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Preface

Operations Research is known as the discipline founded on mathematical and
quantitative methods aimed at determining optimal or near-optimal solutions to
complex decision-making problems. The emphasis on the real applications high-
lights the great versatility and transversality of this discipline. Its solving approa-
ches, methodologies and tools find application in many different fields and areas,
notably in industrial and territorial systems. Hence, the interplay between
researchers, practitioners and policy-makers plays a relevant role which is sup-
ported by conferences and workshops.

ODS2017, International Conference on Optimization and Decision Science, was
the 47th annual meeting organized by the Italian Operations Research Society
(AIRO) in Sorrento, Italy, September 4th–7th, 2017, in cooperation with the
Department of Electrical Engineering and Information Technology (DIETI) of the
University “Federico II” of Naples. The ODS2017 Programme and the Organizing
Committee were composed of researchers from Italy, Europe and North America.

ODS2017 was addressed to the entire Operations Research and related scientific
communities working in the wide field of optimization, problem-solving and
decision-making methods. Its scope was presenting ideas and experiences on
cutting-edge research topics, sharing knowledge, discussing challenging issues and
results, and creating a point of contact to foster future collaborations among
researchers and practitioners from various sectors (applied mathematics, computer
science, engineering, economics), private and public companies, industries and
policy-makers.

ODS2017 participants had the possibility either to submit a paper or an abstract
on the conference research themes. All the contributions can be found in the
conference e-book available at the website: www.airoconference.it/ods2017. In this
volume, the reader finds the collection of the invited lectures and research papers
submitted and accepted for presentation at the conference after a peer-review
process, made by experts in Operations Research and related fields.
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The three invited lectures were:

• Robust Network Control and Disjunctive Programming, given by Prof. Daniel
Bienstock, Department of Industrial Engineering and Operations Research,
Columbia University, New York, USA.

• From Mixed-Integer Linear to Mixed-Integer Bilevel Programming, given by
Prof. Matteo Fischetti, Department of Computer Science, University of Padova,
Italy.

• Data Science meets Optimization, sponsored by the Association of the European
Operations Research Societies, given by Prof. Patrick De Causmaecker,
Department of Computer Science, University of Leuven, Belgium.

The submitted research papers spanned on the methodological and applicative
themes proposed in the call for papers: Continuous and Global Optimization; Linear
and Nonlinear Programming; Discrete and Combinatorial Optimization; Stochastic
and Robust Optimization; Cutting, Packing and Scheduling, Multicriteria and
Decision-Making, Energy optimization, Health Care, Data Science, Game Theory;
Graph Theory and Network Optimization, Location, Routing; Urban Traffic,
Freight Transportation; Logistics, Supply Chain Management; Railway and Mar-
itime Systems Optimization; Telecommunication Networks, Critical Infrastructure
Protection, Emergency Logistics, Emerging Applications.

The 60 accepted research papers are here organized in more aggregate sections,
ranked in alphabetical order: Data Science, Health Care, Heuristics and Meta-
heuristics, Innovative Applications, Location, Multi-objective Optimization, Opti-
mization Under Uncertainty, Packing and Cutting, Railway and Maritime
Optimization, Routing, Scheduling. In each section, the papers are presented
alphabetically by the last name of the first author. The classification has been done
considering the main feature characterizing the paper, even if in several cases a
paper could be framed in another section.

These articles highlight the impact that Operations Research methodologies and
tools have in a society with increasing complexity-challenging problems and the
cross-fertilization of ideas between theoretical and applicative fields. They exhibit
the latest methods and techniques needed in solving a number of existing research
problems while providing new open questions for further research investigations. It
is expected that this research volume will be a valuable resource for experienced
and young researchers.

As editors of this volume, we thank the invited lecturers and authors. Moreover,
we express our sincere gratitude to the 71 researchers from around the world, who
spent their valuable time for the review process, so contributing to improve the
quality of the presented papers. We also express our thanks to Springer for support
and cooperation in publishing the volume, bringing it to a nice form.

Finally, as conference chairs of ODS2017, we are thankful to the work team and
students of the Department of Electrical Engineering and Information Technology,
who actively helped in making the conference a success. We are also thankful to all
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the institutions, agencies and enterprises that have supported and sponsored the
event:

University “Federico II” of Naples
Polytechnic and Base Sciences School of Naples
University of Sannio (Department of Engineering)
University of Salerno
(Department of Mathematics and Department of Industrial Engineering)
IASI/CNR—Rome
EURO (Association of the European OR Societies)
IDIS Foundation—Science Center of Naples
OPTIT S.r.l.
ACTOR S.r.l.
Ansaldo STS S.p.a.
Lottomatica S.p.a.
TecnoSistem S.p.a.
Tekla S.r.l.
ODS2017 Chairs and Volume Editors
Antonio Sforza and Claudio Sterle

Naples, Italy Antonio Sforza
Claudio Sterle
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Robust Network Control and Disjunctive
Programming

Daniel Bienstock

Abstract The problems in this paper are motivated by studies concerning the

deployment of storage (batteries) in power grids in order to mitigate stochastic behav-

ior of renewables. From a mathematical standpoint, these problems can be viewed as

two-stage adjustable robust optimization problems. We present a generic network-

based robust optimization problem and describe a cutting-plane algorithm based on

disjunctive programming for a specific application to power grid control.

1 Motivation

The problems we consider here can be motivated by a simple example.

In this example we have a tree with nodes of four types: demand nodes (with known

numerical demand shown in the figure), generator nodes (sources, depicted as solid

circles) as well as two other types that will be described shortly. The edges of the tree

have known capacities which are upper bounds on the absolute value of their flow.

Finally for each generator node there is a function that describes the cost of generat-

ing any given amount at that node. A simple problem is that of satisfying demands

at minimum cost without exceeding edge capacities. Note that total generation will

equal total demand.

If the cost functions are convex we are dealing with a convex optimization prob-

lem. Suppose now that the problem plays out in two stages. First, we choose gener-

ation amounts so as to feasibly satisfy demands, as shown in the following figure:

D. Bienstock (✉)

Columbia University, New York City, NY, USA

e-mail: dano@columbia.edu

© Springer International Publishing AG 2017
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4 D. Bienstock

In the second stage, however, the “uncontrollable” nodes become sources or sinks

for flow:

We now have an infeasible (unbalanced) network with too much flow injection. Addi-

tionally the right-most edge of the tree may even carry too much flow. Putting aside

this issue, we can address the imbalance between supply and demand by making

use of the hitherto unmentioned fourth kind of node (the square node in the figure).

These nodes, which model storage in power systems, will be used to absorb excess

flow or to make up a shortage of flow.

The overall two-stage problem is that of choosing generation amounts, at minimum

cost, so that for any flow injection at the nodes, from within a modeled set of such

injections, there is a corresponding reaction at the square nodes (also chosen within

limitations) so that the resulting flow vector does not exceed any edge capacities.

1.1 Formulation

We now provide a mathematical formulation for the type of problem described

above. For simplicity we focus on a single-period model. We are given an undi-

rected network G with node-set N , where each edge e has a capacity Fmax
e > 0. In

addition, at every node k we have the following data and decision variables:

∙ Pg
k = amount of generation at k, a variable, constrained by 0 ≤ Pg

k ≤ Pg,max
k where

Pg,max
k is a given quantity, possibly equal to zero (indicating a non-generating

node). The cost of generating x units at i is given by a function 𝜅k(x).
∙ Pd

k = demand at i (data).

∙ wk = uncontrollable injection at k. This is an uncertain quantity that gives rise to

the robust optimization problem. We assume w ∈ W , where W ⊆ IRN
is a given

set.

∙ uk = control injection at k. We constrain u ∈ U , where U ⊆ IRN
is a given set.
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The problem in question can now be written as:

min
Pg

∑

k
𝜅k(P

g
k) (1)

s.t. 0 ≤ Pg
k ≤ Pg,max

k for all nodes k, (2)

and for each w ∈ W , there exists u ∈ U so that

the following holds:∑

k
(Pg

k + wk − uk − Pd
k ) = 0 (total supply = total demand) (3)

|flow on edge e| ≤ Fmax
e , for all edges e. (4)

Thus, the model computes a minimum-cost generation plan that feasibly meets

demands under all uncertain injections w, using the controls u as a second-stage

correction.

Constraint (4) merits a discussion. Given an edge e, its flow under a given vector

w and control u will be a function of Pg
, Pd

, w and u. In traditional network flow

models this function would be a feature that we can control as part of the optimization

process, that is to say, flow can be “routed”. However,

∙ In the linearized model for electrical power flows, the flow on e is a linear function

of the form 𝜋
T
e (P

g − Pd + w − u) for a certain known vector 𝜋e ∈ IRN
. Thus, flow

cannot be routed.

∙ In the (nontrivial and important) case where the network G is a tree, we can

explicitly write the flow. Namely if e has endpoints i and j, say, and Ti is the

tree in G − e containing i, then the flow on e in the i to j direction equals∑
k∈Ti

(Pg
k − Pd

k + wk − uk).

