can be gained for first and
second order systems via the linearization technique, third and higher order systems
exhibit extremely complicated nonperiodic phenomena, generally known as chaos.
Thus, chaos is a phenomena that cannot be fully studied by linearization and is hence
a property unique to nonlinear circuits. Therefore, Chap. 5 appropriately concludes
the book by incorporating a plethora of ideas encountered throughout the book.

Because of the large body of material in this chapter, we have summarized
concepts below, instead of specific formulae:

1. The order of complexity of a dynamic network is the minimum number of
initial conditions that must be specified in terms of circuit variables, in order
to determine the full behavior of the network.

2. When possible, the dynamic nonlinear network equations should be expressed
in normal form.

3. Dual circuits help us reduce the enormous solution space of dynamic nonlinear
networks.

4. We learned the following from time domain analysis of nth-order nonlinear
networks:

a. Current through a linear inductor and voltage across a linear capacitor cannot
change instantaneously across discontinuities.

b. Discontinuities in other circuit variables in the network occur because of the
constraint in (a) above.

c. Circuits exhibiting impasse points indicate that we need to augment the
circuit model, most likely with parasitics.

d. MNA, Tableau and Small Signal analysis can be easily extended to include
dynamic networks.
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5. An alternative to time domain analysis is frequency domain analysis. The
advantage of this approach when applied to linear time-invariant circuits is that
time domain differential equations are mapped to algebraic equations involving
complex variables in the frequency domain. The main ideas discussed were:

a. We use complex numbers to define a phasor, in order to obtain the steady-
state response when the network is excited by a sinusoid of a particular
frequency ω.

b. Differential equations in the time domain can be converted to algebraic
equations in the phasor domain, and hence techniques covered in Chap. 3
such as nodal analysis, tableau analysis, superposition, and Thévenin-Norton
theorems are applicable to circuits in the phasor domain.

c. For general excitation, we use the Laplace transform.
d. To calculate the time response, we need to use partial fraction expansion and

then use a table of inverse Laplace transforms.
e. Laplace transforms can be used to find both the transient and steady-state

responses.

6. For memristor networks:

a. We discussed the Flux-Charge Analysis Method (FCAM). The advantage
of this method is a reduction in the number of ODEs for the associated
memristive network.

b. Memristors display a distinct pinched-hysteresis v − i characteristic under
sinusoidal excitation.

c. Due to physical parasitics, a memristor’s v − i characteristic may become
unpinched at the origin.

d. We described small-signal AC characteristics of memristive devices.

7. A third approach to studying (dynamic nonlinear) networks is energy. We
discussed formulation of system equations from both the Lagrangian and
Hamiltonian. The main ideas discussed are:

a. Inductors store the mechanical equivalent of “kinetic energy” via the current
flowing through them (or the flux-linkage across them). Capacitors store the
mechanical equivalent of “potential energy” via the voltage across them (or
the charge stored in them).

b. Lagrangian formalism is in terms of the difference between kinetic and
potential energies. Hamiltonian formalism is in terms of the sum of kinetic
and potential energies.

8. Reciprocity helps us understand the symmetric role played by the input and
output of a physical system.

9. Higher-order circuit elements in general can be synthesized using higher order
mutators. We showed how to synthesize a particular type of higher order
mutator for i = v̈.

10. Limit cycles are an exclusive steady-state behavior of nonlinear oscillators, that
usually arise due to unstable equilibrium points.
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Lab 4: Relaxation Oscillator (Transient Simulation) and
High-Pass filter (AC Simulation)

Just like lab 3, we encourage the reader to perform simulation in QUCS first, so they
can verify their answers to the appropriate problems via simulation.

Objective To understand time domain (transient) simulation and frequency
response (AC simulation)in QUCS

Theory There are two steps to this lab: in the first step, you construct a relaxation
oscillator. In the second step, you go through theQUCS onlineworkbook to simulate
a high-pass filter. For the relaxation oscillator, you will be performing a transient
analysis or a time domain simulation. Please do not confuse transient analysis, as
defined by circuit simulators, with the concept of transient response discussed in the
text!

