
Chapter 3
Resistive Nonlinear Networks

Typical v − i plot ((0, 0) is in the lower-left corner) of a
negative resistance device, the 1N3716 tunnel-diode. Notice the
effects of parasitics are visible in the form of hysteresis in the
negative resistance region.

Abstract Having described two-terminal and multi-terminal circuit elements in the
“first part” of this book, we have hence discussed the laws of elements. We will now
study, in this chapter and the next, KCL/KVL based circuit theoretic techniques
that allow us to analyze circuits of varying degrees of “complexity” (a term we
make precise in Chap. 4). We will study these techniques by following the classical
approach: discussing static (resistive) networks in this chapter and then dynamic
(inductive, capacitive, and memristive) networks in Chap. 4. Such a division is not
accidental: in terms of circuit variables, dynamic networks usually involve differen-
tial equations, unlike static networks. Hence in this chapter we will study simpler
resistive networks. We will first discuss the fundamental concept of operating points.
Next, we will expand upon graph theoretic concepts and then discuss two of the
most important techniques: nodal and tableau analysis. We will conclude the chapter
by discussing some general properties of linear resistive networks (superposition,
Thévenin-Norton theorems) and nonlinear resistive networks (strict passivity, strict
monotonicity).
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136 3 Resistive Nonlinear Networks

3.1 The Operating Point Concept

Given any circuit, one is interested in determining a solution [3]. For some circuits,
there exists a unique solution. This is the case of a circuit containing two-terminal
linear passive resistors and an independent current source connected to any two
nodes of the circuit serving as input.1 For other circuits, there may exist a unique
solution, multiple solutions, or even no solution at all. This happens with circuits
containing nonlinear resistors.

The solutions to a circuit with DC input are called operating points or Quiescent
(Q)-point. The term DC analysis refers to the determination of operating points. It
will be shown later that DC analysis of general dynamic circuits (with inductors,
capacitors, and memristors) is equivalent to finding solutions of a resistive circuit
which can be simply derived from the given circuit. The subject is of major
importance in circuit theory and electronics. In this section, we will consider DC
analysis for simple circuits using a variety of techniques.

The basic concepts of DC analysis can be illustrated with the simple circuit
configuration shown in Fig. 3.1, i.e., the back-to-back connection of two one-ports at
nodes 1 and 2. What is interesting to note is that this simple configuration, because it
includes two unspecified one-ports, covers circuits with great generality. We assume
that each one-port is specified by the following DP characteristics in terms of its port
voltage and port current, va, ia and vb, ib, respectively:

fa(va, ia) = 0 and fb(vb, ib) = 0 (3.1)

These are the generalizations of the branch characteristics since each one-port is
formed by an interconnection of resistors. We are not concerned with what is inside
of the one-ports Na and Nb. Therefore we only need to use KCL and KVL to
describe the port interconnection at the two nodes 1 and 2. KCL states:

ia = −ib (3.2)

1

2

Nb Na

ib ia

+

vb

−

+

−

va

Fig. 3.1 Two resistive one-ports connected in parallel

1We will discuss existence and uniqueness theorem for general resistive nonlinear networks later
in this chapter.
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Fig. 3.2 Circuit of Fig. 3.1
with given characteristics of
Na and Nb

Eb

Rb

ib ia

+

−

vb = v = va ia = 4va
2

KVL states:

va = vb (3.3)

Therefore we can eliminate one set of voltage and current by combining Eqs. (3.1)–
(3.3). Let us denote: ia = −ib � i and va = vb � v. The two resulting equations in
terms of v and i are:

fa(v, i) = 0 and fb(v,−i) = 0 (3.4)

The solutions of the two equations are the operating points that we are looking for.
We will give a number of examples to illustrate the analytic, graphical, and PWL
methods.

Example 3.1.1 (Analytical Method) Determine the operating points in
Fig. 3.2.

Solution We will consider the nonlinear resistor as Na , hence the specifica-
tion f (va, ia) is:

ia − 4v2
a = 0 (3.5)

Let Nb be the series connection of the DC voltage source and linear resistor,
which can be used to model a real battery connected in series with a resistive
load. The specification f (vb, ib) is:

vb − Eb − Rbib = 0 (3.6)

(continued)
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Example 3.1.1 (continued)

As before, we let ia = −ib � i and va = vb � v. Hence f (va, ia) and
f (vb, ib) become:

i = 4v2 (3.7)

v = Eb − Rbi (3.8)

These two equations lead to a quadratic equation in terms of v:

4Rbv
2 + v − Eb = 0 (3.9)

The equation above can be solved for specific values of Eb and Rb. For
instance, with Eb = 2 V and Rb = 0.25 Ω , the two solutions (and hence
operating points) are: v = 1 V,−2 V and i = 4 A, 16 A, respectively.

In practice one rarely encounters problems in nonlinear circuits which can be
solved analytically. Hence we will next see probably one of the most powerful
graphical analysis techniques, the load line method.

Example 3.1.2 (Graphical (Load Line) Method) Determine the operating
points in Fig. 3.2 graphically.

Solution The circuit in Fig. 3.2 represents a typical biasing circuit in DC
design, i.e., a simple nonlinear circuit which consists of a battery, a resistor
and an electronic device modeled by a nonlinear resistor with a specified v− i

characteristic.
The way to find the solution is to transcribe the characteristic of the battery

and the resistor in the vb−ib plane to the va−ia plane, where the characteristic
of the device is plotted. We could of course transcribe the characteristic of the
device from the va − ia plane onto the battery-resistor characteristic in the
vb − ib plane. But it is always easier to transcribe a linear equation.

Since vb = va and ib = −ia , the transcribed curve is the mirror image with
respect to the v axis of the curve in the vb − ib plane. This is superimposed
with the characteristic of the nonlinear one-port Na , as shown in Fig. 3.3, for
Eb = 2 V, Rb = 0.25 Ω from Example 3.1.1. There are two intersections
of the two curves, and these give the operating points, equal to the values we
obtained in Example 3.1.1.
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Fig. 3.3 The two one-port characteristics are superimposed on the v − i plane

The transcribed battery-resistor characteristic in Fig. 3.3 is called the load line.
It is a straight line which has Eb as its v-axis intercept and has Eb/Rb as its i-
axis intercept. The load line method for determining the operating point(s) is used
in practice because the v − i characteristic of the one-port Na is often given as a
measured curve.

The third example shows how to use a PWL numerical method.

Example 3.1.3 (PWL Method) Consider the tunnel-diode circuit shown in
Fig. 3.4 where the nonlinear characteristic Na has been changed to that
of a tunnel-diode with PWL characteristics. This device exhibits negative
resistance characteristics. Determine the operating points of the circuit.

Solution Using the ideas from Sect. 1.9.1.2, we assume that the PWL charac-
teristics for the tunnel-diode can be written as:

i = a0 + a1v + b1|v − E1| + b2|v − E2| (3.10)

(continued)



140 3 Resistive Nonlinear Networks

Example 3.1.3 (continued)

The parameters are: a0 = − 1
2 , a1 = 2, b1 = − 5

2 , b2 = 3
2 , E1 = 1, E2 = 2.

Let the battery-resistor characteristic be given by Eb = 6 V, Rb = 2 Ω . The
superimposed curves in the v − i plane via the load line method are shown
in Fig. 3.4b. Thus we know that the three operating points are at the three
intersections Q1,Q2,Q3. However, for the present, we wish to determine
them analytically by using Eq. (3.10).

As we have shown in the Sect. 1.9.1.2 on PWL characteristics, the v axis
can be divided into three regions:

Region 1: v ≤ E1 = 1 (3.11)

Region 2: 1 < v ≤ E2 = 2 (3.12)

Region 3: v > 2 (3.13)

In the three regions, Eq. (3.10) can be replaced by equations without absolute
value signs as follows:

Region 1: i = a0 + a1v − b1(v − E1) − b2(v − E2) (3.14)

Region 2: i = a0 + a1v + b1(v − E1) − b2(v − E2) (3.15)

Region 3: i = a0 + a1v + b1(v − E1) + b2(v − E2) (3.16)

For the battery-resistor combination, the equation is:

v = Eb − Rbi

= 6 − 2i (3.17)

First, solving Eqs. (3.14) and (3.17) for the solution in region 1, we obtain
VQ1 = 6

7 . Similarly, solving Eqs. (3.15) and (3.17) for the solution in region
2, we obtain VQ2 = 4

3 . Finally, solving Eqs. (3.16) and (3.17), we get VQ3 = 8
3

for region 3.
It is crucial to remember that we must check these calculated solutions

to see whether they fall in the assumed regions. If they indeed do, they
are valid solutions, otherwise they are called virtual solutions. They do not
corresponding to reality, they are artifacts of the method. In the present case,
we see that all three voltages are valid solutions because they do indeed fall in
the respective regions: VQ1 = 6

7 ≤ 1, VQ2 = 4
3 falls in region 2 (1 < v ≤ 2)

and VQ3 = 8
3 falls in region 3 (v > 2). Since all voltage solutions are

confirmed to be valid, we can find the corresponding currents from Eq. (3.17).

Thus, the operating points are :
(

6
7 , 18

7

)
,
(

4
3 , 7

3

)
,
(

8
3 , 5

3

)
.
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Fig. 3.4 Operating points of a tunnel-diode circuit determined by the PWL method (a) Circuit (b)
load line

3.1.1 Small Signal Analysis

There is a good reason to call the solutions to DC analysis “operating points.” When
a circuit is used, some input signal (example, a sinusoidal waveform) is applied to
it so that we get a useful output. An operating point specifies a region in the v − i

plane in the neighborhood of which the actual voltage and current in the circuit vary
as a function of time. If the applied signal has a sufficiently small voltage or current
(in magnitude), the circuit can be analyzed to a good approximation by using small-
signal analysis.

Consider the tunnel-diode circuit shown in Fig. 3.5 where, in addition to the
circuit elements treated earlier, there is a sinusoidal voltage source:

vs(t) = Vm cos ωt (3.18)

First we assume that the biasing circuit, i.e., the circuit without the signal source
vs(t) has been designed properly so that there is only one operating point Q as
shown. To be specific, assume that it lies where the slope is negative. As vs(t) varies
with time, we may imagine that the load line is being moved parallel to the biasing
load line as shown in the figure. Thus the solution of the circuit driven by the input
signal vs(t) can be determined graphically point by point as the intersection point
of the characteristic of the tunnel diode and the moving load line. This gives us a
mental picture of the influence of the signal source vs(t) as t changes.

Let the v − i characteristic of the tunnel diode be specified by:

i = î(v) (3.19)
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Fig. 3.5 (a) Tunnel-diode circuit with signal source vs(t). (b) Moving load line, and (c) linear
approximation to the diode characteristic at the operating point Q

KCL states that all branch currents in the circuit are the same. KVL for the single
loop in the circuit yields the following equation:

v(t) = vs(t) + Eb − Rbi(t) (3.20)

Combining Eqs. (3.19) and (3.20) we obtain a single equation with v(·) as the
unknown to be solved for:

v(t) = vs(t) + Eb − Rbî[v(t)] (3.21)
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This cannot be solved readily since we only know the curve given by the tunnel-
diode data sheet. Of course for each value of t , we can find v(t), thus v(·) can be
determined point by point.

As seen in Fig. 3.5b, the actual signal voltage v(t) and signal current i(t) lie on
the characteristic in the neighborhood2 of Q. Therefore, let us denote:

v(t) � VQ + ṽ(t) (3.22)

i(t) � IQ + ĩ(t) (3.23)

where (VQ, IQ) is the operating point. This, in essence, shifts the coordinates from
the origin to the operating point. The two equations (3.19) and (3.20) are satisfied
with the signal vs(t) = 0, i.e.,

IQ = î(VQ) (3.24)

VQ = Eb − RbIQ (3.25)

Note that ṽ(t) and ĩ(t) book keep the displacement of the instantaneous operating
point away from (VQ, IQ) when the signal is applied. The pertinent concept above
can be illustrated with the two circuits shown in Fig. 3.6. Figure 3.6a gives the DC
equivalent circuit which is specified by Eqs. (3.24) and (3.25). We can eliminate Eb

in Eq. (3.20) by using Eq. (3.25):

v(t) = vs(t) + VQ + Rb(IQ − i(t)) (3.26)

+
−

Eb

Rb

IQ

+

VQ

−

(a)

Rb

ĩ(t)

+

ṽ(t)

−

(b)

vs (t)

DAC

Fig. 3.6 The circuit shown in Fig. 3.5a can be viewed in terms of (a) its DC equivalent circuit and
(b) its AC equivalent circuit, where the diode characteristic has its origin at (VQ, IQ). DAC denotes
the diode with the origin shifted

2Figure 3.5b has been exaggerated for clarity.
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Using the definitions of VQ and IQ from Eqs. (3.22) and (3.23), respectively, we can
eliminate v(t) and i(t) in the equation above to obtain:

ṽ(t) = vs(t) − Rbĩ(t) (3.27)

This equation can be represented by the circuit shown in Fig. 3.6b, where DAC
represents the AC behavior of the diode measured with respect to the operating
point Q. To determine (ṽ(t), ĩ(t)), we substitute Eqs. (3.22) and (3.23) into (3.19)
to obtain:

IQ + ĩ(t) = î[VQ + ṽ(t)] (3.28)

Up to now our analysis is general. At this juncture, let us assume that the
amplitude of the sinusoidal voltage vs(t) is small, i.e., VM << E. Thus the
voltage ṽ(t) is “small” in comparison with VQ. What follows below is small-signal
analysis.

