
Chapter 2
Multi-Terminal Network Elements
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Two-terminal piecewise linear negative resistor, synthesized
using a multi-terminal opamp

Abstract This chapter will naturally expand upon the ideas in Chap. 1 and discuss
black boxes that have more than two terminals. We will first discuss character-
ization of a multi-terminal black box, followed by a discussion of the two-port
representation technique. We will then talk about resistive, inductive (including
transformers), and capacitive three-terminal elements. Circulators and opamps are
next discussed. After this, we discuss the family of two-port scalors, rotators,
reflectors, and gyrators. A current feedback opamp-based implementation approach
is used for studying mutators.

2.1 Characterization of a Multi-Terminal Black Box

While the conventional resistor is probably the most familiar circuit element [6] [4],
the transistor is certainly the electronic device that heralded the computer revolution.
A transistor is a three-terminal device which behaves like a two-terminal nonlinear
resistor when viewed from any pair of terminals, at low enough frequencies. This is
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why its inventors (Nobel laureates Bardeen, Brattain, and Shockley) christened it as
a transfer resistor, or transistor in brief.

The transistor is not the only multi-terminal device, many devices have more
than two terminals. Our objective in this section is to learn how these multi-
terminal devices may be characterized so that we shall be in a position to use
them more effectively [3]. The basic principles discussed in the preceding chapter
for characterizing two-terminal devices are still applicable. A set of measurable
independent variables is selected and a series of external measurements are taken
with the objective of deriving a consistent relationship among the variables. Once
this relationship is found, we have characterized the black box because from then
on, any design using this device can be undertaken on the basis of this relationship
alone, thereby obviating the need for further measurements.

To discuss the selection of an independent set of variables, let us consider first
the three-terminal black box shown in Fig. 2.1a. The most obvious variables are the
currents i1, i2, and i3 entering the terminals, and the voltages v12, v23, and v31 across
the terminals. However, the black box in Fig. 2.1a can be enclosed by a Gaussian
surface and hence the currents i1, i2, and i3 entering this surface must satisfy KCL,
namely, i1 + i2 + i3 = 0.

Thus, if we know the value of any two of these currents, we can calculate the
third, and therefore there is no need to measure all three currents. This observation
is equivalent to saying that the three variables i1, i2, and i3 are not independent.
Similarly, from KVL we have v12 + v23 + v31 = 0 and hence the three variables
v12, v23, and v31 are not independent.

Consequently, among the six variables shown in Fig. 2.1a, only two currents
and two voltages are independent. For this reason, we may select any terminal
to be ground and define the two currents i1, i2 and voltages v1, v2 as shown in
Fig. 2.1b. In theory, there is no reason for preferring one terminal over another
as the ground terminal. In practice, however, such a preference may be desirable
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Fig. 2.1 In the process of characterizing a three-terminal black box, one terminal is arbitrarily
chosen as the ground terminal. The voltages of the remaining terminals are measured with respect
to the common terminal
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Fig. 2.2 For an n-terminal element, we can arbitrarily choose one terminal as ground. With n

chosen as the ground terminal, we have the associated element graph

because the measurements may be easier and more accurately obtained.1 To avoid
ambiguity, it is of the utmost importance to specify the common terminal associated
with the measured characteristics of a particular device. A ground terminal can
also be arbitrarily chosen for a generic multi-terminal (or henceforth, n-terminal)
element, as shown in Fig. 2.2a. Based on our choice of the ground terminal, we can
also easily draw the associated element graph of the n-terminal device, as shown
in Fig. 2.2b. Notice that we will have n possible element graphs for an n-terminal
element, depending on our choice of the ground node.

With the abovementioned precaution of choosing the common terminal associ-
ated with the measured characteristic, let us investigate the type of measurements
that may be taken. Just as in the two-terminal case, it is necessary to excite the
black box by a voltage source or a current source. However, the response to these
excitations need not be restricted to currents and voltages. Recall from Eq. (1.3) that
it is possible to measure the charge qj entering terminal j by integrating the current
ij , namely:

qj (t) =
∫ t

−∞
ij (τ )dτ j = 1, 2, · · · , n − 1 (2.1)

Similarly, from Eq. (1.4), we can measure the flux-linkage φj associated with
each voltage vj between terminal j and ground by integrating the voltage vj :

φj (t) =
∫ t

−∞
vj (τ )dτ j = 1, 2, · · · , n − 1 (2.2)

1This is especially true for the transistor, where the characteristic curves can be more accurately,
and more easily, measured if a particular terminal (called emitter for npn junction transistors) is
chosen to be the ground terminal.



66 2 Multi-Terminal Network Elements

Hence, among the variables of interest to us are qj , ij , φj , and vj (j =
1, 2, · · · , n−1). Any independent combination of these variables constitute a valid
set of measurements. Observe that the combination qj and ij (φj and vj ) is not valid
because these variables are already related by Eqs. (2.1) and (2.2). If a certain set
of measurements leads to some consistent relationship, then the device is said to be
characterized by that relationship.

The corresponding element classifications now take the following forms:

1. n-terminal resistors, involving only v1, v2, · · · , vn−1; i1, i2, · · · , in−1.
2. n-terminal inductors, involving only i1, i2, · · · , in−1; φ1, φ2, · · · , φn−1.
3. n-terminal capacitors, involving only v1, v2, · · · , vn−1; q1, q2, · · · , qn−1.
4. n-terminal memristors, involving only φ1, φ2, · · · , φn−1; q1, q2, · · · , qn−1.

But, in general, in order to completely characterize an n-terminal black box, n −
1 distinct laboratory setups are required. For example, Fig. 2.3 shows the setups
necessary to characterize a four-terminal device.
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Fig. 2.3 To characterize a four-terminal black box, three distinct laboratory setups are required.
Each setup involves as many sets of measurements as necessary to include all desired combinations
of parameter values of the controlling variables
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Thus, it is in general impractical to completely characterize an n-terminal black
box when n >> 3. Fortunately, most practical devices have single digit values for
n, and those devices will be discussed in the remainder of this chapter, starting with
n = 3.

2.2 Three-Terminal Resistors, Inductors, and Capacitors

2.2.1 Two-Port Representation

The concept of a port was first introduced in Sect. 1.4. Recall that a port can be
created from a circuit by connecting two leads to a pair of nodes of the circuit.
Thus, a one-port can be viewed as a black box which has one pair of terminals
from the outside. In the case of a multi-port such as the four-terminal black box
from Fig. 2.3, we see that the box can be completely characterized with three sets of
measurements, using three pairs of terminals.

As discussed previously, because of the complexity involved in practically
characterizing a multi-terminal device for n >> 3 (n is the number of terminals),
we will primarily discuss three-terminal elements or two-ports, with n = 3. For
details on multi-ports, refer to section 4 from [6].

The generalization from a two-terminal to a three-terminal element amounts to
extending from scalar port variables to n − 1-dimensional vector variables. For
the purposes of clarity, we will discuss resistive two-ports in detail. For inductors,
capacitors, andmemristors, the principles are identical and hence for those elements,
we will only discuss one form of representation.

A three-terminal element, or a two-port, will be called a (time-invariant) resistor
if its port voltages and port currents satisfy the following relation:

RR = {(v1, v2, i1, i2); f1(v1, v2, i1, i2) = 0 and f2(v1, v2, i1, i2) = 0} (2.3)

This relation, similar to the two-terminal resistor given by Eq. (1.35) in Chap. 1,
will be called the v − i characteristic of a three-terminal resistor or a resistive
two-port. The difference with respect to Eq. (1.35) is that we now need two
scalar functions f1(·) and f2(·) to characterize a two-port and there are four scalar
variables v1, v2, i1, i2. The characteristic is in general a two-dimensional surface in
a four-dimensional space.

When we deal with two-ports, we often need to distinguish the ports, so one of
them is marked as port 1 and the other is marked as port 2, as shown in Fig. 2.4. As
a tradition, port 1 is often referred to as the input port and port 2 is often referred
to as the output port.

We will now first consider linear resistors and use them to bring out pertinent
concepts in the generalization from a two-terminal (one-port) to multi-terminal
(two-port) element. Nonlinear two-ports such as transistors will be discussed in
Sect. 2.2.2.
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Fig. 2.4 A two-port with its
port voltages v1, v2 and port
currents i1, i2
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Table 2.1 Six representations of a two-port

Representations Dependent variables Independent variables

Current-controlled v1, v2 i1, i2

Voltage-controlled i1, i2 v1, v2

Hybrid 1 v1, i2 i1, v2

Hybrid 2 i1, v2 v1, i2

Transmission 1 v1, i1 v2, i2

Transmission 2 v2, i2 v1, i1

Table 2.2 Equations for the six representations of a linear resistive two-port

Representations Scalar equations Vector equations
Current-controlled v1 = r11i1 + r12i2

v2 = r21i1 + r22i2

v = Ri

Voltage-controlled i1 = g11v1 + g12v2

i2 = g21v1 + g22v2

i = Gv

Hybrid 1 v1 = h11i1 + h12v2

i2 = h21i1 + h22v2

[
v1

i2

]
= H

[
i1

v2

]

Hybrid 2 i1 = h′
11v1 + h′

12i2

v2 = h′
21v1 + h′

22i2

[
i1

v2

]
= H′

[
v1

i2

]

Transmission 1 v1 = t11v2 − t12i2

i1 = t21v2 − t22i2

[
v1

i1

]
= T

[
v2

−i2

]

Transmission 2 v2 = t ′11v1 + t ′12i1
−i2 = t ′21v1 + t ′22i1

[
v2

i2

]
= T′

[
v1

i1

]

For the transmission representations, for historical reasons, a minus sign is used in conjunction
with i2. Because of the reference direction chosen for i2, −i2 gives the current leaving the output
port

With four scalar variables v1, v2, i1, i2 and two equations to characterize a
resistive two-port, there are C4

2 = 6 possible two-port representations, since we
may choose any two of the four variables as independent variables (the remaining
two are then the dependent variables). Table 2.1 gives the classification of the six
representations according to dependent and independent variables.

Table 2.2 gives the equations of the six possible representations of a linear
resistive two-port.
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In Table 2.2, G is the inverse matrix of R. Similarly, we also have H′ = H−1

and T′ = T−1. We call H and H′ hybrid matrices because both the dependent and
independent variables are mixtures of a voltage and current. We call T and T′ the
transmission matrices because they relate the variables pertaining to one port to
that pertaining to the other and the two-port serves as a transmission media. Hence,
transmission matrices are important in the study of communication networks. A
discussion of these networks is the beyond the scope of this book, but the interested
reader is referred to Chapter 13 in [6].

Example 2.2.1 Consider a resistive two-port made up of three linear resistors
as shown in Fig. 2.5. Determine the current-controlled and voltage-controlled
representations.

Solution Let us apply two independent current sources to the two-port as
shown in Fig. 2.6. KCL applied to nodes 1, 2, and 3 yields:

is1 = i1

is2 = i2

i3 = i1 + i2 (2.4)

Using Ohm’s law and KVL for node sequences 1−3−4−1 and 2−3−4−2,
we get:

v1 = i1R1 + R3(i1 + i2) = (R1 + R3)i1 + R3i2

v2 = i2R2 + R3(i1 + i2) = R3i1 + (R2 + R3)i2 (2.5)

We will rewrite Eq. (2.5) in matrix form, to obtain the current-controlled
representation from Table 2.2.

(
v1

v2

)
=

(
R1 + R3 R3

R3 R2 + R3

)(
i1

i2

)
(2.6)

Hence, we have the resistance matrix R as defined in Eq. (2.7).

R �
(

R1 + R3 R3

R3 R2 + R3

)
(2.7)

Notice that R is symmetrical: RT = R. Such symmetries will be exploited
when we discuss resistive nonlinear networks in Chap. 3.