Problem (1–4) belongs to a much broader family of problems, with general linear

constraints as opposed to network-based constraints such as (4), which have been

termed two-stage adjustable optimization problems. Previous work has focused on

specific policies for the second-stage decisions, which in the problem above are

represented by the variables u. For example an affine policy would amount to set-

ting u = 𝜆0 + 𝜆
Tw where 𝜆0 ∈ R and 𝜆 ∈ IRN

are decision variables. Two-stage

adjustable optimization lies at the core of robust optimization theory and we lack

the space for a proper literature review. However a very apt citation with a literature

survey is [1]. A different perspective on two-stage adjustable problems is that they

may also be viewed as bilevel optimization problems, which have acquired a well-

earned reputation for extreme difficulty. A recent contribution that includes com-

putation is [2]. Also see [3] which uses intersection cuts. Finally, a different robust

network flow problem is considered in [4].
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1.2 NP-Hardness of General Problem

Let us return to problem (1–4). The feasibility problem is the following: given a

vector Pg ∈ IRN
satisfying (2), is it feasible? That is to say, is it the case that for

every w ∈ W , there exists u ∈ U so that (3–4) holds?

It is known that in the general two-stage adjustable optimization context the corre-

sponding feasibility problem is in fact NP-complete. See [5, 6]. However, our setting

is quite specific. Nevertheless, we have:

Theorem 1 The feasibility problem for (1–4) is strongly NP-complete even if the
underlying network G is a star, W is a polyhedron and U is a hypercube.

2 Batteries and Renewables in Power Grids

We now describe the concrete problem we are studying (see [7] for additional mate-

rial, [8] for related work, and [9] for broader background). The problem differs from

the above model in several ways. First, it covers T time periods of equal length (of

unit length, to simplify notation) with all decisions made at time zero on the basis of

forecasts.

∙ At time zero we compute the generation at node k in period t, Pg
k,t, as well as

parameters 𝜆
t
i,j ≥ 0 for a linear control given below.

∙ At time t, the (uncontrollable) injection at bus k is of the form wf
k,t + wk,t where

wf
k,t is a forecast. We rely on a robust model W for the disposition of the vector

of all the deviations wk,t. The model is described below. We also assume known
demands Pd

k,t for all nodes k and periods t.
∙ At time t, the output of control (battery) node i will be of the form−

∑
j 𝜆

t
i,jwj,t. This

implies a linear control as opposed to the general control envisioned in Sect. 1.

The implication of this control scheme is that with 𝜆
t
i,j > 0, if e.g. wj,t < 0 then the

battery responds to a decrease in renewable output by increasing its output. Linear

control schemes are appealing in part because of the increased tractability of the

resulting optimization problem, but also because they result in simpler and more

intuitive control policies.

∙ Finally, we have an additional model that applies to each battery. It covers feasible

actions for the battery under appropriate battery chemistry assumptions. In essence

this model limits the set of possible injections −
∑

j 𝜆
t
i,jwj,t for a battery at node i,

over all 1 ≤ t ≤ T and all w ∈ W . Note that for a given time period t, the sum of

all power injections at a node i holding a battery (through period t) will be of the

form −
∑t

h=1
∑

j 𝜆
h
i,jwj,h. This expression shows that the state of the battery at any

time depends on actions on all prior periods.

We can now write an initial formulation, by 𝛬t the vector of all 𝜆k,t (and 𝛬 is the

concatenation of all 𝛬t), and with similar interpretation for Pg
t , Pd

t , wf
t and wt.
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This formulation omits the specification of battery constraints, which we will provide

later.

min
Pg,𝛬≥0

∑

k
𝜅k,t(P

g
k,t) (5)

s.t. 0 ≤ Pg
k,t ≤ Pg,max

k,t for all nodes k, and all periods t (6)

and such that for each w ∈ W

the following holds:∑

k
(Pg

k,t + wf
k,t + wk,t −

∑

j
𝜆

t
k,jwj,t − Pd

k,t) = 0 (7)

|𝜋T
e (P

g
t + wf

t + wt −
∑

j
𝜆

t
jwt − Pd

t )| ≤ Fmax
e,t , for all edges e and periods t. (8)

Constraint (7) states that total supply = total demand during period t. Constraint (8)

indicates that the capacity of every edge is never exceeded.

2.1 Uncertainty Modeling

A popular technique used to model uncertainty, in the power engineering literature,

is to rely on scenario-driven models. While the resulting optimization problems are

simple, they can also become quite large if a guarantee is sought, and as a result

authors often heuristically rely on small scenario sets. Another class of models that

have become popular are chance-constrained optimization problems using a normal-

ity assumption. While in single-period models this is a plausible assumption (see e.g.

[8]) in a multi-period model one should expect correlation (both space- and time-

wise).

We rely instead on a robust model. So-called “uncertainty budgets” models have

received attention in robust optimization community. See e.g. [10]. In the case of the

problem in this discussion one would rely on constraints of the form

|wk,t| ≤ 𝛾t,k, all t and k (9)
∑

k
(𝛾k,t)−1|wk,t| ≤ Γt

all t (10)

to model the renewable deviations, where the 𝛾 and Γ are parameters estimated from

data. Note that the resulting model is symmetric around zero.

However, we wish to allow for asymmetry in renewable deviations. As a general-

ization of (9, 10) we use a model given by nonnegative matrices K+
and K−

, and a

vector b. The set W of allowable deviations is given by the constraint

K+w+ + K−w−
≤ b (11)
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Here, w+
(w−

) is the vector with entries w+
k,t = max{wk,t, 0} (resp., w−

k,t). Notice that

(11) is certainly not linear. In fact a fully linear description would be exponentially

large. On the other hand, (11) is “convex to the origin,” that is to say if w satisfies

(11) then for any vector 𝜃 with entries in [0,1], the vector 𝜃 ∙ w also satisfies (11).

Finally, note that (11) also allows for correlation across time and space, a desired

feature.

At this point we can state a useful property.

Lemma 1 Let W be given by (11) Suppose (P̂g
, �̂�) is a candidate solution for prob-

lem (5–8). Suppose that for some edge e there exists w ∈ W such that (8) is violated.
Then, without loss of generality, either wk,t ≥ 0 for all k and t or wk,t ≥ 0 for all k
and t.

The implication of this result is that, in terms of constraints (8), the separation

problem reduces to a number of linear programs.

2.2 Battery Modeling

Battery chemistry can be complex and in particular performance of a battery can

be state-dependent. Here, “state” means the chemical charge state of the battery (i.e.

what percentage of maximum chemical charge it holds). And performance will mean

two things: first, how much (instantaneous) power can be removed from the battery

or input into the battery. And second, the charge/discharge efficiency, which is to say

the change in internal (i.e. chemical) charge as a function of the amount of power

added or removed to the battery, which is normally described as charge or discharge

efficiency.

Previous models in the literature assume a single charging efficiency 0 < 𝜂c < 1
and a single discharging efficiency 0 < 𝜂d < 1. If an instantaneous power injection

of P units of power into the battery takes place (P < 0 means extraction of power)

then the internal charge changes, per unit time, by

𝜒(P) ≐ 𝜂cP+ − 𝜂
−1
d P−

where P+
and P−

are the positive and negative parts of P, respectively. Clearly the

function 𝜒(P) is nonlinear, and in an optimization model where the quantity P is a

decision variable (as is the case in our model) one needs an appropriate way to model

the complementarity condition P+P− = 0 and some authors have relied on integer

variables for this purpose.

Here we will also assume the single charge/discharge efficiency model (a more

general model is considered in [7]). Consider a given battery at node i, say. We denote

by E0
the initial charge, and by Emin

(Emax
) be the minimum (resp., maximum) allow-

able charge (dropping the index i for simplicity). The constraints we impose are

(a) For any w ∈ W , and any time period t,
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Emin
≤ E0 +

t∑

h=1
𝜒

(
∑

j
�̂�

t
i,jwj,t

)
≤ Emax

(12)

The rationale for this condition is that the expression being bounded is the energy

state of the battery at time t, assuming deviations w.

(b) We assume a piecewise-constant model given by breakpoints Emin = c0 < c1 <
… < cK = Emax

, such that in each interval (cs, cs+1) the output of the battery is con-

strained. Specifically, if battery charge lies in an interval (cs, cs+1) there is a max-

imum Imax
s amount of power that can be injected into the battery (and, similarly, a

maximum Xmax
s that can be extracted from the battery). We will term this condition

the battery speed constraint.

2.2.1 Separation Problem for Battery Constraints

We can now state, in words, the feasibility constraints for batteries, which up to now

have been missing from model (5–8). We will focus in particular on the battery speed

constraints.

Consider a given battery (we omit node indices to simplify notation). Suppose that

is the initial energy level. the energy level. Let t be a time period, and let (P̂g
, �̂�) be

a candidate solution. Then for any w ∈ W , and any 0 ≤ s < K the constraint reads:

If at the start of period t, battery charge lies in (cs, cs+1), then

−Xmax
s ≤

∑

j
�̂�

t
i,jwj,t ≤ Imax

s (13)

Note that we are unable to write in a compact form the first part of this statement.

Nevertheless, we will show next that we are able to check for violation of the condi-

tion in an efficient manner.

To see that this is the case, assume that there is a w ∈ W such that the first part

of the condition holds (the “If” statement) and yet (13) does not hold. To fix ideas,

suppose that Einit
> cs, i.e. battery charge has moved to a lower energy interval

and that at time t it is the second constraint in (13) that is violated (all other cases

are similar). This means that the battery under consideration is receiving too much
charge given its energy state.