Taking the first two terms of the Taylor series expansion of î[VQ + ṽ(t)] about
the points (VQ, IQ), we get:

i(t) = IQ + ĩ(t)

= î[VQ + ṽ(t)]

≈ î[VQ] +
(

dî

dv

∣∣∣∣
VQ

)
ṽ(t) ∀t (3.29)

Geometrically (see Fig. 3.5c), the approximation carried out in Eq. (3.29)
amounts to replacing the nonlinear diode characteristic by its linear approximation
about the operating point Q. In other words:

ĩ(t) ≈
(

dî

dv

∣∣∣∣
VQ

)
ṽ(t) (3.30)

The term dî
dv

∣∣∣
VQ

is the slope of the diode characteristic at the operating point Q;

note that in the present case it is negative. Let us denote:

G � dî

dv

∣∣∣∣
VQ

(3.31)

where G is negative. The quantity dî
dv

∣∣∣
VQ

is called the small-signal conductance of

the diode at the operating point Q. In other words, we simply have:

ĩ(t) = Gṽ(t) (3.32)
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Fig. 3.7 Small-signal
equivalent circuit for the
tunnel-diode
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(t)

R (negative)

Hence DAC from Fig. 3.6 is interpreted as a negative small-signal resistance R = 1
G

as shown in Fig. 3.7. The small-signal equivalent circuit is a linear circuit because
the two resistors are linear. Note that the resistance R is negative, thus we have a
linear active resistor in the circuit. The solution can be obtained immediately from
the small-signal equivalent circuit:

ĩ(t) = Vm

Rb + R
cos ωt (3.33)

ṽ(t) = RVm

Rb + R
cos ωt (3.34)

Since R is negative, the factor |R/(Rb + R)| can be made very large. From the
equations above, we can define the small-signal power gain as:

P �
∣∣∣∣∣
ṽĩ

vs ĩ

∣∣∣∣∣

=
∣∣∣∣

R

Rb + R

∣∣∣∣ (3.35)

We will now derive the small-signal (linearized) hybrid two-port representation
of the npn bipolar transistor (recall Sect. 2.2.2). In other words, we are extending
small-signal analysis above from a two-terminal element (diode) to a three-terminal
element (transistor). The procedure is the same, the only difference being we will
obtain a matrix for our small-signal hybrid parameter(s).



146 3 Resistive Nonlinear Networks

+
−

+
−

vs 
(t)

E1

R1
R2

E2

+

−

vbe

+

−

vce

(a) (b)

vs 
(t)

R1

+

−

ṽ1
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ĩ1 ĩ2

Fig. 3.8 (a) BJT Common-Emitter (CE) amplifier. (b) Small-signal model

Example 3.1.4 Derive the small-signal model for the CE amplifier shown in
Fig. 3.8a.

Solution We will assume the input is a small-signal source, vs(t) =
Vm cos ωt . We will then see that the output voltage vce contains an amplified
waveform at the same angular frequency ω.

The hybrid representation of the CE amplifier is repeated below:

vbe = v̂be(ib, vce) (3.36)

ic = îc(ib, vce) (3.37)

Obviously, without the small-signal source vs , the operating point
(VbeQ, IbQ), (VceQ, IcQ) satisfies not only the above two equations but also
Eqs. (3.40) and (3.41). They are written as follows:

VbeQ = v̂be

(
IbQ, VceQ

)
(3.38)

IcQ = îc
(
IbQ, VceQ

)
(3.39)

VbeQ = E1 − R1IbQ (3.40)

VceQ = E2 − R2IcQ (3.41)

(continued)
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Example 3.1.4 (continued)
When the signal source vs(t) is present in the circuit, we may express the four
signal variables vbe(t), ib(t).vce(t), ic(t) for all t as:

vbe(t) = VbeQ + ṽ1(t) (3.42)

ib(t) = IbQ + ĩ1(t) (3.43)

vce(t) = vceQ + ṽ2(t) (3.44)

ic(t) = IcQ + ĩ2(t) (3.45)

where ṽ1,2(t), ĩ1,2(t) represent the “small” displacements of voltages and
currents from the fixed operating point Q. At this juncture it remains only
to determine these small-signal voltages and currents.

First substituting Eqs. (3.42) through (3.45) into Eqs. (3.36) and (3.37), we
obtain:

vbe(t) = VbeQ + ṽ1(t)

= v̂be[IbQ + ĩ1(t), VceQ + ṽ2(t)] (3.46)

ic(t) = IcQ + ĩ2(t)

= îc[IbQ + ĩ1(t), VceQ + ṽ2(t)] (3.47)

No approximation has been introduced up to this step. Next we assume that
the signal vs(t) is “small” and take the first two terms of the Taylor series
expansions of v̂be(·, ·) and îc(·, ·) about the operating point Q. We obtain the
following approximation:

vbe(t) ≈ v̂be(IbQ, VceQ) + ∂v̂be

∂ib

∣∣∣∣
Q

ĩ1(t) + ∂v̂be

∂vce

∣∣∣∣
Q

ṽ2(t) (3.48)

ic(t) ≈ îc(IbQ, VceQ) + ∂îc

∂ib

∣∣∣∣
Q

ĩ1(t) + ∂îc

∂vce

∣∣∣∣
Q

ṽ2(t) (3.49)

(continued)
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Example 3.1.4 (continued)
Comparing Eqs. (3.46) and (3.47) with Eqs. (3.48) and (3.49), and using
Eqs. (3.36) and (3.37), we obtain the following approximations:

ṽ1(t) ≈ ∂v̂be

∂ib

∣∣∣∣
Q

ĩ1(t) + ∂v̂be

∂vce

∣∣∣∣
Q

ṽ2(t) (3.50)

ĩ2(t) ≈ ∂îc

∂ib

∣∣∣∣
Q

ĩ1(t) + ∂îc

∂vce

∣∣∣∣
Q

ṽ2(t) (3.51)

The two equations can be viewed as hybrid equations relating the small
signals ĩ1 and ṽ2 to ṽ1 and ĩ2. Hence we have:

[
ṽ1

ĩ2

]
= H

[
ĩ1

ṽ2

]
(3.52)

where:

H =
[
h11 h12

h21 h22

]
�

⎡
⎢⎣

∂v̂be

∂ib

∂v̂be

∂vce

∂îc
∂ib

∂îc
∂vce

⎤
⎥⎦

Q

(3.53)

Figure 3.8b shows the small-signal model for the CE amplifier. Exercise 3.1 asks
the reader to derive the small-signal voltage gain.

If we can build an amplifier with a single transistor, as Exercise 3.1 shows, why
then do we have more than one transistor in the schematic for μA741 in Fig. 2.25?
One answer to this question is the concept of gain-bandwidth product. A detailed
discussion is beyond the scope of this book, but conceptually, we need to ensure
that the gain of the amplifier is ideally maintained across a range of frequencies
(the bandwidth of the amplifier). In other words, the gain-bandwidth product is
a constant. In a nutshell, we need the transistors shown in Fig. 2.25 to ensure a
constant gain-bandwidth product. Nevertheless, the fact is: we are able to achieve a
constant gain across a large bandwidth with so few transistors.

In Sect. 4.2.2.3, we will extend small signal analysis to nonlinear dynamic
networks.
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3.2 Matrix Formulation of Kirchhoff’s Laws

So far, we have been using KCL and KVL to describe simple circuits. For more
complicated circuits, other formal circuit techniques of circuit analysis exist. These
methods will help us systematically derive the circuit equations. Before discussing
these methods, we need to expand upon the graph theoretic concepts and matrix
formulation of Kirchhoff’s laws, that were introduced in Chap. 1. This will help us
in the discussion of nodal and tableau analysis techniques later in this chapter.

3.2.1 Cut Sets, Hinged Graphs, and Linear Independence

Definition 3.1 Given a network graph G , a cut set is a set of branches C of G
having the property that if we “cut” (as if with scissors) each branch in the set once,
G gets separated into two disconnected subgraphs G1 and G2, and if we leave any
one branch of the set uncut, G remains connected in one piece by that branch.

For instance, consider the digraph shown in Fig. 3.9. The set of branches
{3, 4, 8, 6} is a cut set, since cutting these branches once separates the graph into
two subgraphs. Similarly, the set {3, 4, 8, 5, 7} is also a cut set.

Some remarks about cut sets:

1. Any cut set creates a partition of the set of nodes in the graph into two subsets
2. To any cut set corresponds a gaussian surface (recall Definition 1.9) which cuts

precisely the same branches
3. Similarly, to any gaussian surface corresponds either one cut set or a union of cut

sets. For example, S1 in Fig. 3.10.
4. To each cut set we can define arbitrarily a reference direction, as shown by the

arrows attached to the cut sets in Fig. 3.10.

Fig. 3.9 A digraph
associated with a bridge
circuit

5

a

b

c

e 1

3

4

6

8

7

d

2



150 3 Resistive Nonlinear Networks

Fig. 3.10 Digraph
illustrating cut sets 2
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Fig. 3.11 Digraph for
Example 3.2.1
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Definition 3.2 KCL (Cut Set Law): For all lumped circuits, for all time t , the
algebraic sum of the currents associated with any cut set is equal to zero.

Example 3.2.1 The digraph in Fig. 3.11 shows some example cut sets. Write
the KCL equation associated with those cut sets.

Solution Cut set C1 consists of the set of branches {β1, β3, β5}. Since all
currents are in the direction of the cut set, the KCL associated with C1 is:

i1 + i3 + i5 = 0 (3.54)

For C2, we have:

i7 − i3 − i6 = 0 (3.55)

−i3,−i6 are because both those currents are going in, while the cut set
direction is pointing out. Similarly, for C3, we have:

−i1 − i7 = 0 (3.56)
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Combined with the KCL definitions from Chap. 1, we have learned three forms
of KCL, namely, in terms of (1) gaussian surfaces, (2) nodes, and (3) cut sets.

Theorem 3.1 (KCL Equivalence Theorem) The three forms of KCL are equiva-
lent: (1) KCL gaussian surface ⇔ (2) KCL node law ⇔ (3) KCL cut sets

Proof We will only prove the implication as the other direction can be proved in a
similar manner.

• (1) ⇒ (2) Simply use the gaussian surface that surrounds only the node in
question. For example, consider node 5 in Fig. 3.10. For the gaussian surface
S1, KCL applied to S1 is identical to KCL applied to node 5:

i1 − i3 − i4 − i5 − i6 = 0 (3.57)

• (2) ⇒ (3) Any cut set partitions the set of nodes into two subsets. Writing the
KCL equation for each node in such a subset and adding the results, we obtain
the cut set equation, except for maybe a −1 factor. For example, consider the cut
set C2 in Fig. 3.10. If we add the KCL equations applied to nodes 3 and 4, we
obtain:

i4 + i5 + i6 = 0 (3.58)

Note that i7 cancels out in the addition, resulting in the KCL cut set equation
for C2.