(continued)
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Example 2.2.1 (continued)
Now, that we have R, G (conductance matrix) for the voltage-controlled

representation is simply R−1:

G � R−1 = 1

R1R2 + R2R3 + R3R1

(
R2 + R3 −R3

−R3 R1 + R3

)
(2.8)

In Example 2.2.1, we could have derived the voltage-controlled representation
first by using independent voltage sources vs1 and vs2, then used the fact that R �
G−1. In other words, it is quite simple to transform one two-port representation to
another, as shown in Example 2.2.2.
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Fig. 2.5 The resistive T -network
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Fig. 2.6 For Example 2.2.1, we will use two independent current sources in Fig. 2.5 for obtaining
the current-controlled representation
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Example 2.2.2 In Example 2.2.1, let R1 = 1 Ω,R2 = 2 Ω,R3 =
3 Ω . Determine the numerical current-controlled representation and the other
representations from Table 2.2.

Solution The numerical current-controlled representation is given by
Eq. (2.6):

(
v1

v2

)
=

(
4 3
3 5

) (
i1

i2

)
(2.9)

The voltage-controlled representation can be found using G in Eq. (2.8) or
by inverting the numerical square matrix in Eq. (2.9):

(
i1

i2

)
=

⎛
⎜⎜⎝

5

11

−3

11

−3

11

4

11

⎞
⎟⎟⎠

(
v1

v2

)
(2.10)

It is straightforward to derive the other four representations from the
equations above. The general treatment is beyond the scope of this book but
can be found in classic references such as [6]. However, it is easy to obtain,
for example, the hybrid representations.

For the Hybrid 2 representation, we first solve for i1 in terms of v1 and i2
by using the first row from Eq. (2.9). Next, we solve for v2 in terms of v1 and
i2 by using the second row from Eq. (2.10). Thus:

(
i1

v2

)
=

⎛
⎜⎜⎝

1

4

−3

4

3

4

11

4

⎞
⎟⎟⎠

(
v1

i2

)
(2.11)

The hybrid 1 representation can be found by inverting H′ from Eq. (2.11):

H =

⎛
⎜⎜⎝

11

5

3

5

−3

5

1

5

⎞
⎟⎟⎠ (2.12)

The transmission matrices can be obtained in a similar manner and is left
as an exercise for the reader.
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2.2.1.1 Physical Interpretations

In the examples from Sect. 2.2.1, we derived various two-port representations. In
particular, we derived the current-controlled representation by using two current
sources at the two-ports and determining the two-port voltages (as shown in
Fig. 2.6).

For a physical interpretation of two-ports, recall from Chap. 1 that we defined
a linear two-terminal resistor as one having a straight line characteristic passing
through the origin in the v − i plane. For two-ports, we have four variables and two
equations, e.g., the current-controlled representation is:

v1 = r11i1 + r12i2

v2 = r21i1 + r22i2 (2.13)

These two equations impose two linear constraints on the port voltages and
the port currents and hence the point representing the four variables; namely,
(v1, v2, i1, i2) is constrained to a two-dimensional subspace in the four-dimensional
space spanned by v1, v2, i1, i2. Of course, this is difficult to visualize. However, if
we take one equation at a time, we can represent it by a family of curves in the
appropriate i − v planes, as shown in Fig. 2.7.

Fig. 2.7 Two-port characteristics plotted on the i1−v1 plane, with i2 as parameter. r11 = 1, r12 =
−1. A similar plot can be generated for i2 − v2 plane
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From the first equation in Eq. (2.13), we can give the following interpretations
for r11 and r12:

r11 = v1

i1

∣∣∣∣
i2=0

(2.14)

Thus, r11 is called the driving-point resistance at port 1 when i2 = 0, i.e., port
2 is kept open circuited. Similarly, r12 can be interpreted by:

r12 = v1

i2

∣∣∣∣
i1=0

(2.15)

Hence, r12 is called the transfer resistance when i1 = 0, i.e., port 1 is kept open
circuited.

Analogously, we can derive the following relationships from the second equation
in Eq. (2.13):

r21 = v2

i1

∣∣∣∣
i2=0

(2.16)

r22 = v2

i2

∣∣∣∣
i1=0

(2.17)

r21 is the transfer resistance when i2 = 0 and r22 is the driving-point
resistance at port 2. Figure 2.8 gives the physical interpretations of Eq. (2.14)
through (2.17).
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Fig. 2.8 Interpretations of (a) r11, (b) r12, (c) r21, and (d) r22
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Example 2.2.3 Give the physical interpretation of the hybrid 1 linear resistive
two-port representation from Table 2.2.

Solution The two equations for the hybrid 1 representation read:

v1 = h11i1 + h12v2 (2.18)

i2 = h21i1 + h22i2 (2.19)

Following the same treatment as the current-controlled representation, we
write:

h11 = v1

i1

∣∣∣∣
v2=0

(2.20)

h12 = v1

v2

∣∣∣∣
i1=0

(2.21)

h21 = i2

i1

∣∣∣∣
v2=0

(2.22)

h22 = i2

v2

∣∣∣∣
i1=0

(2.23)

The physical interpretations of the sources, responses, and external connec-
tions for the four hybrid representations are shown in Fig. 2.9.

Note that the four hybrid parameters h11, h12, h21, h22 represent a driving-point
resistance, a reverse voltage transfer ratio, a forward current transfer ratio, and
a driving-point conductance, respectively. As we will see in Sect. 3.1, the hybrid
representation is obtained when we derive the small-signal model for the common-
emitter configuration of the bipolar junction transistor.

Analogous interpretations can be given for other two-port representations such
as the current-controlled representation.

2.2.1.2 Dependent Sources

Up to this point, we have encountered independent voltage and current sources.
Independent sources are used as inputs to a circuit. In this section, we will introduce
another type of source, called controlled sources or dependent sources.

A controlled source is a resistive two-port element consisting of two branches:
a primary branch which is either an open circuit or a short circuit and a secondary
branch which is either a voltage source or a current source. The voltage or current
waveform in the secondary branch is controlled by (or dependent upon) the
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Fig. 2.9 Interpretations of (a) h11, (b) h12, (c) h21, and (d) h22
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Fig. 2.10 Four types of linear controlled sources

voltage or current of the primary branch. Therefore, there exist four types of
controlled sources depending on whether the primary branch is an open circuit or
a short circuit and whether the secondary branch is a voltage source or a current
source. The four types of controlled sources are shown in Fig. 2.10. They are the
current-controlled voltage source (CCVS), voltage-controlled current source
(VCCS), current-controlled current source (CCCS), and voltage-controlled
current source (VCCS). Note that we use a diamond-shaped2 symbol to denote
controlled sources. This is to differentiate them from the independent sources.

2Diamond-shaped symbol for controlled sources was used for the first time in [3].
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Each linear controlled source is characterized by two linear equations:

CCVS: v1 = 0 v2 = rmi1 (2.24)

VCCS: i1 = 0 i2 = gmv1 (2.25)

CCCS: v1 = 0 i2 = αi1 (2.26)

VCVS: i1 = 0 v2 = μv1 (2.27)

rm is the transresistance, gm is the transconductance, α is called the current
transfer ratio, and μ is called the voltage transfer ratio. They are all constants,
thus the four controlled sources are linear time-invariant two-port resistors. More
generally, if a CCVS is characterized by the two equations: v1 = 0, v2 = f (i1),
where f (·) is a given nonlinear function, then that CCVS is a nonlinear controlled
source. Similarly, if a CCCS is characterized by the two equations v1 = 0, i2 =
α(t)i1, where α(·) is a given function of time, then this CCCS is a linear time-
varying controlled source.

Recall from Table 2.2, a linear resistive two-port has six representations. In the
case of linear controlled sources, Eq. (2.24) to (2.27) can be put in matrix form for
each corresponding to one representation:

CCVS:

(
v1

v2

)
=

(
0 0
rm 0

)(
i1

i2

)
(2.28)

VCCS:

(
i1

i2

)
=

(
0 0

gm 0

) (
v1

v2

)
(2.29)

CCCS:

(
v1

i2

)
=

(
0 0
α 0

)(
i1

v2

)
(2.30)

VCVS:

(
i1

v2

)
=

(
0 0
μ 0

) (
v1

i2

)
(2.31)

In Eq. (2.28), we have the current-controlled representation for the CCVS. Since
the resistance matrix is singular, its inverse does not exist. Therefore, there is no
voltage-controlled representation for a CCVS. In fact, it is easy to see that neither
of the hybrid representations exists as well. We can make similar statements for the
other three controlled sources, i.e., only one of the representations in the first four
rows of Table 2.2 exists.

Linear controlled sources are extremely useful in modeling electronic devices
and circuits, as we will see in Sect. 2.2.2. In Sect. 2.5.2.1, we will see that all four
controlled sources can be realized physically (to a good approximation) by using
operational amplifiers.
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Fig. 2.11 Figure for
Example 2.2.4
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1k

1k

1 mA
10k
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10vX

+ v1 −

Example 2.2.4 In Fig. 2.11, determine the values of vX and vY .

Solution We have a VCVS, whose input depends on vX (voltage at node X

with respect to ground). To avoid clutter, we have not explicitly drawn the two-
port form for the VCVS. But, the reader must understand that all dependent
sources are two-ports.

Since all elements in the circuit are in series, the current flowing through
all elements is 1 mA, due to the constant current source. Since all resistors
are also linear, by Ohm’s law and the passive sign convention, we have:

vX = 1 · 10 V

= 10 V (2.32)

From KVL:

vY + v1 − 10vX = 0 (2.33)

Hence:

vY = 10vX − v1

= 99 V (2.34)
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2.2.1.3 Transformers

The ideal transformer is an ideal two-port resistive circuit element which is
characterized by the following two equations:

v1 = nv2 (2.35)

i2 = −ni1 (2.36)

where n is a real number called the turns ratio. The symbol for the ideal transformer
is shown in Fig. 2.12.

The ideal transformer is a linear resistive two-port, since its equations impose
linear constraints on its port voltages and port currents. Note that neither the
current-controlled representation nor the voltage-controlled representation exists for
the ideal transformer. Eqs. (2.35) and (2.35) can be written in matrix form in terms
of the hybrid matrix representation:

(
v1

i2

)
= H

(
i1

v2

)
=

(
0 n

−n 0

) (
i1

v2

)
(2.37)

The ideal transformer is an idealization of a physical transformer, constructed
using coupled inductors, that is used in many applications. The properties of the
physical transformer will be discussed in Sect. 2.2.3.

We wish to stress that because the ideal transformer is an ideal element defined
by Eq. (2.37), the relation between port voltages and port currents holds for all
waveforms and for all frequencies, including DC.

Two fundamental properties of the ideal transformer are:

1. The ideal transformer neither dissipates nor stores energy. Indeed, the power
entering the two-port at time t from Eq. (2.37) is:

p(t) = v1(t)i1(t) + v2(t)i2(t) = 0 (2.38)

Thus, the ideal transformer is a non-energic element (another non-energic
element is the ideal diode).

Fig. 2.12 An ideal
transformer defined by the
single parameter n, the turns
ratio. Notice that the sign of
i2 is negative in the
expression for n, confirming
to the passive sign convention

v1
v2

= n = −i2
i1

i1 i2n : 1

+

−

v1

+

v2

−
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2. When the ideal transformer is terminated at the output port with anR−Ω resistor,
the input port behaves as a linear resistor with resistance n2R. In other words:

v2 = −i2R (2.39)

Therefore, v1
i1

= nv2−i2/n
= n2R.

2.2.2 Three-Terminal Resistors

In the previous sections, we discussed linear resistive two-ports and their various
characterizations and properties. In the real world, we need to deal with nonlinear
resistive two-ports and three-terminal devices, such as transistors. Much of the
material given in the previous two sections can be extended and generalized
to the nonlinear case. For brevity, we will simply summarize the six nonlinear
representations in Table 2.3.

