
Ant Colony Optimization Algorithm
for Pickup and Delivery Problem
with Time Windows

M. Noumbissi Tchoupo, A. Yalaoui, L. Amodeo, F. Yalaoui
and F. Lutz

Abstract This paper presents an efficient meta-heuristic for the Pickup and Deliv-

ery Problem with Time Windows (PDPTW) based on Ant Colony Optimization cou-

pled to dedicated local search algorithms. The objective function is the minimiza-

tion of the number of vehicles and the minimization of the total distance travelled. In

PDPTW, the demands are coupled and every couple is a request which must be sat-

isfy in the same route. Thus, the feasible solution space is tightly constraint and then

makes the design of effective heuristics more difficult. Experimental results on 56

instances of 100 customers of Li and Lim’s benchmark show that the ACO coupled

with PDPTW dedicated local search algorithms outperform existing algorithms. It

returns in 98.2% (55/56) of cases a solution better or equal to the best known solution,

and find a better solution than the best know in 44.6% (25/56).

1 Introduction

The Pickup and Delivery Problem with Time Windows (PDPTW) can be described

as the design of a least cost routing plan to satisfy a set of transportation requests

by a given identical vehicle fleet. Each request consists of delivering goods from

a predefined location (pickup customer) to another one (delivery customer). In this

M.N. Tchoupo (✉) ⋅ A. Yalaoui (✉) ⋅ L. Amodeo (✉) ⋅ F. Yalaoui (✉)

University of Technology of Troyes, LOSI ICD UMR, CNRS, 6281 Troyes, France

e-mail: moise.noumbissitchoupo@utt.fr

A. Yalaoui

e-mail: alice.yalaoui@utt.fr

L. Amodeo

e-mail: lionel.amodeo@utt.fr

F. Yalaoui

e-mail: farouk.yalaoui@utt.fr

F. Lutz

Hospital of Troyes, 101 Av. Anatole France, Troyes, France

e-mail: frederic.lutz@hcs-sante.fr

© Springer International Publishing AG 2017

A. Sforza and C. Sterle (eds.), Optimization and Decision Science: Methodologies
and Applications, Springer Proceedings in Mathematics & Statistics 217,

DOI 10.1007/978-3-319-67308-0_19

181

182 M.N. Tchoupo et al.

problem, the routing plan is designed such that all vehicles start and end at the depot.

The amount of goods must not exceed the vehicle’s capacity. Each customer must be

serviced within a given time windows. The service time indicates how long it will

take for the pickup or delivery to be performed. For each request, the corresponding

pickup customer must be visited before the corresponding delivery customer by the

same vehicle and in the same route but not necessary immediately after. A vehicle

is allowed to arrive at a location before the beginning of its time windows, and in

this case must wait until the start of the time window. The problem is NP-hard as

it contains the Travelling Salesman Problem with Time Windows (TSPTW) (See

Dumas et al. [3]).

Numerous study have been done in PDPTW with the objective to minimize the

number of vehicle (primary objective) and the total travelled distance (secondary

objective). A simulated annealing with tabu search was proposed by Li and Lim

[5] to solve PDPTW. Bent and Van Hentenryck [2] proposed a two-stage hybrid

algorithm for PDPTW, where in the first stage the number of vehicles is decrease,

while in the second stage the total travel cost is minimized by a Large Neighbour-

hood Search algorithm (LNS). An adaptive large neighbourhood search heuristic was

proposed by Ropke and Pisinger [9]. Nagata and Kobayashi [6] successfully applied

a Guided Ejection Search Algorithm to PDPTW. Nalepa et al. [7] proposed a par-

allel guided ejection search algorithm to solve PDPTW. In their approach, parallel

processes co-operate periodically to enhance the quality of results and to accelerate

the convergence of computations.

Tchoupo et al. [11] developed a Bender’s decomposition algorithm for PDPTW

with heterogeneous fleet (HVRPPDTW) to minimize the hierarchical objective. In

the homogeneous case, their proposed approach was able to solve optimally instances

up to 100 demands in reasonable computational time. To our knowledge, this method

is the only exact algorithm for the PDPTW with hierarchical objective. For a survey

on pickup and delivery problems see [8].

