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Preface

The purpose of this course-based text-book is to emphasize introductory concepts
from classic ideas in nonlinear circuit theory:

1. The book is completely self-contained and does not assume any prior knowledge
of circuit theory. It is simply assumed that the reader has taken a first-year
undergraduate (elementary) course in differential and integral calculus, along
with elementary physics courses in classical mechanics and electrodynamics
(with an exposure to matrix algebra). Hence, this book should be accessible to
any motivated individual who has taken the abovementioned courses.

2. The book also covers topics that are not typically found in standard circuit
textbooks, such as:

• Memristors. The justification is that although (as the reader will learn from
this book) memristors are not used in linear circuit theory, a memristor is the
fourth fundamental circuit element. Hence, it is only logical that any text on
circuit theory discuss memristors. Thus, ideally our book would have been
titled Introduction to Circuits and Networks. But then a casual reader might
mistake this book for emphasizing only linear circuit theory. However, as this
book will show, nonlinear circuit theory (memristor included) is accessible to
anyone with the correct background who is interested in fundamental circuit
theoretic concepts.

• Nonlinear chaotic circuits. We believe that chaotic circuits elegantly inte-
grate a variety of concepts from circuit theory and hence form a natural
repository of “projects” for the reader to understand all the concepts discussed
in this book.

• Nonlinear operational amplifier circuits, for example, Schmitt triggers.
As will be clear from this book, accurate analysis of Schmitt triggers will
help dispel common misconcepts about the nature of hysteresis in electronic
circuits and will also help the reader understand the deep concept of modeling.

3. Each chapter has illustrative examples, exercises, and a lab component. We will
also have (maximum 20 min) conceptual videos for each chapter and end-of-
chapter exercises (lab included) online. The purpose of these supplementary
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viii Preface

videos is to (a) highlight major concepts in each chapter and (b) provide solu-
tions (hints for open-ended problems) to end-of-chapter exercises. This extensive
use of electronic aids is the “twenty-first century” approach to nonlinear circuits.
In the process, we hope to “transform” fundamental ideas in nonlinear circuits
from the classic works of Leon O. Chua and others. Nevertheless, the goal of this
book’s electronic aids is to supplement, not replace, rigor.

Over the course of a teaching career spanning 10 years at the University of
California (UC) Berkeley, Dr. Muthuswamy has coordinated with Dr. Leon O. Chua
and others to reintroduce nonlinear circuit theory at an elementary level. Much
of the material in this book is thus derived from Dr. Chua’s EE100 (Electronic
Techniques for Engineering) lecture materials. This course was offered by the
Electrical Engineering and Computer Sciences department at UC Berkeley for non-
electrical engineering majors. Thus, the approach taken by EE100 (and this book)
is a top-down view of circuit analysis where we discuss general principles and
emphasize device modeling. Therefore, the material in this book can be adopted
for an introductory course in circuit theory.

At the University of California, Berkeley, we were able to cover most (excluding
memristors) of the material in this book in one semester. The material on chaotic
circuits was used as a source of projects. For schools that are based on the shorter
quarter system (10 weeks of instruction), we would suggest splitting the material
in this book into two courses. The first course could cover Chaps. 1 and 2 (network
elements). The second course would cover Chaps. 3–5, where Chaps. 3 and 4 discuss
techniques of network analysis followed by Chap. 5 as a source of course projects.
Another option would be to cover resistive networks in the first course and dynamic
networks in the second course. Specifically:

1. First course—resistive networks: only excluding material on dynamic elements
in Chaps. 1 and 2 (Sects. 1.9.3–1.9.5, 2.2.3, 2.2.4) and covering all of Chap. 3.

2. Second course—dynamic networks: cover dynamic elements in Chaps. 1 and 2
that were not covered in the first course, followed by Chaps. 4 and 5.

Hence, the way we have organized the chapters is based on the fact that, in circuit
theory, the laws of elements are distinct from the laws of networks.

Our goal in writing this book is simple: a student who thoroughly understands
the concepts in this book will be well prepared for any follow-up course in circuit
theory. For readers who are further interested in advanced concepts, we are planning
to write a follow-up volume, Advanced Nonlinear Circuits and Networks. A reader
who thoroughly understands the material in both volumes will maximize knowledge
gained from any follow-up electrical engineering course, since our books on circuit
theory emphasize both the underlying mathematics and physical experiments.

Hoboken, NJ, USA Bharathwaj Muthuswamy
Serdang, Malaysia Santo Banerjee
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Mathematical Notation

The mathematical notation used in this book is standard [15]; nevertheless, this
section clarifies the notation used throughout the book.

1. Lowercase letters from the Latin alphabet (a−z) are used to represent variables,
with italic script for scalars and bold invariably reserved for vectors. The
letter t is of course always reserved for time. n is usually reserved for the
dimension of the state. j is used for

√−1, in accordance with the usual
electrical engineering convention. Mathematical constants such as π , e, and h

(Planck’s constant) have their usual meaning. Other constant scalars are usually
drawn from lowercase Greek alphabet. SI units are used.

2. Independent variable in functions and differential equations is time (unless
otherwise stated) because physical processes change with time.

3. Differentiation is expressed as follows. Time derivatives use Leibniz’s ( dy
dx

,
for example) or Newton’s notation: one, two, or three dots over a variable
correspond to the number of derivatives and a parenthetical superscripted
numeral for higher derivatives. Leibniz’s notation is used explicitly for non-
time derivatives. ∂ is the usual symbol for indicating partial derivatives.

4. Real-valued functions, whether scalar- or vector-valued, are usually taken (as
conventionally) from lowercase Latin letters f through h, r , and s, along with
x through z.

5. Vector-valued functions and vector fields are boldfaced as well, the difference
between the two being indicated by the argument font, hence f(x) and f(x),
respectively.

6. Constant matrices and vectors are represented with capital and lowercase
letters, respectively, from the beginning of the Latin alphabet. Vectors are again
bolded.

7. In the context of linear time-invariant systems, the usual conventions are
respected: A is the state matrix; B(b) is the input matrix (vector).

8. Subscripts denote elements of a matrix or vector: di is the ith column of D;
xj is the j th element of x. Plain numerical superscripts on the other hand
may indicate exponentiation, a recursive operation, or simply a numbering
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xii Mathematical Notation

depending on the context. A superscripted T indicates matrix transpose. I is
reserved for the identity matrix. All vectors are assumed to be columns. det
stands for determinant of a square matrix.

9. Σi is used for summations, sampling interval is symbolized by T, and ∈ denotes
set inclusions.

10. Calligraphic script (R, etc.) is reserved for sets which use capital letters.
Elements of sets are then represented with the corresponding lowercase letter.
Excepted are the well-known number sets which are rendered in doublestruck
bold: N, Z, Q, R, and C for the naturals, integers, rationals, reals, and complex
numbers, respectively. The natural numbers are taken to include 0. Restrictions
to positive or negative subsets are indicated by a superscripted + or −. The

symbol
�= is used for definitions. ∀ and ∃ have the usual meaning of “for all”

and “there exists,” respectively.



Conventions Used in the Book

Each chapter starts with a visual epigraph: the purpose is to evoke the intellectual
curiosity of the reader. Chapters are divided into sections and subsections for clarity.

Figures, equations, and definitions are numbered consecutively in each chapter.
The book has a variety of solved examples in light gray shade.

Solved Examples

All references are placed at the end of each chapter for convenience. We use a
number surrounded by square brackets for in-text references: [5]. We have strived
to give credit to the original authors, keeping in mind Stigler’s law of eponymy.
If we incorrectly attributed an idea to the wrong original contributor, we sincerely
apologize.

Important terminology and concepts are boldfaced. Important techniques are
framed . In the electronic copy of this book, online URLs are colored and

hyperlinked in midnight blue for ease of access. Also, we have hyperlinked any
numbered definitions, equations, figures, etc. Hence, it would be prudent to purchase
the ebook.

Figures were generated using a combination of xcircuit, xfig, tikZ, and PNG
screen captures in UNIX that were converted to EPS.

We utilize Quite-Universal Circuit Simulator (QUCS), a functional open-source
circuit simulator, which is introduced in lab component for Chap. 1. Installation
instructions can be found in Appendix A. The mathematical plots were generated
using SageMath. Computer code is in verbatim font. We have not given an
extensive tutorial on SageMath because of the abundance of excellent tutorials
online. An unintended consequence is: this book should help the reader learn a
mathematical simulation tool (like SageMath) via the material (especially Chap. 5).
QUCS and SageMath simulation files are available online at the companion website:
http://www.harpgroup.org/muthuswamy/IntroToNonlinearCircuitsAndNetworks/.
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xiv Conventions Used in the Book

On a concluding remark, when you find typos in the book please contact
the authors with constructive comments: bharath.berkeley@gmail.com, santo-
ban@gmail.com.
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Chapter 1
Two-Terminal Network Elements

Chua, L. O. Memristor - The Missing Circuit Element [2]

Abstract This chapter will set the stage for the rest of this book. We will start
by discussing what is the aim of circuit theory, what are the fundamental circuit
variables, and when the techniques in this book are valid: the lumped circuit
approximation holds (frequencies of interest are not too high). We will discuss the
concepts of Kirchhoff’s laws, basic circuit topology, Tellegen’s theorem, and two-
terminal circuit elements.

1.1 The Discipline of Circuit Theory

Circuit1 theory is a fundamental engineering discipline that pervades all electrical
engineering [5, 9]. For the present, by physical circuit, we mean any interconnection
of electrical devices. Familiar examples of electrical devices include resistors,
diodes, transistors, operational amplifiers (opamps), etc. The goal of circuit theory
is to predict the electrical behavior of physical circuits. The purpose of these
predictions is to improve their design: in particular, to decrease their cost and
improve their performance under all conditions of operation (e.g., temperature
effects, aging effects, possible fault conditions, etc.).

1In this book, we will use circuits and networks interchangeably, the justification will be discussed
in Sect. 1.6. Also, at the outset, we encourage the reader to familiarize themselves with the com-
panion website: http://www.harpgroup.org/muthuswamy/IntroToNonlinearCircuitsAndNetworks/.

© Springer International Publishing AG, part of Springer Nature 2019
B. Muthuswamy, S. Banerjee, Introduction to Nonlinear Circuits and Networks,
https://doi.org/10.1007/978-3-319-67325-7_1

1
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Fig. 1.1 The four fundamental two-terminal circuit elements along with the associated reference
directions (Sect. 1.4) relate the fundamental circuit variables, through the laws of elements. The
elements starting counterclockwise from the top-left are the resistor, inductor, memristor, and
capacitor. Note that current is defined as the rate of flow of charge. There are two mutually
exclusive definitions of voltage from electromagnetic field theory, refer to Sect. 1.2. The symbols
used for the fundamental circuit elements are standard for nonlinear circuit elements, the reader
may be familiar with the circuit symbol for the linear counterparts (excluding the memristor), see
Sect. 1.9.4

Probably the most fascinating aspect is that lumped circuit theory uses only
four fundamental circuit variables: current, charge, voltage and flux-linkage (flux).
Moreover, current and voltage are related to charge and flux (Eqs. (1.3) and (1.4)
respectively). Thus, fundamentally we have only four elements that are character-
ized by a mathematical relation between the abovementioned four circuit variables
at the element’s terminals [10], as shown in Fig. 1.1 [16].

Hence to start our study of circuit theory, we will first discuss the fundamental
circuit variables, the topic of Sect. 1.2.

1.2 Fundamental Circuit Variables

We could say the advent of electricity [1] occurred with the discovery that dry
substances such as amber tend to repel or attract each other upon being rubbed by
different materials such as silk. This phenomenon was first explained by postulating
the existence of a certain basic electrical quantity called the “electric charge”
(charge), mathematical symbol q , which may be either positive or negative. Like
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charges exert a force of repulsion and unlike charges exert a force of attraction. The
practical unit of charge is called the coulomb and has been defined to be equivalent
to the total charge possessed by 6.24 × 1018 electrons. Charge can be measured by
instruments such as the electroscope.

Since charged bodies exert forces on one another, energy or work is involved
whenever one charged body is moved in the vicinity of another charged body. Hence
if w is the work done by moving a charge q from point j to point k (assuming w

is independent of the path taken),2 the potential difference or voltage between these
points is defined as the work per unit charge.

vjk = w

q
(1.1)

Observe that the magnitude of the charge is arbitrary; only the ratio between work
and charge is important. Hence, the incremental work dw required to move an
incremental test charge dq from point j to point k must also satisfy Eq. (1.1). Thus:

vjk = dw

dq
(1.2)

We will delete the subscripts j and k when there is no possibility of confusion and
simply express voltage as v. The unit of voltage is called the volt and is measured
using a voltmeter.

Charges can be caused to flow from one charged body to another by connecting
a conducting wire between the two bodies. Hence, the quantity “rate of flow of
charge” becomes very useful, and it has been given the name current with symbol i.
By definition,

i = dq

dt
(1.3)

The unit of current is the ampere. One ampere represents a charge flowing at the
rate of one coulomb per second. Current flow can be measured by an ammeter.

In 1819, Hans Christian Oersted discovered that current flowing through a wire
produced a force on a compass needle in the vicinity of the wire. This indicates
that the current (or moving charge) produces a magnetic field. This effect can be
explained by the generation of a magnetic flux λ by the current. If the conductor is
wound into a coil of n turns, then by defining φ = nλ to be the flux-linkage, Faraday
discovered that the voltage between the two terminals of the coil is given by

v = dφ

dt
(1.4)

The unit of flux-linkage is the weber. Flux-linkage can be measured by a fluxmeter.

2This assumption is valid only if the simultaneity postulate is satisfied, we will discuss more in
Sect. 1.3.
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1.3 The Simultaneity Postulate in Lumped Circuit Theory

Having discussed the fundamental circuit variables, the next question we need to
address is: when are the techniques discussed in this book valid? The answer to this
question is of paramount importance because the domain of application for circuit
theory is extremely broad. For example, the size of circuits varies enormously: from
very large-scale integrated circuits which include over a billion transistors on a chip
the size of a fingernail to telecommunication circuits and power networks that span
continents [9]. Throughout this book we shall consider only lumped circuits [9].
For a physical circuit to be considered lumped, its physical dimension must be small
enough so that, for the problem at hand, electromagnetic waves propagate across
the circuit virtually instantaneously. Consider the following example:

Example 1.3.1 Consider an audio circuit whose highest frequency of interest
is f = 20 KHz. Discuss the lumped circuit approximation.

Solution For electromagnetic waves, f = 20 KHz corresponds to a wave-
length of:

λ = c

f

= 3 × 108 m/s

2.0 × 104 s−1

= 15 km

Based on the calculations above, even if the circuit is spread across a tennis
court, the size of the circuit is very small compared to the shortest wavelength
of interest λ.

Definition 1.1 (Lumped Circuit Approximation) Lumped circuit approximation
is valid if d � c ·Δt , where d is the largest dimension of the circuit, Δt the shortest
time of interest, and c is the velocity of light.

When the conditions in Definition 1.1 are satisfied, electromagnetic theory proves
[10] and experiments show that the lumped circuit approximation holds; namely,
throughout the physical circuit the current i(t) through any device terminal and the
voltage difference v(t) across any part of terminals, at any time t , are well-defined.3

3Unless otherwise stated, we will assume from now on throughout the book that analogous
statements are true for q(t) and φ(t). In this case, we can equivalently discuss q(t) through any
device terminal and φ(t) across any part of the terminals.
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Example 1.3.2 Consider a circuit on a chip whose extent is 1 mm. Let
the shortest signal time of interest be 0.1 ns. Discuss the lumped circuit
approximation from Definition 1.1.

Solution Again, since electromagnetic waves travel at the speed of light, the
time it would take for the electromagnetic wave to travel 1 mm is:

t = d

c

= 1 × 10−3 m

3 × 108 m/s

= 3.3̄ ps

Therefore the propagation time in comparison with the shortest signal time of
interest is negligible and hence the lumped circuit approximation is valid.

Based on Examples 1.3.1 and 1.3.2, roughly speaking, the higher the frequency
of operation, the smaller the device’s physical dimension in order for the lumped
circuit approximation to be satisfied. From an electromagnetic theory point of
view, a lumped circuit reduces to a point since it is based on the approximation
that electromagnetic waves propagate through the circuit instantaneously. For this
reason, in lumped circuit theory, the respective locations of the elements of the
circuit will not affect the behavior of the circuit. The approximation of a physical
circuit by a lumped circuit is analogous to the modeling of a rigid body as a particle:
in doing so, all data relating to the extent (shape, size, orientation, etc.) of the body
are ignored by the theory.

In situations where lumped approximation is invalid, the physical dimensions of
the circuit must be considered. To distinguish such circuits from lumped circuits
we call them distributed circuits, typical examples are transmission lines and
waveguides. In distributed circuits, the circuit variables depend not only on time, but
also on space variables such as length and width. We need electromagnetic theory
for predictions of the behavior of distributed circuits and hence they will not be
discussed in this book.

1.4 Reference Directions

One of the most basic concepts in physical science is that any physical quantity
is invariably measured with respect to some “assumed” frame of reference [10].
In electrical network theory, the frame of reference takes the form of an assumed
reference direction of the current i and an assumed reference polarity of the
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Fig. 1.2 An experiment
demonstrating that regardless
of which terminal of the black
box is chosen to be positive,
the actual voltage across
terminals a–b can be
unambiguously specified for
all time

a

(b)

+
v

−

+
v

−

(a)

b

a

b

voltage v. A thorough understanding of the concept of reference current direction
and reference voltage polarity is absolutely essential in the study of (nonlinear)
network theory. It is a fact that a large percentage of the mistakes committed by
students of network theory can be traced to either the students’ underestimation
of the full significance of reference current directions and voltage polarities or the
students’ failure to maintain a consistent set of references.

The simplest way to understand the concept of assumed reference direction and
polarity is through the experiment illustrated in Fig. 1.2. We will discuss reference
voltage polarity. An analogous discussion holds for the reference current direction.
Suppose we are given a black box with a pair of accessible ports or terminals a–b,
as shown in Fig. 1.2, and we are required to measure the voltage across terminals
a–b. Let us measure the voltage by connecting a–b to the vertical input terminals
of an oscilloscope. Since one of the two vertical input terminals of an oscilloscope
is marked with a positive sign while the other is marked with a negative sign, the
question that immediately arises is which of the two terminals of the black box
should we connect to the positive terminal of the oscilloscope in order to obtain the
desired information?

The answer is that it does not matter. In order to see this, suppose we arbitrarily
assume terminal b is connected to the positive terminal as shown in Fig. 1.2a. The
assumption that terminal b is at the positive terminal does not mean that terminal
b is at a higher potential than terminal a. It does mean however that if at any time
t = t1, v(t1) > 0, then the potential at b is higher than the potential at a. On the
other hand, if v(t1) < 0, then the potential at b at t = t1 is actually lower than
the potential at a. For example, if the voltage v(t) displayed on the oscilloscope (in
volts) is

v(t) = 10 sin πt (1.5)

then terminal b is at a higher potential than terminal a during the time interval
0 < t < 1 s. But during the time interval 1 < t < 2 s, terminal b is at a lower
potential than terminal a.
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Let us now consider what happens when we assume terminal a is connected to
the positive terminal of the oscilloscope, instead of terminal b, as shown in Fig. 1.2b.
Since this connection is opposite to the connection in Fig. 1.2a, it is clear that the
voltage displayed on the oscilloscope (in volts) is given by:

v(t) = −10 sin πt (1.6)

Thus in either case, the final answers are identical. We can therefore conclude
that in order to specify the voltage between any pair of terminals unambiguously,
we may arbitrarily assume any one of the two possible terminals to be positive.
By analogy, we can conclude that in order to specify the current through any wire
unambiguously, we may arbitrarily assume any one of the possible two directions to
be positive.

Let us consider next a two-terminal black box N and assume a reference direction
for the terminal current i and a reference polarity for the terminal voltage v, see
Fig. 1.3. Since the references for both i and v are arbitrary, there are four distinct sets
of combinations of references. There is no reason to prefer any one combination over
the others. However, in practice, it is usually convenient to choose the combination
so that positive power represents power entering the black box.

From classical mechanics, we know that power is defined by Eq. (1.7).

p = dw

dt
(1.7)

But,

vi = dw

dq

dq

dt

= dw

dt
(1.8)

Fig. 1.3 Two possible sets of
reference direction for the
passive sign convention from
Definition 1.2

N

N

b

+
v1
-

-

+
v2

a

b

a
i2

i1
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Thus we have:

p(t) = v(t)i(t) (1.9)

From the simultaneity postulate, the same current must leave the negative
terminal.4 Hence, based on this observation, we have Definition 1.2.

Definition 1.2 (Associated Reference Direction or Passive Sign Convention)
Whenever the reference direction for the current i in a two-terminal black box is
in the direction of the reference voltage drop v across the black box (v > 0, i > 0),
we use a positive sign in any expression that relates voltage to current. Otherwise,
we use a negative sign.

Thus Definition 1.2 implies that the allowable reference combination must be
either of the form shown in Fig. 1.3.

1.5 Kirchhoff’s Laws

When circuit elements are interconnected to form a circuit, there are some governing
laws that all elements in the network must obey. We shall refer to these laws as
the laws of interconnection. Before we discuss these laws, we need the following
definitions:

Definition 1.3 A node is a point in a circuit where two or more circuit elements are
interconnected.

Definition 1.4 A path is a trace of adjoining elements, with no elements included
more than once.

Definition 1.5 A closed node sequence is a path whose last node is the same as
the starting node.

Definition 1.6 A loop is a closed node sequence that traverses only through two-
terminal elements.

Definition 1.7 A branch is a path that connects two nodes.

Definition 1.8 A connected circuit is one in which any node can be reached from
any other node, by traversing a path through the circuit elements.

Now, given any connected lumped circuit having n nodes, we may choose
(arbitrarily) one of the nodes as a ground node, i.e., as a reference for measuring
electric potentials. Note that a circuit does not have to be physically connected to
ground for proper functionality, think about circuits inside our mobile phones.

4This is also a consequence of Kirchhoff’s Current Law, see Sect. 1.5.1.
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Fig. 1.4 Labeling node-to-ground voltages for a circuit with n nodes

With respect to the chosen ground node, we define n − 1 node-to-ground
voltages as shown in Fig. 1.4. Since the circuit is a connected lumped circuit, these
n − 1 voltages are well-defined and, in principle, physically measurable quantities.
Henceforth, we shall label them e1, e2, . . . , en−1 and dispense with the + and −
signs indicating voltage reference direction. Note that en = 0 since node n is chosen
as the ground node.

1.5.1 Kirchhoff’s Current Law (KCL)

A fundamental law of physics asserts that electrical charge is conserved: There is no
known experiment in which a net electric charge is either created or destroyed. KCL
expresses this fundamental law in the context of lumped circuits. To state KCL, we
first need the definition of a gaussian surface.

Definition 1.9 A gaussian surface S is a two-sided closed surface, that has an
“inside” and an “outside.”

To express the fact that the sum of the charges inside S is constant, we shall
require that at all times, the algebraic sum of all the currents leaving the surface S
is equal to zero.

Definition 1.10 KCL: For all lumped circuits, for all S , for all times t , the
algebraic sum of all the currents leavingS at time t is equal to zero.

We will choose S so that it cuts only the wires which connect the circuit
elements, as discussed in Example 1.5.1.



10 1 Two-Terminal Network Elements

1
4

2

3

i5

i6

i7

i8

i9
i10

i1

i2

i3

i4

5
i11

S3

S4

S6

S5
S1

S2

Fig. 1.5 An opamp circuit illustrating gaussian surfaces and KCL

Example 1.5.1 Write KCL expressions for the circuit in Fig. 1.5.

Solution In Fig. 1.5, we have used two-terminal elements and a three-
terminal ideal operational amplifier (opamp) (that we will discuss
in Sect. 2.5). In the figure, we have drawn six gaussian surfaces
S1,S2, · · · ,S6. We will use these surfaces to illustrate KCL.

For S1, KCL states:

i1(t) + i2(t) = 0 ∀t (1.10)

Note that S1 contains only node 1 in its “inside.” Thus a node may be
considered as a special case of S , i.e., the surface is shrunk to a point.

For S2, KCL states:

−i1(t) + i11(t) = 0 (1.11)

Note that S2 encloses a two-terminal element. Thus we make the conclusion
that for a two-terminal element, the current entering the element from one

(continued)
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Example 1.5.1 (continued)
node at any time t is equal to the current leaving the element from the other
node at t .

For S3, KCL states:

i1(t) + i4(t) + i5(t) + i6(t) = 0 (1.12)

For S4, KCL states:

i3(t) + i8(t) + i9(t) − i4(t) − i5(t) − i6(t) = 0 (1.13)

For S5, KCL states:

−i4(t) − i7(t) − i10(t) = 0 (1.14)

Note that these are the three currents pertaining to the opamp. Thus choosing
an S that encloses any n-terminal element, we state that the algebraic sum of
the currents leaving or entering the n-terminal element is equal to zero at all
times t . n-terminal elements will be covered in more detail in Chap. 2.

For S6 (that encloses only the reference node), KCL states:

−i3(t) − i8(t) − i9(t) − i11(t) = 0 (1.15)

We conclude this section by stating KCL for nodes:

Definition 1.11 KCL (Node Law): For all lumped circuits, for all S , for all times
t , the algebraic sum of currents leaving any node is equal to zero.

1.5.2 Kirchhoff’s Voltage Law (KVL)

Let vk−j denote the voltage difference between node k and node j as shown in
Fig. 1.4. Kirchhoff’s voltage law states:

Definition 1.12 KVL: For all lumped connected circuits, for all choices of ground
node, for all times t , for all pairs of nodes k and j ,

vk−j (t) = ek(t) − ej (t) (1.16)
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Fig. 1.6 Circuit for
Example 1.5.2
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Example 1.5.2 Write KVL expressions for the circuit in Fig. 1.6.

Solution The connected circuit in Fig. 1.6 is made of 5 two-terminal
elements and 1 four-terminal element. There are five nodes. Choosing (arbi-
trarily) node 5 as the ground node, we define the four node-to-ground voltages
e1, e2, e3, and e4. Therefore by KVL, we may write the following seven
equations (for convenience, we drop the dependence on t):

v1−2 = e1 − e2

v2−3 = e2 − e3

v3−4 = e3 − e4

v1−4 = e1 − e4

v4−5 = e4 − e5 = e4

v5−1 = e5 − e1 = −e1 (1.17)

Note that v1−2, v2−3, v3−4, v4−5, v5−1 are the voltages across the two-
terminal elements A, C, D, E, B, respectively; v1−4, v4−5 and v5−1 are the
voltages across the node pairs (1,4); (4,5) and (5,1) of the four-terminal
element T, respectively.

If we add the last three equations in Eq. (1.17), we find that:

v1−4 + v4−5 + v5−1 = 0 (1.18)

Hence for this particular closed node sequence, the sum of the voltages is
equal to zero.

(continued)
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Example 1.5.2 (continued)
Note also that if we add the first three and last two equations in Eq. (1.17),

we find the sum of voltages around a loop is zero:

v1−2 + v2−3 + v3−4 + v4−5 + v5−1 = 0 (1.19)

Example 1.5.2 shows that we can state KVL in terms of closed node sequences:

Definition 1.13 KVL (Closed Node Sequences): For all lumped connected cir-
cuits, for all closed node sequences, for all times t , the algebraic sum of all
node-to-node voltages around the chosen closed node sequence is equal to zero.

1.6 From Circuits to Graphs: The Definition of a Network

It should be clear from our discussions of KCL and KVL that the equations arising
from laws of interconnection are independent of the type of elements in a network.
We will now state the definition of a network.

Definition 1.14 A network is any interconnection of circuit elements.

Only the network connection diagram, the topology, needs to be specified in
order to obtain the equations to the laws of interconnection. The topology of a circuit
is best exhibited by way of a graph.

Definition 1.15 A graph G is specified by a set of nodes {1, 2, · · · , n} together
with a set of branches {β1, β2, · · · , βn}.

If each branch is given an orientation, indicated by an arrow on the branch, we
call the graph directed. For example, a two-terminal element and the associated
element graph is shown in Fig. 1.7.

Notice that the element graph for a two-terminal element has two nodes and one
branch. Also note that the directions of the current flow through and voltage drop
across the two-terminal element are specified using the passive sign convention from
Definition 1.2.

Fig. 1.7 A two-terminal
element and its associated
element graph representation
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+1

2

β1
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Fig. 1.8 Digraph associated
with the circuit in Fig. 1.5.
Detailed derivation of the
opamp digraph will be
covered in Sect. 2.5

1

5

42
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β2

β7 β9β8

β5

β1

β6

β4

β3
β10

For a given circuit, if we replace each element by its associated element graph,
we obtain the directed circuit graph or digraph G . In this book, whenever we
refer to a network, we mean the associated digraph of the circuit. We can use
either the digraph or the circuit for analysis. Hence, throughout this book, we
will use “circuits” and “networks” interchangeably. Note however that the laws of
interconnection in circuit theory, such as Tellegen’s theorem from Sect. 1.6.1, are
essentially graph-theoretic concepts that arise from a network (associated with a
given circuit).

Example 1.6.1 Write KCL and KVL expressions for the digraph in Fig. 1.8.

Solution It is interesting to note that since the circuit contains a three-
terminal element, the digraph bears little resemblance to the circuit. In fact,
given the digraph, without specifying which nodes belong to the three-
terminal element, it is not possible to reconstruct the circuit. This observation
is false if the circuit contains only two-terminal elements.

KCL gives:

i1 + i2 = 0

−i2 + i4 + i5 + i6 = 0

i3 + i10 = 0

−i5 − i6 + i7 + i8 + i9 = 0 (1.20)

(continued)
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Example 1.6.1 (continued)

Let us rewrite Eq. (1.20) in matrix form:

⎛
⎜⎜⎝

1 1 0 0 0 0 0 0 0 0
0 −1 0 1 1 1 0 0 0 0
0 0 1 0 0 0 0 0 0 1
0 0 0 0 −1 −1 1 1 1 0

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

i1

i2

i3

i4

i5

i6

i7

i8

i9

i10

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1.21)

Let:

A
�=

⎛
⎜⎜⎝

1 1 0 0 0 0 0 0 0 0
0 −1 0 1 1 1 0 0 0 0
0 0 1 0 0 0 0 0 0 1
0 0 0 0 −1 −1 1 1 1 0

⎞
⎟⎟⎠ (1.22)

Thus, Eq. (1.21) can be written as:

Ai = 0 (1.23)

Matrix A is called the incidence matrix (more details in Sect. 3.2.2).
We can express all ten branch voltages in terms of the reference node by

using KVL:

v1 = e1

v2 = e1 − e2

v3 = e3

v4 = e2

v5 = e2 − e4

v6 = e2 − e4

v7 = e4

v8 = e4

v9 = e4

v10 = e3 (1.24)

(continued)
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Example 1.6.1 (continued)
Rewriting Eq. (1.24) in matrix form:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
1 −1 0 0
0 0 1 0
0 1 0 0
0 1 0 −1
0 1 0 −1
0 0 0 1
0 0 0 1
0 0 0 1
0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎝

e1

e2

e3

e4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1.25)

Comparing Eqs. (1.21) and (1.25), we can see that the constant matrix on
the LHS of Eq. (1.25) is AT . Hence Eq. (1.25) can be written as:

AT e = v (1.26)

Much more will be said about topological concepts in circuit theory throughout
this book. Specifically, element graphs for multi-terminal elements will be discussed
in Chap. 2. We will formalize the matrix formulation of Kirchhoff’s laws in Chap. 3,
before we discuss general circuit analysis techniques.

1.6.1 Generality of Digraphs: Tellegen’s Theorem Example

To further illustrate the generality of the digraph approach, we will give an example
of Tellegen’s theorem [28]. We will formally state and prove the theorem in Chap. 3.

Consider the circuits in Fig. 1.9.
KVL and KCL in matrix form for the circuit in Fig. 1.9a are:

AT e = v

Ai = 0 (1.27)

where:

A =
⎛
⎝

1 1 0 0 1 0
0 −1 1 1 0 0
0 0 0 −1 −1 1

⎞
⎠ (1.28)
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i1

i2 i4

i3

i5

i6

1 2 3

4

1 2 3

ĩ5

ĩ2 ĩ4

ĩ1 ĩ3 ĩ6
4

(a) (b)

Fig. 1.9 Circuits for understanding Tellegen’s theorem

Let the branch power vkik be summed for all N branches of the circuit. Then, by
Eq. (1.27):

N∑
k=1

vkik = vT i

= (AT e)T i

= eT (Ai)

= 0 (1.29)

In deriving Eq. (1.29), the familiar rules (AB)T = BT AT , (AT )T = A, eT 0 = 0
of vector algebra have been used.

The result in Eq. (1.29) should not be surprising since we have derived the
conservation of power in a circuit from Kirchhoff’s laws.

Consider however the circuit of Fig. 1.9b which has the same topological
configuration, same reference directions and numbering, and hence the same A as
the circuit in Fig. 1.9a. Hence, the incidence matrix for the circuit in Fig. 1.9b is also
given by Eq. (1.28). Let the electrical quantities of the circuit be ĩ, ṽ, ẽ in Fig. 1.9b.
Then:

AT ẽ = ṽ

Aĩ = 0 (1.30)
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Now consider:

N∑
k=1

vkĩk = vT ĩ

= (AT e)T ĩ

= eT (Aĩ)

= 0 (1.31)

While the LHS of Eq. (1.31) has the dimensions of power, the quantity is physically
meaningless since vk and ĩk exist in two different circuits.

Similarly, we can show:

ṽT i = 0 (1.32)

Equations (1.31) and (1.32) are general forms of Tellegen’s theorem. We will
apply Tellegen’s theorem to derive some general properties of nonlinear resistive
circuits in Chap. 3.

1.7 Circuit Theory from Electromagnetic Field Theory

Now that we have an understanding of the laws of interconnection, we will have a
short discussion in this section on how to arrive at these laws, by using the fact that
circuit theory is an approximation of electromagnetic field theory. Although we are
only concerned with lumped circuits in this book, this (very short) section should be
helpful because the approximation techniques used have roots in the very important
concept of modeling [10].

1.7.1 The Art of Modeling

Engineers and scientists seldom analyze a physical system in its original form.
Instead, they construct a model which approximates the behavior of the system.
By analyzing the behavior of the model, they hope to predict the behavior of the
actual system. The primary reason for constructing models is that physical systems
are usually too complex to be amenable to a practical analysis. In most cases,
the complexity of a system is due in part to the presence of many nonessential
factors. The basic principle of modeling consists, therefore, of extracting only
the essential factors.
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As stated earlier, an electric circuit is an interconnection of electrical devices.
We will encounter a plethora of electrical devices (diodes, transistors to name a
few) throughout this book. But one has to again understand that we must extract
only the essential factors of the device, based on the circuit in question. A classic
example is frequency behavior. No device behaves the same at all frequencies.
For example, at “low enough” frequencies, metallic parallel plates separated by a
(small, compared to the width of the parallel plates) distance act like a capacitor.
Increasing the frequency will lead to more complicated behavior, and the device
does not behave like an ideal capacitor anymore. Hence, it is vital that the reader
understands device modeling is still more of an “art” than science. Although no
general theory of device modeling is presently available, there are a variety of
techniques available that will help us model physical devices, in terms of the four
fundamental circuit elements.

We will start discussing modeling of the fundamental circuit elements in Sect. 1.8
and continue the discussion throughout the book. With respect to circuit theory
being an approximation of electromagnetic field theory, we will only discuss the
laws of interconnection, namely KCL and KVL. A detailed discussion of how we
get the terminal behavior for the four fundamental circuit elements from field theory
is beyond the scope of this book. We hope to discuss this in our followup book,
“Advanced Nonlinear Circuits and Networks.”

1.7.2 KCL and KVL from Field Theory: A Very Brief
Overview

From the node form of KCL in Definition 1.11, we know that the sum of the currents
flowing out of a node must be equal to zero. From field theory (specifically Gauss’
law), the surface integral of the current density over a closed surface must be equal
to zero if no charge accumulates inside that surface. Definition 1.3 of a node implies
that a node is a theoretical abstraction of a physical interconnection of wires: a node
does not have any circuit elements such as capacitors associated with it. Hence, no
charge can accumulate on a node, and the sum of currents leaving the node must be
equal to zero.

KVL from Definition 1.13 is equivalent to Faraday’s law of induction from
Maxwell’s theory of electromagnetism. This equivalence, however, is not directly
evident as the relation between KCL and the law of conservation of charge.
Indeed, KVL depends on how the branch voltages are defined in terms of the
electromagnetic field. These details are also beyond the scope of this book, and
will be discussed in our follow-up volume. But, we can get an intuitive idea by
considering the fact that we defined branch voltage as the difference between node-
to-ground voltages in Eq. (1.16). In fact, a practical device for measuring branch
voltage—the voltmeter—is connected such that voltage is measured across a pair of
nodes. Hence a voltmeter is designed to measure the line integral of the electric field
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along the path formed by the connecting leads. Thus, the sum of voltages around a
closed loop in a circuit has the electromagnetic equivalent of the electric field around
a closed path. The electric field involved in this integration is, by assumption, equal
(or approximately so) to the negative gradient of a scalar potential [10]. Therefore,
the line integral of the electric field should vanish, and this gives us KVL.

1.8 Characterization of a Two-Terminal Black Box

Now that we have discussed interconnection of circuit elements, it is time to discuss
the circuit elements themselves. Although we will encounter many physical devices
of varying complexity throughout this book, we will model them as black boxes
[10]. These boxes may possess many terminals, but only two of these are accessible
to the external world in the sense that the device may be excited only through
these terminals. For our purpose, it is convenient to imagine that the device is
enclosed in a box and that the two accessible terminals are brought out by two
connecting wires, with the symbol shown in Fig. 1.10a.

It is important to emphasize that the content of the black box may be as simple
as a light bulb, or as complicated as an arbitrary interconnection of black boxes as
shown in Fig. 1.10b.

The choice of the term “black box” is quite appropriate here because the box
is really black inside in the sense that we cannot see its contents. As a matter of
fact, unless we open the box and peep inside, there is no way of determining its
contents. However, as engineers, we are not so much interested in the contents of
the box as in knowing what the box is capable of and how it behaves externally
when it is connected with other black boxes into a network. In other words, we
are primarily interested in predicting the external behavior of the black box. Our
first step toward such an analytical approach is to “characterize” the black box. To
properly characterize a black box, it is paramount that we choose the correct
set of terminal variables. We will illustrate this idea in this section by modeling a
“spring” from basic physics, refer to Fig. 1.11.

Suppose we did not know that in reality we had a spring inside the black box
and we were asked to predict the behavior of the external terminals when an
arbitrary force f (t) is applied to one end (terminal) of the spring while the other

Fig. 1.10 Symbolic
representation of
two-terminal black boxes

(b)(a)
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x(t)

f(t)

Fig. 1.11 An example illustrating the characterization of a mechanical black box

end (terminal) is fixed against a wall. The mechanical variables of interest here are
the displacement x (displacement to the right of the initial 0 position is assumed
positive, as shown in Fig. 1.11), velocity v of the terminal that is free to move and
the force f (positive for tension, negative for compression).

Clearly the only way we can hope to characterize this black box (other than
opening the box) is to start performing some experiments. Suppose we begin by
applying a constant force f = A and measure the corresponding velocity v. This
would give us a point in the velocity-vs-force (v–f ) plane.5 By repeating the above
experiment with several values of the force f , we obtain the data shown in Fig. 1.12.

We might be tempted to draw a smooth curve through these data points (which in
this case happens to be the f axis) and claim to have characterized the black box in
the sense that given any constant force f , we can analytically predict the associated
velocity.

However a little thought will show that we have not really characterized the
black box yet, for if, instead of applying a constant force we apply a slowly varying
sinusoidal force, f (t) = A sin(t). The characteristics in Fig. 1.12 would predict that
v = 0.

This is of course contrary to what we observe experimentally: namely, v(t) =
(A/k) cos(t), where k is the spring constant. We might hope that this inconsistency
can be resolved by plotting all points (v, f ). Nevertheless we will again quickly
conclude that the length of both axes of the resulting ellipse depends on the
amplitude A of the applied force f . For each A we will obtain a unique ellipse and
thus we will eventually fill the entire v–f plane. Even if we could draw an infinite
set of ellipses, we would be able to predict the velocity only if f is sinusoidal.
Using these ellipses to predict v due to non-sinusoidal f would again yield incorrect
answers. We must now realize that the useful information we obtained from this
experiment is that the black box cannot be characterized by a curve in the v–f

plane.

5When we say x–y plane, we denote specifically x as the horizontal axis and y as the vertical axis
of the plane. This is consistent with the conventional usage where the first variable denotes the
abscissa and the second variable denotes the ordinate.
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Fig. 1.12 Force-velocity plot for constant force f = A

Suppose we try another set of variables, say the force f and displacement
x. Repeating the experiments, we will find that provided f (t) does not change
rapidly, the black box can be characterized by a curve in the x–f plane.

After experiencing the length of time needed to carry out the above experiments,
we can now begin to appreciate the utility of such a conclusion; namely, the charac-
terization of the black box permits an analytical solution and thereby eliminates the
need to carry out any further experiments.

Observe however that our conclusion is based on the assumption that f (t) does
not change rapidly. If we were to repeat our experiment with higher-frequency
sinusoidal waveforms, as well as non-sinusoidal waveforms which change rapidly,
we will find deviations from our conclusions drawn using low frequency waveforms.
This will suggest that our earlier assumption, that f does not change rapidly, is
indeed necessary. In order to emphasize this restriction, it is a common practice
to call a black box characterization as static characterization, in contrast to a
dynamic characterization for higher frequencies. Hence for the black box in
Fig. 1.11, the f –x curve is the static characteristic.

Since the deviation of the measured characteristic from the static characteristic
increases slowly with frequency rather than abruptly, it is impossible to pick a
definite frequency above which the static characteristic does not hold. Neither is it
possible to find a single dynamic characteristic that would hold for all frequencies.
Hence a certain amount of scientific judgment is involved in deciding whether a
certain static characteristic curve can be used to satisfactorily solve a given problem.
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It is encouraging, however, to know that a large percentage of practical networks can
indeed be analyzed using only static characteristics. Moreover, even in cases where
the static characteristic fails to give satisfactory solutions, we shall show in future
chapters that we can often patch up the error by including “parasitic elements,”
namely, elements which are undesirable but which are invariably present in the
black box in small quantities. Thus, in this book,we will assume all characteristics
are static and will utilize parasitic elements to model the necessary dynamic
characteristics. We shall henceforth delete the adjective “static.”

For the example in Fig. 1.11, the parasitic element consists of the mass associated
with the spring. At low frequencies, the mass being quite small, has relatively no
effect on the f –x curve. However as the frequency of the external force increases,
the acceleration of the spring increases and the inertia force due to the mass becomes
appreciable.

1.9 Two-Terminal Elements

From the previous section, we know that it is essential to choose the correct set
of variables for characterizing a black box. For two-terminal elements, the circuit
variables of interest are those that can be measured externally. Hence the terminal
voltage v and terminal current i are of primary interest because they can be readily
measured. The charge q and flux-linkage φ are also of interest because they can
be indirectly measured by integrating the measured current i(t) and voltage v(t),
respectively. From these measurements, we shall then try to establish a relationship,
if any, between each pair of independent variables.

i and q are related by Eq. (1.3); v and φ are related by Eq. (1.4). Hence the only
remaining combinations consist therefore of the relationship between the following
variables.

1. Relationship between v and i, this is the two-terminal resistor shown in the top-
left corner of Fig. 1.1.

2. Relationship between φ and i, this is the two-terminal inductor shown in the
bottom-left corner of Fig. 1.1.

3. Relationship between φ and q , this is the two-terminal memristor shown in the
bottom-right corner of Fig. 1.1.

4. Relationship between v and q , this is the two-terminal capacitor shown in the
top-right corner of Fig. 1.1.

We will now discuss each of these elements in detail. But, before we begin our
discussion of two-terminal elements, two important remarks:

• Time-varying elements: each of the four fundamental circuit elements we will
discuss can be time-varying. For instance, a time-varying resistor is defined by
the relation: fR(v, i, t) = 0. A very simple example is a potentiometer (or
variable resistor), whose arm is being rotated by say a motor. Nevertheless,
the analysis of a nonlinear network containing time-varying elements is a very
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Fig. 1.13 Symbol for a linear
resistor with resistance R

i
+

v

-

R

difficult mathematical problem requiring advanced mathematics. Hence we will
primarily discuss nonlinear time-invariant elements in this book and restrict our
discussion of time-varying elements to a few examples.

• Memristors: as we will see in Sect. 1.9.4, this device is the fourth fundamental
circuit element. However, although a variety of circuit theoretic properties
of the memristor can be obtained by studying the terminal behavior, a true
understanding of a memristor’s behavior requires us (unlike the other resistor,
capacitor and inductor) to “peer inside” the black box (see Sect. 4.4.2).

1.9.1 Resistors

The linear resistor is probably the most familiar circuit element that one encounters
in basic physics. This device satisfies Ohm’s law: that is, the voltage across such an
element is proportional to the current flowing through it. We represent it by the
symbol shown in Fig. 1.13 where the current i through the resistor and the voltage
v across it are measured using the passive sign convention from Definition 1.2.

Ohm’s law states that at all times.

v(t) = Ri(t) or

i(t) = Gv(t) (1.33)

where the constant R is the resistance6 of the linear resistor (measured in the unit
of ohms (	)) and G is the conductance measured in units of siemens (S).

Equation (1.33) can be plotted on the i–v plane or v–i plane as shown in
Fig. 1.14.

6In nonlinear circuits, terms such as resistance (capacitance, inductance) become ambiguous and
only the terms “resistor, capacitor and inductor” should be used. Nevertheless, we will refer to
the appropriate small-signal quantity with the terms “resistance,” “capacitance,” and “inductance.”
Note that there is no confusion with respect to “memristance,” since the memristor is fundamentally
a nonlinear element.
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Fig. 1.14 Linear resistor characteristic plotted on the (a) i–v and (b) v–i plane

(b)

v
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00

R → ∞
G = 0

(a)

Fig. 1.15 Characteristic of an open circuit (a) i-v plane (b) v-i plane

There are two special cases of linear resistors which deserve special mention,
namely, the open circuit and short circuit.

Definition 1.16 (Open Circuit) A two-terminal resistor is called an open circuit
iff its current i is identically zero irrespective of the voltage v; i.e., f (v, i) = i = 0.

The characteristic of an open circuit is the v axis in the v–i plane, with zero slope
(G = 0). In the i–v plane, it has an infinite slope, R → ∞, refer to Fig. 1.15

Definition 1.17 (Short Circuit) A two-terminal resistor is called a short circuit iff
its voltage v is identically zero irrespective of the current i; i.e., f (v, i) = v = 0.

The characteristic of a short circuit is the i axis in the v–i plane, with G → ∞.
In the i–v plane, the characteristic has zero slope, G = 0, refer to Fig. 1.16.
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(b)

i

i

v

0 v0

R = 0

G → ∞

(a)

Fig. 1.16 Characteristic of a short circuit (a) i-v plane (b) v-i plane

Comparing Figs. 1.15 and 1.16, we see that the curve of the open circuit in one
plane is identical to the curve of the short circuit in the other plane. For this reason,
the open circuit is said to be the dual of the short circuit and vice versa.

Example 1.9.1 A linear resistor with resistance of 100 	 is given. What is its
dual?

Solution Consider a linear resistor with resistance R = 1
100 	. The i–

v and v–i characteristics are plotted in Fig. 1.17. Notice how the i1 − v1
characteristic of the resistor with R = 100 	 is equivalent to the v4 −
i4 characteristic of the resistor with R = 1

100 	. Similarly, the v2 − i2
characteristic for resistor with R = 100 	 is equivalent to the i3 − v3
characteristic for resistor with R = 1

100 	. Hence the dual is a resistor with
R = 1

100 	.

From Eq. (1.9), the power delivered to a linear resistor at time t by the remainder
of the circuit to which it is connected is:

p(t) = v(t)i(t)

= Ri2(t)

= Gv2(t) (1.34)

Thus the power delivered to a linear resistor is always non-negative if R ≥ 0. We
say that a linear resistor is passive iff its resistance is non-negative. Thus a passive
resistor always absorbs energy from the remainder of the circuit.
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Fig. 1.17 R = 100 	 and R = 1
100 	 are duals of each other. The dual of the top-left plot (i1 − v1

for R = 100 	) is in the bottom-right (v4 − i4 for R = 1
100 	). Similarly, the dual of the top-right

plot (v2 − i2 for R = 100 	) is in the bottom-left (i3 − v3 for R = 1
100 	)

But from Eq. (1.34) we can see the power delivered to a linear resistor is negative
if R < 0; i.e., as current flows through it, the resistor delivers energy to the
remainder of the circuit. Therefore we call such a linear resistor with negative
resistance an active resistor.

While linear passive resistors are familiar to everyone, linear active resistors are
perhaps new to some readers. They are one of the basic circuit elements in the design
of negative resistance oscillators. We will show how to synthesize piecewise-linear
negative resistors using opamps in Sect. 2.5.3.2. We will discuss oscillator design in
later parts of the book. For the present we only wish to mention that the linear active
resistor is useful in modeling nonlinear devices and circuits over certain ranges of
voltages, currents and frequencies.

While the linear resistor is perhaps the most prevalent circuit element in electrical
engineering, nonlinear devices which can be modeled with nonlinear resistors have
become increasingly important. Hence we will now define the concept of a nonlinear
resistor in the most general way. Note that in keeping with the theme of the book,
linear resistors (elements) will only be discussed as special cases of nonlinear
resistors (elements).
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Fig. 1.18 Nonlinear
resistor R

In general, a two-terminal element will be called a resistor if its voltage v and
current i satisfy the relation in Eq. (1.35):

R = {(v, i) : fR(v, i) = 0} (1.35)

This relation is called the v–i characteristic of the resistor and can be plotted
graphically in the v–i (or i–v) plane. We have already done so for linear resistors.
The circuit symbol for the nonlinear resistor was shown in Fig. 1.1, reproduced in
Fig. 1.18.

Note that in view of the nonsymmetrical nature of the circuit symbol for the
nonlinear resistor (and nonlinear elements in general), we may avoid drawing the
associated voltage (flux) polarity and current (charge) direction signs beside the
symbol, provided we agree to assume that the darkened edge is the negative
terminal and current (charge) enters the positive terminal. This convention will
be followed in this book, when adding polarities and directions will clutter the
circuit diagram.

Now we can generalize the concept of duality to nonlinear resistors: we say that
the dual of a given resistor is another resistor whose v–i characteristic in the v–i

plane is the same as that of the given resistor in the i–v plane. We will revisit this
concept of duality throughout the book and study it in detail in Sect. 4.1.2, since it
helps us in understanding and analyzing circuits of great generality.

In order to be able to use nonlinear resistors effectively in a practical design, it
is necessary to understand some basic properties. We will illustrate these properties
by considering a prototypical example of a nonlinear resistor, the pn-junction diode
(henceforth referred to as diode).

Although we model diodes as nonlinear resistors, they are so important in
circuit theory that they have their own symbol, shown in Fig. 1.19. A typical v–i

characteristic is shown in Fig. 1.20.
In typical applications, the device is operated for values of diode current greater

than −Is . The point where the current becomes equal to −Is is usually referred to
as the knee of the diode. For values of current greater than −Is , the current obeys
the diode junction law in Eq. (1.36).

i(v) = Is [e
v

VT − 1] (1.36)
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Fig. 1.19 Circuit symbol for
a diode

i
+

v

-

Fig. 1.20 Diode v–i

v

i

−Is

0

Is is on the order of microamperes and it represents the reverse saturation current.
The parameter VT = kT

q
is called the thermal voltage, where q is the charge of

an electron, k is Boltzmann’s constant, and T is the temperature in K. At room
temperature, VT is approximately 0.026 V.

In Eq. (1.36), we have a nonlinear resistor whose current i is expressed as a
function of its voltage v. This means that for any given voltage v, the current i

is uniquely specified. A nonlinear resistor having this property is called a voltage-
controlled nonlinear resistor. By contrast, if the voltage is a single-valued function
of the current v = v(i), we have a current-controlled nonlinear resistor. Another
important property shared by some v–i curves is their symmetry with respect to the
origin. Such elements are called bilateral resistors because in this case, the two
terminals may be interchanged without effecting the v–i curve (see Exercise 1.2).

Finally, if for each pair of points (v1, i1) and (v2, i2) on the curve, we observe
that whenever v2 > v1 then i2 > i1, then the corresponding element is said to be
strictly monotonically increasing resistor. An example is a linear passive resistor.

Note that while Eq. (1.36) represents a good model for the diode at low
frequencies (recall Sect. 1.8), we need to use additional circuit elements, capacitors,
inductors, and linear resistors to model the device at higher frequencies. A very
important physical property of the diode, namely charge-storage effects are modeled
by memristors. Memristors will be discussed in Sect. 1.9.4.
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Fig. 1.21 Circuit for
Example 1.9.2

R

+

vout

-
vin

+

Many practical diode circuits can be analyzed by a very simply piecewise-linear
diode model, called the ideal diode model, described analytically by Eq. (1.37).

i = 0 ∀v < 0
v = 0 ∀i > 0

p = vi = 0 ∀v, i

(1.37)

Observe that the last constraint is introduced to eliminate any point in the fourth
quadrant from becoming a part of the v–i curve. It is also important to observe that
an ideal diode becomes an open circuit for v < 0 and a short circuit for i > 0.

Example 1.9.2 Consider the circuit shown in Fig. 1.21. Discuss what would
be the output voltage vout(t) if vin(t) = sin(πt), assuming the ideal diode
model.

Solution The circuit in Fig. 1.21 is the first step in converting an AC
(alternating current or time-varying) voltage into a DC (direct current or
constant) voltage, a process called rectification. The terms AC and DC are
so named because in AC, the electric charge (and hence voltage) reverses (or
alternates) direction periodically. In DC, the electric charge flows in only one
direction.

The output voltage vout for a sinusoidal vin is shown in Fig. 1.22. When the
input voltage vin(t) is positive, the diode becomes a short circuit and vout(t) =
vin(t). When the input voltage is negative, the diode becomes an open circuit
and vout(t) = 0. The result is that the output voltage becomes zero during
every other half cycle.

The circuit in Fig. 1.21 is called a half-wave rectifier, since the negative
half cycle is simply zeroed out, instead of being rectified.

Although the rectifier in Example 1.9.2 uses an ideal diode, the above example
illustrates a universal principle of creative design: first arrive at an idealized network
(which is usually much easier to come by) and then introduce physical non-idealities
as necessary.



1.9 Two-Terminal Elements 31

Fig. 1.22 vin(t) (red) and vout(t) (blue) for the circuit in Fig. 1.21

1.9.1.1 Concave and Convex Resistors

Consider the v–i curve shown in Fig. 1.23. The shape of the curve suggests the
name: concave resistor. Its symbol is also shown in Fig. 1.23. The concave resistor
shown in the figure is a piecewise-linear voltage-controlled resistor, which is
uniquely specified by two parameters: G, the slope of the linear segment and E,
the breakpoint voltage. In terms of a function representation, a concave resistor
can be specified by:

i = 1

2
G [|v − E| + (v − E)] (1.38)

By using the definition of absolute value, one can easily understand that Eq. (1.38)
represents Fig. 1.23.

Suppose v < E. Equation (1.38) becomes:

i = 1

2
G [−(v − E) + (v − E)]

= 0 (1.39)
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i

v
E0

G > 0
−

+

i

(G, E) v

Fig. 1.23 Characteristic and symbol for a typical concave resistor

Similarly, if v ≥ E, Eq. (1.38) becomes:

i = 1

2
G [(v − E) + (v − E)]

= G(v − E) (1.40)

If |E| = |I |, we can apply the duality principle discussed earlier to define the
convex resistor shown in Fig. 1.24. The convex resistor shown in Fig. 1.24 defines
a piecewise-linear current-controlled resistor which is uniquely specified by two
parameters: G = 1

R
, the slope of the linear segment and I , the breakpoint current.

Being current-controlled, it can be represented by:

v = 1

2
R [|i − I | + (i − I)] (1.41)

Using the same technique as the concave resistor, we can easily show that Eq. (1.41)
is equivalent to the characteristic in Fig. 1.24. We leave that as an exercise for the
reader.

1.9.1.2 Piecewise-Linear (PWL) Approximation

When we deal with complex circuits, we need to rely on computers for simulation.
Therefore it is important to develop analytic methods to formulate problems
precisely and to approximate nonlinear characteristics in mathematical form.

Sometimes, a mathematical characterization can be obtained from the physics of
the device, as we did for the pn-junction diode. However, often we have to rely on
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(R, I)

Fig. 1.24 Characteristic and symbol for a typical convex resistor

measurements or curves provided by the device manufacturer (as in the case of the
bipolar junction transistor, to be discussed in Sect. 2.2.2.1). Therefore we need to
introduce methods of approximation. For example, the tunnel-diode characteristic
can be approximated by a polynomial:

i ≈
n∑

k=0

akv
k (1.42)

The subject of polynomial approximation or interpolation is well-developed, but
it is beyond the scope of this book. On the other hand, piecewise-linear (PWL)
approximation is useful in dealing with both simple and general circuits made up
of nonlinear resistors. It is also straightforward and effective. We will devote this
subsection to PWL approximation.

The PWL approximation of a tunnel-diode characteristic is shown in Fig. 1.25.
The three linear segments have slopes:

G =

⎧⎪⎪⎨
⎪⎪⎩

Ga for v ≤ E1

Gb for E1 < v < E2

Gc for v ≥ E2

(1.43)

Hence beginning from left to right in Fig. 1.25, we can decompose the PWL
characteristic of the tunnel-diode into three parts:

1. A linear resistor with conductance G0
2. A concave resistor characteristic which starts at E1 with negative slope G1
3. A concave resistor characteristic which starts at E2 with positive slope G2
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Fig. 1.25 PWL
approximation of the
tunnel-diode characteristic
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v
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Fig. 1.26 Decomposition of
the PWL tunnel diode
characteristic into three
components

G1

v
0

i

E1

E2

G0 G2

The corresponding characteristics are shown in Fig. 1.26. Comparing Figs. 1.26 and
1.25, we can see the following relations must be satisfied:

G0 = Ga (1.44)

G0 + G1 = Gb (1.45)

G0 + G1 + G2 = Gc (1.46)
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Thus: G0 = Ga,G1 = −Ga + Gb and G2 = −Gb + Gc. We can also obtain the
current through the tunnel-diode in Fig. 1.26 by using the functional representation
of the concave resistor in Eq. (1.38). Assuming the three component currents in
Fig. 1.26 from left to right are i0, i1, i2, we have:

i0 = Gov (1.47)

i1 = 1

2
G1 [|v − E1| + (v − E1)] (1.48)

i2 = 1

2
G2 [|v − E2| + (v − E2)] (1.49)

Notice that i in Fig. 1.25 is simply: i = i0 + i1 + i2. Hence we have:

i = −1

2
(G1E1 + G2E2) +

(
G0 + 1

2
G1 + 1

2
G2

)
v + 1

2
G1|v − E1| + 1

2
G2|v − E2|

(1.50)

One can use the relationships between G0,G1,G2 and Ga,Gb,Gc derived earlier
to rewrite the equation in terms of Ga,Gb,Gc. We leave that as an exercise for the
reader. Equation (1.50) may be written in the following general form:

i = a0 + a1v + b1|v − E1| + b2|v − E2| (1.51)

In fact, Eq. (1.51) can be fully generalized [8] (assuming no discontinuities at the
breakpoints) as shown below.

i = a0 + a1v +
n∑

k=1

bk|v − Ek| (1.52)

where E1 < E2 < · · · < En are the breakpoint voltages and

a0 = i(0) −
n∑

k=1

bk|Ek| (1.53)

a1 = 1

2
(m0 + mn) (1.54)

bk = 1

2
(mk − mk−1) (1.55)

where m0 is the slope of the first linear segment from the left and mk is the slope
of the (k + 1)th linear segment. Here, the segments are labeled consecutively from
left to right, starting from zero. The interested reader is referred to [8] for further
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Load

(c)

+
− v(t) v(t) i(t)

+

(a b)

Fig. 1.27 Symbols for (a), (b) independent voltage source and (c) independent current source.
An independent DC voltage source can also be indicated by the standard battery symbol shown
in (b). Note that KCL from Sect. 1.5.1 implies that a current source must not be connected to
an open circuit (unless i(t) = 0). Analogously, a voltage source must not be connected across a
short-circuit (unless v(t) = 0)

details, where a very general representation (that includes discontinuities) is stated
and proved.

1.9.2 Independent Sources

Note that in Example 1.9.2, we encountered a sinusoidal voltage source. Sources
are a very important class of two-terminal devices because electrical energy must be
supplied in order to move the charges which constitute current i. Of course energy
cannot be created or destroyed, electrical sources simply transform some other form
of energy into electrical energy. For instance, a battery transforms chemical energy
into electrical energy. We will encounter two7 types of sources8:

Definition 1.18 An independent voltage source is a two-terminal device whose
terminal voltage v is always equal to some given function of time vs(t); regardless
of the value of current flowing through it.

The dual of the independent voltage source is the independent current source.

Definition 1.19 An independent current source is a two-terminal device whose
terminal current i is always equal to some given function of time is(t); regardless of
the value of voltage across its terminals.

The circuit symbol(s) for independent voltage and current sources are shown in
Fig. 1.27.

On many occasions, we shall find it convenient to consider a DC voltage source
and a DC current source as nonlinear resistors. This interpretation is valid because,

7We will not use charge and flux-linkage sources in this book.
8We will postpone discussion of the very important class of dependent sources till Sect. 2.2.1.2,
after we have discussed two-port representation in Sect. 2.2.1.
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Fig. 1.28 Nonlinear
inductor L

by definition, a DC voltage source with terminal voltage E can be represented by the
vertical line v = E in the v–i plane. Similarly, a DC current source with terminal
current I can be represented by the horizontal line i = I in the v–i plane.

1.9.3 Inductors and Capacitors

In this section, we introduce inductors and capacitors. To emphasize the “dual”
character of these two elements, we will use a two-column format so that each
statement on the left is the dual of the one on the right. Once the reader gets used to
the idea of duality, they need only read one column while mentally reflecting on the
dual statement in the other column.

An inductor is defined by

L = {(φ, i) : fL(φ, i) = 0} (1.56)

The circuit symbol for an inductor is shown in Fig. 1.28, reproduced from Fig. 1.1.
If Eq. (1.56) can be solved for i as a single-valued function of φ, namely:

i = î(φ) (1.57)

the inductor is said to be flux-controlled. If Eq. (1.56) can be solved as a single-
valued function of i, namely:

φ = φ̂(i) (1.58)

then the inductor is said to be current-controlled. If the function φ̂(i) is differen-
tiable, we can apply the chain rule in Eq. (1.58) to obtain:

v = L(i)
di

dt
(1.59)

with small-signal inductance L(i):

L(i)
�= dφ̂(i)

di
(1.60)
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Fig. 1.29 Toroidal inductor

i(t)

+

v

−

Example 1.9.3 Analyze the system shown in Fig. 1.29, where we have a
conducting wire wound around a toroid made of a nonmetallic material.

Solution When i(t) is applied, we recall from physics that a flux equal
to φ(t) = Li(t) is induced at time t and circulates around the interior
of the toroid. The constant of proportionality is given approximately by

L = μ0
N2A

l
H where μ0 = 4π · 10−7 H/m is the permeability of the core, N

is the number of turns of the coil, A is the cross-sectional area in m2, and l

is the midcircumference along the toroid in m. Hence, in Eq. (1.60), we will
have L(i) = L (a constant) and thus we have the classic linear time-invariant
inductor from circuit theory, with the relation:

v = L
di

dt
(1.61)

For the properties below, we will assume linear time-invariant inductors and
address properties for the nonlinear counterparts in Chap. 4.

Memory Property
Suppose we apply a voltage source v(t) across an inductor L. The inductor

current can be obtained by integrating Eq. (1.61) (assuming i(t → −∞) = 0):

i(t) = 1

L

∫ t

−∞
v(τ )dτ t ≥ t0 (1.62)

Hence the inductor current depends on the entire past history of v(τ ). Therefore the
inductor has memory.

Suppose however that current i(t0) at some time t0 < t is given, then we get:

i(t) = i(t0) + 1

L

∫ t

t0

v(τ )dτ t ≥ t0 (1.63)
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Fig. 1.30 Initial condition
transformation for L

L

i(t)

i(t0) = i0

L

i(t)

i0

i1(t)

i1(t0) = 0

In other words, instead of specifying the entire past history, we need only specify
i(t) at some conveniently chosen initial time t0. In effect, the initial condition i(t0)

summarizes the effect of v(τ ) from τ → −∞ to τ = t0, on the present value of
i(t). We can draw an equivalent circuit symbolizing the memory effect as shown in
Fig. 1.30.

Continuity Property Suppose we apply a voltage source described by a discontin-
uous square wave across an inductor, then the current through the inductor is given
by Eq. (1.63). Assuming that i(t0) = 0, we will obtain continuous inductor current
waveform. This “smoothing” phenomenon turns out to be a general property.

If the voltage waveform vL(t) across a linear time-invariant inductor L remains
bounded in a closed interval [ta, tb], then the current waveform iL(t) through the
inductor is a continuous function in the open interval (ta, tb). In particular, for any
time T satisfying ta < T < tb,
iL(T −) = iL(T +).