• (3) ⇒ (1) It is easy to demonstrate that the set of branches cut by a gaussian
surface is either a cut set or a disjoint union of cut sets. So given any gaussian
surface, let us write the KCL equation for each of these cut sets; then adding or
subtracting these equations, we obtain the KCL equation for the gaussian surface.
For example, consider gaussian surface S1 in Fig. 3.10. It is the union of the cut
set {β1, β3} and cut set {β4, β5, β6} whose equations are, respectively,

−i1 − i3 = 0 (3.59)

−i4 − i5 − i6 = 0 (3.60)

Adding the two equations above, we get:

−i1 − i3 − i4 − i5 − i6 = 0 (3.61)

which is the KCL equation for the gaussian surface S1. ��
Up to now, we have assumed the circuit is connected. But, recall from our

discussion of transformers in Sects. 2.2.1.3 and 2.2.3.1 that a circuit with a physical
transformer is not connected. It turns out that we can easily take care of this
situation. We first generalize the element graph representation from one-port to a
two-port, by using two branches and four nodes for its element graph as shown in
Fig. 3.12.
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Fig. 3.12 The element graph of a two-port
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Fig. 3.13 (a) Connecting nodes 3 and 5 by a branch k. (b) Soldering together nodes 3 and 5 to
obtain a hinged graph

Next, we need to understand the element graph of a two-port consists of two
branches which are not connected, because it signifies that port voltages or port
currents at different ports are not related because of connections but rather are
coupled because of physical phenomena within the element. For example, recall
from Sect. 2.2.3.1 that physical transformer port voltages are coupled magnetically
via the flux linkages among the various windings.

To avoid an unconnected digraph (circuit graph), we can tie together the two
separate ports of a digraph at two arbitrary nodes by a branch. This is illustrated in
Fig. 3.13a where nodes 3 and 5 are tied together by a branch k. This connection does
not change any branch voltage or current in the original circuit. This is easily seen
because, by using KCL with a gaussian surface which encloses one of the separate
parts of the graph and which cuts branch k, the current ik is zero. If ik = 0, it
amounts to an open circuit or no connection; thus we have not changed the behavior
of the circuit. Next, since voltages are measured between nodes, we choose a ground
node for the separate parts. If we choose nodes 3 and 5 as the ground nodes for the
separate parts, we may “solder” together node 3 and node 5 as shown in Fig. 3.13b
to make them the common ground node. The graph so obtained is called a hinged
graph. With the introduction of the concept of a hinged graph, we have generalized
our treatment so far to include two-ports and multi-ports, that is, we can always
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assume without loss of generality that any lumped circuit and its associated digraph
are connected.

We now have all the graph theoretic concepts that we need for this chapter. But,
before discussing independent KCL and KVL equations, we need to discuss the
concept of linear independence.

Consider a set of m linear algebraic equations in n unknowns. For j =
1, 2, · · · ,m

fj (x1, x2, . . . , xn) � αj1x1 + αj2x2 + · · · + αjnxn = 0 (3.62)

where the αjk’s are real or complex numbers. It is important to decide whether or
not each equation brings new information not contained in the others; equivalently,
it is important to decide whether the equations are linearly independent. These m

equations are said to be linearly dependent iff there are constants k1, k2, · · · , km

and not all zero such that:

m∑
j=1

kjfj (x1, x2, . . . , xn) = 0 ∀ x1, x2, . . . , xn (3.63)

Clearly if these m equations are linearly dependent, then at least one equation may
be written as a linear combination of the others; in other words, that equation repeats
the information contained in the others.

It is crucial to note that the LHS of Eq. (3.63) must be zero for all values of
x1, x2, . . . , xn.

Example 3.2.2 Are the equations below (m = 3 and n = 4) linearly
dependent?

x1 − x2 + x3 + 3x4 = 0

2x1 + 3x2 − x3 − 4x4 = 0

−4x1 − 11x2 + 5x3 + 18x4 = 0

Solution Direct calculation shows that with k1 = 2, k2 = −3 and k3 = −1
the condition for Eq. (3.63) holds; in other words, these three equations are
linearly dependent.
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A set of m linear algebraic equations is said to be linearly independent iff it is
not linearly dependent. In practice, we use gaussian elimination to decide whether
or not a given set of linear equations is linearly dependent.

3.2.2 Independent KCL Equations

For a given circuit, we can write KCL equations by the node law or the cut set law, or
using gaussian surfaces. How many of the KCL equations are linearly independent
and how to write a complete set that contains all the necessary information as far
as KCL is concerned are the subjects of this subsection. We will give a systematic
treatment by means of the digraph of the circuit under consideration: in particular,
a list of nodes, a list of branches, and for each branch the specification of the node
that the branch leaves and enters. This is done by the incidence matrix Aa of the
digraph.

Let the digraph G have n nodes and b branches, then Aa has n rows—one row for
each node—and b columns—one column for each branch. To see how the matrix is
built up consider the four-node six-branch digraph shown in Fig. 3.14. Let us write
the KCL equations for each node:

i1 + i2 − i6= 0

−i1 − i3 + i4 = 0

− i2 + i3 + i5 = 0

− i4 − i5 + i6= 0 (3.64)

Fig. 3.14 A digraph with
four nodes and six branches
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In matrix form, it reads:

⎡
⎢⎢⎣

Branch 1 Branch 6

Node 1→ 1 1 0 0 0 −1
Node 2→ −1 0 −1 1 0 0
Node 3→ 0 −1 1 0 1 0
Node 4→ 0 0 0 −1 −1 1

⎤
⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

i1

i2

i3

i4

i5

i6

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎝

0
0
0
0

⎞
⎟⎟⎠ (3.65)

Since each row corresponds to a node and each column corresponds to a branch, we
have the 4 × 6 incidence matrix Aa . For example, for node 4 we have i4, i5 coming
in and i6 going out and hence the 4th row in the matrix has two −1 s and one +1.
Similarly, branch β1 that connects node 1 to 2 has one +1 and one −1 in column 1.

In general, for any n-node b-branch connected digraphG which does not contain
self-loops,3 the matrix Aa is specified as follows: For i = 1, 2, · · · , n and k =
1, 2, · · · b:

aik =

⎧
⎪⎪⎨
⎪⎪⎩

+1 if branch k leaves node i

−1 if branch k enters node i

0 if branch k does not touch node i

(3.66)

and the node n node equations of G read:

Aai = 0 (3.67)

where i = (i1, i2, · · · , ib)
T is called the branch current vector.

Example 3.2.3 Is the incidence matrix in Eq. (3.65) full row rank?

Solution Equivalently, the question posed is asking whether the KCL
equations corresponding to the incidence matrix are linearly dependent or
independent. We could transform the incidence matrix to row-echelon form.
Instead, simple observation shows that with k1 = k2 = k3 = k4 = 1, the
condition for Eq. (3.63) holds; in other words, the incidence matrix is not full
row rank.

Example 3.2.3 shows that each column of Aa has precisely a single +1 and
a single −1; consequently, if we add together n equations in Eq. (3.67), all the

3A self-loop contains precisely one node and one branch, they are not loops according to
Definition 1.6 (of a loop).
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variables i1, i2, · · · , ib cancel out; equivalently, the n KCL equations are linearly
dependent.

But, suppose that for a connected4 digraph G we choose a ground node and we
throw away the corresponding KCL equation, then the remaining n − 1 equations
are linearly independent. This is the defining property of this subsection, hence we
state it formally as a theorem and prove it:

Theorem 3.2 (Independence Property of KCL Equations) For any connected
digraph G with n nodes, the KCL equations for any n − 1 of these nodes form a set
of n − 1 linearly independent equations.

Proof We prove it by contradiction. Suppose that the first k of these n−1 equations
are linearly dependent. More precisely, there are k real constants γ1, γ2, · · · , γk not
all zero such that:

k∑
j=1

γjfj (i1, i2, . . . , in) = 0 ∀ i1, i2, . . . , in (3.68)

Consider the two sets of nodes in G , namely, the set which corresponds to the k

equations and that of the remaining nodes. Since the digraph is connected, there is
at least one branch which connects a node in the first set to a node in the second set.
Clearly the current in that branch appears only once in the first k node equations,
hence that current cannot cancel out in the sum of Eq. (3.68). This contradiction
shows that for any k ≤ n−1, it is not the case that a subset of k of the KCL equations
is linearly independent. That is, these n − 1 equations are linearly independent. ��

If in Aa , the incidence matrix of the connected digraph G , we delete the row
corresponding to the ground node, we obtain the reduced incidence matrix A
which is of dimension (n − 1) × b. The corresponding linearly independent KCL
equations read:

Ai = 0 (3.69)

As a consequence of the independence property proved in Theorem 3.2, we may
equivalently state that the matrix A is full rank.

4If a digraph is not connected, there are two simple solutions to the problem: one approach would
be to treat each graph separately. In this case, each part would have its own incidence matrix and
ground node. The other approach would be to use a hinged graph, as described in Sect. 3.2.1. We
will use both approaches in this book.
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3.2.3 Independent KVL Equations

Similarly, to write a set of linearly independent KVL equations in a systematic
way is of crucial importance. Let us write the KVL equations for the four-node
six-branch digraph of Fig. 3.14. Using associated reference directions and choosing
node 4 as the ground node, we obtain:

v1 = e1 − e2

v2 = e1 − e3

v3 = −e2 + e3

v4 = e2

v5 = e3

v6 = − e1 (3.70)

or in matrix form:

v = Me (3.71)

where v = (v1, v2, . . . , vb)
T is the branch voltage vector, e = (e1, e2, . . . , en−1)

T

is the node-to-ground voltage vector, and M is a b × (n − 1) matrix. Thinking in
terms of KVL, we see that for k = 1, 2, . . . , b and i = 1, 2, . . . , n − 1:

mki =

⎧⎪⎪⎨
⎪⎪⎩

+1 if branch k leaves node i

−1 if branch k enters node i

0 if branch k does not touch node i

(3.72)

Comparing Eq. (3.72) with (3.66) we conclude that:

M = AT (3.73)

and more usefully, KVL is expressed by the equation:

v = AT e (3.74)

With a connected digraph G , A has n − 1 linearly independent rows (full row
rank) and consequently AT has n − 1 linearly independent columns (full column
rank).

Thus, to summarize, in order to obtain linearly independent KCL and KVL
equations from a digraph representation of a circuit:

1. We choose current reference directions
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2. We choose a ground node and define the reduced incidence matrix A
3. We write KCL as Ai = 0
4. We then use associated reference directions (or passive sign convention, recall

Definition 1.2) to find that KVL reads v = AT e.

Note that we are assuming we use the same ground node for writing KCL and KVL.

3.2.4 A Proof of Tellegen’s Theorem

We can now state and prove Tellegen’s theorem.

Theorem 3.3 (Tellegen’s Theorem) Consider an arbitrary circuit. Let the asso-
ciated digraph G have b branches. Using passive sign convention, let v =
(v1, v2, . . . , vb)

T be any set of branch voltages satisfying KVL for G and let
i = (i1, i2, . . . , ib)

T be any set of branch currents satisfying KCL for G . Then:

b∑
k=1

vkik = 0 (3.75)

Equivalently:

vT i = 0 (3.76)

Proof For a connected digraph G , choose a ground node; hence, a reduced matrix
A is defined unambiguously. Since i satisfies KCL, we have:

Ai = 0 (3.77)

Since v satisfies KVL and since we use associated reference directions, for some
node-to-ground voltages e, we have:

v = AT e (3.78)

Using the two equations above, we successively obtain:

vT i = (AT e)T i

= eT (AT )T i

= eT (Ai)

= 0 (3.79)

��
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Note how the proof essentially uses our discussion from Sect. 1.6.1. Now the
idea from Sect. 1.6.1 should be very clear: v and i in the theorem need not bear any
relation to each other: v must only satisfy KVL and i must only satisfy KCL (using
associated reference directions). We will use Tellegen’s theorem to prove some very
general results for nonlinear resistive networks in Sect. 3.7.

3.2.5 The Relation Between Kirchhoff’s Laws and Tellegen’s
Theorem

In circuit theory, there are two fundamental postulates: KCL and KVL. We have
proved that KCL and KVL imply Tellegen’s theorem. It is interesting to note that
any one of Kirchhoff’s laws together with Tellegen’s theorem implies the other.
More precisely, we have the following theorem:

Theorem 3.4 (Tellegen’s Theorem and Kirchhoff’s Laws)

1. If, for all v satisfying KVL, vT i = 0, then i satisfies KCL.
2. If, for all i satisfying KCL, vT i = 0, then v satisfies KVL.