2.2.2.1 The npn Bipolar Transistor

Perhaps, the most commonly used three-terminal nonlinear resistor is a transistor.
These devices come in mainly two variants—the bipolar junction transistor (BJT)
and the metal-oxide-semiconductor field-effect transistor (MOSFET). We will
discuss the low-frequency characteristics of the npn BJT here, together with some
aspects of modeling. A discussion of MOSFETs can be found in excellent texts such
as [7].

Consider the common-base npn transistor as shown in Fig. 2.13. The nodes are
labeled e, b, and c corresponding to the emitter, base, and collector, respectively.

Table 2.3 Equations for the
six representations of a
nonlinear resistive two-port

Representations Scalar equations
Current-controlled v1 = v̂1(i1, i2)

v2 = v̂2(i1, i2)

Voltage-controlled i1 = î1(v1, v2)

i2 = î2(v1, v2)
Hybrid 1 v1 = v̂1(i1, v2)

i2 = î2(i1, v2)
Hybrid 2 i1 = î1(v1, i2)

v2 = v̂2(v1, i2)
Transmission 1 v1 = v̂1(v2,−i2)

i1 = î1(v2,−i2)
Transmission 2 v2 = v̂2(v1, i1)

−i2 = î2(v1, i1)
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ie ic
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c

b

e
+

−

+

−
veb vcb

Fig. 2.13 The common-base npn transistor
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i1

+

− −

+

vcbveb

Fig. 2.14 Ebers–Moll circuit model of npn transistor

A good low-frequency characterization is given by the one-dimensional diffusion
model which yields the Ebers–Moll equations:

ie = −IES

(
e

−veb
VT − 1

)
+ αRICS

(
e

−vcb
VT − 1

)
(2.40)

ic = αF IES

(
e

−veb
VT − 1

)
− ICS

(
e

−vcb
VT − 1

)
(2.41)

IES, ICS, αR , and αF are device parameters. VT is the thermal voltage defined
earlier in Sect. 1.9.1, where we discussed the diode. Typically, αR = 0.5–0.8,
αF = 0.99; IES, ICS are on the order of 10−12 to 10−10 at 25◦C. VT ≈ 26 mV
at 25◦C. Note that an npn BJT is in essence two interacting pn-junction diodes
connected back to back to form a three-terminal device. Thus, with the base terminal
as the ground node, the currents ie and ic entering the device at the emitter and the
collector, respectively, are functions of two node-to-ground voltages veb and vcb .
From Eqs. (2.40) and (2.41), we see that the transistor is a three-terminal voltage-
controlled nonlinear resistor. It can be represented by the equivalent circuit in
Fig. 2.14, where the two pn-junctions are connected at the base node b to model

the terms −IES

(
e

−veb
VT − 1

)
and −ICS

(
e

−vcb
VT − 1

)
. The two CCCS are used to
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Fig. 2.15 Characteristics of an npn BJT in the common-base configuration [6]

b

c

e

+

− −

+

vce

vbe

Fig. 2.16 The common-emitter npn transistor

model the terms αRICS

(
e

−vcb
VT − 1

)
and αF IES

(
e

−veb
VT − 1

)
which represent the

interaction between the two diodes.
The characteristics of Eqs. (2.40) and (2.41) are shown in Fig. 2.15 in the veb − ie

plane and the vcb − ic plane, respectively. Note that vcb serves as a parameter in the
family of curves in the veb − ie plane. Similarly, veb serves as a parameter in the
family of curves in the vcb − ic plane.

In most amplifier circuits, the common-emitter configuration shown in Fig. 2.16
is used. It is possible to derive equations for the common-emitter configuration
directly from those of the common-base configuration of Eqs. (2.40) and (2.41).
For the common-emitter configuration, the two-port voltages are vbe and vce. The
two-port currents are ib and ic. These can be related to the variables of the common-
base configuration by simply using Kirchhoff’s laws:

vbe = −veb (2.42)

vce = vcb − veb (2.43)

ib = −(ie + ic) (2.44)
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Fig. 2.17 Characteristics of an npn BJT in the common-emitter configuration [6]

Substituting the above equations into Eqs. (2.40) and (2.41), we can express the
port currents ib and ic for the common-emitter configuration in terms of the port
voltages vbe and vce. They are:

ib = (1 − αF )IES

(
e

vbe
VT − 1

)
+ (1 − αR)ICS

(
e

vbe−vce
VT − 1

)
(2.45)

ic = αF IES

(
e

vbe
VT − 1

)
− ICS

(
e

vbe−vce
VT − 1

)
(2.46)

Thus, we again have a voltage-controlled representation for the common-emitter
configuration. This set of equations is not particularly useful, because in practice,
the measured data are usually expressed in terms of the hybrid 1 representation, i.e.,

vbe = v̂be(ib, vce) (2.47)

ic = îc(ib, vce) (2.48)

Furthermore, as a tradition, we usually plot ib vs vbe with vce as a parameter, and
ic vs vce with ib as a parameter, as shown in Fig. 2.17. This is because we get a
smoothly varying family of collector-to-emitter v − i curves.

2.2.2.2 BJT Piecewise-Linear Approximation

As stated earlier, we often rely on measured data for characterizing physical
(particularly nonlinear) electronic devices, such as the transistor. We will use the
PWL approximation from Sect. 1.9.1.2, which will help us obtain circuit models,
given the characteristic curves provided by device manufacturers in respective
datasheets of their devices. The PWL characteristics of an npn BJT are shown in
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Fig. 2.18 PWL approximation of common-emitter characteristics [6]
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Fig. 2.19 PWL model of common-emitter BJT configuration

Fig. 2.18. The equivalent circuit for this representation is shown in Fig. 2.19. Note
that with vce = 0, the vbe−ib characteristic in Fig. 2.18 is precisely that of a concave
resistor specified by E0 and slope G1. In Fig. 2.19, we can see that if vce = 0, we
simply have a concave resistor across the base-emitter terminal. In Fig. 2.18, the
vbe−ib characteristic shifts to the right as vce increases. This is modeled in Fig. 2.19
by a VCVS with transfer voltage ratio μ.

Similarly, in the vce − ic characteristic in Fig. 2.18, with ib = 0 the characteristic
is of a convex resistor with ic-axis intercept equal to I0 and the slope equal to 1

R
. As

ib increases, the current ic increases. These behaviors are modeled using a convex
resistor and CCCS in Fig. 2.19, respectively.

For many large-signal applications, example H-bridges that simply run DC
motors forward or backwards, these models are unnecessarily complicated and fur-
ther simplifications are possible. But, it is important to again (recall Sect. 1.7) bear
in mind that models are developedwith specific applications in mind. Obviously, the
simpler the model, the easier the circuit analysis. Thus, for applications where only
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an approximate solution is called for, we should use the simplest but valid model to
get an idea of how the circuit functions. In other situations, example in determining
the precise operating points using a computer, we need to use a more precise model
for the transistor than that of the Ebers–Moll model. A variety of such models exist
and are implemented by programs such as QUCS and SPICE. We will not cover
such models in this book.

2.2.3 Three-Terminal Inductors

A three-terminal element is called a three-terminal inductor if it can be charac-
terized by two sets of curves, or relationships, involving the variables i1, i2, φ1, φ2.
Just as for three-terminal resistors, there are several possible forms of representation.
Since the principles are identical, only one form will be discussed here, namely:

φ1 = φ1(i1, i2) (2.49)

φ2 = φ2(i1, i2) (2.50)

To find the voltages v1 and v2 corresponding to any current waveforms i1 and i2, we
apply the chain rule, thereby obtaining:

v1(t) = ∂φ1

∂i1

di1

dt
+ ∂φ1

∂i2

di2

dt
(2.51)

v2(t) = ∂φ2

∂i1

di1

dt
+ ∂φ2

∂i2

di2

dt
(2.52)

Practically speaking, we will only discuss linear three-terminal inductors. Hence,
Eqs. (2.51) and (2.52) reduce to:

v1(t) = L11
di1

dt
+ L12

di2

dt
(2.53)

v2(t) = L21
di1

dt
+ L22

di2

dt
(2.54)

The reason for discussing only linear three-terminal inductors is that the most
common type of commercially available three-terminal inductor is that of a toroidal
coil with a center tap, which is precisely a physical transformer (or transformers).
These devices are of crucial importance in power circuitry and are hence discussed
in a separate subsection below.
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2.2.3.1 Physical Transformers

A transformer that implements Eqs. (2.53) and (2.54) is shown in Fig. 2.20. The
ferromagnetic material used for the torus in Fig. 2.20 is typically ferrite or thin
sheets of special steel. As shown in Fig. 2.20, we have wound on this torus two
coils; we thus obtain a two-port. If we drive the first port with a generator so that
the current i1 is positive and have the second port open (hence i2 = 0), there will
be a strong magnetic field setup in the torus, H as indicated in the figure. Note if i1
varies with time, since the magnetic field links the second coil, there will be a time-
varying flux through that second coil. Hence, by Faraday’s law, a voltage will be
induced and v2(t) �= 0. Thus, electrical energy is transferred between the two-ports
via electromagnetic induction.

Referring back to Eqs. (2.53) and (2.54), from fundamental energy considera-
tions in physics, L12 = L21 = M , where M is the mutual inductance of inductor
1 and inductor 2. We know from our discussion of the two-terminal inductor in
Sect. 1.9.3, L11 is the self-inductance of inductor 1 and L22 is the self-inductance
of inductor 2. The schematic symbol for coupled coils is shown in Fig. 2.21. Note
that we can rewrite Eqs. (2.53) and (2.54) in matrix form:

(
v1

v2

)
=

(
L11 M

M L22

) ( .

i1
.

i2

)
(2.55)

The square matrix L in Eq. (2.55) is called the inductance matrix. There is a very
important relationship between a physical transformer and the ideal transformer
discussed in Sect. 2.2.1.3, as Example 2.2.5 shows.

Fig. 2.20 Two coupled coils
wound on a torus of
ferromagnetic material

υ1

υ2

i2

i1

H

+

+

–
–

Fig. 2.21 Schematic symbol
used for coupled coils with
mutual inductance M , with
self-inductances L11, L22

M

L11 L22
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v′
1

i2

+

v2

−

1 : ni′1

Ideal
Transformer

+

v1

−

i1

Lm

La +

−

Fig. 2.22 A two-port equivalent to a pair of coupled inductors

Example 2.2.5 Show that Fig. 2.22, a two-port made up of an ideal trans-
former and two (uncoupled) inductors La and Lm, is equivalent to a pair of
linear time-invariant coupled inductors modeled by Eq. (2.55).

Solution We will need to derive a form of Eq. (2.55) from Fig. 2.22. First,
notice that for the ideal transformer, we have the following:

v′
1 = 1

n
v2 (2.56)

i2 = −1

n
i ′1 (2.57)

Using the v − i relationship for a two-terminal inductor and applying KCL to
the node between La and Lm, we get:

v1(t) = La
di1

dt
+ Lm

d(i1 − i ′1)
dt

(2.58)

Hence, we have:

v1(t) = (La + Lm)
di1

dt
− Lm

di ′1
dt

(2.59)

Substituting for i ′1 from Eq. (2.57), we get:

v1(t) = (La + Lm)
di1

dt
+ nLm

di2

dt
(2.60)

(continued)
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Example 2.2.5 (continued)
Using Eq. (2.56), we get:

v2 = nv′
1 (2.61)

But, from Fig. 2.22, we get:

v′
1 = Lm

di1 − i ′1
dt

(2.62)

Thus:

v2 = nLm
di1

dt
− nLm

di ′1
dt

(2.63)

Again using Eq. (2.57), we get:

v2 = nLm
di1

dt
+ n2Lm

di2

dt
(2.64)

Rewriting Eqs. (2.60) and (2.64), we get the following matrix form:

(
v1

v2

)
=

(
La + Lm nLm

nLm n2Lm

)( .

i1
.

i2

)
(2.65)

The equations above do indeed model a pair of linear time-invariant coupled
inductors.

