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Abstract Computer Vision Algorithms (CVA) are widely used in several applica-

tions ranging from security to industrial processes monitoring. In recent years, an

interesting emerging application of CVAs is related to the automatic defect detec-

tion in some production processes for which quality control is typically performed

manually, thus increasing speed and reducing the risk for the operators. The main

drawback of using CVAs is represented by their dependence on numerous parame-

ters, making the tuning to obtain the best performance of the CVAs a difficult and

extremely time-consuming activity. In addition, the performance evaluation of a spe-

cific parameter setting is obtained through the application of the CVA to a test set

of images thus requiring a long computing time. Therefore, the problem falls into

the category of expensive Black-Box functions optimization. We describe a simple

approximate optimization approach to define the best parameter setting for a CVA

used to determine defects in a real-life industrial process. The algorithm computa-

tionally proved to obtain good selections of parameters in relatively short computing

times when compared to the manually determined parameter values.
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1 Introduction

The calibration of computer vision algorithms (CVAs) is a time consuming and crit-

ical step in the effective use of CVAs in many applications, such as the automated

defect detection of pieces produced by an industrial plant. In this case, the final qual-

ity control check at the end of the production chain consists in the optical scan of the

produced pieces by a set of several CVAs. Each of them is designed to detect a spe-

cific type of defect and its behavior is controlled by a large set of parameters, which

influence the CVA sensibility and accuracy and must be determined to maximize its

detection efficacy on specific types of images. For a general overview of automated

defect detection see [7] (see also [5] for an example in the textile industry).

More precisely, given a set of images, the efficacy of the error detection is mea-

sured as a function of the positive and negative false ratios produced by the CVA

with a specific parameter set. As in many other applications parameter tuning of the

CVAs is, therefore, a crucial component for the overall efficacy of the system. To

the best of our knowledge, no optimization method has been developed so far for

parameter tuning in defect detection.

In the context of CVAs, the computation of the efficacy requires the application

of the CVA to a training set of test images. This is typically a very time-consuming

operation requiring several seconds per image, hence minutes or even hours for a

significant training set. Therefore, approaches based on black-box function optimiza-

tion (see, e.g., [2, 3]) must be used in this case. To this end, we developed a simple

Sequential Approximate Optimization (SAO) algorithm (see, e.g., [4]) to identify

the optimal parameter values for a CVA used to detect a specific error on the images.

During the optimization process, the solutions iteratively found by the algorithm are

evaluated by executing the target CVA on the training set of images. The comparison

between the CVA outputs obtained on the images and their real defectiveness state

produce the true/false positive index ratio for the solutions tested. Our goal is the

determination of the optimal input parameter combination for the CVA, leading to

the best possible false positive and negative ratios for each particular type of defect.

In Sect. 2 we describe in detail the characteristic of the problem under study. In

Sect. 3 the structure of the proposed algorithm is given and in Sect. 4 we present the

results of an experimental validation of the algorithm on data coming from a specific

real-world application.

2 Problem Definition

The calibration of the parameters of a CVA is an optimization problem which can

be described as follows. The variables to be optimized are the input parameters of

the CVA which are assumed here to be continuous and associated with a lower and

an upper bound) for their variation. The performance of the CVA is measured in

terms of two independent indicators, namely the number of false-negative and false-

positive in the solution, to be defined later.
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More precisely, we have a CVA whose behavior depends on a subset I of para-

meters whose value has to be determined. For each parameter i ∈ I we are given a

lower and upper bounds li and ui, respectively. For each parameter i ∈ I let xi be the

decision variable which represents its value. Given solution x⃗ we can evaluate its

quality by measuring the performance of the CVA on a training set S of images. To

this end, let fp(x⃗) be the number of false-positives returned by the CVA when applied

to the set S with parameters x⃗, defined as the number of non-defective images which

are classified as defective by the CVA. Similarly, let fn(x⃗) be the number of false-

negatives returned by the CVA, defined as the number of defective images which are

classified as non-defective by the CVA. Finally, let 𝛼p and 𝛼n be two nonnegative

weights associated with the two performance measures. The CVA Parameter Tuning

Problem (CVAPTP) can be formulated as follows

(CVAPTP) z = minF(x⃗) = {𝛼pfp(x⃗) + 𝛼nfn(x⃗)}, s.t. li ≤ xi ≤ ui ∀i ∈ I. (1)

3 A Sequential Approximate Optimization Algorithm

The Black Box Optimization (BBO) nature of the problem requires the use of an

inference intelligence able to predict the objective function value of an unsampled

solution to guide the search process. In the literature, such representation of the BB

function it is referred to as the Surrogate Model (SM, see [8]) for which a large

number of types and formulations were proposed.

As frequently done in the recent literature the SM is used within a Sequen-

tial Approximate Optimization (SAO) algorithm that iteratively updates the SM

by adding the solution points that are determined at each iteration. This sequen-

tial approach preserves a certain simplicity but provides some important advantages.

First, the rebuilding of the SM in order to capture the incoming information improves

its reliability at each iteration. Second, it guarantees to perform a global optimiza-

tion over the entire solutions domain, by reducing the possibility to being trapped

into local optima. The general scheme of the simple SAO algorithm we adopted is

depicted in Fig. 1.