Suppose we replace the vector w with a new vector w̄ defined by w̄k,h = w−
k,h for all

k and h < t, w̄k,t = w+
k,t for all k, finally w̄k,h = 0 for all k and h > t. Then w̄ satisfies

(11) i.e. w̄ ∈ W . Moreover, under deviations w̄ the battery will only discharge in

periods prior to t, and so will certainly end in some interval (cr, cr+1) with r ≤ s.

Hence for some scale value 0 ≤ 𝛼 ≤ 1, the vector w∗
given by w∗

k,t = 𝛼w̄k,h for all

k and h < t and w∗
k,h = w̄k,h for all k and h ≥ t will also be contained in W and will

satisfy that
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(1) battery charge at the start of period t lies in the range (cs, cs+1),
(2) w∗

k,h ≤ 0 for all k and h ≤ t. In other words under deviations w∗
, the first t − 1

time periods have nonpositive forecast errors (and in particular monotone),

(3) In period t we have w∗
k,t ≥ 0 for all k and so all batteries charge.

(4) At the battery of interest,

∑

j
�̂�

t
i,jw

∗
j,t > Imax

s . (14)

In other words, if the battery speed condition is violated we can restrict the search

for w by restricting our attention to vectors satisfying (1)–(4). Since we know the

signs of all entries of such vectors, the nonlinear model (11) becomes linear, and

checking for condition (14) reduces to solving a linear program.

Moreover, if an offending vector w∗
as above is found, then, assuming that (P̂g

, �̂�)
is an extreme point of the current formulation, we can find a cut that separates (P̂g

, �̂�)
from the current feasible region. The reason that this is the case is that any feasible

(Pg
, 𝛬)must either start period t with energy level at most cs, or at least cs+1 or satisfy

∑

j
𝜆

t
i,jw

∗
j,t ≤ Imax

s .

This is a linear condition, and note that (see e.g. (12)) the energy state under

deviations w∗
, at time t, is given by

E0 +
t−1∑

h=1

(
∑

j
𝜆

h
i,j𝜂

−1
d w∗

j,h

)
+ 𝜂c

(
∑

j
�̂�

t
i,jw

∗
j,t

)

We thus obtain a three-way disjunction (of linear inequalities) all of whose terms

are violated by (P̂g
, �̂�); consequently a disjunctive-cut [11] can be used to separate

(P̂g
, �̂�).

3 A Numerical Experiment

The algorithm was implemented using Gurobi [12] as the LP solver. For these tests

we used the winter peak Polish grid from MATPOWER [13], with 2746 nodes, 3514
edges, 388 generators, base load (approx.) 24.8 GW, 32 wind farms, with forecast

output 4.5 GW and 32 batteries, with total initial charge approx. 3.2 GWh. We used

the uncertainty budgets robustness model with an implied forecast error of up to

8.9%. In the runs below, loads increase (in similar proportions) in the first six periods.

In our implementation, the initial formulation includes all line constraints and flow

balance equations for the nominal case (no forecast errors). In the following table, “n”

and “m” indicated the number of variables and constraints in the master formulation
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at termination (but including some preprocessing). The running time is primarily

accrued by solving linear programs, whose size grows proportional to the number of

periods. The number of iterations appears nearly constant.

T n m Cost Iterations Time (s)

6 20940 57519 7263172 20 366

8 27920 76651 9738804 17 442

10 34900 95825 12260289 19 670

12 41880 114995 14784028 18 848
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Data Science Meets Optimization

Patrick De Causmaecker

1 Introduction

Data science and optimisation have evolved separately over several decades. In [16],

Tony Hey and his co-authors, inspired by the late, Turing award winning, Jim Gray

picture data science as a fourth paradigm in scientific evolution. After the empirical

branch, the theoretical and the computational branch, data exploration comes to the

scene. Historically, this evolution spreads over literary thousand years and most of

research domains can be traced back a long time in history. An interesting overview

on combinatorial optimisation is [23]. Interesting cases are e.g. the Steiner problem

[1, 4] and Kepler’s conjecture [15].

Here we will review some recent developments in the application of data science

to support heuristics for combinatorial optimisation problems as well as the use of

heuristics in a data science context.

2 Data Science for Optimisation

Optimisation is the discipline of finding values of variables that optimise some goal

function(s) within a given domain. The description of the problem is typically not

more than a couple of pages long. Its complexity status may or may not be known. In

practical situations, the problem is not in the complexity status, but in the expected

execution time for a specific instance.

Data science may enter in various ways. The difficulty of problems often strongly

depends on the properties of the problem instance. Producing optimal solutions in
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a guaranteed amount of computation time is often not possible. The problem shifts

from finding the optimal solution towards finding an as good as possible solution in

an acceptable amount of time for most of the problem instances that will be thrown

at the system.

2.1 DFO Example: Using Data Science in Algorithm
Construction

A first example with remarkable successes in recent years is automated algorithm

construction. Automated algorithm construction is one possibility in a set of auto-

mated mechanisms allowing data to be used for optimisation. Available are a set of

problem instances and a formal description of the problem. The aim is to produce

an algorithm that solves the problem as efficiently as possible. One could argue that

techniques such as algorithm selection and algorithm tuning are in fact algorithm

construction techniques. In algorithm selection, a set of algorithms for the problem

is defined and the aim of the automated construction phase is limited to learning a

predictor from the data that selects the best algorithm to solve a given problem. In

algorithm tuning, one algorithm is given with a number of discrete and continuous

parameters. The aim of the automated phase is to find the best setting of the para-

meters for the expected distribution of the problem instances of which the data is

supposed to be a representative sample.

An obvious argument against is that in selection, as well as in tuning, complete

algorithms have been designed and only a limited number of decisions are left to

the automated construction module. In the other extreme, no constraints except the

available operations at the machine or programming language level should exist.

As an example we discuss the approach in [2] for multi objective evolutionary

algorithm (MOEA) construction. The authors present a general conceptual view of

an MOEA, and prior to the automated approach, demonstrate how a number of well

known MOEA’s from literature can be described. MOEA’s are seen as combinations

of lower-level components such as preference relations and archives. The resulting

framework extends the number of algorithms that can be instantiated as well as the

number of MOEA approaches that can be designed. Given this large design space,

an efficient navigator is needed to find the best combination of components for a

given problem. The authors use the parameter tuning package irace[20] for this pur-

pose. iraceaccepts discrete and continuous parameters and can hence be configured

as a selector of components provided a specific pattern is given. iracethen only has

to decide which component to insert where. The authors design new databases of

instances for several problems and study the behaviour of the constructor. The same

problem with different instances turns out to lead to significantly different algo-

rithms. The constructed MOEA’s outperform existing algorithms, even after these

existing algorithms have been tuned by irace.
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This example uses expert human knowledge formalised in an algorithm template

and a black box analysis of a representative data set of instances. Some other exam-

ples are [3, 6, 18, 19, 21, 24]. The algorithm components in this approach are gen-

eral and not problem specific. In the next section we discuss an approach that allows

algorithm designers to insert knowledge about the problem. Optimisation is not only

linked to data but also to expert knowledge.

2.2 DFO Example: Using Data Science While Engineering
an Algorithm

Consider the problem of designing a multi-neighbourhood local search algorithm.

Our running example will be a vehicle routing problem (VRP). A multi

-neighbourhood local search algorithm is an algorithm that moves from one accept-

able solution for the VRP to another according to a number of neighbourhoods. The

local search could simply be hill climbing or it could employ a mechanism allowing

it to escape from local optimuma. Selection of a neighbourhood may be (weighted)

random selection or any intelligent, machine learning based, mechanism. A specific

neighbourhood may reflect expert understanding of the problem domain or design

experience. Designers will come up with a multitude of possible neighbourhoods.

The question that remains is which neighbourhoods to actually use.

This is an algorithm construction problem as we saw in Sect. 2.1, with the weights

as parameters. Another option is a hyper-heuristic approach [5] where the weights

evolve during the search guided by machine learning. All these are black box

approaches. The present example shows how to open the box.

The target it to offer support to algorithm designers. They will experiment with

neighbourhood combinations on a set of sample problems. The information retrieved

will be fragmented and no why-questions will be answered.

To allow observation of neighbourhood behaviour during the search [9] uses code

inserts to register neighbourhood behaviour. Observables are goal function values,

times taken, . . . . Evolution of these observables for each neighbourhood in the course

of the search is stored. Inspection of the resulting file may a.o. reveal varying per-

formance of neighbourhoods during the search.

The data plotted plotted against time may not offer the full picture. Local search

algorithms often wander around in extended valleys before discovering higher hills.

A few observations in such a region may be sufficient to identify effective neigh-

bourhoods. More interesting information comes when the goal function approaches

its optimum.

The authors of [9] introduce the value of the goal function as the basis of a plot.

This goal function value is taken from a, conveniently discretised, finite interval.

The collected data reflects the events during one run. The following features

on each neighbourhood N include number of times used, number and amount of

improvements, no effects, worsening. Each of these features is plotted against the
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Fig. 1 Visualization of logged numbers of improvement, no effect and worsening for two neigh-

bourhoods. The x-axis represents solution quality (the larger the value, the better the corresponding

solution is). The y-axis represents values of the three observables

goal function value taken from a VNS algorithm. After dividing the goal function

range interval into regions, [9] collects the quantities in a vector characterising each

neighbourhood. See Fig. 1 for an example.

The procedure described now serves two purposes. It allows visualisation of

neighbourhood behaviour for algorithm developers to select a diverse set of lim-

ited size or to identify properties of missing neighbourhoods. It allows analysing an

existing algorithm automatically. If one supposes that neighbourhoods with simi-

lar profiles behave similarly, these characteristics may allow clustering neighbour-

hoods and selecting one from each cluster. This may lead to more efficient tuning

possibilities.

