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Abstract In this paper, a stochastic approach, based on queueing networks, is

analyzed in order to model a supply system, whose nodes are working stations. Unfin-

ished goods and control electrical signals arrive, following Poisson processes, at the

nodes. When the working processes at nodes end, according to fixed probabilities,

goods can leave the network or move to other nodes as either parts to process or con-

trol signals. On the other hand, control signals are activated during a random expo-

nentially distributed time and they act on unfinished parts: precisely, with assigned

probabilities, control impulses can move goods between nodes, or destroy them. For

the just described queueing network, the stationary state probabilities are found in

product form. A numerical algorithm allows to study the steady state probabilities,

the mean number of unfinished goods and the stability of the whole network.

Keywords Queueing networks ⋅ Supply systems ⋅ Product–form solution

1 Introduction

A great interest has always been devoted to model industrial processes managed

by supply systems. Such an exigence has become higher due to the necessity of

obtaining safe and fast processes that could avoid, in some way, unwished situations,

such as bottlenecks, dead times, and so on.
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Various mathematical models have been studied for this aim. Several approaches

are continuous and mainly based on differential equations, see for instance [3, 9]. In

these cases, supply chains are characterized by: parts dynamics described by conser-

vation laws; Queues, that are in front of each supplier and are defined by ordinary

differential equations. There are also other models, that focus on individual parts

and deal with exponential queueing networks. A theoretical example is given in [8]

for waiting lines, while various applications for manufacturing systems are in [4,

11], with emphasis on possible numerical approaches in [10]. In this direction, some

variants have been studied, such as the “G-networks” (see [5, 6]), introduced by

Gelenbe, motivated by analogies with neural networks, and interested by the simul-

taneous presence of positive customers, negative customers, signals and triggers.

Positive customers are the common ones, who join a queue for a service, and they

can be destroyed by a negative customer arriving at a non-empty queue. Triggers dis-

place positive customers from a queue to another one, while a signal behaves either

as a negative customer or a trigger. Exhaustive descriptions of G-networks are in

[1, 2], where exact solutions are found in product form.

In this paper, focusing on some G-networks described in [7], we consider a queue-

ing network, that models a supply system, characterized by either parts dynamics

or control electrical signals in the working stations. Unfinished goods and control

impulses, these last ones generated by a Control Station (CS), arrive, following two

different and independent Poisson processes, at each node from outside the network.

Parts are processed one by one at each node, and service times of the unfinished

goods are exponentially distributed. After the working process, a part travels from

a node to another one with fixed probabilities as either a good to process or a con-

trol signal, or leaves the network. The activation time of a control electrical signal is

exponentially distributed. Activated impulses with fixed probabilities either move a

good from the node they are activated to another one or destroy an unfinished good.

For such a queueing network, the stationary state distribution is obtained in product

form, and numerical results, also focusing on the ergodicity condition, are then com-

puted. Notice that the queueing network analysed in this paper is a model of a system

for car engines inside a real Italian company. The main advantage, with respect to

the existing models in the scientific literature, is the extension of the G-networks by

introducing phenomena that usually occur in the real industrial systems.

The paper is structured as follows. Section 2 describes the supply system and its

mathematical formulation. Section 3 contains some numerical results. Conclusions

end the paper in Sect. 4.

2 A Model for Supply Systems

Focus on a supply system, modelled via a queueing network with the following

features:
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∙ Each node represents a working station, that receives raw material flows of either

external type (flows from outside the network) or internal one (flows from nodes

inside the network). Materials are processed one by one at each node, characterized

by an own working frequency and an infinite buffer.

∙ A Control Station (CS) provides each node some electrical control impulses that

rule dynamics for the working stations.

∙ Beside the control signals generated by the CS, each node has a set of non-active

impulses, that have their own frequency action and are activated only if necessary.

In particular, if a node has not goods to process (namely, it is empty), the activation

of a control impulse has no effects, the impulse is disabled and is not activated

anymore.

∙ An unfinished good, once it has been processed in a node i, either leaves the net-

work or moves to another node j. Inside node j, the good can be further manu-

factured, or behave like a control signal. In this last case the unfinished part can

destroy a good, which is inside node j, or move the good itself to another node k.