Proof For 1: Since v satisfies KVL, we know that v = AT e for all e. But, given that
Tellegen’s theorem is also satisfied, we have:

vT i = eT (Ai)= 0 (3.80)

Since e is an arbitrary node-to-ground voltage, the last equality implies Ai = 0, that
is, i satisfies KCL.
For 2: Let L be an arbitrary loop in the graph G . Consider the i obtained by
assigning zero current to all branches of G except for those of loop L ; depending
on whether the reference direction of branch j in loop L agrees with that of loop
L , we assign ij to be 1 A or −1 A. The resulting i satisfies KCL at all nodes of G .
Tellegen’s theorem applied only to the branches in loop L gives:

∑
±vj = 0 (3.81)

Thus the algebraic sum of branch voltages around loop L is zero, i.e., KVL holds
for loop L . Since L is arbitrary, we have shown that KVL holds for all loops of G .

��

3.3 An Introduction to General Resistive Circuit Analysis

We can now embark on a more general and definitive study of resistive circuits.
Our aim for the rest of this chapter is to develop general methods of analysis, for
both linear and nonlinear resistive circuits, and to derive general properties of such
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circuits. A common theme would be to start with (an example of) the linear case
because equations for linear circuits can almost be derived by “inspection.”

The term resistive circuit applies to all circuits containing two-terminal resis-
tors, multi-terminal resistors, multi-port resistors and independent voltage and
current sources. Common circuit elements such as ideal transformers, rotators,
gyrators, controlled sources, transistors and opamps modeled by resistive circuits
etc. are all included. To avoid clutter, all of these garden variety circuit elements
will be lumped under the umbrella “multi-terminal and multi-port resistors”.
However, independent sources will always be singled out separately, because, as
will be clear shortly, they play a fundamentally different role.

The importance of resistive circuits cannot be understated. The analysis of many
general nonresistive circuits reduces to the analysis of the associated resistive cir-
cuit. Secondly, many computer algorithms for simulating dynamic circuits require
at each step the analysis of a resistive circuit.

Recall that a physical circuit is an interconnection of real electric devices. For
purposes of analysis and design, each electric device is replaced by a device model
made of ideal circuit elements5 (e.g., ideal diodes, batteries, linear and nonlinear
resistors, controlled sources, etc.). The interconnection of these models gives the
electric circuit. Since, the detailed but important study of device modeling is beyond
the scope of this book, our point of departure for analysis would be a circuit.
Whether the circuit arises from models of physical devices, or from the figment
of one’s imagination is irrelevant. In fact, it is often through the introduction of
hypothetical, and sometimes pathological circuits, that one gains an in-depth
understanding of this subject.

A few words concerning some general technical terms to be used throughout this
book. A resistive circuit is said to be linear iff, after settings all independent sources
to zero, it contains only linear (recall Exercise 1.9 for the superposition definition
of linearity) two-terminal, multi-terminal, and/or multi-port resistors. A resistive
circuit is said to be nonlinear iff it contains at least one nonlinear resistor besides
independent sources.

Finally, we need to caution the reader to “not lose sight of the forest for its trees.”
In other words, one should not be so consumed by the systematic techniques that we
lose total insight into the circuit at hand. After all, only a computer circuit simulation
program “blindly” applies the techniques, without any insight.

5Of course, all circuit elements are ideal. We will, nevertheless, occasionally throw in the word
“ideal” to remind the reader that “nonphysical” answers (e.g., the Schmitt trigger VTC) are quite
possible and even expected. When they do occur, the culprit is not the theory, but the model. Such
situations can only be rectified by returning to the drawing board to come up with a more detailed
circuit model. Again, in the case of the Schmitt trigger, we will account for physical parasitics to
explain the observed behavior.
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3.4 Nodal Analysis for Resistive Circuits

The simplest method for analyzing a resistive circuit is to solve for its node-to-
ground voltages. Once these node voltages have been calculated, we can solve
for the branch voltages trivially via KVL: v = AT e. They in turn can be used to
calculate the branch currents, provided all the elements in the circuit other than
current sources are voltage-controlled. In this section, we will consider only the
subclass of resistive circuits which are amenable to this common analysis method,
henceforth called node analysis. The goal would be to determine the corresponding
node equation for the circuit in question.

For simple resistive circuits, the node equation can be formulated almost by
inspection, as illustrated in the following example.

Example 3.4.1 Determine the node equation for the circuit in Fig. 3.15.

Solution The circuit shown in Fig. 3.15 contains only linear (two-terminal)
resistors and independent current sources. Choosing (arbitrarily) node 4 as
the ground node, each branch current can be expressed in terms of at most
two node voltages, simply by using Ohm’s law since we have linear resistors.
Thus:

i1 = G1v1 = G1e1 i4 = G4v4 = G4(e1 − e2)

i2 = G2v2 = G2(e2 − e1) i5 = G5v5 = G5(e3 − e2)

i3 = G3v3 = G3(−e2) i6 = G6v6 = G6e3 (3.82)

It follows from Sect. 3.2.2 that we can write three linearly independent KCL
equations in terms of e1, e2, and e3, namely:

Node 1 : G1e1 − G2(e2 − e1) + G4(e1 − e2) = is1(t)

Node 2 : G2(e2 − e1) − G3(−e2) − G4(e1 − e2) − G5(e3 − e2) = −is3(t)

Node 3 : G5(e3 − e2) + G6e3 = is3(t) − is2(t) (3.83)

Recasting in matrix form:

⎡
⎢⎣

(G1 + G2 + G4) −(G2 + G4) 0

−(G2 + G4) (G2 + G3 + G4 + G5) −G5

0 −G5 (G5 + G6)

⎤
⎥⎦

⎡
⎢⎣

e1

e2

e3

⎤
⎥⎦ =

⎡
⎢⎣

is1(t)

−is2(t)

is3(t) − is2(t)

⎤
⎥⎦

(3.84)

(continued)
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Example 3.4.1 (continued)
In other words, we have:

Yne = is(t) (3.85)

henceforth called the node equation. Yn is a square matrix called the node-
admittance matrix and is(t) is called the equivalent source vector.

We will shortly show that a large class of linear resistive circuits is described by
a form like Eq. (3.85). But first, an inspection of Fig. 3.15 and Eq. (3.84) reveals the
following properties.

We will prove the properties in Table 3.1, once we obtain the node-admittance
matrix in terms of the reduced incidence matrix A, which we will do so below.

is1(t) G1

G2

G3

G4

G5

G6
is2 

(t)

is3 
(t)

1 2 3

4

+

v1

−

− v2 +

−
v3

+

− v5 +

+

v6

−

+ v4 −

i6

i5i2

i3

i1

e1 e2 e3

i4

Fig. 3.15 Circuit for example 3.4.1. Here, Gj denotes the conductance in S for the j th resistor

Table 3.1 Properties of Eq. (3.85)

For any circuit made of linear two-terminal resistors and independent sources

1. The kth diagonal element of Yn is equal to the sum of all conductances attached to node k

2. The jkth off-diagonal element of Yn is equal to the negative of the sum of all conductances
between node j and node k

3. The matrix Yn is symmetric: Yn = YT
n

4. The kth element of is(t) is equal to the algebraic sum of currents of all independent current
sources entering node k
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3.4.1 Formulation in Terms of Reduced Incidence Matrix

Let N denote any connected linear resistive circuit containing only two-terminal,
multi-terminal and/or multi-port linear voltage-controlled resistors, and independent
current sources. For example, N may contain gyrators because they are defined
by a voltage-controlled linear equation, Eq. (2.167). On the other hand, N may
not contain ideal transformers because it is not voltage-controlled, that is, it is
impossible to solve for i1, i2 from the defining Eq. (2.37) in terms of only v1, v2.
Controlled sources other than VCCS are also disallowed for the same reason.6

Note that although independent voltage sources are not allowed in our present
formulation, they can be included later through equivalent circuit transformations.

If the terminals and/or ports of all circuit elements which are not independent
current sources are labeled consecutively, and if v = (v1, v2, . . . , vb)

T and i =
(i1, i2, . . . , in)

T denote the respective branch voltage and branch current vectors,
then N is precisely the class where i can be described as a linear function of v;
namely,

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

i1

i2

·
·
·
ib

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

y11 y12 · · · y1b

y21 y22 · · · y2b

· · · · · ·
· · · · · ·
· · · · · ·

yb1 yb2 · · · ybb

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

v1

v2

·
·
·
vb

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3.86)

or simply,

i = Ybv (3.87)

Equation (3.87) is the branch equation, where Yb is called the branch admittance
matrix. In general, Yb is a b × b nonsymmetric and nondiagonal real matrix, where
b is the number of branches, excluding the independent current sources, in the
associated digraph.

We have deliberately left out the independent current sources because they can
be easily accounted for separately. In particular, the contribution of current sources
can be represented by a single vector:

is (t) = [
is1(t) is2(t) · · · is(n−1)(t)

]T
(3.88)

where ısk(t) denotes the algebraic sum of currents of all independent current sources
entering node k, k = 1, 2, . . . , n − 1 and n denotes the number of nodes in the

6We will however be able to use tableau analysis from Sect. 3.5 to analyze circuits with any resistive
element.
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connected circuit N . To avoid violating KCL, it is necessary to assume that no cut
sets are made exclusively of independent current sources.

Equivalently, the digraph associated with the reduced circuit obtained by open-
circuiting all independent current sources is connected. Let A denote the reduced
incidence matrix of this connected digraph. It follows that:

Ai = is(t) (3.89)

constitutes a system of n − 1 linearly independent KCL equations. It is important
to note that the KCL Eq. (3.89) differs from the usual form (Ai = 0) because
here, the reduced incidence matrix A pertains to the reduced digraph obtained by
open-circuiting all independent current sources from the digraph associated with
the circuit.

Substituting the branch Eq. (3.87) in place of i in Eq. (3.89), we obtain:

AYbv = is (t) (3.90)

Rewriting the branch voltage v in terms of the node voltage e via KVL (Eq. (3.74)),
we get:

(AYbAT )e = is(t) (3.91)

Comparing Eqs. (3.85) and (3.91), we have derived the node-admittance
matrix:

Yn = AYbAT (3.92)

We have hence derived the following general result, our first systematic circuit
analysis technique:

Nodal Analysis for Linear Resistive Circuits
For any connected circuit containing two-terminal, multi-terminal, and/or

multi-port linear voltage-controlled resistors and independent current sources
which do not form cut sets, the node equation is given explicitly by:

Yn(t)e(t) = is (t) (3.93)

Yn(t) � AYb(t)AT , Yn(t) is the node-admittance matrix, is (t) denotes the
equivalent source vector whose kth element isk(t) is equal to the algebraic sum
of the current of all independent current sources entering node k, and A denotes
the reduced incidence matrix of the digraph associated with the reduced circuit
obtained by deleting all independent current sources.



3.4 Nodal Analysis for Resistive Circuits 165

The astute reader would have noticed that we have defined Eq. (3.93) for time-
varying elements as well. This is fine because if branch k is a time-varying resistor
described by ik(t) = Gk(t)vk(t), then ykk = Gk(t).

Note that the dimension of A and Yb(t) are (n − 1) × b and b × b, respectively,
where n is the number of nodes in the circuit, and b is the number of branches in
the digraph associated with the reduced circuit. Consequently, the dimensions of the
node-admittance matrix Yn(t) is (n − 1) × (n − 1).

In other words, the node Eq. (3.93) always contains n − 1 linear equations in
terms of n − 1 node voltages e1, e2, . . . , en−1.

To find the solution of the circuit, we simply solve Eq. (3.93) at each instant of
time t by any convenient method, say gaussian elimination. If n is very large, say
n > 100, and if the matrix Yn(t) contains only a small percentage of nonzero entries
as is typical in practice (Yn(t) is said to be sparse), there exist specially efficient
computer algorithms for solving the equation. If the circuit is time-invariant and
contains only DC current sources, then Yn(t) is a constant matrix and is(t) is a
constant vector. In this case, Eq. (3.93) need to be solved only once.

Unlike several other methods of analysis (e.g., tableau analysis, modified nodal
analysis) to be studied later, the number of equations to be solved in node analysis
does not depend on the number of circuit elements. Hence for a 100-element circuit
containing only 10 nodes, we only need to solve 9 equations.

Once e(t) has been found, the branch voltages can be calculated by substitution
into the time-varying case for Eq. (3.74): v(t) = AT e(t)—and the branch currents
can be calculated by substitution into the time-varying case for branch Eq. (3.87):
i(t) = Yb(t)v(t).

Example 3.4.2 Prove the properties in Table 3.1.