In [9], such a study was performed. A set of 42 neighbourhoods was reduced to

9 and it was shown that the result of applying iracesignificantly outperfomed the

42-neighbourhood version.

3 Optimisation for Data Science

3.1 OFD Example: Community Detection in Graphs

Large graphs have many applications in network analysis. Examples are records

of cell phone calls, e-mail connections, influencer graphs in social media, . . . . The

scales of these networks vary from rather small (up to 1000 nodes) over medium (say

50000 nodes) up to very large graphs (> 106nodes). For a review see [13, 14].

One subject of interest in such graphs is the detection of communities. Informally,

communities are collections of nodes that are more connected to each other than

to nodes outside the community. One way to model communities is by introducing

objective functions reflecting the quality of a partition of the set of nodes. The prob-

lem then reduces to an optimisation problem finding the best partition given an objec-

tive function. An interesting extension is when the network is evolving as reflected

by an evolution in the community structure. Although evolution could in principle

discontinuously impact the community structure, this is mostly not the case in real-

ity nor what one wants in the mathematical models. Systems relying on community

structure (think of an advisory system for public relations support) would probably



Data Science Meets Optimization 17

not be helped by erratically changing the viewed community structure. This adds a

second criterion to the optimisation problem, namely that of not changing abruptly.

[7, 8]. We will refer to this problem as the Dynamic Community Problem (DCP).

DCP has been studied as a weighted optimisation problem with two goal functions

called snapshot cost (SC) reflecting the absolute quality of the present structure and

the temporal cost (TC) reflecting the amount of change [17]:

cost = 𝛼.SC + (1 − 𝛼).TC

The solvers based on this cost function typically depend on a rather large number of

parameters and decisions. From an application point of view, an appropriate measure

for the community quality SC is selected from a large number of possibilities from

clustering theory. The evolution in the structure must be properly modeled in TC
and the parameter 𝛼 needs to be determined. These add to the parameters of the

optimisation algorithm.

DCP is in essence situated in data science, the data being the interactions between

the nodes of which the graph is a representation. When an optimisation approach is

selected, parameter tuning, algorithm configuration and construction as discussed in

Sect. 2.1 are needed.

As an example, we now discuss [12] in some detail. In this paper, DCP is recast

as a multi-objective optimisation problem effectively getting rid of the weight 𝛼.

Four versions of the algorithm are investigated, each using a different definition for

SC. TC is computed through an expression from information theory measuring the

similarity between community partitions. The algorithm is based on NGSA-II [10],

and is taken from a Matlab library. The remaining parameters in the algorithm are

linked to the genetic algorithm and the representation. Although the authors mention

the possibility to tune these automatically, a trial and error approach is selected.

The experiments are performed on a number of synthetic data sets and on two

data sets taken from real world cases. These data sets allow comparing against other

algorithms, and it is shown that the algorithm outperforms existing ones. The sizes of

the resulting graph range between 102 and 103 and must thus be considered small.

The study is very similar to classical optimisation studies. An interesting analysis

concerns complexity. The authors show that the complexity of the algorithm can be

expressed as a function of the number of generations, the size of the population and

the dimensions of the graph as

O(g.p.log(p) × (n.log(n) + m)

where g is the number of generations, p is the size of the population, n is the number

of nodes and m is the number of edges in the graph. Of course, the number of gen-

erations as well as the population size needed for acceptable results will vary with

the size of the graph. The authors study the scalability of the method experimen-

tally for numbers of nodes ranging from 128 to 4096 and numbers of edges ranging

from 2938 to 65256. This allows quantifying these relationships to some extent. The

authors conclude that a tradeoff between computing time and error gap is necessary.
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So although the n.log(n) dependency is very promising and should allow handling

much larger graphs, the hidden dependency in the required number of iterations and

population size together with the rather large constant required by the genetic algo-

rithm are limiting factors.

The example discussed illustrates how a standard optimisation approach could

be used to solve a problem from data science. The low complexity of metaheuristic

approaches holds a promise for obtaining good solutions for large graphs.

4 Conclusions and Future Work

Data science supporting optimisation was illustrated through an example of algo-

rithm construction 2.1 and an attempt to support algorithm design 2.2.

The construction case is the most general case of algorithm configuration and

tuning which are generalisations of algorithm selection. The example relied on a

framework for the design of a multi objective algorithm and specialised in selecting

its components automatically. The link with data science is inherent in real world

problems. Even when using exact algorithms, the parameter setting strongly influ-

ences computation time. When heuristics are used, it is even more important as the

heuristics are often known to work well on a limited set of problem instances only.

A representative sample of the expected set is the starting point for automated algo-

rithm construction.

Another link was highlighted when discussing automated support for algorithm

design. Again a framework was selected, represented by a local search approach. The

main design issue is the selection of appropriate neighbourhoods relying on expe-

rience and intuition of designers. The support comes in when trial versions of the

algorithm are run using the neighbourhoods. By observing this process, character-

istic of the neighbourhoods emerged, suggesting good and worse sets. The example

was taken one step further when the neighbourhoods were clustered automatically

and the algorithm tuner was shown to profit from this information by producing bet-

ter parameter settings.

Optimisation for data science was discussed in Sect. 3.1. The example given

was a community detection algorithm for large graphs. By modelling the problem

as a multi-objective optimisation problem, an off-the-shelf genetic algorithm for

multi-objective optimisation could be used. The implementation in Matlab outper-

formed existing methods. An interesting complexity analysis revealed good asymp-

totic behaviour if one does not take the size of the population into account.

These examples suggest a number of possibilities for future research. Template

based algorithm construction is an example of how human knowledge and data

can be combined in a methodology that semi-automatically produces optimisation

algorithms. The human knowledge is expressed through the template and the cre-

ation of components. The data is taken into account by the automatic configuration

tool iracethat essentially runs the algorithm against a representative set of problem

instances. Similar ideas are used in hyperheuristics [5] where human knowledge and
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intuition are introduced through so called low level heuristics which are set to use

by a sophisticated optimisation algorithm, often a genetic algorithm. A challenge

for these lines of research is formalisation of the specification. As the example illus-

trates, and as can be seen in hyperheuristics literature, specification of components

or low level heuristics still requires high level expertise. A domain expert cannot

be expected to master the kind of sophistication needed to write efficient code for

those algorithm components. A formal definition or a declarative language for spec-

ifying this information could be an important step forward to take this methodology

to practice [11].

The design support for analysing the neighbourhoods in the local search

algorithm could speed up the task of specialist algorithm designers. The sound

mathematical basis used in the realisation of the characteristics and in the clustering

exercise have presently been implemented in R [9]. Concerning analysing the behav-

iour of neighbourhoods, an interesting follow up research could be about interaction

between neighbourhoods as exemplified by [22].

The optimisation for data science example concentrates on a genetic algorithm.

The complexity of the algorithm depends on the number of generations and the size

of the population. The accuracy of the result depends on the same parameters so that

a best compromise needs to be sought. It may be interesting to investigate a local

search approach which often leads to more efficient coding schemes, requires less

involved data structures and takes more advantage of delta evaluation of the goal

function. The question of the asymptotic behaviour needs an answer when looking

at larger graphs.

Finally, all these examples were inspired by problems from practice. In the his-

tory of optimisation, many insights have emerged from theoretical considerations.

Less theoretical effort has been spent on algorithm selection, configuration or con-

struction. We are thinking of a hypothetical setting where the instance distribution

is described analytically. Questions could be on a specific algorithm template, e.g.

for a traveling salesperson problem when the cities live on a given structure or on

the asymptotic behaviour of a community detection algorithm in terms of execution

time as well as solution quality.

These and other questions could play a similar role as the complexity studies on

classic optimisation problems and could help us understand the issues of DFO and

OFD better.
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From Mixed-Integer Linear to Mixed-Integer
Bilevel Linear Programming

Matteo Fischetti

Abstract Bilevel Optimization is a very challenging framework where two players

(with different objectives) compete for the definition of the final solution. In this

paper we address a generic mixed-integer bilevel linear program, i.e., a bilevel opti-

mization problem where the objective functions and constraints are all linear, and

some variables are required to take integer values. We briefly describe some main

ingredients of a branch-and-cut general-purpose framework for the exact solution

(under appropriate assumptions) of mixed-integer bilevel linear programs.

1 Introduction

Consider a general bilevel optimization problem of the form

min
x∈ℝn1 ,y∈ℝn2

F(x, y) (1)

G(x, y) ≤ 0 (2)

y ∈ arg min
y′∈ℝn2

{f (x, y′) ∶ g(x, y′) ≤ 0 }, (3)

where F, f ∶ ℝn1+n2 → ℝ, G ∶ ℝn1+n2 → ℝm1 , and g ∶ ℝn1+n2 → ℝm2 . Let n = n1 +
n2 denote the total number of decision variables. F(x, y) and G(x, y) ≤ 0 denote the

leader objective function and constraints, respectively, while (3) defines the so-called

follower subproblem. In case of multiple optimal solutions of the follower subprob-

lem, we assume that one with minimum leader cost among those with G(x, y) ≤ 0 is

chosen—i.e., we consider the optimistic version of bilevel optimization.