In the state of the art, there are not effective constructive heuristic to solve

PDPTW. Indeed, the studies used iterative methods based on insertion and remove

of requests. The greatest challenge in a constructive method is to find fast heuris-

tics to choose the next demand to satisfy and verify there exists a path to achieve

all delivery demands in current vehicle, whose corresponding pickup demands are

not yet satisfied. Finding a feasible path to serve a given set of delivery demands

is equivalent to solve a Hamiltonian path problem (NP-complete). This issue had

been previously identified by Dumas et al. in [3] when they proposed a labelling

algorithm for the Elementary Shortest Path Problem with Time Windows, Capacity,

and Pickup and Delivery (ESPPTWCPD). In a proposed labelling algorithm, they

proposed to consider only the subsets of deliveries of cardinality one and two.

The model proposed by Goss et al. [4] to explain the foraging behaviour of ants

was the main source of inspiration for the development of ant colony optimization.

The ACO was applied successfully to solve Vehicle Routing Problem as done by

Belmecheri et al. [1] to solve the Vehicle Routing Problem with Heterogeneous fleet,

Mixed Backhauls, and Time Windows.

Ant Colony Optimization Algorithm for Pickup and Delivery Problem . . . 183

To our knowledge, the proposed algorithm based on ACO algorithm coupled with

local search algorithms depicted in this paper is the first effective constructive algo-

rithm for the addressed problem in this study.

The remainder of the paper is organized as follow. Section 2 proposes a mixed

integer linear program for the PDPTW problem. Section 3 describes the ACO, with

the pheromone initialization, their updating and the computation of the visibility.

Section 4 presents three local search algorithms. The setting of parameters and the

experimental results are reported in Sect. 5.

2 Mathematical Model

This section presents a new mixed integer linear program to model the addressed

problem. It is based on the model proposed by [11] for the PDPTW with hetero-

geneous fleet. We note N the set of 2n customers, node 0 represents depot (origin

and destination) and V = N ∪ {0} the set of 2n + 1 nodes. P = {1,⋯ , n} is the set

of pickup demands, the set of n delivery demands is noted D = {n + 1,⋯ , 2n}, K
is the set of m identical vehicles with a capacity of Q items. A is the set of arcs, 𝛿

is the fixed cost of using a vehicle, dij represents the distance between the vertices i
and j, tij is the time between the location of vertices i and j, si represents the service

time required by the node i, |qi| is the amount of goods to pickup or delivery, ei the

earlier time at which the service may begin at node i and li the latest time at which

the service may begin at node i. We assume that:

∀i ∈ P, qi > 0 and qn+i = −qi and (i, j) ∈ A ⟺ ei + si + tij ≤ lj.

The problem is formulated as a mixed integer linear program (MILP). For each

arc (i, j) ∈ A and each vehicle k ∈ K, let xkij be a binary variable equals to 1 if the

vehicle k travels from location of demand i to location of demand j, and 0 otherwise.

For each node i ∈ N, and each vehicle k ∈ K, letBk
i the time at which vehicle k begins

the service at node i. Qk
ij is the load of vehicle k on the arc (i, j). The formulation is

the following:

Min
∑

i∈P
𝛿xk0i +

∑

k∈K

∑

i∈N

∑

j∈N
dijxkij (1)

∑

(i,j)∈A

∑

k∈K
xkij = 1, ∀i ∈ P; (2)

∑

j|(i,j)∈A
xkij =

∑

j|(n+i,j)∈A
xkn+i,j, ∀(i, k) ∈ P × K; (3)

∑

i∈P
xk0i ≤ 1, ∀k ∈ K; (4)

184 M.N. Tchoupo et al.

∑

i∈P
xk0i =

∑

i∈D
xki0, ∀k ∈ K; (5)

∑

j|(i,j)∈A
xkij =

∑

j|(j,i)∈A
xkji, ∀(i, k) ∈ P ∪ D × K; (6)

∑

j|(i,j)∈A
xkij =

∑

i∈P
xk0i, ∀(i, k) ∈ P ∪ D × K; (7)

∑

j|(i,j)∈A

∑

k∈K
Qk

ij +
∑

j|(j,i)∈A

∑

k∈K
Qk

ji = qi, ∀i ∈ P; (8)