A capacitor is defined by

C = {(q, v) : fC(q, v) = 0} (1.64)

The circuit symbol for the capacitor is shown in Fig. 1.31, reproduced from Fig. 1.1.
If Eq. (1.64) can be solved for v as a single-valued function of q , namely:

v = v̂(q) (1.65)

the capacitor is said to be charge-controlled. If Eq. (1.64) can be solved as a single-
valued function of v, namely:

q = q̂(v) (1.66)

Fig. 1.31 Nonlinear
capacitor C
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then the capacitor is said to be voltage-controlled. If the function q̂(v) is differen-
tiable, we can apply the chain rule in Eq. (1.66) to obtain:

i = C(v)
dv

dt
(1.67)

with small-signal capacitance C(v):

C(v)
�= dq̂(v)

dv
(1.68)

Example 1.9.4 Analyze the system shown in Fig. 1.32, where we have two
flat parallel metal plates separated by a distance d .

Solution When v(t) is applied, we recall from physics that a charge equal to
q(t) = Cv(t) is induced at time t on the upper plate, and an equal but opposite
charge is induced on the lower plate at time t . The constant of proportionality
is given approximately by C = ε0

A
d

F where ε0 = 8.85 · 10−12 F/m is the
permittivity of free space, A is the plate area in m2, and d is the separation of
the plate in m. Hence, in Eq. (1.68), we have C(v) = C (a constant) and thus
we have the classic time-invariant capacitor from circuit theory:

i = C
dv

dt
(1.69)

For the properties below, we will assume linear time-invariant capacitors and
address properties for the nonlinear counterparts in Chap. 4.

Fig. 1.32 Parallel-plate
capacitor

+
−

v(t)

i(t)

d
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Memory Property Suppose we connect a current source i(t) in series with
capacitor C. The capacitor voltage can be obtained by integrating Eq. (1.69)
(assuming v(t → −∞) = 0):

v(t) = 1

C

∫ t

−∞
i(τ )dτ t ≥ t0 (1.70)

Hence the capacitor voltage depends on the entire past history of i(τ ). Therefore the
capacitor has memory.

Suppose however that voltage v(t0) at some time t0 < t is given, then we get:

v(t) = v(t0) + 1

C

∫ t

t0

i(τ )dτ t ≥ t0 (1.71)

In other words, instead of specifying the entire past history, we need only specify
v(t) at some conveniently chosen initial time t0. In effect, the initial condition v(t0)

summarizes the effect of i(τ ) from τ → −∞ to τ = t0, on the present value of
v(t). We can draw an equivalent circuit symbolizing the memory effect as shown in
Fig. 1.33.

Continuity Property Suppose we apply a current source described by a discontin-
uous square wave through a capacitor, then the voltage across the capacitor is given
by Eq. (1.71). Assuming v(t0) = 0, we will obtain continuous capacitor voltage
waveform. This “smoothing” phenomenon turns out to be a general property.

If the current waveform iC(t) in a linear time-invariant capacitor C remains
bounded in a closed interval [ta, tb], then the voltage waveform vC(t) across the
capacitor is a continuous function in the open interval (ta, tb). In particular, for any
time T satisfying ta < T < tb,
vC(T −) = vC(T +).

The continuity property for inductors and capacitors is so important that we will
prove the continuity property for a capacitor (the inductor follows by duality).

Consider Eq. (1.71). Substituting t = T and t = T + dt into Eq. (1.71) where
ta < T < tb and ta < T + dt ≤ tb, and subtracting, we get:

vC(T + dt) − vC(T ) = 1

C

∫ T +dt

T

iC(τ )dτ (1.72)

Fig. 1.33 Initial condition
transformation for C

i(t)
+

v

− v(t0) = v0

i(t)+

v

v0

v1(t)
v1(t0) = 0

+

−C

C
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Fig. 1.34 Figure for
Example 1.9.5

1.0kΩ0.1 pF
+
V0
-

t = 0
i

Since we have assumed iC(t) to be bounded in [ta, tb], there is a finite constant
M such that |iC(t)| < M , ∀t ∈ [ta, tb]. It follows that the area under the curve iC(t)

from T to T +dt is at most Mdt (in absolute value), which tends to zero as dt → 0.
Hence Eq. (1.72) implies vC(T + dt) → vC(T ). Therefore vC(t) is continuous at
t = T .

Example 1.9.5 Find the value i(0+) in Fig. 1.34, assuming the capacitor is
precharged to 0.5 V and the ideal switch instantaneously closes at t = 0.

Solution Since the capacitor is precharged to 0.5 V, v0(0−) = 0.5 V. By the
continuity property for capacitors, v0(0+) = 0.5 V. Since we have a linear
resistor, by Ohm’s law and the passive sign convention:

i = − 0.5 V

1.0 k	

= −0.5 mA (1.73)

The continuity property will be further utilized in Chap. 4, where we apply it to
solve9 a variety of circuits that exhibit switching discontinuities.

1.9.4 Memristors

Looking at Fig. 1.1 and based on our discussions of the other fundamental circuit
elements, it is only natural that, by symmetry arguments, there exists a fourth
fundamental circuit element for establishing a φ–q relationship:

M = {(φ, q) : fM(φ, q) = 0} (1.74)

Such an element was defined by Dr. Chua in 1971 [2]. Nevertheless investigations
of this element began in earnest only after HP’s announcement in 2008 [27]. HP’s

9By “solve” a circuit, we mean to find the voltage across and current through every branch for all
times t .
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memristor is a very specific TiO2 based device. We will instead study general
characteristics of the memristor. Interestingly, literature survey gives a wealth of
insight into the memristor, and hence we will begin our study with the very first
citations of Chua’s seminal work.

Dr. Penfield, in a MIT technical report [23], mentions the memristor in con-
nection with the Josephson junctions. Throughout the late twentieth century, a
plethora of research [13, 21, 22, 29] regarding the “phase-dependent conductance” in
Josephson junctions were carried out. But a proper memristor approach to extracting
the “phase-dependent conductance” occurred only with Peotta and Di Ventra’s
seminal paper in 2014 [24]. However, before we examine the ideal memristor in
Josephson junctions, we will state some important properties of the memristor [2].

Consider a function of q based on Eq. (1.74):

φ = s(q) (1.75)

Differentiating both sides of Eq. (1.75) with respect to time and applying the
chain rule, we get:

dφ

dt
= ds(q)

dt

= ds

dq

dq

dt
(1.76)

From Eq. (1.3), i = dq
dt

and from Eq. (1.4), v = dφ
dt

. Hence we have the memristor
v–i relation in Eq. (1.77).

v(t) = M(q(t))i(t) (1.77)

M(q(t)) in Eq. (1.78) is defined as the incremental memristance, we can
analogously define a W(φ(t)) as incremental menductance.10

i(t) = W(φ(t))v(t) (1.78)

We can make the following observations from Eq. (1.77) (analogous observations
hold for Eq. (1.78)):

1. M(q(t)) = M

(∫ t

−∞
i(τ )dτ

)
. Hence the fact that memristor stands for

“memory-resistor” can be justified: the value of the memristance at any time t

depends on the time integral of the memristor current from −∞ to t . Therefore
while the memristor behaves like an ordinary resistor at a given instant of time,

10To avoid clutter, we will use the terms memristance and menductance from now on. We will
reserve the use of “incremental” for clarity purposes.
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Fig. 1.35 A Josephson
junction formed by using a
superconductor–insulator–
superconductor setup. The
barrier I is thin enough (on
the order of a few angstroms)
that superconducting Cooper
pairs can tunnel across the
junction when v = 0 [12]

v

S I S

i

its resistance depends on the complete past history (or memory) of memristor
current.

2. In the very special case where the memristor φ–q curve is a straight line, we
obtain M(q) = R, the memristor reduces to a linear time-invariant resistor.

Point 2. above illustrates why the memristor is not relevant in linear circuit
theory: unlike the other three fundamental circuit elements (resistor, inductor,
capacitor), a memristor is a fundamentally nonlinear device, a linear memristor
is simply a resistor. In other words, memristors are not used to model linear circuits,
such circuits do not exhibit “memristive” effects. Nevertheless, since a memristor is
the fourth fundamental circuit element, it is only logical that we discuss memristors
in a book on circuit theory. However, understand that research into circuit theoretic
properties of the memristor is still11 in its infancy. Hence the motivated reader
will probably enhance (and even prove) several fundamental properties. As an
analogy, Maxwell completed Ampere’s law for non-static situations with a time-
derivative of electric flux, and published his “Treatise on Electricity and Magnetism”
in 1873. At his death 6 years later, his theory was unfortunately neither well
understood nor widely accepted [11]. It took the Herculean efforts of primarily four
individuals—John Francis Fitzgerald, Oliver Lodge, Oliver Heaviside, along with
key contributions from Heinrich Hertz—to transform Maxwell’s fertile ideas from
his treatise into the theory now known today as “Maxwell’s Equations”. Similarly,
a memristor correctly completes the four fundamental circuit element graph in
Fig. 1.1. A few of the properties predicted by Chua [2], Chua and Kang [7] for a
memristor have been validated. Many of the fertile hypotheses set forth in those
classic works still need to be investigated.

We can now discuss the phase-dependent conductance in Josephson junction as
an ideal memristor. Before doing so we will derive the Josephson relation from first
principles, since not only does this relation utilize fundamental physical principles,
but it also helps us practice our definitions of the fundamental circuit variables.

Consider the Josephson junction (JJ) shown in Fig. 1.35.

11As of the 2017 first edition of this book.
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From basic physics, we know that energy E is quantized from the Planck–
Einstein relation:

E = hν (1.79)

Rewriting Eq. (1.79), we get:

E = h
ω

2π
(1.80)

In Eq. (1.79), ν is frequency in Hz and in Eq. (1.80), ω is angular frequency in rad/s.
In a physical JJ in the superconducting state, a quantum mechanical phase

difference Φ is established between the two superconductors. Therefore, we have:

E = h

2π

dΦ

dt
(1.81)

Based on Eq. (1.1), we have:

2e−v = h

2π

dΦ

dt
(1.82)

We have used 2e− because Cooper pairs carry the charge in the superconducting

state. Using Eq. (1.4), defining h̄
�= h

2π
and simplifying, we get:

dφ

dt

(
2e−

h̄

)
= dΦ

dt
(1.83)

In Eq. (1.83), we can define φ0
�= φ/ h̄

2e− . In other words, the quantum
mechanical phase difference across the junction is quantized as a function of the
magnetic flux through the loop ( h

2e− is the magnetic flux quantum): Φ = φ0.
Equation (1.83) is the fundamental Josephson relation.

The current i through the junction can be written [12] as:

i(v) = Ic sin(φ0) + σ0(v)v + ε cos(φ0)v + · · · (1.84)

In Eq. (1.84), Ic, ε are constants based on the physical superconducting materials
and σ0(v) is the nonlinear conductance for the particular JJ. An interesting
observation is that the current i will be non-zero even if the voltage across the
junction is zero! This is due to the Josephson current Ij = Ic sin(φ0). The mindful
reader should have noticed that we can model a JJ as a nonlinear inductor, when
v = 0.

But notice the third term in Eq. (1.84) can be written as:

i3(v) = W(φ0)v (1.85)
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This equation is precisely the equation of an ideal memristor (the device is
technically a menductor). But there are two issues in trying to design an ideal
memristor:

1. The Josephson current Ij is usually much larger when compared to the memris-
tance term i3.

2. The memristance term is non-zero only when the voltage across the junction is
non-zero. And in this case, it is oscillating at a very high frequency.12

Nevertheless, Peotta and Di Ventra propose an elegant approach [24] to isolate
the memristance term: utilize two Josephson junctions of different material, con-
nected in parallel, to cancel the Josephson current.

But how do we identify a memristive two-terminal black box? The answer lies
in our definition: since v(t) (i(t)) has to be zero whenever i(t) (v(t)) is zero for a
memristor (menductor), under periodic excitation, a memristor distinctly displays a
Lissajous figure in the v–i plane.

However, in the case of the ideal memristor in the Josephson junction, we still
have the issue of the cos φ0 term oscillating at very high frequencies for practical
measurements. Thus, are there other devices that can be modeled as memristors and
can be easily studied experimentally?

Fortunately, the answer is yes. For studying such devices, we will use the
generalization of an ideal memristor13 to a general memristive device, as defined
by Chua and Kang [7].

An nth-order current-controlled memristive one-port is represented by:

ẋ = f (x, i, t)

v = R(x, i, t)i (1.86)

An nth-order voltage-controlled memristive one-port is represented by:

ẋ = f (x, v, t)

i = G(x, v, t)v (1.87)

In both equations above, x denotes the state of the memristive device. f : n ×
× → n is a continuous n-dimensional vector function, R,G : n×× → 
are continuous scalar functions. It is assumed that the state equation(s) have a unique
solution for any initial state x0 ∈ n.

A variety of physical devices exhibit memristive effects. We will now examine
one of these devices: a discharge tube, whose resistance can be modeled as a

12Private email communication from Dr. Brian Josephson to Dr. Muthuswamy on March 14th
2014.
13Unfortunately, as of the writing of this book, the Josephson junction is the only (that we know
of) physical device that serves as a model for an ideal memristor.
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function of the number of conduction electrons ne [16]. Consider Eq. (1.88):

vM = R(ne)iM

ṅe = −βn + αR(ne)i
2
M (1.88)

vM is the voltage across the discharge tube, iM is the current flowing through it
and ne is the number of conduction electrons. R(ne) = F

ne
. α, β, F are parameters

depending on the dimensions of the tube and the gas fillings. Comparing Eqs. (1.86)
and (1.88), we can clearly see that a discharge tube can be modeled as a current-
controlled memristor.

Figure 1.36 shows a simulated vM−iM curve and Fig. 1.37 shows an oscilloscope
screenshot of a measured discharge tube characteristic.

We will have more to discuss about other devices with memristive behavior (such
as pn-junctions) in Sect. 4.4.2.

Fig. 1.36 Simulated
Lissajous figure for
iM(t) = sin(ωt) in Eq. (1.88),
with α = 0.1, β = 0.1, F =
1, ω = 0.063 [16]

Fig. 1.37 Measured
discharge tube characteristics,
showing the classic pinched
hysteresis loop [6]. We have
plotted vM on the Y -axis
(2 V/div) and have scaled iM
to voltage for ease of plotting
on the X-axis (5 V/div)
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1.9.5 Higher-Order Circuit Elements

Sections 1.9.1 through 1.9.4 have helped us discuss the four fundamental circuit
elements in Fig. 1.1. The elements are fundamental in the sense that no element
from this basic set can be derived from the other three elements [3].

In fact, we can generalize Fig. 1.1 to higher-order circuit elements. As a
motivating example, consider Eq. (1.89) (a, b, c are constant real numbers) of the
Duffing oscillator. This oscillator is used to model a variety of phenomena in
science. We will discuss a circuit implementation of this oscillator in Sect. 5.5.

v̈ + cv̇ + v(b + a · v2) = i(t) (1.89)

Since we are forcing a current input on the RHS, each expression on the LHS
of Eq. (1.89) represents current. Thus, by KCL, we simply have three elements in
parallel to an ideal current source.

From Eq. (1.69), we know that the current through a capacitor is proportional to
the first derivative of the voltage across it. Hence, cv̇ in Eq. (1.69) can be modeled
by a linear time-invariant capacitor. We will see in Sect. 5.5 that a tunnel diode has a
cubic i(v) and hence can be used to synthesize the v(b+a ·v2) term. But, does there
exist a two-terminal element whose current through the terminals is proportional to
the second derivative of the voltage across it?

Although the current answer to the question is “we do not know,” Eq. (1.89)
shows the necessity of defining such a circuit element. Of course, one could also
ask: why not simply build an analog computer that solves Eq. (1.89)? The answer
is: the analog computer will not help us study the underlying physical phenomenon.
As an analogy, consider a mass-spring-damper model of a second-order system.
The equivalent analog computer implementation is simply a “signal flow” graph
and cannot yield insightful information, say, the energy transfer between the mass
and the spring.

Hence, we need to expand our repertoire of fundamental circuit elements from
Fig. 1.1, by introducing a sufficiently rich family of elementary circuit elements
[3, 4] which play the same role as the set of basis vectors to define a vector space.
The key concept is the following definition.

Definition 1.20 (α–β Element) A two-terminal or one-port black box charac-
terized by a constitutive relation in the v(α)-versus-i(β) plane is called an (α, β)
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element, where v(α) and i(β) are defined below.

v(α)(t)
�=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dα

dtα
v(t) if α > 0

v(t) if α = 0∫ t

∞
· · ·
∫ t

∞︸ ︷︷ ︸
|α|

v(τ1)dτ2 · · · dτ|α| if α < 0
(1.90)

or

i(β)(t)
�=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dβ

dtβ
i(t) if β > 0

i(t) if β = 0∫ t

∞
· · ·
∫ t

∞︸ ︷︷ ︸
|β|

i(τ1)dτ2 · · · dτ|β| if β < 0
(1.91)

The circuit symbol for v(α)-i(β) element is shown in Fig. 1.38.
In other words, based on Eqs. (1.90) and (1.91), we can make the following

observations:

1. Every (0,0) element is a resistor R
2. Every (−1,0) element is an inductor L
3. Every (0,−1) element is a capacitor C
4. Every (−1,−1) element is a memristor M

Thus, based on our discussion so far and KCL, a circuit equivalent of Eq. (1.89)
is shown in Fig. 1.39.

We will revisit and synthesize (α, β) elements later in the text, once we
understand concepts behind resistive and dynamic nonlinear networks.

It is instructive to visualize the (α, β) elements in the form of a “periodic table” in
Fig. 1.40, that expands the basic four element quadrangle from Fig. 1.1. In Fig. 1.40,

Fig. 1.38 Two terminal or
one-port representation of
(α, β) element

i

+

v

-
b

a



50 1 Two-Terminal Network Elements

0

-2
i(t)

+

v

Fig. 1.39 A circuit realization of the Duffing oscillator

Fig. 1.40 The “periodic table” of all two-terminal (α, β) elements. All elements printed in the
same color belong to the same circuit element species, namely, frequency-dependent resistors
(in red), frequency-dependent inductors (in blue), frequency-dependent capacitors (in green), and
frequency-dependent negative resistors (in orange). mQ is defined as a small-signal slope about an
operating point and will be discussed in Sect. 4.6.2

all elements printed in the same color belong to the same element “species” and,
notice that there are only four colors. The justification for the “periodic table” label
and an analysis of Fig. 1.40 will be done in Sect. 4.6.2.

1.10 Series and Parallel Connections of Resistors

We are now in a position to consider a special but very important class of circuits:
circuits formed by series and parallel connections of two-terminal resistors. First, we
wish to generalize the concept of the v–i characteristic of a resistor to that of a two-
terminal circuit made of two-terminal resistors, or more succinctly, a resistive one-
port. We will demonstrate that the series and parallel connections of two-terminal
resistors will yield a one-port whose v–i characteristic is again that of a resistor.
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Fig. 1.41 Two nonlinear
resistors connected in series
together with the rest of the
circuit N
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We say that two resistive one-ports are equivalent iff their v–i characteristics are the
same.

When we talk about resistive one-ports, we naturally use port voltage and port
current as the pertinent variables. The v–i characteristic of a one-port in terms of
its port voltage and port current is often referred to as the driving-point or DP
characteristic of the one-port. The reason we call it the DP characteristic is that we
may consider the one-port as being driven by an independent voltage source vs or
an independent current source is . In the former, the input is vs = v and the response
is the current i. In the latter, the input is is = i and the response is v. We will next
illustrate how to determine DP plots graphically, a technique that we will return to
throughout the book.

Consider the circuit shown in Fig. 1.41 where two nonlinear resistors R1 and R2
are connected at node 2. Nodes 1 and 3 are connected to the rest of the circuit, which
is designated by N . Looking towards the right from nodes 1 and 3, we have a one-
port which is formed by the series connection of two resistorsR1 and R2. For our
present purposes, the nature of N is irrelevant. We are interested in obtaining the
DP characteristic of the one-port with port voltage v and port current i.

Let us assume that both resistors are current-controlled, i.e.,

v1 = v̂1(i1)

v2 = v̂2(i2) (1.92)

Notice that these are the laws of elements. Next, applying KVL for the node
sequence 1–2–3–1 gives:

v = v1 + v2 (1.93)

Applying KCL to nodes 1 and 2 gives:

i = i1 = i2 (1.94)
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Combining Eqs. (1.92)–(1.94), we obtain:

v = v̂(i)

where v̂(i)
�= v̂1(i) + v̂2(i) (1.95)

Note that Eq. (1.95) can be extended to n nonlinear resistors Rn in series. Thus, we
can conclude that:

1. KVL requires the port voltage v to be equal to the sum of the branch voltages of
the resistors.

2. KCL forces all branch currents to be equal to the port current.
3. If each resistor is current-controlled, the resulting DP characteristic of the one-

port is also a current-controlled resistor.

Example 1.10.1 Determine v̂(i) if the two terminals of R1 in Fig. 1.41 are
turned around.

Solution The new circuit is redrawn in Fig. 1.42. Hence, the v–i characteris-
tic for R1 is now:

v1 = v̂1(−i1) (1.96)

KVL gives:

v = −v1 + v2 (1.97)

Thus, we have:

v = −v̂1(−i) + v̂2(i) (1.98)

Consider the circuit shown in Fig. 1.43 where two nonlinear resistors R1 and R2
are connected across nodes 1 and 2 to the rest of the circuit, which is designated
by N . Looking towards the right from nodes 1 and 2, we have a one-port which is
formed by the parallel connection of two resistors R1 and R2. For our present
purposes, the nature of N is irrelevant. We are interested in obtaining the DP
characteristic of the one-port with port voltage v and port current i.

Let us assume that both resistors are voltage-controlled, i.e.,

i1 = î1(v1)

i2 = î2(v2) (1.99)
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Fig. 1.42 Circuit for Example 1.10.1
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Fig. 1.43 Two nonlinear resistors connected in parallel together with the rest of the circuit N

Notice that these are the laws of elements. Next, applying KVL gives:

v = v1 = v2 (1.100)

Applying KCL at node 1 gives:

i = i1 + i2 (1.101)

Combining Eqs. (1.99)–(1.101), we obtain:

i = î(v)

where î(v)
�= î1(v) + î2(v) (1.102)
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Table 1.1 Dual terms S S∗

Branch voltage Branch current

Resistance Conductance

Current-controlled resistor Voltage-controlled resistor

Open circuit Short circuit

Independent voltage source Independent current source

Inductor Capacitor

KVL KCL

Port voltage Port current

Series connection Parallel connection

Note that Eq. (1.102) can be extended to n nonlinear resistors Rn in parallel. Thus,
we can conclude that:

1. KVL forces all branch voltages to be equal.
2. KCL requires the port current i to be equal to the sum of the branch currents of

the resistors.
3. If each resistor is voltage-controlled, the resulting DP characteristic of the one-

port is also a voltage-controlled resistor.

The careful reader would have noticed that Eqs. (1.92)–(1.94) and Eqs. (1.99)–
(1.101) are duals of each other! In other words, if we make the substitutions for all
the v’s with i’s and for all the i’s with v’s in one set of equations, we obtain precisely
the other set. For this reason, we can extend and generalize the concept of duality
introduced earlier for resistors to circuits.

In Table 1.1, we list two sets of terms S and S∗ which we have encountered and
which are said to be dual to one another.

Before we end this section, we would like to solve an example that illustrates a
variety of concepts from this chapter.

Example 1.10.2 In Fig. 1.44, determine the value of I .

Solution Before attempting to solve any problem, it is a good idea to
understand the problem and devise a plan of action. We then carry out
the plan and check our answer [25].

In this case, a quick examination of the problem will indicate that we need
to determine the current through a linear resistor and hence if we know the
voltage across it, we can apply Ohm’s law.

Starting at node B and applying KVL, we get:

vAB + 3 − 2 = 0 (1.103)

(continued)
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Example 1.10.2 (continued)
Notice our judicious choice of voltage polarity as vAB and not vBA. This
choice is no accident: in this problem, the current direction has been clearly
specified, so we must choose vAB to comply with the passive sign convention
definition from Definition 1.2.

We can in fact now carry out the plan and get the result as:

I = vAB

20 k

= −0.05 mA. (1.104)

Notice a negative I implies the voltage drop across the resistor is opposite
to the direction we picked.

How do we check our answer? One approach would be to make sure that
the power delivered is equal to power absorbed. This is essential because our
circuit is a closed system. We need to first find the current through the branch
B–D–A. This can be done by finding the voltage across the 10 k resistor
which in turn can be found by using KVL around D–A–C–B–D:

4 + 3 − 2 − vBD = 0 (1.105)

Thus vBD = 5 V. Hence the current through the 10 k is IBD = 0.05 mA. KCL
at node B gives ICB = 0.1 mA. We now have all the necessary variables to
find the power associated with each element, keeping in mind the passive sign
convention form Definition 1.2.

P3 V = −0.3 mW

P2 V = +0.2 mW

P4 V = −0.2 mW

P10 k = +0.25 mW

P20 k = +0.05 mW

Σ = 0 mW (1.106)

Hence we should have good confidence that our answer is correct. We
will discuss more circuit analysis techniques based on energy (including
expressions for energy stored in an inductor, etc.) and power in Sect. 4.5.
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Fig. 1.44 Circuit with only
linear elements
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1.11 Conclusion

In this chapter, we discussed the fundamental circuit variables, elements, and
Kirchhoff’s laws. To summarize:

1. We will assume the lumped circuit approximation.
2. The four fundamental circuit variables are: charge (q(t)), flux-linkage (φ(t)),

voltage (v(t)), and current (i(t)).
3. There are four fundamental circuit elements: resistors establish a v–i relation-

ship, capacitors a q–v relationship, inductors a φ–i relationship, and memristors
establish a φ–q relationship.

4. We will follow a black box approach and model static (or “low frequency”)
characteristics. We will use parasitic components as necessary to model “high
frequency” effects. We emphasize that “low frequency” and “high frequency”
depend on the particular device being modeled.

5. Kirchhoff’s laws relate the voltages and currents as defined by the topology of
the network.

6. The laws of interconnection (KVL, KCL, Tellegen’s theorem) are independent
of the laws of elements.

7. Elements are said to be in series when they have the same current flowing through
them.

8. Elements are said to be in parallel when they have the same voltage across them.

In the next chapter, as a natural follow-up, we will study multi-terminal elements
such as the operational amplifier.

Exercises

1.1 Given the v–i characteristic Γ of a resistor R on the v–i plane, show that the
dual characteristic is obtained by reflecting Γ about the 45◦ line through the origin.

1.2 Find a necessary and sufficient condition for a nonlinear two-terminal element
(resistor, inductor, capacitor, and memristor) to be bilateral.
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Fig. 1.45 Circuit for
Exercise 1.4 (Part 1)
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Fig. 1.46 Circuit for
Exercise 1.4 (Part 2)
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Fig. 1.47 Circuit for
Exercise 1.4 (Part 3)

2 V 500k10 uA

Fig. 1.48 Circuit for
Exercise 1.4 (Part 4)

A B
80k20k

10k

50k 50k

1.3 Discuss mechanical analogies to the four fundamental circuit elements. For the
memristor, a good starting point is the classic paper by Oster and Auslander [19].

1.4 This exercise (courtesy of Dr. Oldham from UC Berkeley [18]) is designed to
test the reader’s fundamental understanding of the conceptual material from this
chapter, and is very similar to Example 1.10.2. As a result, the reader should strive
to find the correct solution mentally, without the use of pen and paper.

Find the values of the indicated variables below.

1. VAB in Fig. 1.45.
2. VCD in Fig. 1.46.
3. Power associated with the 500 k	 resistor in Fig. 1.47.
4. Equivalent resistance at AB in Fig. 1.48.

1.5 Consider the circuit in Fig. 1.49. Assuming R1 is current-controlled (v1 =
v̂1(i1)), R2 and R3 are voltage-controlled (i2 = î2(v2), i3 = î3(v3)), determine
the characteristic for R.
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Fig. 1.49 A ladder circuit
with nonlinear resistors i1
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problem 1.7
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1.6 Based on the ideas from Sect. 1.10, discuss:

1. Ln inductors in series and parallel
2. Cn capacitors in series and parallel
3. Mn memristors in series and parallel

1.7 The current in the circuit in Fig. 1.50 [17] is known to be i0 =
5e−2000t (2 cos 4000t + sin 4000t) mA to t ≥ 0+. Find the values of v1(0+) and
v2(0+).

1.8 At t = 0, a series-connected capacitor and inductor are placed across the
terminals of a black box, as shown in Fig. 1.51 [17]. For t > 0, it is known that:

i0 = 1.5e−16000t − 0.5e−4000t A (1.107)

If v1(0) = −50 V, find and sketch v0 for t ≥ 0.
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1.9 Although in this book we will deal with nonlinear circuits, understanding the
distinction between linearity and nonlinearity is vital. The goal of this exercise is to
explore this distinction.
Simply stated, a linear system satisfies the principle of superposition, while a
nonlinear system does not. The principle of superposition can be phrased from basic
physics courses as: “response of the sum is equal to the sum of the responses.”
Mathematically [14], a system H : [R → R] → [R → R] is linear iff ∀x, y ∈
[R → R] and α, β ∈ R:

H(αx + βy) = αH(x) + βH(y) (1.108)

Notice that H is a function of a function space. x, y are signals, for our purposes, a
time-domain signal. In other words x(t) is a real number. But, the input to H is not
a real number, but rather an entire signal! The distinction between function spaces
and signals may be subtle but it is very important.

To understand this distinction and hence the difference between linearity and
nonlinearity, answer the following: Is the system: S(x) = αx + β (given the
definitions of x, α, β above) linear? Prove or disprove using Eq. (1.108).

Note that you may be tempted to conclude S is linear because “it looks like
the equation of a straight-line.” Do not jump to conclusions! Remember that S is a
system!

One of the (many) “nice” properties of a linear system (as opposed to a nonlinear
system) is a linear system’s response to sinusoidal signals. We will see in Sect. 4.3
that if the input to the linear system is a sinusoid, the output signal is also a sinusoid
at the same frequency (with amplitude and phase changed as per the frequency
response). Exercise 4.13 will explore this idea further in the context of S above.

Lab 1: Introduction to Quite Universal Circuit Simulator
(QUCS)

Objective: To successfully install QUCS
Theory:
The goal of circuit simulation is to predict the behavior of a circuit before we
physically construct the circuit. A very important point about simulation in
general: simulation is a necessary but not sufficient step.14 In other words, if
a circuit gives us the correct result in simulation, it may have the same physical

14This of course assumes that the simulator has been setup correctly and can simulate the
problem at hand! You will see, especially in Chap. 5, that quite a few nonlinear circuit simulations
“converge” to incorrect results in “traditional” circuit simulators. But a discussion of numerical
simulation techniques for chaotic systems is beyond the scope of this book, the interested reader is
referred to [20].
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Fig. 1.52 QUCS startup screen in OS X Sierra

behavior. However, the physical circuit may not display the same behavior as
simulation because again, the idea of device modeling: we may not have taken
into account all the physical characteristics in simulation. But, if a circuit does not
“work” in simulation, it will definitely not “work” in reality. This concept should
become clear once the reader understands one of the main ideas in this book, namely,
device modeling.

A variety of circuit simulators exist. In keeping with the introductory nature
of this text, we would like to use a circuit simulator that is easy to use, has a
robust graphical user interface (GUI) and is supported across multiple platforms
(Windows, OS X and Linux based computers). Moreover, as stated in the online
QUCS FAQ [26], classic SPICE based simulators have a variety of limitations that
QUCS aims to overcome.

In this lab component, we simply install QUCS and make sure that the program
is functional.

Lab Exercise:

1. Download and install the correct version of QUCS from [26] for your platform.
Detailed instructions are in Appendix A.

2. Start QUCS. If successful, you should see Fig. 1.52.
3. Once you start QUCS, we encourage you to read the associated documentation

[26] and try some of the sample simulations. You should also go through the
tutorial video on QUCS in the youtube channel for this book. More will be
explained about the different simulation (transient, etc.) throughout the book.

4. A very important resource is the online QUCS workbook. We will refer to this
workbook throughout this text, so please make sure you start reading through it.

http://www.youtube.com/user/bharathberkeley/IntroToNonlinearCircuitsAndNetworks
https://qucs.github.io/docs/tutorial/workbook.pdf
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Chapter 2
Multi-Terminal Network Elements

iR
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+

vR

−

∞

Two-terminal piecewise linear negative resistor, synthesized
using a multi-terminal opamp

Abstract This chapter will naturally expand upon the ideas in Chap. 1 and discuss
black boxes that have more than two terminals. We will first discuss character-
ization of a multi-terminal black box, followed by a discussion of the two-port
representation technique. We will then talk about resistive, inductive (including
transformers), and capacitive three-terminal elements. Circulators and opamps are
next discussed. After this, we discuss the family of two-port scalors, rotators,
reflectors, and gyrators. A current feedback opamp-based implementation approach
is used for studying mutators.

2.1 Characterization of a Multi-Terminal Black Box

While the conventional resistor is probably the most familiar circuit element [6] [4],
the transistor is certainly the electronic device that heralded the computer revolution.
A transistor is a three-terminal device which behaves like a two-terminal nonlinear
resistor when viewed from any pair of terminals, at low enough frequencies. This is
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why its inventors (Nobel laureates Bardeen, Brattain, and Shockley) christened it as
a transfer resistor, or transistor in brief.

The transistor is not the only multi-terminal device, many devices have more
than two terminals. Our objective in this section is to learn how these multi-
terminal devices may be characterized so that we shall be in a position to use
them more effectively [3]. The basic principles discussed in the preceding chapter
for characterizing two-terminal devices are still applicable. A set of measurable
independent variables is selected and a series of external measurements are taken
with the objective of deriving a consistent relationship among the variables. Once
this relationship is found, we have characterized the black box because from then
on, any design using this device can be undertaken on the basis of this relationship
alone, thereby obviating the need for further measurements.

To discuss the selection of an independent set of variables, let us consider first
the three-terminal black box shown in Fig. 2.1a. The most obvious variables are the
currents i1, i2, and i3 entering the terminals, and the voltages v12, v23, and v31 across
the terminals. However, the black box in Fig. 2.1a can be enclosed by a Gaussian
surface and hence the currents i1, i2, and i3 entering this surface must satisfy KCL,
namely, i1 + i2 + i3 = 0.

Thus, if we know the value of any two of these currents, we can calculate the
third, and therefore there is no need to measure all three currents. This observation
is equivalent to saying that the three variables i1, i2, and i3 are not independent.
Similarly, from KVL we have v12 + v23 + v31 = 0 and hence the three variables
v12, v23, and v31 are not independent.

Consequently, among the six variables shown in Fig. 2.1a, only two currents
and two voltages are independent. For this reason, we may select any terminal
to be ground and define the two currents i1, i2 and voltages v1, v2 as shown in
Fig. 2.1b. In theory, there is no reason for preferring one terminal over another
as the ground terminal. In practice, however, such a preference may be desirable

3

3-terminal
black
box

i1

1 2

v1

+

(b)

+
i2

v2

3-terminal
black
box

i2

+

+

+

i3

i1

v23

v12

v31

1 2

(a)

Fig. 2.1 In the process of characterizing a three-terminal black box, one terminal is arbitrarily
chosen as the ground terminal. The voltages of the remaining terminals are measured with respect
to the common terminal
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Fig. 2.2 For an n-terminal element, we can arbitrarily choose one terminal as ground. With n

chosen as the ground terminal, we have the associated element graph

because the measurements may be easier and more accurately obtained.1 To avoid
ambiguity, it is of the utmost importance to specify the common terminal associated
with the measured characteristics of a particular device. A ground terminal can
also be arbitrarily chosen for a generic multi-terminal (or henceforth, n-terminal)
element, as shown in Fig. 2.2a. Based on our choice of the ground terminal, we can
also easily draw the associated element graph of the n-terminal device, as shown
in Fig. 2.2b. Notice that we will have n possible element graphs for an n-terminal
element, depending on our choice of the ground node.

With the abovementioned precaution of choosing the common terminal associ-
ated with the measured characteristic, let us investigate the type of measurements
that may be taken. Just as in the two-terminal case, it is necessary to excite the
black box by a voltage source or a current source. However, the response to these
excitations need not be restricted to currents and voltages. Recall from Eq. (1.3) that
it is possible to measure the charge qj entering terminal j by integrating the current
ij , namely:

qj (t) =
∫ t

−∞
ij (τ )dτ j = 1, 2, · · · , n − 1 (2.1)

Similarly, from Eq. (1.4), we can measure the flux-linkage φj associated with
each voltage vj between terminal j and ground by integrating the voltage vj :

φj (t) =
∫ t

−∞
vj (τ )dτ j = 1, 2, · · · , n − 1 (2.2)

1This is especially true for the transistor, where the characteristic curves can be more accurately,
and more easily, measured if a particular terminal (called emitter for npn junction transistors) is
chosen to be the ground terminal.
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Hence, among the variables of interest to us are qj , ij , φj , and vj (j =
1, 2, · · · , n−1). Any independent combination of these variables constitute a valid
set of measurements. Observe that the combination qj and ij (φj and vj ) is not valid
because these variables are already related by Eqs. (2.1) and (2.2). If a certain set
of measurements leads to some consistent relationship, then the device is said to be
characterized by that relationship.

The corresponding element classifications now take the following forms:

1. n-terminal resistors, involving only v1, v2, · · · , vn−1; i1, i2, · · · , in−1.
2. n-terminal inductors, involving only i1, i2, · · · , in−1; φ1, φ2, · · · , φn−1.
3. n-terminal capacitors, involving only v1, v2, · · · , vn−1; q1, q2, · · · , qn−1.
4. n-terminal memristors, involving only φ1, φ2, · · · , φn−1; q1, q2, · · · , qn−1.

But, in general, in order to completely characterize an n-terminal black box, n −
1 distinct laboratory setups are required. For example, Fig. 2.3 shows the setups
necessary to characterize a four-terminal device.

i1+

−

v1

4-terminal
element

x2

x3

v2

i2

v3

i3i1 4-terminal
element

−

+

v2

x1 x3

4-terminal
element

x1

v1 i1

x2
i2

+

−

v3

i3

v1

v2

i2

v3

i3

Fig. 2.3 To characterize a four-terminal black box, three distinct laboratory setups are required.
Each setup involves as many sets of measurements as necessary to include all desired combinations
of parameter values of the controlling variables



2.2 Three-Terminal Resistors, Inductors, and Capacitors 67

Thus, it is in general impractical to completely characterize an n-terminal black
box when n >> 3. Fortunately, most practical devices have single digit values for
n, and those devices will be discussed in the remainder of this chapter, starting with
n = 3.

2.2 Three-Terminal Resistors, Inductors, and Capacitors

2.2.1 Two-Port Representation

The concept of a port was first introduced in Sect. 1.4. Recall that a port can be
created from a circuit by connecting two leads to a pair of nodes of the circuit.
Thus, a one-port can be viewed as a black box which has one pair of terminals
from the outside. In the case of a multi-port such as the four-terminal black box
from Fig. 2.3, we see that the box can be completely characterized with three sets of
measurements, using three pairs of terminals.

As discussed previously, because of the complexity involved in practically
characterizing a multi-terminal device for n >> 3 (n is the number of terminals),
we will primarily discuss three-terminal elements or two-ports, with n = 3. For
details on multi-ports, refer to section 4 from [6].

The generalization from a two-terminal to a three-terminal element amounts to
extending from scalar port variables to n − 1-dimensional vector variables. For
the purposes of clarity, we will discuss resistive two-ports in detail. For inductors,
capacitors, and memristors, the principles are identical and hence for those elements,
we will only discuss one form of representation.

A three-terminal element, or a two-port, will be called a (time-invariant) resistor
if its port voltages and port currents satisfy the following relation:

RR = {(v1, v2, i1, i2); f1(v1, v2, i1, i2) = 0 and f2(v1, v2, i1, i2) = 0} (2.3)

This relation, similar to the two-terminal resistor given by Eq. (1.35) in Chap. 1,
will be called the v − i characteristic of a three-terminal resistor or a resistive
two-port. The difference with respect to Eq. (1.35) is that we now need two
scalar functions f1(·) and f2(·) to characterize a two-port and there are four scalar
variables v1, v2, i1, i2. The characteristic is in general a two-dimensional surface in
a four-dimensional space.

When we deal with two-ports, we often need to distinguish the ports, so one of
them is marked as port 1 and the other is marked as port 2, as shown in Fig. 2.4. As
a tradition, port 1 is often referred to as the input port and port 2 is often referred
to as the output port.

We will now first consider linear resistors and use them to bring out pertinent
concepts in the generalization from a two-terminal (one-port) to multi-terminal
(two-port) element. Nonlinear two-ports such as transistors will be discussed in
Sect. 2.2.2.
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Fig. 2.4 A two-port with its
port voltages v1, v2 and port
currents i1, i2
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+ +
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Table 2.1 Six representations of a two-port

Representations Dependent variables Independent variables

Current-controlled v1, v2 i1, i2

Voltage-controlled i1, i2 v1, v2

Hybrid 1 v1, i2 i1, v2

Hybrid 2 i1, v2 v1, i2

Transmission 1 v1, i1 v2, i2

Transmission 2 v2, i2 v1, i1

Table 2.2 Equations for the six representations of a linear resistive two-port

Representations Scalar equations Vector equations
Current-controlled v1 = r11i1 + r12i2

v2 = r21i1 + r22i2

v = Ri

Voltage-controlled i1 = g11v1 + g12v2

i2 = g21v1 + g22v2

i = Gv

Hybrid 1 v1 = h11i1 + h12v2

i2 = h21i1 + h22v2

[
v1

i2

]
= H

[
i1

v2

]

Hybrid 2 i1 = h′
11v1 + h′

12i2

v2 = h′
21v1 + h′

22i2

[
i1

v2

]
= H′

[
v1

i2

]

Transmission 1 v1 = t11v2 − t12i2

i1 = t21v2 − t22i2

[
v1

i1

]
= T

[
v2

−i2

]

Transmission 2 v2 = t ′11v1 + t ′12i1

−i2 = t ′21v1 + t ′22i1

[
v2

i2

]
= T′

[
v1

i1

]

For the transmission representations, for historical reasons, a minus sign is used in conjunction
with i2. Because of the reference direction chosen for i2, −i2 gives the current leaving the output
port

With four scalar variables v1, v2, i1, i2 and two equations to characterize a
resistive two-port, there are C4

2 = 6 possible two-port representations, since we
may choose any two of the four variables as independent variables (the remaining
two are then the dependent variables). Table 2.1 gives the classification of the six
representations according to dependent and independent variables.

Table 2.2 gives the equations of the six possible representations of a linear
resistive two-port.
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In Table 2.2, G is the inverse matrix of R. Similarly, we also have H′ = H−1

and T′ = T−1. We call H and H′ hybrid matrices because both the dependent and
independent variables are mixtures of a voltage and current. We call T and T′ the
transmission matrices because they relate the variables pertaining to one port to
that pertaining to the other and the two-port serves as a transmission media. Hence,
transmission matrices are important in the study of communication networks. A
discussion of these networks is the beyond the scope of this book, but the interested
reader is referred to Chapter 13 in [6].

Example 2.2.1 Consider a resistive two-port made up of three linear resistors
as shown in Fig. 2.5. Determine the current-controlled and voltage-controlled
representations.

Solution Let us apply two independent current sources to the two-port as
shown in Fig. 2.6. KCL applied to nodes 1, 2, and 3 yields:

is1 = i1

is2 = i2

i3 = i1 + i2 (2.4)

Using Ohm’s law and KVL for node sequences 1−3−4−1 and 2−3−4−2,
we get:

v1 = i1R1 + R3(i1 + i2) = (R1 + R3)i1 + R3i2

v2 = i2R2 + R3(i1 + i2) = R3i1 + (R2 + R3)i2 (2.5)

We will rewrite Eq. (2.5) in matrix form, to obtain the current-controlled
representation from Table 2.2.

(
v1

v2

)
=
(

R1 + R3 R3

R3 R2 + R3

)(
i1

i2

)
(2.6)

Hence, we have the resistance matrix R as defined in Eq. (2.7).

R �
(

R1 + R3 R3

R3 R2 + R3

)
(2.7)

Notice that R is symmetrical: RT = R. Such symmetries will be exploited
when we discuss resistive nonlinear networks in Chap. 3.

(continued)
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Example 2.2.1 (continued)
Now, that we have R, G (conductance matrix) for the voltage-controlled

representation is simply R−1:

G � R−1 = 1

R1R2 + R2R3 + R3R1

(
R2 + R3 −R3

−R3 R1 + R3

)
(2.8)

In Example 2.2.1, we could have derived the voltage-controlled representation
first by using independent voltage sources vs1 and vs2, then used the fact that R �
G−1. In other words, it is quite simple to transform one two-port representation to
another, as shown in Example 2.2.2.

R2

R3

R1

Fig. 2.5 The resistive T -network

3

+

v2

−

i1

i3

is1

i2

4

1

R3

R1 R2

is2

2

+

v1

−

Fig. 2.6 For Example 2.2.1, we will use two independent current sources in Fig. 2.5 for obtaining
the current-controlled representation
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Example 2.2.2 In Example 2.2.1, let R1 = 1 Ω,R2 = 2 Ω,R3 =
3 Ω . Determine the numerical current-controlled representation and the other
representations from Table 2.2.

Solution The numerical current-controlled representation is given by
Eq. (2.6):

(
v1

v2

)
=
(

4 3
3 5

)(
i1

i2

)
(2.9)

The voltage-controlled representation can be found using G in Eq. (2.8) or
by inverting the numerical square matrix in Eq. (2.9):

(
i1

i2

)
=

⎛
⎜⎜⎝

5

11

−3

11

−3

11

4

11

⎞
⎟⎟⎠
(

v1

v2

)
(2.10)

It is straightforward to derive the other four representations from the
equations above. The general treatment is beyond the scope of this book but
can be found in classic references such as [6]. However, it is easy to obtain,
for example, the hybrid representations.

For the Hybrid 2 representation, we first solve for i1 in terms of v1 and i2
by using the first row from Eq. (2.9). Next, we solve for v2 in terms of v1 and
i2 by using the second row from Eq. (2.10). Thus:

(
i1

v2

)
=

⎛
⎜⎜⎝

1

4

−3

4

3

4

11

4

⎞
⎟⎟⎠
(

v1

i2

)
(2.11)

The hybrid 1 representation can be found by inverting H′ from Eq. (2.11):

H =

⎛
⎜⎜⎝

11

5

3

5

−3

5

1

5

⎞
⎟⎟⎠ (2.12)

The transmission matrices can be obtained in a similar manner and is left
as an exercise for the reader.
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2.2.1.1 Physical Interpretations

In the examples from Sect. 2.2.1, we derived various two-port representations. In
particular, we derived the current-controlled representation by using two current
sources at the two-ports and determining the two-port voltages (as shown in
Fig. 2.6).

For a physical interpretation of two-ports, recall from Chap. 1 that we defined
a linear two-terminal resistor as one having a straight line characteristic passing
through the origin in the v − i plane. For two-ports, we have four variables and two
equations, e.g., the current-controlled representation is:

v1 = r11i1 + r12i2

v2 = r21i1 + r22i2 (2.13)

These two equations impose two linear constraints on the port voltages and
the port currents and hence the point representing the four variables; namely,
(v1, v2, i1, i2) is constrained to a two-dimensional subspace in the four-dimensional
space spanned by v1, v2, i1, i2. Of course, this is difficult to visualize. However, if
we take one equation at a time, we can represent it by a family of curves in the
appropriate i − v planes, as shown in Fig. 2.7.

Fig. 2.7 Two-port characteristics plotted on the i1 −v1 plane, with i2 as parameter. r11 = 1, r12 =
−1. A similar plot can be generated for i2 − v2 plane
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From the first equation in Eq. (2.13), we can give the following interpretations
for r11 and r12:

r11 = v1

i1

∣∣∣∣
i2=0

(2.14)

Thus, r11 is called the driving-point resistance at port 1 when i2 = 0, i.e., port
2 is kept open circuited. Similarly, r12 can be interpreted by:

r12 = v1

i2

∣∣∣∣
i1=0

(2.15)

Hence, r12 is called the transfer resistance when i1 = 0, i.e., port 1 is kept open
circuited.

Analogously, we can derive the following relationships from the second equation
in Eq. (2.13):

r21 = v2

i1

∣∣∣∣
i2=0

(2.16)

r22 = v2

i2

∣∣∣∣
i1=0

(2.17)

r21 is the transfer resistance when i2 = 0 and r22 is the driving-point
resistance at port 2. Figure 2.8 gives the physical interpretations of Eq. (2.14)
through (2.17).
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Fig. 2.8 Interpretations of (a) r11, (b) r12, (c) r21, and (d) r22



74 2 Multi-Terminal Network Elements

Example 2.2.3 Give the physical interpretation of the hybrid 1 linear resistive
two-port representation from Table 2.2.

Solution The two equations for the hybrid 1 representation read:

v1 = h11i1 + h12v2 (2.18)

i2 = h21i1 + h22i2 (2.19)

Following the same treatment as the current-controlled representation, we
write:

h11 = v1

i1

∣∣∣∣
v2=0

(2.20)

h12 = v1

v2

∣∣∣∣
i1=0

(2.21)

h21 = i2

i1

∣∣∣∣
v2=0

(2.22)

h22 = i2

v2

∣∣∣∣
i1=0

(2.23)

The physical interpretations of the sources, responses, and external connec-
tions for the four hybrid representations are shown in Fig. 2.9.

Note that the four hybrid parameters h11, h12, h21, h22 represent a driving-point
resistance, a reverse voltage transfer ratio, a forward current transfer ratio, and
a driving-point conductance, respectively. As we will see in Sect. 3.1, the hybrid
representation is obtained when we derive the small-signal model for the common-
emitter configuration of the bipolar junction transistor.

Analogous interpretations can be given for other two-port representations such
as the current-controlled representation.

2.2.1.2 Dependent Sources

Up to this point, we have encountered independent voltage and current sources.
Independent sources are used as inputs to a circuit. In this section, we will introduce
another type of source, called controlled sources or dependent sources.

A controlled source is a resistive two-port element consisting of two branches:
a primary branch which is either an open circuit or a short circuit and a secondary
branch which is either a voltage source or a current source. The voltage or current
waveform in the secondary branch is controlled by (or dependent upon) the
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Fig. 2.9 Interpretations of (a) h11, (b) h12, (c) h21, and (d) h22
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Fig. 2.10 Four types of linear controlled sources

voltage or current of the primary branch. Therefore, there exist four types of
controlled sources depending on whether the primary branch is an open circuit or
a short circuit and whether the secondary branch is a voltage source or a current
source. The four types of controlled sources are shown in Fig. 2.10. They are the
current-controlled voltage source (CCVS), voltage-controlled current source
(VCCS), current-controlled current source (CCCS), and voltage-controlled
current source (VCCS). Note that we use a diamond-shaped2 symbol to denote
controlled sources. This is to differentiate them from the independent sources.

2Diamond-shaped symbol for controlled sources was used for the first time in [3].



76 2 Multi-Terminal Network Elements

Each linear controlled source is characterized by two linear equations:

CCVS: v1 = 0 v2 = rmi1 (2.24)

VCCS: i1 = 0 i2 = gmv1 (2.25)

CCCS: v1 = 0 i2 = αi1 (2.26)

VCVS: i1 = 0 v2 = μv1 (2.27)

rm is the transresistance, gm is the transconductance, α is called the current
transfer ratio, and μ is called the voltage transfer ratio. They are all constants,
thus the four controlled sources are linear time-invariant two-port resistors. More
generally, if a CCVS is characterized by the two equations: v1 = 0, v2 = f (i1),
where f (·) is a given nonlinear function, then that CCVS is a nonlinear controlled
source. Similarly, if a CCCS is characterized by the two equations v1 = 0, i2 =
α(t)i1, where α(·) is a given function of time, then this CCCS is a linear time-
varying controlled source.

Recall from Table 2.2, a linear resistive two-port has six representations. In the
case of linear controlled sources, Eq. (2.24) to (2.27) can be put in matrix form for
each corresponding to one representation:

CCVS:

(
v1

v2

)
=
(

0 0
rm 0

)(
i1

i2

)
(2.28)

VCCS:

(
i1

i2

)
=
(

0 0
gm 0

)(
v1

v2

)
(2.29)

CCCS:

(
v1

i2

)
=
(

0 0
α 0

)(
i1

v2

)
(2.30)

VCVS:

(
i1

v2

)
=
(

0 0
μ 0

)(
v1

i2

)
(2.31)

In Eq. (2.28), we have the current-controlled representation for the CCVS. Since
the resistance matrix is singular, its inverse does not exist. Therefore, there is no
voltage-controlled representation for a CCVS. In fact, it is easy to see that neither
of the hybrid representations exists as well. We can make similar statements for the
other three controlled sources, i.e., only one of the representations in the first four
rows of Table 2.2 exists.

Linear controlled sources are extremely useful in modeling electronic devices
and circuits, as we will see in Sect. 2.2.2. In Sect. 2.5.2.1, we will see that all four
controlled sources can be realized physically (to a good approximation) by using
operational amplifiers.
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Fig. 2.11 Figure for
Example 2.2.4

+
−

1k

1k

1 mA
10k

Y

X

10vX

+ v1 −

Example 2.2.4 In Fig. 2.11, determine the values of vX and vY .

Solution We have a VCVS, whose input depends on vX (voltage at node X

with respect to ground). To avoid clutter, we have not explicitly drawn the two-
port form for the VCVS. But, the reader must understand that all dependent
sources are two-ports.

Since all elements in the circuit are in series, the current flowing through
all elements is 1 mA, due to the constant current source. Since all resistors
are also linear, by Ohm’s law and the passive sign convention, we have:

vX = 1 · 10 V

= 10 V (2.32)

From KVL:

vY + v1 − 10vX = 0 (2.33)

Hence:

vY = 10vX − v1

= 99 V (2.34)
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2.2.1.3 Transformers

The ideal transformer is an ideal two-port resistive circuit element which is
characterized by the following two equations:

v1 = nv2 (2.35)

i2 = −ni1 (2.36)

where n is a real number called the turns ratio. The symbol for the ideal transformer
is shown in Fig. 2.12.

The ideal transformer is a linear resistive two-port, since its equations impose
linear constraints on its port voltages and port currents. Note that neither the
current-controlled representation nor the voltage-controlled representation exists for
the ideal transformer. Eqs. (2.35) and (2.35) can be written in matrix form in terms
of the hybrid matrix representation:

(
v1

i2

)
= H

(
i1

v2

)
=
(

0 n

−n 0

)(
i1

v2

)
(2.37)

The ideal transformer is an idealization of a physical transformer, constructed
using coupled inductors, that is used in many applications. The properties of the
physical transformer will be discussed in Sect. 2.2.3.

We wish to stress that because the ideal transformer is an ideal element defined
by Eq. (2.37), the relation between port voltages and port currents holds for all
waveforms and for all frequencies, including DC.

Two fundamental properties of the ideal transformer are:

1. The ideal transformer neither dissipates nor stores energy. Indeed, the power
entering the two-port at time t from Eq. (2.37) is:

p(t) = v1(t)i1(t) + v2(t)i2(t) = 0 (2.38)

Thus, the ideal transformer is a non-energic element (another non-energic
element is the ideal diode).

Fig. 2.12 An ideal
transformer defined by the
single parameter n, the turns
ratio. Notice that the sign of
i2 is negative in the
expression for n, confirming
to the passive sign convention

v1
v2

= n = −i2
i1

i1 i2n : 1

+

−

v1

+

v2

−
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2. When the ideal transformer is terminated at the output port with an R−Ω resistor,
the input port behaves as a linear resistor with resistance n2R. In other words:

v2 = −i2R (2.39)

Therefore, v1
i1

= nv2−i2/n
= n2R.

2.2.2 Three-Terminal Resistors

In the previous sections, we discussed linear resistive two-ports and their various
characterizations and properties. In the real world, we need to deal with nonlinear
resistive two-ports and three-terminal devices, such as transistors. Much of the
material given in the previous two sections can be extended and generalized
to the nonlinear case. For brevity, we will simply summarize the six nonlinear
representations in Table 2.3.

2.2.2.1 The npn Bipolar Transistor

Perhaps, the most commonly used three-terminal nonlinear resistor is a transistor.
These devices come in mainly two variants—the bipolar junction transistor (BJT)
and the metal-oxide-semiconductor field-effect transistor (MOSFET). We will
discuss the low-frequency characteristics of the npn BJT here, together with some
aspects of modeling. A discussion of MOSFETs can be found in excellent texts such
as [7].

Consider the common-base npn transistor as shown in Fig. 2.13. The nodes are
labeled e, b, and c corresponding to the emitter, base, and collector, respectively.

Table 2.3 Equations for the
six representations of a
nonlinear resistive two-port

Representations Scalar equations
Current-controlled v1 = v̂1(i1, i2)

v2 = v̂2(i1, i2)

Voltage-controlled i1 = î1(v1, v2)

i2 = î2(v1, v2)
Hybrid 1 v1 = v̂1(i1, v2)

i2 = î2(i1, v2)
Hybrid 2 i1 = î1(v1, i2)

v2 = v̂2(v1, i2)
Transmission 1 v1 = v̂1(v2,−i2)

i1 = î1(v2,−i2)
Transmission 2 v2 = v̂2(v1, i1)

−i2 = î2(v1, i1)
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Fig. 2.13 The common-base npn transistor
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Fig. 2.14 Ebers–Moll circuit model of npn transistor

A good low-frequency characterization is given by the one-dimensional diffusion
model which yields the Ebers–Moll equations:

ie = −IES

(
e

−veb
VT − 1

)
+ αRICS

(
e

−vcb
VT − 1

)
(2.40)

ic = αF IES

(
e

−veb
VT − 1

)
− ICS

(
e

−vcb
VT − 1

)
(2.41)

IES, ICS, αR , and αF are device parameters. VT is the thermal voltage defined
earlier in Sect. 1.9.1, where we discussed the diode. Typically, αR = 0.5–0.8,
αF = 0.99; IES, ICS are on the order of 10−12 to 10−10 at 25◦C. VT ≈ 26 mV
at 25◦C. Note that an npn BJT is in essence two interacting pn-junction diodes
connected back to back to form a three-terminal device. Thus, with the base terminal
as the ground node, the currents ie and ic entering the device at the emitter and the
collector, respectively, are functions of two node-to-ground voltages veb and vcb .
From Eqs. (2.40) and (2.41), we see that the transistor is a three-terminal voltage-
controlled nonlinear resistor. It can be represented by the equivalent circuit in
Fig. 2.14, where the two pn-junctions are connected at the base node b to model

the terms −IES

(
e

−veb
VT − 1

)
and −ICS

(
e

−vcb
VT − 1

)
. The two CCCS are used to
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Fig. 2.15 Characteristics of an npn BJT in the common-base configuration [6]
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+

− −

+

vce
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Fig. 2.16 The common-emitter npn transistor

model the terms αRICS

(
e

−vcb
VT − 1

)
and αF IES

(
e

−veb
VT − 1

)
which represent the

interaction between the two diodes.
The characteristics of Eqs. (2.40) and (2.41) are shown in Fig. 2.15 in the veb − ie

plane and the vcb − ic plane, respectively. Note that vcb serves as a parameter in the
family of curves in the veb − ie plane. Similarly, veb serves as a parameter in the
family of curves in the vcb − ic plane.

In most amplifier circuits, the common-emitter configuration shown in Fig. 2.16
is used. It is possible to derive equations for the common-emitter configuration
directly from those of the common-base configuration of Eqs. (2.40) and (2.41).
For the common-emitter configuration, the two-port voltages are vbe and vce. The
two-port currents are ib and ic. These can be related to the variables of the common-
base configuration by simply using Kirchhoff’s laws:

vbe = −veb (2.42)

vce = vcb − veb (2.43)

ib = −(ie + ic) (2.44)
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Fig. 2.17 Characteristics of an npn BJT in the common-emitter configuration [6]

Substituting the above equations into Eqs. (2.40) and (2.41), we can express the
port currents ib and ic for the common-emitter configuration in terms of the port
voltages vbe and vce. They are:

ib = (1 − αF )IES

(
e

vbe
VT − 1

)
+ (1 − αR)ICS

(
e

vbe−vce
VT − 1

)
(2.45)

ic = αF IES

(
e

vbe
VT − 1

)
− ICS

(
e

vbe−vce
VT − 1

)
(2.46)

Thus, we again have a voltage-controlled representation for the common-emitter
configuration. This set of equations is not particularly useful, because in practice,
the measured data are usually expressed in terms of the hybrid 1 representation, i.e.,

vbe = v̂be(ib, vce) (2.47)

ic = îc(ib, vce) (2.48)

Furthermore, as a tradition, we usually plot ib vs vbe with vce as a parameter, and
ic vs vce with ib as a parameter, as shown in Fig. 2.17. This is because we get a
smoothly varying family of collector-to-emitter v − i curves.

2.2.2.2 BJT Piecewise-Linear Approximation

As stated earlier, we often rely on measured data for characterizing physical
(particularly nonlinear) electronic devices, such as the transistor. We will use the
PWL approximation from Sect. 1.9.1.2, which will help us obtain circuit models,
given the characteristic curves provided by device manufacturers in respective
datasheets of their devices. The PWL characteristics of an npn BJT are shown in
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Fig. 2.18 PWL approximation of common-emitter characteristics [6]
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Fig. 2.19 PWL model of common-emitter BJT configuration

Fig. 2.18. The equivalent circuit for this representation is shown in Fig. 2.19. Note
that with vce = 0, the vbe−ib characteristic in Fig. 2.18 is precisely that of a concave
resistor specified by E0 and slope G1. In Fig. 2.19, we can see that if vce = 0, we
simply have a concave resistor across the base-emitter terminal. In Fig. 2.18, the
vbe−ib characteristic shifts to the right as vce increases. This is modeled in Fig. 2.19
by a VCVS with transfer voltage ratio μ.

Similarly, in the vce − ic characteristic in Fig. 2.18, with ib = 0 the characteristic
is of a convex resistor with ic-axis intercept equal to I0 and the slope equal to 1

R
. As

ib increases, the current ic increases. These behaviors are modeled using a convex
resistor and CCCS in Fig. 2.19, respectively.

For many large-signal applications, example H-bridges that simply run DC
motors forward or backwards, these models are unnecessarily complicated and fur-
ther simplifications are possible. But, it is important to again (recall Sect. 1.7) bear
in mind that models are developed with specific applications in mind. Obviously, the
simpler the model, the easier the circuit analysis. Thus, for applications where only
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an approximate solution is called for, we should use the simplest but valid model to
get an idea of how the circuit functions. In other situations, example in determining
the precise operating points using a computer, we need to use a more precise model
for the transistor than that of the Ebers–Moll model. A variety of such models exist
and are implemented by programs such as QUCS and SPICE. We will not cover
such models in this book.

2.2.3 Three-Terminal Inductors

A three-terminal element is called a three-terminal inductor if it can be charac-
terized by two sets of curves, or relationships, involving the variables i1, i2, φ1, φ2.
Just as for three-terminal resistors, there are several possible forms of representation.
Since the principles are identical, only one form will be discussed here, namely:

φ1 = φ1(i1, i2) (2.49)

φ2 = φ2(i1, i2) (2.50)

To find the voltages v1 and v2 corresponding to any current waveforms i1 and i2, we
apply the chain rule, thereby obtaining:

v1(t) = ∂φ1

∂i1

di1

dt
+ ∂φ1

∂i2

di2

dt
(2.51)

v2(t) = ∂φ2

∂i1

di1

dt
+ ∂φ2

∂i2

di2

dt
(2.52)

Practically speaking, we will only discuss linear three-terminal inductors. Hence,
Eqs. (2.51) and (2.52) reduce to:

v1(t) = L11
di1

dt
+ L12

di2

dt
(2.53)

v2(t) = L21
di1

dt
+ L22

di2

dt
(2.54)

The reason for discussing only linear three-terminal inductors is that the most
common type of commercially available three-terminal inductor is that of a toroidal
coil with a center tap, which is precisely a physical transformer (or transformers).
These devices are of crucial importance in power circuitry and are hence discussed
in a separate subsection below.
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2.2.3.1 Physical Transformers

A transformer that implements Eqs. (2.53) and (2.54) is shown in Fig. 2.20. The
ferromagnetic material used for the torus in Fig. 2.20 is typically ferrite or thin
sheets of special steel. As shown in Fig. 2.20, we have wound on this torus two
coils; we thus obtain a two-port. If we drive the first port with a generator so that
the current i1 is positive and have the second port open (hence i2 = 0), there will
be a strong magnetic field setup in the torus, H as indicated in the figure. Note if i1
varies with time, since the magnetic field links the second coil, there will be a time-
varying flux through that second coil. Hence, by Faraday’s law, a voltage will be
induced and v2(t) �= 0. Thus, electrical energy is transferred between the two-ports
via electromagnetic induction.

Referring back to Eqs. (2.53) and (2.54), from fundamental energy considera-
tions in physics, L12 = L21 = M , where M is the mutual inductance of inductor
1 and inductor 2. We know from our discussion of the two-terminal inductor in
Sect. 1.9.3, L11 is the self-inductance of inductor 1 and L22 is the self-inductance
of inductor 2. The schematic symbol for coupled coils is shown in Fig. 2.21. Note
that we can rewrite Eqs. (2.53) and (2.54) in matrix form:

(
v1

v2

)
=
(

L11 M

M L22

)( .

i1
.

i2

)
(2.55)

The square matrix L in Eq. (2.55) is called the inductance matrix. There is a very
important relationship between a physical transformer and the ideal transformer
discussed in Sect. 2.2.1.3, as Example 2.2.5 shows.