The physical interpretations of La and Lm are as follows: La is the leakage
inductance, that is, the inductance seen at the first port due to the leakage flux, i.e.,
the lines of magnetic field that do not link both coils. Indeed, from Exercise 2.2,
as n2 → 1, M2 → L11L22 and thus La → 0. Lm is called the magnetizing
inductance: its role is to model the magnetic flux common to both coils.

Suppose we wish to build a high-quality transformer. We choose a torus of
magnetic material with a very high permeability μ (e.g., ferrite, etc.). We then wind
tightly on the torus the two coils forming a two-part, as in Fig. 2.20. Suppose that we
are able to find magnetic materials with increasingly high μ: As μ becomes larger
and larger, the leakage flux would get smaller and henceLa → 0. Also, the common
flux would keep increasing, hence Lm → ∞. Referring to Fig. 2.22, we see that we
are left with an ideal-transformer!
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2.2.4 Three-Terminal Capacitors

Analogous to a three-terminal inductor, we will define a three-terminal capacitor
using the form:

q1 = q1(v1, v2) (2.66)

q2 = q2(v1, v2) (2.67)

Considering q1 and q2 to be linear functions of v1, v2 and using the fact that a
capacitor is a dual of the inductor, we get:

i1(t) = C11
dv1

dt
+ C12

dv2

dt
(2.68)

i2(t) = C21
dv1

dt
+ C22

dv2

dt
(2.69)

Physical three-terminal capacitors are beyond the scope of this book. Nevertheless,
nonlinear three-terminal capacitors find a variety of applications such as parametric
amplification in solid-state circuits [9].

2.3 Three-Terminal Memristors

Finally, we have the three-terminal memristor:

φ1 = φ1(q1, q2) (2.70)

φ2 = φ2(q1, q2) (2.71)

We will not discuss three-terminal memristors as they are no physical examples yet.
However, the possibility of their future availability cannot be dismissed.

2.4 The Three-Port Circulator

Circulators3 are very useful microwave devices, used in communication systems and
measurements. An ideal three-port circulator is a linear circuit element specified

3This section was added after a discussion on June 6th 2017, with Dr. Yuping Huang from
the Stevens Institute of Technology. His group uses circulators in optical quantum computing
applications.
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by the following three equations:

f1(v1, v2, v3, i1, i2, i3) � v1 − Ri2 + Ri3= 0 (2.72)

f2(v1, v2, v3, i1, i2, i3) � v2 + Ri1 − Ri3= 0 (2.73)

f3(v1, v2, v3, i1, i2, i3) � v3 − Ri1 + Ri2= 0 (2.74)

where R is a real constant called the reference resistance. We can recast the
equations above in an elegant matrix form:

⎛
⎝v1

v2

v3

⎞
⎠ =

⎛
⎝ 0 R −R

−R 0 R

R −R 0

⎞
⎠

⎛
⎝i1

i2

i3

⎞
⎠ (2.75)

The circuit symbol for a circulator is shown in Fig. 2.23a. Observe that a three-port
circulator is non-energic because the instantaneous power entering the three-port
is identically zero, from Fig. 2.23a:

pcirculator = v1i1 + v2i2 + v3i3

= (Ri2 − Ri3)i1 + (−Ri1 + Ri3)i2 + (Ri1 − Ri2)i3

= 0 (2.76)

Hence, energy is neither stored nor dissipated in the circulator. To demonstrate how
energy is being redistributed, suppose we connect three identical resistors whose
values are chosen equal to R in the setup shown in Fig. 2.23b. Since v2 = −Ri2 and
v3 = −Ri3, it follows from Eq. (2.75) that

v1 = Ri2 − Ri3

−Ri2 = −Ri1 + Ri3

−Ri3 = Ri1 − Ri2 (2.77)

+
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−

−

+
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Fig. 2.23 A three-port circulator and a typical application
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Solving these equations, we obtain:

v1 = Ri1

i1 = i2

i3 = 0 (2.78)

Now, conservation of energy4 in the circuit in Fig. 2.23b implies:

vs(−i1) + vRi1 + pcirculator + v2(−i2) + v3(−i3) = 0 (2.79)

But, we have shown that pcirculator = 0 and i3 = 0. If we let ps = vsi1 be the power
supplied by the voltage source, we get:

ps = vRi1 + v2(−i2)

= Ri21 + Ri22

= 2(Ri21) (2.80)

We conclude that half of the power supplied by the voltage source is dissipated in its
associated series resistor, while the other half is dissipated in the resistor across port
2. In other words, all power entering port 1 is redirected to port 2 (to be dissipated
in the terminating resistor), with nothing left for port 3 (recall we obtained i3 = 0).

If we repeat the preceding analysis but with the voltage source inserted in port 2,
instead of port 1, we will find that all power entering port 2 gets delivered to port 3
with nothing left for port 1. Similarly, inserting the voltage source in port 3, we find
that all the power entering port 3 gets delivered to port 1 with nothing left for port 2.
Hence, the circulator functions by “circulating” the energy entering one port into the
next port whenever all ports are terminated by resistors equal to the reference
resistor R.

This property is widely exploited in many communication systems for diverting
power into various desired channels. For example, the setup in Fig. 2.23b can be
used to model the following situation: Let the voltage-source resistor combination
model a portable radio transmitter. Let the resistorR across port 2 model an antenna,
and let the resistor R across port 3 model a receiver. Because of the circulator, no
outgoing signal transmitted from port 1 will reach the receiver. Conversely, any
incoming signal from elsewhere that is received by the antenna (when port 1 is not
transmitting) will be delivered to the receiver in port 3. Without the circulator, two
separate antennas will be needed, one to keep the receiver from receiving its own
transmitted signal and the other to keep the transmitter from receiving unwanted
signals intended for the receiver.

4We could also apply Tellegen’s theorem.
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2.5 Operational Amplifier (Opamp)

The opamp is an extremely versatile and inexpensive semiconductor device. It has
been the workhorse of the electronics hobbyist and students for nearly six decades
and hence is of paramount importance.

For low-frequency applications, the opamp behaves like a multi-terminal
nonlinear resistor, which can often be represented by an ideal opamp model. This
model greatly simplifies the analysis and design of opamp circuits. In fact, one of the
reasons why opamps are so popular is that, at low frequencies,5 they behave almost
like the ideal model! Exercise 2.5 helps the reader understand this justification:
the exercise instructs the reader to analyze a typical opamp circuit using the more
complicated finite gain model and then compare results with those predicted by the
ideal opamp model.

Depending on the dynamic range of the input signals, the opamp may operate
in the linear or nonlinear region. Section 2.5.2 is devoted to those circuits where
the opamp is operating only in the linear region. This restriction allows us to
simplify the (nonlinear) ideal opamp model into a linear model, called the virtual
short-circuit model. This model is used extensively in Sect. 2.5.2 for analyzing
both simple circuits by inspection as well as complicated circuits via a systematic
method.

In Sect. 2.5.3, we use the nonlinear ideal opamp model to analyze opamps
operating in the nonlinear region. We will primarily discuss voltage feedback
opamps, but Sect. 2.5.5 will discuss current feedback opamps.

Note that we use a variety of examples.We encourage the reader to simulate these
examples using QUCS6 and also have access to the necessary electronics equipment
(“breadboard,” etc.) so they can construct the discussed circuits and see opamps “in
action.”

2.5.1 Device Description, Characteristics, and Model

Opamps are multi-terminal devices, shown in Fig. 2.24, and are sold in several
standard packages. For the “breadboard,” the most convenient is the DIP (Dual
Inline Package) versions of the integrated circuit (IC). Figure 2.25 gives the
schematic of the μA741, an opamp introduced by Fairchild Semiconductor in 1968,
and still in use today. The seven terminals brought out through the package leads
(Fig. 2.24) are labeled inverting input IN−, noninverting input IN+, output

5Unless otherwise stated, we will assume that all opamp circuits operate at low enough frequencies
so the ideal opamp model is valid.
6Although we cover circuit simulation in QUCS in Chap. 3 lab, the reader should be able to use
their “native intelligence” to easily simulate the circuits in this chapter, using the QUCS online
workbook as a guide.

http://qucs.sourceforge.net/docs/tutorial/workbook.pdf
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Fig. 2.24 μA741 opamp, in 8-pin SOIC, DIP, and SO versions. Opamp is not to scale

Fig. 2.25 Schematic of the μA741

OUT, positive power supply (VCC+), negative power supply (VCC−), and offset
nulls (OFFSET N1, OFFSET N2). The remaining terminals of the package are not
connected to the IC and are labeled NC (no connection). The additional terminals
such as OFFSETN1 are usually connected to some external nulling or compensation
circuit for improving the performance of the opamp. We will not use such external
circuits in this book.

Some opamps have more than seven terminals; others have less. For most
applications, however, only the five terminals indicated in the standard opamp
symbol in Fig. 2.26a are essential. Note that the opamp can be considered a 4-
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Fig. 2.26 Standard opamp symbol and a typical biasing scheme. (a) The + and − signs inside the
triangle denote the noninverting and inverting input terminals, respectively. (b) A “biased” opamp

terminal device for circuit analysis and design purposes, in the sense that both E+
and E− (Fig. 2.26) are referenced to a common external ground. All voltages are
also measured with respect to this ground. So, from a circuit theoretic standpoint,
we only need v+, v−, vo, and the external ground (four terminals). However, to be
consistent with most electronics literature, we will not show the opamp as a four-
terminal device. Rather, we will implicitly assume that the opamp is connected
properly, as in Fig. 2.26b.

In order for the opamp to function properly, its internal transistors must be biased
at appropriate operating points (we will discuss small-signal analysis in Sect. 3.1.1,
the concept of biasing should become clear then). The power supply terminals
are provided for this purpose. In Fig. 2.24, the supplies are labeled as VCC+ and
VCC−. The justification for using the CC label is that the μA741 is a BJT opamp,
CC is an acronym for “collector.” Since other transistor (for example, FET)-based
opamps exist, we will use E+ and E− for generality.

In general, E+ and E− are connected to a split power supply as shown in
Fig. 2.26b, with respect to an external ground. Typically, E+ = 15 V and
E− = 15 V (they do not have to be symmetrical with respect to ground). For
clarity purposes, we will henceforth use the symbol shown in Fig. 2.27 (assuming
that we have a symmetrical external power supply, E = ± 15 V). In Fig. 2.27a, i−
and i+ denote the current entering the opamp inverting and noninverting terminals,
respectively. Similarly, v−, v+, and vo denote, respectively, the voltage from the
inverting terminal, noninverting terminal, and output terminal to ground. The
variable vd in Fig. 2.27b is called the differential input voltage and will play an
important role in opamp circuit analysis.

To derive an exact characterization of an opamp would require analyzing the
entire integrated circuit, such as the one shown in Fig. 2.25. Fortunately, for many
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Fig. 2.27 Experimental characterization of a typical opamp. In (b), vd � v+ − v−

low-frequency applications, the opamp terminal currents and voltages have been
found experimentally to obey the following approximate relationships:

i− = IB− (2.81)

i+ = IB+ (2.82)

vo = f (vd) (2.83)

where IB− and IB+ are called the input bias currents and f (vd) denotes the vo-vs-
vd voltage transfer characteristic (VTC), since the plot shows how one voltage vin

is “transferred” to another voltage vo.7 Apart from a scaling factor which depends on
the power supply voltage, f (vd) follows approximately an odd-symmetric function
as shown in Fig. 2.27b (drawn for a ±15 V supply voltage). Moreover, this function
has been found to be rather insensitive to changes in the output current io.

The transfer characteristic in Fig. 2.27b displays three remarkable properties:

1. vo and vd have different scales: one is in volts, the other in millivolts.
2. In a small interval−ε < vd < ε of the origin, f (vd) ≈ Avd is nearly linear with

a very steep slopeA—called the open-loop voltage gain. It is called “open loop”
because there is no feedback in the circuit (that is, the output is not connected
back to any of the inputs). This is a terminology from control systems. If there is
feedback, we say the loop is “closed” (or “closed loop”).