Solution Let us begin by expanding Eq. (3.92), for a circuit with three nodes
and three resistors:

Yn = AYbAT

=
[
a11 a12 a13

a21 a22 a23

]⎡
⎢⎣

G1 0 0

0 G2 0

0 0 G3

⎤
⎥⎦

⎡
⎢⎣

a11 a21

a12 a22

a13 a23

⎤
⎥⎦

=
[
(a11a11G1 + a12a12G2 + a13a13G3) (a11a21G1 + a12a22G2 + a13a23G3)

(a21a11G1 + a22a12G2 + a23a13G3) (a21a21G1 + a22a22G2 + a23a23G3)

]

(3.94)

(continued)
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Example 3.4.2 (continued)
If we denote the jkth element of Yn by (Yn)jk and the kth diagonal of Yb by
Gk , then in general, we have:

(Yn)jk =
b∑

l=1

ajkaklGl (3.95)

provided that Yb is a diagonal matrix, i.e., provided the circuit contains only
two-terminal resistors and independent current sources.

If we let j = k in Eq. (3.95), we find the kth diagonal element is given by:

(Yn)kk =
b∑

l=1

a2
klGl

=
∑
βk

Gl (3.96)

where
∑
βk

is defined as the sum over all branches connected to node k. This

is true because of the observation that akl = 1,−1 or 0, and akl 
= 0 if and
only if branch Gl is connected to node k. Hence we have proved property 1
of Table 3.1 holds for any circuit described by a diagonal branch admittance
matrix Yb.

Observe next that if ajl 
= 0, i.e., Gl is connected to node j , then

akl = −ajl (3.97)

if Gl is connected between nodes j and k, and

akl = 0 (3.98)

if Gl is connected between node j and the ground node. It follows from
Eqs. (3.95) and (3.98) that each off-diagonal element (j 
= k) of Yn can be
simplified as follows:

(Yn) = −
∑
βjk

Gl (3.99)

(continued)
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Example 3.4.2 (continued)

where
∑
βjk

is defined to be the sum over all branches connected between nodes

j and k. Hence we have proved property 2 of Table 3.1. Moreover, Eq. (3.99)
implies that:

(Yn)jk = (Yn)kj or Yn = YT
n (3.100)

This proves property 3 of Table 3.1. Note that this symmetry property has
nothing to do with whether the circuit is symmetrical or not. It is actually a
consequence of an important circuit-theoretic property called reciprocity that
will be discussed in Sect. 4.6.1.

The last property of Table 3.1 follows by definition and is therefore true
regardless of whether Yn is diagonal or not.

3.4.2 Existence and Uniqueness of Solutions

When we talked about various methods for solving the linear node Eq. (3.93) in the
previous section, we implicitly assumed that Eq. (3.93) had a unique solution for any
time t . To show that this assumption is not always satisfied even by simple circuits,
consider the circuit shown in Fig. 3.16a.

Using the properties from Table 3.1, we obtain the following node equation by
inspection (note the resistances are given in ohms):

[
1 −2

−2 4

] [
e1

e2

]
=
[
is1(t)

is2(t)

]
(3.101)

is1 

(t) is2 

(t)

0.5

−1 0.5

1 2

3

is1(t)

Req →

1

e1 e2

3

e1

(a) (b)

Fig. 3.16 A circuit containing a negative resistance
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Since the determinant of Yn is zero, Eq. (3.101) either has no solution or has
infinitely many solutions. The latter occurs if and only if, ∀ t, is1(t) = − 1

2 is1(t).
To give a circuit interpretation of the above conclusion, let us assume for

simplicity that is2(t) = 0 for all t so that the current source on the right-hand side
can be deleted without affecting the circuit’s solution. The resulting circuit can be
further simplified to that shown in Fig. 3.16b, where the three resistors in Fig. 3.16a
are replaced by an equivalent resistor Req . Since the current source is(t) flows into
an open circuit, it follows that the circuit does not have a solution if is1(t) 
= 0. On
the other hand, if is1(t) = 0 for all t , then the circuit is satisfied by any node voltage
e1, and hence it admits an infinite number of solutions.

The following result gives a sufficient (but not necessary) condition for a circuit
to have a unique solution.

Existence and Uniqueness Condition
Any resistive circuit containing only two-terminal linear positive conductances
and independent current sources which do not form cut sets has a unique
solution.

Proof Note that linear positive conductances or strictly passive resistors will be
defined in Sect. 3.7. The above hypotheses guarantee that the node equation given
by Eq. (3.93) is well-defined. Moreover, Yb is a positive-definite diagonal matrix
(since for all j , Gj > 0); i.e., vT Ybv > 0,∀ v 
= 0.

Now, for any node voltage vector e 
= 0:

eT Yne = eT (AYbAT )e

= (AT e)T Yb(AT e)

= vT Ybv

> 0 (3.102)

Hence Yn is a positive-definite matrix and thus is full rank. Therefore Eq. (3.93) has
a unique solution given by e = Y−1

n is(t). ��

3.4.3 Node Equation Formulation: Nonlinear Resistive
Circuits

When the circuit contains one more nonlinear resistors, the procedure for writing
the node equation discussed in Sect. 3.4 in terms of the node voltage vector e still
holds provided all nonlinear resistors are voltage-controlled. For example, consider
the two linear resistors G2 and G5 in Fig. 3.15 replaced by a pn-junction diode
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is1(t) G1 G3

G4

G6
is2(t)

is3(t)

1 2 3

4

+

v1

−

− v2 +

−
v3

+

− v5 +
+

v6

−

+ v4 −

i6

i5i2

i3

i1

e1 e2 e3

i4

Fig. 3.17 A nonlinear circuit

described by i2 = Is

(
e(v2/VT ) − 1

)
and an NR described by i5 = v3

5 as shown in
Fig. 3.17.

Our first step as usual is to express the branch currents of the resistors in terms
of the node voltages e1, e2, and e3:

i1 = G1v1 = G1e1 i4 = G4v4 = G4(e1 − e2)

i2 = Is

(
e(v2/VT ) − 1

)
= Is

(
e

e2−e1
VT

−1
)

i5 = v3
5 = (e3 − e2)

3

i3 = G3v3 = G3(−e2) i6 = G6v6 = G6e3 (3.103)

Note that this step is possible as long as the nonlinear resistors are voltage-
controlled, i.e., the branch currents are functions of branch voltages.

Our next step is to apply KCL at each node (excluding the ground node):

Node 1 : G1e1 − Is

(
e

e2−e1
VT

−1
)

+ G4(e1 − e2) = is1(t)

Node 2 : Is

(
e

e2−e1
VT

−1
)

− G3(−e2) − G4(e1 − e2) − (e3 − e2)
3 = −is3(t)

Node 3 : (e3 − e2)
3 + G6e3 = is3(t) − is2(t) (3.104)

The equations above constitute the node equation of the circuit in Fig. 3.17. But
since these equations are nonlinear, they cannot be described by a node-admittance
matrix.

Consider now the general case where the circuit may contain two-terminal, multi-
terminal, and/or multi-port nonlinear voltage-controlled resistors, in addition to
independent current sources. In this case, the branch equations now assume the
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following form:

i1 = g1(v1, v2, . . . , vb)

i2 = g2(v1, v2, . . . , vb)

...

ib = gb(v1, v2, . . . , vb) (3.105)

In vector notation we have:

i = g(v) (3.106)

called the nonlinear branch equation. Since independent current sources do not
form cut sets (by assumption), Eq. (3.89) remains valid. Substituting Eq. (3.106) for
i in Eq. (3.89), we get:

Ag(v) = is(t) (3.107)

Substituting next Eq. (3.74) for v, we get the nonlinear node equation:

Ag(AT e) = is (t) (3.108)

For each solution of e in Eq. (3.108), we can calculate the corresponding branch
voltage vector v by direct substitution into Eq. (3.74), namely, v = AT e. This in
turn can be used to calculate the branch current vector i by direct substitution into
Eq. (3.106). Hence the basic problem is to solve the nonlinear node Eq. (3.108). The
rest is trivial. In general, nonlinear equations do not have closed form solutions.
Consequently, they must be solved by numerical techniques, that are beyond the
scope of this book. The most widely used method is the Newton-Raphson algorithm,
the reader is referred to excellent sources such as [3] for details.

3.5 Tableau Analysis for Resistive Circuits

The only, albeit major, shortcoming of node analysis is that it disallows many
standard circuit elements from the class of allowable circuits, e.g., the voltage
source, ideal transformer, ideal op amp, CCCS, CCVS, VCVS, current-controlled
nonlinear resistor, etc. In this section, we overcome this issue by presenting a
completely general analysis method—one that works for all resistive circuits.
Conceptually, this method is simpler than node analysis. It consists of writing out
the complete list of linearly independent KCL equations, linearly independent KVL
equations, and the branch equations. For obvious reasons, this list of equations is
called tableau equations [2].
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Since no variables are eliminated7 in listing the tableau equations, all three
vectors e, v, and i are present as variables. Since we must have as many tableau
equations as there are variables, it is clear that the price we pay for the increased
generality is that tableau analysis involves many more equations than node analysis
does. In our era of computer-aided circuit analysis, however, this objection turns out
to be a blessing in disguise because the matrix associated with tableau analysis is
often extremely sparse, thereby allowing highly efficient numerical algorithms to be
used.

The significance of tableau analysis actually transcends the above more mundane
numerical considerations. As the reader will gather while reading this and other
advanced textbooks on nonlinear circuits, tableau analysis is a powerful analytic
tool which allows us to derive many profound results with almost no pain at all—at
least compared to other approaches.

To write the tableau equation for any linear resistive circuit, we simply use the
following algorithm8:

1. Draw the digraph of the circuit and hinge it if necessary so that the resulting
digraph is connected. Pick an arbitrary ground node and formulate the reduced
incidence matrix A.

2. Write a complete set of linearly independent KCL equations:

Ai(t) = 0 (3.109)

Note that unlike Eq. (3.89), tableau analysis deals with the original digraph where
each independent current source is represented by a branch.

3. Write a complete set of linearly independent KVL equations:

v(t) − AT e(t) = 0 (3.110)

4. Write the branch equations. Since the circuit is linear, these equations can always
be recast into the form:

M(t)v(t) + N(t)i(t) = us(t) (3.111)

Together Eqs. (3.109)–(3.111) constitute the tableau equations. If the digraph has n

nodes and b branches, Eqs. (3.109)–(3.111) will contain n − 1, b and b equations,
respectively. Since the vectors e, v, and i also contain n − 1, b and b variables,
respectively, the tableau equation for a linear resistive circuit always consists of
(n − 1) + 2b linear equations in (n − 1) + 2b variables.

7Recall both v and i must be eliminated in node analysis, leaving e as the only variable.
8The reader may wish to scan Example 3.5.1 after each step in order to get familiarized first with
the notations used in writing the tableau equation.
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Example 3.5.1 Write the tableau equations for the linear circuit in Fig. 3.18.

Solution The circuit only contains three elements: a voltage source, an
ideal transformer, and a time-varying resistor. The first two elements are not
allowed in nodal analysis because they are not voltage-controlled. The third
element, which would normally be acceptable, is also disallowed here because
its conductance G(t) = 1/(R0 sin t) → ∞ at t = 0, 2π, 4, π, · · · and is
therefore not defined for all t .

Applying the preceding recipe, we hinge nodes 3 and 4 and draw the
connected digraph shown in Fig. 3.18b. Choosing the hinged node as ground,
the tableau equations are formulated below.

KCL : AI = 0 ⇔
[

1 0 0 1
0 1 1 0

]
⎡
⎢⎢⎣

i1

i2

i3

i4

⎤
⎥⎥⎦ =

[
0
0

]
(3.112)

KVL : v − AT e = 0 ⇔

⎡
⎢⎢⎣

v1

v2

v3

v4

⎤
⎥⎥⎦−

⎡
⎢⎢⎣

1 0
0 1
0 1
1 0

⎤
⎥⎥⎦
[
e1

e2

]
=

⎡
⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎦ (3.113)

Branch Equations :
n2v1 − n1v2 = 0

n1i1 + n2i2 = 0

v3 − R(t)i3 = 0

v4 = E cos ωt

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

⇔

⎡
⎢⎢⎢⎢⎣

n2 −n1 0 0

0 0 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

v1

v2

v3

v4

⎤
⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎣

0 0 0 0

n1 n2 0 0

0 0 −R(t) 0

0 0 0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

i1

i2

i3

i4

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

0

0

0

E cos ωt

⎤
⎥⎥⎥⎥⎦

(3.114)

n = 3, b = 4 for the digraph in Fig. 3.18b. Consequently, we expect the
tableau equation to contain (n − 1) + 2b = 10 equations involving 10 vari-
ables, namely e1, e2, v1, v2, v3, v4, i1, i2, i3, i4. An inspection of Eqs. (3.112),
(3.113), and (3.114) shows that indeed we have 10 equations involving these
10 variables.
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n1 n2
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−
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v2 v3
R(t) =

R0 sin(t)
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i4 i1 i2 i3 1 2

3
4

1
2

3,4

(a) (b)

Fig. 3.18 All three elements in this circuit are disallowed in node analysis

Example 3.5.1 simply illustrated how to apply the tableau analysis algorithm.
Had one encountered the circuit in Fig. 3.18a in practice, assuming enough expe-
rience in circuit analysis, one can quickly write the necessary equations “on the
back of an envelope.” The point we wish to emphasize again is that one should use
insight, along with technique.