Fig. 2.20 Two coupled coils
wound on a torus of
ferromagnetic material

υ1

υ2

i2

i1

H

+

+

–
–

Fig. 2.21 Schematic symbol
used for coupled coils with
mutual inductance M , with
self-inductances L11, L22

M

L11 L22
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Ideal
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+
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−

i1
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−

Fig. 2.22 A two-port equivalent to a pair of coupled inductors

Example 2.2.5 Show that Fig. 2.22, a two-port made up of an ideal trans-
former and two (uncoupled) inductors La and Lm, is equivalent to a pair of
linear time-invariant coupled inductors modeled by Eq. (2.55).

Solution We will need to derive a form of Eq. (2.55) from Fig. 2.22. First,
notice that for the ideal transformer, we have the following:

v′
1 = 1

n
v2 (2.56)

i2 = −1

n
i ′1 (2.57)

Using the v − i relationship for a two-terminal inductor and applying KCL to
the node between La and Lm, we get:

v1(t) = La
di1

dt
+ Lm

d(i1 − i ′1)
dt

(2.58)

Hence, we have:

v1(t) = (La + Lm)
di1

dt
− Lm

di ′1
dt

(2.59)

Substituting for i ′1 from Eq. (2.57), we get:

v1(t) = (La + Lm)
di1

dt
+ nLm

di2

dt
(2.60)

(continued)
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Example 2.2.5 (continued)
Using Eq. (2.56), we get:

v2 = nv′
1 (2.61)

But, from Fig. 2.22, we get:

v′
1 = Lm

di1 − i ′1
dt

(2.62)

Thus:

v2 = nLm
di1

dt
− nLm

di ′1
dt

(2.63)

Again using Eq. (2.57), we get:

v2 = nLm
di1

dt
+ n2Lm

di2

dt
(2.64)

Rewriting Eqs. (2.60) and (2.64), we get the following matrix form:

(
v1

v2

)
=
(

La + Lm nLm

nLm n2Lm

)( .

i1
.

i2

)
(2.65)

The equations above do indeed model a pair of linear time-invariant coupled
inductors.

The physical interpretations of La and Lm are as follows: La is the leakage
inductance, that is, the inductance seen at the first port due to the leakage flux, i.e.,
the lines of magnetic field that do not link both coils. Indeed, from Exercise 2.2,
as n2 → 1, M2 → L11L22 and thus La → 0. Lm is called the magnetizing
inductance: its role is to model the magnetic flux common to both coils.

Suppose we wish to build a high-quality transformer. We choose a torus of
magnetic material with a very high permeability μ (e.g., ferrite, etc.). We then wind
tightly on the torus the two coils forming a two-part, as in Fig. 2.20. Suppose that we
are able to find magnetic materials with increasingly high μ: As μ becomes larger
and larger, the leakage flux would get smaller and hence La → 0. Also, the common
flux would keep increasing, hence Lm → ∞. Referring to Fig. 2.22, we see that we
are left with an ideal-transformer!
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2.2.4 Three-Terminal Capacitors

Analogous to a three-terminal inductor, we will define a three-terminal capacitor
using the form:

q1 = q1(v1, v2) (2.66)

q2 = q2(v1, v2) (2.67)

Considering q1 and q2 to be linear functions of v1, v2 and using the fact that a
capacitor is a dual of the inductor, we get:

i1(t) = C11
dv1

dt
+ C12

dv2

dt
(2.68)

i2(t) = C21
dv1

dt
+ C22

dv2

dt
(2.69)

Physical three-terminal capacitors are beyond the scope of this book. Nevertheless,
nonlinear three-terminal capacitors find a variety of applications such as parametric
amplification in solid-state circuits [9].

2.3 Three-Terminal Memristors

Finally, we have the three-terminal memristor:

φ1 = φ1(q1, q2) (2.70)

φ2 = φ2(q1, q2) (2.71)

We will not discuss three-terminal memristors as they are no physical examples yet.
However, the possibility of their future availability cannot be dismissed.

2.4 The Three-Port Circulator

Circulators3 are very useful microwave devices, used in communication systems and
measurements. An ideal three-port circulator is a linear circuit element specified

3This section was added after a discussion on June 6th 2017, with Dr. Yuping Huang from
the Stevens Institute of Technology. His group uses circulators in optical quantum computing
applications.
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by the following three equations:

f1(v1, v2, v3, i1, i2, i3) � v1 − Ri2 + Ri3= 0 (2.72)

f2(v1, v2, v3, i1, i2, i3) � v2 + Ri1 − Ri3= 0 (2.73)

f3(v1, v2, v3, i1, i2, i3) � v3 − Ri1 + Ri2= 0 (2.74)

where R is a real constant called the reference resistance. We can recast the
equations above in an elegant matrix form:

⎛
⎝

v1

v2

v3

⎞
⎠ =

⎛
⎝

0 R −R

−R 0 R

R −R 0

⎞
⎠
⎛
⎝

i1

i2

i3

⎞
⎠ (2.75)

The circuit symbol for a circulator is shown in Fig. 2.23a. Observe that a three-port
circulator is non-energic because the instantaneous power entering the three-port
is identically zero, from Fig. 2.23a:

pcirculator = v1i1 + v2i2 + v3i3

= (Ri2 − Ri3)i1 + (−Ri1 + Ri3)i2 + (Ri1 − Ri2)i3

= 0 (2.76)

Hence, energy is neither stored nor dissipated in the circulator. To demonstrate how
energy is being redistributed, suppose we connect three identical resistors whose
values are chosen equal to R in the setup shown in Fig. 2.23b. Since v2 = −Ri2 and
v3 = −Ri3, it follows from Eq. (2.75) that

v1 = Ri2 − Ri3

−Ri2 = −Ri1 + Ri3

−Ri3 = Ri1 − Ri2 (2.77)

+
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−
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−

+
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Fig. 2.23 A three-port circulator and a typical application
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Solving these equations, we obtain:

v1 = Ri1

i1 = i2

i3 = 0 (2.78)

Now, conservation of energy4 in the circuit in Fig. 2.23b implies:

vs(−i1) + vRi1 + pcirculator + v2(−i2) + v3(−i3) = 0 (2.79)

But, we have shown that pcirculator = 0 and i3 = 0. If we let ps = vsi1 be the power
supplied by the voltage source, we get:

ps = vRi1 + v2(−i2)

= Ri2
1 + Ri2

2

= 2(Ri2
1) (2.80)

We conclude that half of the power supplied by the voltage source is dissipated in its
associated series resistor, while the other half is dissipated in the resistor across port
2. In other words, all power entering port 1 is redirected to port 2 (to be dissipated
in the terminating resistor), with nothing left for port 3 (recall we obtained i3 = 0).

If we repeat the preceding analysis but with the voltage source inserted in port 2,
instead of port 1, we will find that all power entering port 2 gets delivered to port 3
with nothing left for port 1. Similarly, inserting the voltage source in port 3, we find
that all the power entering port 3 gets delivered to port 1 with nothing left for port 2.
Hence, the circulator functions by “circulating” the energy entering one port into the
next port whenever all ports are terminated by resistors equal to the reference
resistor R.

This property is widely exploited in many communication systems for diverting
power into various desired channels. For example, the setup in Fig. 2.23b can be
used to model the following situation: Let the voltage-source resistor combination
model a portable radio transmitter. Let the resistor R across port 2 model an antenna,
and let the resistor R across port 3 model a receiver. Because of the circulator, no
outgoing signal transmitted from port 1 will reach the receiver. Conversely, any
incoming signal from elsewhere that is received by the antenna (when port 1 is not
transmitting) will be delivered to the receiver in port 3. Without the circulator, two
separate antennas will be needed, one to keep the receiver from receiving its own
transmitted signal and the other to keep the transmitter from receiving unwanted
signals intended for the receiver.

4We could also apply Tellegen’s theorem.
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2.5 Operational Amplifier (Opamp)

The opamp is an extremely versatile and inexpensive semiconductor device. It has
been the workhorse of the electronics hobbyist and students for nearly six decades
and hence is of paramount importance.

For low-frequency applications, the opamp behaves like a multi-terminal
nonlinear resistor, which can often be represented by an ideal opamp model. This
model greatly simplifies the analysis and design of opamp circuits. In fact, one of the
reasons why opamps are so popular is that, at low frequencies,5 they behave almost
like the ideal model! Exercise 2.5 helps the reader understand this justification:
the exercise instructs the reader to analyze a typical opamp circuit using the more
complicated finite gain model and then compare results with those predicted by the
ideal opamp model.

Depending on the dynamic range of the input signals, the opamp may operate
in the linear or nonlinear region. Section 2.5.2 is devoted to those circuits where
the opamp is operating only in the linear region. This restriction allows us to
simplify the (nonlinear) ideal opamp model into a linear model, called the virtual
short-circuit model. This model is used extensively in Sect. 2.5.2 for analyzing
both simple circuits by inspection as well as complicated circuits via a systematic
method.

In Sect. 2.5.3, we use the nonlinear ideal opamp model to analyze opamps
operating in the nonlinear region. We will primarily discuss voltage feedback
opamps, but Sect. 2.5.5 will discuss current feedback opamps.

Note that we use a variety of examples. We encourage the reader to simulate these
examples using QUCS6 and also have access to the necessary electronics equipment
(“breadboard,” etc.) so they can construct the discussed circuits and see opamps “in
action.”

2.5.1 Device Description, Characteristics, and Model

Opamps are multi-terminal devices, shown in Fig. 2.24, and are sold in several
standard packages. For the “breadboard,” the most convenient is the DIP (Dual
Inline Package) versions of the integrated circuit (IC). Figure 2.25 gives the
schematic of the μA741, an opamp introduced by Fairchild Semiconductor in 1968,
and still in use today. The seven terminals brought out through the package leads
(Fig. 2.24) are labeled inverting input IN−, noninverting input IN+, output

5Unless otherwise stated, we will assume that all opamp circuits operate at low enough frequencies
so the ideal opamp model is valid.
6Although we cover circuit simulation in QUCS in Chap. 3 lab, the reader should be able to use
their “native intelligence” to easily simulate the circuits in this chapter, using the QUCS online
workbook as a guide.

http://qucs.sourceforge.net/docs/tutorial/workbook.pdf
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Fig. 2.24 μA741 opamp, in 8-pin SOIC, DIP, and SO versions. Opamp is not to scale

Fig. 2.25 Schematic of the μA741

OUT, positive power supply (VCC+), negative power supply (VCC−), and offset
nulls (OFFSET N1, OFFSET N2). The remaining terminals of the package are not
connected to the IC and are labeled NC (no connection). The additional terminals
such as OFFSET N1 are usually connected to some external nulling or compensation
circuit for improving the performance of the opamp. We will not use such external
circuits in this book.

Some opamps have more than seven terminals; others have less. For most
applications, however, only the five terminals indicated in the standard opamp
symbol in Fig. 2.26a are essential. Note that the opamp can be considered a 4-
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Fig. 2.26 Standard opamp symbol and a typical biasing scheme. (a) The + and − signs inside the
triangle denote the noninverting and inverting input terminals, respectively. (b) A “biased” opamp

terminal device for circuit analysis and design purposes, in the sense that both E+
and E− (Fig. 2.26) are referenced to a common external ground. All voltages are
also measured with respect to this ground. So, from a circuit theoretic standpoint,
we only need v+, v−, vo, and the external ground (four terminals). However, to be
consistent with most electronics literature, we will not show the opamp as a four-
terminal device. Rather, we will implicitly assume that the opamp is connected
properly, as in Fig. 2.26b.

In order for the opamp to function properly, its internal transistors must be biased
at appropriate operating points (we will discuss small-signal analysis in Sect. 3.1.1,
the concept of biasing should become clear then). The power supply terminals
are provided for this purpose. In Fig. 2.24, the supplies are labeled as VCC+ and
VCC−. The justification for using the CC label is that the μA741 is a BJT opamp,
CC is an acronym for “collector.” Since other transistor (for example, FET)-based
opamps exist, we will use E+ and E− for generality.

In general, E+ and E− are connected to a split power supply as shown in
Fig. 2.26b, with respect to an external ground. Typically, E+ = 15 V and
E− = 15 V (they do not have to be symmetrical with respect to ground). For
clarity purposes, we will henceforth use the symbol shown in Fig. 2.27 (assuming
that we have a symmetrical external power supply, E = ± 15 V). In Fig. 2.27a, i−
and i+ denote the current entering the opamp inverting and noninverting terminals,
respectively. Similarly, v−, v+, and vo denote, respectively, the voltage from the
inverting terminal, noninverting terminal, and output terminal to ground. The
variable vd in Fig. 2.27b is called the differential input voltage and will play an
important role in opamp circuit analysis.

To derive an exact characterization of an opamp would require analyzing the
entire integrated circuit, such as the one shown in Fig. 2.25. Fortunately, for many
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Fig. 2.27 Experimental characterization of a typical opamp. In (b), vd � v+ − v−

low-frequency applications, the opamp terminal currents and voltages have been
found experimentally to obey the following approximate relationships:

i− = IB− (2.81)

i+ = IB+ (2.82)

vo = f (vd) (2.83)

where IB− and IB+ are called the input bias currents and f (vd) denotes the vo-vs-
vd voltage transfer characteristic (VTC), since the plot shows how one voltage vin

is “transferred” to another voltage vo.7 Apart from a scaling factor which depends on
the power supply voltage, f (vd) follows approximately an odd-symmetric function
as shown in Fig. 2.27b (drawn for a ±15 V supply voltage). Moreover, this function
has been found to be rather insensitive to changes in the output current io.

The transfer characteristic in Fig. 2.27b displays three remarkable properties:

1. vo and vd have different scales: one is in volts, the other in millivolts.
2. In a small interval −ε < vd < ε of the origin, f (vd) ≈ Avd is nearly linear with

a very steep slope A—called the open-loop voltage gain. It is called “open loop”
because there is no feedback in the circuit (that is, the output is not connected
back to any of the inputs). This is a terminology from control systems. If there is
feedback, we say the loop is “closed” (or “closed loop”).

7The word “transfer” means that the response variable does not appear at the same port as the
source serving as input. There are four types of TCs possible: vo-vs-vin , vo-vs-iin , io-vs-vin , and
io-vs-iin .
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3. f (vd) saturates at vo = ±Esat, where Esat is typically 2 V less than the power
supply voltage, if the opamp in question is realized using BJTs. In that case, we
say the opamp is not “rail-to-rail.” On the other hand, FET opamps usually have
rail-to-rail behavior and Esat for such FET opamps usually range from E− to E+.

Also, the bias currents for opamps using BJTs as inputs are much larger than
opamps that use FET input transistors. For example, the average input bias current
IB � 1

2 (|IB+| + IB−|) is equal to 0.1 mA for the μA741 but only 0.1 nA for the
μA740 (which uses a part of FET input transistors).

The open-loop voltage gain A is typically equal to at least 100,000 (200,000 for
the μA741). On the other hand, the voltage ε at the end of the linear region in
Fig. 2.27b is typically less than 0.1 mV.

In view of the typical magnitudes of IB−, IB+, A, and ε, little accuracy is lost
by assuming IB− = IB+ = ε = 0, A → ∞. This simplifying assumption leads
to the ideal opamp model shown in Fig. 2.28. To emphasize that A → ∞ in the
linear region, we added ∞ inside the triangle to distinguish the ideal opamp symbol
from other models. Unless otherwise stated, the ideal opamp model will be used
throughout this book. Note that the VTC of the ideal opamp model reduces to the
three-segment PWL characteristic shown in Fig. 2.28a. The ideal opamp model can
be described analytically as follows:

i− = 0 (2.84)

i+ = 0 (2.85)

vo = Esat
|vd |
vd

, vd �= 0 (2.86)

vd = 0, −Esat < vo < Esat (2.87)
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Fig. 2.28 Ideal opamp model
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Because these equations are rather cumbersome and difficult to manipulate analyti-
cally, it is more practical to represent each region by the simple equivalent circuits
shown in Fig. 2.28b, c, and d. Note that these three equivalent circuits contain
exactly the same information as Eq. (2.84) through (2.87). In particular, when the
opamp is operating in the linear region, the ideal opamp model reduces to that shown
in Fig. 2.28b. Note that in the linear region, vd is constrained to be zero at all times
while |vo| is constrained to be less than the saturation voltage Esat. Hence, the circuit
is described by Eqs. (2.84), (2.85), and (2.87).

The circuit in Fig. 2.28c is described by Eqs. (2.84), (2.85), and (2.86) with vd >

0. Likewise, the circuit in Fig. 2.28d is described by Eqs. (2.84), (2.85), and (2.86)
with vd < 0.

Opamp circuits designed to operate exclusively in the linear region are analyzed
in Sect. 2.5.2. Note that although the opamp is operating in the linear region, the
circuit itself may contain nonlinear elements. Opamp circuits operating in both
linear and nonlinear regions will be analyzed in Sect. 2.5.3.

Example 2.5.1 The datasheet for a μA741 shows a typical open-loop voltage
gain of 200,000. Calculate the value of ε for a power supply voltage of
±20 V. Assume Esat = magnitude of power supply voltage ±2 V (use ±
as appropriate).

Solution Given the information above, we have Esat = ±18 V. Hence:

ε = ±18 V

200000

= ±0.09 mV (2.88)

Example 2.5.2 An opamp manufacturer’s datasheet usually specifies the
typical value of the average input bias current IB (defined earlier as
1
2 (|IB+| + |IB−|)) and the offset current Ios � |IB+| − |IB−|. Express |IB+|
and |IB−| in terms of IB and Ios.

Solution From the definition of IB , we get:

2IB = |IB+| + |IB−| (2.89)

Adding the equation above to the definition of Ios, we get:

2IB + Ios = 2|IB+| (2.90)

(continued)
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Example 2.5.2 (continued)
Subtracting the definition of Ios from the equation for 2IB , we get:

2IB − Ios = 2|IB−| (2.91)

Hence, we have:

|IB+| = 1

2
(2IB + Ios) (2.92)

|IB−| = 1

2
(2IB − Ios) (2.93)

2.5.2 Linear Opamp Circuits

The methods to be developed in this section are valid only if the opamp output
voltage satisfies

−Esat < vo(t)< Esat (2.94)

for all times t . We will henceforth refer to the expression in Eq. (2.94) as the
validating inequality for the linear region. If this inequality is violated in any time
interval [t1, t2], the solution in this interval is incorrect and must be recalculated
using the nonlinear model from Sect. 2.5.3.

Recall from Fig. 2.1 in Sect. 2.1 that a three-port is characterized by three
relationships among the associated voltage and current variables. Notice that in the
linear region, the ideal opamp in Fig. 2.28b can be described analytically by the
three equations8:

i− = 0 (2.95)

i+ = 0 (2.96)

v+ − v− = 0 (2.97)

8These correspond to Eqs. (2.84), (2.85), and (2.87).
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Fig. 2.29 The voltage
follower, or unity-gain buffer
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Consequently, we can think of the ideal opamp model in Fig. 2.28b as a three-port.9

For purposes of analysis, Eqs. (2.95) through (2.97) are equivalent to:

1. Connecting a short circuit across the opamp input terminals.
2. Stipulating that the currents through the input terminals are zero at all times.

To emphasize the special nature of this short circuit, we will henceforth refer to the
model from Eqs. (2.95) through (2.97) as the virtual short-circuit model. Notice
that the word “virtual” is very important, v+ = v− because of the opamp, not
because v+ is physically connected to v−.

Using the virtual short-circuit model, many opamp circuits can be analyzed by
inspection. This method usually requires no more than three calculations and is often
implemented by invoking KCL and Eqs. (2.95) through (2.97) mentally, perhaps
with an occasional scribble on the “back of an envelope.” It is best illustrated via
some useful opamp circuits as examples.

Example 2.5.3 Determine the vo-vs-vin VTC for the circuit in Fig. 2.29.

Solution First, let us apply KCL at node 2 and obtain:

iin = i+= 0 (2.98)

Applying next KVL around the closed node sequence 4 − 3 − 2 − 1 − 4:

−vo + vin − vd = 0 (2.99)

(continued)

9Recall that an opamp always has an external reference terminal, hence an ideal opamp can also
be considered as a four-terminal resistor.
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Example 2.5.3 (continued)
where we have used the usual definition: vd = v+ − v−. But, because of the
virtual short-circuit model vd = 0, so:

vo = vin (2.100)

To complete the analysis, we apply the validating inequality from Eq. (2.94)
and obtain:

−Esat < vin< Esat (2.101)

This gives the dynamic range of input voltages beyond which the opamp no
longer operates in the linear region.

Note that the voltage follower in Example 2.5.3 defines a unity-gain VCVS. This
circuit has an infinite input resistance because iin = 0 and its output “duplicates”
the input voltage, regardless of the external load. Consequently, it is also called an
isolation amplifier. It is widely used between 2 two-ports to prevent one two-port
from “loading down” the other two-port. This isolation technique is one of the most
useful tools in a designer’s “toolbox.”

Example 2.5.4 Determine the vo-vs-vin VTC for the inverting amplifier
circuit in Fig. 2.30. Note that this circuit contains linear resistors, as opposed
to the voltage follower.

Solution Since vd � v+ − v− = 0, we have:

v1 = vin (2.102)

By Ohm’s law:

i1 = v1

R1
(2.103)

Since i− = 0, we have i2 = i1. Hence:

v2 = Rf i1= Rf

(
vin

R1

)
(2.104)

(continued)
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Example 2.5.4 (continued)
Applying KVL around the closed node sequence 4 − 2 − 1 − 4:

vo =
(−Rf

R1

)
vin (2.105)

To complete the analysis, we apply the validating inequality from Eq. (2.94)
and obtain:

(
− R1

Rf

)
Esat < vin<

(
R1

Rf

)
Esat (2.106)

Hence, so long as the input signal satisfies Eq. (2.106), the circuit functions as a
voltage amplifier with voltage gain equal to −Rf /R1 (assuming Rf > R1).

Exercise 2.3 gives an example of a noninverting amplifier configuration. Of
course, we can have nonlinear elements in conjunction with the ideal opamp model,
exercise 2.4 shows one such circuit that functions as a “clipper.” Note again the
versatility of the ideal opamp model comes from the fact that even if we did assume
that the open-loop gain A is finite, the answers obtained using a finite gain model
are nearly identical to the results from the ideal opamp model. Exercise 2.5 explores
this further.

The inspection method often fails whenever it is necessary to solve two or more
simultaneous equations. In such cases, it is desirable to develop a systematic method
for writing a system of linearly independent equations involving as few variables as
possible. The following example illustrates the basic steps involved.

Fig. 2.30 The inverting
amplifier

−

++
−

vo
vin

i− = 0

i+ = 0

3

2

1

4

R f

R1

+ v1 −

+ v2 −
i2

i1
v−
v+



2.5 Operational Amplifier (Opamp) 101

−

+

+
−

+
−

vo

R2

R1

R3

R4vs2(t)

vs1(t)

is1

is2

i3

i1

+ v1 −

+ v3 −
+

v4

−

i4

i+ = 0

i− = 0

+

−vd

i2

+ v2 −

1

2

3

4

5
ia

Fig. 2.31 An opamp summing amplifier for illustrating the systematic method

Example 2.5.5 Consider the opamp circuit in Fig. 2.31. Determine the VTC
for this circuit using the systematic method.

Solution Although this circuit can be solved by inspection, we will leave
that to the reader as an exercise. Given below are the steps for the systematic
method approach:

1. Label the nodes consecutively and let ej denote as usual the voltage from
node j to the ground node. In our case, j = 1, 2, · · · , 5. Express all
resistor voltages and the differential opamp voltage vd in terms of the node-
to-ground voltages via KVL:

v1 = e1 − e3 (2.107)

v2 = e3 − e5 (2.108)

v3 = e2 − e4 (2.109)

v4 = e4 (2.110)

vd = e4 − e3 (2.111)

2. Express the branch current in each linear resistor in terms of node-to-
ground voltages via Ohm’s law:

i1 = e1 − e3

R1
(2.112)

i2 = e3 − e5

R2
(2.113)

(continued)
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Example 2.5.5 (continued)

i3 = e2 − e4

R3
(2.114)

i4 = e4

R4
(2.115)

3. Identify all other branch current variables which cannot be expressed in
terms of node-to-ground voltages, namely, the currents is1, is2, and ia . Note
that the opamp input currents i− and i+ are not variables in an ideal opamp
model, because they are equal to zero. Our objective is to write a system
of linearly independent equations in terms of node-to-ground voltages and
the identified current variables {is1, is2, ia}.

4. Write KCL at each node (except the ground node) in terms of
{e1, e2, e3, e4, e5, is1, is2, ia}:

Node 1:
e1 − e3

R1
= is1 (2.116)

Node 2:
e2 − e4

R3
= is2 (2.117)

Node 3:
e3 − e5

R2
= e1 − e3

R1
(2.118)

Node 4:
e4

R4
= e2 − e4

R3
(2.119)

Node 5: ia = e3 − e5

R2
(2.120)

5. Eqs. (2.116) through (2.120) consists of five equations with eight variables.
Hence, we need to write three more independent equations. Since we have
already made use of KVL (Step 1), KCL (Step 4), and the resistor charac-
teristics (Step 2), these three equations must come from the characteristics
of the voltage sources and the opamp:

e1 = vs1 (2.121)

e2 = vs2 (2.122)

e4 − e3 = 0 (2.123)

(continued)
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Example 2.5.5 (continued)
6. Together, the equations in the previous two steps constitute a system of

eight linearly independent equations in terms of eight variables. Solving
these equations for the desired opamp output voltage vo = e5 by any
elimination or any other method, we obtain:

vo =
[
R4(1 + R2/R1)

R3 + R4

]
vs2(t) −

(
R2

R1

)
vs1(t) (2.124)

7. Determine the dynamic range of the input voltages for which Eq. (2.124)
holds, i.e., where the opamp is operating in the linear region:

−Esat <

[
R4(1 + R2/R1)

R3 + R4

]
vs2(t) −

(
R2

R1

)
vs1(t)< Esat (2.125)

We should of course perform some sanity checks for Example 2.5.5. For
example, if vs2 = 0, we obtain an inverting amplifier. The expression and dynamic
range correctly reduce to the corresponding expressions for an inverting amplifier.

We could have also quite easily derived Eqs. (2.124) and (2.125) by using
the inspection method: since R3 and R4 are in series, we can quickly obtain an
expression for e4 and simply write a KCL expression at e3 (since e3 = e4 by the
virtual short-circuit model). The point of the example was to illustrate the systematic
method.

The preceding systematic method is applicable to any opamp circuit containing
linear resistors, independent voltage, and current sources, and opamps modeled
by virtual short circuits. This method will be generalized in Sect. 4.2.2.1, called
modified nodal analysis (MNA), for arbitrary circuits.

2.5.2.1 Implementation of Dependent Sources

A very elegant opamp application is implementation of dependent sources. In fact,
the inverting amplifier from Exercise 2.3 is an example of a VCVS. We will consider
the implementation of the other dependent sources in the examples below.



104 2 Multi-Terminal Network Elements

Fig. 2.32 CCVS using
opamp
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Example 2.5.6 The circuit in Fig. 2.32 (boxed to highlight the two-port
variables) implements a linear CCVS. Determine the transresistance rm and
the dynamic range for the opamp.

Solution We can easily derive the two-port CCVS relationship in Eq. (2.24)
using the inspection method. Since v1 = v− − v+, we have:

v1 = 0 (2.126)

Applying Ohm’s law:

v1 − v2 = i1R (2.127)

Thus:

v2 = −Ri1 (2.128)

Hence, the transresistance rm = −R. Applying the validating inequality and
using the relationship between v2 and i1 derived above, we get the dynamic
range:

−Esat

R
< i1<

Esat

R
(2.129)
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Fig. 2.33 VCCS using
opamp
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Example 2.5.7 The circuit in Fig. 2.33 (boxed to highlight the two-port
variables) implements a linear VCCS. Determine the transconductance gm

and the dynamic range for the opamp.

Solution We can easily derive the two-port VCCS relationship in Eq. (2.25)
using the inspection method. Since i1 = i+ = 0, we have:

i1 = 0 (2.130)

Applying Ohm’s law and using the virtual short-circuit model, we get:

i2 = v1

R
(2.131)

Hence, the transconductance gm = 1
R

. From KVL: v1 −v2 = vo and applying
the validating inequality, we get the dynamic range:

v2 − Esat < v1< v2 + Esat (2.132)

Example 2.5.8 The circuit in Fig. 2.34 (boxed to highlight the two-port
variables) implements a linear CCCS. Determine the current gain α and the
dynamic range for the opamp.

Solution This circuit illustrates the importance of understanding that an
opamp is biased via external power supplies. Our goal is to derive Eq. (2.26)
using the inspection method. Applying KVL around loop 1 − 2 − 3 − 4 − 1

(continued)
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Example 2.5.8 (continued)
and using node-to-ground voltages, we get:

(e1 − e2) + (e2 − e3) + (e3 − e4) = 0 (2.133)

We will simplify the KVL equation by first noting that the opamp virtual
short-circuit model implies e1 = e4. We will then apply Ohm’s law to resistors
R1, R2 and use KCL at node 2. Thus, we can simplify the KVL equation to:

i1R1 + (i1 − i2)R2 = 0 (2.134)

We thus have:

i2 =
(

1 + R1

R2

)
i1 (2.135)

Therefore, the current gain for the CCCS is α = 1 + R1
R2

. Since e1 = e4 = 0,
we get from KVL:

−i1R1 + v2 = vo (2.136)

Now, we can apply the validating inequality:

−Esat < −i1R1 + v2< Esat (2.137)

Simplifying:

Esat > i1R1 − v2> −Esat (2.138)

Hence, the dynamic range is:

v2 − Esat

R1
< i1<

v2 + Esat

R1
(2.139)

2.5.3 Nonlinear Opamp Circuits

There are many applications where the opamp operates in all three regions of
the ideal opamp model in Fig. 2.28. This occurs whenever the amplitudes of one
or more input signals are such that the validating inequality in each region is
violated over some time intervals. In this case, we probably have to use all three
regions in Fig. 2.28 and we say that the opamp is “nonlinear.” Fortunately, since the
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Fig. 2.34 CCCS using
opamp
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Fig. 2.35 VTC of a voltage
follower
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characteristic in Fig. 2.28a is a PWL characteristic, the circuit in each region can be
easily analyzed as a linear circuit.

Most practical nonlinear opamp circuits involve the use of positive feedback:
the output is connected to the noninverting input. The mindful reader would have
noticed that all the circuits in the preceding section involved negative feedback:
the output was connected to the inverting input. Inherently, negative feedback is
stable while positive feedback is not. However, stability is a dynamic concept
and understanding specifically opamp positive feedback requires the use of first-
order circuits (to be discussed in Sect. 4.2.1). But, the fact that positive feedback is
different from negative feedback can be easily explained using the PWL model, as
discussed below.

Recall the voltage follower from Example 2.5.3. We plot the VTC for the
follower in Fig. 2.35.

What happens if we interchange the inverting and noninverting terminals as
shown in Fig. 2.36? By inspection, we can find vo = vin provided |vin| < Esat.
Hence, in the linear region, the transfer characteristic of this positive feedback
circuit is identical to that of the voltage follower VTC in Fig. 2.35. In practice,
however, they do not behave in the same way: One functions as a voltage follower,
the other does not. To uncover the reason, let us derive the transfer characteristics
in the remaining regions.
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Fig. 2.36 A positive
feedback circuit
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+
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vo
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Fig. 2.37 VTC of the
positive feedback circuit from
Fig. 2.36
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When the opamp is in the + Saturation region, the validating inequality from
Fig. 2.28b for the circuit in Fig. 2.36 becomes: vd = Esat − vin > 0 or vin < Esat.
Hence, the transfer characteristic in this region is given by vo = Esat whenever
vin < Esat, as shown in Fig. 2.37.

Conversely, when the opamp is in the − Saturation region, the validating
inequality from Fig. 2.28c becomes: vd = −Esat − vin < 0 or vin > −Esat.
Hence, the transfer characteristic in this region is given by vo = −Esat whenever
vin > −Esat, completing the VTC in Fig. 2.37.

Note that complete transfer characteristics in Figs. 2.35 and 2.37 are quite
different. Even if the opamp is operating in the linear region (|vin| < Esat), there
are three distinct output voltages for each value of vin for the positive feedback
circuit. Using a more realistic opamp circuit model to be developed in Chap. 4, we
will show that all operating points on the middle segment (linear region) in Fig. 2.37
are unstable. The important concepts of stability and instability will be discussed
in Chap. 4. In the present context, having unstable operating points in the middle
region means that even if the voltage vin(0) lies on this segment, it will quickly
move to the + Saturation region if vin(0) > 0 or into the negative saturation region
if vin(0) < 0.

One may wonder if we can even confirm the VTC in Fig. 2.37 experimentally,
since the linear region is unstable. The lab component for this chapter shows how
to confirm an equivalent VTC for a Schmitt trigger (discussed below), by using an
elegant mathematical trick. The Schmitt trigger is actually a very elegant application
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of positive feedback that illustrates the very important concept that stability is a
dynamic phenomenon.

2.5.3.1 Schmitt Trigger

Consider the circuit shown in Fig. 2.38.
The Schmitt trigger in Fig. 2.38 is used for signal conditioning in the presence of

noise: the output is ±Esat depending on the input voltage, but the physical circuit
also displays hysteresis or memory. That is, the output voltage depends on the
derivative of the input voltage. The advantages offered by the Schmitt trigger when
compared to the simple positive feedback circuit in Fig. 2.36 are: we can control the
slope of the linear region and the values of the “trip” voltages V + and V − (in the
Schmitt trigger VTC in Fig. 2.39), using R1 and R2.

Fig. 2.38 The inverting
Schmitt trigger

−

+

+
−

vo

vin

R1

R2

Fig. 2.39 VTC of the
inverting Schmitt trigger in
Fig. 2.38. Compare to the
simple positive feedback
VTC in Fig. 2.37

vin

−Esat

o

+ Saturation Esat

− Saturation

V +
V −
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Fig. 2.40 An incorrect VTC
for the inverting Schmitt
trigger in Fig. 2.38. It is
incorrect because the arrows
on the VTC specify dynamic
behavior, whereas the circuit
in Fig. 2.38 does not include
any dynamic elements

vin

−Esat

o

+ Saturation Esat

− Saturation

V +V −

Note the emphasis on the word physical when discussing hysteresis: the justifi-
cation for the hysteretic behavior is the presence of parasitic components (such as
capacitors) in the physical implementation (to be discussed in Sect. 4.2.1). Most
people fail to separate the static VTC characteristic implied by Fig. 2.38 and
incorrectly derive the VTC of the Schmitt trigger, shown in Fig. 2.40.

Unfortunately, the VTC in Fig. 2.40 combines both static and dynamic character-
istics, whereas Fig. 2.38 does not have any dynamic elements (capacitors, inductors,
and memristors). Hence, we will now derive the correct VTC shown in Fig. 2.39
for the Schmitt trigger in Fig. 2.38, by simply using our ideal opamp model from
Fig. 2.28.

Example 2.5.9 Derive the vo-vs-vin expressions for the inverting Schmitt
trigger in Fig. 2.38, and hence justify the VTC in Fig. 2.39.

Solution Assuming the opamp is in the linear region of operation and
applying KCL at the noninverting input, we get using the inspection method:

0 − vin

R1
= vin − vo

R2
(2.140)

Simplifying:

vo = vin

(
1 + R2

R1

)
(2.141)

Notice that as R1 → ∞ (an open circuit), we get vo = vin from Eq. (2.141).
This obviously agrees with the slope of the linear region being equal to 1 for
the simple positive feedback circuit in Fig. 2.36. Also, notice that as long as
R2 �→ ∞ in Fig. 2.38, the value of R2 is irrelevant if R1 → ∞, since the
current into the noninverting input is zero and hence there is no voltage drop
across R2. Note that both R1 and R2 tending to ∞ means that the circuit

(continued)
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Example 2.5.9 (continued)
is physically ill-defined: the noninverting input is floating (not connected to
anything).

Applying the validating inequality for the + Saturation region, we get:

v+ − v− > 0 (2.142)

Simplifying:

vin <

(
R1

R1 + R2

)
Esat (2.143)

Thus, V + =
(

R1
R1+R2

)
Esat. Analogously, we can derive an expression for

V −, applying the validating inequality for the − Saturation region, we get:

vin > −
(

R1

R1 + R2

)
Esat (2.144)

Hence, V − = −
(

R1
R1+R2

)
Esat.

The example above discussed the inverting Schmitt trigger. Exercise 2.6 explores
the noninverting Schmitt trigger.

2.5.3.2 PWL Circuits

Consider the circuit shown in Fig. 2.41a, reproduced from the epigraph to this
chapter. Our goal is to derive the DP characteristic. As before, we can use the
inspection method.

We note that R1 and R2 form a voltage divider so that:

e3 = R2

R1 + R2
vo

= βvo (2.145)

If the opamp is operating in the linear region, e3 = v. Hence, substituting for e3 in
the equation above, we get:

vo = 1

β
v (2.146)
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Fig. 2.41 A negative-resistance converter, and its DP characteristic. Here, β � R2/(R1 + R2)

Applying KVL around the close node sequence 4 − 1 − 2 − 4, we get:

v = vo + Rf i (2.147)

In Eq. (2.147), we have used that the fact the current into the inverting input of the
opamp is zero. Using Eqs. (2.146) and (2.147), we can obtain i-vs-v for the opamp
operating in the linear region:

i = −
(

R1

R2

)(
1

Rf

)
v (2.148)

Next, we will use the validating inequality to conditions on v for the opamp to be
operating in the linear region:

−βEsat < v< βEsat (2.149)

Notice that obtaining the i−v relationships for the saturation regions is trivial, since
Eq. (2.147) is valid for any opamp region of operation, thus:

v = ±Esat + Rf i (2.150)

Specifically, for the + Saturation region:

i = 1

Rf

v − 1

Rf

Esat (2.151)
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For the − Saturation region:

i = 1

Rf

v + 1

Rf

Esat (2.152)

Equations (2.148), (2.151), and (2.152) complete the DP plot in Fig. 2.41b. The
circuit is called a negative impedance converter (NIC) because it converts positive

resistances R1, R2, Rf into a negative resistance equal to −R2Rf

R1
in the opamp’s

linear region of operation.
Exercise 2.7 asks the reader to experimentally measure the DP plot for Fig. 2.41a.

For more examples of practical negative-resistance opamp circuits, see [5].
We will see in Chapter 4 how this circuit can be used to build a relaxation

oscillator. We will also see the enormous advantage of PWL analysis when we
cover dynamic nonlinear networks in Chap. 4: PWL techniques allows us to derive
closed-form expressions for the period (and frequency), that agree remarkable well
with measured values. Moreover, that chapter will show the enormous importance
of nonlinear circuit theory in designing a very important class of circuits—
oscillators.10

2.5.4 A Family of Two-Port Resistors

The functions performed by the opamp circuits discussed so far can be summarized
in one statement: They transform input voltage waveforms (functions of time)
into some desired output voltage waveforms (functions of time). It is important to
observe that the independent variable of the transformation is always time t .

There is another important class of networks which also performs certain
transformations, but the independent variable is not time. This class of networks
takes the form of a two-port black box, and is in fact a two-port resistor. If we
connect a nonlinear resistor across port 2 of this two-port resistor, as shown in
Fig. 2.42, the resulting two-terminal black box can be interpreted as a new nonlinear
resistor because it will have a v1 − i1 curve different from the original v− i curve. In
other words, the function performed by the two-port resistor is that of transforming
a given v − i curve into a new v1 − i1 curve. In this sense, we can generate
many new nonlinear resistors from those that are presently available commercially.
Of course, an arbitrary transformation is not likely to do us much good. What
we need is to discover a few basic transformations from which all others can be
obtained. Amazingly, only three types of transformations are necessary, a scaling
transformation, a rotation transformation, and a reflection transformation.

10The linear oscillator, modeled by an LC network, requires zero resistance for sustained oscilla-
tions. Since zero resistance is near impossible to obtain physically (save for superconductors), all
practical oscillators are nonlinear.
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Fig. 2.42 The v − i curve of
a given nonlinear resistor is
transformed into a new
v1 − i1 curve by connecting
the resistor across one port of
a two-port resistor

i
+

v

−

i2
+

−

v2

i1
+

−

v1
2-port
resistor

Transformed 2-terminal black box

In the scaling transformation, the abscissa or the ordinate of each point on the v−
i curve is multiplied by a positive constant k. Such two-port resistors are accordingly
called scalors.

In the rotation transformation, the original v− i curve is rotated through an angle
θ with respect to the origin. Such two-port resistors are accordingly called rotators.

In the reflection transformation, the original v − i curve is reflected (the mirror
image) with respect to some straight line through the origin. Such two-port resistors
are accordingly called reflectors.

In the next section, we will mostly give a high-level overview of each of these
devices. Implementation details can be found in [3] or in the accompanying online
material(s) to this book. However, the reader should notice that these high-level
implementations reuse a variety of components (such as controlled sources) from
our earlier discussions. Obviously, we realized controlled sources using opamps.
Thus, at the implementation level, opamps play a vital role in realizing the family
of two-port resistors.

2.5.4.1 Scalors, Rotators, and Reflectors

There are two types of scalors, voltage scalor and current scalor. As the name
implies, a voltage scalor multiplies the voltage (abscissa) of each point on the v − i

curve by a prescribed constant kv, while maintaining the same value of current at
the same point. This requirement can be characterized by:

v1 = kvv2 (2.153)

i1 = −i2 (2.154)

The negative sign in Eq. (2.154) is necessary because we want i1 = i (i.e., i is
unchanged by a voltage scalor).



2.5 Operational Amplifier (Opamp) 115

+ −
+−

+

v1

−

(kv − 1)v2

i1

+

v1

−

i1

+

v2

−
kvv2 i1

i2

(a)

v2

+

i2

i2

v1

−

+

V

−

+

v2

−

(c)

(b)

i1

Fig. 2.43 (a), (b) Two realizations of a voltage scalor using dependent sources. (c) Circuit symbol

Example 2.5.10 Show that Fig. 2.43a, b realizes Eqs. (2.153) and (2.154).

Solution For (a), KVL gives:

v1 = v2 + (kv − 1)v2

= kvv2 (2.155)

KCL applied to the dependent source gives:

i1 = −i2 (2.156)

For (b), KVL applied to port 1 gives:

v2 = kvv2 (2.157)

KCL applied to port 2 gives:

i1 = −i2 (2.158)
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Fig. 2.44 Symbol of a
rotator
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It is important to realize that a scalor is completely different from the opamp
scaling circuits that we discussed. The independent variable for a scalor is either a
voltage or a current, whereas the independent variable for a scaling circuit is time.
Since two relationships must be satisfied by a scalor, in comparison with only one
for a scaling circuit, it is more difficult to realize a scalor in practice.

The dual of the voltage scalor is the current scalor, discussed in Exercise 2.8.
Now, we will discuss the rotator, whose circuit symbol is shown in Fig. 2.44.

From analytic geometry, we know that the relationship required to rotate a point
P with coordinates (v, i) into a point P ′ with coordinates (v1, i1) by θ◦ (in the
counterclockwise direction) is given by:

(
v1

i1

)
=
(

cos θ − sin θ

sin θ cos θ

)(
v

i

)
(2.159)

Example 2.5.11 Recast Eq. (2.159) in terms of port variables.

Solution From Fig. 2.42, we know that v = v2, i = −i2. Simply substituting
for (v, i) in Eq. (2.159), we get the two-port relationships:

(
v1

i1

)
=
(

cos θ sin θ

sin θ − cos θ

)(
v2

i2

)
(2.160)

In order to allow an arbitrary current scale (since physical currents are usually
an order of magnitude less than voltages), we multiply i1 and i2 in Eq. (2.160) by a
scale factor R, thereby obtaining:

(
v1

i1

)
=
(

cos θ (sin θ)R
sin θ
R

− cos θ

)(
v2

i2

)
(2.161)

A rotator is completely characterized by Eq. (2.161). In the volt-milliampere plane,
R = 103. A physical implementation of a rotator is simply obtained by using a
π-network, as Example 2.5.12 shows.
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Fig. 2.45 A rotator can be implemented by choosing specific conductances Gn, given the rotation
angle θ

Example 2.5.12 Show that the resistive network in Fig. 2.45 implements a
rotator, given a specified angle θ .

Solution In order to verify the realization, we need only to drive v1 and i1 in
terms of v2 and i2 for the network and show that they agree with Eq. (2.161).

By inspection, ia = G1v1, ib = G3(v1 − v2), ic = G2v2. Applying KCL
to each port, we obtain:

i1 = G1v1 + G3(v1 − v2)=
(

tan
θ

2

)
1

R
v1 + (− csc θ)

1

R
(v1 − v2)

(2.162)

i2 = G2v2 − G3(v1 − v2)=
(

tan
θ

2

)
1

R
v2 − (− csc θ)

1

R
(v1 − v2)

(2.163)

With the help of the trigonometric identity: tan θ
2 = (csc θ − cot θ), we can

simplify the above equations to:

i1 = − (cot θ)
1

R
v1 + (csc θ)

1

R
v2 (2.164)

i2 = (csc θ)
1

R
v1 − (cot θ)

1

R
v2 (2.165)

Solving Eq. (2.165) for v1, we obtain the v1 row in Eq. (2.161). Substituting
the obtained expression for v1 in Eq. (2.164), we obtain the i1 row in
Eq. (2.161).
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Fig. 2.46 Dual T-network for the π-network from Fig. 2.45
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Fig. 2.47 Symbol of a reflector

Note that in the example above, since we have a π-network, we chose to work
with conductances instead of resistances. That made our calculations much easier.
Analogous to a π-network, we could have also worked with the T-network (recall
Example 2.2.1) shown in Fig. 2.46, where working with resistances makes our
calculations much simpler. Observe that, depending upon the values of θ , either
one or two of the three linear resistors in both realizations may assume negative
values. However, only one negative resistor is necessary to realize a rotator with any
angle of rotation, provided we choose the π-network whenever 0◦ < θ < 180◦,
and the T-network whenever 180◦ < θ < 360◦. We have already discussed how to
synthesize negative resistors in Sect. 2.5.3.2.

A subset of the generic rotator is the reflector, so called because θ is the angle
which the line of reflection (through the origin) makes with the horizontal axis.
Hence, from analytic geometry, we obtain the characteristic two-port equations for
the reflector below:

(
v1

i1

)
=
(

cos 2θ −(sin 2θ)R
sin 2θ

R
cos 2θ

)(
v2

i2

)
(2.166)

We shall denote a reflector by the symbol shown in Fig. 2.47. Exercise 2.9 explores
reflector realizations, analogous to rotator realizations discussed previously.
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Fig. 2.48 Symbol of a
gyrator
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2.5.4.2 Gyrators

There are several angles of reflection which are of special practical importance,
and the corresponding reflectors have been given special names. We will discuss
a particularly important kind, called a gyrator (for other specific reflectors, please
refer to [3]).

When θ = 45◦, Eq. (2.166) can be recast into the form:

(
i1

i2

)
=
(

0 G

−G 0

)(
v1

v2

)
(2.167)

where G = 1
R

is a constant called the gyration conductance. The symbol for a
gyrator is shown in Fig. 2.48. The fundamental property of an ideal gyrator is that it
functions as an “impedance inverter.” For instance, if the output port (port 2) of the
gyrator is terminated with an RL − Ω linear resistor, the input port’s resistance is
given by:

v1

i1
= −i2/G

Gv2

= 1

G2

−i2

v2

= GL

G2 (2.168)

In other words, R1 = GL

G2 . If G = 1, we see that the input port’s resistance is the
reciprocal of the output port’s resistance. Hence the term “impedance inverter.”

The specification definition of “impedance” as a “frequency-dependent resis-
tance” will become clear in Sect. 4.3. Specifically, we will discuss that if the output
port of an ideal gyrator is terminated with a capacitor, the input port behaves like
an inductor. Thus, a gyrator is a useful element in the design of inductorless filters.
This is practically advantageous because physical inductors tend to be bulky and
lossy, when compared to physical capacitors. We will see such an implementation
in the exercises to Chap. 4.
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Fig. 2.49 Symbol for a Type
1 M − R mutator
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2.5.4.3 Mutators

So far, we have discussed two-port resistors which share the common property that
each transforms a nonlinear resistor into another nonlinear resistor. If we liken the
four basic network elements, resistors, capacitors, inductors, and memristors, to four
distinct species in the generic sense, then the scalor, rotator, and reflector can be said
to transform elements belonging to the same species.

In this section, we will show that it is possible to produce a mutation from one
species into another with the help of a two-port black box called the mutator. For
example, it is possible to connect a resistor across port 2 of a mutator and produce
an inductor across port 1. Conversely, if an inductor is connected across port 1 of
the same mutator, a resistor is produced across port 2. For this reason, this class of
mutators is called L − R mutators.11

In the interest of brevity,12 and the fact that very few physical electronic
memristors are commercially available, we will devote this section to the design
of M − R mutators for realizing memristors from nonlinear resistors [1]. We
chose nonlinear resistors because they can be more easily synthesized and are even
commercially available (for example, diodes), as opposed to nonlinear capacitors or
inductors.

Figure 2.49 shows the circuit symbol of a Type 1 M − R mutator. In order
to transform a resistor into a memristor, it is necessary that the coordinates (v, i)

of each point on a v − i curve be transformed into a corresponding point with
coordinates (φ, q). To accomplish this, first recall the following relationships from
our two-port black box in Fig. 2.42: v2 = v, i2 = −i. Suppose:

v1 � kv
dv2

dt
(2.169)

i1 � ki

(
−di2

dt

)
(2.170)

11We want to clarify mutator terminology. In Chua’s seminal book “Introduction to Nonlinear
Circuit Theory” [3], Dr. Chua refers to an L − R mutator as an R − L mutator. However, in Dr.
Chua’s publication defining the mutator [2] and all subsequent works, the terminology is consistent
with the one used in this book.
12For details on realizing other types of mutators such as C − R,R − L, etc., please refer to [2].
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kv and ki are constants that are used for dimensional consistency. We will see in
Sect. 2.5.5 when we realize an M −R mutator as to how to compute these constants.
Using the definitions in Eqs. (2.169) and (2.170), we have at port 1:

φ1 �
∫ t

−∞
v1(τ )dτ

= kv

∫ t

−∞
d

dτ
v2(τ )dτ

= kv

∫ t

−∞
d

dτ
v(τ )dτ

= kvv (2.171)

Similarly:

q1 �
∫ t

−∞
i1(τ )dτ

= ki

∫ t

−∞
−d

dτ
i2(τ )dτ

= ki

∫ t

−∞
d

dτ
i(τ )dτ

= kii (2.172)

Thus, our mutator does perform the correct mapping. A high-level realization of a
Type 1 M − R mutator using dependent sources is shown in Fig. 2.50.

Fig. 2.50 One realization of
an M − R mutator,
kv = 1, ki = 1. For other
M − R mutators such as Type
2, please refer to [1] +−

+

v1

−

i1

+

v2

−

i2

di2
dt

∫
v1dτ
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Fig. 2.51 An ideal CFOA. Labels that are prevalent in the literature: output terminal is labeled
w, the inverting input is labeled x, noninverting input is labeled y, and the compensation terminal
(pin) is labeled z

2.5.5 Current Feedback Opamps

So far, in this section, we have been using opamps that rely on voltage feedback.
There is another kind of opamp that uses current feedback, appropriately named
current feedback operational amplifier (CFOA).

A CFOA is a four-terminal13 device [10] with the circuit symbol14 shown in
Fig. 2.51.

The terminal behavior of an ideal CFOA is defined below:

ix = iz (2.173)

iy = 0 (2.174)

vx − vy = 0 (2.175)

vw − vz = 0 (2.176)

Note that the current through the compensation pin iz is feedback to the inverting
input current ix , hence the origin of the name “CFOA.”

A CFOA is particularly suited for implementing derivative (or integral) opera-
tions in controlled sources. Hence, we can easily realize two-ports such as the Type
1 M − R mutator from Fig. 2.50, as the following example shows.

13Some CFOAs do not have an externally accessible compensation pin z, to maintain pin-
compatibility with voltage feedback amplifiers. However, such devices are actually a special class
of CFOAs and in this book we will use only the very general CFOAs such as the AD844 that have
an externally accessible compensation pin. We will henceforth refer to such CFOAs as an ideal
CFOA.
14A literature search revealed that there is no standard symbol for a CFOA. We are defining this
symbol because it closely mimics the symbol of an ideal opamp with the If clarifying that we have
current feedback.
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Fig. 2.52 Type 1 M − R mutator realization [1]

Example 2.5.13 Show that the network in Fig. 2.52 implements a Type 1 M−
R mutator.

Solution First, we will derive Eq. (2.169): v1 = kv
dv2
dt

. For CFOA U2, we
have the voltage across Ci equal to v2. Notice that this is possible because the
inverting terminal of opamp U3 is at virtual ground. Thus:

iz2 = −Ci
dv2

dt
(2.177)

Also, for CFOA U2:

ix2 = iz2 (2.178)

v1 = vx2 (2.179)

Using Ohm’s law for Ri and simplifying using the above equations:

v1 = −ix2Ri

= −iz2Ri

(continued)
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Example 2.5.13 (continued)

= RiCi

dv2

dt
(2.180)

Hence, v1 = kv
dv2
dt

, where kv = RiCi . For deriving Eq. (2.170): i1 =
ki

(
− di2

dt

)
, application of KCL at node 1 gives i1 = iz1 (since current into

the noninverting input of CFOA U2 is zero). From CFOA U1:

ix1 = iz1 (2.181)

From capacitor Cd :

ix1 = −Cd
dvx1

dt
(2.182)

Note that output voltage of opamp U3 is Rdi2, which is equal to vy1. But,
since vx1 = vy1, we get:

vx1 = Rdi2 (2.183)

Substituting for vx1 in the expression for ix1, and using the fact that ix1 =
iz1 = i1, we get:

i1 = −RdCd
di2

dt
(2.184)

Hence, i1 = ki
di2
dt

, where ki = RdCd .

Further detailed discussion of CFOAs is beyond the scope of this book, but the
interested reader should consult excellent references such as [10].

2.6 Conclusion

This chapter greatly expanded upon Chap. 1 and we should now have a very good
understanding of the laws of elements, for a variety of multi-terminal elements. To
summarize:

1. To characterize a multi-terminal black box, we will choose one node as ground
(reference). We can then classify the black box as either an n-terminal resistor
(involving n − 1 terminal voltages and currents), an n-terminal inductor (involv-
ing n−1 terminal currents and flux-linkages), an n-terminal capacitor (involving
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n − 1 terminal voltages and charges), and an n-terminal memristor (involving
n − 1 terminal flux-linkages and charges).

2. Since most practical devices have single digit values for n (the number of
terminals), we can characterize three-terminal (n = 3) resistors, inductor, capac-
itors, and memristors using the six two-port representations: current-controlled,
voltage-controlled, hybrid 1, hybrid 2, transmission 1, and transmission 2.

3. We studied the four dependent sources: CCVS, VCCS, CCCS, and VCVS and
transformers as linear resistive two-ports.

4. We studied the npn BJT as a nonlinear resistive two-port.
5. A common three-terminal inductor is the physical transformer, usually consisting

of two coupled coils wound on a torus of ferromagnetic material.
6. A particularly useful multi-terminal element for redistributing power is the three-

port circulator.
7. The opamp is a very versatile multi-terminal nonlinear resistor. We implemented

amplifiers and studied nonlinear opamp circuits such as the Schmitt trigger and
NICs.

8. The family of two-port resistors: scalors, rotators, reflectors, along with the
mutator can be realized using dependent sources. For the mutator, we used a
CFOA.

We are now ready to learn about the laws of interconnections, starting with
resistive nonlinear networks in Chap. 3.

Exercises

2.1 For the linear two-ports specified by the following equations, find as many
representations as you can.

1. −i1 + 2i2 + v2 = 0

v1 + v2 = 0
2. v1 + i2 + v2 = 0

i1 = 0
3. v1 + v2 = 0

i1 + i2 = 0

2.2 By equating the inductance matrix in Eq. (2.65) (from Example 2.2.5) to the
matrix from Eq. (2.55), show that:

n = L22

M
Lm = M2

L22
La = L11 − M2

L22
(2.185)
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Fig. 2.53 Circuit for problem 2.3
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Fig. 2.54 Circuit for problem 2.4

2.3 For the inverting amplifier shown in Fig. 2.53, determine the VTC and also the
dynamic range of vin for which the opamp operates in the linear region.

2.4 Consider the circuit in Fig. 2.54, with the nonlinear resistor’s DP shown.

1. Compute the nonlinear VTC vo-vs-vin.
2. Determine the dynamic range for vin, for which the opamp remains in the linear

region.
3. Does the opamp operate in the linear region for all values of vin, in spite of a

nonlinear element in the feedback path? Justify your answer.

2.5 Consider the VTC of the finite gain opamp model shown in Fig. 2.55. Using
the PWL representation (Eq. (1.52) from Sect. 1.9.1.2), we can describe the finite



2.6 Conclusion 127

vo = f (vd)

+ Saturation region

− Saturation region
vd = v+ − v−0

−Esat

Esat
Linear region
with slope A

Fig. 2.55 VTC for problem 2.5

−

+

+
−

vo

vin

R1

R2

Fig. 2.56 Circuit for problem 2.6

gain model analytically as shown below:

i− = 0 (2.186)

i+ = 0 (2.187)

vo = A

2
|vd + ε| − A

2
|vd − ε| (2.188)

1. Derive circuits similar to Fig. 2.28b, c, and d for the finite gain opamp model.
HINT: For the linear region, you will require a VCVS.

2. Now, re-derive the VTC for the inverting amplifier from Example 2.5.4 using the
finite gain model.

3. Confirm that as A → ∞ in your finite gain VTC, we obtain Eq. (2.105).

2.6 Derive the VTC and validating inequalities for the noninverting Schmitt trigger
in Fig. 2.56. Also, sketch the VTC.

2.7 Experimentally plot the DP characteristic for Fig. 2.41a. Determine the percent
error between the experimental measurements and theoretical calculations for the
slopes and breakpoints given by Eqs. (2.148), (2.151), and (2.152).
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Fig. 2.57 For problem 2.8: (a) dependent source implementation 1, (b) dependent source imple-
mentation 2, (c) scalor
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ki1

Fig. 2.58 Circuit for problem 2.9

2.8 Derive the following current scalor relationships for the dependent source
implementations in Fig. 2.57a, b:

v1 = v2 (2.189)

i1 = −kii2 (2.190)

2.9 Show that the circuit in Fig. 2.58 realizes the reflector two-port model in
Eq. (2.166).
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Lab 2: Noninverting Schmitt Trigger VTC

Objective: To verify the Schmitt trigger characteristics from Exercise 2.6 via QUCS
simulation and physical implementation
Theory:
You may be wondering if one can actually physically observe the VTCs for the
Schmitt triggers. The answer is yes. In order to do this, consider the circuit shown
in Fig. 2.59. We have used the circuit symbol for the finite gain opamp model.
Nevertheless, for this lab, we can assume that the opamps are ideal.

The capacitor Cf and resistor Rb provide feedback at higher frequencies (for
eliminating instability due to parasitics) and can be ignored for very low frequencies.
In fact, at DC (“zero” frequency), the capacitor acts like an open circuit (more on
this in Chap. 4) and since the current into the inverting terminal of an opamp is zero,
we get Fig. 2.60, that we will use for analysis.

Lab Exercise:

1. First, for the purposes of this lab, we can assume that the upper opamp is
operating in the linear region. In fact, you should recognize the upper opamp
as a variant of the summing amplifier from Example 2.5.5.

Using KCL at the inverting input of the upper opamp, write an equation in
terms of conductances Gu,GH ,Gv and voltages u, vout, vin.

Ru

+
–

+

–

+

–

Rf Ri

Cf Rb

RH

u
Rν

Fig. 2.59 Schematic for experimentally confirming the Schmitt trigger VTC
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Ru

+
–

+

–

+

–

Rf Ri

vout

vin

RH

u
Rν

Fig. 2.60 Schematic for analysis

2. Assuming Gu = GH = Gv , find the constraint imposed by the summing
amplifier.

3. This step should help you understand the elegant mathematical trick: the
constraint that you get from the previous step is essentially shown in Fig. 2.61a, b

In other words, the derived constraint in step 2 implies that the circuit is
intersecting the line vout = −(vin + u) with the VTC of the Schmitt trigger.
This intersection is the elegant mathematical trick: obviously, only one of the
two Fig. 2.61a, b will occur in reality.

Before proceeding to the simulation and experimental verification, component
values that we used are: Rf = 20 k	,Ri = 10 k	,Ru = RH = Rv =
20 k	,Rb = 470 	,Cf = 470 pF. Opamps are TL074, we chose power supply
voltages such that Esat = ±4 V. u was varied using a sine function with an
amplitude of 8 V. Maximum frequency used was 100 Hz.

4. Use QUCS to confirm the VTC of the noninverting Schmitt trigger by using the
schematic in Fig. 2.59.

5. Physically implement your circuit from Fig. 2.59 and experimentally confirm
the noninverting Schmitt trigger VTC. Our result is shown in Fig. 2.62. The
reference for this lab is [8]. We highly recommend going through Kennedy and
Chua’s seminal work, if you have access to it. It very clearly dispels common
misconceptions about the nature of hysteresis in electronic circuits.
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Fig. 2.61 The result of
intersecting the line
vout = −(vin + u) with the
VTC of the Schmitt trigger
will result in either (a) or (b).
Note that we have used u = 0
in this figure
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Fig. 2.62 Experimental
confirmation of Schmitt
trigger VTC
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Chapter 3
Resistive Nonlinear Networks

Typical v − i plot ((0, 0) is in the lower-left corner) of a
negative resistance device, the 1N3716 tunnel-diode. Notice the
effects of parasitics are visible in the form of hysteresis in the
negative resistance region.

Abstract Having described two-terminal and multi-terminal circuit elements in the
“first part” of this book, we have hence discussed the laws of elements. We will now
study, in this chapter and the next, KCL/KVL based circuit theoretic techniques
that allow us to analyze circuits of varying degrees of “complexity” (a term we
make precise in Chap. 4). We will study these techniques by following the classical
approach: discussing static (resistive) networks in this chapter and then dynamic
(inductive, capacitive, and memristive) networks in Chap. 4. Such a division is not
accidental: in terms of circuit variables, dynamic networks usually involve differen-
tial equations, unlike static networks. Hence in this chapter we will study simpler
resistive networks. We will first discuss the fundamental concept of operating points.
Next, we will expand upon graph theoretic concepts and then discuss two of the
most important techniques: nodal and tableau analysis. We will conclude the chapter
by discussing some general properties of linear resistive networks (superposition,
Thévenin-Norton theorems) and nonlinear resistive networks (strict passivity, strict
monotonicity).
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3.1 The Operating Point Concept

Given any circuit, one is interested in determining a solution [3]. For some circuits,
there exists a unique solution. This is the case of a circuit containing two-terminal
linear passive resistors and an independent current source connected to any two
nodes of the circuit serving as input.1 For other circuits, there may exist a unique
solution, multiple solutions, or even no solution at all. This happens with circuits
containing nonlinear resistors.

The solutions to a circuit with DC input are called operating points orQuiescent
(Q)-point. The term DC analysis refers to the determination of operating points. It
will be shown later that DC analysis of general dynamic circuits (with inductors,
capacitors, and memristors) is equivalent to finding solutions of a resistive circuit
which can be simply derived from the given circuit. The subject is of major
importance in circuit theory and electronics. In this section, we will consider DC
analysis for simple circuits using a variety of techniques.

The basic concepts of DC analysis can be illustrated with the simple circuit
configuration shown in Fig. 3.1, i.e., the back-to-back connection of two one-ports at
nodes 1 and 2. What is interesting to note is that this simple configuration, because it
includes two unspecified one-ports, covers circuits with great generality. We assume
that each one-port is specified by the following DP characteristics in terms of its port
voltage and port current, va, ia and vb, ib, respectively:

fa(va, ia) = 0 and fb(vb, ib) = 0 (3.1)

These are the generalizations of the branch characteristics since each one-port is
formed by an interconnection of resistors. We are not concerned with what is inside
of the one-ports Na and Nb. Therefore we only need to use KCL and KVL to
describe the port interconnection at the two nodes 1 and 2. KCL states:

ia = −ib (3.2)

1

2

Nb Na

ib ia

+

vb

−

+

−

va

Fig. 3.1 Two resistive one-ports connected in parallel

1We will discuss existence and uniqueness theorem for general resistive nonlinear networks later
in this chapter.
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Fig. 3.2 Circuit of Fig. 3.1
with given characteristics of
Na and Nb

Eb

Rb

ib ia

+

−

vb = v = va ia = 4va
2

KVL states:

va = vb (3.3)

Therefore we can eliminate one set of voltage and current by combining Eqs. (3.1)–
(3.3). Let us denote: ia = −ib � i and va = vb � v. The two resulting equations in
terms of v and i are:

fa(v, i) = 0 and fb(v,−i) = 0 (3.4)

The solutions of the two equations are the operating points that we are looking for.
We will give a number of examples to illustrate the analytic, graphical, and PWL
methods.

Example 3.1.1 (Analytical Method) Determine the operating points in
Fig. 3.2.