∑

i∈P

∑

k∈K
Qk

0i +
∑

i∈D

∑

k∈K
Qk

i0 = 0; (9)

Qk
ij ≤ Q × xkij, ∀(i, j) ∈ A, ∀k ∈ K; (10)

Bk
i − li + (li + si + tij)xkij ≤ Bk

j , ∀(i, j) ∈ A, ∀k ∈ K; (11)

ei
∑

j|(i,j)∈A
xkij ≤ Bk

i ≤ li
∑

j|(i,j)∈A
xkij, ∀(i, k) ∈ N × K; (12)

Bk
i + (si + ti,n+i) ×

∑

j∈N
xkij ≤ Bk

n+i, ∀(i, k) ∈ P × K; (13)

xkij ∈ {0, 1}, Qk
ij ≥ 0, Bk

i ≥ 0, ∀(i, j) ∈ A, ∀k ∈ K. (14)

The objective function (1) minimizes the number of vehicles used and the total dis-

tance travelled. Constraints (2) and (3) ensure that each pickup demand is served

exactly once and the corresponding delivery demand is served by the same vehicle

in the same route. Constraints (4) and (7) guarantee that the route of each vehicle

starts and ends at the depot. The respect of the time windows and the capacity of

vehicle is ensured by constraints (8) to (12). Constraint (13) assures that every deliv-

ery demand is satisfied after the corresponding pickup demand but not necessary

immediately after the pickup point.

3 Ant Colony Optimization (ACO)

In this study, we apply a variant of ACO called Ant Colony System (ACS), character-

ized by introduction of a local pheromone update. Ant colony optimization is chosen

because it is a constructive method which does not require reparation procedure.

Ant Colony Optimization Algorithm for Pickup and Delivery Problem . . . 185

3.1 Construction of Solution

A solution is composed of a set of routes and each route is realized by one vehicle. An

ant constructs the routes of a solution sequentially. Ant keeps inserting demands in

the current route as long as the are non-satisfied demands that respect the constraints

(capacity, times windows and paring). If in a partial solution there still are non-visited

nodes but none of them can be inserted in the route being built, the ant close the

current route and start a new one. Let 𝜌 a partial solution formed by r − 1 complete

routes and a rth route in construction. Let i the last demand completed in route r, Qr
the load of the vehicle after satisfied demand i and  the set of unsatisfied delivery

demands such that their corresponding pickup demands has been served. A demand

j is eligible to be satisfy if it didn’t have been completed yet and if one of these

conditions is satisfied:

1. 0 < j ≤ n and there exists a path to satisfied all demands in  ∪ {n + j}
2. n < j ≤ 2n ∧ j − n ∈ r and there exists a path to satisfied all demands in  ⧵ {j}

An eligible demand j to be inserted in the partial solution 𝜌 is chosen randomly using

probability:

P𝜌

ij =
(𝜏ij)𝛼(𝜂

𝜌

ij)
𝛽

∑
d∈S𝜌i

(𝜏ij)𝛼(𝜂
𝜌

ij)𝛽
if j ∈ S𝜌i , and 0 otherwise. (15)

P𝜌

ij represents the probability to choose a demand j to complete from the current

demand i. 𝜏ij denotes the trail of pheromone on arc (i, j). S𝜌i is the set of eligible

demands that we can performed after demand i. The parameters 𝛼 et 𝛽 modulate the

importance between the visibility and the pheromone. 𝜂
𝜌

ij is the visibility value used

to guide ant.

𝜂

𝜌

ij =
𝛼1|S

𝜌∪{j}
j |

dij
(16)

with 𝛼1 ∈]0, 1] a fixed scalar.

Given a partial solution 𝜌, ending by satisfying demand i, the eligibility of a

demand j is obtained by finding a feasible path in a graph. Indeed, it shall be demon-

strate that after performed demand j, there exists a feasible path to satisfy all unsatis-

fied delivery demands whose corresponding pickup demands were satisfied in route

being built in 𝜌. This problem is a Hamiltonian path problem, which is NP-complete

and to solve it, an insertion heuristic Algorithm 1 is proposed.