7The word “transfer” means that the response variable does not appear at the same port as the
source serving as input. There are four types of TCs possible: vo-vs-vin , vo-vs-iin , io-vs-vin , and
io-vs-iin .
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3. f (vd) saturates at vo = ±Esat, where Esat is typically 2 V less than the power
supply voltage, if the opamp in question is realized using BJTs. In that case, we
say the opamp is not “rail-to-rail.” On the other hand, FET opamps usually have
rail-to-rail behavior andEsat for such FET opamps usually range fromE− to E+.

Also, the bias currents for opamps using BJTs as inputs are much larger than
opamps that use FET input transistors. For example, the average input bias current
IB � 1

2 (|IB+| + IB−|) is equal to 0.1 mA for the μA741 but only 0.1 nA for the
μA740 (which uses a part of FET input transistors).

The open-loop voltage gain A is typically equal to at least 100,000 (200,000 for
the μA741). On the other hand, the voltage ε at the end of the linear region in
Fig. 2.27b is typically less than 0.1 mV.

In view of the typical magnitudes of IB−, IB+, A, and ε, little accuracy is lost
by assuming IB− = IB+ = ε = 0, A → ∞. This simplifying assumption leads
to the ideal opamp model shown in Fig. 2.28. To emphasize that A → ∞ in the
linear region, we added ∞ inside the triangle to distinguish the ideal opamp symbol
from other models. Unless otherwise stated, the ideal opamp model will be used
throughout this book. Note that the VTC of the ideal opamp model reduces to the
three-segment PWL characteristic shown in Fig. 2.28a. The ideal opamp model can
be described analytically as follows:

i− = 0 (2.84)

i+ = 0 (2.85)

vo = Esat
|vd |
vd

, vd �= 0 (2.86)

vd = 0, −Esat < vo < Esat (2.87)
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i+ = 0

−

+
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+
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+
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Fig. 2.28 Ideal opamp model
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Because these equations are rather cumbersome and difficult to manipulate analyti-
cally, it is more practical to represent each region by the simple equivalent circuits
shown in Fig. 2.28b, c, and d. Note that these three equivalent circuits contain
exactly the same information as Eq. (2.84) through (2.87). In particular, when the
opamp is operating in the linear region, the ideal opampmodel reduces to that shown
in Fig. 2.28b. Note that in the linear region, vd is constrained to be zero at all times
while |vo| is constrained to be less than the saturation voltageEsat. Hence, the circuit
is described by Eqs. (2.84), (2.85), and (2.87).

The circuit in Fig. 2.28c is described by Eqs. (2.84), (2.85), and (2.86) with vd >

0. Likewise, the circuit in Fig. 2.28d is described by Eqs. (2.84), (2.85), and (2.86)
with vd < 0.

Opamp circuits designed to operate exclusively in the linear region are analyzed
in Sect. 2.5.2. Note that although the opamp is operating in the linear region, the
circuit itself may contain nonlinear elements. Opamp circuits operating in both
linear and nonlinear regions will be analyzed in Sect. 2.5.3.

Example 2.5.1 The datasheet for a μA741 shows a typical open-loop voltage
gain of 200,000. Calculate the value of ε for a power supply voltage of
±20 V. Assume Esat = magnitude of power supply voltage ±2 V (use ±
as appropriate).

Solution Given the information above, we have Esat = ±18 V. Hence:

ε = ±18 V

200000

= ±0.09 mV (2.88)

Example 2.5.2 An opamp manufacturer’s datasheet usually specifies the
typical value of the average input bias current IB (defined earlier as
1
2 (|IB+| + |IB−|)) and the offset current Ios � |IB+| − |IB−|. Express |IB+|
and |IB−| in terms of IB and Ios.

Solution From the definition of IB , we get:

2IB = |IB+| + |IB−| (2.89)

Adding the equation above to the definition of Ios, we get:

2IB + Ios = 2|IB+| (2.90)

(continued)
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Example 2.5.2 (continued)
Subtracting the definition of Ios from the equation for 2IB , we get:

2IB − Ios = 2|IB−| (2.91)

Hence, we have:

|IB+| = 1

2
(2IB + Ios) (2.92)

|IB−| = 1

2
(2IB − Ios) (2.93)

2.5.2 Linear Opamp Circuits

The methods to be developed in this section are valid only if the opamp output
voltage satisfies

−Esat < vo(t)< Esat (2.94)

for all times t . We will henceforth refer to the expression in Eq. (2.94) as the
validating inequality for the linear region. If this inequality is violated in any time
interval [t1, t2], the solution in this interval is incorrect and must be recalculated
using the nonlinear model from Sect. 2.5.3.

Recall from Fig. 2.1 in Sect. 2.1 that a three-port is characterized by three
relationships among the associated voltage and current variables. Notice that in the
linear region, the ideal opamp in Fig. 2.28b can be described analytically by the
three equations8:

i− = 0 (2.95)

i+ = 0 (2.96)

v+ − v− = 0 (2.97)

8These correspond to Eqs. (2.84), (2.85), and (2.87).
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Fig. 2.29 The voltage
follower, or unity-gain buffer
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Consequently, we can think of the ideal opamp model in Fig. 2.28b as a three-port.9

For purposes of analysis, Eqs. (2.95) through (2.97) are equivalent to:

1. Connecting a short circuit across the opamp input terminals.
2. Stipulating that the currents through the input terminals are zero at all times.

To emphasize the special nature of this short circuit, we will henceforth refer to the
model from Eqs. (2.95) through (2.97) as the virtual short-circuit model. Notice
that the word “virtual” is very important, v+ = v− because of the opamp, not
because v+ is physically connected to v−.

Using the virtual short-circuit model, many opamp circuits can be analyzed by
inspection. This method usually requires nomore than three calculations and is often
implemented by invoking KCL and Eqs. (2.95) through (2.97) mentally, perhaps
with an occasional scribble on the “back of an envelope.” It is best illustrated via
some useful opamp circuits as examples.

Example 2.5.3 Determine the vo-vs-vin VTC for the circuit in Fig. 2.29.

Solution First, let us apply KCL at node 2 and obtain:

iin = i+= 0 (2.98)

Applying next KVL around the closed node sequence 4 − 3 − 2 − 1 − 4:

−vo + vin − vd = 0 (2.99)

(continued)

9Recall that an opamp always has an external reference terminal, hence an ideal opamp can also
be considered as a four-terminal resistor.



2.5 Operational Amplifier (Opamp) 99

Example 2.5.3 (continued)
where we have used the usual definition: vd = v+ − v−. But, because of the
virtual short-circuit model vd = 0, so:

vo = vin (2.100)

To complete the analysis, we apply the validating inequality from Eq. (2.94)
and obtain:

−Esat < vin< Esat (2.101)

This gives the dynamic range of input voltages beyond which the opamp no
longer operates in the linear region.

Note that the voltage follower in Example 2.5.3 defines a unity-gain VCVS. This
circuit has an infinite input resistance because iin = 0 and its output “duplicates”
the input voltage, regardless of the external load. Consequently, it is also called an
isolation amplifier. It is widely used between 2 two-ports to prevent one two-port
from “loading down” the other two-port. This isolation technique is one of the most
useful tools in a designer’s “toolbox.”

Example 2.5.4 Determine the vo-vs-vin VTC for the inverting amplifier
circuit in Fig. 2.30. Note that this circuit contains linear resistors, as opposed
to the voltage follower.

Solution Since vd � v+ − v− = 0, we have:

v1 = vin (2.102)

By Ohm’s law:

i1 = v1

R1
(2.103)

Since i− = 0, we have i2 = i1. Hence:

v2 = Rf i1= Rf

(
vin

R1

)
(2.104)

(continued)
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Example 2.5.4 (continued)
Applying KVL around the closed node sequence 4 − 2 − 1 − 4:

vo =
(−Rf

R1

)
vin (2.105)

To complete the analysis, we apply the validating inequality from Eq. (2.94)
and obtain:

(
− R1

Rf

)
Esat < vin<

(
R1

Rf

)
Esat (2.106)

Hence, so long as the input signal satisfies Eq. (2.106), the circuit functions as a
voltage amplifier with voltage gain equal to −Rf /R1 (assuming Rf > R1).

Exercise 2.3 gives an example of a noninverting amplifier configuration. Of
course, we can have nonlinear elements in conjunction with the ideal opamp model,
exercise 2.4 shows one such circuit that functions as a “clipper.” Note again the
versatility of the ideal opamp model comes from the fact that even if we did assume
that the open-loop gain A is finite, the answers obtained using a finite gain model
are nearly identical to the results from the ideal opamp model. Exercise 2.5 explores
this further.

The inspection method often fails whenever it is necessary to solve two or more
simultaneous equations. In such cases, it is desirable to develop a systematic method
for writing a system of linearly independent equations involving as few variables as
possible. The following example illustrates the basic steps involved.

Fig. 2.30 The inverting
amplifier
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Fig. 2.31 An opamp summing amplifier for illustrating the systematic method

Example 2.5.5 Consider the opamp circuit in Fig. 2.31. Determine the VTC
for this circuit using the systematic method.

Solution Although this circuit can be solved by inspection, we will leave
that to the reader as an exercise. Given below are the steps for the systematic
method approach:

1. Label the nodes consecutively and let ej denote as usual the voltage from
node j to the ground node. In our case, j = 1, 2, · · · , 5. Express all
resistor voltages and the differential opamp voltage vd in terms of the node-
to-ground voltages via KVL:

v1 = e1 − e3 (2.107)

v2 = e3 − e5 (2.108)

v3 = e2 − e4 (2.109)

v4 = e4 (2.110)

vd = e4 − e3 (2.111)

2. Express the branch current in each linear resistor in terms of node-to-
ground voltages via Ohm’s law:

i1 = e1 − e3

R1
(2.112)

i2 = e3 − e5

R2
(2.113)

(continued)
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Example 2.5.5 (continued)

i3 = e2 − e4

R3
(2.114)

i4 = e4

R4
(2.115)

3. Identify all other branch current variables which cannot be expressed in
terms of node-to-groundvoltages, namely, the currents is1, is2, and ia . Note
that the opamp input currents i− and i+ are not variables in an ideal opamp
model, because they are equal to zero. Our objective is to write a system
of linearly independent equations in terms of node-to-ground voltages and
the identified current variables {is1, is2, ia}.

4. Write KCL at each node (except the ground node) in terms of
{e1, e2, e3, e4, e5, is1, is2, ia}:

Node 1:
e1 − e3

R1
= is1 (2.116)

Node 2:
e2 − e4

R3
= is2 (2.117)

Node 3:
e3 − e5

R2
= e1 − e3

R1
(2.118)

Node 4:
e4

R4
= e2 − e4

R3
(2.119)

Node 5: ia = e3 − e5

R2
(2.120)

5. Eqs. (2.116) through (2.120) consists of five equations with eight variables.
Hence, we need to write three more independent equations. Since we have
already made use of KVL (Step 1), KCL (Step 4), and the resistor charac-
teristics (Step 2), these three equations must come from the characteristics
of the voltage sources and the opamp:

e1 = vs1 (2.121)

e2 = vs2 (2.122)

e4 − e3 = 0 (2.123)

(continued)
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Example 2.5.5 (continued)
6. Together, the equations in the previous two steps constitute a system of

eight linearly independent equations in terms of eight variables. Solving
these equations for the desired opamp output voltage vo = e5 by any
elimination or any other method, we obtain:

vo =
[
R4(1 + R2/R1)

R3 + R4

]
vs2(t) −

(
R2

R1

)
vs1(t) (2.124)

7. Determine the dynamic range of the input voltages for which Eq. (2.124)
holds, i.e., where the opamp is operating in the linear region:

−Esat <

[
R4(1 + R2/R1)

R3 + R4

]
vs2(t) −

(
R2

R1

)
vs1(t)< Esat (2.125)

We should of course perform some sanity checks for Example 2.5.5. For
example, if vs2 = 0, we obtain an inverting amplifier. The expression and dynamic
range correctly reduce to the corresponding expressions for an inverting amplifier.