Solution We will consider the nonlinear resistor as Na , hence the specifica-
tion f (va, ia) is:

ia − 4v2
a = 0 (3.5)

Let Nb be the series connection of the DC voltage source and linear resistor,
which can be used to model a real battery connected in series with a resistive
load. The specification f (vb, ib) is:

vb − Eb − Rbib = 0 (3.6)

(continued)
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Example 3.1.1 (continued)

As before, we let ia = −ib � i and va = vb � v. Hence f (va, ia) and
f (vb, ib) become:

i = 4v2 (3.7)

v = Eb − Rbi (3.8)

These two equations lead to a quadratic equation in terms of v:

4Rbv
2 + v − Eb = 0 (3.9)

The equation above can be solved for specific values of Eb and Rb. For
instance, with Eb = 2 V and Rb = 0.25 Ω , the two solutions (and hence
operating points) are: v = 1 V,−2 V and i = 4 A, 16 A, respectively.

In practice one rarely encounters problems in nonlinear circuits which can be
solved analytically. Hence we will next see probably one of the most powerful
graphical analysis techniques, the load line method.

Example 3.1.2 (Graphical (Load Line) Method) Determine the operating
points in Fig. 3.2 graphically.

Solution The circuit in Fig. 3.2 represents a typical biasing circuit in DC
design, i.e., a simple nonlinear circuit which consists of a battery, a resistor
and an electronic device modeled by a nonlinear resistor with a specified v− i

characteristic.
The way to find the solution is to transcribe the characteristic of the battery

and the resistor in the vb−ib plane to the va−ia plane, where the characteristic
of the device is plotted. We could of course transcribe the characteristic of the
device from the va − ia plane onto the battery-resistor characteristic in the
vb − ib plane. But it is always easier to transcribe a linear equation.

Since vb = va and ib = −ia , the transcribed curve is the mirror image with
respect to the v axis of the curve in the vb − ib plane. This is superimposed
with the characteristic of the nonlinear one-port Na , as shown in Fig. 3.3, for
Eb = 2 V, Rb = 0.25 Ω from Example 3.1.1. There are two intersections
of the two curves, and these give the operating points, equal to the values we
obtained in Example 3.1.1.
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Fig. 3.3 The two one-port characteristics are superimposed on the v − i plane

The transcribed battery-resistor characteristic in Fig. 3.3 is called the load line.
It is a straight line which has Eb as its v-axis intercept and has Eb/Rb as its i-
axis intercept. The load line method for determining the operating point(s) is used
in practice because the v − i characteristic of the one-port Na is often given as a
measured curve.

The third example shows how to use a PWL numerical method.

Example 3.1.3 (PWL Method) Consider the tunnel-diode circuit shown in
Fig. 3.4 where the nonlinear characteristic Na has been changed to that
of a tunnel-diode with PWL characteristics. This device exhibits negative
resistance characteristics. Determine the operating points of the circuit.

Solution Using the ideas from Sect. 1.9.1.2, we assume that the PWL charac-
teristics for the tunnel-diode can be written as:

i = a0 + a1v + b1|v − E1| + b2|v − E2| (3.10)

(continued)
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Example 3.1.3 (continued)

The parameters are: a0 = − 1
2 , a1 = 2, b1 = − 5

2 , b2 = 3
2 , E1 = 1, E2 = 2.

Let the battery-resistor characteristic be given by Eb = 6 V, Rb = 2 Ω . The
superimposed curves in the v − i plane via the load line method are shown
in Fig. 3.4b. Thus we know that the three operating points are at the three
intersections Q1,Q2,Q3. However, for the present, we wish to determine
them analytically by using Eq. (3.10).

As we have shown in the Sect. 1.9.1.2 on PWL characteristics, the v axis
can be divided into three regions:

Region 1: v ≤ E1 = 1 (3.11)

Region 2: 1 < v ≤ E2 = 2 (3.12)

Region 3: v > 2 (3.13)

In the three regions, Eq. (3.10) can be replaced by equations without absolute
value signs as follows:

Region 1: i = a0 + a1v − b1(v − E1) − b2(v − E2) (3.14)

Region 2: i = a0 + a1v + b1(v − E1) − b2(v − E2) (3.15)

Region 3: i = a0 + a1v + b1(v − E1) + b2(v − E2) (3.16)

For the battery-resistor combination, the equation is:

v = Eb − Rbi

= 6 − 2i (3.17)

First, solving Eqs. (3.14) and (3.17) for the solution in region 1, we obtain
VQ1 = 6

7 . Similarly, solving Eqs. (3.15) and (3.17) for the solution in region
2, we obtain VQ2 = 4

3 . Finally, solving Eqs. (3.16) and (3.17), we get VQ3 = 8
3

for region 3.
It is crucial to remember that we must check these calculated solutions

to see whether they fall in the assumed regions. If they indeed do, they
are valid solutions, otherwise they are called virtual solutions. They do not
corresponding to reality, they are artifacts of the method. In the present case,
we see that all three voltages are valid solutions because they do indeed fall in
the respective regions: VQ1 = 6

7 ≤ 1, VQ2 = 4
3 falls in region 2 (1 < v ≤ 2)

and VQ3 = 8
3 falls in region 3 (v > 2). Since all voltage solutions are

confirmed to be valid, we can find the corresponding currents from Eq. (3.17).

Thus, the operating points are :
(

6
7 , 18

7

)
,
(

4
3 , 7

3

)
,
(

8
3 , 5

3

)
.
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(a) (b)

Q1
Q2

Q3

Fig. 3.4 Operating points of a tunnel-diode circuit determined by the PWL method (a) Circuit (b)
load line

3.1.1 Small Signal Analysis

There is a good reason to call the solutions to DC analysis “operating points.” When
a circuit is used, some input signal (example, a sinusoidal waveform) is applied to
it so that we get a useful output. An operating point specifies a region in the v − i

plane in the neighborhood of which the actual voltage and current in the circuit vary
as a function of time. If the applied signal has a sufficiently small voltage or current
(in magnitude), the circuit can be analyzed to a good approximation by using small-
signal analysis.

Consider the tunnel-diode circuit shown in Fig. 3.5 where, in addition to the
circuit elements treated earlier, there is a sinusoidal voltage source:

vs(t) = Vm cos ωt (3.18)

First we assume that the biasing circuit, i.e., the circuit without the signal source
vs(t) has been designed properly so that there is only one operating point Q as
shown. To be specific, assume that it lies where the slope is negative. As vs(t) varies
with time, we may imagine that the load line is being moved parallel to the biasing
load line as shown in the figure. Thus the solution of the circuit driven by the input
signal vs(t) can be determined graphically point by point as the intersection point
of the characteristic of the tunnel diode and the moving load line. This gives us a
mental picture of the influence of the signal source vs(t) as t changes.

Let the v − i characteristic of the tunnel diode be specified by:

i = î(v) (3.19)
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Rb

EbVQ

IQ

Load line for vs = 0

Tunnel diode characteristic

Fig. 3.5 (a) Tunnel-diode circuit with signal source vs(t). (b) Moving load line, and (c) linear
approximation to the diode characteristic at the operating point Q

KCL states that all branch currents in the circuit are the same. KVL for the single
loop in the circuit yields the following equation:

v(t) = vs(t) + Eb − Rbi(t) (3.20)

Combining Eqs. (3.19) and (3.20) we obtain a single equation with v(·) as the
unknown to be solved for:

v(t) = vs(t) + Eb − Rbî[v(t)] (3.21)
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This cannot be solved readily since we only know the curve given by the tunnel-
diode data sheet. Of course for each value of t , we can find v(t), thus v(·) can be
determined point by point.

As seen in Fig. 3.5b, the actual signal voltage v(t) and signal current i(t) lie on
the characteristic in the neighborhood2 of Q. Therefore, let us denote:

v(t) � VQ + ṽ(t) (3.22)

i(t) � IQ + ĩ(t) (3.23)

where (VQ, IQ) is the operating point. This, in essence, shifts the coordinates from
the origin to the operating point. The two equations (3.19) and (3.20) are satisfied
with the signal vs(t) = 0, i.e.,

IQ = î(VQ) (3.24)

VQ = Eb − RbIQ (3.25)

Note that ṽ(t) and ĩ(t) book keep the displacement of the instantaneous operating
point away from (VQ, IQ) when the signal is applied. The pertinent concept above
can be illustrated with the two circuits shown in Fig. 3.6. Figure 3.6a gives the DC
equivalent circuit which is specified by Eqs. (3.24) and (3.25). We can eliminate Eb

in Eq. (3.20) by using Eq. (3.25):

v(t) = vs(t) + VQ + Rb(IQ − i(t)) (3.26)

+
−

Eb

Rb

IQ

+

VQ

−

(a)

Rb

ĩ(t)

+

ṽ(t)

−

(b)

vs (t)

DAC

Fig. 3.6 The circuit shown in Fig. 3.5a can be viewed in terms of (a) its DC equivalent circuit and
(b) its AC equivalent circuit, where the diode characteristic has its origin at (VQ, IQ). DAC denotes
the diode with the origin shifted

2Figure 3.5b has been exaggerated for clarity.
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Using the definitions of VQ and IQ from Eqs. (3.22) and (3.23), respectively, we can
eliminate v(t) and i(t) in the equation above to obtain:

ṽ(t) = vs(t) − Rbĩ(t) (3.27)

This equation can be represented by the circuit shown in Fig. 3.6b, where DAC
represents the AC behavior of the diode measured with respect to the operating
point Q. To determine (ṽ(t), ĩ(t)), we substitute Eqs. (3.22) and (3.23) into (3.19)
to obtain:

IQ + ĩ(t) = î[VQ + ṽ(t)] (3.28)

Up to now our analysis is general. At this juncture, let us assume that the
amplitude of the sinusoidal voltage vs(t) is small, i.e., VM << E. Thus the
voltage ṽ(t) is “small” in comparison with VQ. What follows below is small-signal
analysis.

Taking the first two terms of the Taylor series expansion of î[VQ + ṽ(t)] about
the points (VQ, IQ), we get:

i(t) = IQ + ĩ(t)

= î[VQ + ṽ(t)]

≈ î[VQ] +
(

dî

dv

∣∣∣∣
VQ

)
ṽ(t) ∀t (3.29)

Geometrically (see Fig. 3.5c), the approximation carried out in Eq. (3.29)
amounts to replacing the nonlinear diode characteristic by its linear approximation
about the operating point Q. In other words:

ĩ(t) ≈
(

dî

dv

∣∣∣∣
VQ

)
ṽ(t) (3.30)

The term dî
dv

∣∣∣
VQ

is the slope of the diode characteristic at the operating point Q;

note that in the present case it is negative. Let us denote:

G � dî

dv

∣∣∣∣
VQ

(3.31)

where G is negative. The quantity dî
dv

∣∣∣
VQ

is called the small-signal conductance of

the diode at the operating point Q. In other words, we simply have:

ĩ(t) = Gṽ(t) (3.32)
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Fig. 3.7 Small-signal
equivalent circuit for the
tunnel-diode

+
−

Rb

ĩ(t)

+

ṽ(t)

−

(b)

vs 
(t)

R (negative)

Hence DAC from Fig. 3.6 is interpreted as a negative small-signal resistance R = 1
G

as shown in Fig. 3.7. The small-signal equivalent circuit is a linear circuit because
the two resistors are linear. Note that the resistance R is negative, thus we have a
linear active resistor in the circuit. The solution can be obtained immediately from
the small-signal equivalent circuit:

ĩ(t) = Vm

Rb + R
cos ωt (3.33)

ṽ(t) = RVm

Rb + R
cos ωt (3.34)

Since R is negative, the factor |R/(Rb + R)| can be made very large. From the
equations above, we can define the small-signal power gain as:

P �
∣∣∣∣∣
ṽĩ

vs ĩ

∣∣∣∣∣

=
∣∣∣∣

R

Rb + R

∣∣∣∣ (3.35)

We will now derive the small-signal (linearized) hybrid two-port representation
of the npn bipolar transistor (recall Sect. 2.2.2). In other words, we are extending
small-signal analysis above from a two-terminal element (diode) to a three-terminal
element (transistor). The procedure is the same, the only difference being we will
obtain a matrix for our small-signal hybrid parameter(s).
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h22, Sh21 ĩ1
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Fig. 3.8 (a) BJT Common-Emitter (CE) amplifier. (b) Small-signal model

Example 3.1.4 Derive the small-signal model for the CE amplifier shown in
Fig. 3.8a.

Solution We will assume the input is a small-signal source, vs(t) =
Vm cos ωt . We will then see that the output voltage vce contains an amplified
waveform at the same angular frequency ω.

The hybrid representation of the CE amplifier is repeated below:

vbe = v̂be(ib, vce) (3.36)

ic = îc(ib, vce) (3.37)

Obviously, without the small-signal source vs , the operating point
(VbeQ, IbQ), (VceQ, IcQ) satisfies not only the above two equations but also
Eqs. (3.40) and (3.41). They are written as follows:

VbeQ = v̂be

(
IbQ, VceQ

)
(3.38)

IcQ = îc
(
IbQ, VceQ

)
(3.39)

VbeQ = E1 − R1IbQ (3.40)

VceQ = E2 − R2IcQ (3.41)

(continued)
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Example 3.1.4 (continued)
When the signal source vs(t) is present in the circuit, we may express the four
signal variables vbe(t), ib(t).vce(t), ic(t) for all t as:

vbe(t) = VbeQ + ṽ1(t) (3.42)

ib(t) = IbQ + ĩ1(t) (3.43)

vce(t) = vceQ + ṽ2(t) (3.44)

ic(t) = IcQ + ĩ2(t) (3.45)

where ṽ1,2(t), ĩ1,2(t) represent the “small” displacements of voltages and
currents from the fixed operating point Q. At this juncture it remains only
to determine these small-signal voltages and currents.

First substituting Eqs. (3.42) through (3.45) into Eqs. (3.36) and (3.37), we
obtain:

vbe(t) = VbeQ + ṽ1(t)

= v̂be[IbQ + ĩ1(t), VceQ + ṽ2(t)] (3.46)

ic(t) = IcQ + ĩ2(t)

= îc[IbQ + ĩ1(t), VceQ + ṽ2(t)] (3.47)

No approximation has been introduced up to this step. Next we assume that
the signal vs(t) is “small” and take the first two terms of the Taylor series
expansions of v̂be(·, ·) and îc(·, ·) about the operating point Q. We obtain the
following approximation:

vbe(t) ≈ v̂be(IbQ, VceQ) + ∂v̂be

∂ib

∣∣∣∣
Q

ĩ1(t) + ∂v̂be

∂vce

∣∣∣∣
Q

ṽ2(t) (3.48)

ic(t) ≈ îc(IbQ, VceQ) + ∂îc

∂ib

∣∣∣∣
Q

ĩ1(t) + ∂îc

∂vce

∣∣∣∣
Q

ṽ2(t) (3.49)

(continued)
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Example 3.1.4 (continued)
Comparing Eqs. (3.46) and (3.47) with Eqs. (3.48) and (3.49), and using
Eqs. (3.36) and (3.37), we obtain the following approximations:

ṽ1(t) ≈ ∂v̂be

∂ib

∣∣∣∣
Q

ĩ1(t) + ∂v̂be

∂vce

∣∣∣∣
Q

ṽ2(t) (3.50)

ĩ2(t) ≈ ∂îc

∂ib

∣∣∣∣
Q

ĩ1(t) + ∂îc

∂vce

∣∣∣∣
Q

ṽ2(t) (3.51)

The two equations can be viewed as hybrid equations relating the small
signals ĩ1 and ṽ2 to ṽ1 and ĩ2. Hence we have:

[
ṽ1

ĩ2

]
= H

[
ĩ1

ṽ2

]
(3.52)

where:

H =
[
h11 h12

h21 h22

]
�

⎡
⎢⎣

∂v̂be

∂ib

∂v̂be

∂vce

∂îc
∂ib

∂îc
∂vce

⎤
⎥⎦

Q

(3.53)

Figure 3.8b shows the small-signal model for the CE amplifier. Exercise 3.1 asks
the reader to derive the small-signal voltage gain.

If we can build an amplifier with a single transistor, as Exercise 3.1 shows, why
then do we have more than one transistor in the schematic for μA741 in Fig. 2.25?
One answer to this question is the concept of gain-bandwidth product. A detailed
discussion is beyond the scope of this book, but conceptually, we need to ensure
that the gain of the amplifier is ideally maintained across a range of frequencies
(the bandwidth of the amplifier). In other words, the gain-bandwidth product is
a constant. In a nutshell, we need the transistors shown in Fig. 2.25 to ensure a
constant gain-bandwidth product. Nevertheless, the fact is: we are able to achieve a
constant gain across a large bandwidth with so few transistors.

In Sect. 4.2.2.3, we will extend small signal analysis to nonlinear dynamic
networks.
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3.2 Matrix Formulation of Kirchhoff’s Laws

So far, we have been using KCL and KVL to describe simple circuits. For more
complicated circuits, other formal circuit techniques of circuit analysis exist. These
methods will help us systematically derive the circuit equations. Before discussing
these methods, we need to expand upon the graph theoretic concepts and matrix
formulation of Kirchhoff’s laws, that were introduced in Chap. 1. This will help us
in the discussion of nodal and tableau analysis techniques later in this chapter.

3.2.1 Cut Sets, Hinged Graphs, and Linear Independence

Definition 3.1 Given a network graph G , a cut set is a set of branches C of G
having the property that if we “cut” (as if with scissors) each branch in the set once,
G gets separated into two disconnected subgraphs G1 and G2, and if we leave any
one branch of the set uncut, G remains connected in one piece by that branch.

For instance, consider the digraph shown in Fig. 3.9. The set of branches
{3, 4, 8, 6} is a cut set, since cutting these branches once separates the graph into
two subgraphs. Similarly, the set {3, 4, 8, 5, 7} is also a cut set.

Some remarks about cut sets:

1. Any cut set creates a partition of the set of nodes in the graph into two subsets
2. To any cut set corresponds a gaussian surface (recall Definition 1.9) which cuts

precisely the same branches
3. Similarly, to any gaussian surface corresponds either one cut set or a union of cut

sets. For example, S1 in Fig. 3.10.
4. To each cut set we can define arbitrarily a reference direction, as shown by the

arrows attached to the cut sets in Fig. 3.10.

Fig. 3.9 A digraph
associated with a bridge
circuit
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Fig. 3.10 Digraph
illustrating cut sets 2
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Fig. 3.11 Digraph for
Example 3.2.1
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Definition 3.2 KCL (Cut Set Law): For all lumped circuits, for all time t , the
algebraic sum of the currents associated with any cut set is equal to zero.

Example 3.2.1 The digraph in Fig. 3.11 shows some example cut sets. Write
the KCL equation associated with those cut sets.

Solution Cut set C1 consists of the set of branches {β1, β3, β5}. Since all
currents are in the direction of the cut set, the KCL associated with C1 is:

i1 + i3 + i5 = 0 (3.54)

For C2, we have:

i7 − i3 − i6 = 0 (3.55)

−i3,−i6 are because both those currents are going in, while the cut set
direction is pointing out. Similarly, for C3, we have:

−i1 − i7 = 0 (3.56)
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Combined with the KCL definitions from Chap. 1, we have learned three forms
of KCL, namely, in terms of (1) gaussian surfaces, (2) nodes, and (3) cut sets.

Theorem 3.1 (KCL Equivalence Theorem) The three forms of KCL are equiva-
lent: (1) KCL gaussian surface ⇔ (2) KCL node law ⇔ (3) KCL cut sets

Proof We will only prove the implication as the other direction can be proved in a
similar manner.

• (1) ⇒ (2) Simply use the gaussian surface that surrounds only the node in
question. For example, consider node 5 in Fig. 3.10. For the gaussian surface
S1, KCL applied to S1 is identical to KCL applied to node 5:

i1 − i3 − i4 − i5 − i6 = 0 (3.57)

• (2) ⇒ (3) Any cut set partitions the set of nodes into two subsets. Writing the
KCL equation for each node in such a subset and adding the results, we obtain
the cut set equation, except for maybe a −1 factor. For example, consider the cut
set C2 in Fig. 3.10. If we add the KCL equations applied to nodes 3 and 4, we
obtain:

i4 + i5 + i6 = 0 (3.58)

Note that i7 cancels out in the addition, resulting in the KCL cut set equation
for C2.

• (3) ⇒ (1) It is easy to demonstrate that the set of branches cut by a gaussian
surface is either a cut set or a disjoint union of cut sets. So given any gaussian
surface, let us write the KCL equation for each of these cut sets; then adding or
subtracting these equations, we obtain the KCL equation for the gaussian surface.
For example, consider gaussian surface S1 in Fig. 3.10. It is the union of the cut
set {β1, β3} and cut set {β4, β5, β6} whose equations are, respectively,

−i1 − i3 = 0 (3.59)

−i4 − i5 − i6 = 0 (3.60)

Adding the two equations above, we get:

−i1 − i3 − i4 − i5 − i6 = 0 (3.61)

which is the KCL equation for the gaussian surface S1. ��
Up to now, we have assumed the circuit is connected. But, recall from our

discussion of transformers in Sects. 2.2.1.3 and 2.2.3.1 that a circuit with a physical
transformer is not connected. It turns out that we can easily take care of this
situation. We first generalize the element graph representation from one-port to a
two-port, by using two branches and four nodes for its element graph as shown in
Fig. 3.12.



152 3 Resistive Nonlinear Networks
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Fig. 3.12 The element graph of a two-port
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Fig. 3.13 (a) Connecting nodes 3 and 5 by a branch k. (b) Soldering together nodes 3 and 5 to
obtain a hinged graph

Next, we need to understand the element graph of a two-port consists of two
branches which are not connected, because it signifies that port voltages or port
currents at different ports are not related because of connections but rather are
coupled because of physical phenomena within the element. For example, recall
from Sect. 2.2.3.1 that physical transformer port voltages are coupled magnetically
via the flux linkages among the various windings.

To avoid an unconnected digraph (circuit graph), we can tie together the two
separate ports of a digraph at two arbitrary nodes by a branch. This is illustrated in
Fig. 3.13a where nodes 3 and 5 are tied together by a branch k. This connection does
not change any branch voltage or current in the original circuit. This is easily seen
because, by using KCL with a gaussian surface which encloses one of the separate
parts of the graph and which cuts branch k, the current ik is zero. If ik = 0, it
amounts to an open circuit or no connection; thus we have not changed the behavior
of the circuit. Next, since voltages are measured between nodes, we choose a ground
node for the separate parts. If we choose nodes 3 and 5 as the ground nodes for the
separate parts, we may “solder” together node 3 and node 5 as shown in Fig. 3.13b
to make them the common ground node. The graph so obtained is called a hinged
graph. With the introduction of the concept of a hinged graph, we have generalized
our treatment so far to include two-ports and multi-ports, that is, we can always
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assume without loss of generality that any lumped circuit and its associated digraph
are connected.

We now have all the graph theoretic concepts that we need for this chapter. But,
before discussing independent KCL and KVL equations, we need to discuss the
concept of linear independence.

Consider a set of m linear algebraic equations in n unknowns. For j =
1, 2, · · · ,m

fj (x1, x2, . . . , xn) � αj1x1 + αj2x2 + · · · + αjnxn = 0 (3.62)

where the αjk’s are real or complex numbers. It is important to decide whether or
not each equation brings new information not contained in the others; equivalently,
it is important to decide whether the equations are linearly independent. These m

equations are said to be linearly dependent iff there are constants k1, k2, · · · , km

and not all zero such that:

m∑
j=1

kjfj (x1, x2, . . . , xn) = 0 ∀ x1, x2, . . . , xn (3.63)

Clearly if these m equations are linearly dependent, then at least one equation may
be written as a linear combination of the others; in other words, that equation repeats
the information contained in the others.

It is crucial to note that the LHS of Eq. (3.63) must be zero for all values of
x1, x2, . . . , xn.

Example 3.2.2 Are the equations below (m = 3 and n = 4) linearly
dependent?

x1 − x2 + x3 + 3x4 = 0

2x1 + 3x2 − x3 − 4x4 = 0

−4x1 − 11x2 + 5x3 + 18x4 = 0

Solution Direct calculation shows that with k1 = 2, k2 = −3 and k3 = −1
the condition for Eq. (3.63) holds; in other words, these three equations are
linearly dependent.
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A set of m linear algebraic equations is said to be linearly independent iff it is
not linearly dependent. In practice, we use gaussian elimination to decide whether
or not a given set of linear equations is linearly dependent.

3.2.2 Independent KCL Equations

For a given circuit, we can write KCL equations by the node law or the cut set law, or
using gaussian surfaces. How many of the KCL equations are linearly independent
and how to write a complete set that contains all the necessary information as far
as KCL is concerned are the subjects of this subsection. We will give a systematic
treatment by means of the digraph of the circuit under consideration: in particular,
a list of nodes, a list of branches, and for each branch the specification of the node
that the branch leaves and enters. This is done by the incidence matrix Aa of the
digraph.

Let the digraph G have n nodes and b branches, then Aa has n rows—one row for
each node—and b columns—one column for each branch. To see how the matrix is
built up consider the four-node six-branch digraph shown in Fig. 3.14. Let us write
the KCL equations for each node:

i1 + i2 − i6= 0

−i1 − i3 + i4 = 0

− i2 + i3 + i5 = 0

− i4 − i5 + i6= 0 (3.64)

Fig. 3.14 A digraph with
four nodes and six branches
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In matrix form, it reads:

⎡
⎢⎢⎣

Branch 1 Branch 6

Node 1→ 1 1 0 0 0 −1
Node 2→ −1 0 −1 1 0 0
Node 3→ 0 −1 1 0 1 0
Node 4→ 0 0 0 −1 −1 1

⎤
⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

i1

i2

i3

i4

i5

i6

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎝

0
0
0
0

⎞
⎟⎟⎠ (3.65)

Since each row corresponds to a node and each column corresponds to a branch, we
have the 4 × 6 incidence matrix Aa . For example, for node 4 we have i4, i5 coming
in and i6 going out and hence the 4th row in the matrix has two −1 s and one +1.
Similarly, branch β1 that connects node 1 to 2 has one +1 and one −1 in column 1.

In general, for any n-node b-branch connected digraphG which does not contain
self-loops,3 the matrix Aa is specified as follows: For i = 1, 2, · · · , n and k =
1, 2, · · · b:

aik =

⎧⎪⎪⎨
⎪⎪⎩

+1 if branch k leaves node i

−1 if branch k enters node i

0 if branch k does not touch node i

(3.66)

and the node n node equations of G read:

Aai = 0 (3.67)

where i = (i1, i2, · · · , ib)
T is called the branch current vector.

Example 3.2.3 Is the incidence matrix in Eq. (3.65) full row rank?

Solution Equivalently, the question posed is asking whether the KCL
equations corresponding to the incidence matrix are linearly dependent or
independent. We could transform the incidence matrix to row-echelon form.
Instead, simple observation shows that with k1 = k2 = k3 = k4 = 1, the
condition for Eq. (3.63) holds; in other words, the incidence matrix is not full
row rank.

Example 3.2.3 shows that each column of Aa has precisely a single +1 and
a single −1; consequently, if we add together n equations in Eq. (3.67), all the

3A self-loop contains precisely one node and one branch, they are not loops according to
Definition 1.6 (of a loop).
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variables i1, i2, · · · , ib cancel out; equivalently, the n KCL equations are linearly
dependent.

But, suppose that for a connected4 digraph G we choose a ground node and we
throw away the corresponding KCL equation, then the remaining n − 1 equations
are linearly independent. This is the defining property of this subsection, hence we
state it formally as a theorem and prove it:

Theorem 3.2 (Independence Property of KCL Equations) For any connected
digraph G with n nodes, the KCL equations for any n − 1 of these nodes form a set
of n − 1 linearly independent equations.

Proof We prove it by contradiction. Suppose that the first k of these n−1 equations
are linearly dependent. More precisely, there are k real constants γ1, γ2, · · · , γk not
all zero such that:

k∑
j=1

γjfj (i1, i2, . . . , in) = 0 ∀ i1, i2, . . . , in (3.68)

Consider the two sets of nodes in G , namely, the set which corresponds to the k

equations and that of the remaining nodes. Since the digraph is connected, there is
at least one branch which connects a node in the first set to a node in the second set.
Clearly the current in that branch appears only once in the first k node equations,
hence that current cannot cancel out in the sum of Eq. (3.68). This contradiction
shows that for any k ≤ n−1, it is not the case that a subset of k of the KCL equations
is linearly independent. That is, these n − 1 equations are linearly independent. ��

If in Aa , the incidence matrix of the connected digraph G , we delete the row
corresponding to the ground node, we obtain the reduced incidence matrix A
which is of dimension (n − 1) × b. The corresponding linearly independent KCL
equations read:

Ai = 0 (3.69)

As a consequence of the independence property proved in Theorem 3.2, we may
equivalently state that the matrix A is full rank.

4If a digraph is not connected, there are two simple solutions to the problem: one approach would
be to treat each graph separately. In this case, each part would have its own incidence matrix and
ground node. The other approach would be to use a hinged graph, as described in Sect. 3.2.1. We
will use both approaches in this book.
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3.2.3 Independent KVL Equations

Similarly, to write a set of linearly independent KVL equations in a systematic
way is of crucial importance. Let us write the KVL equations for the four-node
six-branch digraph of Fig. 3.14. Using associated reference directions and choosing
node 4 as the ground node, we obtain:

v1 = e1 − e2

v2 = e1 − e3

v3 = −e2 + e3

v4 = e2

v5 = e3

v6 = − e1 (3.70)

or in matrix form:

v = Me (3.71)

where v = (v1, v2, . . . , vb)
T is the branch voltage vector, e = (e1, e2, . . . , en−1)

T

is the node-to-ground voltage vector, and M is a b × (n − 1) matrix. Thinking in
terms of KVL, we see that for k = 1, 2, . . . , b and i = 1, 2, . . . , n − 1:

mki =

⎧⎪⎪⎨
⎪⎪⎩

+1 if branch k leaves node i

−1 if branch k enters node i

0 if branch k does not touch node i

(3.72)

Comparing Eq. (3.72) with (3.66) we conclude that:

M = AT (3.73)

and more usefully, KVL is expressed by the equation:

v = AT e (3.74)

With a connected digraph G , A has n − 1 linearly independent rows (full row
rank) and consequently AT has n − 1 linearly independent columns (full column
rank).

Thus, to summarize, in order to obtain linearly independent KCL and KVL
equations from a digraph representation of a circuit:

1. We choose current reference directions
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2. We choose a ground node and define the reduced incidence matrix A
3. We write KCL as Ai = 0
4. We then use associated reference directions (or passive sign convention, recall

Definition 1.2) to find that KVL reads v = AT e.

Note that we are assuming we use the same ground node for writing KCL and KVL.

3.2.4 A Proof of Tellegen’s Theorem

We can now state and prove Tellegen’s theorem.

Theorem 3.3 (Tellegen’s Theorem) Consider an arbitrary circuit. Let the asso-
ciated digraph G have b branches. Using passive sign convention, let v =
(v1, v2, . . . , vb)

T be any set of branch voltages satisfying KVL for G and let
i = (i1, i2, . . . , ib)

T be any set of branch currents satisfying KCL for G . Then:

b∑
k=1

vkik = 0 (3.75)

Equivalently:

vT i = 0 (3.76)

Proof For a connected digraph G , choose a ground node; hence, a reduced matrix
A is defined unambiguously. Since i satisfies KCL, we have:

Ai = 0 (3.77)

Since v satisfies KVL and since we use associated reference directions, for some
node-to-ground voltages e, we have:

v = AT e (3.78)

Using the two equations above, we successively obtain:

vT i = (AT e)T i

= eT (AT )T i

= eT (Ai)

= 0 (3.79)

��
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Note how the proof essentially uses our discussion from Sect. 1.6.1. Now the
idea from Sect. 1.6.1 should be very clear: v and i in the theorem need not bear any
relation to each other: v must only satisfy KVL and i must only satisfy KCL (using
associated reference directions). We will use Tellegen’s theorem to prove some very
general results for nonlinear resistive networks in Sect. 3.7.

3.2.5 The Relation Between Kirchhoff’s Laws and Tellegen’s
Theorem

In circuit theory, there are two fundamental postulates: KCL and KVL. We have
proved that KCL and KVL imply Tellegen’s theorem. It is interesting to note that
any one of Kirchhoff’s laws together with Tellegen’s theorem implies the other.
More precisely, we have the following theorem:

Theorem 3.4 (Tellegen’s Theorem and Kirchhoff’s Laws)

1. If, for all v satisfying KVL, vT i = 0, then i satisfies KCL.
2. If, for all i satisfying KCL, vT i = 0, then v satisfies KVL.

Proof For 1: Since v satisfies KVL, we know that v = AT e for all e. But, given that
Tellegen’s theorem is also satisfied, we have:

vT i = eT (Ai)= 0 (3.80)

Since e is an arbitrary node-to-ground voltage, the last equality implies Ai = 0, that
is, i satisfies KCL.
For 2: Let L be an arbitrary loop in the graph G . Consider the i obtained by
assigning zero current to all branches of G except for those of loop L ; depending
on whether the reference direction of branch j in loop L agrees with that of loop
L , we assign ij to be 1 A or −1 A. The resulting i satisfies KCL at all nodes of G .
Tellegen’s theorem applied only to the branches in loop L gives:

∑
±vj = 0 (3.81)

Thus the algebraic sum of branch voltages around loop L is zero, i.e., KVL holds
for loop L . Since L is arbitrary, we have shown that KVL holds for all loops of G .

��

3.3 An Introduction to General Resistive Circuit Analysis

We can now embark on a more general and definitive study of resistive circuits.
Our aim for the rest of this chapter is to develop general methods of analysis, for
both linear and nonlinear resistive circuits, and to derive general properties of such
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circuits. A common theme would be to start with (an example of) the linear case
because equations for linear circuits can almost be derived by “inspection.”

The term resistive circuit applies to all circuits containing two-terminal resis-
tors, multi-terminal resistors, multi-port resistors and independent voltage and
current sources. Common circuit elements such as ideal transformers, rotators,
gyrators, controlled sources, transistors and opamps modeled by resistive circuits
etc. are all included. To avoid clutter, all of these garden variety circuit elements
will be lumped under the umbrella “multi-terminal and multi-port resistors”.
However, independent sources will always be singled out separately, because, as
will be clear shortly, they play a fundamentally different role.

The importance of resistive circuits cannot be understated. The analysis of many
general nonresistive circuits reduces to the analysis of the associated resistive cir-
cuit. Secondly, many computer algorithms for simulating dynamic circuits require
at each step the analysis of a resistive circuit.

Recall that a physical circuit is an interconnection of real electric devices. For
purposes of analysis and design, each electric device is replaced by a device model
made of ideal circuit elements5 (e.g., ideal diodes, batteries, linear and nonlinear
resistors, controlled sources, etc.). The interconnection of these models gives the
electric circuit. Since, the detailed but important study of devicemodeling is beyond
the scope of this book, our point of departure for analysis would be a circuit.
Whether the circuit arises from models of physical devices, or from the figment
of one’s imagination is irrelevant. In fact, it is often through the introduction of
hypothetical, and sometimes pathological circuits, that one gains an in-depth
understanding of this subject.

A few words concerning some general technical terms to be used throughout this
book. A resistive circuit is said to be linear iff, after settings all independent sources
to zero, it contains only linear (recall Exercise 1.9 for the superposition definition
of linearity) two-terminal, multi-terminal, and/or multi-port resistors. A resistive
circuit is said to be nonlinear iff it contains at least one nonlinear resistor besides
independent sources.

Finally, we need to caution the reader to “not lose sight of the forest for its trees.”
In other words, one should not be so consumed by the systematic techniques that we
lose total insight into the circuit at hand. After all, only a computer circuit simulation
program “blindly” applies the techniques, without any insight.

5Of course, all circuit elements are ideal. We will, nevertheless, occasionally throw in the word
“ideal” to remind the reader that “nonphysical” answers (e.g., the Schmitt trigger VTC) are quite
possible and even expected. When they do occur, the culprit is not the theory, but the model. Such
situations can only be rectified by returning to the drawing board to come up with a more detailed
circuit model. Again, in the case of the Schmitt trigger, we will account for physical parasitics to
explain the observed behavior.
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3.4 Nodal Analysis for Resistive Circuits

The simplest method for analyzing a resistive circuit is to solve for its node-to-
ground voltages. Once these node voltages have been calculated, we can solve
for the branch voltages trivially via KVL: v = AT e. They in turn can be used to
calculate the branch currents, provided all the elements in the circuit other than
current sources are voltage-controlled. In this section, we will consider only the
subclass of resistive circuits which are amenable to this common analysis method,
henceforth called node analysis. The goal would be to determine the corresponding
node equation for the circuit in question.

For simple resistive circuits, the node equation can be formulated almost by
inspection, as illustrated in the following example.

Example 3.4.1 Determine the node equation for the circuit in Fig. 3.15.

Solution The circuit shown in Fig. 3.15 contains only linear (two-terminal)
resistors and independent current sources. Choosing (arbitrarily) node 4 as
the ground node, each branch current can be expressed in terms of at most
two node voltages, simply by using Ohm’s law since we have linear resistors.
Thus:

i1 = G1v1 = G1e1 i4 = G4v4 = G4(e1 − e2)

i2 = G2v2 = G2(e2 − e1) i5 = G5v5 = G5(e3 − e2)

i3 = G3v3 = G3(−e2) i6 = G6v6 = G6e3 (3.82)

It follows from Sect. 3.2.2 that we can write three linearly independent KCL
equations in terms of e1, e2, and e3, namely:

Node 1 : G1e1 − G2(e2 − e1) + G4(e1 − e2) = is1(t)

Node 2 : G2(e2 − e1) − G3(−e2) − G4(e1 − e2) − G5(e3 − e2) = −is3(t)

Node 3 : G5(e3 − e2) + G6e3 = is3(t) − is2(t) (3.83)

Recasting in matrix form:

⎡
⎢⎣

(G1 + G2 + G4) −(G2 + G4) 0

−(G2 + G4) (G2 + G3 + G4 + G5) −G5

0 −G5 (G5 + G6)

⎤
⎥⎦

⎡
⎢⎣

e1

e2

e3

⎤
⎥⎦ =

⎡
⎢⎣

is1(t)

−is2(t)

is3(t) − is2(t)

⎤
⎥⎦

(3.84)

(continued)
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Example 3.4.1 (continued)
In other words, we have:

Yne = is(t) (3.85)

henceforth called the node equation. Yn is a square matrix called the node-
admittance matrix and is(t) is called the equivalent source vector.

We will shortly show that a large class of linear resistive circuits is described by
a form like Eq. (3.85). But first, an inspection of Fig. 3.15 and Eq. (3.84) reveals the
following properties.

We will prove the properties in Table 3.1, once we obtain the node-admittance
matrix in terms of the reduced incidence matrix A, which we will do so below.

is1(t) G1

G2

G3

G4

G5

G6
is2 

(t)

is3 
(t)

1 2 3

4

+

v1

−

− v2 +

−
v3

+

− v5 +

+

v6

−

+ v4 −

i6

i5i2

i3

i1

e1 e2 e3

i4

Fig. 3.15 Circuit for example 3.4.1. Here, Gj denotes the conductance in S for the j th resistor

Table 3.1 Properties of Eq. (3.85)

For any circuit made of linear two-terminal resistors and independent sources

1. The kth diagonal element of Yn is equal to the sum of all conductances attached to node k

2. The jkth off-diagonal element of Yn is equal to the negative of the sum of all conductances
between node j and node k

3. The matrix Yn is symmetric: Yn = YT
n

4. The kth element of is(t) is equal to the algebraic sum of currents of all independent current
sources entering node k
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3.4.1 Formulation in Terms of Reduced Incidence Matrix

Let N denote any connected linear resistive circuit containing only two-terminal,
multi-terminal and/or multi-port linear voltage-controlled resistors, and independent
current sources. For example, N may contain gyrators because they are defined
by a voltage-controlled linear equation, Eq. (2.167). On the other hand, N may
not contain ideal transformers because it is not voltage-controlled, that is, it is
impossible to solve for i1, i2 from the defining Eq. (2.37) in terms of only v1, v2.
Controlled sources other than VCCS are also disallowed for the same reason.6

Note that although independent voltage sources are not allowed in our present
formulation, they can be included later through equivalent circuit transformations.

If the terminals and/or ports of all circuit elements which are not independent
current sources are labeled consecutively, and if v = (v1, v2, . . . , vb)

T and i =
(i1, i2, . . . , in)

T denote the respective branch voltage and branch current vectors,
then N is precisely the class where i can be described as a linear function of v;
namely,

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

i1

i2

·
·
·
ib

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

y11 y12 · · · y1b

y21 y22 · · · y2b

· · · · · ·
· · · · · ·
· · · · · ·

yb1 yb2 · · · ybb

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

v1

v2

·
·
·
vb

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3.86)

or simply,

i = Ybv (3.87)

Equation (3.87) is the branch equation, where Yb is called the branch admittance
matrix. In general, Yb is a b × b nonsymmetric and nondiagonal real matrix, where
b is the number of branches, excluding the independent current sources, in the
associated digraph.

We have deliberately left out the independent current sources because they can
be easily accounted for separately. In particular, the contribution of current sources
can be represented by a single vector:

is (t) = [
is1(t) is2(t) · · · is(n−1)(t)

]T
(3.88)

where ısk(t) denotes the algebraic sum of currents of all independent current sources
entering node k, k = 1, 2, . . . , n − 1 and n denotes the number of nodes in the

6We will however be able to use tableau analysis from Sect. 3.5 to analyze circuits with any resistive
element.
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connected circuit N . To avoid violating KCL, it is necessary to assume that no cut
sets are made exclusively of independent current sources.

Equivalently, the digraph associated with the reduced circuit obtained by open-
circuiting all independent current sources is connected. Let A denote the reduced
incidence matrix of this connected digraph. It follows that:

Ai = is(t) (3.89)

constitutes a system of n − 1 linearly independent KCL equations. It is important
to note that the KCL Eq. (3.89) differs from the usual form (Ai = 0) because
here, the reduced incidence matrix A pertains to the reduced digraph obtained by
open-circuiting all independent current sources from the digraph associated with
the circuit.

Substituting the branch Eq. (3.87) in place of i in Eq. (3.89), we obtain:

AYbv = is (t) (3.90)

Rewriting the branch voltage v in terms of the node voltage e via KVL (Eq. (3.74)),
we get:

(AYbAT )e = is(t) (3.91)

Comparing Eqs. (3.85) and (3.91), we have derived the node-admittance
matrix:

Yn = AYbAT (3.92)

We have hence derived the following general result, our first systematic circuit
analysis technique:

Nodal Analysis for Linear Resistive Circuits
For any connected circuit containing two-terminal, multi-terminal, and/or

multi-port linear voltage-controlled resistors and independent current sources
which do not form cut sets, the node equation is given explicitly by:

Yn(t)e(t) = is (t) (3.93)

Yn(t) � AYb(t)AT , Yn(t) is the node-admittance matrix, is (t) denotes the
equivalent source vector whose kth element isk(t) is equal to the algebraic sum
of the current of all independent current sources entering node k, andA denotes
the reduced incidence matrix of the digraph associated with the reduced circuit
obtained by deleting all independent current sources.
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The astute reader would have noticed that we have defined Eq. (3.93) for time-
varying elements as well. This is fine because if branch k is a time-varying resistor
described by ik(t) = Gk(t)vk(t), then ykk = Gk(t).

Note that the dimension of A and Yb(t) are (n − 1) × b and b × b, respectively,
where n is the number of nodes in the circuit, and b is the number of branches in
the digraph associated with the reduced circuit. Consequently, the dimensions of the
node-admittance matrix Yn(t) is (n − 1) × (n − 1).

In other words, the node Eq. (3.93) always contains n − 1 linear equations in
terms of n − 1 node voltages e1, e2, . . . , en−1.

To find the solution of the circuit, we simply solve Eq. (3.93) at each instant of
time t by any convenient method, say gaussian elimination. If n is very large, say
n > 100, and if the matrix Yn(t) contains only a small percentage of nonzero entries
as is typical in practice (Yn(t) is said to be sparse), there exist specially efficient
computer algorithms for solving the equation. If the circuit is time-invariant and
contains only DC current sources, then Yn(t) is a constant matrix and is(t) is a
constant vector. In this case, Eq. (3.93) need to be solved only once.

Unlike several other methods of analysis (e.g., tableau analysis, modified nodal
analysis) to be studied later, the number of equations to be solved in node analysis
does not depend on the number of circuit elements. Hence for a 100-element circuit
containing only 10 nodes, we only need to solve 9 equations.

Once e(t) has been found, the branch voltages can be calculated by substitution
into the time-varying case for Eq. (3.74): v(t) = AT e(t)—and the branch currents
can be calculated by substitution into the time-varying case for branch Eq. (3.87):
i(t) = Yb(t)v(t).

Example 3.4.2 Prove the properties in Table 3.1.

Solution Let us begin by expanding Eq. (3.92), for a circuit with three nodes
and three resistors:

Yn = AYbAT

=
[
a11 a12 a13

a21 a22 a23

]⎡
⎢⎣

G1 0 0

0 G2 0

0 0 G3

⎤
⎥⎦

⎡
⎢⎣

a11 a21

a12 a22

a13 a23

⎤
⎥⎦

=
[
(a11a11G1 + a12a12G2 + a13a13G3) (a11a21G1 + a12a22G2 + a13a23G3)

(a21a11G1 + a22a12G2 + a23a13G3) (a21a21G1 + a22a22G2 + a23a23G3)

]

(3.94)

(continued)
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Example 3.4.2 (continued)
If we denote the jkth element of Yn by (Yn)jk and the kth diagonal of Yb by
Gk , then in general, we have:

(Yn)jk =
b∑

l=1

ajkaklGl (3.95)

provided that Yb is a diagonal matrix, i.e., provided the circuit contains only
two-terminal resistors and independent current sources.

If we let j = k in Eq. (3.95), we find the kth diagonal element is given by:

(Yn)kk =
b∑

l=1

a2
klGl

=
∑
βk

Gl (3.96)

where
∑
βk

is defined as the sum over all branches connected to node k. This

is true because of the observation that akl = 1,−1 or 0, and akl �= 0 if and
only if branch Gl is connected to node k. Hence we have proved property 1
of Table 3.1 holds for any circuit described by a diagonal branch admittance
matrix Yb.

Observe next that if ajl �= 0, i.e., Gl is connected to node j , then

akl = −ajl (3.97)

if Gl is connected between nodes j and k, and

akl = 0 (3.98)

if Gl is connected between node j and the ground node. It follows from
Eqs. (3.95) and (3.98) that each off-diagonal element (j �= k) of Yn can be
simplified as follows:

(Yn) = −
∑
βjk

Gl (3.99)

(continued)
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Example 3.4.2 (continued)

where
∑
βjk

is defined to be the sum over all branches connected between nodes

j and k. Hence we have proved property 2 of Table 3.1. Moreover, Eq. (3.99)
implies that:

(Yn)jk = (Yn)kj or Yn = YT
n (3.100)

This proves property 3 of Table 3.1. Note that this symmetry property has
nothing to do with whether the circuit is symmetrical or not. It is actually a
consequence of an important circuit-theoretic property called reciprocity that
will be discussed in Sect. 4.6.1.

The last property of Table 3.1 follows by definition and is therefore true
regardless of whether Yn is diagonal or not.

3.4.2 Existence and Uniqueness of Solutions

When we talked about various methods for solving the linear node Eq. (3.93) in the
previous section, we implicitly assumed that Eq. (3.93) had a unique solution for any
time t . To show that this assumption is not always satisfied even by simple circuits,
consider the circuit shown in Fig. 3.16a.

Using the properties from Table 3.1, we obtain the following node equation by
inspection (note the resistances are given in ohms):

[
1 −2

−2 4

] [
e1

e2

]
=
[
is1(t)

is2(t)

]
(3.101)

is1 

(t) is2 

(t)

0.5

−1 0.5

1 2

3

is1(t)

Req →

1

e1 e2

3

e1

(a) (b)

Fig. 3.16 A circuit containing a negative resistance
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Since the determinant of Yn is zero, Eq. (3.101) either has no solution or has
infinitely many solutions. The latter occurs if and only if, ∀ t, is1(t) = − 1

2 is1(t).
To give a circuit interpretation of the above conclusion, let us assume for

simplicity that is2(t) = 0 for all t so that the current source on the right-hand side
can be deleted without affecting the circuit’s solution. The resulting circuit can be
further simplified to that shown in Fig. 3.16b, where the three resistors in Fig. 3.16a
are replaced by an equivalent resistor Req . Since the current source is(t) flows into
an open circuit, it follows that the circuit does not have a solution if is1(t) �= 0. On
the other hand, if is1(t) = 0 for all t , then the circuit is satisfied by any node voltage
e1, and hence it admits an infinite number of solutions.

The following result gives a sufficient (but not necessary) condition for a circuit
to have a unique solution.

Existence and Uniqueness Condition
Any resistive circuit containing only two-terminal linear positive conductances
and independent current sources which do not form cut sets has a unique
solution.

Proof Note that linear positive conductances or strictly passive resistors will be
defined in Sect. 3.7. The above hypotheses guarantee that the node equation given
by Eq. (3.93) is well-defined. Moreover, Yb is a positive-definite diagonal matrix
(since for all j , Gj > 0); i.e., vT Ybv > 0,∀ v �= 0.

Now, for any node voltage vector e �= 0:

eT Yne = eT (AYbAT )e

= (AT e)T Yb(AT e)

= vT Ybv

> 0 (3.102)

Hence Yn is a positive-definite matrix and thus is full rank. Therefore Eq. (3.93) has
a unique solution given by e = Y−1

n is(t). ��

3.4.3 Node Equation Formulation: Nonlinear Resistive
Circuits

When the circuit contains one more nonlinear resistors, the procedure for writing
the node equation discussed in Sect. 3.4 in terms of the node voltage vector e still
holds provided all nonlinear resistors are voltage-controlled. For example, consider
the two linear resistors G2 and G5 in Fig. 3.15 replaced by a pn-junction diode
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is1(t) G1 G3

G4

G6
is2(t)

is3(t)

1 2 3

4

+

v1
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− v2 +

−
v3

+

− v5 +
+

v6

−

+ v4 −

i6

i5i2

i3

i1

e1 e2 e3

i4

Fig. 3.17 A nonlinear circuit

described by i2 = Is

(
e(v2/VT ) − 1

)
and an NR described by i5 = v3

5 as shown in
Fig. 3.17.

Our first step as usual is to express the branch currents of the resistors in terms
of the node voltages e1, e2, and e3:

i1 = G1v1 = G1e1 i4 = G4v4 = G4(e1 − e2)

i2 = Is

(
e(v2/VT ) − 1

)
= Is

(
e

e2−e1
VT

−1
)

i5 = v3
5 = (e3 − e2)

3

i3 = G3v3 = G3(−e2) i6 = G6v6 = G6e3 (3.103)

Note that this step is possible as long as the nonlinear resistors are voltage-
controlled, i.e., the branch currents are functions of branch voltages.

Our next step is to apply KCL at each node (excluding the ground node):

Node 1 : G1e1 − Is

(
e

e2−e1
VT

−1
)

+ G4(e1 − e2) = is1(t)

Node 2 : Is

(
e

e2−e1
VT

−1
)

− G3(−e2) − G4(e1 − e2) − (e3 − e2)
3 = −is3(t)

Node 3 : (e3 − e2)
3 + G6e3 = is3(t) − is2(t) (3.104)

The equations above constitute the node equation of the circuit in Fig. 3.17. But
since these equations are nonlinear, they cannot be described by a node-admittance
matrix.

Consider now the general case where the circuit may contain two-terminal, multi-
terminal, and/or multi-port nonlinear voltage-controlled resistors, in addition to
independent current sources. In this case, the branch equations now assume the
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following form:

i1 = g1(v1, v2, . . . , vb)

i2 = g2(v1, v2, . . . , vb)

...

ib = gb(v1, v2, . . . , vb) (3.105)

In vector notation we have:

i = g(v) (3.106)

called the nonlinear branch equation. Since independent current sources do not
form cut sets (by assumption), Eq. (3.89) remains valid. Substituting Eq. (3.106) for
i in Eq. (3.89), we get:

Ag(v) = is(t) (3.107)

Substituting next Eq. (3.74) for v, we get the nonlinear node equation:

Ag(AT e) = is (t) (3.108)

For each solution of e in Eq. (3.108), we can calculate the corresponding branch
voltage vector v by direct substitution into Eq. (3.74), namely, v = AT e. This in
turn can be used to calculate the branch current vector i by direct substitution into
Eq. (3.106). Hence the basic problem is to solve the nonlinear node Eq. (3.108). The
rest is trivial. In general, nonlinear equations do not have closed form solutions.
Consequently, they must be solved by numerical techniques, that are beyond the
scope of this book. The most widely used method is the Newton-Raphson algorithm,
the reader is referred to excellent sources such as [3] for details.

3.5 Tableau Analysis for Resistive Circuits

The only, albeit major, shortcoming of node analysis is that it disallows many
standard circuit elements from the class of allowable circuits, e.g., the voltage
source, ideal transformer, ideal op amp, CCCS, CCVS, VCVS, current-controlled
nonlinear resistor, etc. In this section, we overcome this issue by presenting a
completely general analysis method—one that works for all resistive circuits.
Conceptually, this method is simpler than node analysis. It consists of writing out
the complete list of linearly independent KCL equations, linearly independent KVL
equations, and the branch equations. For obvious reasons, this list of equations is
called tableau equations [2].
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Since no variables are eliminated7 in listing the tableau equations, all three
vectors e, v, and i are present as variables. Since we must have as many tableau
equations as there are variables, it is clear that the price we pay for the increased
generality is that tableau analysis involves many more equations than node analysis
does. In our era of computer-aided circuit analysis, however, this objection turns out
to be a blessing in disguise because the matrix associated with tableau analysis is
often extremely sparse, thereby allowing highly efficient numerical algorithms to be
used.

The significance of tableau analysis actually transcends the above more mundane
numerical considerations. As the reader will gather while reading this and other
advanced textbooks on nonlinear circuits, tableau analysis is a powerful analytic
tool which allows us to derive many profound results with almost no pain at all—at
least compared to other approaches.

To write the tableau equation for any linear resistive circuit, we simply use the
following algorithm8:

1. Draw the digraph of the circuit and hinge it if necessary so that the resulting
digraph is connected. Pick an arbitrary ground node and formulate the reduced
incidence matrix A.

2. Write a complete set of linearly independent KCL equations:

Ai(t) = 0 (3.109)

Note that unlike Eq. (3.89), tableau analysis deals with the original digraph where
each independent current source is represented by a branch.

3. Write a complete set of linearly independent KVL equations:

v(t) − AT e(t) = 0 (3.110)

4. Write the branch equations. Since the circuit is linear, these equations can always
be recast into the form:

M(t)v(t) + N(t)i(t) = us(t) (3.111)

Together Eqs. (3.109)–(3.111) constitute the tableau equations. If the digraph has n

nodes and b branches, Eqs. (3.109)–(3.111) will contain n − 1, b and b equations,
respectively. Since the vectors e, v, and i also contain n − 1, b and b variables,
respectively, the tableau equation for a linear resistive circuit always consists of
(n − 1) + 2b linear equations in (n − 1) + 2b variables.

7Recall both v and i must be eliminated in node analysis, leaving e as the only variable.
8The reader may wish to scan Example 3.5.1 after each step in order to get familiarized first with
the notations used in writing the tableau equation.
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Example 3.5.1 Write the tableau equations for the linear circuit in Fig. 3.18.

Solution The circuit only contains three elements: a voltage source, an
ideal transformer, and a time-varying resistor. The first two elements are not
allowed in nodal analysis because they are not voltage-controlled. The third
element, which would normally be acceptable, is also disallowed here because
its conductance G(t) = 1/(R0 sin t) → ∞ at t = 0, 2π, 4, π, · · · and is
therefore not defined for all t .

Applying the preceding recipe, we hinge nodes 3 and 4 and draw the
connected digraph shown in Fig. 3.18b. Choosing the hinged node as ground,
the tableau equations are formulated below.

KCL : AI = 0 ⇔
[

1 0 0 1
0 1 1 0

]
⎡
⎢⎢⎣

i1

i2

i3

i4

⎤
⎥⎥⎦ =

[
0
0

]
(3.112)

KVL : v − AT e = 0 ⇔

⎡
⎢⎢⎣

v1

v2

v3

v4

⎤
⎥⎥⎦−

⎡
⎢⎢⎣

1 0
0 1
0 1
1 0

⎤
⎥⎥⎦
[
e1

e2

]
=

⎡
⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎦ (3.113)

Branch Equations :
n2v1 − n1v2 = 0

n1i1 + n2i2 = 0

v3 − R(t)i3 = 0

v4 = E cos ωt

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

⇔

⎡
⎢⎢⎢⎢⎣

n2 −n1 0 0

0 0 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

v1

v2

v3

v4

⎤
⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎣

0 0 0 0

n1 n2 0 0

0 0 −R(t) 0

0 0 0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

i1

i2

i3

i4

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

0

0

0

E cos ωt

⎤
⎥⎥⎥⎥⎦

(3.114)

n = 3, b = 4 for the digraph in Fig. 3.18b. Consequently, we expect the
tableau equation to contain (n − 1) + 2b = 10 equations involving 10 vari-
ables, namely e1, e2, v1, v2, v3, v4, i1, i2, i3, i4. An inspection of Eqs. (3.112),
(3.113), and (3.114) shows that indeed we have 10 equations involving these
10 variables.
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R0 sin(t)
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3
4

1
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3,4

(a) (b)

Fig. 3.18 All three elements in this circuit are disallowed in node analysis

Example 3.5.1 simply illustrated how to apply the tableau analysis algorithm.
Had one encountered the circuit in Fig. 3.18a in practice, assuming enough expe-
rience in circuit analysis, one can quickly write the necessary equations “on the
back of an envelope.” The point we wish to emphasize again is that one should use
insight, along with technique.

The vector us(t) on the right-hand side of Eq. (3.111) does not depend on any
variable ej , vj or ij and is therefore due to only independent voltage and current
sources in the circuit. Consequently, element k of us(t) will be zero whenever
branch k is not an independent source. Note that controlled source coefficients
always appear in the matrices M(t) and/or N(t), never in us(t).

An inspection of Eq. (3.114) reveals that each row k of M(t) and N(t) contains
coefficients or time functions which define uniquely the linear relation between vk

and ik of branch k in the digraph, assuming branch k corresponds to a resistor. If
branch k happens to be an independent source, then the kth diagonal element is
equal to one in M(t) (for a voltage source) or N(t) (for a current source), while all
other elements in row k are zeros. In this case, the kth element of us(t) will contain
either a constant (for a DC source) or a time function which specifies uniquely this
independent source. On the other hand, if branch k is not an independent source,
then the k element of us (t) is always zero. It follows from the above interpretation
that both M(t) and N(t) are b × b matrices and us(t) is a b × 1 vector, where b is
the number of branches in the digraph.

Finally note that we can state that a resistive circuit is linear iff its branch
equations can be written in the form stipulated in Eq. (3.111), and it is time-invariant
iff both M(t) and N(t) are constant real matrices.
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In the general case, it is more illuminating to write Eqs. (3.109)–(3.111) as a
single matrix equation, the linear tableau equation, shown in Eq. (3.115).

⎡
⎣

0 0 A
−AT I 0
0 M(t) N(t)

⎤
⎦

︸ ︷︷ ︸
T(t)

⎡
⎣
e(t)
v(t)
i(t)

⎤
⎦

︸ ︷︷ ︸
w(t)

=
⎡
⎣

0
0

us(t)

⎤
⎦

︸ ︷︷ ︸
u(t)

(3.115)

It is natural to call T(t) the tableau matrix associated with the linear resistive
circuit. If the circuit is time-invariant, T(t) = T, a constant real matrix.

Every linear resistive circuit is associated with a unique [(n − 1) + 2b] × [(n −
1)+2b] square tableau matrixT(t), and a unique [(n−1)+2b]×1 vector u(t).9 Note
the significance of the tableau matrix is the fact that, if and only if, det[T(t0)] �= 0
at any time t0, a unique solution to the linear circuit exists in the form of w(t0) =
T−1(t0)u(t0).

3.5.1 Tableau Equation Formulation: Nonlinear Resistive
Circuits

Exactly the same principle is used to formulate the tableau equation for nonlinear
resistive circuits: Simply list the linearly independent KCL and KVL equations, and
the branch equations, which are now nonlinear. Hence, the first three steps of the
algorithm at the beginning of Sect. 3.5 remain unchanged. Only step 4 needs to be
modified because Eq. (3.111) is valid only for linear resistive circuits. Example 3.19
illustrates and suggests the modified form of Eq. (3.111).

Example 3.5.2 Write the tableau equations for the nonlinear circuit in
Fig. 3.19. The npn transistor is modeled by the following nonlinear Ebers-
Moll equation (see Eqs. (2.40) and (2.41) from Chap. 2):

i1 = −IES

(
e

−v1
VT − 1

)
+ αRICS

(
e

−v2
VT − 1

)
(3.116)

i2 = αF IES

(
e

−v1
VT − 1

)
− ICS

(
e

−v2
VT − 1

)
(3.117)

(continued)

9The “uniqueness” is of course relative to a particular choice of element and node numbers.



3.5 Tableau Analysis for Resistive Circuits 175

Example 3.5.2 (continued)
Solution Since the digraph for this circuit is identical to that shown in
Fig. 3.18b, the same KCL Eq. (3.112) and KVL Eq. (3.113) also apply for
this circuit. However, instead of Eq. (3.114), we have the following branch
equations:

h1(v1, v2, i1) � i1 + IES

(
e

−v1
VT − 1

)
− αRICS

(
e

−v2
VT − 1

)
= 0

h2(v1, v2, i1) � i2 − αF IES

(
e

−v1
VT − 1

)
+ ICS

(
e

−v2
VT − 1

)
= 0

h3(v3, i3, t) � v3 − R(t)i3 = 0

h4(v4, t) � v4 − E cos ωt = 0 (3.118)

Note that h1(·, ·, ·) and h2(·, ·, ·) are nonlinear functions of (v1, v2, i1) and
(v1, v2, i2), respectively; h3(·, ·, ·) is a linear function of v3 and i3 but a
nonlinear function of t; and h4(·, ·) is a function of only v4 and t . Even for
this simple circuit, we see that there is really no simple form analogous to
Eq. (3.114). To avoid keeping track of which variables are present in each
function, we will simply denote Eq. (3.118) as follows:

h1(v1, v2, i1, i2, t) = 0

h2(v1, v2, i1, i2, t) = 0

h3(v1, v2, i1, i2, t) = 0

h4(v1, v2, i1, i2, t) = 0 (3.119)

or in vector form, we simply write:

h(v, i, t) = 0 (3.120)

It is understood that some variables may not be present in each component
equation.
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Fig. 3.19 A nonlinear resistive circuit

It follows from Example 3.5.2 that every nonlinear resistive circuit is described
by a unique system of (n − 1) + 2b nonlinear algebraic equations in (n − 1) + 2b

variables, called the nonlinear tableau equation:

Ai(t) = 0

v(t) − AT e(t) = 0

h(v(t), i(t), t) = 0 (3.121)

We usually resort to numerical methods to solve Eq. (3.121), which is beyond the
scope of this book.

3.6 General Properties of Linear Resistive Circuits

In this section, we state and prove two general theorems for linear time-invariant
resistive circuits,10 namely the superposition theorem and the Thévenin-Norton
theorem. Intelligent use of these theorems often results in a dramatic simplification
of an otherwise much more difficult problem.

Both these theorems are valid if and only if the associated circuit is uniquely
solvable, equivalently, if and only if the associated tableau matrix T is nonsingular.
Although these theorems are stated only for time-invariant circuits for simplicity,
both theorems are valid also for time-varying circuits by simply allowing all
parameters and coefficients to vary with time.

10Recall that a linear resistive circuit may contain, in addition to two-terminal resistors and inde-
pendent sources, any multi-terminal or multi-port linear resistors (for example, ideal transformers,
gyrators, and all four types of linear-dependent sources).
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3.6.1 Superposition Theorem

Theorem 3.5 (Superposition Theorem for Linear Time-Invariant Circuits)
Let N be any linear time-invariant uniquely solvable resistive circuit driven
by α independent voltage sources vs1(t), vs2(t), . . . , vsα(t) and β independent
current sources is1(t), is2(t), . . . , isβ(t).

Then any node voltage ej (t), any branch voltage vj (t), or any branch
current ij (t) is given by an expression of the form

H1vs1(t) + · · · + Hαvsα(t) + K1is1(t) + · · · + Kβisβ(t) (3.122)

where the coefficients Hk, k = 1, 2, . . . , α and Kk, k = 1, 2, . . . , β are
constants which depend only on the circuit parameters ofN and the choice of
the output variable (i.e., ej , vj or ij ) but not on the independent sources.

Before we prove Theorem 3.5, it is instructive to give some circuit interpretations
and an example. The circuit interpretations are:

1. Each term y(vsk) � Hkvsk in Eq. (3.122) is equal to the response of y when all
independent sources in N except vsk(t) are set to zero.

2. Each term y(isk) � Kkisk in Eq. (3.122) is equal to the response of y when all
independent sources in N except isk(t) are set to zero.