3.2 Pheromone Updating

At the beginning of ACS, pheromones are initialized by:

186 M.N. Tchoupo et al.

Algorithm 1 Insertion heuristic for Hamiltonian path problem

1: Inputs:  (a set of demand to satisfy),ItMax1 (a number of iterations), i (the current demand)

and t (the time at the end of service of demand i)
2: while number of iterations < ItMax1 and no feasible path which satisfy all demands in  is

found do
3:  ′

= 

4: Initialize a route r beginning at node i at the time t
5: while  ′

in not empty do
6: Choose a random delivery d ∈  ′

, remove d in  ′
, and try to insert it in r at the best

position.

7: if d is not inserted in r then
8: Go back to step 3.

9: end if
10: end while
11: end while

𝜏ij = 𝜏0 if (i, j) ∈ A, and 0 otherwise. (17)

with 𝜏0 a fixed scalar. As we mentioned, ACS has two types of pheromone update:

∙ local updating : 𝜏ij = 𝜖1𝜏ij + 𝜏0,

used to diversify the search in a given iteration.

∙ global updating used:

𝜏ij = 𝜖2𝜏ij + (1 − 𝜖2)Δ∗
ij if (i, j) belong in the best ant, and 𝜖2𝜏ij otherwise. (18)

with Δ∗
ij =

(number of demands in r∗i)
𝛼2

total distance travelled on r∗i
, r∗i the route which contain the demand i,

𝜖1, 𝜖2 ∈]0,1[fixed and 𝛼2 a positive fixed scalar.

4 Local Search Algorithm

This section describes three local search algorithms used in this work. Each local

search is dedicated to specific feature of the objective function of PDPTW.

Heuristic H1 is inspired from the two-stage method used in [6]. For a given solu-

tion, H1 is used to decrease the number of vehicles. For a each route in the solution,

H1 removes a route from it, and try to insert all its requests in the remaining routes

of the solution. The order of insertion is the order of completion in the delete route.

Every request is inserted in the route and in the positions (pickup and delivery posi-

tions) that minimize the total distance travelled. If finally, all the request presents in

the deleted route are inserted, the solution is updated.

Ant Colony Optimization Algorithm for Pickup and Delivery Problem . . . 187

The second heuristic H2 is proposed to reduce distance travelled for a given route.

The idea is to generate randomly (uniform distribution) an insertion order of pickup

demand. And inserted at the best position the requests in this order.

The third local search H3 is proposed to minimize total distance travelled for a

given solution. At each iteration, a route r and a demand d (in r) are chosen randomly.

The corresponding couple of pickup and delivery demands for d is remove from the

solution and reinserted in the route and at the position whom minimise total cost. H3

is inspired from a part of LNS algorithm developed by S. Ropke in [8]. The pseudo

code of hybrid ACS used is given by Algorithm 2.

Algorithm 2 Pseudo code of hybrid ACS

Initialization of parameters

while the best solution is not improved in ItMax iterations do
for each ant of the population do

Construct a solution to complete all demands

while we can remove a route do
Apply respectively algorithms: H2, H1 and H3

end while
if the current solution have the same number of vehicles as the best solution found then
while we decrease the total distance travelled do

Apply respectively algorithms: H2 and H3

end while
end if
Apply the local updating pheromone

end for
Apply the global updating pheromone

end while

In the algorithm, the order H2, H1 and then H3 is used to first optimize each route,

and then try to decrease the vehicles number and finally, minimize the total distance

travelled.

5 Computational Results

The proposed approach has been implemented on eclipse, the programming language

was C++ and the experiments have been carried on a 1.5 GHz and 3.3 GB of RAM.

Standard Li et Lim’s benchmark [9] is chosen to evaluate the performance of our

approach. For experiments, we keep the same value 𝜖 = 0.9 proposed by Belmecheri

et al. [2]. A sensibility analysis is made in order to fix the following parameters:

Number of ants ∈ { n
2
,

2n
5

n
3
}, 𝛼 ∈ {2, 3, 4}, 𝛽 ∈ {1, 2}, 𝛼1 ∈ {0.1, 0.2, 0.5, 1}, 𝛼2 ∈

{2, 3, 5, 10}, 𝜏0 ∈ {0.01, 1, 10}, ItMax1 ∈ {5, 10, 20} and Itmax2 ∈ {n, 2n, 3n}. We

obtain with this analysis that the best values are : Number of ants = 2n
5

, 𝛼 = 3, 𝛽 = 1,

𝛼1 = 0.2, 𝛼2 = 5, 𝜏0 = 1, ItMax1 = 10, Itmax2 = 2n. The algorithm stops when the

best solution is not improved after 100 iterations.