The algorithm starts with the identification of the initial sample of solution points,

used to initialize the SM. Then, for each sample point, the corresponding value of the

objective function F(x⃗) in (1) is computed by applying the parameter values asso-

ciated with the point to the CVA over the entire images test set. The incumbent

solution is defined as the best solution found so far, hence it initially corresponds to

the best sample. The SM is built from the current set of points (x⃗,F(x⃗)) and used to

determine the next candidate solution. After this, the SM is interrogated in order to

search for the best candidate solution possibly improving the incumbent. This phase

is generally called adaptive sampling criteria. The process is iterated until termina-

tion criteria based on solution quality and running time are met.
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Fig. 1 Outline of the

sequential approximate

optimization algorithm

As to the type of SM used, in this work due to the BBO nature of the problem

we adopted a specific type of the so called Meshfree methods, named Radial Basis

Function (RBF) interpolation techniques. These are relatively easy to construct and

are widely used to approximate Black Box function responses. In RBF interpolation

the model, s(x⃗), is defined as the sum of a given number K of radial functions 𝜙:

s(x⃗) =
K∑

J=1
𝛾j𝜙(‖x⃗ − ⃗x̄j‖) (2)

where x⃗j, j = 1, ⋅,K, is the set of sampled solution points representing the centers

of the radial functions 𝜙(), 𝛾 is a vector of weights to be determined, and x⃗ is the

unsampled point whose value has to be predicted. Regarding the radial functions 𝜙,

several type are available in literature, varying from parametrized to not parametrized

ones. In our case, the best trade off between a simple construction of the SM and

an acceptable reliability resulted with the use cubic basis function, that assume the

form:

𝜙(‖x⃗ − x⃗j‖) = ‖x⃗ − x⃗j‖3 (3)
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We refer the reader to [1] for an overview of Meshfree methods, and to [6] for an

example of industrial use of cubic RBF.

As to the initial sample generation through which initialize the SM, several tech-

niques exists in literature, typically referred to as Design of Experiment (DoE). Since

in our problem the parameters xj are not subject to other constraints besides the upper

and lower bounds, classical DoE as the Factorial Design are suitable. In particular,

a Full Factorial Design (FFD) permit to cover the entire domain space, selecting all

the points of the grid generated by the discretization of each design variable (i.e., the

parameters in our problem). This methodology is appropriate with the cubic RBF

interpolation since it guarantees a sufficient reliability only inside the convex hull of

the sampled points. However, in our case the computation of F(x⃗) is extremely time-

consuming and using grids in which the parameter’s values are discretized is not

practically possible. For this reason, we decided to initialize our algorithm through

a |I|2 FFD, using just the domain vertices obtained with the lower and upper bounds

of the parameters to be optimized. To improve the initial sample quality we also

considered an initialization in which H additional random points selected inside the

domain hypercube are considered. The adaptive sampling strategy that we adopt to

perform the search of the candidate solution on the SM is the minimization of its pre-

dictor s(x⃗). To avoid to being trapped in a local minimum and perform an efficient

search over all the domain, we implement a multi-start gradient descent algorithm

and run it by using a discrete grid of starting points.

Finally, we terminate the algorithm after a maximum number of objective func-

tion evaluations or after a given number of non-improving iterations.

4 Experimental Validation

We applied our algorithm to the tuning of a CVA used to detect a specific type of

defects on tyre images obtained in a real-world production environment. The training

set is made up of 160 images for which the presence or absence of defects is known.

Six parameters were selected as the target for the optimization. Each such parameter

has a maximum and minimum value and a default value manually determined by

the CVA designers. The behavior of the CVA with the default parameter values is

used here as a benchmark reference to evaluate the performance of the optimized

parameters set.

We tested the impact of three variants for the initialization step, leading to three

different overall algorithms A1,A2, and A3. In A1 we used H1 = 100 random points

to initialize the algorithm. In A2 the sample set is constituted by the 26 points of

the simple FFD described in Sect. 3. Finally, in A3, we added to the FFD set H3 =
36 random internal points. The overall algorithm is run for a total of 200 objective

function evaluations (including those for the initialization step). The gradient descent

search for the candidate solution is performed from a 96 discrete grid fo points.
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Fig. 2 Evolution of the proposed algorithms with weight combination (1,5) in comparison with

the manual tuning

Fig. 3 Evolution of the proposed algorithms with weight combination (1,10) in comparison with

the manual tuning

To account for possible different relative importance of false positives and false

negatives in the defect detection, we considered two different pairs of weights in the

objective function (1). Namely, we considered (𝛼p, 𝛼n) = {(1, 5), (1, 10)}.

The results for the three algorithms are illustrated in Figs. 2 and 3 for the (1,5)

and (1,10) weight combinations, respectively. The figures report the evolution of the

objective function for each algorithm compared with the benchmark reference equal

to 42 for both weight combinations. By observing the figures it clearly appears that

all proposed algorithms generate better parameter combinations with respect to the

manual ones. In particular, for the (1,5) case A1,A2 and A3 produce solutions with

value 29, 29 and 27, respectively, which are 31% and 36% better that then manual

ones. For the (1,10) case, they find a solution with value 38, 40 and 32, which are
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10%, 5%, and 24% better, respectively. In general, we can observe that the mixed

initialization of A3 provides better final results but the simple FFD of A2 improves

quite rapidly and may constitute a good alternative when less time is available.
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