From a mathematical point of view, the queueing network is identified by the

couple (V , E ), where V ={0, 1, 2,… ,M} and E =
⋃

i∈V , j∈V

{
𝜀ij
}

represent, respec-

tively, the set of nodes and arcs. Precisely, node 0 indicates the external of the net-

work, while node i, i = 1,… ,M, is a generic working station, which belongs to the

queueing network; 𝜀ij is the arc that connects nodes i and j, i ∈ V , j ∈ V .

The queueing network has M working stations with infinite buffers. External

arrival flows are independent Poisson processes. Precisely, the arrival rates of exter-

nal unfinished goods and electrical control impulses, generated by the CS, at node i,
i = 1, ...,M, are, respectively, indicated by A1

0i and A2
0i. Each node i has one server,

hence goods are processed one by one with a frequency b1i . An unfinished good, that

leaves node i, moves to node j, j = 1,… ,M, with: probability 𝛾

1
ij as a part that has to

be processed inside node j; probability 𝛾

2
ij as a control impulse for node j. Finally, the

unfinished part leaves the network with probability 𝛾i0 = 1 −
M∑
j=1

(
𝛾

1
ij + 𝛾

2
ij

)
. Define

the matrices 𝐆𝟏 ∶=
(
𝛾

1
ij

)
and 𝐆𝟐 ∶=

(
𝛾

2
ij

)
. Then, 𝐆 = 𝐆𝟏 +𝐆𝟐 ∶=

(
𝛾

1
ij + 𝛾

2
ij

)
rep-

resents the transition matrix of a Markov chain for the dynamics of parts.

A control impulse is activated at a random instant of time t. An impulse, sent

to node i, works in ]t, t + 𝛥[ with probability b2i (k)𝛥 + o (𝛥), provided that k non-

activated signals are inside node i at the time instant t. When the activation period

ends, a control impulse: with probability 𝜉

1
ij moves a good, that is inside node i, to

node j with the aim of continuing the working process; with probability 𝜉

2
ij moves to

node j an unfinished part, that belongs to node i, and the moved good behaves like

a control impulse inside node j. Finally, 𝜉i0 = 1 −
M∑
j=1

(
𝜉

1
ij + 𝜉

2
ij

)
is the probability

that a control impulse destroys an unfinished part inside node i. When this event

occurs, the control impulse ends its own action and is not activated inside node i
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anymore. Consider now the matrices𝐇𝟏 ∶=
(
𝜉

1
ij

)
and𝐇𝟐 ∶=

(
𝜉

2
ij

)
. Then, the matrix

𝐇 = 𝐇𝟏 +𝐇𝟐 ∶=
(
𝜉

1
ij + 𝜉

2
ij

)
is the transition matrix of a Markov chain, that focuses

on all possible dynamics for control impulses.

2.1 Equilibrium Equations and Stationary Probabilities

The just described system is modelled by a queueing network, represented by a

homogeneous Markov process {Z (t) , t ≥ 0}, with state space:

𝜁 =
{((

x1, y1
)
,

(
x2, y2

)
,… ,

(
xM , yM

))
, xi ≥ 0, yi ≥ 0, i = 1,… ,M

}
.

Notice that the state
((
x1, y1

)
,

(
x2, y2

)
,… ,

(
xM , yM

))
indicates that, for a defined

instant of time, node i, i = 1,… ,M, has xi unfinished goods and yi non-activated

impulses. Define the quantities:

𝐱 ∶=
(
x1, x2,… , xM

)
, 𝐲 ∶=

(
y1, y2,… , yM

)
,

(𝐱, 𝐲) ∶=
((
x1, y1

)
,

(
x2, y2

)
,… ,

(
xM , yM

))
, A1

0 ∶=
M∑

i=1
A1
0i, A2

0 ∶=
M∑

i=1
A2
0i,

and indicate by 𝐞i the vector, whose i−th component is 1 while the other ones are

zero. Assume that 𝜋 (𝐱, 𝐲) is the stationary probability of the state (𝐱, 𝐲), namely the

probability that the queueing network has, for large times, xi unfinished goods and

yi non-activated impulses inside node i, ∀ i = 1,… ,M. If 𝜋 (𝐱, 𝐲) exists, then the

following Chapman-Kolmogorov equations system holds:

𝜋 (𝐱, 𝐲)
(
A1
0 + A2

0 +
M∑

i=1
b1i

(
1 − 𝛾

1
ii

)
u
(
xi
)
+

M∑

i=1
b2i

(
yi
)
)