188 M.N. Tchoupo et al.

Ta
bl
e
1

E
x
p
e
r
im

e
n
ts

o
f

A
C

O
a
lg

o
r
it

h
m

B
e
s
t

k
n
o
w

n
s
o
lu

ti
o
n

H
y
b
r
id

A
C

S
B

e
s
t

k
n
o
w

n
s
o
lu

ti
o
n

H
y
b
r
id

A
C

S

I
n
s
ta

n
c
e

N
V

T
D

R
E

F
N

V
T

D
C

P
U

I
n
s
ta

n
c
e

N
V

T
D

R
E

F
N

V
T

D
C

P
U

lc
1
0
1
∗

1
0

8
2
8
,9

4
[
1
1

]
1
0

8
2
8
,9

4
8
6

lr
1
1
2

9
1
0
0
3
,7

7
[
5

]
9

10
02
,3
8

1
6
7

lc
1
0
2

1
0

8
2
8
,9

4
[
5
]

1
0

8
2
8
,9

4
1
0
3

lr
2
0
1

4
1
2
5
3
,2

3
[
9

]
4

1
2
5
3
,2

3
2
0
7

lc
1
0
3

9
1
0
3
5
,3

5
[
2
]

9
96
8,
92

9
6

lr
2
0
2

3
1
1
9
7
,6

7
[
5

]
3

1
1
9
7
,6

7
4
5
5

lc
1
0
4

9
8
6
0
,0

1
[
9
]

9
8
6
0
,0

1
1
5
6

lr
2
0
3

3
9
4
9
,4

[
5

]
3

9
4
9
,4

5
5
6

lc
1
0
5

1
0

8
2
8
,9

4
[
5
]

1
0

8
2
8
,9

4
3
7

lr
2
0
4

3
8
4
9
,0

5
[
5

]
3

84
7,
83

9
0
6

lc
1
0
6

1
0

8
2
8
,9

4
[
5
]

1
0

8
2
8
,9

4
4
3

lr
2
0
5

3
1
0
5
4
,0

2
[
5

]
3

10
53
,9
8

1
3
4

lc
1
0
7

1
0

8
2
8
,9

4
[
5
]

1
0

8
2
8
,9

4
3
9

lr
2
0
6

3
9
3
1
,6

3
[
5

]
3

9
3
1
,6

3
6
4
1

lc
1
0
8

1
0

8
2
6
,4

4
[
5
]

1
0

8
2
6
,4

4
4
9

lr
2
0
7

2
9
0
3
,0

6
[
5

]
2

90
2,
24

4
3
4

lc
1
0
9

9
1
0
0
0
,6

0
[
2
]

1
0

8
2
7
,8

2
9
6

lr
2
0
8

2
7
3
4
,8

5
[
5

]
2

73
4,
09

1
5
5
5

lc
2
0
1
∗

3
5
9
1
,5

6
[
1
1

]
3

5
9
1
,5

6
4
9

lr
2
0
9

3
9
3
0
,5

9
[
9

]
3

9
3
0
,5

9
2
3
4

lc
2
0
2
∗

3
5
9
1
,5

6
[
1
1

]
3

5
9
1
,5

6
2
6
0

lr
2
1
0

3
9
6
4
,2

2
[
5

]
3

9
6
4
,2

2
3
7
5

lc
2
0
3

3
5
9
1
,1

7
[
9
]

3
5
9
1
,1

7
1
9
0

lr
2
1
1

2
9
1
1
,5

2
[
9

]
2

90
3,
76

1
5
2
5

lc
2
0
4

3
5
9
0
,6

[
9
]

3
59
0,
39

6
3
4

lr
c
1
0
1

1
4

1
7
0
8
,8

[
5

]
1
4

1
7
0
8
,7

7
9
8

(
c
o
n
ti

n
u
e
d
)

Ant Colony Optimization Algorithm for Pickup and Delivery Problem . . . 189

Ta
bl
e
1

(
c
o
n
ti

n
u
e
d
)