It is well known that one can define the follower value function for a given x ∈ ℝn1

𝛷(x) = min
y∈ℝn2

{f (x, y) ∶ g(x, y) ≤ 0 }, (4)
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and then restate the bilevel optimization problem as follows:

minF(x, y) (5)

G(x, y) ≤ 0 (6)

g(x, y) ≤ 0 (7)

(x, y) ∈ ℝn
(8)

f (x, y) ≤ 𝛷(x). (9)

The above optimization problem is very hard (both theoretically and in practice) even

if one assumes convexity of F,G, f and g (which would imply that of 𝛷), due to the

intrinsic nonconvexity of (9). For example, the NP-hard 0-1 Integer Linear Program

min cTx (10)

Ax = b, x ∈ {0, 1}n (11)

can be rephrased as the following bilevel problem with linear objectives and con-

straints, and continuous x and y variables:

min cTx (12)

Ax = b, x ∈ [0, 1]n (13)

y = 0 (14)

y ∈ argmin
y′

{−
n∑

j=1
y′j ∶ y′j ≤ xj, y′j ≤ 1 − xj ∀j = 1,… , n} (15)

where, for each j = 1,… , n, the follower variable yj captures the fractional part of

xj, hence it must be zero in any integer leader solution x as stated in (14).

A point (x, y) ∈ ℝn
is bilevel infeasible if it violates (9), while it is bilevel feasible

if it satisfies all constraints (6)–(9).

By removing condition (9) one gets the the so-called High Point Relaxation
(HPR). For the sake of simplicity, we assume that HPR is feasible and bounded,

and that the minimization problem in (4) is bounded for every feasible solution of

HPR.

In this paper we will focus on Mixed-Integer Bilevel Linear Programs (MIBLPs)

where some/all variables are required to be integer, and all HPR constraints (plus

objective functions) are linear/affine or stipulate the integrality of some variables.

The first generic branch-and-bound approach to the MIBLPs has been given in [8],

where the authors propose to solve HPR embedded into a branch-and-bound scheme.

A sound branch-and-cut approach has been proposed in [3, 4], that cuts off integer

bilevel infeasible solutions by adding cuts exploiting the integrality property of the

leader and the follower variables. The authors have also provided an open-source

MIBLP solver MibS [9]. Other generic approaches for MIBLPs are the branch-and-
sandwich method of [7], and the watermelon algorithm of [10].
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We will next briefly outline a main ingredient of the branch-and-cut solver

recently proposed in [5, 6], namely, the derivation of bilevel-specific intersection

cuts [1].

2 Mixed-Integer Bilevel Linear Programming

Let the MIBLP of interest be stated as:

minF(x, y) (16)

G(x, y) ≤ 0 (17)

g(x, y) ≤ 0 (18)

(x, y) ∈ ℝn
(19)

f (x, y) ≤ 𝛷(x) (20)

xj integer, ∀j ∈ J1 (21)

yj integer, ∀j ∈ J2, (22)

where F,G, f , g are now assumed to be affine functions, sets J1 ⊆ {1,… , n1} and

J2 ⊆ {1,… , n2} identify the (possibly empty) indices of the integer-constrained vari-

ables in x and y, respectively, and the value function 𝛷(x) reads

𝛷(x) = min
y∈ℝn2

{f (x, y) ∶ g(x, y) ≤ 0, yj ∈ ℤ ∀j ∈ J2}. (23)

As already mentioned, dropping (20) leads to the HPR, which is a Mixed-Integer

Linear Program (MILP) in our setting. Dropping integrality conditions as well leads

to the LP relaxation of HPR, namely (16)–(19), a Linear Program (LP) which will

be denoted by HPR.

The approach of [5, 6] uses a standard simplex-based branch-and-cut algorithm to

solve HPR, where the nonlinear constraint (20) is enforced, on the fly, by additional

linear cuts. A minimal requisite for the correctness of such an approach is the ability

of cutting any vertex, say (x∗, y∗), of HPR which happens to satisfy the integrality

requirements (21) and (22) but is bilevel infeasible because

f (x∗, y∗) > 𝛷(x∗), (24)

thus preventing a wrong update of the incumbent solution of the branch-and-cut

scheme.
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3 Intersection Cuts for MIBLPs

The generation of Intersection Cuts (ICs) [1] that are able to cut a given infeasible

HPR solution (x∗, y∗) requires the definition of two sets:

(1) a cone pointed at (x∗, y∗) that contains all the bilevel feasible solutions, and

(2) a convex set S∗ that contains (x∗, y∗) but no bilevel feasible solutions in its

interior.

As customary in mixed-integer programming, ICs are generated for vertices (x∗, y∗)
of an LP relaxation of the problem to be solved, so a suitable cone is just the corner

polyhedron associated with the corresponding optimal basis. All relevant informa-

tion in this cone is readily available in the “optimal tableau” and requires no addi-

tional computational effort; see, e.g., [2] for details.

As to the convex set S∗, one can exploit the following result.

Lemma 1 For any ŷ ∈ ℝn2 , the set

S(ŷ) = {(x, y) ∈ ℝn ∶ f (x, y) ≥ f (x, ŷ), g(x, ŷ) ≤ 0} (25)

does not contain any bilevel feasible point in its interior.

Proof It is enough to prove that no bilevel feasible (x, y) exists such that f (x, y)
> f (x, ŷ) and g(x, ŷ) < 0. We will in fact prove a tighter result where the latter con-

dition is replaced by g(x, ŷ) ≤ 0, as this will be required in the proof of the next

theorem. Indeed, for any bilevel feasible solution (x, y) with g(x, ŷ) ≤ 0, one has

f (x, y) ≤ 𝛷(x) = miny′ {f (x, y′) ∶ g(x, y′) ≤ 0} ≤ f (x, ŷ).

In some relevant settings, the above result can be strengthened to obtain the fol-

lowing enlarged bilevel-free set.

Theorem 1 Assume that g(x, y) is integer for all HPR solutions (x, y). Then, for any
ŷ ∈ ℝn2 , the extended set

S+(ŷ) = {(x, y) ∈ ℝn ∶ f (x, y) ≥ f (x, ŷ), g(x, ŷ) ≤ 1} (26)

does not contain any bilevel feasible point in its interior, where 1 denotes a vector
of all ones.

Proof To be in the interior of S+(ŷ), a bilevel feasible (x, y) should satisfy f (x, y)
> f (x, ŷ) and g(x, ŷ) < 1. By assumption, the latter condition can be replaced by

g(x, ŷ) ≤ 0, hence the claim follows from the proof of previous lemma.

In the IC context, for a given (x∗, y∗) one can therefore define the convex set S∗
required at item (2) above, as the set (25) or (26) with

ŷ = argmin
y
{f (x∗, y) ∶ g(x∗, y) ≤ 0, yj ∈ ℤ ∀j ∈ J2}. (27)
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Indeed, the resulting set S∗ does not contain any bilevel feasible point in its interior,

as required, while (x∗, y∗) ∈ S∗ because of (24) and 𝛷(x∗) = f (x∗, ŷ) by definition.

Note that ŷ is well defined when (x∗, y∗) is a solution of HPR, and that S∗ is a convex

polyhedron in the MIBLP case.

However, the generation of a violated IC also requires that (x∗, y∗) belongs to

the interior of S∗, which can only be guaranteed for those MIBLPs for which

Theorem 1 can be applied. This includes MIBLPs with all-integer follower where

J2 = {1,… , n2}, all g-coefficients are integer, and for all xj’s appearing with nonzero

coefficient in some follower constraint are integer constrained.

Example Figure 1 illustrates the application of ICs on an example given in [8], which

is frequently used in the literature:

min
x∈ℤ

−x − 10y (28)

y ∈ argmin
y′∈ℤ

{ y′ ∶ (29)

−25x + 20y′ ≤ 30 (30)

x + 2y′ ≤ 10 (31)

2x − y′ ≤ 15 (32)

2x + 10y′ ≥ 15 }. (33)

In this all-integer example, there are 8 bilevel feasible points (depicted as crossed

squares in Fig. 1), and the optimal bilevel solution is (2, 2). The drawn polytope cor-

responds to the HPR feasible set.

We first apply the definition of the bilevel-free set from Lemma 1 with ŷ defined as

in (27). After solving the first HPR, the point A = (2, 4) is found. This point is bilevel

infeasible, as for x∗ = 2 we have f (x∗, y∗) = y∗ = 4 while 𝛷(x∗) = 2. From (27) we

compute ŷ = 2 and the intersection cut derived from the associated S(ŷ) is depicted

in Fig. 1a. In the next iteration, the optimal HPR solution moves to B = (6, 2). Again,

for x∗ = 6, f (x∗, y∗) = y∗ = 2 while 𝛷(x∗) = 1. So we compute ŷ = 1 and generate

the IC induced by the associated S(ŷ), namely 2x + 11y ≤ 27 (cf. Fig. 1b). In the next

iteration, the fractional point C = (5∕2, 2) is found and ŷ = 1 is again computed. In

this case, C is not in the interior of S(ŷ) so we cannot generate an IC cut violated by

C, and we proceed and optimize the current HPR to integrality by using a standard

MILP solver. This produces the optimal HPR solution (2, 2) which happens to be

bilevel feasible and hence optimal.