3. Equation (3.122) shows that the response due to several independent voltage and
current sources is equal to the sum of the responses due to each independent
source acting alone, i.e., with all other independent voltage sources replaced
by short circuits, and all other independent current sources replaced by open
circuits.11

4. Equation (3.122) also shows that in applying the superposition theorem, con-
trolled sources are left intact.

5. The response at any time t = t0 depends only on the value of the independent
sources at the same time t = t0. In other words, linear resistive circuits have no
memory.

11Compare this description to the definition of superposition from Exercise 1.9.
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+
−

+
−vs1(t)

R1 e1

i2
R2

is1(t)

vs1(t)

R1 e1(vs1)

i2(vs1)

R2 R2

R1

is1(t)

i2(is1)

e1(is1)

(a) (b) (c)

Fig. 3.20 (a) Circuit for superposition. (b) Voltage divider. (c) Current divider

Example 3.6.1 Use the superposition theorem to calculate the node voltage
e1 and resistor current i2 in Fig. 3.20a.

Solution The contributions to e1 and i2 due to vs1(t) acting alone (with
is1(t) = 0) can be found by inspection of the voltage-divider circuit in
Fig. 3.20b, obtained by replacing the current source in Fig. 3.20a with an open
circuit:

e1(vs1) = R1

R1 + R2
vs1(t) (3.123)

i2(vs1) = 1

R1 + R2
vs1(t) (3.124)

Here, the “input” vs1 is shown as the “argument” of e1(•) and i2(•) to remind
the reader that the node voltage e1 given by Eq. (3.123) and the branch current
i2 given by Eq. (3.124) are due to vs1 acting alone, and are therefore functions
of vs1 only.

The contributions to e1 and i2 due to is2(t) acting alone (with vs1(t) = 0)
can be found by inspection of the current-divider circuit shown in Fig. 3.20c,
obtained by replacing the voltage source in Fig. 3.20a with a short circuit:

e1(is1) = R1R2

R1 + R2
is1(t) (3.125)

i2(is1) = R1

R1 + R2
is1(t) (3.126)

Adding the respective contributions, we obtain:

e1 = e1(vs1) + e2(is1)= H1vs1(t) + K1is1(t) (3.127)

(continued)
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Example 3.6.1 (continued)

where H1 � R2
R1+R2

,K1 � R1R2
R1+R2

. and:

i2 = i2(vs1) + i2(is1)= H1vs1(t) + K1is1(t) (3.128)

where H1 � 1
R1+R2

,K1 � R1
R1+R2

.
As expected, both e1 and i2 are of the form specified by Eq. (3.122) where

H1 and K1 are constants depending only on the circuit parameters R1, R2 and
the chosen output variable. They do not depend on vs1(t) or is1(t). Of course,
for different choices of output variables, we get different H1’s and K1’s, as
seen in the expressions for e1 and i2.

Proof of the Superposition Theorem Since N is linear and time-invariant, it is
described by the linear tableau equation:

Tw(t) = u(t) (3.129)

where T is an [(n−1)+2b]×[(n−1)+2b] constant real tableau matrix. However,
since N is uniquely solvable (by assumption), T−1 exists and the unique solution
is given by:

w(t) = T−1u(t) (3.130)

where:

u(t) �
[
0T︸︷︷︸
n−1

0T︸︷︷︸
b

0 · · · 0︸ ︷︷ ︸
resistors

vs1(t) · · · vsα(t)︸ ︷︷ ︸
voltage sources

is1(t) · · · isβ(t)︸ ︷︷ ︸
current sources

]T

(3.131)

Here we have assumed without loss of generality that all independent sources are
labeled last in the order depicted above.

Since each component of w(t) (i.e., ej , vj or ij ) is obtained by multiplying the
corresponding row of T−1 with u(t), it follows that each response ej , vj or ij is
given by an expression in the form of Eq. (3.122). Moreover, since T−1 is a constant
matrix which does not involve any independent source terms, so are the constant
coefficients Hk and Kk . ��
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3.6.2 Thévenin-Norton Theorem

Definition 3.3 A one-port N is said to be well-defined iff it does not contain any
circuit element which is coupled, electrically or nonelectrically, to some physical
variable outside of N .

An example of an ill-defined N would be if it contains a photoresistor coupled to
an external light source.

Theorem 3.6 Any well-defined linear time-invariant resistive one-port N

which satisfies the following unique solvability condition can be replaced by
the following equivalent one-ports Neq without affecting the solution of any
external circuit (not necessarily linear or resistive) connected across N .

1. Thévenin equivalent one-port Neq

unique solvability condition: The circuit N obtained by connecting a
current source i across N has a unique solution for all i.

+
−N

+

−

v

1i R eq

voc (t)

1’

1

1’

v

i

+

−

Neq

≡

Req � Thévenin-equivalent resistance in ohms

� DP or input resistance across N

after all independent sources inside N are set to zero

voc(t) � open-circuit voltage

� voltage v across terminals 1 and 1’ when the port

1, 1’ is left open-circuited

2. Norton equivalent one-port Neq

unique solvability condition: The circuit N obtained by connecting a
voltage source v across N has a unique solution for all v.
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N

+

−

v

1i

isc(t)

1’

1

1’

v

i

+

−

Neq

≡ Geq

Geq � Norton-equivalent conductance in siemens

� DP or input conductance across N

after all independent sources inside N are set to zero

isc(t) � short-circuit current

� current i entering terminal 1 when terminals 1

and 1’ are connected by an external short circuit

As before, we will consider first some circuit interpretations and an example,
before proving the theorem. The circuit interpretations are:

1. The main value of Thévenin’s and Norton’s theorem is that it allows us to
replace any part of a circuit which forms a linear resistive one-port, by only two
circuit elements, without affecting the solution of the remainder of the circuit.
Conceptually this works because a linear circuit is described by a linear equation.
Graphically, in the i−v (v−i) plane, we need only two points to fully characterize
the linear equation. Thévenin and Norton theorems say we choose the intercepts
(isc, voc) ((voc, isc)) as the two points (see 3. below).

2. Let Req �= 0. If we short-circuit the Thévenin equivalent circuit Neq and solve
for the current i, we would obtain

isc = − voc

Req

(3.132)

If isc �= 0, we can calculate the Thévenin equivalent resistance by

Req = −voc

isc
(3.133)
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isc

i

0 0 0

Req 
= 0

Fig. 3.21 (a) DP characteristic of N with voc > 0 and Geq > 0. (b) DP characteristic with voc > 0
and Req = 0. (c) DP characteristic with isc > 0 and Geq = 0

3. When Req �= 0 and Geq �= 0, the one-port N is equivalent to both its Thévenin
and its Norton equivalent one-ports: Its DP characteristic at any time t is defined
by:

v = Req i + voc(t) (3.134)

i = Geqv + isc(t) (3.135)

This DP characteristic consists of a straight line with a slope Req and voltage
intercept voc(t) in the i −v plane, or with a slope Geq and current intercept isc(t)

in the v − i plane (shown in Fig. 3.21a).
4. The limiting case of Req = 0 is shown in Fig. 3.21b. The Thévenin equivalent

one-port in this case consists of just a battery of voc volts. The corresponding
Norton equivalent one-port does not exist because Geq → ∞. Indeed, the unique
solvability condition fails in this case—KVL is violated when a voltage source
v �= voc is applied.

The “dual” limiting case Geq = 0 is shown in Fig. 3.21c.
5. A one-port which has neither a Thévenin nor Norton equivalent is shown in

Fig. 3.22a.
Its DP characteristic is defined by:

v = 0 i = 0 (3.136)

and consists therefore of only one point, namely, the origin. Note that the “virtual
short circuit” characterizing the input port of an ideal opamp operating in the
linear region has precisely this property. Such a one-port is called a nullator.

6. It follows from the above observations that if N is not current-controlled, then it
does not possess a Thévenin equivalent. Dually, if N is not voltage-controlled,
then it does not possess a Norton equivalent. Hence, in applying Thévenin’s or
Norton’s theorem, we can ignore checking for the “unique solvability condition”
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i

v0

(b)

N

i1

i1 i

+

−

v

Fig. 3.22 A one-port characterized by only one point (a) Circuit (b) DP plot

since this generally entails the difficult task of checking if the associated tableau
matrixT is invertible. Instead, we simply proceed to calculate Req or Geq . Failure
to obtain a unique finite value for Req (respectively Geq ) would then imply that
N does not have a Thévenin (respectively Norton) equivalent.

Example 3.6.2 Find the Thévenin and Norton equivalent one-ports for the
circuit shown in Fig. 3.23a.

Solution Let us calculate Req and Geq first using the simplified circuit shown
in Fig. 3.23b. For any applied voltage v, we find i1 = v/R so that i = −4i1 =
−(4/R)v. Hence,

Req = 1

Geq

= −R

4
(3.137)

Since both Req and Geq are finite numbers, we know that N has a Thévenin
and a Norton equivalent one-port.

We proceed therefore to calculate voc using the circuit shown in Fig. 3.23c.
Applying KCL we obtain i1 − 5i1 + Is = 0 or i1 = Is/4. Hence,

voc = E + R

4
Is (3.138)

(continued)
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Example 3.6.2 (continued)
To calculate isc, we use Eqs. (3.132) and (3.138) to get:

isc = − voc

Req

= 4E

R
+ Is (3.139)

As an independent check, let us derive isc using the circuit in Fig. 3.23d.
Since i1 = −E

R
in this case, KCL implies:

isc = i1 − 5i1 + Is= 4E

R
+ Is (3.140)

which agrees with our first isc equation (as it should).

Proof of Norton’s Theorem We will prove only Norton’s theorem, as the dual proof
then applies to Thévenin’s theorem. Let N denote the one-port in question, and let
the remaining part of the circuit N be denoted by NL, as shown in Fig. 3.24a. By
hypotheses, N contains only linear time-invariant resistors and independent sources,
whereas NL need not be linear or resistive.

+
−

E

R

Is

5i1

(a)

N
i1

i

+

v

−

E

R

Is

5i1

(c)

i1

i = 0

+

voc

−

R
5i1

(b)

N0
i1

i

v

E

R

Is

5i1

(d)

N
i1

isc

Fig. 3.23 (a) One-port N . (b) Simplified one-port N0 obtained by setting all independent sources
inside N to zero. (c) Circuit used for calculating voc. (d) Circuit used for calculating isc
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Fig. 3.24 (a) Partitioning arbitrary circuit N into a linear resistive one-port N and a not
necessarily linear or resistive one-port NL. (b) Driving N with a voltage source v(t)

Since N is purely resistive, it is completely specified by its DP characteristic
at each instant of time. Hence, as far as NL is concerned, its solution depends
only on this DP characteristic: The elements inside N which give rise to this DP
characteristic are completely irrelevant. For example, we don’t care if N consists of
a 2 Ω resistor or two 1 Ω resistors in series, as long as we have a 2 Ω equivalent
DP resistance. It suffices therefore to prove that both N and its Norton equivalent
one-port have identical DP characteristics.

Let us drive N with an independent voltage source v(t) as shown in Fig. 3.24b.
Let us label this voltage source, together with the independent voltage sources inside
N by vs0(t), vs1(t), . . . , vsα(t), where vs0(t) � v(t). Similarly, let us label the
independent current sources inside N by is1(t), . . . , isβ(t).

It follows from the unique solvability condition that the linear time-invariant
resistive circuit in Fig. 3.24b has a unique solution for all values of the independent
sources, at all times. Hence we can apply the superposition theorem and conclude
that the port current i(t) in Fig. 3.24b must assume the form:

i(t) = Hov(t) +
α∑

k=1

Hkvsk(t) +
β∑

k=1

Kkisk(t) (3.141)

Now if v(t) = 0 ∀t , i(t) is by definition isc(t). Hence the last two sums in
Eq. (3.141) add up to isc(t).

If we set to zero all independent sources inside N , we are left with i(t) = H0v(t),
i.e., H0 = Geq . Hence Eq. (3.141) can be written in the form:

i(t) = Geqv(t) + isc(t) (3.142)

where Geq and isc(t) are as defined in the theorem. Equation (3.142) gives the DP
characteristic of the given one-port N . Since this is the same equation which defines
the Norton equivalent one-port Neq , it follows that N can indeed be replaced by a
Norton equivalent Neq without affecting the solution inside NL. ��
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3.7 Some General Properties of Nonlinear Resistive Circuits

The behavior of linear resistive circuits is intimately related to linear algebraic
equations. As a consequence of linearity, we were able to derive several rather
general properties in the preceding section. Precisely because their proofs depend on
linearity in a crucial way, none of these properties holds even if the circuit contains
only one nonlinear resistor.

The behavior of nonlinear resistive circuits is far more complicated. For example,
multiple solutions are frequent. Even describing a two-terminal nonlinear resistor
alone can be complicated. To specify it analytically we need to use a function which
may require many parameters (for example, the pn-junction diode).

In spite of its greatly increased complexity, many useful properties can be proved
for various subclasses of nonlinear resistive circuits. Our objective in this section is
to state only those properties which we are in a position to prove, in a remarkably
elegant manner. These general properties, derived from the fundamental concepts
of passivity and monotonicity, form only a small albeit important subset of our
“nonlinear tool kits.” We hope this final section will whet the reader’s appetite into
a more advanced study of this subject.

3.7.1 Strict Passivity

Definition 3.4 A two-terminal resistor is said to be strictly passive iff vi > 0 for
all points (v, i) on its characteristic, except the origin (0, 0).

Geometrically, this means that the v − i curve of a strictly passive resistor must
lie only in the first and third quadrants and stay clear of the v and i axis, except the
origin.

Most of the nonlinear resistors we have encountered so far as strictly passive.
However, the ideal diode concave resistor, and convex resistor are passive but not
strictly passive.

In this section we will state and prove three general theorems for circuits
containing only strictly passive resistors and independent sources.

Theorem 3.7 (Strict Passivity Property) A one-port made of strictly passive
two-terminal resistors is itself strictly passive.

Proof Consider the one-port N shown in Fig. 3.25, which is driven by a voltage
source. Let N contain m strictly passive resistors. Applying Tellegen’s theorem and
noting that the current entering the positive terminal of the voltage source is equal
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Fig. 3.25 One-port N

to −i (passive sign convention), we obtain:

vi =
m∑

α=1

vαiα (3.143)

Since the m resistors are strictly passive for all α, vαiα ≥ 0, hence vi ≥ 0.
Suppose v > 0, then by KVL some of the vα’s must be nonzero. Thus by

strict passivity, the corresponding iα’s are also nonzero and of the same sign. Hence
whenever v > 0 at least one term, say vkik , is positive. So we have v > 0 implies
i > 0.

A similar argument shows that v < 0 implies i < 0. Hence vi > 0 for all points
on the driving point characteristic except the origin (where vi = 0). Therefore N is
strictly passive. ��

Theorem 3.8 (Maximum Node-Voltage Property) Let N be a connected
circuit made of strictly passive two-terminal resistors and driven by a single
DC voltage source of E volts, E > 0. Then, with the negative voltage-source
terminal chosen as ground, no node-to-ground voltage can exceed E volts.

Proof Since N is connected, all node-to-ground voltages e1, e2, · · · , en−1 are
well-defined.

Suppose there exists a node m with the highest potential em > E. Since
ea, eb, . . . , ek ≤ em, we have va, vb, . . . , vk ≥ 0. Since all resistors are strictly
passive, this implies that ia, ib, . . . , ik ≥ 0. But for KCL to be satisfied at node
m, we must have ia = ib = · · · = ik = 0. By strict passivity, this implies that
va = vb = · · · = vk = 0. Thus, we have ea = eb = · · · = ek = em > E (Fig. 3.26).

Hence we can move on to nodes a, b, . . . , k and repeat the above reasoning. We
must eventually reach node 1 of the voltage source, where our reasoning would still
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Fig. 3.26 KCL at node m implies ia + ib + · · · + ik = 0

imply that e1 = em > E, which is false. Hence our assumption that em > E is
wrong and thus em ≤ E. ��

Theorem 3.9 (Transfer Characteristic Bounding Region) The vo vs. vin

transfer characteristic of any connected circuit made of strictly passive two-
terminal resistors must lie within the wedge-shaped region

|vo| ≤ |vin| (3.144)

as shown in Fig. 3.27b.

Proof Consider in Fig. 3.27b the right-half plane with vin > 0. Suppose the output
voltage vo is measured between node k and node l so that:

vo = ek − el (3.145)

where ek and el are measured with respect to the ground node shown in Fig. 3.27a.
Since N contains only strictly passive two-terminal resistors, it follows from the

maximum node-voltage property in Theorem 3.8 that:

0 ≤ ek≤ vin (3.146)

0 ≤ el ≤ vin (3.147)

Inequality (3.147) can be rewritten as:

−vin ≤ −el≤ 0 (3.148)
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Fig. 3.27 Output voltage bounding region

Adding both inequalities (3.146) and (3.148), we get:

−vin ≤ ek − el≤ vin (3.149)

Using our earlier definition: vo = ek − el and simplifying we get:

|vo| ≤ vin (3.150)

Note that we had assumed vin > 0 and used the right-half plane. A similar proof for
the left-half plane (vin < 0) would give: |vo| ≤ −vin. We thus have: |vo| ≤ |vin|.

��

3.7.2 Strict Monotonicity

Strict passivity does not impose any constraint on the slope of the resistor charac-
teristic. It only requires that the product vi be positive except at the origin. For
example, the tunnel diode described earlier is strictly passive. Yet the slope of
its characteristics can assume both positive and negative values, depending on the
operating point. Such characteristics are said to be nonmonotonic.

It is clear that resistive circuits made of nonmonotonic resistors would in
general also give rise to a nonmonotonic DP and transfer characteristics. Hence
in order to derive properties involving constraints on the slope of the DP and
transfer characteristics, it is necessary to impose stronger conditions on the resistor
characteristics. The strictly monotone-increasing, or strictly increasing for brevity,
is one such condition which we investigate in this final section.

Strictly increasing means roughly that the slope of the characteristic is positive
everywhere. More precisely, a two-terminal resistor is said to be strictly increasing
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iff, for all pairs of (distinct) points on its characteristic, say (v′, i ′) and (v′′, i ′′)
(v′ > v′′, i ′ > i ′′) we have:

(v′ − v′′)(i ′ − i ′′) > 0 (3.151)

Note that a strictly increasing characteristic is not restricted to lie in the first and
third quadrants only. Hence, a strictly increasing resistor need not be strictly passive,
and a strictly passive resistor need not be strictly increasing.

Theorem 3.10 Any circuit made of strictly increasing two-terminal resistors
and independent sources has at most one solution.

Proof Suppose there are two distinct operating points Q and Q′, at some time t ,
corresponding to (v1, v2, . . . , vb; i1, i2, . . . , ib) and (v′

1, v
′
2, . . . , v

′
b; i ′1, i ′2, . . . , i ′b),

respectively. Here we assume passive sign convention for all elements.
Since each of these two solutions satisfies Tellegen’s theorem, so does their

difference:

b∑
k=1

(vk − v′
k)(ik − i ′k) = 0 (3.152)

Observe that each term in Eq. (3.152) which corresponds to either a voltage source
(vk = v′

k) or a current source (ik = i ′k) vanishes. However, since these are two
distinct solutions and since all resistors are strictly increasing, there must exist at
least one branch such that (vk − v′

k)(ik − i ′k) > 0 for this branch. This contradicts
Eq. (3.152). Hence there cannot be two distinct operating points Q and Q′. ��

Theorem 3.11 A one-port made of strictly increasing two-terminal resistors is
itself strictly increasing.

Proof Suppose the one-port N in Fig. 3.25 contains only strictly increasing resis-
tors. Then for any two distinct DP voltages v and v′, let (vk, ik) and (v′

k, i
′
k), k =

1, 2, . . . , b denote the corresponding unique branch voltage and current solutions,
for all b resistors inside N . It follows from Tellegen’s theorem that:

(v − v′)(i − i ′) =
b∑

k=1

(vk − v′
k)(ik − i ′k) (3.153)

where the input term appears on the left of the equation because the input current i

in Fig. 3.25 is defined as leaving the positive terminal of the voltage source.
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Since v �= v′, KVL requires that at least one of the (vk − v′
k) differs from 0;

hence, at least one term on the right-hand side of Eq. (3.153) is positive, while all
the others are ≥ 0 (since all resistors are strictly increasing) where the equality sign
holds whenever vk = v′

k or ik = i ′k . Consequently,

(v − v′)(i − i ′) > 0 (3.154)

whenever v �= v′, i.e., the DP characteristic of N is strictly increasing. ��

3.8 Conclusion

This chapter has given an overview of techniques for analysis of nonlinear networks.
But, unlike dynamic nonlinear networks (the subject of Chap. 4), the realm of
resistive nonlinear networks does have a general theory. Once the reader has
mastered the concepts summarized below from this chapter, they can pick up this
general theory from excellent references such as [1].

1. For resistive circuits, nodal analysis is applicable if the circuit contains only
voltage-controlled resistors and independent current sources (which do not
form cut sets among themselves).

2. The node equation for a linear resistive circuit is given by:

Yne(t) = is(t) (3.155)

where Yn � AYbAT is called the node-admittance matrix; A is the reduced
incidence matrix of the reduced digraph obtained by open-circuiting all
branches corresponding to independent current sources from the original
digraph; Yb is the branch-admittance matrix; is(t) is the source vector whose
kth entry is equal to the algebraic sum of all independent current sources
entering node k.

For a reduced digraph with n nodes and b branches, Yb is a b×b matrix, Yn

is an (n − 1) × (n − 1) matrix, A is an (n − 1) × b matrix; both e and is(t) are
n − 1 vectors.

3. A nonlinear resistive circuit driven only by independent current sources has a
node equation given by:

Ag(AT e) = is (t) (3.156)

where i = g(v) denotes the characteristics of all (voltage-controlled) resistors.
4. Both the linear and nonlinear node equations consist of n − 1 equations in

terms of the node voltage vector e, where n is the number of nodes in the circuit.
Hence the number of equations in nodal analysis does not depend on the number
of branches in the circuit.
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5. Every linear time-invariant resistive circuit has a tableau equation of the form:

⎡
⎣

0 0 A
−AT I 0
0 M(t) N(t)

⎤
⎦

︸ ︷︷ ︸
T(t)

⎡
⎣
e(t)
v(t)
i(t)

⎤
⎦

︸ ︷︷ ︸
w(t)

=
⎡
⎣

0
0

us(t)

⎤
⎦

︸ ︷︷ ︸
u(t)

(3.157)

The entries of M and N contain constant coefficients defining the resistors; the
entries of us (t) contain constant or time functions defining the independent
sources.

6. A linear time-invariant resistive circuit has a unique solution iff the tableau
matrix T is nonsingular.

7. Every nonlinear resistive circuit has a tableau equation of the form:

Ai(t) = 0

v(t) − AT e(t) = 0

h(v(t), i(t), t) = 0 (3.158)

8. A resistive circuit is said to be uniquely solvable iff Kirchhoff’s laws and the
branch equations are simultaneously satisfied by a unique set of branch voltages
and a unique set of branch currents for all t .

9. The superposition theorem is applicable to any linear uniquely solvable resistive
circuit. It allows us to find the solution by calculating first the solutions due to
each independent source acting alone, and then adding them.

10. A one-port N is said to be well-defined iff it does not contain any circuit
element which is coupled, electrically or nonelectrically, to some physical
variable outside of N .

11. The Thévenin (Norton) theorem allows us to replace any well-defined linear
current-controlled (voltage-controlled) resistive one-port by an equivalent one-
port consisting of an equivalent Thévenin resistance Req (equivalent Norton
conductance Geq ) in series (parallel) with an open-circuit (short-circuit) voltage
source voc(t) (current source isc(t)).

12. In applying the superposition, Thévenin and Norton theorems, all dependent
sources must be left intact.

13. A two-terminal resistor is strictly passive iff vi > 0, for all points in its
characteristic except the origin.

14. We studied the strict passivity, maximum node-voltage and transfer character-
istic bounding regions for strictly passive networks.

15. A two-terminal resistor is strictly increasing iff (v′−v′′)(i ′−i ′′) > 0 for all pairs
of distinct points (v′, i ′) and (v′′, i ′′) on its characteristic (v′ > v′′, i ′ > i ′′).

16. We studied the uniqueness and strictly increasing closure properties for net-
works with strictly increasing resistors.
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Lab 3: DC Simulation in QUCS

Objective: To understand DC simulation in QUCS
Theory:
Unlike the previous chapters, we first encourage you to do the lab component to this
chapter. In other words, now that you have an understanding of the techniques for
nonlinear resistive circuit analysis, be sure to simulate the circuits from this chapter
(and the exercises) below in QUCS. In this lab, you will perform DC analysis (DC
simulation in QUCS) for the nonlinear circuit shown in Fig. 3.28.

1. Suppose E = 6 V, R = 2 Ω . Solve analytically for the DC solution, specifically
iQR and vQR . Although the circuit equations are trivial to set up, we recommend
that you use tableau analysis so that you become familiar with the method.

2. Now, let E = 2 V, R = 2 Ω . Again analytically find the DC solution: iQR, vQR .

We will now simulate the circuit in QUCS.
Lab Exercise:

1. The circuit.12 to be entered in QUCS is shown in Fig. 3.29. Use the Equation
Defined Device (EDD) for specifying NR . This device can be found under
nonlinear components.

2. Simulate the circuit for both E = 6 V and E = 2 V. Discuss the results.
Specifically, what do you notice about the solution when E = 2 V. Explain the
solution.

Fig. 3.28 Circuit for lab 3

+
−E

R

R

+

vR

−

iR = vR
2

iR

12If you are unfamiliar with the QUCS component notation for the passive sign convention, please
be sure to go through the introductory QUCS video online (refer to lab 1).
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R=2 Ohm

DC1

dc simulation

Vs
+

–

D1
I1=(D1.V1)*(D1.V1)

1

U=6 V

Fig. 3.29 QUCS schematic for circuit in Fig. 3.28
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2

1 A
+

v̂L

−

Fig. 3.30 Circuit for problem 3.2

Exercises

3.1 Show that the voltage gain of the CE amplifier in Fig. 3.8b is given by:

ṽ2

vs

= −h21

(h11 + R1)(h22 + 1/R2) − h12h21
(3.159)

3.2 Figure 3.30 shows two distinct networksN and ˆN . Determine the value of v̂L.
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+

v6

−

+ v4 −

i6

i5i2

i3

i1

e1 e2 e3

i4

gmv2

Fig. 3.31 Circuit for problem 3.3

3.3 Write the node equations for the circuit in Fig. 3.31, in terms of the reduced
incidence matrix A.

3.4 Show that branch admittance matrix Yb in Eq. (3.87) is a diagonal matrix, if N
contains only two-terminal linear resistors and independent current sources.

3.5 To appreciate the benefits of superposition and its domain of applicability,
consider a nonlinear resistor v = v̂(i) = i3 driven by two current sources is1(t) =
I1 cos ω1t and is2(t) = I2 cos ω2t connected in parallel, where I1, ω1, I2, ω2 are
constants. Calculate the voltage v when each source acts alone, and when they act
together. In each case, reduce your answer to a sum of pure sine waves.

1. Does superposition hold for this circuit?
2. What are the frequency components of the output waveform for each case?

Exercise 4.13 explores further the frequency behavior of linear vs. nonlinear
systems.

3.6 Find the Thévenin and Norton equivalent circuits for the one-ports shown in
Fig. 3.32. If a particular circuit fails to have a Thévenin and/or Norton equivalent,
explain.

3.7 In this exercise, we will derive the maximum power transfer theorem for
linear resistive circuits.

Consider the circuit shown in Fig. 3.33. RL models a loudspeaker in a concert
hall. In order to maximize the output power delivered by the power amplifier
(modeled by vs(t) in series with internal resistance R1), a transformer with an
appropriate turns ratio n is sandwiched between the amplifier and the loudspeaker.

1. Simplify the circuit by first finding the Thévenin equivalent at terminals 2, 2′.
Your voc and Req expressions should include a function of the transformer turns
ratio n.



196 3 Resistive Nonlinear Networks
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−
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Fig. 3.32 (a-c) Circuits for problem 3.6
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2’

1 : n

RL

Fig. 3.33 Circuit for problem 3.7

2. From the answer in 1. above, determine the value of RL (in terms of Req ) that
would maximize the power dissipated in RL. To do this, you would have to find
an expression for the power associated with RL and use calculus.

The answer to 2. above is the maximum power transfer theorem for linear resistive
circuits.



References 197

+
−

+
−

+
−

1 mA

5 k

4 k

4 k

8 V

3 mA

9 V

3 k

12 V

3 k

Fig. 3.34 Circuit for problem 3.8

2

+
− 2i1

iR

5 Ai1

+

−

vR

R : iR = v2
R

R

2i1

+

Fig. 3.35 Circuit for problem 3.9

3.8 Using repeated application of Thévenin and Norton theorems, simplify the
circuit in Fig. 3.34 to a single loop and then determine the voltage across current
source 3 mA current source. This repeated simplification of a circuit by switching
between Thévenin and Norton equivalents is called source transforms.

3.9 Find all possible values for iR and vR for the circuit shown in Fig. 3.35.
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Chapter 4
Dynamic Nonlinear Networks
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Pol oscillator derived from Chua’s circuit [1]

Abstract We will now learn about techniques for analyzing dynamic circuits, that
are governed by differential equations. We will emphasize fundamental concepts
behind dynamic nonlinear networks, time domain analysis of nth-order nonlinear
networks, frequency response concepts, circuit analysis techniques for memristive
networks and energy approaches (Lagrangian, Hamiltonian). We cannot hope to
cover all the analysis techniques for dynamic nonlinear networks in detail in
one chapter. Nevertheless, this chapter should prepare the reader for picking up
advanced techniques for analyzing dynamic nonlinear networks from any special-
ized references.

4.1 Basic Concepts of Dynamic Nonlinear Networks

Definition 4.1 A network D consisting of an arbitrary interconnection of a finite
number of four fundamental circuit elements, is called a dynamic nonlinear
network.

Before we begin, we ask the reader recall from Sect. 3.3, to not “lose sight of the
forest for its trees”. That is, one should not be so consumed by the systematic
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techniques that we lose total insight into circuit behavior. Also recall that it is often
through the introduction of hypothetical, and sometimes pathological circuits, that
one gains an in-depth understanding of this subject.

By Definition 4.1, D represents the class of all nonlinear networks other than
resistive networks [3]. Since this class of dynamic networks is so much larger than
the class of resistive networks, it is virtually impossible for us to formulate a general
theory that is applicable to the solution of all dynamic networks. After all, it took
us an entire chapter just to give an overview of the analysis techniques for resistive
nonlinear circuits.

Hence in this chapter, we will primarily use two-terminal dynamic elements
and also restrict our discussion to fundamental concepts, starting with the order of
complexity.

4.1.1 Order of Complexity

Since the basic problem in dynamic nonlinear networks is to find the solution to a
system of nonlinear ordinary differential equations, it is more appropriate to classify
dynamic networks according to the “complexity” of their system of differential
equations. It is well known that the solution to any system of differential equations
can be found only to within a number of arbitrary constants k1, k2, · · · , kn. In
order to determine the n arbitrary constants, we must specify n independent initial
conditions.

Definition 4.2 A set of initial conditions is said to be independent if its values can
be arbitrarily chosen.

Two systems of differential equations requiring different numbers of initial condi-
tions are usually solved by quite different methods. Hence one meaningful basis
for classification of D can be stated in terms of the number of independent initial
conditions that must be specified in order to uniquely solve for the solution of the
network.

Definition 4.3 The order of complexity of a dynamic network is the minimum
number n of independent initial conditions that must be specified in terms of the
circuit variables in D , for completely describing the behavior of the network.

For convenience we shall refer to D as a first-order network if n = 1 and a
second-order network if n = 2. Since n ≥ 1 for any dynamic network, we might,
for the sake of completeness, refer to any resistive network as a zero-order network.

It is important to observe that Definition 4.3 requires that the number of initial
conditions be independent of one another. Definition 4.2 implies that none of the
specified initial conditions can be derived from the rest, as Example 4.1.1 illustrates.
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Fig. 4.1 Circuits for Example 4.1.1

Example 4.1.1 Determine the order of the two networks in Fig. 4.1.

Solution SinceDa contains only one storage element, we can easily infer that
Da is a first-order network. Now, since Db contains two storage elements, it
appears at first sight that we can specify two initial conditions, namely, the
voltage v1(t0) across capacitor C1 and the voltage v2(t0) across capacitor
C2 at some time t0. However, since by KVL v2 = v1 − vDC, the two
initial conditions are dependent because once v1(t0) is specified, v2(t0) is
constrained by v1(t0) − vDC, and hence v2(t0) cannot be specified arbitrarily.
Therefore Nb is a first-order network.

From the theory of differential equations in the normal form, it is known that
a system of n differential equations requires exactly n initial conditions for its
solution. Therefore, it is important that we understand Definition 4.4 for the normal
form.

Definition 4.4 The system of n first-order differential equations:

dx1

dt
= f1(x1, x2, · · · , xn)

dx2

dt
= f2(x1, x2, · · · , xn)

· · · · · · · · ·
dxn

dt
= fn(x2, x2, · · · , xn) (4.1)

is said to be in normal form because:

1. Only first-order time derivatives appear on the left-hand side of the equations.
2. No time derivatives appear on the right-hand side of the equations.
3. The dependent variables coincide with the state variables that appear on the

left-hand side.
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Fig. 4.2 Circuit for Example 4.1.2

Since the order of complexity is equal to the number of state variables when the
system equations are written in normal form, one approach to determining the order
of complexity would be to always write normal form equations for D , as shown in
Example 4.1.2.

Example 4.1.2 Determine the dynamic equations for the network in Fig. 4.2.
The characteristics of the various circuit elements are:

NC : q(v) = 2 − 3v3 + 5v5

NL : φ(i) = 1 + 2i − 3i2 + i3

NR : i1 = 1 + v1 + 3v1i
3
2 − 4i5

2

v2 = 4 − i2v1 − 2i2
2v5

1 + v3
1 (4.2)

Solution For this circuit, we can determine the dynamic equations by
inspection, without resorting to advanced techniques like MNA that will be
discussed later in this chapter. Recall the memory property for inductors and
capacitors from Chap. 1: Eq. (1.63) implies that a current iL(t0) through an
inductor is an initial condition. By duality, Eq. (1.71) implies that a voltage
vC(t0) across a capacitor is another suitable initial condition. Hence let us
choose v3 and i4 to be the state variables. Hence the order of complexity is 2.
Thus we need to obtain the following normal form:

dv3

dt
= f1(v3, i4)

di4

dt
= f2(v3, i4) (4.3)

(continued)
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Example 4.1.2 (continued)
For NC , in terms of circuit variables the q3 − v3 characteristic is q3(v3) =
2−3v3

3 +5v5
3. Differentiating with respect to time and applying the chain rule

we get:

i3 = −9v2
3
dv3

dt
+ 25v4

3
dv3

dt
(4.4)

Since by KCL i3 = i1 and by KVL v1 = E−v3, we can simplify the equation
above as:

dv3

dt
= i1

v2
3

(
25v2

3 − 9
)

= 1 + v1 + 3v1i
3
2 − 4i5

2

v2
3

(
25v2

3 − 9
)

= 1 + (E − v3) + 3(E − v3)i
3
2 − 4i5

2

v2
3

(
25v2

3 − 9
) (4.5)

From KCL at the output port of NR : i2 = −i4. Thus we have the dv3
dt

equation as:

dv3

dt
= 1 + (E − v3) − 3(E − v3)i

3
4 + 4i5

4

v2
3

(
25v2

3 − 9
) (4.6)

With respect to the second state equation, for NL in terms of circuit
variables the φ4 − i4 characteristic is: φ4(i4) = 1 + 2i4 − 3i2

4 + i3
4 . Taking

the derivative of this characteristic with respect to time and applying the chain
rule:

v4 = 2
di4

dt
− 6i4

di4

dt
+ 3i2

4
di4

dt
(4.7)

Rewriting in terms of di4
dt

and using the fact that by KVL v4 = v2, along with
the v2 definition from NR, we get:

di4

dt
= 4 − i2v1 − 2i2

2v5
1 + v3

1

2 − 6i4 + 3i2
4

(4.8)

Applying KCL: i2 = −i4, KVL: v1 = E − v3 and simplifying we get the
second state equation:

di4

dt
= 4 + i4(E − v3) − (

2i2
4(E − v3)

2 + 1
)
(E − v3)

3

2 − 6i4 + 3i2
4

(4.9)
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We need to be aware that it may not be possible to write normal form equations,
given a specific choice of state variables. To demonstrate the difficulty involved, let
us examine Eq. (4.4) more closely. Observe that we were able to express i3 in terms
of v3 and v̇3 because NC was voltage controlled. Suppose instead NC was charge-
controlled: v3(q3) = q3

3 −q3. In this case, it is necessary that we express q3 in terms

of v3 before applying the chain rule (to evaluate dq3
dv3

). Unfortunately, this is not
possible because q3 is a multivalued function of v3. This is equivalent to saying that
the inverse function does not exist. In this case, the normal form equations cannot
be obtained, if we insist on v3 as the state variable.

There is, of course, no reason why we should insist on choosing only voltages
and currents as state variables. Any other set of variables x1, x2, · · · , xn is just as
valid, provided Definition 4.4 is satisfied.

Although we could always determine the order of complexity by writing the state
equations for D , we shall now develop a simple technique for determining the order
of complexity for a particular class1 of D by inspection, i.e., without writing down
any equation. In order to understand how this method works, it is important for us
to obtain a deeper understanding of why initial conditions are necessary from the
network’s point of view, and to understand which electrical variables qualify as an
appropriate set of initial conditions.

From the mathematical point of view, initial conditions are introduced as a “gim-
mick” for determining the values of the arbitrary constants associated with the solu-
tion to a system of differential equations. From the network’s point of view, initial
conditions are introduced because of our ignorance or incomplete knowledge of the
past history of excitations that have been applied to the network. In order to under-
stand the above reason, let us consider an arbitrary capacitor Cj of an arbitrary net-
workD . Suppose we want to find the charge qj (t) of this capacitor at time t , namely,

qj (t) =
t∫

−∞
ij (τ )dτ (4.10)

From Eq. (4.10) it is clear that qj (t) can be found only if we know the exact
waveform of the capacitor current ij (t) from t → −∞ up to the present time
t , that is, from the time the capacitor was manufactured. However, practically
speaking, in any physical network excitations are applied at some finite time in the
past, say t = t0. Hence we would usually have information on the excitation of
waveforms only for t ≥ t0. This ignorance of the past history of ij (t) prevents us
from determining qj (t). However, let us rewrite Eq. (4.10) in the form:

qj (t) =
t0∫

−∞
ij (τ )dτ +

t∫

t0

ij (τ )dτ (4.11)

1We mean a network containing only two-terminal fundamental circuit elements and independent
sources. No dependent sources, ideal transformers, gyrators, etc. are allowed.
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The second integral can be found because we know ij (t) for t ≥ t0. It is the first inte-
gral that is giving us trouble. Observe, however, that at t = t0 Eq. (4.10) becomes:

qj (t0) =
t0∫

−∞
ij (τ )dτ (4.12)

Hence Eq. (4.11) becomes:

qj (t) = qj (t0) +
t∫

t0

ij (τ )dτ (4.13)

where t ≥ t0. Equation (4.13) tells us that, provided we are interested only in
knowing qj (t) for t ≥ t0, it is not necessary to know the entire past history of ij (t)

for t < t0. Instead, we need to know only the value of the charge qj in the capacitor
at the initial time t0. This value qj (t0) is called the initial condition.

Let us now recall that a capacitor is characterized by a curve in the v − q plane,
and if we know v(t), we can find q(t) and vice versa. Since it is necessary to know
the initial condition q(t0) in order to find q(t) for t ≥ t0, it follows that it is necessary
to know v(t0) in order to find v(t) for t ≥ t0. However, since given v(t0) we can
find q(t0) and vice versa, it is sufficient to specify an initial condition either in terms
of capacitor charge or voltage at time t0. But, notice an examination of Eq. (4.13)
shows that specifying capacitor current ij (t0) would not do any good because one
cannot determine qj (t0) from this information alone. We conclude therefore that the
current in a capacitor is not an appropriate initial condition.

By exact dual arguments, we find that for an inductor:

φj (t) = φj (t0) +
t∫

t0

vj (τ )dτ (4.14)

Thus we can specify either the flux linkage φ(t0) or inductor current i(t0) as
appropriate initial conditions. The voltage across an inductor at t0 is not an
appropriate initial condition.

Let us now explore the concept of independent initial conditions in more detail.
We have already seen in Example 4.1.1 that the order of complexity of a dynamic
network may not be equal to the number of energy storage elements, because some
initial conditions may not be independently specified. In order to diagnose the
source of “dependency,” let us consider the more complicated network D in Fig. 4.3.

Since D contains ten energy-storage elements (six capacitors and four inductors),
it appears that we can specify 10 initial conditions, vC1, vC2, vC3, vC4, vC5, vC6,

iL1, iL2, iL3, and iL4. However a more careful inspection of the network shows that
not all these initial conditions are independent. For example, the loop consisting of
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Fig. 4.3 An example of the two possible sources of dependent initial conditions, namely, a loop
of capacitors and voltage sources, and a cut set of inductors and current sources

capacitors C1, C2, C3 and voltage source E0 imposes a constraint due to KVL:

vC1 + vC2 + vC3 = E0 (4.15)

This equation implies that only two of the three initial conditions vC1, vC2, and vC3
can be specified arbitrarily. We conclude that although there are six capacitors, only
five capacitor voltages are independent. Similarly, the cut set consisting of inductors
L2, L3, L4 and current source I0 imposes a constraint due to KCL:

iL2 + iL3 + iL4 = I0 (4.16)

Thus only two of three initial conditions iL2, iL3, iL4 can be specified arbitrarily.
Hence we conclude that although there are four inductors, only three inductor
currents are independent. The maximum number of initial conditions that can be
specified is therefore equal to 5 + 3 = 8.

Based on our discussion above, it is clear that a dependency exists whenever
it is possible to write a constraint involving only capacitor voltages and voltage
sources; therefore, we must subtract one initial condition from the total number of
energy-storage elements. Similarly, it is clear that a dependency exists whenever
it is possible to write a constraint involving only inductor currents and current
sources; therefore, we must likewise subtract one initial condition from the total
number of energy-storage elements. The first constraint involving only capacitor
voltages and voltage sources occurs if and only if there exists a loop in the network
containing only capacitors and independent voltage sources. A dual argument
applies to inductors and current sources: a constraint occurs if and only if there
exists a cut set in the network containing only inductors and current sources.
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Hence, we have the following theorem [4] for the order of complexity:

Theorem 4.1 (Order of Complexity) Let D be a network containing only two-
terminal fundamental circuit elements and independent sources. Then the order of
complexity m of D is given by:

m = (bL + bC + bM) − (nM + nCE + nLM) − (n̂M + n̂LJ + n̂CM) (4.17)

where:

1. bL is the total number of inductors
2. bC is the total number of capacitors
3. bM is the total number of memristors
4. nM is the number of independent loops containing only memristors
5. nCE is the number of independent loops containing only capacitors and voltage

sources
6. nLM is the number of independent loops containing only inductors and memris-

tors
7. n̂M is the number of independent cut sets containing only memristors
8. n̂LJ is the number of independent cut sets containing only inductors and current

sources
9. n̂CM is the number of independent cut sets containing only capacitors and

memristors

Proof 2

We have just discussed the order of complexity for D without memristors: m =
(bL + bC) − nCE − n̂LJ.

From the definition of a memristor, for a D with nM = nLM = n̂M = n̂CM = 0,
each memristor introduces a new state variable and we thus have: m = (bL + bC +
bM) − nCE − n̂LJ.

Observe next that a constraint among state variables occurs whenever an
independent loop consisting of elements corresponding to those specified in the
definition of nM and nLM is present in the network. This is because we assume
the algebraic sum of flux linkages around any loop (charges flowing into any node,
recall equivalence of KCL node to cut sets, Theorem 3.1) is zero. We now have:
m = (bL + bC + bM) − (nM + nCE + nLM) − n̂LJ.

Finally, by duality, a constraint among state variables again occurs whenever an
independent cut set consisting of elements corresponding to those specified in the
definition of n̂M and n̂CM is present in the network. We thus have: m = (bL + bC +
bM) − (nM + nCE + nLM) − (n̂M + n̂LJ + n̂CM). ��

2With respect to D with memristors, the concept of using (φM, qM) to determine the degree of
complexity and write network equations is further explored in Sect. 4.4.1.
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4.1.2 Principles of Duality

In light of the enormous solution space of dynamic nonlinear networks, it would be
instructive to check if there are techniques that help us reduce this solution space.
One such powerful technique is duality (alluded to in earlier chapters), and since
duality is particularly useful in the analysis of dynamic networks, we have deferred
a rigorous discussion of duality till this chapter.

A significant fact about dual networks is that once we know the solution of one
network, the solution of the dual network can be obtained immediately by simply
interchanging the symbols. This means that as soon as we know the behavior and
properties of one network, we immediately know the behavior of the properties
of dual network. Hence a lot of redundancy is avoided if we can recognize dual
networks.

Generally speaking, we say two systems or phenomena are duals of each other if
we can exhibit some kind of one-to-one correspondence between various quantities
or attributes of the two systems. For example, in physics, for each translational
system or problem there exists a corresponding rotational system or problem, and
they are usually referred to as dual systems. In mathematics, two equations which
differ only in symbols but are otherwise identical in form are said to be dual
equations. In electrical engineering, besides circuits, duality is widely used in digital
design because of dual Boolean relationships. The recognition of dual quantities,
attributes, phenomena, properties, or concepts often leads to the discovery and
invention of new ideas.

Before we render the concept of duality more precise, it is instructive to consider
first the two nonlinear networks shown in Fig. 4.4a and b. The laws of elements
and the laws of interconnection for these two networks are readily obtained and
tabulated in Table 4.1. A careful comparison of the expressions in the two columns
of this table reveals a one-to-one correspondence between the equations. As a matter
of fact, except for the symbols, the equations in the two columns are in identical
form. Observe that, had we replaced vj by i ′j , ij by v′

j , φj by q ′
j , qj by φ′

j for
the variables in the left column, the result would be identical with that in the right
column, and therefore the two networks are said to be dual networks. We are now
ready to precisely define the concept of duality.

Definition 4.5 (Duality) Let D and D ′ be a pair of networks each containing
b two-terminal network elements which are not controlled sources. Then D and
D ′ are dual networks if the elements in D and D’ can be labeled, respectively,
as b1, b2, · · · , bb and b′

1, b
′
2, · · · , b′

b such that the circuit equations for the two
networks are identical.

A few points to note from Definition 4.5:

1. It is possible to generalize the definition of dual networks to include controlled
sources. However, the procedure for constructing such networks is much more
complicated and will not be discussed in this book.
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Fig. 4.4 The dual of a series nonlinear network is a parallel nonlinear network

Table 4.1 Circuit equations
for the networks in Fig. 4.4

Network of Fig. 4.4a Network of Fig. 4.4b

Laws of elements Laws of elements

v1 = tanh i3
1

di2

dt
= v2

24i2
2

dv3

dt
= i3

2e2v3

v4 = f (t)

i′1 = tanh(v′
1)

3

dv′
2

dt
= i′2

24v′
2

di′3
dt

= v′
3

2e2i ′3

i′4 = f (t)

Laws of interconnection Laws of interconnection

KVL: v1 + v2 + v3 − v4 = 0 KCL: i′1 + i′2 + i′3 − i′4 = 0

KCL: i1 + i4 = 0

i1 − i2 = 0

i2 − i3 = 0

KVL: v′
1 + v′

4 = 0

v′
1 − v′

2 = 0

v′
2 − v′

3 = 0

Note the derivative relationships in the laws of elements have
been written in normal form
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2. We have defined duality for dynamic networks, D , but it should be obvious that
the definition is also applicable to (nonlinear) resistive networks N .

3. In order to find D ′, we need to uncover the duality relationships that must be
satisfied by the laws of elements and the laws of interconnections. Due to space
limitations, we will only cover the laws of elements. With respect to duality
and the laws of interconnections, we will restrict our discussion to memristive
networks. For a general graph theoretic approach to duality relationships from
the laws of interconnections, the reader is referred to [3].

Definition 4.6 (Dual Resistor) If element bj is a two-terminal resistor in D
characterized by a curve Γ in the v − i plane, then the corresponding dual element
b′
j in D ′ must also be a two-terminal resistor characterized by the same curve Γ in

the i ′ − v′ plane.

For example, if element bj of D is a resistor characterized by ij = v3
j − 3vj ,

then the dual resistor in D ′ is a resistor characterized by v′
j = i ′3j − 3i ′j . Observe

that the dual of a given resistor is a new resistor, which may need a new name
and a new symbol. However, there are some two-terminal elements which have the
interesting property that the dual of the element is the same element with its two
terminals interchanged. For such elements, a new symbol is obviously not needed.
The simplest example of this type of element is the ideal diode.

Definition 4.7 (Dual Inductor) If element bj in D is a two-terminal inductor
characterized by a curve Γ in the i − φ plane, then the corresponding dual element
b′
j in D ′ must be a capacitor characterized by the same curve Γ in the v′ − q ′ plane.

For example, the dual of an inductor characterized by φ = log i is a capacitor
characterized by q ′ = log v′.

Definition 4.8 (Dual Capacitor) If element bj in D is a two-terminal capacitor
characterized by a curve Γ in the v − q plane, then the corresponding dual element
b′
j in D ′ must be an inductor characterized by the same curve Γ in the i ′ −φ′ plane.

For example, the dual of a capacitor characterized by q = tanh v is an inductor
characterized by q ′ = log v′.

Definition 4.9 (Dual IdealMemristor) If element bj in D is a two-terminal ideal
memristor characterized by a curve Γ in the φ − q plane, the corresponding dual
element b′

j in D ′ must be an ideal menductor characterized by the same curve Γ

in the q ′ − φ′ plane.

Note that by mutatis mutandis, we can define the dual of an ideal menductor.

Definition 4.10 (Dual Memristive Device) If element bj in D is a two-terminal
current-controlled (voltage-controlled) memristive device, the corresponding
dual element b′

j in D ′ must be a voltage-controlled (current-controlled) mem-
ristive device.
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Fig. 4.5 Circuit for Example 4.1.3

nth-order
voltage-controlled time-invariant
memristive one-port

i′N +

−

v′
N K M′

Fig. 4.6 Dual network D ′ for the circuit in Fig. 4.5

Example 4.1.3 Determine the dual of the memristive circuit in Fig. 4.5.

Solution Based on Definitions 4.8, 4.7, and 4.10, the dual of the circuit is
shown in Fig. 4.6.
In other words, the dual of a linear capacitor with capacitance N F (q − v

relationship: q = Nv) is a linear inductor with inductance N H (φ′ − i ′
relationship: φ′ = Ni ′). Analogously, the dual of a linear inductor with
inductance K H (φ − i relationship: φ = Ki) is a linear capacitor with
capacitance K F (q ′ − v′ relationship: q ′ = Kv′).
For the memristive device in D , we have (recall Eq. (1.86)):

v = R(x, i)i

ẋ = f (x, i) (4.18)

Hence the dual voltage-controlled equations are:

i ′ = G(x′, v′)v′

dx′

dt
= f (x′, v′) (4.19)

(continued)
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Example 4.1.3 (continued)
Since we have a series network for D , simple application of KVL and the
element laws gives:

dvN

dt
= i

N

di

dt
= 1

K
(vN + R(x, i)i)

dx
dt

= f (x, i) (4.20)

Notice we have normal form equations for the D . Using duality, we get:

di ′N
dt

= v′

N

dv′

dt
= 1

K

(
i ′N + G(x′, v′)v′)

dx′

dt
= f (x′, v′) (4.21)

Table 4.2 summarizes the dual relationships that we have discussed.
On a brief note, the question of existence and uniqueness theorems for dynamic

nonlinear networks does not carry much meaning [6], unlike linear dynamic
networks. Two reasons are: the solution of the normal form Eq. (4.1) can exhibit
many qualitatively different behaviors, depending only on the choice of the initial
state. The second reason is that some steady state behavior can be extremely
complicated (chaos in Chap. 5) precluding the existence of a closed form solution.

So, the correct approach is to study the qualitative behavior of dynamic
nonlinear networks. There are a variety of techniques, in the context of the scope
of this book, we will discuss impasse points later in Sect. 4.2.1.6. Other advanced
concepts can be found in [6].

4.2 Time Domain Analysis of nth-Order Nonlinear Networks

In this section, we will analyze nth-order dynamic nonlinear networks in the time
domain. That is, we will write differential equations as functions of time for the
dynamic networks in question. We will start with first-order networks because a
variety of important results can be easily understood using first-order networks [12].
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Table 4.2 Common dual quantities

Network D Network D ′

Current ij Voltage v′
j

Voltage vj Current i′j
Flux linkage φj Charge q ′

j

Charge qj Flux linkage φ′
j

Nonlinear resistor characterized by a curve
Γ in the v − i plane

Nonlinear resistor characterized by a curve
Γ in the i′ − v′ plane

Linear resistor with a resistance R Ω Linear resistor with a conductance R S

Nonlinear inductor characterized by a
curve Γ in the i − φ plane

Nonlinear capacitor characterized by a
curve Γ in the v′ − q ′ plane

Linear inductor with an inductance K H Linear capacitor with a capacitance K F

Nonlinear capacitor characterized by a
curve Γ in the v − q plane

Nonlinear inductor characterized by a
curve Γ in the i′ − φ′ plane

Linear capacitor with a capacitance N F Linear inductor with an inductance N H

Voltage source, vj = f (t) Current source, i′j = f (t)

Current source, ij = g(t) Voltage source, v′
j = g(t)

Short circuit Open circuit

Open circuit Short circuit

Series branches Parallel branches

Ideal memristor Ideal menductor

Current-controlled memristive device Voltage-controlled memristive device

Since circuit analysis techniques for memristor networks are still a topic of
active research, we will postpone discussion of such networks till Sect. 4.4. Hence
until then, our circuits will contain only capacitors and inductors as the dynamic
element(s).

4.2.1 First-Order Circuits

Circuits made of one capacitor,3 resistors, and independent sources are called first-
order circuits [8]. Note that “resistor” is understood in the broad sense: it includes
controlled sources, gyrators, ideal transformers, etc.

In this section,4 we study first-order circuits made of linear time-invariant
elements and independent sources. Any such circuit can be redrawn as shown in

3We will primarily focus on capacitor circuits in this section since the corresponding dual inductor
circuit(s) can be easily derived using the ideas of duality discussed in Sect. 4.1.2. The reader is
encouraged to derive the results for the dual inductor case as they read this section, to enhance
their conceptual understanding.
4It would be helpful to review Sect. 1.9.3, specifically the memory and continuity properties.
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Fig. 4.7 (a) First-order RC circuit. (b) Thévenin equivalent

Fig. 4.7a, where the one-port N is assumed to include all other elements (e.g.,
independent sources, resistors, controlled sources, gyrators, ideal transformers,
etc.). Applying the Thévenin equivalent one-port Theorem 3.6 from Chap. 3, we
can, in most instances, replace N by the equivalent circuit shown in Fig. 4.7b.

Applying KVL we obtain

Reqic + vC = voc(t) (4.22)

Substituting iC = C
•
vC and solving for

•
vC , we obtain:

•
vC = − vC

ReqC
+ voc(t)

ReqC
(4.23)

Since the first-order linear differential equation above is in normal form, vC(t) is
the state variable. Recall from our discussion of initial conditions in Sect. 4.1.1 that
vC(t) depends only on the initial condition vC(t0) and the waveform voc(·) over
[t0, t].

In Sect. 4.2.1.1 we show that the solution of any first-order linear circuit can
be found by inspection, provided N contains only DC sources. By repeated
application of this “inspection method,” Sect. 4.2.1.2 shows how the solution can
be easily found if N contains only piecewise-constant sources. This method is then
applied in Sect. 4.2.1.3 for finding the solution—called the impulse response—
when the circuit is driven by an impulse δ(t). Finally, Sect. 4.2.1.4 gives an explicit
integration formula for finding solutions under arbitrary excitations, which is then
applied in Sects. 4.2.1.5 and 4.2.1.6.

4.2.1.1 Circuits Driven by DC Sources

When N contains only DC sources, voc(t) = voc is a constant in Fig. 4.7b and in
Eq. (4.23). Let us rewrite the equation as follows:
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•
x = x

τ
+ x(t∞)

τ
(4.24)

where

x
�= vC

x(t∞)
�= voc

τ
�= ReqC (4.25)

Given any initial condition x = x(t0) at t = t0, Eq. (4.24) has the unique solution:

x(t) = x(t∞) + [x(t0) − x(t∞)]e −(t−t0)

τ (4.26)

which holds for all times t , i.e., −∞ < t < ∞. To verify that this is indeed the
solution, simply substitute Eq. (4.26) into Eq. (4.24) and show that both sides are
identical. Observe that at t = t0, Eq. (4.26) reduces to x(t) = x(t0), which makes
physical sense. Note also that the solution given by Eq. (4.26) is valid whether τ is
positive or negative.

The solution in Eq. (4.26) is determined only by three parameters x(t0), x(t∞)

and τ . We call them initial state, equilibrium state, and time constant, respec-
tively. To see why x(t∞) is called the equilibrium state, note that if x(t0) = x(t∞),

then Eq. (4.24) gives
•
x(t0) = 0 and thus x(t) = x(t∞) for all t . Hence the circuit

remains “motionless” or in equilibrium.
Since the inspection method to be developed in this section depends crucially

on the ability to sketch the exponential waveform quickly, the following properties
are extremely useful. These properties in turn depend on whether τ is positive or
negative. For τ > 0, the exponential waveform in Eq. (4.26) tends to a constant
as t → ∞. For τ < 0, the exponential waveform in Eq. (4.26) tends to ±∞, as
t → ∞. Hence it is convenient to consider the two cases separately.

Case 1: τ > 0 In this case Eq. (4.26) shows that x(t) − x(t∞), i.e., the distance
between the present state and the equilibrium state x(t∞) decreases exponentially.
For all initial states, the solution x(t) approaches equilibrium and |x(t) − x(t∞)|
decreases exponentially with a time constant τ . The solution in Eq. (4.26) for τ > 0
is sketched in Fig. 4.8 for two different initial states x(t0) and x̃(t0). Observe that
because τ is positive, x(t) → x(t∞) as t → ∞.

Thus when τ > 0 we say the system in Eq. (4.24) is stable,5 because any initial
deviation x(t0) − x(t∞) decays exponentially and x(t) → x(t∞) as t → ∞.

5Stability is a system property, not a signal property. We say the signals associated with a stable
system are bounded. In system terminology, we are using the concept of bounded-input bounded-
output (BIBO) stability.
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Fig. 4.8 The solution tends to the equilibrium state x(t∞) as t → ∞ when the time constant τ is
positive. Δx1 = 0.63[x(t0) − x(t∞)],Δx2 = 0.63[x(t∞) − x̃(t0)]

The exponential waveforms in Fig. 4.8 can be accurately sketched using the
following observations:

1. After one time constant τ , the distance between x(t) and x(t∞) decreases
approximately by 63% of the initial distance |x(t0) − x(t∞)|.

2. After five time constants, x(t) practically attains the equilibrium state (or steady-
state) value x(t∞) (e−5 ≈ 0.007).

Example 4.2.1 Recall the opamp voltage follower from Example 2.5.3, but
now we have a switch closing at t = 0 as shown in Fig. 4.9. Sketch vo(t) for
t ≥ 0.

Solution The switch shown models the fact that in practice, the output is
observed to reach the 10 V solution after a small but finite time. In order to
predict this transient behavior before equilibrium is reached, we will use the

(continued)
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Example 4.2.1 (continued)
finite gain opamp model from Exercise 2.5, augmented with a capacitor, to
obtain the dynamic model shown in Fig. 4.10a.

To analyze this first-order circuit, we extract the capacitor and replace the
remaining circuit by its Thévenin equivalent as shown in Fig. 4.10b, where:

Req = R

A + 1
≈ R

A
since A >> 1

voc = 10A

A + 1
≈ 10 since A >> 1 (4.27)

Assuming A = 105, R = 100 	,C = 3 F, we obtain Req ≈ 10−3 	

and voc ≈ 10 V. Consequently, the time constant and equilibrium state are
given, respectively, by τ = ReqC = 3 ms and vo(t∞) ≈ 10 V. Assuming
the capacitor is initially uncharged, the resulting output voltage can be easily
sketched as shown in Fig. 4.11. Note that after five time constants or 15 ms,
the output is practically equal to 10 V.

Case 2: τ < 0 In this case Eq. (4.26) shows that the quantity x(t)−x(t∞) increases
exponentially for all initial states, i.e., the solution x(t) diverges from equilibrium
and hence the corresponding system is unstable. The solution for Eq. (4.26) is
sketched in Fig. 4.12 for two different initial states x(t0) and x̃(t0). Observe that
since the time constant τ is negative, as t → ∞, x(t) → ∞ if x(t0) > x(t∞) and
x(t) → −∞ if x(t0) < x(t∞).

However, if we run time “backward,” then x(t) → x(t∞) as t → −∞.
Consequently, x(t∞) can be interpreted as a virtual equilibrium state.

Fig. 4.9 Circuit for
Example 4.2.1

−

+
+
−

t = 0

10 V

vo 
(t)
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+
−

+
−

10 V

vo(t)

+
− C

R

Avd

(a)

Req > 0

C

+

vo

−voc

(b)

+

−
vd

i− = 0

i+ = 0

Fig. 4.10 (a) Dynamic opamp model (b) Thévenin equivalent, notice Req is positive

t, ms
6 9 12 15

vo 
(t), V

10

0 t0 + = 3

vo( )

Fig. 4.11 Exponential voltage waveform for Example 4.2.1

Analogous to the stable case, the exponential waveform can be accurately
sketched using the observation that at t = t0 +|τ |, the distance |x(t0 +|τ |)−x(t∞)|
is approximately 1.72 times the initial distance |x(t0) − x(t∞)|.
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tt0 t0 + | |

x

x(t0)

x(t )

x̃(t0)

0

Solution with initial state x(t0) > x(t ) tends to +

Solution with initial state x̃(t0) < x(t ) tends to −

x1

x2

Fig. 4.12 The solution tends to the “virtual” equilibrium state x(t∞) as t → −∞ when the time
constant τ is negative. Δx1 = 1.72[x(t0) − x(t∞)],Δx2 = 1.72[x(t∞) − x̃(t0)]

+
−

−

+

t = 0

10 V

vo (t)

Fig. 4.13 Circuit for Example 4.2.2

Example 4.2.2 Consider the positive feedback opamp circuit shown in
Fig. 4.13. Determine vo(t) for t ≥ 0.

Solution The opamp circuit in Fig. 4.13 is identical to that of Fig. 4.9 except
for an interchange between the inverting (−) and noninverting (+) terminals.

(continued)
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Example 4.2.2 (continued)
Using the ideal opamp model in the linear region, we would obtain exactly the
same answer as before, namely vo = 10 V for t ≥ 0, provided Esat > 10 V.

But, let us see what happens if the opamp is replaced by the dynamic model
adopted earlier, as shown in Fig. 4.14a. Note now the polarity of vd is reversed.
The parameters in the Thévenin equivalent circuit now become:

Req = − R

A − 1
≈ −R

A
since A >> 1

voc = 10A

A − 1
≈ 10 since A >> 1 (4.28)

Notice Req is now negative. Assuming the same parameter values as in
Example 4.2.1, we obtain Req = −10−3 	 and voc ≈ 10 V. Consequently,
the time constant and virtual equilibrium state are now given by τ ≈ −3 ms
and voc(t∞) ≈ 10 V, respectively. Hence the solution drastically differs from
that of Example 4.2.1:

vo(t) = 10
(

1 − e
t

3 ms

)
(4.29)

vo(t) → −∞ as t → ∞. Of course, in practice, when vo(t) decreases to
−Esat, the opamp saturates and the solution would remain constant at −Esat.
The sketch of vo(t) is trivial and is left as an exercise for the reader.

Example 4.2.2 shows us why the “middle” segment in the positive feedback
circuit (Fig. 2.36) and Schmitt trigger VTCs from Sect. 2.5.3 are physically absent.

+
−

+
−

10 V

vo(t)

+
− C

R

Avd

(a)

Req < 0

C

+

vo

−voc

(b)

−

+

vd

i+ = 0

i− = 0

Fig. 4.14 (a) Dynamic opamp model (b) Thévenin equivalent, notice Req is negative



4.2 Time Domain Analysis of nth-Order Nonlinear Networks 221

Parasitic elements such as capacitors result in the opamp circuit model correspond-
ing to the “middle” segment to display unstable behavior. In other words, the Req
seen by the parasitic capacitor turns out to be negative. A detailed analysis is given
in [20].

We will often need to calculate the time interval between two prescribed points
on an exponential waveform. Given any two points [tj , x(tj )] and [tk, x(tk)] on an
exponential waveform (see for example Figs. 4.8 and 4.12), the time it takes to go
from x(tj ) to x(tk) is given by the elapsed time formula:

tk − tj = τ ln
x(tj ) − x(t∞)

x(tk) − x(t∞)
(4.30)

To derive Eq. (4.30), let t = tj and t = tk in Eq. (4.26), respectively:

x(tj ) − x(t∞) = [x(t0) − x(t∞)]e
−(tj−t0)

τ (4.31)

x(tk) − x(t∞) = [x(t0) − x(t∞)]e −(tk−t0)

τ (4.32)

Dividing Eq. (4.31) by (4.32) and taking the logarithm on both sides, we obtain
Eq. (4.30). Notice the derivation does not depend on whether τ is positive or
negative.