We could have also quite easily derived Eqs. (2.124) and (2.125) by using
the inspection method: since R3 and R4 are in series, we can quickly obtain an
expression for e4 and simply write a KCL expression at e3 (since e3 = e4 by the
virtual short-circuit model). The point of the example was to illustrate the systematic
method.

The preceding systematic method is applicable to any opamp circuit containing
linear resistors, independent voltage, and current sources, and opamps modeled
by virtual short circuits. This method will be generalized in Sect. 4.2.2.1, called
modified nodal analysis (MNA), for arbitrary circuits.

2.5.2.1 Implementation of Dependent Sources

A very elegant opamp application is implementation of dependent sources. In fact,
the inverting amplifier from Exercise 2.3 is an example of a VCVS. We will consider
the implementation of the other dependent sources in the examples below.
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Fig. 2.32 CCVS using
opamp
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Example 2.5.6 The circuit in Fig. 2.32 (boxed to highlight the two-port
variables) implements a linear CCVS. Determine the transresistance rm and
the dynamic range for the opamp.

Solution We can easily derive the two-port CCVS relationship in Eq. (2.24)
using the inspection method. Since v1 = v− − v+, we have:

v1 = 0 (2.126)

Applying Ohm’s law:

v1 − v2 = i1R (2.127)

Thus:

v2 = −Ri1 (2.128)

Hence, the transresistance rm = −R. Applying the validating inequality and
using the relationship between v2 and i1 derived above, we get the dynamic
range:

−Esat

R
< i1<

Esat

R
(2.129)
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Fig. 2.33 VCCS using
opamp
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Example 2.5.7 The circuit in Fig. 2.33 (boxed to highlight the two-port
variables) implements a linear VCCS. Determine the transconductance gm

and the dynamic range for the opamp.

Solution We can easily derive the two-port VCCS relationship in Eq. (2.25)
using the inspection method. Since i1 = i+ = 0, we have:

i1 = 0 (2.130)

Applying Ohm’s law and using the virtual short-circuit model, we get:

i2 = v1

R
(2.131)

Hence, the transconductance gm = 1
R
. From KVL: v1−v2 = vo and applying

the validating inequality, we get the dynamic range:

v2 − Esat < v1< v2 + Esat (2.132)

Example 2.5.8 The circuit in Fig. 2.34 (boxed to highlight the two-port
variables) implements a linear CCCS. Determine the current gain α and the
dynamic range for the opamp.

Solution This circuit illustrates the importance of understanding that an
opamp is biased via external power supplies. Our goal is to derive Eq. (2.26)
using the inspection method. Applying KVL around loop 1 − 2 − 3 − 4 − 1

(continued)
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Example 2.5.8 (continued)
and using node-to-ground voltages, we get:

(e1 − e2) + (e2 − e3) + (e3 − e4) = 0 (2.133)

We will simplify the KVL equation by first noting that the opamp virtual
short-circuit model implies e1 = e4. We will then apply Ohm’s law to resistors
R1, R2 and use KCL at node 2. Thus, we can simplify the KVL equation to:

i1R1 + (i1 − i2)R2 = 0 (2.134)

We thus have:

i2 =
(
1 + R1

R2

)
i1 (2.135)

Therefore, the current gain for the CCCS is α = 1 + R1
R2

. Since e1 = e4 = 0,
we get from KVL:

−i1R1 + v2 = vo (2.136)

Now, we can apply the validating inequality:

−Esat < −i1R1 + v2< Esat (2.137)

Simplifying:

Esat > i1R1 − v2> −Esat (2.138)

Hence, the dynamic range is:

v2 − Esat

R1
< i1<

v2 + Esat

R1
(2.139)

2.5.3 Nonlinear Opamp Circuits

There are many applications where the opamp operates in all three regions of
the ideal opamp model in Fig. 2.28. This occurs whenever the amplitudes of one
or more input signals are such that the validating inequality in each region is
violated over some time intervals. In this case, we probably have to use all three
regions in Fig. 2.28 and we say that the opamp is “nonlinear.” Fortunately, since the
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Fig. 2.34 CCCS using
opamp
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Fig. 2.35 VTC of a voltage
follower

Esat

−Esat

vo

vin
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characteristic in Fig. 2.28a is a PWL characteristic, the circuit in each region can be
easily analyzed as a linear circuit.

Most practical nonlinear opamp circuits involve the use of positive feedback:
the output is connected to the noninverting input. The mindful reader would have
noticed that all the circuits in the preceding section involved negative feedback:
the output was connected to the inverting input. Inherently, negative feedback is
stable while positive feedback is not. However, stability is a dynamic concept
and understanding specifically opamp positive feedback requires the use of first-
order circuits (to be discussed in Sect. 4.2.1). But, the fact that positive feedback is
different from negative feedback can be easily explained using the PWL model, as
discussed below.

Recall the voltage follower from Example 2.5.3. We plot the VTC for the
follower in Fig. 2.35.

What happens if we interchange the inverting and noninverting terminals as
shown in Fig. 2.36? By inspection, we can find vo = vin provided |vin| < Esat.
Hence, in the linear region, the transfer characteristic of this positive feedback
circuit is identical to that of the voltage follower VTC in Fig. 2.35. In practice,
however, they do not behave in the same way: One functions as a voltage follower,
the other does not. To uncover the reason, let us derive the transfer characteristics
in the remaining regions.
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Fig. 2.36 A positive
feedback circuit
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Fig. 2.37 VTC of the
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Fig. 2.36
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When the opamp is in the + Saturation region, the validating inequality from
Fig. 2.28b for the circuit in Fig. 2.36 becomes: vd = Esat − vin > 0 or vin < Esat.
Hence, the transfer characteristic in this region is given by vo = Esat whenever
vin < Esat, as shown in Fig. 2.37.

Conversely, when the opamp is in the − Saturation region, the validating
inequality from Fig. 2.28c becomes: vd = −Esat − vin < 0 or vin > −Esat.
Hence, the transfer characteristic in this region is given by vo = −Esat whenever
vin > −Esat, completing the VTC in Fig. 2.37.

Note that complete transfer characteristics in Figs. 2.35 and 2.37 are quite
different. Even if the opamp is operating in the linear region (|vin| < Esat), there
are three distinct output voltages for each value of vin for the positive feedback
circuit. Using a more realistic opamp circuit model to be developed in Chap. 4, we
will show that all operating points on the middle segment (linear region) in Fig. 2.37
are unstable. The important concepts of stability and instability will be discussed
in Chap. 4. In the present context, having unstable operating points in the middle
region means that even if the voltage vin(0) lies on this segment, it will quickly
move to the + Saturation region if vin(0) > 0 or into the negative saturation region
if vin(0) < 0.

One may wonder if we can even confirm the VTC in Fig. 2.37 experimentally,
since the linear region is unstable. The lab component for this chapter shows how
to confirm an equivalent VTC for a Schmitt trigger (discussed below), by using an
elegant mathematical trick. The Schmitt trigger is actually a very elegant application
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of positive feedback that illustrates the very important concept that stability is a
dynamic phenomenon.

2.5.3.1 Schmitt Trigger

Consider the circuit shown in Fig. 2.38.
The Schmitt trigger in Fig. 2.38 is used for signal conditioning in the presence of

noise: the output is ±Esat depending on the input voltage, but the physical circuit
also displays hysteresis or memory. That is, the output voltage depends on the
derivative of the input voltage. The advantages offered by the Schmitt trigger when
compared to the simple positive feedback circuit in Fig. 2.36 are: we can control the
slope of the linear region and the values of the “trip” voltages V + and V − (in the
Schmitt trigger VTC in Fig. 2.39), using R1 and R2.

Fig. 2.38 The inverting
Schmitt trigger
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Fig. 2.39 VTC of the
inverting Schmitt trigger in
Fig. 2.38. Compare to the
simple positive feedback
VTC in Fig. 2.37
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Fig. 2.40 An incorrect VTC
for the inverting Schmitt
trigger in Fig. 2.38. It is
incorrect because the arrows
on the VTC specify dynamic
behavior, whereas the circuit
in Fig. 2.38 does not include
any dynamic elements
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Note the emphasis on the word physical when discussing hysteresis: the justifi-
cation for the hysteretic behavior is the presence of parasitic components (such as
capacitors) in the physical implementation (to be discussed in Sect. 4.2.1). Most
people fail to separate the static VTC characteristic implied by Fig. 2.38 and
incorrectly derive the VTC of the Schmitt trigger, shown in Fig. 2.40.

Unfortunately, the VTC in Fig. 2.40 combines both static and dynamic character-
istics, whereas Fig. 2.38 does not have any dynamic elements (capacitors, inductors,
and memristors). Hence, we will now derive the correct VTC shown in Fig. 2.39
for the Schmitt trigger in Fig. 2.38, by simply using our ideal opamp model from
Fig. 2.28.

Example 2.5.9 Derive the vo-vs-vin expressions for the inverting Schmitt
trigger in Fig. 2.38, and hence justify the VTC in Fig. 2.39.

Solution Assuming the opamp is in the linear region of operation and
applying KCL at the noninverting input, we get using the inspection method:

0 − vin

R1
= vin − vo

R2
(2.140)

Simplifying:

vo = vin

(
1 + R2

R1

)
(2.141)

Notice that as R1 → ∞ (an open circuit), we get vo = vin from Eq. (2.141).
This obviously agrees with the slope of the linear region being equal to 1 for
the simple positive feedback circuit in Fig. 2.36. Also, notice that as long as
R2 �→ ∞ in Fig. 2.38, the value of R2 is irrelevant if R1 → ∞, since the
current into the noninverting input is zero and hence there is no voltage drop
across R2. Note that both R1 and R2 tending to ∞ means that the circuit

(continued)
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Example 2.5.9 (continued)
is physically ill-defined: the noninverting input is floating (not connected to
anything).

Applying the validating inequality for the + Saturation region, we get:

v+ − v− > 0 (2.142)

Simplifying:

vin <

(
R1

R1 + R2

)
Esat (2.143)

Thus, V + =
(

R1
R1+R2

)
Esat. Analogously, we can derive an expression for

V −, applying the validating inequality for the − Saturation region, we get:

vin > −
(

R1

R1 + R2

)
Esat (2.144)

Hence, V − = −
(

R1
R1+R2

)
Esat.

The example above discussed the inverting Schmitt trigger. Exercise 2.6 explores
the noninverting Schmitt trigger.

2.5.3.2 PWL Circuits

Consider the circuit shown in Fig. 2.41a, reproduced from the epigraph to this
chapter. Our goal is to derive the DP characteristic. As before, we can use the
inspection method.

We note that R1 and R2 form a voltage divider so that:

e3 = R2

R1 + R2
vo

= βvo (2.145)

If the opamp is operating in the linear region, e3 = v. Hence, substituting for e3 in
the equation above, we get:

vo = 1

β
v (2.146)
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Fig. 2.41 A negative-resistance converter, and its DP characteristic. Here, β � R2/(R1 + R2)

Applying KVL around the close node sequence 4 − 1 − 2 − 4, we get:

v = vo + Rf i (2.147)

In Eq. (2.147), we have used that the fact the current into the inverting input of the
opamp is zero. Using Eqs. (2.146) and (2.147), we can obtain i-vs-v for the opamp
operating in the linear region:

i = −
(

R1

R2

) (
1

Rf

)
v (2.148)

Next, we will use the validating inequality to conditions on v for the opamp to be
operating in the linear region:

−βEsat < v< βEsat (2.149)

Notice that obtaining the i−v relationships for the saturation regions is trivial, since
Eq. (2.147) is valid for any opamp region of operation, thus:

v = ±Esat + Rf i (2.150)

Specifically, for the + Saturation region:

i = 1

Rf

v − 1

Rf

Esat (2.151)



2.5 Operational Amplifier (Opamp) 113

For the − Saturation region:

i = 1

Rf

v + 1

Rf

Esat (2.152)

Equations (2.148), (2.151), and (2.152) complete the DP plot in Fig. 2.41b. The
circuit is called a negative impedance converter (NIC) because it converts positive
resistances R1, R2, Rf into a negative resistance equal to −R2Rf

R1
in the opamp’s

linear region of operation.
Exercise 2.7 asks the reader to experimentallymeasure the DP plot for Fig. 2.41a.