The vector us(t) on the right-hand side of Eq. (3.111) does not depend on any
variable ej , vj or ij and is therefore due to only independent voltage and current
sources in the circuit. Consequently, element k of us(t) will be zero whenever
branch k is not an independent source. Note that controlled source coefficients
always appear in the matrices M(t) and/or N(t), never in us(t).

An inspection of Eq. (3.114) reveals that each row k of M(t) and N(t) contains
coefficients or time functions which define uniquely the linear relation between vk

and ik of branch k in the digraph, assuming branch k corresponds to a resistor. If
branch k happens to be an independent source, then the kth diagonal element is
equal to one in M(t) (for a voltage source) or N(t) (for a current source), while all
other elements in row k are zeros. In this case, the kth element of us(t) will contain
either a constant (for a DC source) or a time function which specifies uniquely this
independent source. On the other hand, if branch k is not an independent source,
then the k element of us (t) is always zero. It follows from the above interpretation
that both M(t) and N(t) are b × b matrices and us(t) is a b × 1 vector, where b is
the number of branches in the digraph.

Finally note that we can state that a resistive circuit is linear iff its branch
equations can be written in the form stipulated in Eq. (3.111), and it is time-invariant
iff both M(t) and N(t) are constant real matrices.
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In the general case, it is more illuminating to write Eqs. (3.109)–(3.111) as a
single matrix equation, the linear tableau equation, shown in Eq. (3.115).

⎡
⎣

0 0 A
−AT I 0

0 M(t) N(t)

⎤
⎦

︸ ︷︷ ︸
T(t)

⎡
⎣

e(t)
v(t)

i(t)

⎤
⎦

︸ ︷︷ ︸
w(t)

=
⎡
⎣

0
0

us(t)

⎤
⎦

︸ ︷︷ ︸
u(t)

(3.115)

It is natural to call T(t) the tableau matrix associated with the linear resistive
circuit. If the circuit is time-invariant, T(t) = T, a constant real matrix.

Every linear resistive circuit is associated with a unique [(n − 1) + 2b] × [(n −
1)+2b] square tableau matrix T(t), and a unique [(n−1)+2b]×1 vector u(t).9 Note
the significance of the tableau matrix is the fact that, if and only if, det[T(t0)] 
= 0
at any time t0, a unique solution to the linear circuit exists in the form of w(t0) =
T−1(t0)u(t0).

3.5.1 Tableau Equation Formulation: Nonlinear Resistive
Circuits

Exactly the same principle is used to formulate the tableau equation for nonlinear
resistive circuits: Simply list the linearly independent KCL and KVL equations, and
the branch equations, which are now nonlinear. Hence, the first three steps of the
algorithm at the beginning of Sect. 3.5 remain unchanged. Only step 4 needs to be
modified because Eq. (3.111) is valid only for linear resistive circuits. Example 3.19
illustrates and suggests the modified form of Eq. (3.111).

Example 3.5.2 Write the tableau equations for the nonlinear circuit in
Fig. 3.19. The npn transistor is modeled by the following nonlinear Ebers-
Moll equation (see Eqs. (2.40) and (2.41) from Chap. 2):

i1 = −IES

(
e

−v1
VT − 1

)
+ αRICS

(
e

−v2
VT − 1

)
(3.116)

i2 = αF IES

(
e

−v1
VT − 1

)
− ICS

(
e

−v2
VT − 1

)
(3.117)

(continued)

9The “uniqueness” is of course relative to a particular choice of element and node numbers.
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Example 3.5.2 (continued)
Solution Since the digraph for this circuit is identical to that shown in
Fig. 3.18b, the same KCL Eq. (3.112) and KVL Eq. (3.113) also apply for
this circuit. However, instead of Eq. (3.114), we have the following branch
equations:

h1(v1, v2, i1) � i1 + IES

(
e

−v1
VT − 1

)
− αRICS

(
e

−v2
VT − 1

)
= 0

h2(v1, v2, i1) � i2 − αF IES

(
e

−v1
VT − 1

)
+ ICS

(
e

−v2
VT − 1

)
= 0

h3(v3, i3, t) � v3 − R(t)i3 = 0

h4(v4, t) � v4 − E cos ωt = 0 (3.118)

Note that h1(·, ·, ·) and h2(·, ·, ·) are nonlinear functions of (v1, v2, i1) and
(v1, v2, i2), respectively; h3(·, ·, ·) is a linear function of v3 and i3 but a
nonlinear function of t; and h4(·, ·) is a function of only v4 and t . Even for
this simple circuit, we see that there is really no simple form analogous to
Eq. (3.114). To avoid keeping track of which variables are present in each
function, we will simply denote Eq. (3.118) as follows:

h1(v1, v2, i1, i2, t) = 0

h2(v1, v2, i1, i2, t) = 0

h3(v1, v2, i1, i2, t) = 0

h4(v1, v2, i1, i2, t) = 0 (3.119)

or in vector form, we simply write:

h(v, i, t) = 0 (3.120)

It is understood that some variables may not be present in each component
equation.
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Fig. 3.19 A nonlinear resistive circuit

It follows from Example 3.5.2 that every nonlinear resistive circuit is described
by a unique system of (n − 1) + 2b nonlinear algebraic equations in (n − 1) + 2b

variables, called the nonlinear tableau equation:

Ai(t) = 0

v(t) − AT e(t) = 0

h(v(t), i(t), t) = 0 (3.121)

We usually resort to numerical methods to solve Eq. (3.121), which is beyond the
scope of this book.

3.6 General Properties of Linear Resistive Circuits

In this section, we state and prove two general theorems for linear time-invariant
resistive circuits,10 namely the superposition theorem and the Thévenin-Norton
theorem. Intelligent use of these theorems often results in a dramatic simplification
of an otherwise much more difficult problem.

Both these theorems are valid if and only if the associated circuit is uniquely
solvable, equivalently, if and only if the associated tableau matrix T is nonsingular.
Although these theorems are stated only for time-invariant circuits for simplicity,
both theorems are valid also for time-varying circuits by simply allowing all
parameters and coefficients to vary with time.

10Recall that a linear resistive circuit may contain, in addition to two-terminal resistors and inde-
pendent sources, any multi-terminal or multi-port linear resistors (for example, ideal transformers,
gyrators, and all four types of linear-dependent sources).
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3.6.1 Superposition Theorem

Theorem 3.5 (Superposition Theorem for Linear Time-Invariant Circuits)
Let N be any linear time-invariant uniquely solvable resistive circuit driven
by α independent voltage sources vs1(t), vs2(t), . . . , vsα(t) and β independent
current sources is1(t), is2(t), . . . , isβ(t).

Then any node voltage ej (t), any branch voltage vj (t), or any branch
current ij (t) is given by an expression of the form

H1vs1(t) + · · · + Hαvsα(t) + K1is1(t) + · · · + Kβisβ(t) (3.122)

where the coefficients Hk, k = 1, 2, . . . , α and Kk, k = 1, 2, . . . , β are
constants which depend only on the circuit parameters ofN and the choice of
the output variable (i.e., ej , vj or ij ) but not on the independent sources.

Before we prove Theorem 3.5, it is instructive to give some circuit interpretations
and an example. The circuit interpretations are:

1. Each term y(vsk) � Hkvsk in Eq. (3.122) is equal to the response of y when all
independent sources in N except vsk(t) are set to zero.

2. Each term y(isk) � Kkisk in Eq. (3.122) is equal to the response of y when all
independent sources in N except isk(t) are set to zero.

3. Equation (3.122) shows that the response due to several independent voltage and
current sources is equal to the sum of the responses due to each independent
source acting alone, i.e., with all other independent voltage sources replaced
by short circuits, and all other independent current sources replaced by open
circuits.11

4. Equation (3.122) also shows that in applying the superposition theorem, con-
trolled sources are left intact.

5. The response at any time t = t0 depends only on the value of the independent
sources at the same time t = t0. In other words, linear resistive circuits have no
memory.

11Compare this description to the definition of superposition from Exercise 1.9.
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Fig. 3.20 (a) Circuit for superposition. (b) Voltage divider. (c) Current divider

Example 3.6.1 Use the superposition theorem to calculate the node voltage
e1 and resistor current i2 in Fig. 3.20a.

Solution The contributions to e1 and i2 due to vs1(t) acting alone (with
is1(t) = 0) can be found by inspection of the voltage-divider circuit in
Fig. 3.20b, obtained by replacing the current source in Fig. 3.20a with an open
circuit:

e1(vs1) = R1

R1 + R2
vs1(t) (3.123)

i2(vs1) = 1

R1 + R2
vs1(t) (3.124)

Here, the “input” vs1 is shown as the “argument” of e1(•) and i2(•) to remind
the reader that the node voltage e1 given by Eq. (3.123) and the branch current
i2 given by Eq. (3.124) are due to vs1 acting alone, and are therefore functions
of vs1 only.

The contributions to e1 and i2 due to is2(t) acting alone (with vs1(t) = 0)
can be found by inspection of the current-divider circuit shown in Fig. 3.20c,
obtained by replacing the voltage source in Fig. 3.20a with a short circuit:

e1(is1) = R1R2

R1 + R2
is1(t) (3.125)

i2(is1) = R1

R1 + R2
is1(t) (3.126)

Adding the respective contributions, we obtain:

e1 = e1(vs1) + e2(is1)= H1vs1(t) + K1is1(t) (3.127)

(continued)



3.6 General Properties of Linear Resistive Circuits 179

Example 3.6.1 (continued)

where H1 � R2
R1+R2

,K1 � R1R2
R1+R2

. and:

i2 = i2(vs1) + i2(is1)= H1vs1(t) + K1is1(t) (3.128)

where H1 � 1
R1+R2

,K1 � R1
R1+R2

.
As expected, both e1 and i2 are of the form specified by Eq. (3.122) where

H1 and K1 are constants depending only on the circuit parameters R1, R2 and
the chosen output variable. They do not depend on vs1(t) or is1(t). Of course,
for different choices of output variables, we get different H1’s and K1’s, as
seen in the expressions for e1 and i2.

Proof of the Superposition Theorem Since N is linear and time-invariant, it is
described by the linear tableau equation:

Tw(t) = u(t) (3.129)

where T is an [(n−1)+2b]×[(n−1)+2b] constant real tableau matrix. However,
since N is uniquely solvable (by assumption), T−1 exists and the unique solution
is given by:

w(t) = T−1u(t) (3.130)

where:

u(t) �
[

0T︸︷︷︸
n−1

0T︸︷︷︸
b

0 · · · 0︸ ︷︷ ︸
resistors

vs1(t) · · · vsα(t)︸ ︷︷ ︸
voltage sources

is1(t) · · · isβ(t)︸ ︷︷ ︸
current sources

]T

(3.131)

Here we have assumed without loss of generality that all independent sources are
labeled last in the order depicted above.

Since each component of w(t) (i.e., ej , vj or ij ) is obtained by multiplying the
corresponding row of T−1 with u(t), it follows that each response ej , vj or ij is
given by an expression in the form of Eq. (3.122). Moreover, since T−1 is a constant
matrix which does not involve any independent source terms, so are the constant
coefficients Hk and Kk . ��
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3.6.2 Thévenin-Norton Theorem

Definition 3.3 A one-port N is said to be well-defined iff it does not contain any
circuit element which is coupled, electrically or nonelectrically, to some physical
variable outside of N .

An example of an ill-defined N would be if it contains a photoresistor coupled to
an external light source.

Theorem 3.6 Any well-defined linear time-invariant resistive one-port N

which satisfies the following unique solvability condition can be replaced by
the following equivalent one-ports Neq without affecting the solution of any
external circuit (not necessarily linear or resistive) connected across N .