B
e
s
t

k
n
o
w

n
s
o
lu

ti
o
n

H
y
b
r
id

A
C

S
B

e
s
t

k
n
o
w

n
s
o
lu

ti
o
n

H
y
b
r
id

A
C

S

lc
2
0
5
∗

3
5
8
8
,8

8
[
1
1

]
3

5
8
8
,8

8
7
7

lr
c
1
0
2

1
2

1
5
5
8
,0

7
[
9

]
12

15
56
,8
2

4
9

lc
2
0
6

3
5
8
8
,4

9
[
5
]

3
5
8
8
,4

9
1
4
4

lr
c
1
0
3

1
1

1
2
5
8
,7

4
[
5

]
11

12
56
,0
6

5
7

lc
2
0
7

3
5
8
8
,2

9
[
5
]

3
5
8
8
,2

9
1
0
2

lr
c
1
0
4

1
0

1
1
2
8
,4

0
[
5

]
10

11
26
,2
3

9
8

lc
2
0
8

3
5
8
8
,3

2
[
5
]

3
5
8
8
,3

2
1
0
8

lr
c
1
0
5

1
3

1
6
3
7
,6

2
[
5

]
13

16
33
,5
6

5
2

lr
1
0
1

1
9

1
6
5
0
,8

0
[
5
]

1
9

1
6
5
0
,8

3
1

lr
c
1
0
6

1
1

1
4
2
4
,7

3
[
9

]
1
1

1
4
2
4
,7

3
2
1
0

lr
1
0
2

1
7

1
4
8
7
,5

7
[
5
]

17
14
87
,4
9

5
4

lr
c
1
0
7

1
1

1
2
3
0
,1

4
[
9

]
11

12
25
,6
8

5
8

lr
1
0
3

1
3

1
2
9
2
,6

8
[
5
]

13
12
84
,9
3

6
1

lr
c
1
0
8

1
0

1
1
4
7
,4

3
[
9

]
1
0

1
1
4
7
,9

6
7
0

lr
1
0
4

9
1
0
1
3
,3

9
[
5
]

9
99
9,
27

8
7

lr
c
2
0
1

4
1
4
0
6
,9

4
[
9

]
4

13
96
,8
8

1
9
5

lr
1
0
5

1
4

1
3
7
7
,1

1
[
5
]

1
4

1
3
7
7
,1

1
3
1

lr
c
2
0
2

3
1
3
7
4
,2

7
[
5

]
3

13
61
,2
4

1
5
3

lr
1
0
6

1
2

1
2
5
2
,6

2
[
5
]

12
12
48
,9
3

3
7

lr
c
2
0
3

3
1
0
8
9
,0

7
[
5

]
3

1
0
8
9
,0

7
3
5
0

lr
1
0
7

1
0

1
1
1
1
,3

1
[
5
]

10
11
01
,8
9

5
9

lr
c
2
0
4

3
8
1
8
,6

6
[
9

]
3

8
1
8
,6

6
8
8
5

lr
1
0
8

9
9
6
8
,9

7
[
5
]

9
96
6,
30

5
9

lr
c
2
0
5

4
1
3
0
2
,2

0
[
5

]
4

1
3
0
2
,2

0
2
7
4

lr
1
0
9

1
1

1
2
0
8
,9

6
[
9
]

11
12
08
,9
2

4
3

lr
c
2
0
6

3
1
1
5
9
,0

3
[
9

]
3

11
56
,5
4

1
3
5

lr
1
1
0

1
0

1
1
5
9
,3

5
[
5
]

10
11
58
,2
7

1
1
3

lr
c
2
0
7

3
1
0
6
2
,0

5
[
9

]
3

10
54
,2
4

2
0
5

lr
1
1
1

1
0

1
1
0
8
,9

[
5
]

1
0

1
1
0
8
,9

7
4

lr
c
2
0
8

3
8
5
2
,7

6
[
5

]
3

8
5
2
,7

6
4
6
9

190 M.N. Tchoupo et al.

Table 1 contains five types of columns: Instance is the name of instance, NV is

the number of used vehicles, TD is the total travelled distance, REF is a reference to

the paper which found the result and CPU is the computational time in seconds. The

symbol “∗” indicates that the instance is solved to optimality and the values in bold

emphasize that the proposed algorithm found a better solution.