To perform sinusoidal steady-state analysis, the terminology used by circuit
simulators is AC simulation. We will use a simple RC circuit to illustrate the
idea of filtering signals. A discussion of filtering is beyond the scope of this book,
but the reader is encouraged to go through the appropriate material in an excellent
reference such as [12]. Moreover, as the reader simulates the high-pass filter, they
are encouraged to modify the circuit to understand its functionality.

Lab Exercise

1. For this step, construct the circuit shown in Fig. 4.57.
2. Once you enter the appropriate parameters, simulating the circuit should result

in Fig. 4.58. Compare your result with the discussion of relaxation oscillators in
this chapter (see also Exercise 4.7).

3. For this step, simulate the circuit under “AC simulation - A simple RC highpass”
in the QUCS online workbook. Make sure you understand the results. If
necessary, construct the circuit physically.

Exercises

4.1 Consider the memristor circuits in Figs. 4.5 and 4.6 from Example 4.1.3. What
is the order of complexity for the two circuits if the memristive devices are replaced
with ideal memristors?

4.2 For the circuit shown in Fig. 4.59, calculate v0(t) for t ≥ 0, given iL(0) = 2A.

4.3 Consider the circuit shown in Fig. 4.60a where the inductor is nonlinear and is
given by the i − φ characteristic shown.

http://qucs.sourceforge.net/docs/tutorial/workbook.pdf
http://qucs.sourceforge.net/docs/tutorial/workbook.pdf
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Fig. 4.58 Steady-state vC(t) and vout(t) for the circuit in Fig. 4.57
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Fig. 4.59 Circuit for Exercise 4.2

is(t)

(a) (b)

i, A

,Wb

0

2

1
−1

−2

Fig. 4.60 (a) Circuit and (b) nonlinear characteristic for Exercise 4.3

+

vC

−
10 mA

(1 mS,5 V)

Fig. 4.61 Circuit for Exercise 4.4

1. Let is(t) = 3u(t) and i(0−) = −1A. Determine the current i(t) for t ≥ 0.
2. What is the amount of energy delivered to the inductor for t ≥ 0?

4.4 For the circuit shown in Fig. 4.61, calculate and sketch vC(t) for t > 0. Assume
vC(0) = 0V.
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+
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−15

Fig. 4.62 (a) Circuit and (b) DP characteristic for Exercise 4.5

4.5 Consider the circuit shown in Fig. 4.62a, where N is described by the v − i

characteristic shown in Fig. 4.62b.

1. Indicate the dynamic route. Label all equilibrium points and state whether they
are stable or unstable.

2. Suppose vC(0) = 15V. Find and sketch vC(t) and iC(t) for t ≥ 0. Indicate all
pertinent information on the sketches.

4.6 Consider the circuit shown in Fig. 4.63a, where N is described by the v − i

characteristic shown in Fig. 4.63b.

1. Indicate the dynamic route. Label all equilibrium points and state whether they
are stable or unstable.

2. Suppose iL(0) = 20mA. Find and sketch v(t) and i(t) for t ≥ 0. Indicate all
pertinent information on the sketches.

4.7 Determine closed form expressions and sketch vC(t) and vo(t) waveforms for
the relaxation oscillator in Fig. 4.26a.

4.8 Write the modified node equations for the circuit shown in Fig. 4.64.

4.9 The roots of a general cubic equation in X may be viewed (in the X − Y plane)
as the intersections of the X-axis with the graph of a cubic of the form:

Y = X3 + AX2 + BX + C (4.224)

1. Show that the point of inflection of the graph occurs at X = −A
3 .

2. Deduce (algebraically and geometrically) that the substitution X = (x − A
3

)
will

reduce the above equation to the form Y = x3 + bx + c.
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15
10

−10

−10

−20

Fig. 4.63 (a) Circuit and (b) DP characteristic for Exercise 4.6

Fig. 4.64 Circuit for Exercise 4.8

4.10 Reconsider the cubic: x3 = 3px + 2q . To derive the general formula for the
cubic:

1. Make the inspired substitution x = s + t and deduce that x solves the cubic if
st = p, s3 + t3 = 2q .

2. Eliminate t between the two equations above, thereby obtaining a quadratic in s3.
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R1 R2
1