1. Thévenin equivalent one-port Neq

unique solvability condition: The circuit N obtained by connecting a
current source i across N has a unique solution for all i.

+
−N

+

−

v

1i R eq

voc (t)

1’

1

1’

v

i

+

−

Neq

≡

Req � Thévenin-equivalent resistance in ohms

� DP or input resistance across N

after all independent sources inside N are set to zero

voc(t) � open-circuit voltage

� voltage v across terminals 1 and 1’ when the port

1, 1’ is left open-circuited

2. Norton equivalent one-port Neq

unique solvability condition: The circuit N obtained by connecting a
voltage source v across N has a unique solution for all v.
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N

+

−

v

1i

isc(t)

1’

1

1’

v

i

+

−

Neq

≡ Geq

Geq � Norton-equivalent conductance in siemens

� DP or input conductance across N

after all independent sources inside N are set to zero

isc(t) � short-circuit current

� current i entering terminal 1 when terminals 1

and 1’ are connected by an external short circuit

As before, we will consider first some circuit interpretations and an example,
before proving the theorem. The circuit interpretations are:

1. The main value of Thévenin’s and Norton’s theorem is that it allows us to
replace any part of a circuit which forms a linear resistive one-port, by only two
circuit elements, without affecting the solution of the remainder of the circuit.
Conceptually this works because a linear circuit is described by a linear equation.
Graphically, in the i−v (v−i) plane, we need only two points to fully characterize
the linear equation. Thévenin and Norton theorems say we choose the intercepts
(isc, voc) ((voc, isc)) as the two points (see 3. below).

2. Let Req 
= 0. If we short-circuit the Thévenin equivalent circuit Neq and solve
for the current i, we would obtain

isc = − voc

Req

(3.132)

If isc 
= 0, we can calculate the Thévenin equivalent resistance by

Req = −voc

isc
(3.133)
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Geq 
= 0

v

i

1
Geq= 1

Req

voc

isc

(a)

v

i

v

(b) (c)

voc

isc

i

0 0 0

Req 
= 0

Fig. 3.21 (a) DP characteristic of N with voc > 0 and Geq > 0. (b) DP characteristic with voc > 0
and Req = 0. (c) DP characteristic with isc > 0 and Geq = 0

3. When Req 
= 0 and Geq 
= 0, the one-port N is equivalent to both its Thévenin
and its Norton equivalent one-ports: Its DP characteristic at any time t is defined
by:

v = Req i + voc(t) (3.134)

i = Geqv + isc(t) (3.135)

This DP characteristic consists of a straight line with a slope Req and voltage
intercept voc(t) in the i −v plane, or with a slope Geq and current intercept isc(t)

in the v − i plane (shown in Fig. 3.21a).
4. The limiting case of Req = 0 is shown in Fig. 3.21b. The Thévenin equivalent

one-port in this case consists of just a battery of voc volts. The corresponding
Norton equivalent one-port does not exist because Geq → ∞. Indeed, the unique
solvability condition fails in this case—KVL is violated when a voltage source
v 
= voc is applied.

The “dual” limiting case Geq = 0 is shown in Fig. 3.21c.
5. A one-port which has neither a Thévenin nor Norton equivalent is shown in

Fig. 3.22a.
Its DP characteristic is defined by:

v = 0 i = 0 (3.136)

and consists therefore of only one point, namely, the origin. Note that the “virtual
short circuit” characterizing the input port of an ideal opamp operating in the
linear region has precisely this property. Such a one-port is called a nullator.

6. It follows from the above observations that if N is not current-controlled, then it
does not possess a Thévenin equivalent. Dually, if N is not voltage-controlled,
then it does not possess a Norton equivalent. Hence, in applying Thévenin’s or
Norton’s theorem, we can ignore checking for the “unique solvability condition”
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i

v0

(b)

N

i1

i1 i

+

−

v

Fig. 3.22 A one-port characterized by only one point (a) Circuit (b) DP plot

since this generally entails the difficult task of checking if the associated tableau
matrix T is invertible. Instead, we simply proceed to calculate Req or Geq . Failure
to obtain a unique finite value for Req (respectively Geq ) would then imply that
N does not have a Thévenin (respectively Norton) equivalent.

Example 3.6.2 Find the Thévenin and Norton equivalent one-ports for the
circuit shown in Fig. 3.23a.

Solution Let us calculate Req and Geq first using the simplified circuit shown
in Fig. 3.23b. For any applied voltage v, we find i1 = v/R so that i = −4i1 =
−(4/R)v. Hence,

Req = 1

Geq

= −R

4
(3.137)

Since both Req and Geq are finite numbers, we know that N has a Thévenin
and a Norton equivalent one-port.

We proceed therefore to calculate voc using the circuit shown in Fig. 3.23c.
Applying KCL we obtain i1 − 5i1 + Is = 0 or i1 = Is/4. Hence,

voc = E + R

4
Is (3.138)

(continued)
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Example 3.6.2 (continued)
To calculate isc, we use Eqs. (3.132) and (3.138) to get:

isc = − voc

Req

= 4E

R
+ Is (3.139)

As an independent check, let us derive isc using the circuit in Fig. 3.23d.
Since i1 = −E

R
in this case, KCL implies:

isc = i1 − 5i1 + Is= 4E

R
+ Is (3.140)

which agrees with our first isc equation (as it should).

Proof of Norton’s Theorem We will prove only Norton’s theorem, as the dual proof
then applies to Thévenin’s theorem. Let N denote the one-port in question, and let
the remaining part of the circuit N be denoted by NL, as shown in Fig. 3.24a. By
hypotheses, N contains only linear time-invariant resistors and independent sources,
whereas NL need not be linear or resistive.

+
−

E

R

Is

5i1

(a)

N
i1

i

+

v

−

E

R

Is

5i1

(c)

i1

i = 0

+

voc

−

R
5i1

(b)

N0
i1

i

v

E

R

Is

5i1

(d)

N
i1

isc

Fig. 3.23 (a) One-port N . (b) Simplified one-port N0 obtained by setting all independent sources
inside N to zero. (c) Circuit used for calculating voc. (d) Circuit used for calculating isc
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+
−N

+

−

v

i

1’

≡ NL N

i(t)1

v(t)

1

1’

+

−

v

(a) (b)

Fig. 3.24 (a) Partitioning arbitrary circuit N into a linear resistive one-port N and a not
necessarily linear or resistive one-port NL. (b) Driving N with a voltage source v(t)

Since N is purely resistive, it is completely specified by its DP characteristic
at each instant of time. Hence, as far as NL is concerned, its solution depends
only on this DP characteristic: The elements inside N which give rise to this DP
characteristic are completely irrelevant. For example, we don’t care if N consists of
a 2 Ω resistor or two 1 Ω resistors in series, as long as we have a 2 Ω equivalent
DP resistance. It suffices therefore to prove that both N and its Norton equivalent
one-port have identical DP characteristics.

Let us drive N with an independent voltage source v(t) as shown in Fig. 3.24b.
Let us label this voltage source, together with the independent voltage sources inside
N by vs0(t), vs1(t), . . . , vsα(t), where vs0(t) � v(t). Similarly, let us label the
independent current sources inside N by is1(t), . . . , isβ(t).

It follows from the unique solvability condition that the linear time-invariant
resistive circuit in Fig. 3.24b has a unique solution for all values of the independent
sources, at all times. Hence we can apply the superposition theorem and conclude
that the port current i(t) in Fig. 3.24b must assume the form:

i(t) = Hov(t) +
α∑

k=1

Hkvsk(t) +
β∑

k=1

Kkisk(t) (3.141)

Now if v(t) = 0 ∀t , i(t) is by definition isc(t). Hence the last two sums in
Eq. (3.141) add up to isc(t).

If we set to zero all independent sources inside N , we are left with i(t) = H0v(t),
i.e., H0 = Geq . Hence Eq. (3.141) can be written in the form:

i(t) = Geqv(t) + isc(t) (3.142)

where Geq and isc(t) are as defined in the theorem. Equation (3.142) gives the DP
characteristic of the given one-port N . Since this is the same equation which defines
the Norton equivalent one-port Neq , it follows that N can indeed be replaced by a
Norton equivalent Neq without affecting the solution inside NL. ��
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3.7 Some General Properties of Nonlinear Resistive Circuits

The behavior of linear resistive circuits is intimately related to linear algebraic
equations. As a consequence of linearity, we were able to derive several rather
general properties in the preceding section. Precisely because their proofs depend on
linearity in a crucial way, none of these properties holds even if the circuit contains
only one nonlinear resistor.

The behavior of nonlinear resistive circuits is far more complicated. For example,
multiple solutions are frequent. Even describing a two-terminal nonlinear resistor
alone can be complicated. To specify it analytically we need to use a function which
may require many parameters (for example, the pn-junction diode).

In spite of its greatly increased complexity, many useful properties can be proved
for various subclasses of nonlinear resistive circuits. Our objective in this section is
to state only those properties which we are in a position to prove, in a remarkably
elegant manner. These general properties, derived from the fundamental concepts
of passivity and monotonicity, form only a small albeit important subset of our
“nonlinear tool kits.” We hope this final section will whet the reader’s appetite into
a more advanced study of this subject.

3.7.1 Strict Passivity

Definition 3.4 A two-terminal resistor is said to be strictly passive iff vi > 0 for
all points (v, i) on its characteristic, except the origin (0, 0).

Geometrically, this means that the v − i curve of a strictly passive resistor must
lie only in the first and third quadrants and stay clear of the v and i axis, except the
origin.

Most of the nonlinear resistors we have encountered so far as strictly passive.
However, the ideal diode concave resistor, and convex resistor are passive but not
strictly passive.

In this section we will state and prove three general theorems for circuits
containing only strictly passive resistors and independent sources.

Theorem 3.7 (Strict Passivity Property) A one-port made of strictly passive
two-terminal resistors is itself strictly passive.

Proof Consider the one-port N shown in Fig. 3.25, which is driven by a voltage
source. Let N contain m strictly passive resistors. Applying Tellegen’s theorem and
noting that the current entering the positive terminal of the voltage source is equal
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+

−

v

N

i

v

Fig. 3.25 One-port N

to −i (passive sign convention), we obtain:

vi =
m∑

α=1

vαiα (3.143)

Since the m resistors are strictly passive for all α, vαiα ≥ 0, hence vi ≥ 0.
Suppose v > 0, then by KVL some of the vα’s must be nonzero. Thus by

strict passivity, the corresponding iα’s are also nonzero and of the same sign. Hence
whenever v > 0 at least one term, say vkik , is positive. So we have v > 0 implies
i > 0.

A similar argument shows that v < 0 implies i < 0. Hence vi > 0 for all points
on the driving point characteristic except the origin (where vi = 0). Therefore N is
strictly passive. ��

Theorem 3.8 (Maximum Node-Voltage Property) Let N be a connected
circuit made of strictly passive two-terminal resistors and driven by a single
DC voltage source of E volts, E > 0. Then, with the negative voltage-source
terminal chosen as ground, no node-to-ground voltage can exceed E volts.

Proof Since N is connected, all node-to-ground voltages e1, e2, · · · , en−1 are
well-defined.

Suppose there exists a node m with the highest potential em > E. Since
ea, eb, . . . , ek ≤ em, we have va, vb, . . . , vk ≥ 0. Since all resistors are strictly
passive, this implies that ia, ib, . . . , ik ≥ 0. But for KCL to be satisfied at node
m, we must have ia = ib = · · · = ik = 0. By strict passivity, this implies that
va = vb = · · · = vk = 0. Thus, we have ea = eb = · · · = ek = em > E (Fig. 3.26).

Hence we can move on to nodes a, b, . . . , k and repeat the above reasoning. We
must eventually reach node 1 of the voltage source, where our reasoning would still
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+
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b

k
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−

ib

+

−

vb

ia
+

va

−

Fig. 3.26 KCL at node m implies ia + ib + · · · + ik = 0

imply that e1 = em > E, which is false. Hence our assumption that em > E is
wrong and thus em ≤ E. ��

Theorem 3.9 (Transfer Characteristic Bounding Region) The vo vs. vin

transfer characteristic of any connected circuit made of strictly passive two-
terminal resistors must lie within the wedge-shaped region

|vo| ≤ |vin| (3.144)

as shown in Fig. 3.27b.