We next apply the definition of the enlarged bilevel-free set from Theorem 1

(whose assumption is fulfilled in this example) with ŷ defined again as in (27); see

Fig. 1c and d. After the first iteration, the point A = (2, 4) is cut off by a slightly

larger S+(ŷ = 2), but with the same IC as before (y ≤ 2). After the second iteration,

from the bilevel infeasible point B = (6, 2) we derive a larger set S+(ŷ = 1) and a

stronger IC (x + 6y ≤ 14). In the third iteration, solution D = (2, 2) is found which

is the optimal bilevel solution, so no branching is required in this example.
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Fig. 1 Illustration of the effect of alternative intersection cuts for a notorious example from [8].

Shaded regions correspond to the bilevel-free sets for which the cut is derived

4 Informed No-Good Cuts

A known drawback of ICs is their dependency on the LP basis associated with the

point to cut, which can create cut accumulation in the LP relaxation and hence shal-

low cuts and numerical issues. Moreover, ICs are not directly applicable if the point

to cut is not a vertex of a certain LP relaxation of the problem at hand, as it hap-

pens e.g. when it is computed by the internal MILP heuristics. We next describe a

general-purpose variant of ICs whose derivation does not require any LP basis and is

based on the well-known interpretation of ICs as disjunctive cuts. It turns out that the

resulting inequality is valid and violated by any bilevel infeasible solution of HPR

in the relevant special case where all x and y variables are binary.

Suppose we are given a point 𝜉
∗ = (x∗, y∗) ∈ ℝn

and a polyhedron

S∗ = {𝜉 ∈ ℝn ∶ 𝛼

T
i 𝜉 ≤ 𝛼i0, i = 1,… , k}
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whose interior contains 𝜉

∗
but no feasible points. Assume that variable-bound

constraints l ≤ 𝜉 ≤ u are present, where some entries of l or u can be −∞ or +∞,

respectively. Given 𝜉

∗
, let

L ∶= {j ∶ 𝜉

∗
j − lj ≤ uj − 𝜉

∗
j } and U ∶= {1,… , n} ⧵ L

and define the corresponding linear mapping 𝜉 ↦ 𝜉 ∈ ℝn
with 𝜉j ∶= 𝜉j − lj for j ∈ L,

and 𝜉j ∶= uj − 𝜉j for j ∈ U (variable shift and complement).

By assumption, any feasible point 𝜉 must satisfy the disjunction

k⋁

i=1
{ 𝜉 ∈ ℝn ∶

n∑

j=1
𝛼ij𝜉j ≥ 𝛼i0 }, (34)

whereas 𝜉
∗

violates all the above inequalities. Now, each term of (34) can be rewrit-

ten in terms of 𝜉 as

n∑

j=1
𝛼ij 𝜉j ≥ 𝛽 i ∶= 𝛼i0 −

∑

j∈L
𝛼ijlj −

∑

j∈U
𝛼ijuj, (35)

with 𝛼ij ∶= 𝛼ij if j ∈ L, 𝛼ij = −𝛼ij otherwise.

If it happens that 𝛽 i > 0 for all i = 1,… , k, one can first normalize the above

inequalities to the form
∑n

j=1(𝛼ij∕𝛽 i) 𝜉j ≥ 1, then one can derive the valid disjunctive

cut in the 𝜉 space

n∑

j=1
𝛾 j𝜉j ≥ 1, (36)

where 𝛾 j ∶= max{𝛼ij∕𝛽 i ∶ i = 1,… , k}, and finally one can transform it back to the

𝜉 space by substitution.

It can be seen that the above construction can always be applied in case 𝜉

∗
j ∈

{lj, uj} for all j = 1,… , n (because 𝛽 > 0), and produces a violated cut (as 𝜉
∗
= 0).

In all other cases, the above cut separation is just heuristic.

The inequality (36) is called Informed No-Good (ING) cut in [5], in that it can

be viewed as a strengthening of the no-good cut
∑

j∈L 𝜉j +
∑

j∈U(1 − 𝜉j) ≥ 1 often

used for bilevel problems with all-binary variables—and in many other constraint

programming and mathematical optimization contexts. Indeed, standard no-good

cuts correspond to the “almost blind” choice S∗ = {𝜉 ∈ ℝn ∶ 𝜉j ≤ 1 ∀j ∈ L, 1 − 𝜉j ≤

1 ∀j ∈ U}.
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Outperforming Image Segmentation
by Exploiting Approximate K-Means
Algorithms

Flora Amato, Mario Barbareschi, Giovanni Cozzolino,
Antonino Mazzeo, Nicola Mazzocca and Antonio Tammaro

Abstract Recently emerged as an effective approach, Approximate Computing

introduces a new design paradigm for trade system overhead off for result quality.

Indeed, by relaxing the need for a fully precise outcome, Approximate Computing

techniques allow to gain performance parameters, such as computational time or area

of integrated circuits, by executing inexact operations. In this work, we propose an

approximate version of the K-means algorithm to be used for the image segmenta-

tion, with the aim to reduce the area needed to synthesize it on a hardware target. In

particular, we detail the methodology to find approximate variants of the K-means

and some experimental evidences as a proof-of-concept.

1 Introduction

Nowadays, images are one of the most important medium for conveying informa-

tion. It is not only related to multimedia applications, but rather, even thanks to a

larger view offered by Big Data problems, understanding images and extracting the
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information from them is still a challenging task. An example of the use of images

is for biomedical applications, such as medical diagnosis, or navigation of robots.

This paper focuses on a particular image processing task, which is the segmen-

tation. Mainly, the image segmentation involves a clustering algorithm, that is a

process that partitions a group of data points into a small number of sets, namely

the clusters. As many Big Data applications are based on image clustering [1, 2],

new research challenges, related to system performance in executing such a task, are

arising.

Implementing algorithms as hardware accelerator could deeply affect system per-

formance, for instance involving Field Programmable Gate Array (FPGA) devices [3,

4]: for instance, Hussain et al. in [5] proposed a pipelined technique for implement-

ing a hardware accelerator hosted by a Xilinx Virtex 4 FPGA device. Compared to a

software implementation, they claimed to reach a speed-up of about 51 and a gain of

200 as energy saving. Contrary to the architecture proposed in [5], which employed

a range analysis for fixed-point format, we started from another concept, which is

given by the Approximate Computing (AC).

Indeed, researchers investigated on the benefits given by relaxing the need of

having a correct result in output employing incorrect operations [6]. First, there are

applications which tolerate a certain amount of error because are inherently robust

to input/computational error. This property is named inherent resiliency application

and opens the opportunity of performing sub-operations in an approximate manner,

saving computational resources, in case of software execution, or, conversely, hard-

ware area/energy.

Bearing in mind these considerations, in this paper we apply AC to obtain an

approximate hardware acceleration of the K-means algorithm. In particular, we

exploit the 𝕀DE𝔸 software for exploring variants of the K-means by applying the

bit-width reduction technique together with a multi-objective optimization approach.

We report a preliminary experimental campaign in which we show the efficacy of

the bit-width reduction technique combined with a hardware implementation of the

K-means. Moreover, by implementing two opposite solutions, namely one with the

highest error and highest performance, on a Xilinx Zynq-7020 FPGA, we show the

actual hardware overhead reduction.

The remainder of the paper is structured as follows: Sect. 2 gives a brief overview

about related work, while Sect. 3 details the K-means algorithm and the method-

ological flow of 𝕀DE𝔸; in Sect. 4 we report preliminary experimental results while

Sect. 5 draws the conclusions.

2 Approximate Computing in the Literature

The inadequacy of current technological and architectural methodologies is making

AC very popular in the scientific literature [7, 8]. Indeed, it has been proved that algo-

rithms do not need to be exactly executed, but rather they output good-enough results

despite some of their inner operations are executed in an approximate manner [6].
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This fact provides a new design axis which allows to trade output quality off for

performance gain. In case of software AC techniques, performance is meant to be

execution time, or memory accesses, while in case of hardware techniques, area and

energy consumption of the integrated circuits are taken into account.

As previously stated, algorithms which benefit from the AC are characterized

by what is defined as inherent application resiliency [6]. Most of them come from

domains in which outputs have to be interpreted directly by human end-users, such as

signal processing or multimedia, even though the inherent application resiliency has

been proved for search algorithm, machine learning and pattern recognition [9–11].

AC techniques involve any stack of a digital system, including: synchronization

elision [12], lossy compression [13], loop perforation [14] for the software layer;

unreliable DRAM [15], approximate processing [16], bit-width reduction [17] for

hardware and memory layers.

In order to manage AC techniques and system variants obtained by employing

them, the design process needs for automatic tools. Most of tools proposed in the

literature work on a specific design-level entry and by considering few AC tech-

niques [18].

In [19], authors proposed a new paradigm based on code mutation for implement-

ing a generic AC design exploration, named 𝕀DE𝔸 (𝕀DE𝔸 is a Design Exploration

tool for Approximate Algorithms). As discussed in Sect. 3.1, we exploit 𝕀DE𝔸 for

approximating the K-means algorithm.

3 Image Clustering Through Approximate K-Means

The K-means is one of the most popular algorithm employed for clustering applica-

tions. Indeed, K-means contemplates k centroids that are used to define clusters.