The hybrid ACS algorithm returns in 98.2% (55/56) of cases a solution better or

equal to the best known solution. And find a better solution than the best know solu-

tion in 44.6% (25/56). It is important to remark that our method is able to performed

best known solutions on all configurations: lc (clustered), lr (Uniform distributed)

and lrc (Semi-clustered).

6 Conclusion

This paper proposes an efficient algorithm to solve a Pickup and Delivery Problem

with Time Windows with objective function : first minimize the number of vehicles

and second minimize the total distance travelled. The proposes algorithm is based

on ant colony optimization coupled with three fast local search algorithms. To our

knowledge, this approach is the first constructive method to solve PDPTW problem

with this objective. The experiments on the standard PDPTW benchmark of Li and

Lim [10] show that it outperforms existing algorithms. In the future, it would be

interesting to performed every feature of approach (construction, visibility, update

of pheromone and local search algorithms) to solve more large size instances and

generalized this approach on heterogeneous fleet case.

References

1. Belmecheri, F., et al.: An ant colony optimization algorithm for a vehicle routing problem

with heterogeneous fleet, mixed backhauls, and time windows. In: 13th IFAC Symposium on

Information Control Problems in Manufacturing. Moscow, Russia (2009)

2. Bent R, van Hentenryck P.: A two-stage hybrid algorithm for pickup and delivery vehicle rout-

ing problems with time windows. In: Rossi, F. (ed.) Principles and Practice of Constraints

Programming, Springer, Heidelberg, Berlin (2003)

3. Dumas, Y., Desrosiers, J.: The pickup and delivery problem with time windows. Eur. J. Oper-

ation. Res. 54, 7–22 (1991)

4. Goss, S., Aron, S., Deneubourg, J., Pasteels, J.: Self-organized shortcuts in the Argentine ant.

Naturwissenschaften 76, 579–581 (1989)

5. Li, A., Lim, H.: A metaheuristic for the pickup and delivery vehicle routing problems with

time windows. In: IEEE Computer Society, 13th IEE International Conference on Tools with

Artificial Intelligence (ICTAI-01), pp. 333–340. Los Alamitos, USA (2001)

6. Nagata, Y., Kobayashi.: Guided ejection Search for the pickup and delivery problem with time

windows. In: Cowling, P., Merz, P. (eds.) Evolutionary Computation in Combinatorial Opti-

mization, Springer, Berlin, Heidelberg (2010)

Ant Colony Optimization Algorithm for Pickup and Delivery Problem . . . 191

7. Nalepa, J., Blocho, M.: A parallel algorithm with the search space partition for the pickup and

delivery with time windows. In: Proceedings of 10th International Conference on P2P, Parallel,

Grid, Cloud and internet Computing (IEE 3PGCIC), pp. 92–99 (2015)

8. Parragh, S., Doerner, K., Hartl, R.: A survey on pickup and delivery problems. J. fur Betrieb-

swirtschaft 58(2), 81–117 (2008)

9. Ropke, S., Pisinger, D.: An adaptive large neighborhood search heuristic for the pickup and

delivery problem with time windows. Trans. Sci. 40(4), 455–472 (2006)

10. SINTEF vehicle routing and traveling salesperson problems. https://www.sintef.no/

projectweb/top/pdptw/li-lim-benchmrak/100-customers/

11. Tchoupo, M.N., Yalaoui, A., Amodeo, L., Yaloui, F., Lutz, F.: Problème de collectes et

livraisons avec fenêtres de temps et flotte hétérogène. In: 11th International Conference on

Modeling, Optimization & Simulation. Montreal, Canada (2016)

https://www.sintef.no/projectweb/top/pdptw/li-lim-benchmrak/100-customers/
https://www.sintef.no/projectweb/top/pdptw/li-lim-benchmrak/100-customers/

	Ant Colony Optimization Algorithm for Pickup and Delivery Problem with Time Windows
	1 Introduction
	2 Mathematical Model
	3 Ant Colony Optimization (ACO)
	3.1 Construction of Solution
	3.2 Pheromone Updating

	4 Local Search Algorithm
	5 Computational Results
	6 Conclusion
	References