For more examples of practical negative-resistance opamp circuits, see [5].
We will see in Chapter 4 how this circuit can be used to build a relaxation

oscillator. We will also see the enormous advantage of PWL analysis when we
cover dynamic nonlinear networks in Chap. 4: PWL techniques allows us to derive
closed-form expressions for the period (and frequency), that agree remarkable well
with measured values. Moreover, that chapter will show the enormous importance
of nonlinear circuit theory in designing a very important class of circuits—
oscillators.10

2.5.4 A Family of Two-Port Resistors

The functions performed by the opamp circuits discussed so far can be summarized
in one statement: They transform input voltage waveforms (functions of time)
into some desired output voltage waveforms (functions of time). It is important to
observe that the independent variable of the transformation is always time t .

There is another important class of networks which also performs certain
transformations, but the independent variable is not time. This class of networks
takes the form of a two-port black box, and is in fact a two-port resistor. If we
connect a nonlinear resistor across port 2 of this two-port resistor, as shown in
Fig. 2.42, the resulting two-terminal black box can be interpreted as a new nonlinear
resistor because it will have a v1− i1 curve different from the original v− i curve. In
other words, the function performed by the two-port resistor is that of transforming
a given v − i curve into a new v1 − i1 curve. In this sense, we can generate
many new nonlinear resistors from those that are presently available commercially.
Of course, an arbitrary transformation is not likely to do us much good. What
we need is to discover a few basic transformations from which all others can be
obtained. Amazingly, only three types of transformations are necessary, a scaling
transformation, a rotation transformation, and a reflection transformation.

10The linear oscillator, modeled by an LC network, requires zero resistance for sustained oscilla-
tions. Since zero resistance is near impossible to obtain physically (save for superconductors), all
practical oscillators are nonlinear.
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Fig. 2.42 The v − i curve of
a given nonlinear resistor is
transformed into a new
v1 − i1 curve by connecting
the resistor across one port of
a two-port resistor

i
+

v

−

i2
+

−

v2

i1
+

−

v1
2-port
resistor

Transformed 2-terminal black box

In the scaling transformation, the abscissa or the ordinate of each point on the v−
i curve is multiplied by a positive constant k. Such two-port resistors are accordingly
called scalors.

In the rotation transformation, the original v− i curve is rotated through an angle
θ with respect to the origin. Such two-port resistors are accordingly called rotators.

In the reflection transformation, the original v − i curve is reflected (the mirror
image) with respect to some straight line through the origin. Such two-port resistors
are accordingly called reflectors.

In the next section, we will mostly give a high-level overview of each of these
devices. Implementation details can be found in [3] or in the accompanying online
material(s) to this book. However, the reader should notice that these high-level
implementations reuse a variety of components (such as controlled sources) from
our earlier discussions. Obviously, we realized controlled sources using opamps.
Thus, at the implementation level, opamps play a vital role in realizing the family
of two-port resistors.

2.5.4.1 Scalors, Rotators, and Reflectors

There are two types of scalors, voltage scalor and current scalor. As the name
implies, a voltage scalor multiplies the voltage (abscissa) of each point on the v − i

curve by a prescribed constant kv, while maintaining the same value of current at
the same point. This requirement can be characterized by:

v1 = kvv2 (2.153)

i1 = −i2 (2.154)

The negative sign in Eq. (2.154) is necessary because we want i1 = i (i.e., i is
unchanged by a voltage scalor).
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−
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+
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i1

Fig. 2.43 (a), (b) Two realizations of a voltage scalor using dependent sources. (c) Circuit symbol

Example 2.5.10 Show that Fig. 2.43a, b realizes Eqs. (2.153) and (2.154).

Solution For (a), KVL gives:

v1 = v2 + (kv − 1)v2

= kvv2 (2.155)

KCL applied to the dependent source gives:

i1 = −i2 (2.156)

For (b), KVL applied to port 1 gives:

v2 = kvv2 (2.157)

KCL applied to port 2 gives:

i1 = −i2 (2.158)
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Fig. 2.44 Symbol of a
rotator
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v1

−
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v2

−

i1

θ

It is important to realize that a scalor is completely different from the opamp
scaling circuits that we discussed. The independent variable for a scalor is either a
voltage or a current, whereas the independent variable for a scaling circuit is time.
Since two relationships must be satisfied by a scalor, in comparison with only one
for a scaling circuit, it is more difficult to realize a scalor in practice.

The dual of the voltage scalor is the current scalor, discussed in Exercise 2.8.
Now, we will discuss the rotator, whose circuit symbol is shown in Fig. 2.44.

From analytic geometry, we know that the relationship required to rotate a point
P with coordinates (v, i) into a point P ′ with coordinates (v1, i1) by θ◦ (in the
counterclockwise direction) is given by:

(
v1

i1

)
=

(
cos θ − sin θ

sin θ cos θ

)(
v

i

)
(2.159)

Example 2.5.11 Recast Eq. (2.159) in terms of port variables.

Solution From Fig. 2.42, we know that v = v2, i = −i2. Simply substituting
for (v, i) in Eq. (2.159), we get the two-port relationships:

(
v1

i1

)
=

(
cos θ sin θ

sin θ − cos θ

) (
v2

i2

)
(2.160)

In order to allow an arbitrary current scale (since physical currents are usually
an order of magnitude less than voltages), we multiply i1 and i2 in Eq. (2.160) by a
scale factor R, thereby obtaining:

(
v1

i1

)
=

(
cos θ (sin θ)R
sin θ
R

− cos θ

) (
v2

i2

)
(2.161)

A rotator is completely characterized by Eq. (2.161). In the volt-milliampere plane,
R = 103. A physical implementation of a rotator is simply obtained by using a
π-network, as Example 2.5.12 shows.
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Fig. 2.45 A rotator can be implemented by choosing specific conductances Gn, given the rotation
angle θ

Example 2.5.12 Show that the resistive network in Fig. 2.45 implements a
rotator, given a specified angle θ .

Solution In order to verify the realization, we need only to drive v1 and i1 in
terms of v2 and i2 for the network and show that they agree with Eq. (2.161).

By inspection, ia = G1v1, ib = G3(v1 − v2), ic = G2v2. Applying KCL
to each port, we obtain:

i1 = G1v1 + G3(v1 − v2)=
(
tan

θ

2

)
1

R
v1 + (− csc θ)

1

R
(v1 − v2)

(2.162)

i2 = G2v2 − G3(v1 − v2)=
(
tan

θ

2

)
1

R
v2 − (− csc θ)

1

R
(v1 − v2)

(2.163)

With the help of the trigonometric identity: tan θ
2 = (csc θ − cot θ), we can

simplify the above equations to:

i1 = − (cot θ)
1

R
v1 + (csc θ)

1

R
v2 (2.164)

i2 = (csc θ)
1

R
v1 − (cot θ)

1

R
v2 (2.165)

Solving Eq. (2.165) for v1, we obtain the v1 row in Eq. (2.161). Substituting
the obtained expression for v1 in Eq. (2.164), we obtain the i1 row in
Eq. (2.161).
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Fig. 2.46 Dual T-network for the π-network from Fig. 2.45
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Fig. 2.47 Symbol of a reflector

Note that in the example above, since we have a π-network, we chose to work
with conductances instead of resistances. That made our calculations much easier.
Analogous to a π-network, we could have also worked with the T-network (recall
Example 2.2.1) shown in Fig. 2.46, where working with resistances makes our
calculations much simpler. Observe that, depending upon the values of θ , either
one or two of the three linear resistors in both realizations may assume negative
values. However, only one negative resistor is necessary to realize a rotator with any
angle of rotation, provided we choose the π-network whenever 0◦ < θ < 180◦,
and the T-network whenever 180◦ < θ < 360◦. We have already discussed how to
synthesize negative resistors in Sect. 2.5.3.2.

A subset of the generic rotator is the reflector, so called because θ is the angle
which the line of reflection (through the origin) makes with the horizontal axis.
Hence, from analytic geometry, we obtain the characteristic two-port equations for
the reflector below:

(
v1

i1

)
=

(
cos 2θ −(sin 2θ)R
sin 2θ

R
cos 2θ

) (
v2

i2

)
(2.166)

We shall denote a reflector by the symbol shown in Fig. 2.47. Exercise 2.9 explores
reflector realizations, analogous to rotator realizations discussed previously.
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Fig. 2.48 Symbol of a
gyrator
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2.5.4.2 Gyrators

There are several angles of reflection which are of special practical importance,
and the corresponding reflectors have been given special names. We will discuss
a particularly important kind, called a gyrator (for other specific reflectors, please
refer to [3]).

When θ = 45◦, Eq. (2.166) can be recast into the form:

(
i1

i2

)
=

(
0 G

−G 0

)(
v1

v2

)
(2.167)

where G = 1
R

is a constant called the gyration conductance. The symbol for a
gyrator is shown in Fig. 2.48. The fundamental property of an ideal gyrator is that it
functions as an “impedance inverter.” For instance, if the output port (port 2) of the
gyrator is terminated with an RL − Ω linear resistor, the input port’s resistance is
given by:

v1

i1
= −i2/G

Gv2

= 1

G2

−i2

v2

= GL

G2 (2.168)

In other words, R1 = GL

G2 . If G = 1, we see that the input port’s resistance is the
reciprocal of the output port’s resistance. Hence the term “impedance inverter.”

The specification definition of “impedance” as a “frequency-dependent resis-
tance” will become clear in Sect. 4.3. Specifically, we will discuss that if the output
port of an ideal gyrator is terminated with a capacitor, the input port behaves like
an inductor. Thus, a gyrator is a useful element in the design of inductorless filters.
This is practically advantageous because physical inductors tend to be bulky and
lossy, when compared to physical capacitors. We will see such an implementation
in the exercises to Chap. 4.
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Fig. 2.49 Symbol for a Type
1 M − R mutator
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2.5.4.3 Mutators

So far, we have discussed two-port resistors which share the common property that
each transforms a nonlinear resistor into another nonlinear resistor. If we liken the
four basic network elements, resistors, capacitors, inductors, andmemristors, to four
distinct species in the generic sense, then the scalor, rotator, and reflector can be said
to transform elements belonging to the same species.

In this section, we will show that it is possible to produce a mutation from one
species into another with the help of a two-port black box called the mutator. For
example, it is possible to connect a resistor across port 2 of a mutator and produce
an inductor across port 1. Conversely, if an inductor is connected across port 1 of
the same mutator, a resistor is produced across port 2. For this reason, this class of
mutators is called L − R mutators.11

In the interest of brevity,12 and the fact that very few physical electronic
memristors are commercially available, we will devote this section to the design
of M − R mutators for realizing memristors from nonlinear resistors [1]. We
chose nonlinear resistors because they can be more easily synthesized and are even
commercially available (for example, diodes), as opposed to nonlinear capacitors or
inductors.