To comprehend how it performs, let us consider n data points x
¯
i, i = 1… n that

have to be partitioned in k clusters, such that each point in a given cluster is charac-

terized by the nearest mean with others. Hence, K-means aims to find the positions

𝜇i, i = 1… k of the clusters that minimize the distance between each data point in

the cluster. Formally, K-means solve the following problem:

argmin
c

k∑

i=1

∑

x∈ci

d(x, 𝜇i) = argmin
c

k∑

i=1

∑

x∈ci

‖‖x − 𝜇i
‖‖
2
2

where ci is the set of points that belong to cluster i.
A typical K-means clustering implementation makes use of the square Euclidean

distance:

d(x, 𝜇i) = ‖‖x − 𝜇i
‖‖
2
2 .
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A special case of K-means algorithm was originally designed by Lloyd [20] and

it is used to solve the K-means clustering problem.

The Algorithm 1 describes the Lloyd’s proposal: it eventually converges to a

point, although it is not necessarily the minimum of the sum of squares. That is

because the problem is non-convex and converges to a local minimum. Indeed, the

algorithm stops when the assignments do not change from one iteration to the next

one.

Data: Given K, the number of clusters, and |c|= number of elements in c
Initialize the center of the clusters 𝜇i = some value , i = 1, ..., k ;

while convergence is not reached do
Attribute the closest cluster to each data point

ci = {j ∶ d(xj, 𝜇i) ≤ d(xj, 𝜇l), l ≠ i, j = 1, ..., n};

Set the position of each cluster to the mean of all data points belonging to that cluster 𝜇i
=

1
|ci|

∑
j∈ci xj,∀i;

end
Algorithm 1: K-means Algorithm

In this paper, we use K-means in order to segment a set of images. The algorithm

performs first an initialization phase, and then proceeds with the segmentation of the

image by grouping pixels in clusters.

3.1 Approximate Computing by Mutating Algorithms

Even though the observation behind the AC is intuitive, a more spread adoption

of AC techniques is hampered by design challenges. First, the choice of a specific

approximate technique is not trivial since, as previously debated, it affects a specific

part of a computing system and there are no tools which are able to directly evalu-

ate the impact of approximating an algorithm. Moreover, the lack of both a general

methodology and a tool which makes it automatic, hinders AC to be integrated with

common hardware or software design flows.

Authors in [19] introduced a novel approach which promises to be general and

extensible. Indeed, they fostered a mutation-based technique to generate approxi-

mate variants by employing arbitrary AC techniques by means of software definition.

Indeed, the algorithm to approximate is provided in form of C/C++ project, while AC

techniques are implemented by extending clang-Chimera, a mutation tool based on

the clang/LLVM compiler suite. The mutation is preparatory to an exploration phase,

which is performed by tuning each applied AC technique on the code. It follows that

the cardinality of the solutions space is directly related to the number of configura-

tion for each technique and for every mutated point of the code. The exploration of

such a space is driven by a branch and bound (B&B) approach which prune subtrees

that crosses a given error/quality threshold according to a user-defined metric.
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As highlighted in [21], the number of variants that need to be explored could

make the approach unfeasible. Moreover, another drawback is the limitation given

by the error or quality function, which does not take into account the performance

gaining of variants.

Taking into account these considerations, rather than a B&B algorithm, in this

paper we exploit a multi-objective optimization approach by means of meta-heuristic

searching algorithms. Indeed, each AC technique can be characterized in terms of

error by executing the mutated and configured C/C++ algorithm but it needs also

to be tagged about the performance gain that it guarantees. As for the former, the

end-user can identify a suited error function which estimates, by means of a specific

metric, the distance of results between the approximate variant. As for the latter,

there are different performance functions that the end-user has to take into account.

They depends on the kind of AC technique since they affect different layers of a

computing system.

For our experimental set-up, we exploit the bit-width reduction, which is a tech-

nique that uses fewer bits to represent variables involved into an algorithm, com-

pared with the original type. The technique can be applied by considering standard

representation, meant to be executed in software [22], or custom for hardware imple-

mentation [17].

4 Preliminary Experimental Campaign

In order to exploit the 𝕀DE𝔸 approach exploring the solution space by means of

a multi-objective optimization approach, we developed a tool which considers two

objective functions: (i) error and (ii) reward. Contrary to the the B&B, which only

considers the error in each exploration step, we propose to evaluate each approximate

variant with a further characterization which takes into account the performance

gain. While the error function has to be minimized, we want a reward as high as

possible.

Thus, we coded a K-means algorithm in C/C++ and ran clang-Chimera to get a

mutated code. We set-up the error function as the mean square error (MSE) calcu-

lated between 20 original segmented pictures and the approximate ones. As for the

reward function, we considered the number of bits saved for addition and subtraction

operations and the squared number of bits saved for multiplication and division ones.

For brevity sake, we report only result related to the usage of the Non-dominated

Sorting Genetic Algorithm (NGSA-II), even though we applied other meta-heuristic

algorithms which were provided by the ParadisEO framework suite [23]. In our set-

up, we configured NGSA-II to work with an initial population of 500 approximate

variants and 1000 generations.

Preliminary experimental evidences are reported in Table 1, which contains 9

approximate configurations output as final population from the NGSA-II algorithm.

As one can notice, the chosen reward and the MSE are Inverse proportionality and

the highest reward value is associated with an MSE equal to 0.1.
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Table 1 Final population get from NGSA-II over approximate configuration of K-means

Solution MSE Reward

1 0.101754 1084

2 0.0996137 1054

3 0.0954545 1040

4 0.0954545 1011

5 0.0903658 977

6 0.0601272 950

7 0.0584772 391

8 0.0583554 387

9 0.043019 366

(a) Original Picture (b) Original Segmented
Picture

(c) Solution 1 (d) Solution 9

Fig. 1 Example of an image segmentation process performed with the original K-means and with

approximate variants found by 𝕀DE𝔸

Table 2 Hardware resources saving of solution 1 and 9 w.r.t. fully-precise K-means algorithm

Solution LUTs (%) Registers (%) Slices (%)

1 45 80 56

9 87 93 91

Examples of how approximate K-means variants perform are given in Fig. 1. In

particular, we reported the original picture (Fig. 1a) and the original segmented ver-

sion (Fig. 1b) against the one obtained from solution 1 and 9 of the Table 1 (Fig. 1c

and 1d respectively).

We further implemented solution 1 and 9 on a Xilinx Zynq-7020 FPGA in order to

evaluate the area saving. Table 2 illustrates the area saving in % of both the solutions

w.r.t. a fully-precise K-means implementation. The approximate solution 1 yield an

area saving in terms of look-up tables (LUTs) of about half a quantity.
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5 Conclusion and Final Discussion

Approximate Computing is claimed to be a very effective methodology to tackle

with tight application constraints. The basic idea of outperforming a specific task

just renouncing to perfect quality results can be used by a plethora of applications,

especially ones related to image elaboration. In this work we proposed and applied a

methodology to approximate the K-means algorithm by exploiting of the bit-width

reduction technique. We proved the feasibility of approximation by mutation, intro-

duced by the 𝕀DE𝔸methodology, in combination with a multi-objective optimization

approach. We ran some preliminary experimental runs that highlight the suitability

of the proposed approach. In particular, the most significant approximate configura-

tion introduced an MSE of 0.1 yield to about 50% of area saving w.r.t. the original

K-means algorithm implemented over a Xilinx Zynq-7020 device.

As part of future work, we aim to explore different multi-objective optimization

algorithms, as well as to try different reward metrics in order to investigate their

ability to find better approximate solutions.
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Approximate Decision Tree-Based Multiple
Classifier Systems

Mario Barbareschi, Cristina Papa and Carlo Sansone

Abstract Implementing hardware accelerators of multiple classifier systems assures

an improving in performance: on one hand, the combination of multiple classifiers

outcomes is able to improve classification accuracy, with respect to a single classi-

fier; on the other hand, implementing the prediction algorithm by means of an inte-

grated circuit enables classifier systems with higher throughput and better latency

compared with a pure software architecture. Although, this approach requires a very

high amount of hardware resources, limiting the adoption of commercial config-

urable devices, such as Field Programmable Gate Arrays. In this paper, we exploit

the application of Approximate Computing to trade classification accuracy off for

hardware resources occupation. Specifically, we adopt the bit-width reduction tech-

nique on a multiple classifier system based on the Random Forest approach. A case

study demonstrates the feasibility of the methodology, showing an area reduction

ranging between 8.3 and 72.3%.

1 Introduction

Today, digital data growth is a spreading phenomenon that involves all kinds of

computing systems, spanning from wearable devices to cloud computing, and it is

commonly identified by the Big Data term. It is not just about the data size or data

volume, but rather it is the way whereby the classic architectural approaches han-

dle information elaboration. Such inadequacy is generating main challenges for the

so-called Big Data problems and it is tight related to the technological limitations

and applications constraints.
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Researchers put a significant effort for data classification, machine learning and

pattern recognition algorithms, since they have to cope with large datasets and with

an important number of data samples per time unit, as well as the tight response

time required to process each sample. As for the former point, since even a negligi-

ble percentage of misclassifications will eventually impact on a relevant number of

samples, new learning algorithms have been developed, with the aim of improving

the classification accuracy. As for the latter points, which are namely throughput and

latency, proposed solutions make use of novel hardware architectures [10, 11].

Authors of [4] demonstrated the feasibility to implement Multiple Classifier Sys-

tems (MCSs), based on the Decision Tree (DT) model, onto Field Programmable

Gate Array (FPGA) devices. First, DTs are one of the most suited classification mod-

els for being implemented in hardware, since the visiting algorithm does not involve

expensive arithmetic computations, thus it solely requires comparisons. Moreover,

the literature proved the efficacy of MCSs based on DTs in many Pattern Recognition

applications, characterized by a large pattern variability [12].