=
M∑

i=1
𝜋

(
𝐱 − 𝐞i, 𝐲

)
A1
0iu

(
xi
)
+

+
M∑

i=1
𝜋

(
𝐱, 𝐲 − 𝐞i

)
A2
0iu

(
yi
)
+

M∑

i=1
𝜋

(
𝐱 + 𝐞i, 𝐲

)
b1i 𝛾i0u

(
xi + 1

)
+

+
M∑

i=1
𝜋

(
𝐱 + 𝐞i, 𝐲 + 𝐞i

)
b2i

(
yi + 1

)
𝜉i0 +

N∑

i=1
𝜋

(
𝐱, 𝐲 + 𝐞i

)
b2i

(
yi + 1

) (
1 − u

(
xi
))

+

+
M∑

i=1

M∑

j=1, j≠i
𝜋

(
𝐱 + 𝐞i−𝐞j, 𝐲

)
b1i 𝛾

1
ij u

(
xi + 1

)
u
(
xj
)
+
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+
M∑

i=1

M∑

j=1
𝜋

(
𝐱 + 𝐞i, 𝐲 − 𝐞j

)
b1i 𝛾

2
ij u

(
xi + 1

)
u
(
yj
)
+

+
M∑

i=1

M∑

j=1
𝜋

(
𝐱 + 𝐞i−𝐞j, 𝐲 + 𝐞i

)
b2i

(
yi + 1

)
𝜉

1
iju

(
xj
)
+

+
M∑

i=1

M∑

j=1, j≠i
𝜋

(
𝐱 + 𝐞i, 𝐲 + 𝐞i−𝐞j

)
b2i

(
yi + 1

)
𝜉

2
iju

(
yj
)
+

+
M∑

i=1
𝜋

(
𝐱 + 𝐞i, 𝐲

)
b2i

(
yi
)
𝜉

2
ii, (𝐱, 𝐲) ∈ 𝜁, (1)

where b2i (0) = 0 and u (x) is a unit Heavyside function. The system (1), that allows

to get the steady state probability 𝜋 (𝐱, 𝐲), has been obtained considering all transi-

tions from/to the state (𝐱, 𝐲) by balancing incoming and outgoing flows for such state

(similar examples are in [7]).

Now, a general product-form solution for the equations system (1) is provided.

Indicate by A1
i and A2

i the total steady state rates of arrival of goods and control

electrical impulses, respectively, at node i, and define the quantities:

x2i ∶= A2
i + b1i , 𝜌i ∶=

A1
i

x2i
, q2i (j) ∶=

A2
i

b2i (j)
, i = 1,… ,M, j = 1,… ,M;

Remark 1 Notice that 𝜌i is the stationary probability that the queue of the working

station i is busy.

The following traffic equations hold (see [1, 5–7] for further details):

A1
i = A1

0i +
M∑

j=1
𝜌j

(
b1j 𝛾

1
ji + A2

j 𝜉
1
ji

)
, i = 1,… ,M, (2)

A2
i = A2

0i +
M∑

j=1
𝜌j

(
b1j 𝛾

2
ji + A2

j 𝜉
2
ji

)
, i = 1,… ,M. (3)

We get the following theorems (for ideas of the proofs, see [7]):

Theorem 1 (Solution of traffic equations) If matrices 𝐆 and 𝐇 are irriducible, the
solution

{
A1
i ,A

2
i

}
, i = 1,… ,M, to equations (2) and (3) is unique.

Theorem 2 (Product-form solution for stationary probabilities) If matrices 𝐆 and
𝐇 are irreducible and the following conditions hold:
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𝜌i < 1, 𝛿i =
+∞∑

yi=0

yi∏

j=1
q2i (j) < ∞, i = 1,… ,M,

then the Markov process {Z (t) , t ≥ 0} is ergodic and its stationary distribution is
represented in product form as:

𝜋 (𝐱, 𝐲) =
M∏

i=1
𝜋i
(
xi, yi

)
,

𝜋i
(
xi, yi

)
=

(
1 − 𝜌i

)
𝜌

xi
i

𝛿i

yi∏

j=1
q2i (j) , xi ≥ 0, yi ≥ 0, ∀i = 1,… ,M,

and
0∏
j=1

≡ 1.