We are now ready to formally state the inspection method. Consider again the
first-order RC circuit from Fig. 4.7a where all independent sources inside N are DC
sources. Equation (4.26) gives us the voltage across the capacitor:

vC(t) = vC(t∞) + [vC(t0) − vC(t∞)]e− (t−t0)

τ (4.33)

Suppose we replace the capacitor with a voltage source defined by Eq. (4.33). Let
vjk denote the voltage across any pair of nodes j and k in N . Assume that N

contains α independent DC voltage sources Vs1, Vs2, · · · , Vsα and β independent
DC current sources Is1, Is2, · · · , Isβ . Applying the superposition theorem 3.5, we
know that the solution vjk(t) is given by an expression of the form:

vjk(t) = H0vC(t) +
α∑

j=1

HjVsj +
β∑

k=1

KjIsj (4.34)

where H0,Hj , and Kj are constants (which depend on element values and circuit
configuration). Substituting for vC(t) in Eq. (4.34) from (4.33) and rearranging the
terms, we obtain:

vjk(t) = vjk(t∞) + [vjk(t0) − vjk(t∞)]e− (t−t0)

τ (4.35)
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where

vjk(t∞)
�= H0vC(t∞) +

α∑
j=1

HjVsj +
β∑

j=1

KjIsj (4.36)

and

vjk(t0)
�= H0vC(t0) +

α∑
j=1

HjVsj +
β∑

j=1

KjIsj (4.37)

Since Eq. (4.35) has the exact same form as Eq. (4.26), and since nodes j and k

are arbitrary, we conclude that: the voltage vjk(t) across any pair of nodes in a
first-order RC circuit driven by DC sources is an exponential waveform having
the same time constant τ as vC(t). By the same reasoning, we can also conclude
that the current ij (t) in any branch j of a first-order RC circuit driven by DC sources
is an exponential waveform having the same constant τ as that of vC(t).

The above “exponential solution waveform” property of course assumes that the
first-order circuit is not degenerate, i.e., that it is uniquely solvable and 0 < |τ | <

∞. Also note that as we approach equilibrium, i.e., when t → +∞ (if τ > 0) or
t → −∞ (if τ < 0), the capacitor current tends to zero. This follows from Figs. 4.8

and 4.12, iC = C
•
vC .

Since an exponential waveform is uniquely determined by only three parameters
(initial state x(t0), equilibrium state x(t∞) and time constant τ ), we can now
formally state the inspection method for first-order RC circuits driven by DC
sources:

First-order Circuit Inspection Method:

1. Replace the capacitor by a DC voltage source with a terminal voltage equal
to vC(t0). Label the voltage across node-pair j , k as vjk(t0) and the current
ij as ij (t0). Solve the resulting resistive circuit for vjk(t0) and ij (t0). In
other words, we are solving for the initial state.

2. Replace the capacitor by an open circuit. Label the voltage across node-pair
j , k as vjk(t∞) and the current ij as ij (t∞). Solve the resulting resistive
circuit for vjk(t∞) and ij (t∞). In other words, we are solving for the
equilibrium state.

3. Find the Thévenin equivalent circuit of N , so that the time constant can be
computed as τ = ReqC.

The reader should use the above three parameters to make a quick sketch of the
exponential waveform, as a sanity check.
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4.2.1.2 Circuits Driven by Piecewise-Constant Signals

Consider next the case where the independent sources in N of Fig. 4.7a are
piecewise-constant for t > t0. This means that the semi-infinite time interval
t0 ≤ t < ∞ can be partitioned into subintervals [tj , tj+1), j = 1, 2, · · · such that all
sources assume a constant value during each subinterval. Hence we can analyze the
circuit as a sequence of first-order circuits driven by DC sources, each one analyzed
separately by the inspection method. Since the circuit remains unchanged except for
the sources, the time constant τ remains unchanged throughout the analysis.

The initial state x(t0) and equilibrium state x(t∞) will of course vary from one
subinterval to another. Although the inspection method holds in the determination
of x(t∞), one must be careful in calculating the initial value at the beginning of each
subinterval tj because at least once source changes its value discontinuously at each
boundary time tj . In general, x(t−j ) �= x(t+j ), where the − and + denote the usual
limit of x(t) as t → tj , from the left and from the right, respectively. The initial
value to be used in the calculation during the subinterval [tj , tj1) is x(t+j ).

Although in general both vjk(t) and ij (t) can jump, the continuity property from
Sect. 1.9.3 guarantees that in the usual case where the capacitor current (inductor
voltage) waveform is bounded, the capacitor voltage (inductor current) waveform is
a continuous function of time and therefore cannot jump. This property is the key to
finding the solution by inspection, as Example 4.2.3 illustrates.

Example 4.2.3 Find and sketch vC(t), iC(t) and vR(t) in Fig. 4.15 by inspec-
tion, for t ≥ 0. Assume vC(0) = 0 V (capacitor is initially discharged).

Solution Since vC(0) = 0 and vs(t) = 0 for t ≤ 0, it follows that iC(t) =
0, vC(t) = 0, vR(t) = 0 for t ≤ 0.

The solution waveforms for t > 0 obviously consists of exponentials with
a time constant t = RC. At t = 0+, using the continuity property, we have
vC(0+) = vC(0−) = 0. Therefore, by KVL, vR(0+) = vs(0+)−vC(0+) = E

and iC(0+) = E/R, by Ohm’s law. To find the equilibrium state, we open the
capacitor and hence find that iC(t∞) = 0, vC(t∞) = E, vR(t∞) = 0. We now
have enough information to determine the expressions (t ≥ 0) as:

vC(t) = E
(

1 − e− t
RC

)

iC(t) = E

R

(
e− t

RC

)

vR(t) = E
(
e− t

RC

)
(4.38)

The waveforms are sketched in Fig. 4.16. Note that iC(t) = CdvC(t)/dt and
vR(t)+vC(t) = E for t ≥ 0, as they should. Also observe that whereas vR(t)

and iC(t) are discontinuous at t = 0, vC(t) is continuous for all t as expected.
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+
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0

E

vs(t)

t

vs(t)

R

+

vC

−

+ vR − iC

C

Fig. 4.15 Circuit for Example 4.2.3

The circuit in Fig. 4.15 is often used to model the situation where a DC voltage
source is suddenly connected across a resistive circuit which normally draws a zero-
input current. The linear capacitor in this case is used to model the small parasitic
capacitance between the connecting wires. Without this capacitor, the input voltage
would be identical to vs(t). However, in practice, a “transient” is always observed
and the circuit in Fig. 4.15 represents a more realistic situation. In this case, the time
constant τ gives a measure of how “fast” the circuit can respond to a step input.
Such a measure is of crucial importance in the design of high-speed circuits.

Since the term time constant is meaningful only for first-order circuits, a more
general measure of such “response speed” called the rise time is used. The rise time
tr is defined as the time it takes the output waveform to rise from 10% to 90% of
the steady-state value after application of a step input. For first-order circuits, tr is
easily calculated from the elapsed time formula in Eq. (4.30):

tr = τ ln
0.1E − E

0.9E − E

= τ ln 9

≈ 2.2τ (4.39)

4.2.1.3 Linear Time-Invariant Circuits Driven by an Impulse

Consider the RC circuit shown in Fig. 4.17. Let the input voltage source vs(t)

be a square pulse pΔ(t) of width Δ and height 1/Δ, as shown in Fig. 4.18a.
Assuming zero initial state (i.e., vC(0−) = 0), the response voltage vC(t) is shown
in Fig. 4.18b. We define:

hΔ(Δ)
�= 1 − e

−Δ
τ

Δ

�= f (Δ)

g(Δ)
(4.40)
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Fig. 4.16 Exponential
waveforms for Example 4.2.3
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Fig. 4.17 Various vs(t)

inputs are shown in Fig. 4.18

+
−

R

vs(t)
C

+

vC

−

The input and response corresponding to Δ = 1, 1
2 , 1

3 are shown in Fig. 4.18c and
d, respectively. Note that as Δ → 0, pΔ(t) tends to the unit impulse shown in
Fig. 4.18e. The unit impulse or the Dirac delta function6 tends to infinity at t = 0
and to zero elsewhere, while the area under the pulse is unity. More precisely, the
unit impulse is defined such that the following two properties are satisfied:

1. δ(t)
�=
{

singular t = 0

0 t �= 0
(4.41)

2.

ε2∫

−ε1

δ(t)dt = 1 for any ε1 > 0, ε2 > 0 (4.42)

The derivative “in the distribution sense”7 of δ(t) is the unit step function defined
as:

u(t)
�=
{

0 t < 0

1 t ≥ 0
(4.43)

Note that the “peak” value hΔ(Δ) of the response waveform in Fig. 4.18b increases
as Δ increases. To obtain the limiting value of hΔ(Δ) as Δ → 0, we apply
L’Hospital’s rule:

lim
Δ→0

hΔ(Δ) = lim
Δ→0

f ′(Δ)

g′(Δ)

= lim
Δ→0

(1/τ)e(−Δ/τ)

1

= 1

τ
(4.44)

6The delta function is used to model point charges in physics. Using the theory of distributions
from advanced mathematics, the unit impulse can be rigorously defined as a “generalized” function
imbued with most of the standard properties of a function. In particular, most of the time, δ(t) can
be manipulated like an ordinary function.
7We say “differentiating in the distribution sense” to emphasize that whenever we differentiate a
function which has a jump discontinuity at t = t0, i.e., f (t) jumps from f (t−0 ) to f (t+0 ), we must
include the corresponding impulse in the derivative:f ′(t0) = [f (t+0 )] − f (t−0 )]δ(t − t0).



4.2 Time Domain Analysis of nth-Order Nonlinear Networks 227
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vC(t) = h(t)

1

0

h(t) = 1 e−t/

(f )

Fig. 4.18 As Δ → 0, the square pulse tends to the unit impulse δ(·). The corresponding response
tends to the impulse response h
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Hence the response waveforms in Fig. 4.18d tend to the exponential waveform for
t ≥ 0 shown in Fig. 4.18f, compactly written using the unit step function defined
earlier as:

h(t) = 1

τ
e−t/τu(t) (4.45)

Because h(t) is the response of the circuit when driven by a unit impulse under zero
initial conditions, it is called the impulse response. In Sect. 4.3.3, we will show
that given the impulse response of any linear time-invariant circuit, we can use it to
calculate the response when the circuit is driven by any other input waveform.

4.2.1.4 Circuits Driven by Arbitrary Signals

Let us consider now the general case where the one-port N in Fig. 4.7a contains
arbitrary independent sources. This means that the Thévenin equivalent voltage
source voc(t) in Fig. 4.7b can be any function of time, say, a PWL function, a sine
wave, etc. Our objective is to derive an explicit solution and draw conclusions from
our result.

Consider the RC circuit in Fig. 4.7b whose state equation is:

•
vC(t) = −vC(t)

τ
+ voc(t)

τ
(4.46)

where τ
�= ReqC.

Theorem 4.2 (Explicit Solution for First-Order Linear Time-Invariant RC
Circuits) Given any prescribed waveform voc(t), the solution of Eq. (4.46)
corresponding to any initial state vC(t0) at t = t0 is given by

vC(t) = vC(t0)e
− (t−t0)

τ︸ ︷︷ ︸
zero-input response

+
t∫

t0

1

τ
e− (t−t ′)

τ voc(t
′)dt ′

︸ ︷︷ ︸
zero-state response

(4.47)

∀t ≥ t0. Here τ = ReqC.

Proof

(a) At t = t0 , Eq. (4.47) reduces to

vC(t)

∣∣∣
t=t0

= vC(t0) (4.48)

Hence Eq. (4.47) has the correct initial condition.
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(b) To prove that Eq. (4.47) is a solution of Eq. (4.46), differentiate both sides of
Eq. (4.47) with respect to t . First, we rewrite Eq. (4.47) as:

vC(t) = vC(t0)e
− (t−t0)

τ + 1

τ
e−t/τ

t∫

t0

et ′/τ voc(t
′)dt ′ (4.49)

Then upon differentiating with respect to t , we obtain for t > 0:

•
vC(t) = − 1

τ
vC(t0)e

− (t−t0)

τ +
(

− 1

τ 2 e
−t
τ

) t∫

t0

et ′/τ voc(t
′)dt ′

+
(

1

τ
e

−t
τ

)[
e

t
τ voc(t)

]
(4.50)

where we used the second fundamental theorem of calculus [29]:

d

dt

t∫

a

f (t ′)dt = f (t) (4.51)

Simplifying Eq. (4.50), we obtain:

•
vC(t) = − 1

τ
vC(t0)e

−(t−t0)

τ − 1

τ

⎡
⎣

t∫

t0

1

τ
e

−(t−t ′)
τ voc(t

′)dt ′
⎤
⎦+ 1

τ
voc(t)

= −vC(t)

τ
+ voc(t)

τ
(4.52)

Hence Eq. (4.47) is a solution of Eq. (4.46).
(c) From our basic calculus courses, we know that the differential equation (4.46)

has a unique solution. Hence Eq. (4.47) is indeed the solution. ��
The solution Eq. (4.47) consists of two terms. The first term is called the zero-

input response because when all independent sources in N are set to zero, we have
voc(t) = 0 for all times and vC(t) reduces to the first term only. The second term
is called the zero-state response because when the initial state vC(t0) = 0, vC(t)

reduces to the second term only.
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Example 4.2.4 Find the solution vC(t) in Fig. 4.15, using Eq. (4.47).

Solution In this case we have: vC(t0) = 0, t0 = 0, τ = RC and voc(t) =
E, t ≥ 0. Substituting these parameters in Eq. (4.47) and simplifying, we get:

vC(t) = E
(

1 − e
−t
RC

)
(4.53)

which coincides with the solutions in Example 4.2.3, as it should.

Note that in Eq. (4.47), the total response can be interpreted as the superposition
of two terms, one due to the initial condition acting alone (with all independent
sources set to zero) and the other due to the input acting alone (with the initial
condition set to zero). Also, the equation is valid for both τ > 0 and τ < 0. Consider

the case τ > 0. For all values t ′ such that t − t ′ >> τ , the factor e
−(t−t ′)

τ is very
small; consequently, the values of voc(t) for such times contribute almost nothing to
the integral in Eq. (4.47). In other words, the stable RC circuit has a fading memory.
Inputs that have occurred many time constants ago have practically no effect at the
present time. Thus we may say that the time constant τ is a measure of the memory
time of the circuit.

4.2.1.5 First-Order Linear Switching Circuits

Suppose now that the one-port N in Fig. 4.7a contains one or more switches, where
the state (open or closed) of each switch is specified for all t ≥ t0. Typically, a switch
may be open over several disjoint time intervals, and closed during the remaining
times. Although a switch is a time-varying linear resistor, such a linear switching
circuit may be analyzed as a sequence of first-order linear time-invariant circuits,
each one valid over a time interval where all switches remain in a given state. This
class of circuits can therefore be analyzed by the procedures given in the previous
sections. The only difference here is that the time constant τ will generally vary
whenever a switch changes, as demonstrated in Example 4.2.5.

Example 4.2.5 Determine vo(t), t ≥ 0 for the circuit in Fig. 4.19. Assume
that the switch S has been open for a long time prior to t = 0.

Solution Given that the switch is closed at t = 1 s and then reopened at
t = 2 s, our objective is to first find vC(t) (since voltage across a capacitor
should be a continuous function of time) and then find vo(t).

(continued)
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Example 4.2.5 (continued)
Since we are only interested in vC(t) and vo(t), let us replace the remaining

part of the circuit by its Thévenin equivalent circuit. The result is shown
in Fig. 4.20a and b, corresponding to the case when S is open or closed,
respectively. The corresponding τ s are τ2 = 1 s and τ1 = 0.9 s, respectively.

Since the switch is initially open and the capacitor is initially in equilib-
rium, it follows from Fig. 4.20a that vC(t) = 6 V and vo(t) = 0 V for t ≤ 1 s.
At t = 1+, we change the equivalent circuit to Fig. 4.20b. Since by continuity,
vC(1+) = vC(1−) = 6 V, we have iC(1+) = (10 − 6) V/(2 + 1.6) k	 ≈
1.11 mA and hence vo(1+) = (1.6 k	)(1.11 mA) ≈ 1.78 V. Note that we
have obviously used the passive sign convention when computing the currents.

To determine vC(t∞) and vo(t∞) for the equivalent circuit in Fig. 4.20b,
we replace the capacitor with an open circuit and obtain vC(t∞) = 10 V and
vo(t∞) = 0 V. The waveforms of vC and vo during [1, 2) are drawn as solid
lines in Fig. 4.21a and b, respectively. The dashed portion shows the respective
waveform if S had been left closed ∀ t ≥ 1 s.

Since S is closed at t = 2 s, we must write the equation of these two
waveforms to calculate vC(2−) ≈ 8.68 V and vo(2−) ≈ 0.59 V (we leave
the verification of these calculations to the reader). At t = 2+, we return
to the equivalent circuit in Fig. 4.20a. Since vC(2−) = vC(2+) ≈ 8.68 V,
we have iC(2+) = (6 − 8.68)/(2.4 + 1.6) mA ≈ −0.67 mA and vo(2+) =
(1.6 k	)(−0.67 mA) ≈ −1.07 V. Note that vo has a discontinuous jump at
t = 2 s.

To determine vC(t∞) and vo(t∞) for the circuit in Fig. 4.20a, we again
replace the capacitor with an open circuit to obtain vC(t∞) = 6 V and
vo(t∞) = 0 V. We have completed the waveform plots in Fig. 4.21.

Fig. 4.19 An RC switching
circuit, where S is open
during t < 1 s and t ≥ 2 s,
and closed during 1 ≤ t < 2
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Fig. 4.20 Equivalent circuits from Fig. 4.19 when (a) switch is open, (b) switch is closed
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Fig. 4.21 (a) vC(t) and (b) vo(t) plots for Example 4.2.5



4.2 Time Domain Analysis of nth-Order Nonlinear Networks 233

Fig. 4.22 A PWL RC circuit

4.2.1.6 First-Order PWL Circuits: Dynamic Route, Jump Phenomenon,
and Relaxation Oscillations

Consider the first-order circuit in Fig. 4.22 where the nonlinear resistive one-
port NR may now contain nonlinear resistors (in addition to linear resistors
and DC sources). As before, all resistors and the capacitor are time-invariant.
This class of circuits includes many important nonlinear electronic circuits such
as multivibrators, relaxation oscillators, etc. In this section, we assume that all
nonlinear elements inside NR are PWL so that the one-port is described by a PWL
DP characteristic.

Our main problem is to find the solution vC(t) for the RC circuit, subject
to any given initial state. Since the corresponding port variables of NR , namely
[v(t), i(t)], must fall on the DP characteristic of NR, the evolution of [v(t), i(t)]
can be visualized as the motion of a point on the characteristic starting from a given
initial point.

Since the DP characteristic is PWL, the solution [v(t), i(t)] can thus be found
by determining first the specific “route” and “direction,” henceforth called as the
dynamic route, along the characteristic where the motion actually takes place.
Once this route is identified, we can apply the “inspection method” developed in
Sect. 4.2.1.1 to obtain the solution traversing along each segment separately, as
illustrated in Example 4.2.6.

Example 4.2.6 Given the circuit in Fig. 4.22 and the associated DP character-
istic for NR in Fig. 4.23, determine vC(t) ∀t ≥ 0. Let vC(0) = 2.5 V.

Solution Step 1: Identify the initial point. Since v(t) = vC(t), for all
t , initially v(0) = vC(0) = 2.5 V. Hence the initial point on the DP
characteristic is P0, as shown in Fig. 4.23.

Step 2: Determine the dynamic route. The dynamic route starting from
P0 contains two pieces of information: (a) the route traversed and (b) the
direction of motion. They are determined from the following information:
Key to dynamic route for RC circuit:

(continued)
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Example 4.2.6 (continued)
1. The DP characteristic of NR .
2.

•
v(t) = − i(t )

C
.

Since
•
v = −i/C < 0 whenever i > 0, the voltage v(t) decreases as long as

the associated current i(t) is positive. Hence for i(t) > 0, the dynamic route
starting at P0 must always move along the v − i curve toward the left, as
indicated by the red directed (red) line segments P0 → P1 and P1 → P2 in
Fig. 4.23. The dynamic route for this circuit ends at P2 because at P2, i = 0,
so

•
v = 0. Hence the capacitor is in equilibrium at P2.
Step 3: Obtain the solution for each straight line segment. Replace

NR by a sequence of Thévenin equivalent circuits corresponding to each
line segment in the dynamic route. Using the method from Sect. 4.2.1.1,
find a sequence of solutions vC(t). For this example, the dynamic route
P0 → P1 → P2 consists of only two segments. The corresponding equivalent
circuits are shown in Fig. 4.24a and b, respectively.

To obtain vC(t) for segment P0 → P1, we calculate τ = −62.5 μs.
vC(0) = 2.5 V and vC(t∞) = 3.25 V. Since the time constant in this case
is negative, the corresponding circuit is unstable and hence the exponential is
unbounded. We leave it to the reader to verify that vC(t) for P0 → P1 is given
by:

vC(t) = 3.25 − 0.75e
t

62.5 μs (4.54)

Since vC(t) = 2 V at P1, we can use the expression above to find the time
t ≈ 31.9 μs when vC(t) = 2 V. We hence use vC(0) = 2 V for the following
bounded exponential from P1 → P2:

vC(t) = 2e
−t

100 μs (4.55)

A plot of vC(t) is given in Fig. 4.25.

After some practice, one can obtain the solution in Fig. 4.25 directly from the
dynamic route, i.e., without drawing the Thévenin equivalent. Note that in the RC

case, the dynamic route always terminates upon intersecting the v axis (i = 0).
We will now discuss a very important application of the dynamic route

technique—the opamp relaxation oscillator. Oscillation is one of the most
important and exciting phenomena that occurs in physical systems (e.g., electronic
watch) and in nature (e.g., planetary motions). In this section, we will focus on
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Fig. 4.23 DP characteristic of NR , with dynamic route (red) indicated, for Example 4.2.6

Fig. 4.24 (a) Equivalent circuit corresponding to P0 → P1 (b) Equivalent circuit corresponding
to P1 → P2

a particular type of oscillator, the relaxation oscillator.8 Section 4.6.3 will further
explore the ideas behind nonlinear oscillators.

Consider the RC opamp circuit shown in Fig. 4.26a. The DP characteristic of the
resistive one-port NR was derived in Sect. 2.5.3.2, and is reproduced in Fig. 4.26b
for convenience.

8Historically, relaxation oscillators were designed using only two vacuum tubes, or two transistors,
such that one device is operating in a “cut-off” or relaxing mode, while the other device is operating
in an “active” or “saturation” mode.
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Fig. 4.25 vC(t) for
Example 4.2.6, unbounded
(red) and bounded (blue)
exponential functions
corresponding to the unstable
and stable circuits in
Fig. 4.24a,b respectively
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0
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Consider the four different initial points Q1,Q2,Q3,Q4 (corresponding to four
different initial capacitor voltages at t = 0) on this characteristic. Since

•
v(t) =

•
vC(t) = −i/C and C > 0, we have:

•
v(t) > 0 for all t such that i(t) < 0 (4.56)

and

•
v(t) < 0 for all t such that i(t) > 0 (4.57)

Hence the dynamic route from any initial point must move toward the left in the
upper half plane, and towards the right in the lower half plane, as indicated by the
arrowheads in Fig. 4.26b.

Since i �= 0 at the two breakpoints QA and QB , they are not equilibrium points
of the circuit. It follows from Eq. (4.30) that the amount of time T it takes to go
from any initial point to QA or QB is finite because x(tk) �= x(t∞).

Since the arrowheads from Q1 and Q2 (or from Q3 and Q4) are oppositely
directed, it is impossible to continue drawing the dynamic route beyond QA or QB .
In other words, an impasse is reached whenever the solution reaches QA or QB .

Any circuit which exhibits an impasse is the result of poor modeling. For the
circuit of Fig. 4.26a, the impasse can be resolved by inserting a small linear inductor
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Fig. 4.26 (a) RC opamp circuit. (b) DP characteristic of NR . (c) Solution locus of (v(t), i(t)) for
the remodeled circuit. (d) Dynamic route for the limiting case

in series with the capacitor; this inductor models the inductance L of the connecting
wires. As will be shown in Sect. 4.6.3, the remodeled circuit has a well-defined
solution ∀ t ≥ 0, so long as L > 0. A typical solution locus of (v(t), i(t))

corresponding to the initial condition at P0 is shown in Fig. 4.26c. Our analysis
in Sect. 4.6.3 will show that the transition time from P1 to P2, or from P3 to P4,
decreases with L. In the limit L → 0, the solution locus tends to the limiting case
shown in Fig. 4.26d with a zero transition time. In other words in the limit where
L decreases to zero, the solution jumps from the impasse point P1 to P2, and from
the impasse point P3 to P4. We have used arrows to emphasize the instantaneous
transition.
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Both analytical and experimental studies [20] support the existence of a jump
phenomenon, such as the one depicted in Fig. 4.26d, whenever a solution reaches an
impasse point. This observation allows us to state the following rule which greatly
simplifies the solution procedure.

Jump Rule
Let Q be an impasse point of any first-order RC circuit (respectively, RL

circuit). Upon reaching Q at t = T , the dynamic route can be continued by
jumping (instantaneously) to another point Q′ on the DP characteristic of NR

such that vC(T +) = vC(T −) [respectively, iL(T +) = iL(T −)] provided Q′ is
the only point satisfying the continuity property.

Note that the jump rule is also consistent with the continuity property of vC or iL.
Also, the concepts of an impasse point and the jump rule are applicable regardless of
whether the DP characteristic of NR is PWL or not. A first-order RC circuit has at
least one impasse point if NR is described by a continuous nonmonotonic current-
controlled DP characteristic. The instantaneous transition in this case consists of a
vertical jump in the v − i plane, assuming i is the vertical axis. A dual argument is
applicable to a first-order RL circuit. Once the dynamic route is determined, with
the help of the jump rule, for all t > t0, the solution waveforms of v(t) and i(t)

can be determined by inspection, refer to Exercise 4.7. This exercise should also
enlighten the reader as to why the circuit in Fig. 4.26a is a prototypical9 relaxation
oscillator.

4.2.2 General Dynamic Circuits

So far we have analyzed first-order capacitor networks. As we transition from first to
second (and higher) order nonlinear circuits, the complexity of steady-state behavior
increases tremendously. In fact, third (and higher) order nonlinear continuous-time
circuits exhibit the fascinating phenomenon of chaos (to be studied in Chap. 5).

Since it is impossible to cover all the techniques for general dynamic circuits in
one section, we will instead present techniques that will help the reader formulate
the equations governing such circuits. This is tremendously helpful because:

1. The reader will notice that we will extend the primary techniques from Chap. 3,
nodal and tableau analysis, to cover dynamic networks.

2. Formulating the dynamic equations is the first (and probably most important)
step in using a computer to simulate the associated network. Due to the complex
behavior of third (and higher order) networks, computer simulations play an

9In fact, Fig. 4.26a could model the classic 555 timer, since the nonlinear DP characteristic can
also be obtained by simply using two BJTs.
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important role in studying such networks. Hence it is vital that the reader
understand how to obtain the associated circuit equations.

4.2.2.1 Modified Nodal Analysis (MNA)

In Sect. 3.4, we studied node analysis for resistive circuits. For any resistive circuit
made up of voltage-controlled resistors, we can write the node equations by
inspection. MNA is based on node analysis but is suitably modified so that it can
be used on any dynamic circuit. The goal of MNA is to obtain a set of coupled
algebraic and differential equations. Consequently to specify a linear time-invariant
inductor we use the differential equation

v(t) = L
di

dt
(4.58)

rather than the integral equation

i(t) = i(t0) + 1

L

t∫

t0

v(t ′)dt ′ (4.59)

The underlying ideas of MNA are:

1. Write node equations using node voltages as variables.
2. Whenever an element is encountered that is not voltage-controlled, introduce in

the node equation the corresponding branch current as a new variable and add,
as a new equation, the branch equation of that element.

The result is a system of equations where the unknowns are node voltages and some
selected branch currents.

The equations of MNA can be written down by inspection. The number of
equations is always smaller than that of tableau analysis (Sect. 4.2.2.2). But since
MNA equations contain information about the interconnection as well as the nature
of the branches, the equations of MNA do not have the conceptual clarity of the
tableau equations. Many circuit analysis programs use MNA, SPICE in particular.
As in the case of Chap. 3 we will first use example(s) to illustrate the ideas and then
detail the algorithm.
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Fig. 4.27 Circuit for
Example 4.2.7
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Example 4.2.7 Write MNA equations for the circuit in Fig. 4.27.

Solution The circuit shown in Fig. 4.27 includes an independent voltage
source, a pair of coupled inductors (with mutual inductance M , self-
inductances L11, L12), two resistors and a capacitor. We have b = 6 and
n = 4. In writing the node equation for node 1, since the independent source is
not voltage-controlled, we have inserted the branch current i6. In considering
nodes 2 and 3, we introduce inductor currents i1 and i2. We append these three
suitably modified node equations with the branch equations of the voltage
source and of the two (coupled) inductors. The result is:

Node Equations:

⎧⎪⎪⎨
⎪⎪⎩

G3e1 − G3e2 + i6 = 0

− G3e1 + G3e2 + i1 = 0

C
•
e3 + G5e3 + i2 = 0

Coupled inductors:

⎧⎨
⎩

−e2 + L11
•
i1 + M

•
i2 = 0

−e3 + M
•
i1 + L22

•
i2 = 0

(4.60)

Voltage Source: e1 = es(t)

MNA gives six equations in the node voltages e1, e2, and e3 and in the selected
currents i1, i2, and i6. Eq. (4.60) forms the required set of coupled algebraic
and differential equations.

Example 4.2.8 shows that the basic idea of MNA works quite easily for nonlinear
circuits.
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Fig. 4.28 Circuit for Example 4.2.8

Example 4.2.8 Write MNA equations for the circuit in Fig. 4.28. For the
opamp, we will use the finite-gain model from Exercise 2.5, the nonlinear
capacitor is specified by its small-signal capacitance C(·), the nonlinear
inductor by its small-signal inductance L(·), and the current-controlled
nonlinear resistor is specified by its characteristic v̂6(·).
Solution Recall that the finite-gain model of an opamp:

vo(vd) = A

2
|vd + ε| − A

2
|vd − ε| (4.61)

where vo is the output voltage of the opamp and vd
�= v+ − v−. The MNA

equations can be easily written by inspection:

Node Eqs.:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Ge1 − Ge2 + i7 = 0

− Ge1 + Ge2 + C(e2 − e3)
•
e2 − C(e2 − e3)

•
e3 + i2 = 0

− C(e2 − e3)
•
e2 + C(e2 − e3)

•
e3 + i4 + i5 = 0

− i5 + i6 = 0

Opamp:

⎧⎨
⎩

i2 = 0

−vo(−e2) + e3 = 0
(4.62)

NL :
{
−e3 + e4 + L(i5)

•
i5 = 0

(continued)
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Example 4.2.8 (continued)

NR :
{
e4 − v̂6(i6) = 0

Voltage source: e1 = es

Equation (4.62) constitutes a set of nine coupled algebraic and
differential equations in nine unknown functions: the four node
voltages e1(·), e2(·), e3(·), e4(·) and the five selected currents
i2(·), i4(·), i5(·), i6(·), i7(·). Note that the variable i4, the opamp output
current, appears only in the third node equation. This node equation is thus a
recipe for calculating i4, once e2, e3, and i5 are known. If i4 is not required,
the third node equation can be dropped.

Examples 4.2.7 and 4.2.8 have shown how easy it is to write MNA equations for
any circuit, the algorithm is summarized below.

MNA Algorithm:
Data:

• Circuit diagram with assigned node numbers and assigned current reference
directions

• Branch equation(s) for each element of the circuit

Steps:

1. Choose a ground node, say n and draw a connected digraph (may require
hinging some nodes).

2. For k = 1, 2, · · · , n − 1, write KCL for node k using the node-to-ground
voltages as variables, keeping in mind that a if one or more inductors are
connected to node k, then the branch currents of that inductor is entered in
the node equation and the branch equation of the inductor is appended to
the n − 1 node equation; b if one or more branches which are not voltage-
controlled are connected to node k, then the corresponding branch current
is entered in the node equation and the corresponding branch equation is
appended to the n − 1 node equations.

4.2.2.2 Tableau Analysis

Tableau analysis is the second method for writing dynamic circuit equations. The
method essentially mirrors the technique in Sect. 3.5, hence we will simply show
a nonlinear example (very similar to Example 4.2.8) and then discuss the general
technique.
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Fig. 4.29 Circuit for Example 4.2.9

Example 4.2.9 Write tableau equations for the circuit in Fig. 4.29.

Solution We will assume that NR is voltage-controlled. We will assume the
same characteristics for NL and the opamp as Example 4.28.

By inspection we can write KCL and KVL for the circuit:

Ai(t) = 0

v(t) − AT e(t) = 0 (4.63)

using the suitable reduced incidence matrix A. Using the branch equations
from the circuit, we get:

v1 − R1i1 = 0

i2 = 0

C
•
v3 − i3 = 0

v4 − vo(−v2) = 0

L(i5)
•
i5 − v5 = 0

i6 − •
i6(v6) = 0

v7 = es(t) (4.64)

(continued)
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Example 4.2.9 (continued)

In Eq. (4.64), we know the constants R1, C and the functions vo(·), L(·), î6(·)
and es(·). The unknown functions are e(·), v(·), and i(·). Equations (4.63)
and (4.64) are the tableau equations for the given circuit.

In general, the tableau equations for a nonlinear dynamic circuit are:

KCL: Ai(t) = 0

KVL: v(t) − AT e(t) = 0

Branch eqs.: h(
•
v(t), v(t),

•
i(t), , i(t), t) = 0 (4.65)

Comparing Eqs. (3.121) and (4.65), we see that for the dynamic case we have
derivatives in the branch equation.

For a connected digraph of b branches and n nodes, the tableau equations (4.65)
constitute a system of 2b + n− 1 scalar equations in 2b + n − 1 unknown functions
ej (·), j = 1, 2, · · · , n − 1, vk(·), k = 1, 2, · · · , b and il(·), l = 1, 2, · · · , b.

In the derivation of the tableau equations (4.65) we considered only a nonlinear
inductor specified by its small-signal inductance L(i). The dual case would be a
nonlinear capacitor specified by its small-signal capacitance C(v).

Suppose, however, we have a capacitor that is charge-controlled (vC = v̂(q)) and
an inductor that is flux-controlled (iL = î(φ)). If we use the chain rule as before,
we are stuck because q and φ appear as arguments in v̂′(q) and î ′(φ). The remedy
is to use q and φ as additional variables and to describe the capacitor by:

vC = v̂(q)

•
q = iC (4.66)

and the inductor by:

iL = î(φ)

•
φ = −vL (4.67)

4.2.2.3 Small Signal Analysis Revisited

We have already encountered the concept of small-signal analysis with respect
to NR in Sect. 3.1.1. We will see in this section that the method of small-signal
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Fig. 4.30 Nonlinear time-invariant circuit D driven by the DC source Es and the AC source es(·)

analysis, when applied to dynamic circuits10 helps reduce the analysis of a nonlinear
dynamic circuit to that of a nonlinear resistive circuit, then to that of a linear dynamic
circuit. The goal of this section is to state and justify the algorithm which delivers
the small-signal equivalent circuit of any nonlinear time-invariant dynamic circuit
about a fixed operating point.

In order to avoid complicated notations, this section studies the circuit shown
in Fig. 4.30. We have chosen this circuit so that it includes most of the analyses
required for obtaining a small-signal equivalent circuit. The aim of small-signal
analysis is to take advantage of the fact that es(·) is small (in the sense that, for
all t ≥ 0, the values of |es(t)| are small: higher order terms of any nonlinear
expression are negligible). The circuit D includes a linear resistor R, a linear
capacitor C, a linear inductor L, a nonlinear VCCS specified by its characteristic
f0(·), a nonlinear current-controlled inductor specified by φ̂6(·), a nonlinear voltage-
controlled capacitor specified by q̂7(·), and a nonlinear voltage-controlled resistor
specified by î2.

The tableau equations of D can be written as:

KCL: Ai(t) = 0

KVL: v(t) − AT e(t) = 0

Branch eqs.: f(
•
v(t), v(t),

•
i(t), i(t)) = us (t) (4.68)

10We will utilize the ideas from this section and Sect. 4.3 to derive important small-signal AC
characteristics of memristors in Sect. 4.4.2.
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Notice that Eq. (4.68) is slightly different from Eq. (4.65): we emphasize the fact
that f does not depend explicitly on time. Column vector us (t) bookkeeps the
contribution of the independent sources: Es + es(t).

In order to derive approximate equations representing D we proceed in three
steps:

Step 1. Calculate the DC Operating Point Q, i.e., EQ,VQ, IQ
Set the AC source es(·) to zero, turn on the DC source, and call EQ,VQ, IQ the

resulting DC steady-state. The corresponding tableau equations read:

KCL: AIQ = 0

KVL: VQ − AT EQ = 0

Branch eqs.: f(0,VQ, 0, IQ) = Us (4.69)

where Us denotes the contribution of the DC source Es . Since VQ and IQ are

constant vectors,
•
VQ = 0 and

•
IQ = 0. For this particular circuit, the branch

equations read:

V1 = Es

î2(V2) − I2 = 0

−f0(V2) + I3 = 0

V4 = 0 (because
dI4

dt
= 0)

I5 = 0 (because
dV5

dt
= 0)

V6 = 0 (because
dI6

dt
= 0)

I7 = 0 (because
dV7

dt
= 0)

V8 − RI8 = 0 (4.70)

From Eq. (4.70), we see that to calculate the DC operating point, (a) we replace each
inductor by a short circuit and (b) we replace each capacitor by an open circuit; (c)
we solve the resulting nonlinear resistive circuit, shown in Fig. 4.31. In the next step,
we assume that EQ,VQ, IQ are known.11

11If Eq. (4.69) have several solutions, we choose one and stick to it.
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Fig. 4.31 Nonlinear resistive circuit whose solution V1, V2, · · · , I1, I2, · · · specifies the operating
point Q. Note the inductors have been replaced by short circuits and the capacitors by open circuits

Step 2. Change of Variables
The idea is to use the fact that the AC source is small, and consequently12 the

actual node voltages e(t) will be close to EQ, v(t) will be close to VQ and i(t) will
be close to IQ. So we write:

e(t) = EQ + ẽ(t)

v(t) = VQ + ṽ(t)

i(t) = IQ + ĩ(t) (4.71)

The point is that ẽ(t), ṽ(t), ĩ(t) are small deviations from the operating point
EQ,VQ, IQ, respectively. If we substitute the expressions for e, v, i from Eq. (4.71)
into the KCL Eq. (4.68) and the KVL Eq. (4.68) while taking into account the
corresponding tableau KCL, KVL Eq. (4.69) about the DC operating point, we
obtain:

Aĩ(t) = 0

ṽ(t) − AT ẽ(t) = 0 (4.72)

Note that the equations above are exact, no approximation is involved.

12We will implicitly assume that the system is stable in the neighborhood of Q. For details, please
refer to [12].
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ĩ6 ĩ7

ĩ8
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Fig. 4.32 The small-signal linear time-invariant circuit of D about the operating point (VQ, IQ)

We could perform the same substitution in the branch Eq. (4.68) and use
Eq. (4.69) to obtain:

f

(
•
ṽ(t),VQ + ṽ(t),

•
ĩ(t), IQ + ĩ(t)

)
− f(0,VQ, 0, IQ) = us (t) − Us (4.73)

However it is more instructive to proceed by considering one branch at a time,
because Eq. (4.73) is still a nonlinear equation and we would like to linearize it
by using Taylor series (since ẽ(t), ṽ(t), ĩ(t) are small).

Step 3. Obtain Approximate Branch Equations
We consider successively resistors, controlled sources, capacitors, and indepen-

dent sources. Since inductors are the dual of capacitors, the corresponding derivation
is trivial and is left as an exercise for the reader.

The final result will be obtained by using a Taylor series expansion and dropping
the higher-order terms. The result is a set of approximate linear time-invariant
equations relating ṽ(t), ĩ(t) and the AC source. The linear small-signal circuit
corresponding to D is shown in Fig. 4.32.

For the nonlinear resistor, we have:

i2(t) = î2(v2(t)) (4.74)

Substituting for i2(t) and v2(t), we get:

I2 + ĩ2(t) = î2(V2 + ṽ2(t)) (4.75)
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Expanding the RHS using Taylor series, we get:

I2 + ĩ2(t) = î2(V2) + dî2

dv

∣∣∣
V2

ṽ2(t) + higher order terms (4.76)

Now if ṽ2(t) is small, we may neglect the higher order terms and since I2 = î2(V2),
we get:

ĩ2(t) = dî2

dv

∣∣∣
V2

ṽ2(t) (4.77)

Equation (4.77) is the equation of a linear time-invariant resistor with conductance
dî2
dv

∣∣∣
V2

, the slope of the resistor characteristic at its operating point. Note that for a

linear resistor, dî2
dv

∣∣∣
V2

= 1
R

. Hence, comparing Figs. 4.30 and 4.32, we see that the

linear resistor remains.13

For the controlled source, we have:

i3(t) = f0(v2(t)) (4.78)

Substituting for i3(t) and v2(t), we get:

I3 + ĩ3(t) = f0(V2 + ṽ2(t)) (4.79)

Expanding the RHS using Taylor series, we get:

I3 + ĩ3(t) = f0(V2) + df0

dv

∣∣∣
V2

ṽ2(t) + higher order terms (4.80)

Now if ṽ2(t) is small, we may neglect the higher order terms to get:

ĩ3(t) = df0

dv

∣∣∣
V2

ṽ2(t) (4.81)

Equation (4.81) is the equation of a linear time-invariant VCCS.
For the nonlinear capacitor, we have:

q7(t) = q̂7(v7(t)) (4.82)

Using the chain rule and substituting for v7(t), we get:

ĩ7(t) = q̂ ′
7(V7 + ṽ7(t)) ·

•
ṽ7(t) (4.83)

13In fact, this is also true for linear capacitors and inductors.
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Expanding the RHS using Taylor series, dropping the higher order terms and using
the fact that the DC equivalent of a capacitor is an open circuit, we get:

ĩ7(t) = dq̂7

dv

∣∣∣
V7

·
•
ṽ7(t) (4.84)

Equation (4.84) is the slope of the nonlinear capacitor at the operating point V7.
For the independent AC source, we trivially get: ṽ1(t) = es(t).
Hence the resulting branch equations for the small-signal linear time-invariant

circuit in Fig. 4.32:

ṽ1(t) = es(t)

ĩ2(t) − î ′2(V2)ṽ2(t) = 0

ĩ3(t) − f ′
0(V2)ṽ2(t) = 0

ṽ4(t) − L

•
ĩ4(t) = 0

ĩ5(t) − C
•
ṽ5(t) = 0

ṽ6(t) − φ̂′
6(I6)

•
ĩ6(t) = 0

ĩ7(t) − q̂ ′
7(V7)

•
ṽ7(t) = 0

ṽ8(t) − Rĩ8(t) = 0 (4.85)

Let us abbreviate these equations in the form:

(M0QD + M1Q)ṽ(t) + (N0QD + N1Q)ĩ(t) = ũs (t) (4.86)

where the constant matrices M0Q,M1Q,N0Q,N1Q are directly read from Eq. (4.85)
and ũs (t) is the column vector of AC sources in Eq. (4.85).

Conclusion
If we collect KCL, KVL from Eqs. (4.72) and (4.86), we get the tableau

equation of a small-signal equivalent circuit:

Aĩ(t) = 0

ṽ(t) − AT ẽ(t) = 0

(M0QD + M1Q)ṽ(t) + (N0QD + N1Q)ĩ(t) = ũs (t) (4.87)
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We will denote the small-signal equivalent circuit as LQ. Since the concept of
small-signal equivalent circuits is very important, we summarize the procedure in
detail by the following algorithm.

Algorithm to obtain the small-signal equivalent circuitLQ of D
Data

• Circuit diagram of the nonlinear time-invariant circuit D driven by DC and
AC sources, with nodes numbered and with current reference directions

• Branch equations for each element in D

First we determine the operating point Q

1. In D , set all AC independent sources to zero.
2. Replace all inductors by short circuits and all capacitors by open circuits.
3. Solve the resulting resistive circuit, which is now driven by DC sources only.

Call Q the resulting operating point specified by the solution (VQ, IQ). If
there are multiple operating points, we choose the one of interest and study
the dynamics of the circuit about that operating point.

Second, we determineLQ

1. In D , set all DC independent sources to zero.
2. Leave all linear elements.
3. Replace every nonlinear element by its (linear) small-signal equivalent

circuit about the operating point found in step 3. The resulting linear time-
invariant circuit is LQ, the small-signal equivalent circuit of D about the
operating point Q.

4.3 Frequency Domain Analysis of Linear Time-Invariant
Circuits

In this section, we consider exclusively linear time-invariant circuits and we
concentrate on their sinusoidal steady-state behavior, that is, their behavior when
they are driven by one or more sinusoidal sources at some frequency ω and when,
after all “transients” have died down, all currents and voltages are sinusoidal at
frequency ω.

This section has a somewhat narrow focus in the sense that we do not discuss
nonlinear circuits. However, the concepts and techniques this section covers are
fundamental to science, in the sense that frequency domain analysis helps transform
the analysis of differential equations from the time domain (Sect. 4.2), into analysis
of algebraic (albeit complex) equations in the frequency domain. Also, we will
see later in this chapter that a variety of small-signal AC analysis techniques
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(for example, with higher-order circuit elements in Sect. 4.6.2) will make use of
frequency response concepts.

Moreover, discussing frequency domain techniques for nonlinear circuits is
beyond the scope of this book, as we need to develop the mathematical machinery
(such as describing functions) first. We plan to add this topic as part of our follow-up
advanced volume on nonlinear circuits and networks.

The analysis technique when sinusoidal inputs are applied to linear time-invariant
circuits is called AC analysis or sinusoidal steady-state analysis. Our first task
would be to systematically develop the concept of a phasor: to each sine wave (of
voltage or current) we associate a complex number, to encode both the magnitude
and the phase.

4.3.1 Complex Numbers and Phasors

We will first discuss some important ideas regarding complex numbers. We would
like to emphasize that our approach to deriving the phasor concept from complex
numbers is probably unique because we use a historical approach [18], covering
important concepts along the way. Hence we encourage readers who are familiar
with complex numbers to at least glance through this section to make sure that they
do not miss out some on fascinating facts. Many texts seek to introduce complex
numbers with a convenient historical fiction based on solving quadratic equations14

[25]:

x2 = mx + c (4.88)

Two thousand years BC, it was already known that such equations could be solved
using a method that is equivalent to the modern formula:

x1,2 = m ± √
m2 + 4c

2
(4.89)

But what if m2 + 4c (discriminant) is negative? This is where many textbooks
are historically inaccurate in the sense that they state: the need for Eq. (4.88) to
always have a solution forced mathematicians to take complex numbers seriously
for negative discriminants.

But that is simply false. For the ancient Greeks mathematics was synonymous
with geometry. Thus an algebraic relation such as Eq. (4.88) was not so much
thought of as a problem in its own right, but rather as a mere vehicle for solving
a genuine problem in geometry. In other words, Eq. (4.88) was simply seen to

14Dr. Muthuswamy thanks Dr. Jevtic for valuable discussions over the years, including suggesting
Needham’s excellent text on “Visual Complex Analysis.”
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represent the problem of finding the intersection points of the parabola y = x2

with the line y = mx + c. Thus, depending on the sign of the discriminant, the
equation either had two, one, or no real solutions. So, if the solution was absent,
then it was correctly manifested by the occurrence of “impossible” (now known as
complex) numbers in the formula.

It was not the quadratic that forced complex numbers to be taken seriously, it
was the cubic:

x3 = 3px + 2q (4.90)

Exercise 4.9 shows that any cubic equation can be reduced to the form above. This
equation represents the analogous problem of finding the intersection points of the
cubic y = x3 with the line y = 3px + 2q . Girolamo Cardano in his Ars Magna
(which appeared in 1545) showed that this equation could be solved by means of
the elegant formula (see Exercise 4.10):

x = s + t

where: s3 = q +
√

q2 − p3 t3 = q −
√

q2 − p3 (4.91)

Some 30 years after this formula appeared, Rafael Bombelli in L’Algebra recog-
nized that there was something strange and paradoxical about it. First note that if
the line y = 3px + 2q is such that p3 > q2 then the formula involves complex
numbers. For example, Bombelli considered x3 = 15x + 4 which yields as one of
the solutions:

x = 3√
2 + 11j + 3√

2 − 11j (4.92)

In the previous case of the quadratic, this merely signaled that the geometric
problem had no solution but in the case of the cubic, the line will always15 hit
the curve. In fact, we can (graphically) show that Bombelli’s example yields the
solution x = 4.

As he struggled to resolve this paradox, Bombelli had what he called a “wild
thought”: perhaps the solution x = 4 could be recovered from the above expression
if 3√2 + 11j = 2 + nj and 3√2 + 11j = 2 − nj . Of course for this to work he
would have to assume that the addition of two complex numbers A = a + j ã and
B = b + j b̃ obeyed the plausible rule,

A + B = (a + j ã) + (b + j b̃)

= (a + b) + j (ã + b̃) (4.93)

15This is a consequence of the Fundamental Theorem of Algebra: a cubic will have at least one
real root.



254 4 Dynamic Nonlinear Networks

Table 4.3 Complex numbers terminology

Name Meaning Notation

Modulus of z Length r of z |z|
Argument of z Angle θ of z arg(z)

Real part of z x coordinate of z Re(z)

Imaginary part of z y coordinate of z Im(z)

Imaginary number Real multiple of j

Real axis Set of real numbers

Imaginary axis Set of imaginary numbers

Complex conjugate of z Reflection of z in the real axis z̄

Next, to see if there was indeed a value of n for which 3√2 + 11j = 2 + nj , he
needed to calculate (2 + jn)3. To do so he assumed that he could multiply out the
brackets as in ordinary algebra and assuming j2 = −1:

(a + j ã)(b + j b̃) = ab + j (ab̃ + ãb) + j2ãb̃

= (ab − ãb̃) + j (ab̃ + ãb) (4.94)

This rule vindicated his “wild thought,” for he was now able to show that (2±j)3 =
2 ± 11j .

While complex numbers themselves remained mysterious, Bombelli’s16 work
on cubic equations thus established that perfectly real problems requires complex
arithmetic for their solution. This justifies our use of complex arithmetic in AC
circuit analysis: complex numbers provide an elegant way to encode both the
magnitude and phase of a sinusoid. In fact, the subsequent development of the
theory of complex numbers was bound with progress in other areas of physics and
mathematics. That discussion is beyond the scope of this book, the interested reader
is referred to [25].

We will now introduce the modern terminology and notation for complex
numbers. Throughout this discussion, refer to Table 4.3 and Fig. 4.33.

It is valuable to grasp from the outset that (according to the geometric view) a
complex number is a single, indivisible entity—a point in the plane. Only when
we choose to describe such a point with numerical coordinates does a complex
number appear to be compounded or “complex.” More precisely, C is said to be
two dimensional, meaning that two real numbers (coordinates) are needed to label
a point within it, but exactly how the labeling is done is entirely up to us.

One way is to label the points with Cartesian coordinates (the real part x and
imaginary part y), the complex number being written as z = x + jy. This form,
called the standard form (encountered earlier via Bombelli’s work), is the “natural”

16Bombelli is generally regarded as the father of complex numbers.
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r = |z|
z = x+ jy = r∠

z̄ = x− jy = r∠−

= arg(z)

Re

Im

0 x = Re(z)

y = Im(z)

Fig. 4.33 Complex numbers terminology (contd.)

labeling when dealing with addition (or subtraction) of two complex numbers z1 =
a + jb, z2 = c + jd:

z1 + z2 = (a + c) + j (b + d) (4.95)

We simply add the real parts to get the real part for the sum, and add the imaginary
parts to get the imaginary part for the sum.

But, when multiplying (or dividing) two complex numbers, the standard form is
cumbersome. To emphasize this point, let us again multiply two complex numbers
in standard form:

z1 ∗ z2 = (a + jb) ∗ (c + jd)

= (ac − bd) + j (ad + bc) (j2 = −1) (4.96)

There is a more elegant way to multiply (divide) complex numbers. We will simply
state the rule since a detailed explanation is beyond the scope of this book: labeling
z with its polar coordinates, r = |z|, θ = arg(z), we can now write z = r � θ where
the symbol � serves to remind us that θ is the angle of z.

The geometry multiplication rule takes the simple form:

(R � φ)(r � θ) = (Rr) � (φ + θ) (4.97)
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In words: The length of z1z2 is the product of the lengths of z1 and z2, and the
angle of z1z2 is the sum of the angles of z1 and z2.

Complex division can now be defined in a simple manner:

R � φ

r � θ
= R

r
� (φ − θ) (4.98)

One important concept is that: in common with the Cartesian label x + jy, a
given polar label r � θ specifies a unique point, but (unlike the Cartesian case) a
given point does not have a unique polar label! Since any two angles that differ
by a multiple of 2π correspond to the same direction, a given point has infinitely
many labels:

· · · = r � (θ − 4π)= r � (θ − 2π) = r � θ= r � (θ + 2π) = r � (θ + 4π)= · · ·
(4.99)

This simple fact about angles is one of the most important concepts in complex
numbers that is encountered many times in science and engineering. Before
proceeding, you should solve Exercise 4.11 so that you thoroughly understand and
are comfortable with the concepts, terminology and notation for complex numbers.

We are now in a position to look at probably the most elegant formula in
mathematics, called Euler’s formula:

ejθ = cos(θ) + j sin(θ) (4.100)

Simply stated, “Euler’s formula relates polar form to standard form.” But this does
not help us understand what the formula means. Simply stating “Euler’s formula
relates polar form to standard form” reduces one of Euler’s greatest achievements
to a mere tautology. Perhaps the best approach to understanding Euler’s formula
is to go visualize ejθ in the complex plane, as shown in Fig. 4.34. Given the fact
that the complex number ejθ in standard form is x + jy, we can see from Fig. 4.34
that since the magnitude of ejθ is 1, x = cos(θ), y = sin(θ) by the definition of
the trigonometric functions from a right-angled triangle. Obviously, if we scale the
magnitude of a complex number by r , Fig. 4.34 shows rejθ = r cos(θ) + jr sin(θ).

Now, we are ready to discuss the concept of a phasor.

Definition 4.11 A sinusoid of angular frequency ω (rad/s) is by definition a
function of the form Am cos(ωt + θ) where the amplitude Am, phase θ , and the
frequency ω are real constants. The amplitude Am is always taken to be positive.
The period T = 2π/ω is in seconds. Also note that given a frequency f in Hz,
ω = 2πf .

Definition 4.12 To the sinusoid in Definition 4.11, we associate a complex number

A called the phasor17 (of that sinusoid) according to the rule: A
�= Amejθ .

17A phasor is essentially a complex number written in exponential or Euler form.
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Fig. 4.34 Interpreting Euler’s formula via the complex plane

It is crucial to note that the phasor does not explicitly involve ωt! The best way
to understand this is visually, refer to Fig. 4.35, called the phasor diagram. We plot
the phasor A in the complex plane as a vector from the origin to the point A =
Amejθ . We now imagine the vector rotating counterclockwise at angular velocity
of ω rad/s, namely, we consider Aejωt as t increases. Whenever we want x(t), we
project orthogonally on the x-axis the tip of the vector.

In other words, knowing the frequency ω, the phasor A specifies uniquely the
sinusoid by the formula:

Re[Aejωt ] = Re[Amej(ωt+θ)]
= Am cos(ωt + θ) (4.101)

In summary, there is a one-to-one correspondence between sinusoids (at fre-
quency ω) and phasors:

Sinusoid Phasor

Am cos(ωt + θ)

= (Am cos θ) cos ωt

+(−Am sin θ) sin ωt

⎫⎪⎪⎬
⎪⎪⎭

⇔
{

A = Amejθ

= (Am cos θ) + j (Am sin θ)
(4.102)
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Fig. 4.35 The sinusoid x(t) = Am cos(ωt + θ) is viewed as being generated by the projection of
the tip of the “rotating phasor” Aejωt

Equivalent (4.102) states that

Am cos(ωt + θ) = Re[A] cosωt − Im[A] sin ωt (4.103)

4.3.2 Sinusoidal Steady-State Analysis Using Phasors

The use of phasors in the analysis of linear time-invariant circuits in sinusoidal
steady-state becomes completely obvious once the following lemmas are thoroughly
understood.

Lemma 4.1 (Uniqueness) Two sinusoids are equal iff they are represented by the
same phasor; symbolically for all t ,

Re(Aejωt ) = Re(Bejωt ) ⇔ A = B (4.104)

Proof

(a) Assume A = B. Consequently, for all t ,

Aejωt = Bejωt and Re(Aejωt ) = Re(Bejωt )

(b) Assume, for all t:

Re(Aejωt ) = Re(Bejωt ) (4.105)
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In particular, for t = 0, we get: Re(A) = Re(B). Similarly for t0 = π/(2ω),
ejωt0 = ejπ/2 = j . Thus Re(Aj) = −Im(A) and hence Eq. (4.105) gives
Im(A) = Im(B). Therefore:

A = Re(A) + j Im(A)

= Re(B) + j Im(B)

= B (4.106)

��
Lemma 4.2 (Linearity) The phasor representing a linear combination of sinu-
soids (with real coefficients) is equal to the same linear combination of the phasors
representing the individual sinusoids. Symbolically, let the sinusoids be

x1(t) = Re[A1e
jωt ] and x2(t) = Re[A2e

jωt ]

Thus the phasor A1 represents sinusoid x1(t) and the phasor A2 represents x2(t).
Let a1, a2 ∈ ; then the sinusoid a1x1(t) + a2x2(t) is represented by the phasor
a1A1 + a2A2.

Proof We verify the assertion by computation:

a1x1(t) + a2x2(t) = a1Re[A1e
jωt ] + a2Re[A2e

jωt ] (4.107)

Now a1 and a2 are real numbers, hence for any complex numbers z1 and z2,

aiRe[zi] = Re[aizi] i = 1, 2

and a1Re[z1] + a2Re[z2] = Re[a1z1 + a2z2] (4.108)

Now applying this fact to Eq. (4.107) we have:

a1Re[A1e
jωt ] + a2Re[A2e

jωt ] = Re[(a1A1 + a2A2)e
jωt ] (4.109)

Combining the equation above with Eq. (4.107) we get:

a1x1(t) + a2x2(t) = Re[(a1A1 + a2A2)e
jωt ] (4.110)

��
The proof is easily extended to a linear combination (with real coefficients) of n

sinusoids.
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Lemma 4.3 (Phasor Differentiation) A is the phasor of a given sinusoid
Am cos(ωt + θ) iff jωA is the phasor of its derivative, d

dt
[Am cos(ωt + θ)].

Symbolically,

Re[jωAejωt ] = d

dt
[Re(Aejωt )] (4.111)

Proof Note that it is convenient to think of Eq. (4.111) as stating that the linear
operators Re and d

dt
commute:

Re

[
d

dt
(Aejωt )

]
= Re[jωAejωt ] = d

dt
[Re(Aejωt )]

Now:

d

dt
[Re(Aejωt )] = d

dt
[Re(Amej (ωt+θ))]

= d

dt
[Am cos(ωt + θ)]

= −Amω sin(ωt + θ)

= Re[jωAmej (ωt+θ)]
= Re[Aejωt ] (4.112)

��

Example 4.3.1 Simplify: 12 cos(ωt+23◦)+7 cos(ωt−57◦)+ d
dt

(0.2 cos(ωt+
71◦))

Solution We could combine all the functions using trigonometric formulae,
however, this approach gets very complicated. Instead let us use the phasor
rules we just learned, understanding thatω for all the functions is the same.
Let ω = 377 rad/s. Hence, the phasor formulation for each function is:

A1 = 12ej23◦

A2 = 7e−j57◦

A3 = jω0.2ej71◦ = 75.4ej161◦
(4.113)

(continued)
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Example 4.3.1 (continued)
For A3, we used the differentiation rule. Since we are going to be adding
complex numbers, let us write each of the phasor in standard form:

A1 ≈ 11.05 + j4.69

A2 ≈ 3.81 − j5.87

A3 ≈ −71.29 + j24.55 (4.114)

We will add and convert back to phasor form, so we can interpret the result as
a sinusoid:

A1 + A2 + A3 = −56.43 + j23.34

= 61.08ej157.51◦

�= A (4.115)

Thus the resulting sinusoid is: Re[Aejωt ] = 61.08 cos(377t + 157.51◦).

We will now solve a differential equation using phasor formulation.

Example 4.3.2 Given the circuit in Fig. 4.36, determine iL(t) for all t . is(t) =
Ism cos(ωt + � Is). Assume L > 0, R > 0, C > 0.

Solution The time domain equation for iL(t) can be easily found via
inspection as:

d2

dt2 iL(t) + 2α
•
iL(t) + ω2

0iL(t) = ω2
0is(t) (4.116)

w2
0 = 1/LC, 2α = 1/RC. Let the phasor representation of the sinusoidal

current source be Is = Ismej � Is . Since a phasor is an exponential function and
Eq. (4.116) is a linear ODE, we try the solution Re(ILejωt ) where the complex
number IL is the yet-undetermined phasor which specifies this particular
sinusoidal solution. Substituting into Eq. (4.116) we obtain for all t :

d2

dt2
[Re(ILejωt )] + 2α

d

dt
[Re(ILejωt )] + ω2

0Re(ILejωt ) = ω2
0Re(Ise

jωt )

(4.117)

(continued)
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Example 4.3.2 (continued)

1. Using the differentiation lemma three times, we get:

Re[(jω)2ILejωt ] + 2αRe[(jω)ILejωt ] + ω2
0Re(ILejωt ) = ω2

0Re(Ise
jωt )

2. Using the linearity lemma we obtain (since α and ω2
0 are real):

Re[(jω)2 + 2α(jω) + w2
0]ILejωt = ω2

0Re(Ise
jωt )

3. Using uniqueness lemma, we obtain an algebraic equation for IL:

[(jω)2 + 2α(jω) + ω2
0]IL = ω2

0Is (4.118)

Hence

IL = ω2
0Is

(ω2
0 − ω2) + 2αjω

�= ILmej (θL+� Is ) (4.119)

with

ILm = ω2
0√

(ω2
0 − ω2)2 + (2αω)2

Ism θL = − tan−1 2αω

ω2
0 − ω2

The sinusoidal solution is then:

iLp(t) = ω2
0Ism√

(ω2
0 − ω2)2 + (2αω)2

cos(ωt + � Is + θL) (4.120)

where the subscript p reminds us that iLp is the sinusoidal particular solution.
The physical meaning of this particular solution is the following: since
R,L,C are positive constants, it follows that α > 0 and ω2

0 > 0.
Consequently, the two natural frequencies s1, s2 of the circuit, i.e., the zeros
of its characteristic polynomial C(s) = s2 + 2αs + ω2

0 have negative real
parts. Therefore, any solution of Eq. (4.116) starting at any t0 from any initial
condition has the form:

iL(t) = k1e
s1(t−t0) + k2e

s2(t−t0) + iLp(t) (4.121)

Note that we have assumed s1 �= s2.



4.3 Frequency Domain Analysis of Linear Time-Invariant Circuits 263

Fig. 4.36 Circuit for
Example 4.3.2
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+

vL

−

+

vR

−

+

vC

−
CRL

iL iR iC

Example 4.3.2 illustrates the following ideas:

1. Since Re(s1) < 0, Re(s2) < 0, as t → x, iL(t) → iLp(t). This particular solution
is called the sinusoidal steady-state solution of the circuit. The difference
between the total response iL(t) given by Eq. (4.121) and the particular solution
given by Eq. (4.120) is called the transient response.

2. Note that the frequency of the output is the same as the frequency of the input.
This property is true in general for any linear time-invariant circuit: if all its
natural frequencies have negative real parts, then for any initial conditions and
for any set of independent sources, each one sinusoidal at the same frequency
ω, all currents and all voltages will tend exponentially as t → ∞ to sinusoidal
waveforms at frequency ω. When that situation occurs the circuit is said to be
in the sinusoidal steady-state. Note that sinusoidal steady-state does not depend
on the initial conditions. A general proof is beyond the scope of this book, the
interested reader is referred to [12].

3. Comparing Eqs. (4.116) and (4.118) we see that a differential equation in the time
domain has been converted to a complex algebraic equation in the phasor domain.
So a natural question is: can we obtain the algebraic equation in the phasor
domain directly from the circuit, instead of writing the time domain differential
equation?

The answer is yes, and simply involves reformulating the laws of interconnec-
tions (KCL, KVL) and laws of elements in the phasor domain.

For example, in Fig. 4.36, KCL reads for all t:

iL(t) + iR(t) + iC(t) = 0 (4.122)

For k = L,R,C, let Ik be the phasor representing the sinusoid ik(t). Thus,
Eq. (4.122) gives, for all t:

Re(ILejωt ) + Re(IRejωt ) + Re(ICejωt ) = 0 (4.123)

Using the linearity and uniqueness lemmas, we obtain:

IL + IR + IC = 0 (4.124)
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Since the reasoning is quite general, we can state the following conclusion.