2

C2

Fig. 4.65 Circuit for Exercise 4.12

3. Solve the quadratic to obtain two possible values of s3. By symmetry, what are
the possible values of t3?

4. Given that we know s3 + t3 = 2q , deduce the formula for x in Eq. (4.91).

4.11 Algebraically (and/or geometrically) prove the following:

1. |z| = √x2 + y2

2. zz̄ = |z|2
3. 1

x+jy
= x

x2+y2
− j

y

x2+y2

4. (1 + j)4 = −4
5. (1 + j)13 = −26(1 + j)

6. (1 + j
√
3)6 = 26

4.12 Write nodal equations in the phasor domain for the circuit shown in Fig. 4.65.
Use the nodal equations to find the ratio Vo(jω)/Vs .

4.13 Reconsider the system S from Exercise 1.9. If the input to S is a sinusoidal
signal of frequency ω, is the frequency of the output signal still ω?

4.14 Prove the differentiation property of Laplace transforms for nth-order deriva-
tives:

L { dn

dtn
f (t)} = snF (s) − sn−1f (0−) − sn−2f ′(0−) · · · − f n−1(0−) (4.225)

4.15 Show that if the initial conditions were not zero in Example 4.3.6, then we
would have obtained:

IL(s) = ω2
0

s2 + 2αs + ω0
Is(s) + (s + 2α)iL(0−) + •

iL(0−)

s2 + 2αs + ω2
0

(4.226)
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Fig. 4.66 Circuit for
Exercise 4.16
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Fig. 4.67 Circuit for
Exercise 4.18
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+
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−
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+

−

4.16 Determine Zin(s) for the circuit in Fig. 4.66. Show that the circuit functions
as a physical implementation of a gyrator.

4.17 Derive the small-signal model for the thermistor from Sect. 4.4.2.

4.18 The circuit shown in Fig. 4.67 is made of linear time-invariant elements.
Prior to time 0, the left capacitor is charged to V0 volts, and the right capacitor
is uncharged. The switch is closed at time 0. Calculate the following:

1. The current i for t ≥ 0.
2. The energy dissipated in the interval (0, T ).
3. The limiting values for t → ∞ of (a) the capacitor voltages v1 and v2, (b) the

current i and (c) the energy stored in the capacitor and the energy dissipated in
the resistor.

4. Is there any relation between the energies? If so, state what it is.
5. What happens when R → 0?

4.19 We have encountered many resistive circuits having multiple equilibrium
points. For example, the tunnel-diode circuit in Fig. 3.4a from Chap. 3 has three
operating points. This answer seems to contradict the fact that a single laboratory
measurement on the corresponding physical circuit can only give one operating
point.

We are now in a position to resolve the so-called operating point paradox.
Basically, the tunnel-diode circuit in Fig. 3.4a is not a realistic model of the physical
circuit. In any physical circuit, as we have discussed numerous times, there always
exist parasitic effects. In circuits having unique solution, these effects can often
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Fig. 4.68 Realistic model for
a biased tunnel-diode circuit Lp

Cp

R

E

be neglected without discernible errors. In circuits exhibiting multiple solutions,
however, some of these parasitic elements cannot be neglected.

Consider the realistic tunnel-diode circuit shown in Fig. 4.68. The three operating
points in the resistive circuit can now be interpreted as equilibrium points in the
remodeled dynamic circuit. Show that in Fig. 3.4b:

1. Q2 is an unstable equilibrium point.
2. Use numerical simulation and phase portraits to show different initial conditions

will give rise to either Q1 or Q3 as the operating point.

4.20 NOTE: This is an open-ended problem
Going through this chapter, the reader should have realized that there are three

main approaches to studying circuits: time domain, frequency domain, and the
energy approach. With respect to circuit simulation programs such as QUCS, they
readily implement the time domain and frequency domain approaches.

So, a natural question is: what about energy based approaches? That is, can we
supplement QUCS to compute Lagrangian and Hamiltonian for a specified circuit?
And, how would one go about interpreting the results?

We would recommend investigating the questions above as a capstone project.
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