3 Simulations

In this section, we describe some numerical results for a supply system, depicted in

Fig. 1: there are five nodes (working stations). Each node is interested by external

flows of goods, while only nodes 1 and 2 are characterized by electrical signals sent

by the CS. Following some fixed probabilities, unfinished goods can move from node

i to node i + 1, i = 1, 2, 3, 4; from node 5, parts either leave the system or come back

to node 1. For electrical impulses, the dynamics is the same of the unfinished goods.

Notice that such system describes the different construction steps of car engines in a

real Italian company. For privacy reasons, names and/or details about the real func-

tionalities of each node are avoided.

Fig. 1 Topology of the

supply system
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Assume that:A1
0i = 20 ∀ i = 1,… , 5, b11 = 30, b12 = b15 = 40, b13 = b14 = 35, where

all such quantities are seen as number of parts per minute; A2
01 = A2

02 = 5, A2
03 =

A2
04 = A2

05 = 0; b11 = 30, b12 = b15 = 40, b13 = b14 = 35; b21 = b22 = b23 = b24 = 35, b25 =
30, where such last quantities are intended as number of control signals per minute.

As for matrices 𝐆1
, 𝐇1

, 𝐆2
and 𝐇2

, they have zero elements with the follow-

ing exceptions: 𝐆1 (m,m + 1) = 𝐇1 (m,m + 1) = 𝐆2 (m,m + 1) = 𝐇2 (m,m + 1) =
0.5 ∀ m = 1,… , 4; 𝐆1 (5, 1) = 𝐇1 (5, 1) = 0.2.

Table 1 reports some values of the stationary probabilities for node 2. The choice

of considering such node is due to the fact that it is inside the network and interested

by both external parts and control signals rates. If the number of control impulses

grows, 𝜋2
(
x2, y2

)
decreases. This occurs because controls in nodes determine vari-

ations of the ordinary parts dynamics, in terms either of movements to other nodes

or possible destructions.

In order to analyze the behaviour of stationary probabilities versus the number of

parts, we define the probability 𝜋i
(
xi
)
∶=

+∞∑
yi=0

𝜋i
(
xi, yi

)
that a node i, i = 1,… , 5,

has xi goods. In Table 2, we have some values of 𝜋1 and 𝜋2.

Notice that 𝜋i
(
xi
)

grows when the number of parts decreases and, moreover,

𝜋2
(
x2
)
> 𝜋1

(
x1
)
, indicating that node 2 tends to have more goods than node 1.

Further studies are done by computing the mean number of parts in the network,

defined as:

Np ∶=
+∞∑

xi=0
xi
⎛
⎜
⎜⎝

+∞∑

yj=0
yj𝜋i

(
xi, yj

)⎞⎟
⎟⎠
.

If we depict N versus A1
01 (Fig. 2, left) and versus A2

02 (Fig. 2, right), we get an

idea of the ergodicity condition of the network process.

In particular, if the network is simulated with:

Table 1 Values of 𝜋2
(
x2, y2

)
for different values of x2 (columns) and y2 (rows)

x2∖y2 1 2 3
1 0.0606621 0.0327992 0.01773410
2 0.0349247 0.0188833 0.01021000
3 0.0201070 0.0108716 0.00587813

Table 2 𝜋i for node i (columns), i = 1, 2, assuming xj unfinished goods (rows), j = 1, 2, 3
i∖xj 1 2 3
1 0.162585 0.129363 0.1029290
2 0.244266 0.140630 0.0809641
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N
p

Fig. 2 Np versus A1
01 (left) and A2

02 (right)

∙ A1
01 variable and other parameters equal to the ones used before, node 1 becomes

instable when A1
01 ≃ 27, leading to the instability of the whole network;

∙ A2
02 variable and other parameters equal to the ones used before, the network

process is not ergodic anymore if A2
02 ≥ 21.

Similar phenomena occur by analyzing the behaviour of Np vs A1
02 and versus A2

01.

4 Conclusions

In this paper, a queueing network, that models a real supply chain to assemble car

engines, is described. For such a system, steady state probabilities have been com-

puted in product form. Numerical tests have established that the control signals inside

each node influence deeply the dynamics of the overall network.

Future work activities aim at applying the proposed model to scenarios, that

involve other real supply systems in different contexts. In this direction, obvious

modifications of the mathematical background foresee a fuzzy logic approach in

order to obtain a robust optimization for the performances of the supply systems.
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