Theorem 4.3 (KCL in the Phasor Domain) In the sinusoidal steady-state,
for any connected circuit D , KCL reads:

AĪ = 0 (4.125)

where A is the (n−1)×b reduced incidence matrix of real numbers and Ī is an
b-vector current phasor. We use Ī to avoid confusion with the identity matrix.

We can make a similar argument for KVL and hence we get:

Theorem 4.4 (KVL in the Phasor Domain) In the sinusoidal steady-state,
for any connected circuit D , KVL reads:

V = AT E (4.126)

where A is the (n − 1) × b reduced incidence matrix of real numbers and E
is a (n − 1)-vector voltage phasor. Notice that V is a matrix with complex
components.

The laws of elements in the phasor domain can also be derived in a straightfor-
ward manner by application of the three lemmas to the time domain element laws.
Table 4.4 has the results. The expressions R, jωL and 1

jωC
, are the impedances

at frequency ω of the circuit elements R,L, and C, respectively; 1
R

, 1
jωL

, jωC are
the corresponding admittances; μ is a voltage gain; α is a current gain; gm is a
transconductance, and rm is a transresistance. The crucial point again is that in
terms of phasors, the branch equations become algebraic equations with complex
coefficients in the phasor domain.

Also, as shown in Fig. 4.35, it is common to visualize phasors as rotating
counterclockwise. Hence, referring to the phasor domain constitutive relations for
the inductor and capacitor, we say the inductor current phasor IL lags the
inductor voltage phasor VL by 90◦ and the capacitor current phasor IC leads the
capacitor voltage phasorVC by 90◦.18 We will see in Sect. 4.4.2 that capacitive and
inductive parasitic effects in physical memristors lead to “unpinching” of memristor
hysteresis loops, due to the leading (or lagging) behavior of current and voltage
variables (under sinusoidal excitation).

Thus we have in essence “resistive” circuits in the frequency domain, except
now our resistances are in the form of frequency-dependent impedances. Therefore,

18The convention is to say “current leads/lags voltage,”’ not “voltage lags/leads current.”
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Table 4.4 Laws of elements in the time domain and phasor domain

Time domain Phasor domain

Element Constitutive relation Constitutive relation

Resistor v(t) = Ri(t) V = RI

Inductor v(t) = Ldi
dt

V = jωLI

Capacitor i(t) = C dv
dt

I = jωCV

VCVS v3(t) = μv1(t) V3 = μV1

VCCS i4(t) = gmv5(t) I4 = gmV5

CCVS v6(t) = rmi5(t) V6 = rmI5

CCCS i8(t) = αi7(t) I8 = αI7

Gyrator i9(t) = Gv10(t) I9 = GV10

i10(t) = −Gv9(t) I10 = −GV9

Ideal transformer v1(t) = 1
n
v2(t) V1 = 1

n
V2

i1(t) = −ni2(t) I1 = −nI2

techniques such as tableau analysis are applicable and to avoid repeating the
concepts from Chap. 3, we will simply summarize the main ideas, by drawing an
analogy with tableau analysis for resistive circuits.

Let NR be a linear time-invariant resistive circuit with a connected graph
having n nodes and b branches. Suppose that we first replace a number of
resistors of NR by inductors or capacitors, and second, drive the resulting
circuit by sinusoidal sources all operating at the same frequency ω. Assume
that the resulting circuit is in the sinusoidal steady-state and call the circuit Nω.
We have chosen this label to emphasize that we consider its sinusoidal steady
at frequency ω.

Linear time-invariant resistive circuit NR (see Eq. (3.115))

⎡
⎣

0 0 A
−AT I 0
0 M(t) N(t)

⎤
⎦
⎡
⎣
e(t)
v(t)
i(t)

⎤
⎦ =

⎡
⎣

0
0

us(t)

⎤
⎦ (4.127)

1. e(·), v(·), i(·),us (·) are vector-valued functions of time.
2. The tableau matrix T has real entries.
3. NR is completely described by Eq. (4.127), i.e., a set of linear algebraic equations

with real coefficients.
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Linear time-invariant circuit Nω operating in the sinusoidal steady-state

⎡
⎣

0 0 A
−AT I 0
0 M(jω) N(jω)

⎤
⎦
⎡
⎣
E
V
Ī

⎤
⎦

=
⎡
⎣

0
0
Us

⎤
⎦ (4.128)

1. E,V, Ī,Us are vectors whose components are phasors.
2. The tableau matrix T(jω) has complex entries in its bottom b rows.
3. Nω is completely described by Eq. (4.128), i.e., a set of linear algebraic equations

with complex coefficients.

Moreover:

1. The superposition theorem holds for Nω: provided det[T(jω)] �= 0, the
sinusoidal steady-state (at frequencies ω) due to several independent sources
(at frequency ω) is equal to the sum of the sinusoidal steady-states due to
each independent source acting alone (see Sect. 3.6.1).

2. Thévenin-Norton equivalent: For example, if the DP characteristic of Nω

at a pair of terminals 1,1′ is current-controlled, then the resulting one-port
may be replaced by a Thévenin equivalent, but with a Voc that is the phasor
representing the open-circuit voltage at 1, 1′ and Zeq is the impedance of
Nω0 seen at 1, 1′, ω0 is the particularly forcing frequency at which the
impedance is determined (see Sect. 3.6.2).

4.3.3 Laplace Transforms

In the preceding section, we studied linear time invariant circuits in the sinusoidal
steady-state, and our main tool was phasor analysis. In this section, we continue
to study linear time-invariant circuits, but we do it now under general excitation.
We will again encounter a number of basic concepts and properties that are
indispensable to the solution of many scientific problems.

Since the Laplace transform is a generalization of the phasor concept, we will
avoid repetition and discuss the main differences in this section between the Laplace
transform and phasors through examples. Particularly:

1. The Laplace transform can be utilized to obtain both the transient and steady-
state response.
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2. Inverse Laplace transforms (usually by partial fraction expansion) are needed to
obtain the corresponding time-response.

Throughout this section, the variable s will be a complex variable expressed in
standard form: s = σ + jω, σ, ω ∈ . We view s as a point in the complex plane:
σ is its abscissa and ω is its ordinate. The (one-sided) Laplace transform of a time
domain function f (t) is defined as:

F(s)
�=

∞∫

0−
f (t)e−st dt (4.129)

In the integral above, t is the integration variable and hence the integral depends only
on the time function f (·) and on a particular value of s, the complex frequency.
Few remarks:

1. The lower limit of integration is chosen to be 0− so that whenever f (t)

includes an impulse at the origin, it is included in the interval of integration (see
Example 4.3.5).

2. The operation of taking the Laplace transform is denoted by L , thus we write:
F(s) = L {f }(s).

3. The operation of taking the inverse Laplace transform is denoted by L −1:
f (t) = L −1{F }(t).

4. If we take the Laplace transform of a voltage v(t) or current i(t), we denote them
by V (s) and I (s). Thus we use uppercase letters to denote Laplace transforms.

Example 4.3.3 Show that the Laplace transform of the impulse function δ(t)

is L (δ) = 1.

Solution Let us approximate δ(t) by using the procedure from Sect. 4.2.1.3.
Consider the unit area rectangular pulse pΔ(t):

pΔ(t) =
{

1
Δ

for 0 ≤ t ≤ Δ

0 elsewhere

Using pΔ in the definition of the Laplace transform in Eq. (4.129) and
simplifying:

∞∫

0

pΔ(t)e−st dt =
Δ∫

0

1

Δ
e−stdt

= e−st

−sΔ

∣∣∣
Δ

0

(continued)
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Example 4.3.3 (continued)

= 1 − e−sΔ

Δ

Now let Δ → 0, then pΔ(t) → δ(t) and L {pΔ} → L {δ}. Thus we have:

L {δ} = lim
Δ→0

1 − e−sΔ

sΔ

= lim
Δ→0

1 − (1 − sΔ + s2Δ2/2 − · · · )
sΔ

= 1

Example 4.3.3 shows the significance of the impulse response: since the Laplace
transform of δ is unity, from a (complex) frequency standpoint, we say δ(t) contains
“all frequencies.” Hence the impulse response of a linear time-invariant circuit
(system) contains all information about the system.

There are also a variety of properties of Laplace transforms that follow from
phasors: linearity, etc. But the uniqueness property of Laplace transforms is general
in the sense Eq. (4.129) establishes a one-to-one correspondence between f and F .
This is a deep theorem of mathematical analysis, whose proof is beyond the scope
of this text. But it is extremely useful and justifies the fact that we can transform
a time-domain problem into a frequency-domain problem, solve it in the frequency
domain, and then go back to the time-domain solution. The uniqueness of Laplace
transforms guarantees that the procedure gives the solution of the original problem.

The important difference of Laplace transforms being able to “handle” initial
conditions (as opposed to phasors) is illustrated by Example 4.3.4.

Example 4.3.4 Show that: L { d
dt

f (t)} = sF (s) − f (0−).

Solution Using integration by parts in the definition of the Laplace trans-
form:

∞∫

0−
e−stdt︸ ︷︷ ︸

u

•
f (t)︸︷︷︸
dv

= e−st︸︷︷︸
u

f (t)︸︷︷︸
v

∣∣∣∞
0− −

∞∫

0−
f (t)︸︷︷︸

v

(−se−st)︸ ︷︷ ︸
du

dt

= −f (0−) + s

∞∫

0−
f (t)e−st dt

= sF (s) − f (0−) (4.130)

(continued)
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Example 4.3.4 (continued)
To obtain the final result note that we have used the fact that Re(s) is
sufficiently large so that f (t)e−st → 0 at t → ∞. This is true for all non-
pathological physical functions f (t).

Exercise 4.14 generalizes Example 4.3.4 to nth-order.
The analysis of a circuit by Laplace transforms yields the transform of the output

variable. The next step is to go from the Laplace transform back to the time function,
or as engineers say, from the frequency domain to the time domain. An extremely
useful technique is the partial fraction expansion.

Suppose we are given a Laplace transform F0(s) which is a rational function
n0(s)/d0(s), where n0(s) and d0(s) are polynomials with real coefficients. We
further assume that n0(s) and d0(s) are coprime, that is, any nontrivial common
factor has been canceled out.

If the degree of n0 is greater than or equal to the degree of d0, we first divide the
polynomial n0(s) by d0(s) to obtain the quotient polynomial q(s) and the remainder
polynomial r(s). For example:

2s2 + 8s + 7

(s + 1)(s + 3)
= 2 + 1

(s + 1)(s + 3)

with q(s) = 2, r(s) = 1. Since the property of linearity carries over to the Laplace
transform from phasors:

L −1
(

2s2 + 8s + 7

(s + 1)(s + 3)

)
= L −1(2) + L −1

(
1

(s + 1)(s + 3)

)

The inverse Laplace transform can be looked up from tables, but we know from
Example 4.3.3 that:

L −1(2) = 2δ(t)

To determine the inverse Laplace transform of 1
(s+1)(s+3)

, we know from basic
algebra that:

1

(s + 1)(s + 3)
= A

s + 1
+ B

s + 3

We can solve for A and B by any convenient technique. We thus have:

1

(s + 1)(s + 3)
= 0.5

s + 1
− 0.5

s + 3
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From Laplace transform tables (or the reader can easily derive the expression below
from the Laplace transform definition), we get:

L −1
(

k

s + a

)
= ke−atu(t)

We insert the unit step function to remind ourselves that f (t) < 0 for t < 0 (we
have not defined the double-sided Laplace transform). Thus:

L −1
(

2s2 + 8s + 7

(s + 1)(s + 3)

)
= 2δ(t) + (0.5e−t − 0.5e−3t )u(t) (4.131)

The subject of partial fraction expansion as applied to Laplace transforms can be
found in any text on electrical engineering. Hence, we will not discuss the topic
further and instead we will now illustrate how to reformulate a linear time-invariant
circuit in the frequency domain using Laplace transforms, with Example 4.3.5.

Example 4.3.5 Reconsider the series RC circuit from Sect. 4.2.1.3. Derive
the impulse response.

Solution Consider the element law (following the passive sign convention)
for the linear capacitor:

i = C
dv

dt
(4.132)

Assuming zero initial conditions, taking Laplace transforms on both sides and
using the differentiation rule, we get:

I (s) = sCV (s) (4.133)

For a linear resistor, the V (s) − I (s) relationship is trivial: V (s) = RI(s).
Therefore, the circuit in Sect. 4.2.1.3 can be transformed to the Laplace
domain as shown in Fig. 4.37. As stated earlier, since the Laplace transform is
a generalization of the phasor technique, KCL, KVL, etc. are all valid in the
Laplace domain. Therefore, using voltage divider and simplifying:

VC(s) = 1/sC

R + 1/sC

= 1

1 + sRC

= 1/RC

s + 1/RC
(4.134)

(continued)
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Example 4.3.5 (continued)
Using inverse Laplace transform:

vC(t) = 1

RC
e−t/RCu(t) (4.135)

which is exactly Eq. (4.45), since τ = RC.

Note Example 4.3.5 shows the Laplace transform is applicable even when the
input is nonsinusoidal. Example 4.3.5 also shows that provided all time functions
are 0 at t = 0− (equivalently, all initial conditions are zero at t = 0−) the rules for
manipulating phasors and the rules for manipulating Laplace transforms are
identical, except for replacing jω by s. Example 4.3.6 further illustrates this point.

Example 4.3.6 Reconsider the RLC circuit from Example 4.3.2. Determine
IL(s).

Solution We can redraw the RLC circuit in the Laplace domain and solve
for IL(s). But, let us simply take the differential equation from Example 4.3.2:

d2

dt2 iL(t) + 2α
•
iL(t) + ω2

0iL(t) = ω2
0is(t)

and take its Laplace transform (assuming zero initial conditions):

(s2 + 2αs + ω2
0)IL(s) = ω2

0Is(s) (4.136)

We have used Exercise 4.14 for the Laplace transform of the second deriva-
tive. Simplifying:

IL(s) = ω2
0Is(s)

(s2 + 2αs + ω2
0)

(4.137)

Fig. 4.37 Circuit for
Example 4.3.5

+
−

R

1
1

sC

+

VC(s)

−
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The phasor Eq. (4.118) and the Laplace Eq. (4.136) have the exact same form
except for jω being replaced by s. But, we would like to again emphasize
that the two equations have different meanings: Eq. (4.118) is only valid for
sinusoidal inputs at steady-state. The Laplace Eq. (4.136) is valid for arbitrary
inputs. Moreover, Exercise 4.15 generalizes Example 4.3.6 to the case when the
initial conditions are not zero.

Example 4.3.6 also shows an example of a network function. A detailed
discussion is beyond the scope of this book but can be found in excellent references
such as [12].

However, one can understand the concept by considering H(s)
�= IL(s)/Is (s) in

Eq. (4.137). Notice H(s) (or the current transfer function) depends only on the
circuit parameters, it does not depend on Is(s) (the input). Thus, we will adopt the
following general definition of a network function, which basically describes the
properties of the circuit:

Network Function
�= L (zero-state response)

L (input)
(4.138)

For example, Exercise 4.16 asks you to derive the input impedance of a gyrator,
which is a network function.

4.4 Memristive Networks

We will now discuss memristive networks. We will split the discussion into two
parts—discussion of ideal memristors and memristive devices. For the ideal mem-
ristors, we will introduce the Flux-Charge Analysis Method (FCAM) developed by
Fernando Corinto and Mauro Forti [13], that helps us write minimal number of
ODEs for ideal memristive networks. For memristive devices, we will study some
very fundamental properties related to sinusoidal excitation. We will also use only
linear L, R, C in memristor networks.

4.4.1 Flux-Charge Analysis Method (FCAM)

Example 4.4.1 illustrates the main concept behind FCAM: the idea of an incremental
flux (charge).



4.4 Memristive Networks 273

Fig. 4.38 Circuit for
Example 4.4.1 qM

M

L

iL

iL(t0) = iL0

qM(t0) = qM0

Example 4.4.1 Derive circuit equations for the L − M network in Fig. 4.38.
Notice that we have a charge-controlled memristor.

Solution We can easily derive the normal form circuit equations by inspec-
tion:

diL

dt
= −R(qM)iL

L
(4.139)

dqM

dt

�= iL (4.140)

with the given initial conditions. Notice, however, that Eq. (4.139) can be
rewritten using the fact that φ = s(qM) (Sect. 1.9.4) for NM :

diL

dt
= 1

L

d

dt
s(qM(t)) (4.141)

Note from the passive sign convention: dqM

dt
= −iL. Integrating both sides

from t0 to t and applying the first fundamental theorem of calculus, we get:

iL(t) − iL(t0) = 1

L
(s(qM(t)) − s(qM(t0))) (4.142)

In other words, we have the following first-order ODE (with two initial
conditions):

dqM(t)

dt
= − s(qM(t))

L
+ s(qM0)

L
− iL0

qM(t0) = qM0 (4.143)

Example 4.4.1 shows that for ideal memristor networks, an nth-order ODE
in the (v, i) domain can be reduced to an (n − 1)th-order ODE in the (φ, q)

domain. But, the order of complexity is still n, because we still need n initial
conditions.
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The example also shows that the fundamental step in reducing the number of
ODES by one is the integral of KVL in (t0, t), referred to as KφL [13]. Formally:

Definition 4.13 (KφL) The algebraic sum of incremental flux around any
closed circuit is zero.

With respect to Example 4.4.1, Eq. (4.142) can be written as:

LiL(t) − LiL(t0) − [s(qM(t)) − s(qM(t0))] = 0

φL(t; t0) − φM(t; t0) = 0 (4.144)

where we have used the notation: φL(t; t0)
�= LiL(t) − LiL(t0) (similar notation

for φM(t; t0)). Notice as expected KφL is simply the equivalent of KVL in the flux
domain: there is only one flux in the circuit of Fig. 4.38 since the voltage across both
elements is equal. By duality, we have KqL:

Definition 4.14 (KqL) The algebraic sum of incremental charge in a closed
surface is zero.

Now that we have the laws of interconnections for ideal memristor networks, we
can easily reformulate the fundamental circuit elements in the (φ, q) domain [13]
as shown in Fig. 4.39. In Fig. 4.39, we have:

(a) Ideal voltage source: φ(t; t0) = φe(t; t0), ∀qe(t; t0)

(b) Ideal current source: q(t; t0) = qa(t; t0), ∀φa(t; t0)

(c) R: φR(t; t0) = RqR(t; t0)

(d) L: φL(t) = L d
dt

(qL(t)) φL(t; t0) = −φL0 + L d
dt

(qL(t; t0))

(e) C: qC(t) = C d
dt

(φC(t)) qC(t; t0) = −qC0 + C d
dt

(φC(t; t0))

(f) Flux-controlled NM : qM(t; t0) = f (φM(t; t0) + φM0) − qM0

(g) Charge-controlled NM : φM(t; t0) = h(qM(t; t0) + qM0) − φM0

Although we could have reduced the number of relationships above by invoking
duality, we would like for the reader to have a complete reference for FCAM.

4.4.2 Memristive Devices

It is possible to systematically derive differential-algebraic equations for memristive
devices, based on tableau analysis, see [27]. But since this topic is beyond the
scope of this book, we will simply obtain the circuit equations for networks with
memristive devices in the (v, i) domain by inspection.
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Fig. 4.39 The various two-terminal circuit element equivalents in the (φ, q) domain

We will also focus on passivity and frequency-characteristics19 theorems the
memristor. These theorems will help us identify physical memristors. We will not
rigorously prove these theorems as all the proofs can be found in [9]. Rather, we
will give examples from physical memristors. We will state all theorems for current-
controlled (recall Eq. (1.86)) memristive devices:

ẋ = f (x, i, t)

v = R(x, i, t)i (4.145)

The theorems are valid for voltage-controlled memristive devices, by duality.

19It is important to note that we do not say frequency response since that is a term reserved for
linear systems.
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Fig. 4.40 Measured
discharge tube characteristics

Theorem 4.5 (Passivity Criterion) Let a current-controlled memristive one-
port be time-invariant and let its nonlinear memristance function R(·) satisfy
the constraint R(x, i) = 0 only if i = 0. Then the one-port is passive iff
R(x, i) ≥ 0 for any admissible input current i(t), for all t ≥ t0 where t0 is
chosen such that x(t0) = x∗, where x∗ is the state of minimum energy storage.

This theorem essentially says that for a memristor to be passive, its (v, i)

characteristic should lie in the first and third quadrant. For example, consider the
discharge tube v−i from Chap. 1, reproduced in Fig. 4.40. Notice how the Lissajous
figure is only present in the first and third quadrants, hence the discharge tube is a
passive memristor. However, in each quadrant, the curve is passive but not strictly
passive.

Theorem 4.6 (DC Characteristics) A time-invariant current-controlled
memristive one-port under DC operation is equivalent to a time-invariant
current-controlled nonlinear resistor if f (x, I) ≈ 0 has a unique solution
x = X(I) such that for each value of I ∈ , the equilibrium point x = X(I)

is globally asymptotically stable.
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Fig. 4.41 Measured DC memristor characteristics. Experimental oscilloscope picture has been
offset for clarity, the x axis is current mapped to voltage. We have marked axes in blue

An example of DC characteristics is shown in Fig. 4.41 for an emulated
memristor [23] that is used in the Muthuswamy-Chua (Sect. 5.4.1) chaotic circuit.

Theorem 4.7 (Double-Valued Lissajous Figure) A current-controlled mem-
ristive one-port under periodic operation (i.e., response is periodic with same
period as input) with i(t) = I cos(ωt) always gives rise to a v − i Lissajous
figure whose voltage v is at most a double-valued function of i.

Figure 4.40 shows the classic pinched-hysteresis fingerprint of a memristor.

Theorem 4.8 (Limiting Linear Characteristics) If a time-invariant current-
controlled memristive one-port described by Eq. (4.145) is BIBO stable, then
under periodic operation it degenerates into a linear time-invariant resistor as
the excitation frequency increases towards infinity.

The effect of limiting linear characteristics is shown in Fig. 4.42. Notice from
Fig. 4.42 that we have “lost” the limiting linear characteristics as the frequency
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Fig. 4.42 Experimental measurements and corresponding simulated results (red) [28] of Ther-
mometric’s NTC diode thermistors (NTC-3.896KGJG), illustrating Theorem 4.8. The input is a
sinusoidal source with amplitude A = 5 V. The experiment on the NTC thermistor was conducted
at room temperature. The parameters used for simulations of the generic memristor device model of
the NTC thermistor are: T0N = 300 K, R0N = 3.89 K	,HCN = 0.14 J/K, δN = 0.1 W/K, βN =
5 × 105 K. For parasitic effects (Fig. 4.43), CP = 5 nF, Lp = 2 mH, EP = 0 V, IP = 0 A

increases. This does not imply Theorem 4.8 is invalid. Rather, a physical memristor
is not exactly modeled by Eq. (4.145).

Recall from Sect. 1.7.1 about the essence of modeling: we extract the essential
factors of the device based on the circuit in question. In the case of physical
memristive devices, we need a generic device model since measured pinched-
hysteresis loops need not pass through the origin due to parasitics. This generic
device model is shown in Fig. 4.43 [28] and has been used in the simulation results
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Fig. 4.43 Generic memristor
device model
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for Fig. 4.42. The NTC thermistor model used in the circuit of Fig. 4.43 for obtaining
Fig. 4.42 is given by Eqs. (4.146) and (4.147).

W(TN)
�=
(

R0Ne
−βN

(
1

TN
− 1

T0N

))−1

iN = W(TN)vN (4.146)

dTN

dt
= δN

HCN
(T0N − TN) + W(TN)

HCN
v2
N (4.147)

We will now examine another example of Fig. 4.43, detailed analysis can be found
in [28]. Consider two simulated pinched-hysteresis loops for the discharge tube
memristor, shown in Fig. 4.44a and b [24]. Experimental confirmation can be found
in [24].

If we have a parasitic inductor in series with a memristor, as in Fig. 4.44a, we
know that an inductor causes current to start lagging voltage. Hence when iM =
0, if vM > 0, then vM should be increasing because current is lagging voltage.

Thus
•
vM > 0. Similarly, when iM = 0 and vM < 0, then vM should continue

to decrease and thus
•
vM < 0. Hence the parasitic pinched-hysteresis loop ends up

having no “crossings.” A dual argument applies to Fig. 4.44b but in this case we get
two “crossings.”

Another very important point about modeling: it is irrelevant with respect
to terminal behavior how the internal state of a memristor is represented. For
example, there are two known internal state variables for the memristive model of a
discharge tube: the number of conduction electrons n [11]:

v = M(n)i (4.148)

dn

dt
= −βn + αM(n)i2 (4.149)
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Fig. 4.44 Simulation parameters for the discharge tube model in Eqs. (4.148) and (4.149) are:
β = 0.1, α = 0.1, F = 1, ω = 0.063. (a) Simulated iM − vM curve for an inductor Lp = 5 H
in series with a memristive discharge tube. The arrows indicate the trajectory of (iM(t), vM(t)) at
t → ∞. We have assumed Ep = 0, Ip = 0 and |ZCp

(jω)| → ∞. (b) Simulated iM − vM curve
for a capacitor Cp = 1 F in parallel with a memristive discharge tube. The arrows indicate the
trajectory of (iM(t), vM(t)) at t → ∞. We have assumed Ep = 0, Ip = 0 and |ZLp

| → 0

or tube temperature T [21]:

R(T )
�= a5T

−3/4 exp(ea6/2kT ) (4.150)

v(t) = R(T )i(t) (4.151)

dT

dt
= a1[i2R(T ) − a2 exp(−ea3/kT ) − a4 exp(T − T0)] (4.152)

The values of the constants and the physical meaning of the variables in Eqs. (4.151)
and (4.152) depend on whether the discharge tube being modeled is either a high-
pressure lamp or a low-pressure lamp. For instance, for high pressure lamps, T is
the gas temperature Tg and T0 is the tube-wall temperature. a1 = 20976.1, a2 =
54350.4, a3 = 0.986, a4 = 0.128, a5 = 2012.0, a6 = 0.375, T0 = 1000 K. e =
1.6 × 10−19 C is the electron charge and k = 1.38 × 10−23 J/K is Boltzmann’s
constant.

Irrespective of the choice of the internal state variable for the memristive model
of the discharge tube, the v− i terminal behavior still shows pinched-hysteresis. For
investigating the parasitic behavior, we chose the simpler of the two models: the
internal state being a function of the number of conduction electrons [24]. This point
bolsters our theme of modeling throughout the book, which is summarized by a
quote from Einstein: “It can scarcely be denied that the supreme goal of theory is to
make irreducible basic elements as simple and as few as possible without having
to surrender the adequate representation of a single datum of experience” [2].
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Fig. 4.45 The small-signal
AC equivalent circuit for
Eq. (4.145)

ZQ(s)

R0(X̃ , I) R1(X̃ , I) Rn(X̃ , I)

C0(X̃ , I) C1(X̃ , I) Cn(X̃ , I)

Fig. 4.46 The small-signal
AC equivalent circuit of a
thermistor [9]

C1 R1

R0(T )

Theorem 4.9 (Small-Signal AC Characteristics) If a time-invariant current-
controlled memristive one-port is globally asymptotically stable for all DC
input current I , then its small-signal equivalent circuit about the DC operating
point is shown in Fig. 4.45, with a small-signal impedance given by:

ZQ(s)
�= ΔV (s)

ΔI (s)
= ∂R(X, I)I

∂i
+ β1s

n−1 + β2s
n−2 + · · · + βn−1s + βn

sn−1 + α1sn−1 + · · · + αn−1s + αn

(4.153)

A small-signal equivalent for the thermistor is shown in Fig. 4.46, where:

C1 = C

2αPR(T )

�= Ĉ1(T , I)

R1 = 2αPR(T )

δN − αP

�= R̂1(T , I)

α =�= −βN

T 2
< 0, P

�= V I = R(T )I 2

Since C1 is negative, the thermistor is inductive under small-signal operation.
The reader should hence realize from this section that a memristor is described

by two concepts: memory and resistance. Memory occurs in the form of hysteresis
in a v − i plot, resistance in the form of pinching behavior at the origin in the v − i

plot. Note that memory need not imply “storage” in the sense of a capacitor or
inductor. Rather, a memristor’s resistance (conductance) depends on past history of
a particular state variable.
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Therefore, in conclusion to this section, we have the following working hypoth-
esis for memristors:

Since a memristor is described by two concepts: memory and resistance,
memristor physics cannot be fully explained by electromagnetic field the-
ory. Specifically, the memristor state equation requires another branch of
science. This is in sharp contrast to resistors, capacitors, and inductors, whose
material behavior is the subject of electromagnetic fields in matter (conductive,
dielectric, and ferromagnetic media respectively).

For example:

1. The Josephson junction ideal menductance is described using superconductivity
(and hence quantum mechanics).

2. Discharge tube state equation is described using plasma physics.
3. pn-junction diode memristance requires junction physics. In fact, the memris-

tance arises because the semiconductor bulk resistance is not a constant, but a
function of the charge flowing through it [11, 26].

We encourage readers to rigorously investigate and prove or disprove the hypothesis
above.

4.5 Energy Approach: Lagrangian and Hamiltonian

In this section,20 we will start out by discussing energy expressions for two-terminal
resistor, capacitor, and inductor.21 As examples, we will obtain system equations
for a circuit using the Lagrangian and Hamiltonian. The purpose of doing so is
to provide the reader with a third (in addition to time and frequency) approach to
writing circuit equations.

A key aspect of the Lagrangian and Hamiltonian frameworks is that they bring
to forefront one of the most fundamental concepts in physics—energy. A second
motivation is that the energy based approach helps us to view a circuit as a
(usually simpler) set of subsystems that exchange energy among themselves and
the environment. Unfortunately, we can only scratch the surface of this fascinating
topic in this section. The interested reader is referred to [19] and [17] as starting
points.

20Many thanks to Dr. Jevtic and Dr. Thomas for reviewing and correcting errors in this section.
21We will only focus on linear elements, for brevity. Specifically with respect to action and coaction
definitions for the memristor, please see [4, 22].
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We know from basic physics that energy is defined as the integral of power:

w(t1, t2) =
t2∫

t1

p(τ)dτ (4.154)

From the definition of power for a two-terminal element, we get:

w(t1, t2) =
t2∫

t1

v(τ )i(τ )dτ (4.155)

With respect to a resistor, Eq. (4.155) would imply that no energy is stored. For
example, for a linear resistor, we get:

wR(t1, t2) =
t2∫

t1

[i(τ )R]i(τ )dτ

= R

t2∫

t1

i2(τ )dτ

= 1

R

t2∫

t1

v2(τ )dτ (4.156)

If R > 0, the energy is dissipated usually in the form of heat and is lost as far as the
circuit is concerned. Such an element is therefore said to be lossy.

In contrast, capacitors and inductors store energy. The energy wc(t1, t2) entering
a charge-controlled capacitor during any time interval [t1, t2] is independent of
the capacitor voltage or current waveforms: It is uniquely determined by the
capacitor charge at the end points, namely, q(t1) and q(t2):

wc(t1, t2) =
t2∫

t1

v̂(q(t))
dq

dt
dt

=
q(t2)∫

q(t1)

v̂(q)dq (4.157)

Suppose we have a C-F linear capacitor having an initial voltage v(t1) = V and
initial charge q(t1) = Q = CV at t = t1. Let the capacitor be connected to an
external circuit at t = t1. The energy entering the capacitor during [t1, t2] is given
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by Eq. (4.157):

wC(t1, t2) = 1

2C
[q2(t2) − Q2]

= 1

2
C[v2(t2) − V 2] (4.158)

Note that whenever q(t2) < Q or v(t2) < V , then wC(t1, t2) < 0. This means
energy is actually being sent out of the capacitor and returned to the external circuit.
It follows from Eq. (4.158) that wC(t1, t2) is most negative when q(t2) = v(t2) =
0, whereupon wc(t1, t2) = −Q2

2C
= − 1

2CV 2. Since this represents the maximum
amount of energy that could be extracted from the capacitor, it is natural to say that
an energy equal to

EC(Q) = Q2

2C

= 1

2
CV 2 (4.159)

is stored in a linear capacitor C having an initial voltage v(t1) = V or initial charge
q(t1) = Q = CV .

By duality, an energy equal to:

EL(φ) = 1

2L
φ2

= 1

2
LI 2 (4.160)

is stored in a linear inductor L having an initial current i(t1) = I or initial flux
φ(t1) = φ = LI .

Now that we have expressions for the energy stored in a (linear) capacitor or
inductor, we need to understand the meaning of “kinetic” and “potential” energy
in electric circuits, before we can discuss how to obtain circuit equations via
the Lagrangian and the Hamiltonian. To do this, we will appeal to the reader’s
“natural intelligence” with respect to (translational) mechanical systems. Consider
the following (we will again assume all mechanical elements are linear and we will
not worry about relativistic effects):

• m (mass)—Characteristic Equation: p = mv, p: linear momentum, v: velocity
• k (Spring constant)—Characteristic Equation: F = kx, F : force, x: displace-

ment

We know the energy expressions for a mass and spring as:

• m: Em = 1
2mv2

• k: Ek = 1
2kx2
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Obviously, a moving mass has a kinetic energy Em and a compressed spring has
a potential energy Ek. Now consider the energy expressions for L and C:

• L: EL = 1
2LI 2

• C: EC = 1
2CV 2

It should now be clear that since an inductor’s stored energy is due to current
or moving charge, our mechanical analog of an inductor is the mass. Since a
capacitor’s stored energy is due to electrostatic potential, our mechanical analog
of a capacitor is the spring. Hence (←→ stands for analog):

p (momentum) ←→ φ (flux) (4.161)

v (velocity) ←→ i (current) (4.162)

x (displacement) ←→ q (charge) (4.163)

F (force) ←→ v (voltage) (4.164)

Next, let x = [x1, · · · , xn]T denote a column vector and V (x) denote a scalar
function V : n → R. The gradient of V (x) with respect to x is denoted by:

∇Vx(x)
�=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂V
∂x1
∂V
∂x2

·
·
·

∂V
∂xn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(4.165)

Mechanically, the Lagrangian and Hamiltonian are described in terms of general-
ized coordinates. In the case of electric circuits, we will use q (capacitor charge(s))

and consequently
•
q as our generalized coordinates. The formalism requires that the

Lagrangian L be expressed in terms of q and
•
q:

L(q,
•
q) = EL − EC (4.166)

where EL represents the total energy stored in inductor(s) and EC represents the
total energy stored in capacitor(s). Notice this is equivalent to the definition from
mechanics, if we consider energy stored in inductor(s) as “kinetic” energy and
energy stored in capacitor(s) as “potential” energy.

The total energy of the capacitors EC can be readily expressed in terms of charge:

EC(q) =
NC∑
n=1

q2
n

2Cn

(4.167)
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Fig. 4.47 Circuit for
Example 4.5.1
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where NC is the total number of capacitors in the circuit. However the total energy
of the inductors EL is usually expressed in terms of inductor currents i:

EL(i) =
NL∑
n=1

1

2
Lni

2
n (4.168)

where NL is the total number of inductors in the circuit. We must therefore first
express the inductor currents i in terms of

•
q:

i = A
•
q (4.169)

where A is an NL × NC matrix. This can be done using KCL (as shown in Exam-
ple 4.5.1). Now, we can write Lagrange’s equations in terms of the Lagrangian:

d

dt
∇L•

q
(q,

•
q) − ∇Lq(q,

•
q) = 0 (4.170)

where L(q,
•
q) = EL(A

•
q) − EC(q).

Example 4.5.1 Write system equations for the circuit in Fig. 4.47 using the
Lagrangian, for t ≥ 0. Assume the inductors have initial current i1(0), i2(0)

and capacitors have initial charge q1(0), q2(0) at t = 0.

Solution For the circuit, we have:

EL − EC = 1

2
L1i

2
1 + 1

2
L2i

2
2 − q2

1

2C1
− q2

2

2C2
(4.171)

(continued)
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Example 4.5.1 (continued)

We need to rewrite the energy expression above in terms of (q,
•
q) for the

Lagrangian, where q =
[
q1

q2

]
. From KCL:

i1 = −•
q1 − •

q2

i2 = •
q2 (4.172)

Thus the Lagrangian for the circuit is:

L(q,
•
q) = 1

2
L1(

•
q1 + •

q2)
2 + 1

2
L2

•
q

2

2 − q2
1

2C1
− q2

2

2C2
(4.173)

Hence we have:

d

dt
∇L•

q
(q,

•
q) − ∇Lq(q,

•
q) = d

dt

⎡
⎣

∂L

∂
•
q1

∂L

∂
•
q2

⎤
⎦−

[
∂L
∂q1
∂L
∂q2

]

= d

dt

[
L1(

•
q1 + •

q2)

L1(
•
q1 + •

q2) + L2
•
q2

]
−
[
− q1

C1

− q2
C2

]

=
⎡
⎣ −L1

•
i1 + q1

C1

−L1
•
i1 + L2

•
i2 + q2

C2

⎤
⎦ (4.174)

Therefore Lagrange’s equations give us:

−L1
•
i1 + q1

C1
= 0

−L1
•
i1 + L2

•
i2 + q2

C2
= 0 (4.175)

Notice Lagrange’s equations give rise to the KVL equations for the circuit.

By applying a (Legendre) transformation Lagrange’s Eq. (4.170), we get the
Hamiltonian. We first define ψ as the conjugate momenta to q:

ψ
�= ∇•

q
L(q,

•
q) (4.176)
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Notice that ψ has the same number of components as q, i.e., NC components while
there are NL inductor fluxes: φ = ∇iEL(i). In general, ψn �= φn. Specifically, using
the chain rule:

ψ = ∇•
q
L(q,

•
q)

= ∇•
q
EL(A

•
q)

= ∇•
q
(A

•
q)∇

A
•
q
EL(A

•
q)

= AT ∇iEL(i) (4.177)

Thus: ψ = AT φ. The Hamiltonian formalism requires that the Hamiltonian
function H be expressed in terms of the generalized coordinates q (capacitor
charges) and their conjugate momenta ψ:

H(q,ψ) = EL(ψ) + EC(q) (4.178)

Hamilton’s equations are hence given by:

•
q = ∇ψH(q,ψ) (4.179)

•
ψ = −∇qH(q,ψ) (4.180)

Example 4.5.2 Write system equations for the circuit in Fig. 4.47 using the
Hamiltonian, for t ≥ 0. Assume again the inductors have initial current
i1(0), i2(0) and capacitors have initial charge q1(0), q2(0) at t = 0.

Solution In Example 4.5.1, we derived the Lagrangian as:

L(q,
•
q) = 1

2
L1(

•
q1 + •

q2)
2 + 1

2
L2

•
q

2
2 − q2

1

2C1
− q2

2

2C2
(4.181)

We can now find the conjugate momenta:

ψ1 = ∂L

∂
•
q1

= L1(
•
q1 + •

q2)

= −L1i1

= −φ1 (4.182)

(continued)
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Example 4.5.2 (continued)

ψ2 = ∂L

∂
•
q2

= L1(
•
q1 + •

q2) + L2
•
q2

= −L1i1 + L2i2

= −φ1 + φ2 (4.183)

The total energy is:

EL + EC = φ2
1

2L1
+ φ2

2

2L2
+ q2

1

2C1
+ q2

2

2C2
(4.184)

The Hamiltonian is:

H(q,ψ) = ψ2
1

2L1
+ (ψ2 − ψ1)

2

2L2
+ q2

1

2C1
+ q2

2

2C2
(4.185)

Hamilton’s equations give:

•
q1 = ∂H

∂ψ1

= ψ1

L1
− ψ2 − ψ1

L2
(4.186)

•
q2 = ∂H

∂ψ2

= ψ2 − ψ1

L2
(4.187)

•
ψ1 = −∂H

∂q1

= − q1

C1
(4.188)

•
ψ2 = −∂H

∂q2

= − q2

C2
(4.189)

It is trivial to verify that Eqs. (4.186) through (4.189) give rise to KCL and
KVL.
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4.6 Miscellaneous Topics

We would like to wrap up this chapter by discussing three important and fundamen-
tal concepts.

4.6.1 Reciprocity

The reciprocity theorem appears in various fields of science and engineering:
physics, mechanics, acoustics, electromagnetic waves, and electric circuits [12].
Roughly speaking, it deals with the symmetric role played by the input and output
of a physical system. In electric circuits, reciprocity holds for a subclass of linear
and nonlinear circuits. In this section, we will only focus on linear time-invariant
circuits. Reciprocity with respect to memristors is an active area of research,
see [16]. We will simply give three statements of the theorem and illustrate an
application of one of the statements with an example [14].

Consider a linear time-invariant network N which consists of resistors, induc-
tors, mutual inductors, capacitors, and transformers only. N is in steady-state and
not degenerate. Connect four wires to N obtaining two pairs of terminals 1, 1′ and
2, 2′.

Theorem 4.10 (Reciprocity Theorem Statement 1) Connect a voltage source
e0(·) to terminals 1, 1′ and observe the zero-state current response j2(·) in a short
circuit connected to 2, 2′ (see Fig. 4.48a). Next, connect the same voltage source
e0(·) to terminals 2, 2′ and observe the zero-state current response ĵ1(·) in a short
circuit connected to 1, 1′ (see Fig. 4.48b). The reciprocity theorem asserts that
whatever the topology and element values of N and whatever the waveform e0(·),
j2(t) = ĵ1(t) ∀t .

In the statement above, we are essentially saying that if the voltage source is
interchanged for a zero-impedance ammeter, the reading of the ammeter will not
change.

Theorem 4.11 (Reciprocity Theorem Statement 2) Connect a current source
i0(·) to terminals 1, 1′ and observe the zero-state voltage response v2(·) in an open
circuit connected to 2, 2′ (see Fig. 4.48c). Next, connect the same current source
i0(·) to terminals 2, 2′ and observe the zero-state voltage response v̂1(·) in an
open circuit connected to 1, 1′ (see Fig. 4.48d). The reciprocity theorem asserts that
whatever the topology and element values of N and whatever the waveform i0(·),
v2(t) = v̂1(t) ∀t .

In the statement above, we are observing open circuit voltages.

Theorem 4.12 (Reciprocity Theorem Statement 3) Connect a current source
i0(·) to terminals 1, 1′ and observe the zero-state current response j2(·) in a short
circuit connected to 2, 2′ (see Fig. 4.48e). Next, connect a voltage source e0(·) to
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Fig. 4.48 (a), (b): Reciprocity theorem statement 1, (c), (d): Reciprocity theorem statement 2, (e),
(f): Reciprocity theorem statement 3

terminals 2, 2′ and observe the zero-state voltage response v̂1(·) in an open circuit
connected to 1, 1′ (see Fig. 4.48f). The reciprocity theorem asserts that whatever the
topology and element values of N , whenever i0(t) = e0(t), v̂1(t) = j2(t) ∀t .

In the statement above, for both measurements, there is an “infinite impedance”
connected to 1, 1′ and a “zero impedance” connected to 2, 2′. The reader should
have noticed that since the reciprocity theorem deals exclusively with the zero-state
response (including steady-state response as t → ∞) of a linear time-invariant
network, it is convenient to describe it in terms of network functions. We will
illustrate the idea in Example 4.6.1 for statement 3 from Theorem 4.12.

Example 4.6.1 Confirm if statement 3 of the reciprocity theorem is true for
the circuit shown in Fig. 4.49.

Solution We have defined the ports 1, 1′ and 2, 2′ as shown in Fig. 4.49b and
c, respectively. We are going to find the impulse response and since we do
not have any other source, we know at steady state all voltages and currents
must tend to zero (this will serve as a “sanity check”). By node analysis and

(continued)
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Example 4.6.1 (continued)
Laplace transform in Fig. 4.49b we obtain:

[
0.2 + s + 1

s
− 1

s

− 1
s

1 + 1
s

] [
V1(s)

V2(s)

]
=
[

1
0

]
(4.190)

Hence:

V2(s) = 1/s

(0.2 + s + 1/s)(1 + 1/s) − (1/s)2
= 1

s2 + 1.2s + 1.2
(4.191)

Taking the inverse Laplace transform (using reliable online tables) and noting
that j2(t) = 1 ∗ v2(t), we obtain:

j2(t) = 1.09e−0.6t sin(0.916t) t ≥ 0 (4.192)

For the network in Fig. 4.49c, we will set up circuit equations in terms of
Î1(s), Î2(s) (this is called mesh analysis). The matrix equations are:

[
5 + 1

s
− 1

s

− 1
s

1 + s + 1
s

] [
Î1(s)

Î2(s)

]
=
[

0
1

]
(4.193)

Thus:

Î1(s) = 1/s

(5 + 1/s)(s + 1 + 1/s) − (1/s)2 (4.194)

Since v̂1(t) = 5î1(t), we have:

V̂1(s) = 5

(5s + 1)(s + 1 + 1/s) − 1/s

= 5

5s2 + 6s + 6

= 1

s2 + 1.2s + 1.2
(4.195)

Recognizing this function of s to be the transform of j2(t), we use previous
calculations and conclude that:

v̂1(t) = 1.09e−0.6t sin(0.916t) t ≥ 0 (4.196)

Thus, the two responses are equal, as required by the reciprocity theorem.
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Fig. 4.49 Circuit(s) for Example 4.6.1

4.6.2 Synthesis of Higher-Order Circuit Elements

Recall from Chap. 1 that we defined (α, β) circuit elements as a “natural extension”
of the four fundamental circuit elements. We have reproduced Fig. 1.40 in Fig. 4.50
for ease of discussion.

In order to give some physical meaning to each higher order element E , it is
convenient [5] to examine its small-signal behavior about an operating point Q on
the associated v(α)−i(β) curve. Assuming that E is characterized by v(α) = f (i(β)),
the small-signal behavior of E about Q is described by:

δv(α)(t) = mQδi(β)(t) (4.197)

where mQ denotes the slope f ′(i(β)) at Q. We can define the AC small-signal
impedance Z(jω) associated with Eq. (4.197) by taking the Laplace transform of
Eq. (4.197) and letting s = jω:

L {δv} = Z(s)L {δi} (4.198)
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Fig. 4.50 The “periodic table” of all two-terminal (α, β) elements, with a frequency based
interpretation

where:

Z(jω) = (jω)β−αmQ (4.199)

Notice we obtained Eq. (4.199) by simply understanding the fact that each
derivative constitutes one jω. We can interpret Eq. (4.199) as the impedance of
an associated linearized element EQ. Since (β − α) can be any positive, zero, or
negative integer, there are four interesting cases to consider22:

• Case 1: β − α = ±2n, n = even integer

In this case, Z(jω) = ωβ−αmQ
�= R(ω) is a real positive function and hence

EQ is purely resistive. We can interpret, therefore, EQ as a frequency-dependent
resistor (red) in Fig. 4.50.

22The following interpretations are meaningful only for small-signal sinusoidal excitations at
a fixed frequency. Such interpretations however often provide valuable information for circuit
designers in their analysis of physical nonlinearities. The main point is: depending on the operating
point and the operating frequency, the small-signal model of a device may be either resistive,
inductive, or capacitive.
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• Case 2: β − α = ±2n, n = odd integer

In this case, Z(jω) = −ωβ−αmQ
�= R∗(ω) is a real negative function and

hence EQ is purely resistive. We can interpret, therefore, EQ as a frequency-
dependent negative resistor (orange) in Fig. 4.50.

• Case 3: β − α = (−1)n(2n + 1), n = 0, 1, 2, · · ·
In this case, Z(jω) = jωL(ω) is an imaginary number where

L(ω)
�=
{

ω2nmQ, when n even

ω−2(n+1)mQ, when n odd
(4.200)

and hence EQ is purely inductive, provided mQ > 0. We can interpret, therefore,
EQ as a frequency-dependent inductor (BlueGreen) in Fig. 4.50.

• Case 4: β − α = (−1)n+1(2n + 1), n = 0, 1, 2, · · ·
In this case, Z(jω) = −j

(
1

ωC(ω)

)
is an imaginary number where

C(ω)
�=
⎧⎨
⎩

ω2n

mQ
, when n even

ω−2(n+1)

mQ
, when n odd

(4.201)

and hence EQ is purely capacitive, provided mQ > 0. We can interpret,
therefore, EQ as a frequency-dependent capacitor (OliveGreen) in Fig. 4.50.

Two applications of the interpretation above: a memristor M characterized as a
(−1,−1) element is classified as a frequency-dependent resistor (red) because the
area of the pinched-hysteresis v − i loop is a function of frequency [7]. A second
application is in interpreting (0,−2) element as a frequency-dependent negative
resistor (orange) or FDNR, see [15].

We will however use the time domain to synthesize the particular higher-order
element (0,−2), motivated by the fact that we need i = v̈ for the Duffing
oscillator implementation in Sect. 5.5, not i = −v̈ as given by an FDNR.
Consider the schematic in Fig. 4.51. The concept behind Fig. 4.51 is rooted in

Fig. 4.51 A mutator for
synthesizing (0,−2) from a
(0,−1) element (capacitor C2
at port 2)

+

+

C

i

C2

+

−

i2

v2v1i

i1
+

−

v1
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Sect. 2.5.4, specifically Fig. 2.42. Instead of connecting a nonlinear resistor, we have
used a linear capacitor C2. Based on Sect. 2.5.4, we want the following two-port
relationship:

v1 = v2

i1 = k
d2

dt2 v2 (4.202)

By the VCVS at port 2, we trivially obtain v2 = v1. From the VCCS across C, we
have:

i = −αC
di2

dt
(4.203)

Dimensionally, [α] = Ω . By the CCCS at port 1, we trivially obtain: i1 = i. Using
the expression for i above and the fact the v1 = v2, we get the desired relationship
at port 1:

i1 = −αC
di2

dt

= αCC2
d2

dt2 v2

= αCC2
d2

dt2 v1 (4.204)

We will synthesize the mutator in Fig. 4.51 by using two opamps and one
CFOA in Sect. 5.5. For the general concept for synthesizing higher-order nonlinear
elements, the interested reader can refer to [10].

4.6.3 Limit Cycles

In Sect. 4.2.1.6, we have already seen how a simple first-order opamp circuit could
burst into a relaxation oscillation. Our analysis of this phenomenon depends on a key
assumption, namely, the jump rule. Our objective in this final section is to justify this
rule.

Every electronic oscillator requires at least two energy-storage elements and
at least one nonlinear element [12]. We will therefore begin with the simplest
nonlinear oscillator circuit, analyze its qualitative behavior, and then examine how
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Fig. 4.52 Basic oscillator
circuit

L > 0

C > 0

+ vL −
+

vC

−

+

−

v

iL i

the oscillation waveform varies as we tune a parameter, say the inductance.23 We
will then show that as the inductance decreases, the oscillation changes from a
nearly “sinusoidal” waveform into a nearly “discontinuous” waveform. In the limit,
when the inductance tends to zero, the waveform becomes discontinuous and we
obtain the jump rule. Fig. 4.52 shows the basic structure of an important class of
electronic oscillators. Since both the inductor and capacitor are linear and passive
(i.e., L > 0, C > 0), we claim that the resistive one-portNR must be active (i.e., the
DP characteristic contains at least some points in the second and/or fourth quadrant
of the v − i plane) in order for oscillation to be possible.

To see why NR must be active, suppose it is strictly passive so that v(t)i(t) > 0
for all t ; then the energy will continually enter NR , only to be dissipated in the
form of heat.24 This dissipated energy must of course come from the initial energy
stored in the capacitor and inductor. Hence, as t → ∞, the total energy stored
in the capacitor and inductor will decrease continuously till it becomes completely
dissipated. Since the instantaneous energy stored in the capacitor and inductor is
EC(t) = 1

2Cv2
C(t),EL(t) = 1

2Li2
L(t) (recall Sect. 4.5), it follows that:

Total energy = 1

2
Cv2

C(t) + 1

2
Li2

L(t) → 0 as t → ∞ (4.205)

Hence both vC(t) and iL(t) must eventually tend to zero and no sustained oscillation
is possible.

A typical active resistive one-port has already been described by the three-
segment PWL negative resistance characteristic in Fig. 4.26b. In general, any
continuous nonmonotonic current-controlled v − i characteristic described by v =
v̂(i) satisfying the conditions:

v̂(0) = 0

v̂′(0) < 0

23This change in the steady-state dynamic behavior of a circuit as one (or more) parameters
are varied is called a bifurcation. The parameter that is being varied is called the bifurcation
parameter. A detailed study of bifurcations is beyond the scope of this book.
24Although the circuit could theoretically oscillate when NR is a short circuit (passive but not
strictly passive), no oscillation is possible in practice because the connecting wire always has some
small but nonzero resistance.
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v̂(i) → ∞ as i → ∞
v̂(i) → −∞ as i → −∞ (4.206)

would cause the circuit in Fig. 4.52 to oscillate. This statement can be proved
rigorously, see [12].

Indeed, the conditions in Eq. (4.206) are satisfied by many electronic circuits.
For example, the DP characteristic in Fig. 4.54 of the twin-tunnel-diode circuit in
Fig. 4.53 clearly satisfies the conditions in Eq. (4.206).

We will now consider the physical mechanisms of oscillation in the simple series
NRLC circuit from Fig. 4.52. We can write the normal form equations for the circuit
by inspection (Fig. 4.54):

•
vC = −iL

C

�= f1(vC, iL)

•
iL = vC − v̂(iL)

L

�= f2(vC, iL) (4.207)

Fig. 4.53 A negative
resistance twin-tunnel-diode
circuit

i

+

−

v

0.3 V 0.3 V

Fig. 4.54 Typical DP
characteristic of the circuit in
Fig. 4.53

v, V

i, mA

0-0.3 0.3

-0.4

0.4
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Assuming only that v̂(iL) satisfies the conditions in Eq. (4.206) it is possible to
derive general qualitative behaviors for this circuit. Indeed, equating f1(·) and f2(·)
to zero in Eq. (4.207), we get the unique equilibrium point located at the origin:
vCQ = 0, iCQ = 0.

Now, in order to determine if (0, 0) is a stable or unstable equilibrium point, we
can perform a small-signal analysis of the circuit about the DC operating point Q

(in this case, (0, 0)). But, we will now take the opportunity to introduce the concept
of the Jacobian matrix: if we linearize the RHS of Eq. (4.207) (or any nth-order
normal form equations) and ignore the quadratic and other higher order terms, we
would get the following result (given for a 2nd-order system such as Eq. (4.207)):

⎡
⎣

•
x̄1•
x̄2

⎤
⎦ =

[
a11 a12

a21 a22

] [
x̄1

x̄2

]
(4.208)

where x̄1
�= x1 − x1Q and x̄2

�= x2 − x2Q represent the small-signal deviation from
the operating point. From Taylor series, we know:

[
a11 a12

a21 a22

]
=
⎡
⎢⎣

∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

⎤
⎥⎦
x=xQ

(4.209)

The matrix on the RHS of Eq. (4.209) is the Jacobian matrix J. For any nth-order
system in normal form, we can generalize J to:

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn

· · · ·
· · · ·
· · · ·

∂fn

∂x1

∂fn

∂x2
· · · ∂fn

∂xn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
x=xQ

(4.210)

For the second order Jacobian in Eq. (4.209), we gather from the Hartman-Grobman
theorem [12], that the qualitative behavior (stable, unstable) of the associated
nonlinear system will be “similar” to the linearized system about an equilibrium
point.

For the oscillator described by Eq. (4.207), the Jacobian matrix evaluates to:

J =
⎡
⎢⎣

0 −1
C

1
L

−v̂′(0)
L

⎤
⎥⎦ (4.211)
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We know from our basic calculus courses that the general solution of the linear ODE
in Eq. (4.208) is given by:

x̄(t) = (k1e
λ1t )η1 + (k2e

λ2t )η2 (4.212)

where λ1, λ2 are the eigenvalues of J and η1, η2 are the associated eigenvectors.
Also from our basic calculus courses, we know that if Re(λ1) < 0, Re(λ2) < 0
the system associated with Eq. (4.208) is stable, etc. Since instead of using the
eigenvalues, we can utilize the trace and determinant of J:

T = a11 + a22 = −v̂′(0)

L

Δ = a11a22 − a12a21 = 1

LC
(4.213)

Since Δ > 0 and by the second condition in Eq. (4.206), T > 0, we have
the following relation for the equilibrium point (origin) of the oscillator to be an
unstable:

1

LC
>

1

4

[−v̂′(0)

L

]2

(4.214)

or equivalently:

|v̂′(0)| < 2

√
L

C
(4.215)

So all trajectories starting near the origin would diverge from it and head toward
infinity. But, just like the relaxation oscillator we studied earlier, NR is eventually
passive (i.e. the v − i characteristic must lie in the first and third quadrants beyond
a certain finite distance from the origin). Thus, in view of conditions 3 and 4 in
Eq. (4.206), NR will start absorbing energy from the external world—the capacitor
and inductor in this case.

Consequently, the energy initially supplied by the “active” NR (when the
(vC, iL) is near the “unstable” origin) to propel the trajectory toward infinity
eventually fizzles as NR becomes passive and begins to absorb energy instead.
Therefore, the initial outward motion of the trajectory will be damped out by losses
due to power dissipated inside NR when the trajectory is sufficiently far out. Soon,
the trajectory must “grind to a halt” and start “falling” back toward the origin.

The above scenario is depicted in Fig. 4.55, where we have included a cubic

v(i) = i3

3 − i. The parametric plot of (i(t), v(t)) is called a phase portrait, so
named because the x − y plane is historically called the phase plane.

Observe that since the circuit has only one equilibrium state, and since it is
unstable, there is no point where any trajectory could come to rest. Therefore all
trajectories must continue to move at all times. Since they cannot stray too far
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(not part of phase portrait)

in this region to contract and
return to the active region on
the right

DP characteristic

v

i

Active region Passive regionPassive region

Limit cycle

NR absorbs
energy from capacitor
and inductor, causing
trajectories in this region to contract
and return to the active region on the left

NR supplies
energy to capacitor and
inductor, causing trajectories
in this region to expand and
spin outwards

NR absorbs
energy from capacitor and
inductor, causing trajectories

(vi > 0)(vi > 0) (vi < 0)

Fig. 4.55 Physical mechanism for oscillation

beyond the active region and since no trajectory of any autonomous state equation
can intersect itself,25 except at equilibrium points, each trajectory must eventually
tend toward some limiting orbit,26 henceforth called a limit cycle. Note that a limit
cycle is a periodic trajectory that is unique to a nonlinear system. By definition,
linear oscillations are not limit cycles, because linear oscillations are a continuum
of orbits. A limit cycle Γ must contain no other closed trajectories in a small band
around Γ .

Specifically, let us now discuss the phase portrait of the typical Van der Pol
oscillator, which helps us derive the generic jump rule. Suppose we choose v̂(i) =
i3

3 − i. Then Eq. (4.207) reads:

•
vC = −iL

C

•
iL =

vC −
(

1
3 i3

L − iL

)

L
(4.216)

25If a trajectory were to intersect itself at (x̂1, x̂2), then its slope dx2
dx1

would have two different
values at (x̂1, x̂2). This is impossible since our system of equations is deterministic, not stochastic.
26Our reasoning does not prove that all trajectories must tend towards a unique limit cycle, although
this is actually the case for the particular v− i characteristic. The particular question of the number
of limit cycles for a second order autonomous ODE is unsolved and is famously referred to as
“Hilbert’s sixteenth problem.”
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Fig. 4.56 Simulated
(ProcessBlue) and physical
(Red) limit cycles from an
implementation (to be
discussed in Sect. 5.1) of the
Van der Pol oscillator
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For fixed values of L and C, we could use a computer to generate the phase portrait
of Eq. (4.216). One such phase portrait is shown in Fig. 4.56 But how does the phase
portrait change (or bifurcate) as we vary parameters L and C? In more complicated
state equations, this question can only be answered in general by a brute-force
computer simulation method. But, we can often reduce the number of parameters
without loss of generality by writing the equations in terms of dimensionless
variables. For the Van der Pol oscillator, let us introduce the following “scaled”
time variables:

τ
�= 1√

LC
t (4.217)

Note that since
√

LC has the dimensions of time, τ is dimensionless and will
henceforth be called “dimensionless time.” Note that this τ is unrelated to the time
constant that we had defined earlier.

Observe that:

•
vC = dvC

dτ

dτ

dt
= 1√

LC

dvC

dτ

•
iL = diL

dτ

dτ

dt
= 1√

LC

diL

dτ
(4.218)

Substituting Eq. (4.216) into Eq. (4.218), we obtain the following equivalent state
equation in terms of dimensionless time variable τ :

dvC

dτ
= −1

ε
iL
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diL

dτ
= ε

[
vC −

(
1

3
i3
L − iL

)]
(4.219)

where

ε
�=
√

C

L
(4.220)

Observe that Eq. (4.219) now contains only one parameter, ε, as defined by
Eq. (4.220). In fact, Fig. 4.56 uses the dimensionless time form of the Van der Pol
equation. The dimensionless form not only reduces the number of parameters, but
also has the added advantage for computer simulation of scaling. In the case of
time for instance, by going from say μs to s, we can use a more realistic time step
for the numerical algorithm to avoid convergence issues. We will further explore
dimensionless normal form in Chap. 5.

Suppose ε → ∞, Eq. (4.220) implies L → 0. But, from the physical Van der Pol
Eq. (4.216), we see that L → 0 implies diL

dt
→ ∞. In other words we will have a

vertical jump in the v− i plane, assuming i is the vertical axis, just as we discussed
in Sect. 4.2.1.6.

Let us now consider the general Eq. (4.207) of a series oscillator:

•
vC = − iL

C
(4.221)

•
iL = 1

L
[vC − v̂(iL)] (4.222)

The function v̂(·) representing the nonlinear resistor characteristic can be quite
arbitrary except that it satisfies the conditions in Eq. (4.206). This class, as discussed
earlier, includes the negative resistance opamp relaxation oscillator.

Dividing Eq. (4.222) by Eq. (4.221), we obtain the slope:

m(P)
�= diL

dvC
= −C

L

[
vC − v̂(iL)

iL

]
(4.223)

of the tangent vector at any point P
�= (vC, iL) on a trajectory in the vC − iL plane.

Thus, we have:

1. As L → 0 in Eq. (4.223), the limiting slope |m(P)| → ∞, as long as v(C) �=
v̂(iL). Thus all trajectories, except on the DP characteristic, will tend to vertical
line segments as L → 0. In particular, at the impasse points, we will have a jump
discontinuity.

2. Note that from Eq. (4.222),
•
iL > 0, if vC > v̂(iL) and vice versa. In other

words, this gives us the condition for the dynamic route derived in Sect. 4.2.1.6.
3. To complete our analysis of the jump phenomenon, we must estimate the amount

of time it takes a trajectory line segment to go from one branch of the DP plot
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to another. This is easily found from the velocity along the vertical direction as

specified by Eq. (4.222), namely, lim
L→0

∣∣∣∣
diL

dt

∣∣∣∣ → ∞, provided again we are not

on the DP characteristic. In particular, the trajectory through each impasse point
must execute a vertical instantaneous jump as L → 0.

We have thus formally justified the introduction of the jump rule in Sect. 4.2.1.6.

4.7 Conclusion

As a concluding note to this chapter, let us recall the overall idea behind this chapter
was to analyze dynamic nonlinear networks. We essentially had three approaches:
time domain, frequency domain, and energy. We restricted our discussion of
frequency domain techniques to linear time-invariant circuits but learned about the
powerful concepts of phasors and Laplace transforms. The mindful reader would
have noticed that many of the ideas involved studying an associated linear system
about a particular operating point. Although much insight can be gained for first and
second order systems via the linearization technique, third and higher order systems
exhibit extremely complicated nonperiodic phenomena, generally known as chaos.
Thus, chaos is a phenomena that cannot be fully studied by linearization and is hence
a property unique to nonlinear circuits. Therefore, Chap. 5 appropriately concludes
the book by incorporating a plethora of ideas encountered throughout the book.

Because of the large body of material in this chapter, we have summarized
concepts below, instead of specific formulae:

1. The order of complexity of a dynamic network is the minimum number of
initial conditions that must be specified in terms of circuit variables, in order
to determine the full behavior of the network.

2. When possible, the dynamic nonlinear network equations should be expressed
in normal form.

3. Dual circuits help us reduce the enormous solution space of dynamic nonlinear
networks.

4. We learned the following from time domain analysis of nth-order nonlinear
networks:

a. Current through a linear inductor and voltage across a linear capacitor cannot
change instantaneously across discontinuities.

b. Discontinuities in other circuit variables in the network occur because of the
constraint in (a) above.

c. Circuits exhibiting impasse points indicate that we need to augment the
circuit model, most likely with parasitics.

d. MNA, Tableau and Small Signal analysis can be easily extended to include
dynamic networks.
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5. An alternative to time domain analysis is frequency domain analysis. The
advantage of this approach when applied to linear time-invariant circuits is that
time domain differential equations are mapped to algebraic equations involving
complex variables in the frequency domain. The main ideas discussed were:

a. We use complex numbers to define a phasor, in order to obtain the steady-
state response when the network is excited by a sinusoid of a particular
frequency ω.

b. Differential equations in the time domain can be converted to algebraic
equations in the phasor domain, and hence techniques covered in Chap. 3
such as nodal analysis, tableau analysis, superposition, and Thévenin-Norton
theorems are applicable to circuits in the phasor domain.

c. For general excitation, we use the Laplace transform.
d. To calculate the time response, we need to use partial fraction expansion and

then use a table of inverse Laplace transforms.
e. Laplace transforms can be used to find both the transient and steady-state

responses.

6. For memristor networks:

a. We discussed the Flux-Charge Analysis Method (FCAM). The advantage
of this method is a reduction in the number of ODEs for the associated
memristive network.

b. Memristors display a distinct pinched-hysteresis v − i characteristic under
sinusoidal excitation.

c. Due to physical parasitics, a memristor’s v − i characteristic may become
unpinched at the origin.

d. We described small-signal AC characteristics of memristive devices.