Figure 2.49 shows the circuit symbol of a Type 1 M − R mutator. In order
to transform a resistor into a memristor, it is necessary that the coordinates (v, i)

of each point on a v − i curve be transformed into a corresponding point with
coordinates (φ, q). To accomplish this, first recall the following relationships from
our two-port black box in Fig. 2.42: v2 = v, i2 = −i. Suppose:

v1 � kv
dv2

dt
(2.169)

i1 � ki

(
−di2

dt

)
(2.170)

11We want to clarify mutator terminology. In Chua’s seminal book “Introduction to Nonlinear
Circuit Theory” [3], Dr. Chua refers to an L − R mutator as an R − L mutator. However, in Dr.
Chua’s publication defining the mutator [2] and all subsequent works, the terminology is consistent
with the one used in this book.
12For details on realizing other types of mutators such as C − R,R − L, etc., please refer to [2].
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kv and ki are constants that are used for dimensional consistency. We will see in
Sect. 2.5.5 when we realize an M −R mutator as to how to compute these constants.
Using the definitions in Eqs. (2.169) and (2.170), we have at port 1:

φ1 �
∫ t

−∞
v1(τ )dτ

= kv

∫ t

−∞
d

dτ
v2(τ )dτ

= kv

∫ t

−∞
d

dτ
v(τ )dτ

= kvv (2.171)

Similarly:

q1 �
∫ t

−∞
i1(τ )dτ

= ki

∫ t

−∞
−d

dτ
i2(τ )dτ

= ki

∫ t

−∞
d

dτ
i(τ )dτ

= kii (2.172)

Thus, our mutator does perform the correct mapping. A high-level realization of a
Type 1 M − R mutator using dependent sources is shown in Fig. 2.50.

Fig. 2.50 One realization of
an M − R mutator,
kv = 1, ki = 1. For other
M − R mutators such as Type
2, please refer to [1] +−

+

v1

−

i1

+

v2

−

i2

di2
dt

∫
v1dτ
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Fig. 2.51 An ideal CFOA. Labels that are prevalent in the literature: output terminal is labeled
w, the inverting input is labeled x, noninverting input is labeled y, and the compensation terminal
(pin) is labeled z

2.5.5 Current Feedback Opamps

So far, in this section, we have been using opamps that rely on voltage feedback.
There is another kind of opamp that uses current feedback, appropriately named
current feedback operational amplifier (CFOA).

A CFOA is a four-terminal13 device [10] with the circuit symbol14 shown in
Fig. 2.51.

The terminal behavior of an ideal CFOA is defined below:

ix = iz (2.173)

iy = 0 (2.174)

vx − vy = 0 (2.175)

vw − vz = 0 (2.176)

Note that the current through the compensation pin iz is feedback to the inverting
input current ix , hence the origin of the name “CFOA.”

A CFOA is particularly suited for implementing derivative (or integral) opera-
tions in controlled sources. Hence, we can easily realize two-ports such as the Type
1 M − R mutator from Fig. 2.50, as the following example shows.

13Some CFOAs do not have an externally accessible compensation pin z, to maintain pin-
compatibility with voltage feedback amplifiers. However, such devices are actually a special class
of CFOAs and in this book we will use only the very general CFOAs such as the AD844 that have
an externally accessible compensation pin. We will henceforth refer to such CFOAs as an ideal
CFOA.
14A literature search revealed that there is no standard symbol for a CFOA. We are defining this
symbol because it closely mimics the symbol of an ideal opamp with the If clarifying that we have
current feedback.
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Fig. 2.52 Type 1 M − R mutator realization [1]

Example 2.5.13 Show that the network in Fig. 2.52 implements a Type 1 M−
R mutator.

Solution First, we will derive Eq. (2.169): v1 = kv
dv2
dt

. For CFOA U2, we
have the voltage across Ci equal to v2. Notice that this is possible because the
inverting terminal of opamp U3 is at virtual ground. Thus:

iz2 = −Ci
dv2

dt
(2.177)

Also, for CFOA U2:

ix2 = iz2 (2.178)

v1 = vx2 (2.179)

Using Ohm’s law for Ri and simplifying using the above equations:

v1 = −ix2Ri

= −iz2Ri

(continued)
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Example 2.5.13 (continued)

= RiCi

dv2

dt
(2.180)

Hence, v1 = kv
dv2
dt

, where kv = RiCi . For deriving Eq. (2.170): i1 =
ki

(
− di2

dt

)
, application of KCL at node 1 gives i1 = iz1 (since current into

the noninverting input of CFOA U2 is zero). From CFOA U1:

ix1 = iz1 (2.181)

From capacitor Cd :

ix1 = −Cd
dvx1

dt
(2.182)

Note that output voltage of opamp U3 is Rdi2, which is equal to vy1. But,
since vx1 = vy1, we get:

vx1 = Rdi2 (2.183)

Substituting for vx1 in the expression for ix1, and using the fact that ix1 =
iz1 = i1, we get:

i1 = −RdCd
di2

dt
(2.184)

Hence, i1 = ki
di2
dt
, where ki = RdCd .

Further detailed discussion of CFOAs is beyond the scope of this book, but the
interested reader should consult excellent references such as [10].

2.6 Conclusion

This chapter greatly expanded upon Chap. 1 and we should now have a very good
understanding of the laws of elements, for a variety of multi-terminal elements. To
summarize:

1. To characterize a multi-terminal black box, we will choose one node as ground
(reference). We can then classify the black box as either an n-terminal resistor
(involving n − 1 terminal voltages and currents), an n-terminal inductor (involv-
ing n−1 terminal currents and flux-linkages), an n-terminal capacitor (involving
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n − 1 terminal voltages and charges), and an n-terminal memristor (involving
n − 1 terminal flux-linkages and charges).

2. Since most practical devices have single digit values for n (the number of
terminals), we can characterize three-terminal (n = 3) resistors, inductor, capac-
itors, and memristors using the six two-port representations: current-controlled,
voltage-controlled, hybrid 1, hybrid 2, transmission 1, and transmission 2.

3. We studied the four dependent sources: CCVS, VCCS, CCCS, and VCVS and
transformers as linear resistive two-ports.

4. We studied the npn BJT as a nonlinear resistive two-port.
5. A common three-terminal inductor is the physical transformer, usually consisting

of two coupled coils wound on a torus of ferromagnetic material.
6. A particularly useful multi-terminal element for redistributing power is the three-

port circulator.
7. The opamp is a very versatile multi-terminal nonlinear resistor. We implemented

amplifiers and studied nonlinear opamp circuits such as the Schmitt trigger and
NICs.

8. The family of two-port resistors: scalors, rotators, reflectors, along with the
mutator can be realized using dependent sources. For the mutator, we used a
CFOA.

We are now ready to learn about the laws of interconnections, starting with
resistive nonlinear networks in Chap. 3.

Exercises

2.1 For the linear two-ports specified by the following equations, find as many
representations as you can.

1. −i1 + 2i2 + v2 = 0

v1 + v2 = 0
2. v1 + i2 + v2 = 0

i1 = 0
3. v1 + v2 = 0

i1 + i2 = 0

2.2 By equating the inductance matrix in Eq. (2.65) (from Example 2.2.5) to the
matrix from Eq. (2.55), show that:

n = L22

M
Lm = M2

L22
La = L11 − M2

L22
(2.185)
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Fig. 2.54 Circuit for problem 2.4

2.3 For the inverting amplifier shown in Fig. 2.53, determine the VTC and also the
dynamic range of vin for which the opamp operates in the linear region.

2.4 Consider the circuit in Fig. 2.54, with the nonlinear resistor’s DP shown.

1. Compute the nonlinear VTC vo-vs-vin.
2. Determine the dynamic range for vin, for which the opamp remains in the linear

region.
3. Does the opamp operate in the linear region for all values of vin, in spite of a

nonlinear element in the feedback path? Justify your answer.

2.5 Consider the VTC of the finite gain opamp model shown in Fig. 2.55. Using
the PWL representation (Eq. (1.52) from Sect. 1.9.1.2), we can describe the finite
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vo = f (vd)
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−Esat
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Fig. 2.55 VTC for problem 2.5
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Fig. 2.56 Circuit for problem 2.6

gain model analytically as shown below:

i− = 0 (2.186)

i+ = 0 (2.187)

vo = A

2
|vd + ε| − A

2
|vd − ε| (2.188)

1. Derive circuits similar to Fig. 2.28b, c, and d for the finite gain opamp model.
HINT: For the linear region, you will require a VCVS.

2. Now, re-derive the VTC for the inverting amplifier from Example 2.5.4 using the
finite gain model.

3. Confirm that as A → ∞ in your finite gain VTC, we obtain Eq. (2.105).

2.6 Derive the VTC and validating inequalities for the noninverting Schmitt trigger
in Fig. 2.56. Also, sketch the VTC.

2.7 Experimentally plot the DP characteristic for Fig. 2.41a. Determine the percent
error between the experimental measurements and theoretical calculations for the
slopes and breakpoints given by Eqs. (2.148), (2.151), and (2.152).
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Fig. 2.57 For problem 2.8: (a) dependent source implementation 1, (b) dependent source imple-
mentation 2, (c) scalor

R1

R3

R2i1 i2
+

v2

−

+

−

v1

− +

ki1

Fig. 2.58 Circuit for problem 2.9

2.8 Derive the following current scalor relationships for the dependent source
implementations in Fig. 2.57a, b:

v1 = v2 (2.189)

i1 = −kii2 (2.190)

2.9 Show that the circuit in Fig. 2.58 realizes the reflector two-port model in
Eq. (2.166).
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Lab 2: Noninverting Schmitt Trigger VTC

Objective: To verify the Schmitt trigger characteristics from Exercise 2.6 via QUCS
simulation and physical implementation
Theory:
You may be wondering if one can actually physically observe the VTCs for the
Schmitt triggers. The answer is yes. In order to do this, consider the circuit shown
in Fig. 2.59. We have used the circuit symbol for the finite gain opamp model.
Nevertheless, for this lab, we can assume that the opamps are ideal.

The capacitor Cf and resistor Rb provide feedback at higher frequencies (for
eliminating instability due to parasitics) and can be ignored for very low frequencies.
In fact, at DC (“zero” frequency), the capacitor acts like an open circuit (more on
this in Chap. 4) and since the current into the inverting terminal of an opamp is zero,
we get Fig. 2.60, that we will use for analysis.

Lab Exercise:

1. First, for the purposes of this lab, we can assume that the upper opamp is
operating in the linear region. In fact, you should recognize the upper opamp
as a variant of the summing amplifier from Example 2.5.5.

Using KCL at the inverting input of the upper opamp, write an equation in
terms of conductances Gu,GH ,Gv and voltages u, vout, vin.

Ru

+
–

+

–

+

–

Rf Ri

Cf Rb

RH

u
Rν

Fig. 2.59 Schematic for experimentally confirming the Schmitt trigger VTC
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Ru

+
–

+

–

+

–

Rf Ri

vout

vin

RH

u
Rν

Fig. 2.60 Schematic for analysis

2. Assuming Gu = GH = Gv , find the constraint imposed by the summing
amplifier.

3. This step should help you understand the elegant mathematical trick: the
constraint that you get from the previous step is essentially shown in Fig. 2.61a, b

In other words, the derived constraint in step 2 implies that the circuit is
intersecting the line vout = −(vin + u) with the VTC of the Schmitt trigger.
This intersection is the elegant mathematical trick: obviously, only one of the
two Fig. 2.61a, b will occur in reality.

Before proceeding to the simulation and experimental verification, component
values that we used are: Rf = 20 k�,Ri = 10 k�,Ru = RH = Rv =
20 k�,Rb = 470�,Cf = 470 pF. Opamps are TL074, we chose power supply
voltages such that Esat = ±4V. u was varied using a sine function with an
amplitude of 8 V. Maximum frequency used was 100Hz.

4. Use QUCS to confirm the VTC of the noninverting Schmitt trigger by using the
schematic in Fig. 2.59.

5. Physically implement your circuit from Fig. 2.59 and experimentally confirm
the noninverting Schmitt trigger VTC. Our result is shown in Fig. 2.62. The
reference for this lab is [8]. We highly recommend going through Kennedy and
Chua’s seminal work, if you have access to it. It very clearly dispels common
misconceptions about the nature of hysteresis in electronic circuits.
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Fig. 2.61 The result of
intersecting the line
vout = −(vin + u) with the
VTC of the Schmitt trigger
will result in either (a) or (b).
Note that we have used u = 0
in this figure



132 2 Multi-Terminal Network Elements

Fig. 2.62 Experimental
confirmation of Schmitt
trigger VTC
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