Proof Consider in Fig. 3.27b the right-half plane with vin > 0. Suppose the output
voltage vo is measured between node k and node l so that:

vo = ek − el (3.145)

where ek and el are measured with respect to the ground node shown in Fig. 3.27a.
Since N contains only strictly passive two-terminal resistors, it follows from the

maximum node-voltage property in Theorem 3.8 that:

0 ≤ ek≤ vin (3.146)

0 ≤ el ≤ vin (3.147)

Inequality (3.147) can be rewritten as:

−vin ≤ −el≤ 0 (3.148)
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Fig. 3.27 Output voltage bounding region

Adding both inequalities (3.146) and (3.148), we get:

−vin ≤ ek − el≤ vin (3.149)

Using our earlier definition: vo = ek − el and simplifying we get:

|vo| ≤ vin (3.150)

Note that we had assumed vin > 0 and used the right-half plane. A similar proof for
the left-half plane (vin < 0) would give: |vo| ≤ −vin. We thus have: |vo| ≤ |vin|.

��

3.7.2 Strict Monotonicity

Strict passivity does not impose any constraint on the slope of the resistor charac-
teristic. It only requires that the product vi be positive except at the origin. For
example, the tunnel diode described earlier is strictly passive. Yet the slope of
its characteristics can assume both positive and negative values, depending on the
operating point. Such characteristics are said to be nonmonotonic.

It is clear that resistive circuits made of nonmonotonic resistors would in
general also give rise to a nonmonotonic DP and transfer characteristics. Hence
in order to derive properties involving constraints on the slope of the DP and
transfer characteristics, it is necessary to impose stronger conditions on the resistor
characteristics. The strictly monotone-increasing, or strictly increasing for brevity,
is one such condition which we investigate in this final section.

Strictly increasing means roughly that the slope of the characteristic is positive
everywhere. More precisely, a two-terminal resistor is said to be strictly increasing
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iff, for all pairs of (distinct) points on its characteristic, say (v′, i ′) and (v′′, i ′′)
(v′ > v′′, i ′ > i ′′) we have:

(v′ − v′′)(i ′ − i ′′) > 0 (3.151)

Note that a strictly increasing characteristic is not restricted to lie in the first and
third quadrants only. Hence, a strictly increasing resistor need not be strictly passive,
and a strictly passive resistor need not be strictly increasing.

Theorem 3.10 Any circuit made of strictly increasing two-terminal resistors
and independent sources has at most one solution.

Proof Suppose there are two distinct operating points Q and Q′, at some time t ,
corresponding to (v1, v2, . . . , vb; i1, i2, . . . , ib) and (v′

1, v
′
2, . . . , v

′
b; i ′1, i ′2, . . . , i ′b),

respectively. Here we assume passive sign convention for all elements.
Since each of these two solutions satisfies Tellegen’s theorem, so does their

difference:

b∑
k=1

(vk − v′
k)(ik − i ′k) = 0 (3.152)

Observe that each term in Eq. (3.152) which corresponds to either a voltage source
(vk = v′

k) or a current source (ik = i ′k) vanishes. However, since these are two
distinct solutions and since all resistors are strictly increasing, there must exist at
least one branch such that (vk − v′

k)(ik − i ′k) > 0 for this branch. This contradicts
Eq. (3.152). Hence there cannot be two distinct operating points Q and Q′. ��

Theorem 3.11 A one-port made of strictly increasing two-terminal resistors is
itself strictly increasing.

Proof Suppose the one-port N in Fig. 3.25 contains only strictly increasing resis-
tors. Then for any two distinct DP voltages v and v′, let (vk, ik) and (v′

k, i
′
k), k =

1, 2, . . . , b denote the corresponding unique branch voltage and current solutions,
for all b resistors inside N . It follows from Tellegen’s theorem that:

(v − v′)(i − i ′) =
b∑

k=1

(vk − v′
k)(ik − i ′k) (3.153)

where the input term appears on the left of the equation because the input current i

in Fig. 3.25 is defined as leaving the positive terminal of the voltage source.
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Since v 
= v′, KVL requires that at least one of the (vk − v′
k) differs from 0;

hence, at least one term on the right-hand side of Eq. (3.153) is positive, while all
the others are ≥ 0 (since all resistors are strictly increasing) where the equality sign
holds whenever vk = v′

k or ik = i ′k . Consequently,

(v − v′)(i − i ′) > 0 (3.154)

whenever v 
= v′, i.e., the DP characteristic of N is strictly increasing. ��

3.8 Conclusion

This chapter has given an overview of techniques for analysis of nonlinear networks.
But, unlike dynamic nonlinear networks (the subject of Chap. 4), the realm of
resistive nonlinear networks does have a general theory. Once the reader has
mastered the concepts summarized below from this chapter, they can pick up this
general theory from excellent references such as [1].

1. For resistive circuits, nodal analysis is applicable if the circuit contains only
voltage-controlled resistors and independent current sources (which do not
form cut sets among themselves).

2. The node equation for a linear resistive circuit is given by:

Yne(t) = is(t) (3.155)

where Yn � AYbAT is called the node-admittance matrix; A is the reduced
incidence matrix of the reduced digraph obtained by open-circuiting all
branches corresponding to independent current sources from the original
digraph; Yb is the branch-admittance matrix; is(t) is the source vector whose
kth entry is equal to the algebraic sum of all independent current sources
entering node k.

For a reduced digraph with n nodes and b branches, Yb is a b×b matrix, Yn

is an (n − 1) × (n − 1) matrix, A is an (n − 1) × b matrix; both e and is(t) are
n − 1 vectors.

3. A nonlinear resistive circuit driven only by independent current sources has a
node equation given by:

Ag(AT e) = is (t) (3.156)

where i = g(v) denotes the characteristics of all (voltage-controlled) resistors.
4. Both the linear and nonlinear node equations consist of n − 1 equations in

terms of the node voltage vector e, where n is the number of nodes in the circuit.
Hence the number of equations in nodal analysis does not depend on the number
of branches in the circuit.
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5. Every linear time-invariant resistive circuit has a tableau equation of the form:

⎡
⎣

0 0 A
−AT I 0

0 M(t) N(t)

⎤
⎦

︸ ︷︷ ︸
T(t)

⎡
⎣

e(t)
v(t)

i(t)

⎤
⎦

︸ ︷︷ ︸
w(t)

=
⎡
⎣

0
0

us(t)

⎤
⎦

︸ ︷︷ ︸
u(t)

(3.157)

The entries of M and N contain constant coefficients defining the resistors; the
entries of us (t) contain constant or time functions defining the independent
sources.

6. A linear time-invariant resistive circuit has a unique solution iff the tableau
matrix T is nonsingular.

7. Every nonlinear resistive circuit has a tableau equation of the form:

Ai(t) = 0

v(t) − AT e(t) = 0

h(v(t), i(t), t) = 0 (3.158)

8. A resistive circuit is said to be uniquely solvable iff Kirchhoff’s laws and the
branch equations are simultaneously satisfied by a unique set of branch voltages
and a unique set of branch currents for all t .

9. The superposition theorem is applicable to any linear uniquely solvable resistive
circuit. It allows us to find the solution by calculating first the solutions due to
each independent source acting alone, and then adding them.

10. A one-port N is said to be well-defined iff it does not contain any circuit
element which is coupled, electrically or nonelectrically, to some physical
variable outside of N .

11. The Thévenin (Norton) theorem allows us to replace any well-defined linear
current-controlled (voltage-controlled) resistive one-port by an equivalent one-
port consisting of an equivalent Thévenin resistance Req (equivalent Norton
conductance Geq ) in series (parallel) with an open-circuit (short-circuit) voltage
source voc(t) (current source isc(t)).

12. In applying the superposition, Thévenin and Norton theorems, all dependent
sources must be left intact.

13. A two-terminal resistor is strictly passive iff vi > 0, for all points in its
characteristic except the origin.

14. We studied the strict passivity, maximum node-voltage and transfer character-
istic bounding regions for strictly passive networks.

15. A two-terminal resistor is strictly increasing iff (v′−v′′)(i ′−i ′′) > 0 for all pairs
of distinct points (v′, i ′) and (v′′, i ′′) on its characteristic (v′ > v′′, i ′ > i ′′).

16. We studied the uniqueness and strictly increasing closure properties for net-
works with strictly increasing resistors.
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Lab 3: DC Simulation in QUCS

Objective: To understand DC simulation in QUCS
Theory:
Unlike the previous chapters, we first encourage you to do the lab component to this
chapter. In other words, now that you have an understanding of the techniques for
nonlinear resistive circuit analysis, be sure to simulate the circuits from this chapter
(and the exercises) below in QUCS. In this lab, you will perform DC analysis (DC
simulation in QUCS) for the nonlinear circuit shown in Fig. 3.28.

1. Suppose E = 6 V, R = 2 Ω . Solve analytically for the DC solution, specifically
iQR and vQR . Although the circuit equations are trivial to set up, we recommend
that you use tableau analysis so that you become familiar with the method.

2. Now, let E = 2 V, R = 2 Ω . Again analytically find the DC solution: iQR, vQR .

We will now simulate the circuit in QUCS.
Lab Exercise:

1. The circuit.12 to be entered in QUCS is shown in Fig. 3.29. Use the Equation
Defined Device (EDD) for specifying NR . This device can be found under
nonlinear components.

2. Simulate the circuit for both E = 6 V and E = 2 V. Discuss the results.
Specifically, what do you notice about the solution when E = 2 V. Explain the
solution.

Fig. 3.28 Circuit for lab 3
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12If you are unfamiliar with the QUCS component notation for the passive sign convention, please
be sure to go through the introductory QUCS video online (refer to lab 1).
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Fig. 3.29 QUCS schematic for circuit in Fig. 3.28
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Fig. 3.30 Circuit for problem 3.2

Exercises

3.1 Show that the voltage gain of the CE amplifier in Fig. 3.8b is given by:

ṽ2

vs

= −h21

(h11 + R1)(h22 + 1/R2) − h12h21
(3.159)

3.2 Figure 3.30 shows two distinct networksN and ˆN . Determine the value of v̂L.
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Fig. 3.31 Circuit for problem 3.3

3.3 Write the node equations for the circuit in Fig. 3.31, in terms of the reduced
incidence matrix A.

3.4 Show that branch admittance matrix Yb in Eq. (3.87) is a diagonal matrix, if N
contains only two-terminal linear resistors and independent current sources.

3.5 To appreciate the benefits of superposition and its domain of applicability,
consider a nonlinear resistor v = v̂(i) = i3 driven by two current sources is1(t) =
I1 cos ω1t and is2(t) = I2 cos ω2t connected in parallel, where I1, ω1, I2, ω2 are
constants. Calculate the voltage v when each source acts alone, and when they act
together. In each case, reduce your answer to a sum of pure sine waves.

1. Does superposition hold for this circuit?
2. What are the frequency components of the output waveform for each case?

Exercise 4.13 explores further the frequency behavior of linear vs. nonlinear
systems.

3.6 Find the Thévenin and Norton equivalent circuits for the one-ports shown in
Fig. 3.32. If a particular circuit fails to have a Thévenin and/or Norton equivalent,
explain.

3.7 In this exercise, we will derive the maximum power transfer theorem for
linear resistive circuits.

Consider the circuit shown in Fig. 3.33. RL models a loudspeaker in a concert
hall. In order to maximize the output power delivered by the power amplifier
(modeled by vs(t) in series with internal resistance R1), a transformer with an
appropriate turns ratio n is sandwiched between the amplifier and the loudspeaker.

1. Simplify the circuit by first finding the Thévenin equivalent at terminals 2, 2′.
Your voc and Req expressions should include a function of the transformer turns
ratio n.
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Fig. 3.32 (a-c) Circuits for problem 3.6
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Fig. 3.33 Circuit for problem 3.7

2. From the answer in 1. above, determine the value of RL (in terms of Req ) that
would maximize the power dissipated in RL. To do this, you would have to find
an expression for the power associated with RL and use calculus.

The answer to 2. above is the maximum power transfer theorem for linear resistive
circuits.
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Fig. 3.34 Circuit for problem 3.8
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Fig. 3.35 Circuit for problem 3.9

3.8 Using repeated application of Thévenin and Norton theorems, simplify the
circuit in Fig. 3.34 to a single loop and then determine the voltage across current
source 3 mA current source. This repeated simplification of a circuit by switching
between Thévenin and Norton equivalents is called source transforms.

3.9 Find all possible values for iR and vR for the circuit shown in Fig. 3.35.
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