7. A third approach to studying (dynamic nonlinear) networks is energy. We
discussed formulation of system equations from both the Lagrangian and
Hamiltonian. The main ideas discussed are:

a. Inductors store the mechanical equivalent of “kinetic energy” via the current
flowing through them (or the flux-linkage across them). Capacitors store the
mechanical equivalent of “potential energy” via the voltage across them (or
the charge stored in them).

b. Lagrangian formalism is in terms of the difference between kinetic and
potential energies. Hamiltonian formalism is in terms of the sum of kinetic
and potential energies.

8. Reciprocity helps us understand the symmetric role played by the input and
output of a physical system.

9. Higher-order circuit elements in general can be synthesized using higher order
mutators. We showed how to synthesize a particular type of higher order
mutator for i = v̈.

10. Limit cycles are an exclusive steady-state behavior of nonlinear oscillators, that
usually arise due to unstable equilibrium points.
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Lab 4: Relaxation Oscillator (Transient Simulation) and
High-Pass filter (AC Simulation)

Just like lab 3, we encourage the reader to perform simulation in QUCS first, so they
can verify their answers to the appropriate problems via simulation.

Objective To understand time domain (transient) simulation and frequency
response (AC simulation)in QUCS

Theory There are two steps to this lab: in the first step, you construct a relaxation
oscillator. In the second step, you go through the QUCS online workbook to simulate
a high-pass filter. For the relaxation oscillator, you will be performing a transient
analysis or a time domain simulation. Please do not confuse transient analysis, as
defined by circuit simulators, with the concept of transient response discussed in the
text!

To perform sinusoidal steady-state analysis, the terminology used by circuit
simulators is AC simulation. We will use a simple RC circuit to illustrate the
idea of filtering signals. A discussion of filtering is beyond the scope of this book,
but the reader is encouraged to go through the appropriate material in an excellent
reference such as [12]. Moreover, as the reader simulates the high-pass filter, they
are encouraged to modify the circuit to understand its functionality.

Lab Exercise

1. For this step, construct the circuit shown in Fig. 4.57.
2. Once you enter the appropriate parameters, simulating the circuit should result

in Fig. 4.58. Compare your result with the discussion of relaxation oscillators in
this chapter (see also Exercise 4.7).

3. For this step, simulate the circuit under “AC simulation - A simple RC highpass”
in the QUCS online workbook. Make sure you understand the results. If
necessary, construct the circuit physically.

Exercises

4.1 Consider the memristor circuits in Figs. 4.5 and 4.6 from Example 4.1.3. What
is the order of complexity for the two circuits if the memristive devices are replaced
with ideal memristors?

4.2 For the circuit shown in Fig. 4.59, calculate v0(t) for t ≥ 0, given iL(0) = 2 A.

4.3 Consider the circuit shown in Fig. 4.60a where the inductor is nonlinear and is
given by the i − φ characteristic shown.

http://qucs.sourceforge.net/docs/tutorial/workbook.pdf
http://qucs.sourceforge.net/docs/tutorial/workbook.pdf
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Fig. 4.57 An opamp based relaxation oscillator
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Fig. 4.58 Steady-state vC(t) and vout(t) for the circuit in Fig. 4.57
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Fig. 4.59 Circuit for Exercise 4.2

is(t)

(a) (b)

i, A

,Wb
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Fig. 4.60 (a) Circuit and (b) nonlinear characteristic for Exercise 4.3

+

vC

−
10 mA

(1 mS,5 V)

Fig. 4.61 Circuit for Exercise 4.4

1. Let is(t) = 3u(t) and i(0−) = −1 A. Determine the current i(t) for t ≥ 0.
2. What is the amount of energy delivered to the inductor for t ≥ 0?

4.4 For the circuit shown in Fig. 4.61, calculate and sketch vC(t) for t > 0. Assume
vC(0) = 0 V.
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Fig. 4.62 (a) Circuit and (b) DP characteristic for Exercise 4.5

4.5 Consider the circuit shown in Fig. 4.62a, where N is described by the v − i

characteristic shown in Fig. 4.62b.

1. Indicate the dynamic route. Label all equilibrium points and state whether they
are stable or unstable.

2. Suppose vC(0) = 15 V. Find and sketch vC(t) and iC(t) for t ≥ 0. Indicate all
pertinent information on the sketches.

4.6 Consider the circuit shown in Fig. 4.63a, where N is described by the v − i

characteristic shown in Fig. 4.63b.

1. Indicate the dynamic route. Label all equilibrium points and state whether they
are stable or unstable.

2. Suppose iL(0) = 20 mA. Find and sketch v(t) and i(t) for t ≥ 0. Indicate all
pertinent information on the sketches.

4.7 Determine closed form expressions and sketch vC(t) and vo(t) waveforms for
the relaxation oscillator in Fig. 4.26a.

4.8 Write the modified node equations for the circuit shown in Fig. 4.64.

4.9 The roots of a general cubic equation in X may be viewed (in the X − Y plane)
as the intersections of the X-axis with the graph of a cubic of the form:

Y = X3 + AX2 + BX + C (4.224)

1. Show that the point of inflection of the graph occurs at X = −A
3 .

2. Deduce (algebraically and geometrically) that the substitution X = (
x − A

3

)
will

reduce the above equation to the form Y = x3 + bx + c.
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N
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Fig. 4.63 (a) Circuit and (b) DP characteristic for Exercise 4.6

Fig. 4.64 Circuit for Exercise 4.8

4.10 Reconsider the cubic: x3 = 3px + 2q . To derive the general formula for the
cubic:

1. Make the inspired substitution x = s + t and deduce that x solves the cubic if
st = p, s3 + t3 = 2q .

2. Eliminate t between the two equations above, thereby obtaining a quadratic in s3.
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+
−vs(t)

vo(t)

C1

R1 R2
1

2

C2

Fig. 4.65 Circuit for Exercise 4.12

3. Solve the quadratic to obtain two possible values of s3. By symmetry, what are
the possible values of t3?

4. Given that we know s3 + t3 = 2q , deduce the formula for x in Eq. (4.91).

4.11 Algebraically (and/or geometrically) prove the following:

1. |z| = √
x2 + y2

2. zz̄ = |z|2
3. 1

x+jy
= x

x2+y2 − j
y

x2+y2

4. (1 + j)4 = −4
5. (1 + j)13 = −26(1 + j)

6. (1 + j
√

3)6 = 26

4.12 Write nodal equations in the phasor domain for the circuit shown in Fig. 4.65.
Use the nodal equations to find the ratio Vo(jω)/Vs .

4.13 Reconsider the system S from Exercise 1.9. If the input to S is a sinusoidal
signal of frequency ω, is the frequency of the output signal still ω?

4.14 Prove the differentiation property of Laplace transforms for nth-order deriva-
tives:

L { dn

dtn
f (t)} = snF (s) − sn−1f (0−) − sn−2f ′(0−) · · · − f n−1(0−) (4.225)

4.15 Show that if the initial conditions were not zero in Example 4.3.6, then we
would have obtained:

IL(s) = ω2
0

s2 + 2αs + ω0
Is(s) + (s + 2α)iL(0−) + •

iL(0−)

s2 + 2αs + ω2
0

(4.226)
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Fig. 4.66 Circuit for
Exercise 4.16

−

+
∞

R

RL

CZin(s)

Fig. 4.67 Circuit for
Exercise 4.18

S = 0R

C C

i

+

v2

−
v1

+

−

4.16 Determine Zin(s) for the circuit in Fig. 4.66. Show that the circuit functions
as a physical implementation of a gyrator.

4.17 Derive the small-signal model for the thermistor from Sect. 4.4.2.

4.18 The circuit shown in Fig. 4.67 is made of linear time-invariant elements.
Prior to time 0, the left capacitor is charged to V0 volts, and the right capacitor
is uncharged. The switch is closed at time 0. Calculate the following:

1. The current i for t ≥ 0.
2. The energy dissipated in the interval (0, T ).
3. The limiting values for t → ∞ of (a) the capacitor voltages v1 and v2, (b) the

current i and (c) the energy stored in the capacitor and the energy dissipated in
the resistor.

4. Is there any relation between the energies? If so, state what it is.
5. What happens when R → 0?

4.19 We have encountered many resistive circuits having multiple equilibrium
points. For example, the tunnel-diode circuit in Fig. 3.4a from Chap. 3 has three
operating points. This answer seems to contradict the fact that a single laboratory
measurement on the corresponding physical circuit can only give one operating
point.

We are now in a position to resolve the so-called operating point paradox.
Basically, the tunnel-diode circuit in Fig. 3.4a is not a realistic model of the physical
circuit. In any physical circuit, as we have discussed numerous times, there always
exist parasitic effects. In circuits having unique solution, these effects can often
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Fig. 4.68 Realistic model for
a biased tunnel-diode circuit Lp

Cp

R

E

be neglected without discernible errors. In circuits exhibiting multiple solutions,
however, some of these parasitic elements cannot be neglected.

Consider the realistic tunnel-diode circuit shown in Fig. 4.68. The three operating
points in the resistive circuit can now be interpreted as equilibrium points in the
remodeled dynamic circuit. Show that in Fig. 3.4b:

1. Q2 is an unstable equilibrium point.
2. Use numerical simulation and phase portraits to show different initial conditions

will give rise to either Q1 or Q3 as the operating point.

4.20 NOTE: This is an open-ended problem
Going through this chapter, the reader should have realized that there are three

main approaches to studying circuits: time domain, frequency domain, and the
energy approach. With respect to circuit simulation programs such as QUCS, they
readily implement the time domain and frequency domain approaches.

So, a natural question is: what about energy based approaches? That is, can we
supplement QUCS to compute Lagrangian and Hamiltonian for a specified circuit?
And, how would one go about interpreting the results?

We would recommend investigating the questions above as a capstone project.
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Chapter 5
Chaos

Simulated chaotic attractor from the Muthuswamy-Chua system
[19, 22]

Abstract So far we have studied the fundamentals of (nonlinear) circuit theory.
We have encountered a variety of multi-terminal elements and circuit analysis
techniques. In this final chapter, we will discuss the fascinating mathematical
concept of chaos. Notice we use the word mathematical: chaos has been largely
studied by mathematicians and scientists. Yet we conclude this book on circuit
theory with an advanced mathematical topic because chaos will prove invaluable
in integrating a majority of the concepts discussed in this book. Chaos is also
fundamentally restricted to nonlinear circuits, linear networks do not exhibit chaos.
So it is appropriate to conclude this book with a chapter on an exclusive property of
nonlinear circuits. For those mathematically familiar with chaos, this chapter takes
an “experimentalist” approach when discussing a variety of chaotic circuits.

5.1 An Introduction to Chaos

Chaotic circuits provide excellent examples for utilizing nonlinear elements in
topologically simple circuits,1 to study an interesting phenomenon.

Since a thorough treatment of chaos requires a book on its own, in this chapter
we will instead mainly focus on a fundamental idea discussed throughout the book:

1That is, most of the normal form equations can be derived by inspection.
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Fig. 5.1 Circuit model of the
Van der Pol oscillator

the concept of device modeling. Hence a recurring theme throughout this chapter
would be to first discuss a circuit that has been systematically designed to exhibit
chaotic behavior, and then discuss a circuit that exhibits chaos because of physical
nonlinearities. We will also focus on the PWL approximation technique, because
as we learned throughout the book, we can synthesize any PWL characteristic using
opamps, etc. We will design chaotic circuits using nonlinear resistors, capacitors,
and inductors. We will also discuss memristor and transistor based chaotic circuits.

We will be performing simulations of the (chaotic) circuits in QUCS and
normal form equations in SageMath. We will show implementation results only
for the Muthuswamy-Chua chaotic circuit,2 in order to encourage the reader to
investigate the physical implementation of other chaotic circuits, and hence “learn
by experimenting.” Also, many end-of-chapter exercises are essentially capstone
design problems. In other words the ideas discussed in this chapter should lead to
interesting research problems for the motivated reader, perhaps even resulting in
“good” publications.

We will start by revisiting the Van der Pol oscillator from Sect. 4.6.3. Reconsider
the schematic of the Van der Pol oscillator in Fig. 5.1. Note that we are using
the dual [3] of the series LCNR circuit from Sect. 4.6.3. We now have a voltage-
controlled NR:

iR(vC1) = avC1 + bv3
C1 (5.1)

One could implement the cubic nonlinearity in Eq. (5.1) using the twin-tunnel-diode
circuit in Fig. 4.53 or by using analog multipliers as shown in Fig. 5.2 From Fig. 5.2
(see Exercise 5.1), we get:

iR(vC1) =
[
−vC1 +

(
1 + R5

R4

)
(vC1)

3

100

]
1

R3
(5.2)

However, as stated earlier, we will use a PWL approximation for the cubic
nonlinearity. Consider the QUCS schematic in Fig. 5.3. U1 and U2 are QUCS

2We picked this circuit to implement because it requires a memristor emulator that has the most
number of components of all the chaotic circuits discussed in this chapter.
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Fig. 5.2 A circuit implementation of NR from Fig. 5.1. All power supplies are ± 15 V. Opamp
U1 acts as a current inverter when R1 = R2, U2 and U3 are analog multipliers
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+
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–

Fig. 5.3 PWL approximation of the cubic nonlinearity. This circuit is called the “Chua diode” [6]
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Fig. 5.4 Chua diode DP characteristic. iSense is the current flowing (according to the passive sign
convention) through the vSense voltage source in Fig. 5.3

nonlinear model3 of opamps. We have specified an open-loop gain of 1e6 and
E = ± 9 V. We will perform a parameter sweep simulation and plot the DP
characteristic. The result is shown in Fig. 5.4. Notice that opamp circuit is a parallel
combination of two nonlinear resistors. Each opamp is the voltage-controlled dual
of the opamp negative impedance converter from Fig. 2.41. Because of the parallel
combination of the resistors, we have two additional breakpoints4 in the negative
resistance region.

Next, we will simply add a resistor and capacitor (to make the system three
dimensional,5 in other words, the order of complexity is now three) as shown in
Fig. 5.5, to obtain Chua’s circuit [6]. The purpose of adding just two components
will be clear from simulating Chua’s circuit. The complete QUCS schematic for
simulation is shown in Fig. 5.6. Simulating the circuit in Fig. 5.6, we get the results
in Fig. 5.7.

3These can be found under Nonlinear Components in the components tab of QUCS. Note that
simulating chaotic circuits with a physical opamp (like μA741 models) from the Opamp QUCS
Library may not cause the simulation to converge for some circuits.
4The reason for breakpoints is to obtain chaos in a three-dimensional extension of the Van der Pol
oscillator. The justification is beyond the scope of this book, for details refer to [5].
5The minimal dimension of a continuous time chaotic system is usually said to be three because
of the Poincaré-Bendixson theorem. But there are unusual systems of lower order that violate this
theorem and exhibit chaos, see [27]. Moreover, even one-dimensional discrete-time systems (maps)
can exhibit chaotic behavior. Such maps will not be discussed in this book, although they appear
in very simple electric circuits, see [26].
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Fig. 5.5 Circuit model for Chua’s circuit. The only elements added to the Van der Pol oscillator
in Fig. 5.1 are highlighted in red
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Fig. 5.6 Chua’s circuit in QUCS setup for transient analysis

Fig. 5.7 Time domain plots of the voltages across the two capacitors. (a) t = 0 to t = 10 ms. (b)
t = 0 to t = 20 ms
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An important point is the issue of convergence in circuit simulation of nonlinear
(chaotic) circuits. Although this topic is beyond the scope of this text (see [23]),
one needs to pay attention to the log messages from the simulator to investigate
the source of the issue, and if the convergence error can be safely ignored. If the
simulation does not converge at all or seems to converge to incorrect results, the
warnings should be closely studied.

In this case, the log messages show:

Listing 5.1 QUCS log from simulating Chua’s circuit

1 Output:
2 -------
3
4 Starting new simulation on Thu 11. Jan 2018 at 11:33:19:169
5
6 creating netlist... done.
7 Starting /usr/local/bin/qucsator
8
9 project location:

10 modules to load: 0
11 factorycreate.size() is 0
12 factorycreate has registered:
13 parsing netlist...
14 checking netlist...
15 checker notice, variable `vC1.Vt' in equation `vC2_vs_vC1'

not yet defined
16 checker notice, variable `vC2.Vt' in equation `vC2_vs_vC1'

not yet defined
17 netlist content
18 2 C instances
19 1 L instances
20 8 R instances
21 2 OpAmp instances
22 1 TR instances
23 creating netlist...
24 checker notice, variable `vC1.Vt' in equation `vC2_vs_vC1'

not yet defined
25 checker notice, variable `vC2.Vt' in equation `vC2_vs_vC1'

not yet defined
26 NOTIFY: TR1: average time-step 2.16797e-06, 4326 rejections
27 NOTIFY: TR1: average NR-iterations 3.10133, 947 non-

convergences
28
29 Simulation ended on Thu 11. Jan 2018 at 11:33:20:959
30 Ready.

We can see that there are non-convergence warnings, in this case, they can be safely
ignored.

Comparing Fig. 5.7a, b, we may be tempted to conclude the transient response is
periodic. But closely examining the two time domain waveforms, we can see that
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Fig. 5.8 A phase portrait (plot) of (vC1(t), vC2(t)) from Fig. 5.7, plotted from t = 0 to t = 50 ms

may not be true. For instance, they clearly show the number of “oscillating maxima
and minima” in each ms interval is different.

A more insightful picture is the phase portrait (plot) discussed in Sect. 4.6.3. The
vC1 −vC2 phase plot is shown Fig. 5.8. We now see that there is a “structure,” called
a chaotic attractor, in phase space. It turns out the chaotic attractor is the steady-
state response for this circuit.

The structure is so named because it tends to “attract” points in a “basin of
attraction” into the attractor (see Exercise 5.2). The term “chaotic” or “chaos” was
coined by James Yorke and T.Y. Li [18]. Nevertheless, there is no agreed upon
definition of chaos, although researchers generally concur that a chaotic system
should satisfy the following properties:

1. Boundedness6

2. Aperiodicity
3. Sensitive dependence on initial conditions

6We add this property because without it, linear one-dimensional unstable systems could be
considered “chaotic” since they satisfy properties 2 and 3.
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We will not discuss property 1 in this chapter. Property 2 we have already
encountered in Fig. 5.7. Before we investigate property 3, a mindful reader should
have noticed that we seemingly have trajectories that are “crossing” each other in
Fig. 5.8, whereas in Sect. 4.6.3 we commented that this is not possible because our
system is deterministic. The reason why the trajectories seem to cross is because
we are looking at a projection on the 2D plane! To further investigate the third
seminal property of chaos and the actual structure of the chaotic attractor, it would
be helpful to invoke the idea of dimensionless scaling from Sect. 4.6.3. First, we can
easily write down the normal form equations for Chua’s circuit in Fig. 5.5 (assume
parasitic series resistance R8 of L is 0, see Exercise 5.3):

dvC1

dt
= 1

C1

[
vC2 − vC1

R
− g(vC1)

]

dvC2

dt
= 1

C2

[
vC1 − vC2

R
+ iL

]

diL

dt
= −vC2

L
(5.3)

The general nonlinear characteristic g(vR) of the Chua diode, shown in Fig. 5.9, is
given by:

g(vR) = GbvR + 1

2
(Ga − Gb)(|vR + Bp| − |vR − Bp |) (5.4)

Fig. 5.9 The five segment PWL characteristic from Fig. 5.4, with vC1 = vR . Note that NR is not
passive since we have segments in the second and fourth quadrant, which correspond to the active
regions of NR . The linear resistor R from Fig. 5.5 has been plotted as a load line at steady state.
For particular values of R, notice we get three equilibrium points, P +, 0, P −. This justifies our
choice of connecting two voltage-controlled nonlinear resistors in parallel in Fig. 5.3. Note that
NR eventually becomes strictly passive. Those segments are due to opamp saturation and should
not be included when deriving Eq. (5.4)
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We will now scale the equations from Chua’s circuit into dimensionless, as shown
in Example 5.1.1.

Example 5.1.1 Derive the dimensionless form for Eq. (5.3).

Solution Following the procedure in Sect. 4.6.3, let τ
�= t

RC2
. Replacing t in

Eq. (5.3), we get:

dvC1

dτ
= C2

C1
[(vC2 − vC1) − Rg(vC1)]

dvC2

dτ
= [(vC1 − vC2) + RiL]

diL

dτ
= RC2

(−vC2

iL

)
(5.5)

We will take the dimensionless time form in Eq. (5.5) and make the state
variables dimensionless as well. Hence we will finally get a dimensionless
state equation. To do this, consider the first equation, replacing g(vC1) from
Eq. (5.4):

dvC1

dτ
= C2

C1

[
(vC2 − vC1) − {RGbvC1 + R

2
(Ga − Gb)(|vC1 + Bp| − |vC1 − Bp|)}

]

(5.6)

Factoring out Bp (Bp > 0), we get:

dvC1/Bp

dτ
= C2

C1

[(
vC2

Bp
− vC1

Bp

)
− Rg

(
vC1

Bp

)]
(5.7)

Let: x
�= vC1

Bp
, y

�= vC2
Bp

, a
�= GaR, b

�= GbR, α
�= C2

C1
. Equation (5.7)

simplifies to:

dx

dτ
= α(y − x − f (x)) (5.8)

where f (x) = bx + 1
2 (a − b)(|x + 1| − |x − 1|).

(continued)
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Example 5.1.1 (continued)
Notice all the parameters defined above are dimensionless. Multiplying and
dividing dvC2

dτ
in Eq. (5.5) by Bp:

dvC2/Bp

dτ
=
[(

vC1

Bp

− vC2

Bp

)
+ RiL

Bp

]
(5.9)

Let: z
�= iLR

Bp
. We thus have:

dy

dτ
= x − y + z (5.10)

Finally, if we define β
�= R2C2

L
, diL

dτ
in Eq. (5.5) becomes:

dz

dτ
= −βy (5.11)

Hence, the dimensionless form of Chua’s circuit equations are:

dx

dτ
= α(y − x − f (x))

dy

dτ
= x − y + z

dz

dτ
= −βy (5.12)

Some observations from the dimensionless form:

1. Example 5.1.1 illustrates a semi-systematic procedure for obtaining dimension-
less normal form: we always start by scaling the time variable. The justification
is that there are three choices for scaling to dimensionless time: τ = t

RnCn
,

τ = t
Ln/Rn

or τ = t√
LnCn

. After scaling time, the actual scaling of the state

variables, parameters, and nonlinearities depend on the particular system. Hence,
the procedure is “semi-systematic.”

2. Equation (5.12) has four parameters that can be tuned: α, β, a, b. In contrast,
Eq. (5.3) has seven parameters: R,C1, C2, L,Ga,Gb,Bp . Hence it is always
convenient to scale circuit equations to dimensionless form.

SageMath simulation results for Eq. (5.12) with two different initial conditions
([0.1, 0, 0.1], [0.1, 0, 0.01]) are shown in Fig. 5.10. SageMath code is shown in
Listing 5.2.
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Fig. 5.10 The result of simulating with two different initial conditions are shown in different
colors. Notice that the trajectories do not superimpose

Listing 5.2 SageMath code

1 # Simulate the autonomous Chua oscillator (dimensionless form
)

2 from scipy.integrate import odeint
3 from matplotlib import pyplot as plt
4 plt.rcParams['figure.figsize'] = (8.0,8.0)
5 plt.rc('text', usetex=True)
6 plt.rc('font', family='serif')
7 from mpl_toolkits.mplot3d import Axes3D
8 # Circuit parameters
9 C1=10e-9

10 C2=100e-9
11 L=18e-3
12 R=1514
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13 Bp=1
14 Ga=(0.864e-3+0.864e-3)/(-1.14-1.14)
15 Gb=(2.94e-3-0.864e-3)/(-8.36+1.14)
16 #dimensionless parameters
17 a=Ga*R
18 b=Gb*R
19 alpha=C2/C1
20 beta=((R**2)*C2)/L
21 # system
22 def f(x,a,b):
23 return b*x+0.5*(a-b)*(abs(x+1)-abs(x-1))
24 def chuaDimensionless(previousState,t):
25 # Let previousState = [x(t-dt),y(t-dt),z(t-dt)].
26 # Hence, we are going to return the normal form equations

to be integrated
27 # by odeint:
28 # x(t) = f_1(x(t-dt),y(t-dt),z(t-dt))
29 # y(t) = f_2(x(t-dt),y(t-dt),z(t-dt))
30 # z(t) = f_3(x(t-dt),y(t-dt),z(t-dt))
31 x,y,z=previousState
32 return (alpha*(y-x-f(x,a,b)),x-y+z,-beta*y)
33 # setup and run simulation
34 times=srange(0,500,0.01)
35 ics=[0.1,0,0.1]
36 chuaDimensionlessSolIC1=odeint(chuaDimensionless,ics,times,

rtol=1e-14,atol=1e-13)
37 chuaDimensionlessSolIC2=odeint(chuaDimensionless,[0.1,0,0.01

],times,rtol=1e-14,atol=1e-13)
38 # make sure we obtain STEADY STATE values of (x,y,z)
39 x1=chuaDimensionlessSolIC1[30000:45000,0]
40 y1=chuaDimensionlessSolIC1[30000:45000,1]
41 z1=chuaDimensionlessSolIC1[30000:45000,2]
42 x2=chuaDimensionlessSolIC2[30000:45000,0]
43 y2=chuaDimensionlessSolIC2[30000:45000,1]
44 z2=chuaDimensionlessSolIC2[30000:45000,2]
45 # 2D plot
46 plt.plot(x1,y1,'b',x2,y2,'r')
47 plt.xlabel('$x$',fontsize=16)
48 plt.ylabel('$y$',fontsize=16)
49 plt.title('Example of sensitive dependence on initial

conditions')
50 plt.show()
51 # 3D plot
52 fig = plt.figure()
53 ax = fig.add_subplot(111, projection='3d')
54 ax.view_init(20,70)
55 plt.xlabel('$x$',fontsize=16)
56 plt.ylabel('$y$',fontsize=16)
57 plt.ylabel('$z$',fontsize=16)
58 plt.plot(x,y,z)
59 plt.show()

Figure 5.11 shows a 3D plot. Notice how the chaotic attractor trajectories clearly
will not self-intersect in three dimensions, consistent with our explanation in
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Fig. 5.11 Chaotic attractor in 3D

Sect. 4.6.3. In fact, the chaotic attractor has a fractional Kaplan-Yorke dimension
between 2 and 3. For details on computing measures for chaotic systems such as the
(Kaplan-Yorke) dimension, Lyapunov exponents, etc., see [27]. Browsing through
the simulation code shows a very important point: we have to be careful before
declaring a system to be chaotic from simulation results alone. It could be the
steady state solution is (very) long-term periodic, or we may be looking at a transient
response. Although a variety of mathematical techniques exist that can be used to
rigorously prove chaos, they are beyond the scope of this book. For a very good
overview of the different techniques available, with a circuit theoretic emphasis, see
related chapters in [1]. However, we can easily avoid the trap of misidentifying
a transient response as the steady state solution by simply plotting the phase
portrait with different time ranges. In this case, we chose to plot the range
[30,000 : 45,000].

Another point to note are the parameters we chose. Since the parasitic series
resistance of L was chosen to be zero, we added 14 	 to R because at DC, we get a
load line using R = 1514 	, consistent with the circuit in Fig. 5.6.
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Fig. 5.12 Plot (in red) of the Fourier transform of the voltage across a capacitor from the
Muthuswamy-Chua circuit (to be discussed in Sect. 5.4.1). Notice how the signal has content across
a wide range of frequencies

A very important property of chaos that is beyond the scope of this book is
the frequency content of chaotic signals. It turns out that chaotic signals possess
a wideband frequency content. An example is shown in Fig. 5.12. As a result
chaos can be easily confused with noise. Hence, before the advent of computer
simulations, chaos was observed but not identified in a variety of circuits and
systems. We will now look at a very brief history of chaos and see circuits where
chaos was observed but not identified.

5.2 A History of Chaos in Circuit Theory

In 1922, Armstrong invented the (super)regenerative circuit as a detector with high
sensitivity and selectivity as compared to other types of receivers [16]. In the early
days of radio engineering, this type of detection was frequently used. Nowadays,
regenerative devices are still used as predetection systems when very high fre-
quencies (e.g., microwave communication) are involved. The regenerative detector
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Fig. 5.13 The grid oscillator, T is a three-terminal nonlinear vacuum tube. An incoming signal is
modeled as a sinusoidal forcing of the form A cos(ωt). For circuit equations and detailed analysis,
see [16]
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Fig. 5.14 Sinusoidally forced Van der Pol oscillator that displays chaotic behavior, is(t) =
A cos(ωt), see [27]

is favorably used in applications where simplicity and compactness outweigh the
need for low noise reception. These circuits use a three terminal vacuum tube, as
a receiver as well as in the transmitter, with inductive coupling. Figure 5.13 shows
the grid oscillator, a good model for studying chaos in Armstrong’s circuit. It turns
out that in a simplified model of the circuit above, one can show that the current i

behaves chaotically during a small period in time after which the circuit becomes an
oscillator. Armstrong was not aware of the circuits’ chaotic behavior, but reported
“strange irregular startups of the oscillator.” It also turns out that during the period
in which irregularities appear, the amplification of the circuit is maximal. Hence
Armstrong’s circuit is an example application of chaos to signal amplification.

Van der Pol in fact also observed similar phenomena, i.e. “irregular noise,” when
he forced his oscillator with a sinusoidal signal (Fig. 5.14). Unfortunately, he also
dismissed chaos as “noise” and did not study the phenomenon further. Note that the
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nonautonomous Van der Pol equations for the circuit in Fig. 5.14:

diL

dt
= v

L

dv

dt
= −iL − iR + A cos(ωt)

C
(5.13)

can be put it into autonomous normal form by a simple change of variables. If z
�=

ωt , we get:

iL

dt
= v

L

dv

dt
= −iL − iR + A cos(z)

C

dz

dt
= ω (5.14)

A variety of “near-misses” also occurred with respect to chaos when investigating
nonlinear circuits. Ueda studied combinations such as the Duffing7-Van der Pol
oscillator by means of analog and digital computers as early as 1961 while he was
a graduate student but did not publish results [27]. Many investigations into chaotic
circuits in the 1970s were focused on the nonautonomous type, where an external
(usually sinusoidal) forcing function was used.

In 1983, while on a visit to Dr. Matsumoto’s lab in Waseda University, Dr. Leon
O. Chua witnessed his colleague unable to reproduce chaos in a physical circuit
implementation of the Lorenz chaotic system. Chua realized that the issue at hand
was the use of analog multipliers, which were not reliable in the early 1980s [5]. As a
result of the failure, Dr. Chua systematically designed an autonomous circuit that
could potentially reproduce chaotic behavior physically. The core concept was to
make use of the NR shown in Fig. 5.9 such that at equilibrium, the circuit possessed
three unstable equilibrium points, as Example 5.2.1 shows.

Example 5.2.1 Using the dimensionless formulation of Chua’s circuit from
Eq. (5.12) in Example 5.1.1, determine the equilibrium points for the param-
eter values from Fig. 5.6 and classify them as unstable or stable.

Solution The equilibrium points are simply found by setting the derivatives
equal to zero and solving the resulting system of nonlinear equations. Thus, if

(continued)

7We will study the Duffing oscillator in Sect. 5.5.
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Example 5.2.1 (continued)
the equilibrium points are (x∗, y∗, z∗), we have:

α(y∗ − x∗ − f (x∗)) = 0

x∗ − y∗ + z∗ = 0

βy∗ = 0 (5.15)

Simplifying:

x∗ = −f (x∗)

x∗ = −z∗

y∗ = 0 (5.16)

Solving the above equations, we get the equilibrium points (0, 0, 0),

(+1.261, 0,−1.261), (−1.261, 0, 1.261). When |x(t)| < 1, the nonlinear
function is: f (x) = ax. Thus the Jacobian matrix J0 is:

J0 =
⎡
⎣

−α − α · a α 0
1 −1 1
0 −β 0

⎤
⎦ (5.17)

When |x(t)| > 1, the nonlinear function is: f (x) = bx±(a−b). the Jacobian
matrices J±1 are both:

J±1 =
⎡
⎣

−α − α · b α 0
1 −1 1
0 −β 0

⎤
⎦ (5.18)

Notice J0 and J±1 do not depend on the values of the equilibrium points, but
only the parameters. For J0, the eigenvalues are λ1 ≈ 2.659, λ2,3 ≈ −1.092±
2.423j . For J±1, the eigenvalues are λ1 ≈ −6.937, λ2,3 ≈ 0.143 ± 3.217j .

Notice how the Jacobian shows all three equilibrium points are unstable. But,
since NR in Fig. 5.9 is eventually passive, the circuit variables cannot arbitrarily
increase. Hence, the circuit eventually settles into a strange attractor.8

8There is another very important criterion for a chaotic attractor in Chua’s circuit—the homoclinic
orbit. For details, see [1].
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Although Chua’s circuit has more components than required for a chaotic
electronic circuit, its significance is the fact that since it was systematically
designed, a rigorous proof of chaos was quickly possible within only 2 years after
its invention [1]. Moreover, systematically understanding how chaos is produced
in Chua’s circuit will help in approaching the study of chaos in other “simpler”
electronic circuits. This is because of the fact that Chua used PWL analysis in
designing the Chua diode. So, when possible, we encourage the reader to use a PWL
approximation of a nonlinear function in order to not only implement the function
physically, but also to aid in the mathematical analysis of the underlying differential
equations.

For instance, in the next section, we will list two circuits which have very simple
topologies, but they produce “rich” chaotic behavior. Also, the underlying nonlinear
device model that gives rise to chaotic behavior is still a subject of active research.

5.3 Chaos from Physical Nonlinearities: pn-Junctions
and PWL Inductors

5.3.1 RLD Chaotic Circuit

Consider the QUCS schematic of the RLD circuit in Fig. 5.15. A chaotic time-
domain waveform is shown in Fig. 5.16. Investigations into the physical source of
chaos in the diode for the circuit from Fig. 5.15 focus on the nonlinear junction
capacitance. In fact, [20] has an elegant PWL model for the nonlinear junction
capacitance. Hence a circuit that uses a nonlinear capacitor to produce chaotic

V1
U=1.9V
f=700kHz

D_1N4148_1
Is=222p
N=1.65

L1
L=100 uH

vR1

R1
R=50 Ohm TR1

Type=lin
Start=0
Stop=5 ms

+

–

transient
simulation

Fig. 5.15 Chaotic circuit from a forced diode resonator
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Fig. 5.17 PWL capacitor used to model the diode in the RLD chaotic circuit

behavior is shown in Fig. 5.17. The circuit equations for the PWL model are:

dq

dt
= i

di

dt
= − 1

L
(iR + f (q) − E sin(ωt)) (5.19)

where:

f (q) = a|q| + bq + E0 (5.20)

a = C2−C1
2C1C2

, b = C1+C2
2C1C2

. Chaos has been observed by fixing R = 60 	,L =
100 μH, C1 = 0.1 μF, C2 = 400 pF, ω/2π = 700 kHz, E0 = 0.1 V and varying E

from 0 to 2.0 V. We leave the exploration to the reader.
But, there are a variety of nonlinearities present in the junction diode, besides

capacitance. For example, the conductivity modulation effect present in diodes is
due to memristance [7]. Hence an interesting avenue for further research would be
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to examine if the memristor’s nonlinearity plays any role in chaos in the RLD circuit
(under appropriate range of parameters).

5.3.2 PWL Inductor Circuit

If we make only the inductor nonlinear in an RLC circuit by introducing hysteresis
(example: iron core inductors), chaos can occur [8]. The PWL schematic for the
circuit is shown in Fig. 5.18. NL is defined by the following PWL function:

i(φ) =

⎧⎪⎪⎨
⎪⎪⎩

φ−φ1
L1

for φ > φ0
φ
L0

for |φ| < φ0
φ+φ1
L1

for φ < −φ0

(5.21)

where

φ1 = φ0

(
1 − L1

L0

)
(5.22)

Practically, 0 < L1 < L0. The circuit equations are:

dφ

dt
= R1R2

R1 + R2
i(φ) − R2

R1 + R2
(v − E cos(ωt))

dv

dt
= 1

C

[
R2

R1 + R2
i(φ) − 1

R1 + R2
(v − E cos(ωt))

]
(5.23)

Circuit parameters used for simulation are: ω/2π = 50 Hz, R1 = 50 Ω,R2 =
10 k	,C = 1.69 μF, L0 = 33.33 H, L1 = 1.28 H, φ0 = 0.92 Vs. Varying E

should produce chaotic behavior, we also leave this exploration to the reader. What
is interesting however is the physical mechanism of chaos in this circuit is still
unknown.

Fig. 5.18 A nonlinear
resonant circuit

E cos ωt

R1 C

L

R2( )
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Fig. 5.19 Canonical Chua’s
oscillator with a
flux-controlled memristor
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5.4 Memristor Based Chaotic Circuits

We will now discuss chaotic circuits using the fourth fundamental circuit element,
the memristor. Consider the canonical Chua’s circuit9 in Fig. 5.19, with NR replaced
by NM [13]. However, one has to use caution when deriving the circuit equations.
This is because simply writing the equations in terms of current and voltage would
give:

di

dt
= 1

L
(v2 − v1)

dv2

dt
= 1

C2
(Gv2 − i)

dv1

dt
= 1

C1
(i − W(φ1)v1)

dφ1

dt

�= v1 (5.24)

Exercise 5.5 asks you to rewrite the system equations in terms of charge and flux,
so the number of ODEs is reduced by one.

A variety of chaotic attractors have been derived for the circuit in Fig. 5.19. What
is interesting however is that we only need one capacitor, one inductor, and one
memristor to obtain a chaotic circuit, as the next section illustrates.

5.4.1 Muthuswamy-Chua Circuit

Let us play the same “trick” that we used in Chua’s circuit, of replacing NR

with NM , but in the topologically simpler (series) Van der Pol oscillator. We
consider the series implementation in this section because Muthuswamy and Chua
systematically obtained chaos [22] in the circuit shown in Fig. 5.20, called the
Muthuswamy-Chua circuit [19]. Assuming a current-controlled NM with only one

9This circuit is slightly different from the circuit we discussed in Sect. 5.1.
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Fig. 5.20 The
Muthuswamy-Chua circuit
[22]

vC
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L

M

iL iM

vM

internal state z,10 the system equations for the circuit can be trivially derived:

dvC

dt
= iL

C

diL

dt
= − 1

L
(vC + R(z, iL)iL)

dz

dt

�= f (z, i) (5.25)

The significance of the Muthuswamy-Chua circuit is that it is the simplest known
chaotic circuit that uses only the fundamental circuit elements. Also, only the
memristor is nonlinear.11 Consider the following specific system equations derived
from Eq. (5.25). We have assumed x = vC, y = iL.

dx

dt
= y

C

dy

dt
= − 1

L

(
x + β(z2 − 1)y

)

dz

dt
= −y − αz + yz (5.26)

Inspired by Rössler’s intuitive arguments in deriving his namesake chaotic equation,
the memristance and state functions in Eq. (5.26) were systematically derived by Dr.
Muthuswamy for producing chaotic behavior. Assuming β > 0, R(z) = β(z2−1) is
negative for |z| < 1. Hence when we “power on” the circuit in Fig. 5.20, since initial
memristor state variable will naturally be assumed to be close to zero, we have a

10The system of equations is autonomous and the minimum number of state variables to obtain
chaos in a continuous time autonomous system is three. Hence we need only one internal state
for the memristor to have a three-dimensional autonomous ODE model of the Muthuswamy-Chua
circuit.
11Of course, we know by definition a linear memristor is simply a resistor.
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Fig. 5.21 x − y phase plot resulting from simulating Eq. (5.26) with parameters C = 1, L =
3.3, β = 1.7, α = 0.2. We chose an appropriate interval to avoid transient and plot the “steady-
state” chaotic attractor

negativememristance. Hence the circuit is unstable and the voltage, current values

start increasing. In the RHS of the
•
z Eq. (5.26), we can see the product yz also starts

increasing. But, if |z| > 1, the memristance is positive and hence the circuit becomes
stable. Furthermore, the −y −αz will also eventually cause trajectories in z to head
back to the origin, until the circuit becomes unstable again. This alternating unstable
and stable behavior leads to limit cycles (similar to our discussion in Sect. 4.6.3)
for some parameter values, and chaos for other (systematically chosen) parameter
values. In fact, it has been rigorously proved [12] that the chaotic attractor shown in
Fig. 5.21 is topologically the same as the Rössler attractor.

We will now discuss the implementation of the Muthuswamy-Chua circuit in
detail since we have to emulate the memristor. Consider the schematic Fig. 5.22.
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Fig. 5.22 Circuit for emulating NM from Fig. 5.20

The first step is to sense the current using a “sense” resistor Rs . This resistor
must be “small enough” so it does not affect the dynamics of the circuit. In our case
we have Rs = 100 	 connected to the difference amplifier U3B. Hence the output
of U3B is:

v0 = Rs1

Rs2
RsiM = −RscaleiL (5.27)

Thus we have scaled and mapped the current into a voltage v0, so that we can easily
use components such as analog multipliers, which are voltage based.

The next step is to realize the memristor function R(x) = β(x2 − 1),12 using
opamp U3A, multipliers U4, U5. Using the datasheets of the multipliers and the

12We will use x instead of z for the memristor state in the implementation discussion, to be
consistent with the original publication [22].
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Fig. 5.23 Experimental plot of R(x) = 1.5(x2 − 1). Horizontal axis scale is 0.5 V/division;
vertical axis scale is 1.00 V/division. The experimental curve crosses the horizontal axis at −1 V
and approximately 0.9 V

connections shown in the schematic, we can infer that:

vM = −β5kpot

R6
v0 − β5kpot

R5
(−x2v0) (5.28)

We will choose R5 = R6 = R = 1k and β
�= β5kpot

R
. Replacing v0 in Eq. (5.28) from

Eq. (5.27) and simplifying, we get:

vM = βRscale(x
2 − 1)iL (5.29)

A plot of R(x) obtained from the circuit is shown in Fig. 5.23. The reader should
have noticed that R is not PWL. A good avenue for further research would be to
consider PWL versions of R.

The final step is to realize the memristor internal state equation. This is done by
means of opamps U2B, U2A. The output x of opamp U2B is given by:

dx

dt
= 1

Cf

[
v0

Rb

− x

α10kpot
− xv0

Ra

]
(5.30)
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Fig. 5.24 Memristor pinched hysteresis loop (Lissajous figures). Axes scales are 0.5 V/division
for horizontal axis (iM ), 1.00 V/division for vertical axis (vM ). (a) 3 kHz. (b) 35 kHz

Substituting for v0 from Eq. (5.27), we get:

dx

dt
= 1

Cf

[
−RscaleiL

Rb

− x

α10kpot
+ RscaleiLx

Ra

]
(5.31)

Let us check memristor pinched-hysteresis v − i characteristics, based on our
discussions in Sect. 4.4.2. Results are shown in Fig. 5.24a, b. The DC characteristic
has already been verified in Fig. 4.41. Notice that as ω → ∞, the hysteresis
loop degenerates to that of a linear resistor, as required. Let us now consider the
memristor emulator connected to a physical Cn and Ln. Circuit equations are:

dvC

dt
= iL

Cn

diL

dt
= − 1

Ln

[
vC + βRscale(x

2 − 1)iL + RsiL

]

dx

dt
= 1

Cf

[
−RscaleiL

Rb

− x

α10kpot
+ RscaleiLx

Ra

]
(5.32)

Notice that we have included the effect of the sense resistor Rs in the
•
iL equation

above.
We finally need to convert the circuit equations into the system Eq. (5.26). To do

this, we will first perform the time scaling as τ
�= Tst = 105t . In this case, we do

not perform a dimensionless scaling using τ = t√
LC

. The reason is that choosing
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this time scale would eventually make L = C in Eq. (5.26). We will also scale y(τ)

to hundreds of microamps, for physical implementation. Thus, we have:

x(τ)
�= vC(t)

y(τ )
�= RscaleiL(t)

z(τ )
�= x(t) (5.33)

To be clear, the dimension of x, y, z are all volts. Substituting the definitions above
into Eq. (5.32) and simplifying using the component values from the emulator we
get:

dx

dτ
= y

C

dy

dτ
= − 1

L

(
x + β(z2 − 1)y + 0.01y

)

dz

dτ
= −y − αz + yz (5.34)

where:

C = RscaleCnTs

L = LnTs

Rscale

β = β5kpot

R

α = 1

TsCf α10kpot
(5.35)

Choosing Cn = 1 nF, Ln = 330 mH and β5kpot = 1.7k, α10kpot = 5k, we get:
C = 1, L = 3.3, β = 1.7, α = 0.2. The attractor obtained from the physical
circuit is shown in Fig. 5.25. Based on our experience with the memristor emulator,
a natural follow-up question is: are there chaotic circuits where physical memristor
nonlinearities cause chaos? As of the writing of this book (January 2018), no one has
explicitly found such a circuit. But, there are a variety of candidates. One promising
candidate is Theodorchik’s oscillator [2] shown in Fig. 5.26. Anischenko et. al. [2]
do not explicitly state the R(T ) modeled by a thermistor, is a memristor. They rather
assume the memristance to be a linear function of temperature. They modify the
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Fig. 5.25 Experimental chaotic attractor, axes scales are 0.5 V/division. We used a current probe
to measure the current iL through the inductor. In the experimental plot, (0, 0) has been shifted to
the right for clarity on the oscilloscope. Compare to Fig. 5.21

M

L1 L

R T

C Amplifier

( )

Fig. 5.26 Theodorchik’s oscillator with “inertial nonlinearity”

oscillator in Fig. 5.26 by adding more amplifier stages, assume the amplifier to be
nonlinear and obtain chaos. It would be interesting for the reader to investigate this
problem further (see Exercise 5.7).
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5.5 Implementing the Duffing Oscillator Using
a Higher-Order Element

Having obtained chaotic circuits by using all four fundamental circuit elements, we
will next propose a chaotic circuit using a higher-order circuit element. We alluded
to this in earlier chapters, recall the Duffing oscillator equation from Chap. 1:

v̈ + cv̇ + v(b + a · v2) = i(t) (5.36)

We discussed that we will use a (0,−2) element to implement v̈ and proposed
a schematic in Sect. 4.6.2, reproduced in Fig. 5.27. Consider now the circuit in
Fig. 5.28. From the U2 voltage follower, we get: v1 = v2.

The voltage drop across R is i2R, since the current into the noninverting input
of U3 is zero. Also, since the noninverting input of U3 is at virtual ground, we have
the noninverting input voltage of U1 to be equal to i2R. Hence:

i3 = −C3
di2R

dt

= RC2C3
d2v2

dt2

= RC2C3
d2v1

dt2 (5.37)

Since the current into the noninverting input of U2 is also zero, the CFOA ensures
i1 = i3. So we finally have:

i1 = RC2C3
d2v1

dt2 (5.38)

Fig. 5.27 A mutator for
synthesizing (0,−2) from a
(0,−1) element (capacitor C2
at port 2)
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+
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v1
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Fig. 5.28 One implementation of Fig. 4.51

Notice the equation above is dimensionally consistent. Exercise 5.4 asks you
to complete the implementation of the Duffing oscillator using the higher-order
element we implemented above.

5.6 Transistor Based Chaotic Circuits

Consider13 the Colpitts Chaotic Oscillator[14] QUCS schematic shown in Fig. 5.29.
Simulation results are shown in Fig. 5.30. The PWL equivalent circuit is shown in
Fig. 5.31. The circuit equations based on the PWL model are:

dVCE

dt
= 1

C1
(IL − IC)

dVBE

dt
= − 1

C2

(
VEE + VBE

REE

+ IL + IB

)

dIL

dt
= 1

L
(VCC − VCE + VBE − ILRL) (5.39)

13This is another example of a circuit where a physical nonlinearity is the cause of chaos.
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TR1
Type=lin
Start=0
Stop=25 ms

Vcc
U=5 V

RL
R=35 Ohm

L1
L=98.5 uH

T_2N2222_1

REE
R=400 Ohm

vE

Vee
U=–5 V

C1
C=54 nF
V=0.1

C2
C=54 nF
V=–0.2V

Equation

Eqn1
vCE=vC.Vt-vE.Vt
vBE=–1*vE.Vt
vBE_vs_vCE=PlotVs(vBE,vCE)

vC

transient
simulation

+

–

+

–

Fig. 5.29 A chaotic Colpitts oscillator

Fig. 5.30 QUCS simulated chaotic attractor. y-axis is vBE , x-axis is vCE . Notice the initial
transient settling into the chaotic attractor
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Fig. 5.31 PWL model of the
Colpitts chaotic oscillator

VEE

VCC

RL

L

VCE
C1

C2

REE

VBE

IB

IL

IC

F IB

Experimentally, it has been observed that the transistor is operating in either forward
active or cutoff. Consequently, the following PWL linear function for IB is used
(compare to Fig. 2.18):

IB =
{

0 if VBE ≤ VT H

VBE−VT H

RON
if VBE > VT H

(5.40)

IC = βF IB (5.41)

where VT H ≈ 0.75 V is the threshold voltage, RON is the small-signal on-resistance
of the base-emitter junction, and βF is the forward current gain of the device.

We would like to conclude this chapter by illustrating the elegance of dimen-
sionless scaling. We will only highlight the main concepts, leaving the actual
dimensionless scaling of the equations to the reader.

There are a variety of concepts that need to be taken into account for dimen-
sionless scaling of Eq. (5.39). The first is the time scale. There is every possible

combination of time scaling: τ
�= t

RLC1 , τ
�= t

L/RL
, etc. in the circuit. So let us take

a step back and understand the problem.14 It seems like the primary mechanism
of chaos should involve the inductor and both capacitor(s), as they are the dynamic
elements in our PWL model. Hence a logical choice for time scale should involve
some combination of L,C1, C2. Again from experience, the reader will realize by

14The reader has hopefully been applying the steps to problem solving elucidated in Exam-
ple 1.10.2 throughout the book.
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looking at the form of the RHS in Eq. (5.39) that:

τ
�=
√

LC1C2

C1 + C2
(5.42)

is a “good” choice. Next, let us examine the IB nonlinearity. Notice it can be
rewritten as:

IB =
{

0 if VBE/VT H ≤ 1
VT H (VBE/VT H −1)

RON
if VBE/VT H > 1

(5.43)

The justification for doing so is to define (for the second state equation in Eq. (5.39))

y
�= VBE

VT H
. But notice we can carry the simplification above for the PWL one step

further:

IBRON

VT H

=
{

0 if VBE/VT H ≤ 1

VBE/VT H − 1 if VBE/VT H > 1
(5.44)

The LHS of the equation above gives us a hint that:

z
�= ILRON

VT H

(5.45)

Moreover, the nonlinear function simply becomes:

f (y) =
{

0 if y ≤ 1

y − 1 if y > 1
(5.46)

We have now the dimensionless definitions for time, all state variables and the
nonlinearity!

5.7 Conclusion to This Book

In this book we have covered lumped circuit theory. A reader who is probably
familiar with classic linear circuit theory should hopefully now appreciate the
advantage of following a “top-down” general approach to circuit theory: it enables
them to properly analyze a very broad class of circuits. For example, consider our
discussion of on opamps in Sect. 2.5. The reason we were able to properly analyze
negative and positive feedback circuits is because we clearly (and correctly) sepa-
rate static behavior from dynamic circuit behavior. Thus, the concept of instability in
positive feedback circuits (opamp or otherwise) requires us to introduce (parasitic)
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dynamic v − i components such as capacitors and inductors (perhaps even the
memristor for a hitherto undiscovered circuit). In this chapter, we saw how all the
concepts integrated together in the form of chaotic circuits using fundamental circuit
elements, opamps and transistors.

So, having been armed with the proper approach to circuit theory, where does a
reader go from here? An answer to this question is for the reader to follow up on
particular concepts of interest. Some (by no means, exhaustive) examples:

1. Recall the Simultaneity Postulate from Sect. 1.3. This postulate dictates when the
techniques in this book are valid. Hence, a natural follow-up for the interested
reader would be on distributed circuits,15 where the simultaneity postulate is
inapplicable.

2. Another approach would be to pick up books that exhaustively cover the
ideas introduced here. For example, the graph theoretic approach to circuits is
extensively covered in [4]. Another excellent very recent volume on the topic is
[24].

3. Chaotic systems are the subject of many excellent books. An excellent starting
point is [27]. Sprott has a chapter devoted exclusively to chaotic electrical
circuits.

Exercises

5.1 Show that Fig. 5.2 (assuming R1 = R2) gives Eq. (5.2).

5.2 NOTE: This is an open-ended problem
Systematically change the values of the initial conditions; inductor, capacitor(s)
values and the DP characteristic of NR , to obtain different behaviors in Chua’s
circuit. What happens in Fig. 5.6 if the parasitic series resistance for the inductor is
removed? Does the simulation converge?

The reader should notice that it is much easier to simulate the dimensionless form
in a mathematical package such as SageMath, rather than obtaining results from the
circuit simulator. Why do you think this is the case? Think about all reasons. Also
think about advantages of simulating the circuit equations.

5.3 Derive the circuit Eq. (5.3) for Fig. 5.5. Use Sect. 1.9.1.2 to derive the NR

characteristics in Eq. (5.4) from Fig. 5.9.

15We (Dr. Muthuswamy and Dr. Banerjee) are planning to write such a follow-up volume to this
book, tentatively titled: “Advanced Nonlinear Circuits and Networks.” In the follow-up book, we
plan to first discuss rigorously how circuit theory is an approximation of electromagnetic field
theory. This would then set us up nicely to discuss distributed circuits.
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5.4 NOTE: This is an open-ended problem
Synthesize the Duffing oscillator from Sect. 5.5. We recommend approximating the
cubic using a simple PWL nonlinearity (realized using one opamp).

5.5 Write system equations for the Chua oscillator from Fig. 5.19 in terms of charge
and flux, using the ideas from Sect. 4.4.1.

5.6 NOTE: This is an open-ended problem
Design and implement a memristor simulation library for QUCS.

5.7 NOTE: This is an open-ended problem
Investigate chaotic circuit implementations where the source of chaos is a physical
(not emulated) memristor’s nonlinearity. As a starting point, we know of three
devices that can be modeled by memristors: pn-junction diodes, thermistors, and
discharge tubes. Hence a good approach would be to investigate existing chaotic
circuits based on these devices and check if the underlying memristor nonlinearity
is the cause of chaos.

Lab 5: Capstone Chaos Project(s)

In this final “lab,” we will give some further suggestions for capstone projects. Note
again that most of the exercises above are capstone projects.

1. At the turn of the twenty-first century, an active area of research in chaotic
circuits (systems) is the notion of classifying chaotic attractors into “self-excited”
and “hidden.” We have discussed “self-excited” chaotic attractors: those that
arise due to unstable equilibrium points. Kuznetsov et. al. coined the notion
of “hidden” attractors, so named because they are present in a neighborhood
of stable equilibrium points. An excellent starting point is the survey paper
by Leonov and Kuznetsov [17]. Physically implementing chaotic circuits that
exhibit hidden attractors are tricky because they exist close to stable equilibrium
points, for a good example, see [28].

2. Mathematically investigating chaotic circuits is difficult because one has to be
well-versed in the theory of dynamical systems. But, excellent works abound
online. A good tractable starting point for the curious undergraduate would be
the papers on interval arithmetic by Galias [11].

3. There has been no experimental confirmation of chaos from a physical (Joseph-
son junction, pn-junctions, thermistor, discharge tube) memristor.

4. An energy approach to the study of chaotic systems.
5. Chaotic circuits with time delay, see [27], although a realistic circuit representa-

tion of chaotic time delay systems should probably use distributed components
such as waveguides.

6. We also encourage the reader to look through some of the references in this
chapter for exciting ideas related to chaotic circuits.

7. Further references for projects are [9, 10, 15, 21, 25].
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Appendix A
Installing QUCS

In this appendix, we will discuss how to install QUCS [1]. Note that QUCS has a
lot of components, many of which we will not use. Nevertheless, we will install all
components for completeness.

A.1 Windows

Please install the official Windows QUCS package from the download section in the
QUCS homepage [1].

A.2 OS X

Please install the official OS X QUCS package from the download section in the
QUCS homepage [1].

A.3 Linux

If you are using Linux, make sure you have a reliable internet connection, as we will
be installing from source. If you are on a Linux platform, we will assume that you
are comfortable with basic command line tools such as tar, apt-get, etc. and
have sudo access.

The instructions below are specifically for Ubuntu 14.04 distribution, but they
should be applicable to any of the popular Linux distributions.

© Springer International Publishing AG, part of Springer Nature 2019
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1. The first step is to download the latest QUCS tarball (v0.0.19 as of this writing)
from [1] in your home folder.

2. Extract and unzip the tarball:

1 $ tar xvzf qucs-0.0.19.tar.gz

3. Change into the QUCS directory and go through README.md.
4. You may need to install missing dependencies via the Debian package manager.

In our case, we had to install the following packages:

1 $ sudo apt-get install gperf libxml-libxml-perl libxml2
libxml2-dev libgd-perl octave texlive-math-extra texlive-
science build-essential libqt4-dev libqt4-qt3support qt4-
dev-tools libqt4-opengl-dev octave-epstk automake libtool
gperf flex bison git cmake

5. Next, we need to install ADMS. To do, clone the repository from github into your
root folder, configure and install:

1 $ git clone https://github.com/Qucs/ADMS.git
2 $ export LD_LIBRARY_PATH=/usr/local/lib
3 $ cd ADMS
4 $ sh bootstrap.sh
5 $ ./configure --enable-maintainer-mode
6 $ make
7 $ sudo make install
8 $ sudo ldconfig

6. Configure, make and install QUCS:

1 $ cd ~/qucs-0.0.19/
2 $ ./configure
3 $ make
4 $ sudo make install

Reference

1. QUCS Project: Quite Universal Circuit Simulator. Available online. http://qucs.sourceforge.net
Cited 24 May 2017

http://qucs.sourceforge.net


Solutions

For step-by-step solutions to all problems, please visit online material at: http://
www.youtube.com/user/bharathberkeley/IntroToNonlinearCircuitsAndNetworks.
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A
AC analysis, see Sinusoidal steady-state

analysis
Alternating current (AC), 30
Amplifier

inverting, 100
isolation, 99
noninverting, 126
operational (opamp), 91

Analysis
small-signal (see Small-signal)
cut set, 149–151
modified node (see Modified node

analysis)
nodal (see Nodal analysis)
operating point, 136–141
operating point paradox, 312
sinusoidal steady-state (see Sinusoidal

steady-state analysis)
tableau (see Tableau analysis)
tableau analysis for dynamic circuits,

242–244
Associated reference direction, 8

B
Bilateral resistor, 29
Branch

admittance matrix, 163
current vector, 155
definition, 8
linear equation, 163
nonlinear equation, 170
voltage vector, 157

Buffer (voltage follower), 99

C
Capacitor, 39

charge-controlled, 39
three-terminal, 88
voltage-controlled, 40

Capacitor voltage-inductor current
continuity property, 41

CCCS, see Current-controlled current source
CCVS, see Current-controlled voltage source
CFOA, see Current feedback operational

amplifier
Chaos

attractor, 321
Chua’s circuit, 318
Colpitts oscillator, 344
Muthuswamy-Chua circuit, 335
PWL inductor, 334
resistor-inductor-diode composite, 332

Charge, 2
Chua diode, 317
Circuit

biasing, 138
connected, 8
superposition theorem, 177
theory, 1
Thevenin-Norton theorem, 180
variables, 2

Circulator
ideal three-port, 88

Complex numbers
brief history, 252–254
Euler’s formula, 256
polar form, 255
standard form, 254

Controlled source, see Dependent source
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Current-controlled current source (CCCS), 107
Current-controlled voltage source (CCVS),

104
Current divider, 178
Current feedback operational amplifier

(CFOA), 122
Current transfer ratio, 76

D
DC analysis, see Analysis operating point
Dependent source

description, 74
implementation, 103

Dimensionless variables, 302
Dirac delta (see Unit impulse)
Direct current (DC), 30
Driving point (DP) characteristic

description, 51
negative impedance converter, 111

Duality
capacitor, 210
definition, 208
ideal memristor, 210
inductor, 210
linear example, 26
memristive device, 210
nonlinear example, 208
resistor, 210

Dynamic nonlinear network, 199
Dynamic route, 233

E
Ebers-Moll, 80
Elapsed time formula

first-order, 221
Equilibrium, 215

F
First-order circuits, 213

DC source inspection method, 222

G
Gain-bandwidth product, 148
Gaussian surface, 9
Graph

digraph, 14
element graph, 13
hinged graph, 152

Gyrator
definition, 119

gyration conductance, 119
implementation, 312

H
Hamiltonian

equations of motion, 288
Higher-order element

definition, 48
Duffing oscillator example, 48
Duffing oscillator implementation, 343

I
Impasse point, 236
Impulse response, 214
Incidence matrix, 15, 154
Inductor, 37

current-controlled, 37
flux-controlled, 37
three-terminal, 84

J
Jacobian matrix, 299
Josephson relation, 45
Jump phenomenon, 238

K
Kirchhoff Charge Conservation Law (KqL),

274
Kirchhoff Flux Conservation Law (KφL), 274
Kirchhoff’s current law (KCL)

equivalence, 151
gaussian surface definition, 9
linear independence, 154–156
node definition, 11

Kirchhoff’s voltage law (KVL)
closed node sequence, 13
definition, 11
linear independence, 157–158

L
Lagrangian

equations of motion, 286
gradient definition, 285

Laplace transform
definition, 267
network function, 272

Limit cycle, 301
Linear

resistive circuit, 160
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system, 59
Load line, 139
Loop, definition, 8
Lumped-circuit approximation, 4

M
Maximum power transfer theorem, 195
Memristive device

current-controlled, 46
DC characteristics, 276
discharge tube, 46
doubled-valued Lissajous figure, 277
duality (see Duality:memristive device)
limiting linear characteristics, 277
passivity criterion, 276
small-signal AC characteristics, 281
voltage-controlled, 46

Memristor
definition, 42
duality (see Duality:ideal memristor)
ideal, 46
non-ideal (see Memristive device)

Menductor
Josephson junction, 46

Mesh analysis, 292
Modified Nodal Analysis (MNA), 239–242
Mutator

M − R CFOA realization, 122
definition, 120

N
Negative impedance converter (NIC), 111
Nodal analysis

existence and uniqueness of solutions, 168
linear node equation, 162
node-admittance matrix, 162
nonlinear node equation, 170

Node
admittance matrix, 164
definition, 8

Node-to-ground voltage vector, 157
Normal form, 201
Nullator, 182

O
Opamp (operational amplifier)

current-feedback (see CFOA)
finite-gain, 127
ideal model, 95
input bias current, 94
inverting (see Amplifier

inverting)
linear, 97
μA741, 91
noninverting (see Amplifier

noninverting)
nonlinear, 106
offset current, 96
relaxation oscillator, 234
Schmitt trigger, 109
virtual short circuit model, 98
voltage follower, 98

Order of complexity, 200–207
definition, 200
independent initial condition, 200
theorem, 207

Oscillator
unstable, 300

P
Passive sign convention, see Associated

reference direction
Path, definition, 8
Periodic table of circuit elements, see

Higher-order element
Phase portrait, 300
Phasor, 252

Q
Quiescent (Q)-point, 136

R
Reciprocity

statement 1, 290
statement 2, 290
statement 3, 290

Reduced incidence matrix, 156
Reflector

definition, 118
implementation, 128

Resistor
concave, 31
convex, 32
current-controlled, 28, 29
nonmonotonic, 189
strictly monotonic, 189
strictly passive, 186
voltage-controlled, 29

Rise time
first-order circuit, 224

Rotator
definition, 116
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implementation, 117
scaled, 116

S
Scalor

current, 128
voltage, 115

Sinusoidal steady-state analysis, 252–266
definition, 263
impedance, 264
phasor, 256
phasor diagram, 257
sinusoid, 256

Small-signal
capacitance, 40
conductance, 144
general dynamic circuits, 244–250
inductance, 37
power gain, 145
resistive circuits, 141–148
tableau equation, 250

Source transforms, 197
Stable

first-order, 215
State variable

definition, 201
first-order equilibrium state, 215
first-order initial state, 215

Steady-state
first-order, 216
sinusoidal solution, 263

T
Tableau analysis

algorithm, 171
linear tableau equation, 170, 174
nonlinear tableau equation, 176
number of variables, 171
tableau matrix, 174

Tellegen’s theorem
definition, 158
example, 16
proof, 158

relation to Kirchhoff’s laws, 159
Time constant

first-order, 215
Transconductance, 76
Transformer

ideal, 78
physical, 85

Transient
first-order, 216

Transresistance, 76
Tunnel diode

polynomial, 33
PWL approximation, 33
small-signal analysis, 141

U
Unique solvability, 176
Unit impulse, 226
Unit step function, 226
Unstable

first-order, 217

V
Van der Pol oscillator, 301
Virtual equilibrium

first-order, 217
Voltage-controlled current source (VCCS), 105
Voltage-controlled voltage source (VCVS),

103
Voltage divider, 178
Voltage transfer characteristic, 94
Voltage transfer ratio, 76

W
Well-defined one-port, 180

Z
Zero-input response, 229
Zero-order network, 200
Zero-state response, 229
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