Due to finite availability of hardware resources, some MCS model configurations

do not fit inside a target device and requires more resources for being synthesized. For

this reason, in this paper, we introduce the Approximate Computing methodology

which adds design axes that take into account the trade off between classification

accuracy and area overhead. In particular, through a case study, we prove that MCSs

can be successfully approximated introducing a negligible error by means of the

bit-width reduction technique.

The remainder of the paper is structured as follows: Sect. 2 gives a brief research

related work overview; Sect. 3 illustrates the methodological flow to approximate a

multiple DT model, while in Sect. 4 we show the experimental results; Sect. 5 draws

the conclusion.

2 Related Work

As previously discussed, DT models are appropriate for being realized as hardware

primitives. Several approaches are possible: they have different architectural charac-

teristics, i.e. sequential synthesis [3] or fully-parallel [2], different application fields,

such as health monitoring systems [7], traffic analysis [15], security purposes [6],

supporting single classifiers or multiple classifier systems [17].

As for the architecture, the design of a sequential or parallel accelerator impacts

the latency of the circuits as well as the area/energy, since a parallel architecture

would lead to bigger and faster circuits compared to the sequential ones [7]. Those

parameters have to be taken into account accordingly to their target applications in

order to fit design constraints. As for the MCSs, they deal with the performance of

a single classification model that cannot be optimized beyond a certain threshold

despite efforts at either refining the model description or the classification. Indeed,

adopting a MCS together with a combining function compensates the conditioning

of a single classifier [19].
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The Approximate Computing term has been introduced for indicating a design

paradigm that implements efficient hardware circuits and software components by

tolerating inexact outputs. Researchers proved the efficacy of imprecise computing

for efficient design of software/hardware modules that implement approximate algo-

rithms thanks to their inherent resiliency, that is the property of some algorithms to

return acceptable outcomes despite some of its inner computations being approxi-

mate [9, 18].

In this sense, the Approximate Computing design exploits approaches that lever-

age inherent resiliency through optimizations which trade outputs quality off for bet-

ter performance, such as time, energy consumption, occupied area, and so on [8]. The

inherent resiliency is prevalent in data analytics, web search and wireless communi-

cations, which exhibits the same behavior of applications whose output is intended

to be interpreted by humans [14].

3 Approximate Computing for DT Models

As briefly discussed in the previous section, MCSs exploit a combining function

to decide for a single output starting from multiple model outcomes. Such function

opens the opportunity to approximate each model of the MCS, since errors intro-

duced turn out compensated. Thus, it is clear that the prediction algorithm of a MCS

is characterized by a strong inherent resiliency that can be exploited to enhance per-

formance.

In order to provide best approximate configurations of MCSs, in terms of perfor-

mance gain and introduced accuracy error, we foster (i) the approximation of bit-

width reduction of features involved in the model and (ii) the automatic exploration

of approximate configurations for different MCSs.

To this aim, we start from a trained model, described through a Predictive Model

Markup Language (PMML) file, an XML-based format developed by Data Mining

Group (DMG), intended to support different statistical and data mining models [13].

Then, we obtain a C++ project for handle PMML models by means of CodeSynthesis

XSD framework that performs statically-typed C++ bindings from XML Schema

definitions. The next step is the developing of a C++ MCS predictor in order to

generate approximate variants w.r.t. a given Approximate Computing technique. As

described in the next subsection, we employ clang-Chimera and 𝕀DE𝔸 tools to obtain

Pareto-optimum approximate configurations.

The last operation is the generation of corresponding approximate hardware pre-

dictors. To this aim, we branch the PMML2VHDL project [1] for the PMML2AVHDL

(PMML to Approximate VHDL). This tool is able to automatically generate an

approximate VHDL project implementing the trained model from a PMML, con-

figured by means of the 𝕀DE𝔸 output.
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clang-Chimera

Operator-1
Operator-2
...

IDEA

Original
Project Files

Mutated Files

Pareto-frontier
configurations

Mutator Operators

Fig. 1 Execution flow of 𝕀DE𝔸 tool

3.1 The 𝕀DE𝔸Work-Flow

The methodology behind the 𝕀DE𝔸 tool, first introduced in [5], is shortly illustrated

in Fig. 1. The process considers algorithms coded in C/C++ language, hence the

original algorithm, as well as approximate variants obtained from it, can be easily

simulated in software.

The entire process involved 2 tools, namely clang-Chimera and 𝕀DE𝔸, as draw

in Fig. 1. The former is a mutation engine for C/C++ code based on the Clang com-

piler and written in C++. It applies a list of configured mutators on the code that

implement a specific Approximate Computing Technique. The latter is a design

exploration tool which performs a branch and bound (B&B) search. In particular,

it applies a greater approximation for each mutation in the code till to cross a given

error threshold. It follows that, at each iteration, 𝕀DE𝔸 generates an approximate ver-

sion of the target algorithm, which exhibits an error greater than or equal to the error

that has been observed in previous iterations. Once the exploration terminates, the

leaves of the execution tree are Pareto-optimum configurations of the original algo-

rithm, such that they cannot be further approximated without crossing the chosen

error threshold.

It is worth noting that the whole work-flow is generic and can be extended to

implement different Approximate Computing techniques and different approxima-

tion campaigns, changing the error/quality function and the threshold. Indeed, as for

the approximation of predictor algorithm, we extended 𝕀DE𝔸 to support an opera-

tor which reduces the bit-width of numeric types, while the quality (and, hence, the

error) is evaluated by comparing the accuracy of the approximate model w.r.t. the

original one.

4 Experimental Results

The approach introduced in this paper is evaluated through a spam email detection

case study. Classifying emails as SPAM or no-SPAM is a problem characterized
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by a significant amount of information to be classified. We consider the Spambase
dataset, freely available on UCI Machine Learning repository [16]. In particular, it

contains 4601 instances, including 1813 SPAM emails, characterized by 57 features,

expressed in real-number format, that indicate whether a particular word or character

was frequently occurring in the email, and one binary class that denotes if the emails

are SPAM or no-SPAM. We adopt KNIME Analytics Platform for training a DT

classifier, and different Random Forest classifiers made up of 10, 20, 30 and 40 trees.

We split the dataset into training and test sets considering a 50/50 holdout.

Among different Approximate Computing techniques, we target the bit-width

reduction approach for representing model features and, as previously stated, we

extended 𝕀DE𝔸 accordingly. Reducing the bit-width leads to represent values neglect-

ing some of the least-significant bits, while the remaining bits assume the same

weight of the previous representation. The impact of such technique on a hardware

implementation turns out to reduce the size of the circuits, in particular, neglecting

gates involved in the comparators.

In order to evaluate the error introduced by approximations, 𝕀DE𝔸 performs accu-

racy evaluation by searching for all possible features bit-reduction combinations with

a B&B technique. In particular, 𝕀DE𝔸 approximates the value of the mantissa. This

means that the whole solutions space amounts to 5257, where 52 are the bits of the

mantissa (since KNIME adopts IEEE 754 double precision for real numbers), and 57

the number of features. We further configure 𝕀DE𝔸 with a maximum error thresh-

old of 0.1%, that is a low error value on the classification accuracy, and with an

error function that determines the absolute differences between the original and the

approximate model accuracy.

The number of solutions that we need to explore is clearly not feasible: even if

each single run of 𝕀DE𝔸 took 1 ns to complete, the time required to evaluate 1% of

that solutions would take about 2 × 1079 years. Hence, we adopted two strategies to

reduce the huge amount of possible combinations: (i) pre-pruning of the B&B nodes

choosing as tree root an approximate variant in which we already remove some bits

from mantissae; (ii) grouping features by information gain.

As for the former purpose, we conducted preliminary tests considering all the fea-

tures approximated to the same number of bits and by setting the error threshold to

zero. Hence, for each classifier, we obtained the starting bit-width reduction search-

ing root. It is worth noting that, contrary to KNIME, we used the IEEE 754 single

precision since it does not introduce any error in the trained predictor.

As for the latter point, we design the following tests by dividing the features into

2, 4, 6 and 8 groups. In each of these, a group consists of the remaining features

approximate to the same number of bits. So, for example, the test with 8 groups is

constituted by the seven most discriminative features (according to the information

gain criterion), individually approximated, and by the group of the remaining ones.

Table 1 reports result in terms of occupied hardware resources, namely number

of look-up tables, registers and slices, collected at post place-and-route phase, w.r.t.

the Xilinx Virtex 5 XC5VLX110T. The first row of each experimental campaign

reports result of the original model, while the others report two different tests. Indeed,
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Table 1 Hardware resources for different implementations of Spambase predictor models on the

Xilinx Virtex 5

#Trees Accuracy Feature groups Saved bits Error LUT Register Slices

1 0.907 N/D N/D N/D 1198 2302 925

1 969 4.346e-04 644 1478 583

855 0 644 1478 583

2 969 4.346e-04 644 1478 583

967 0 657 1482 560

4 982 8.692e-04 631 1454 606

871 0 727 1595 680

6 988 4.346e-04 632 1442 538

880 0 727 1577 654

8 998 8.692e-04 630 1423 580

1004 0 635 1421 455

10 0.939 N/D N/D N/D 15330 10704 6607

1 1083 8.692e-04 9815 8499 3535

855 0 11853 8999 4163

2 1086 8.692e-04 9784 8488 3486

862 0 11785 8983 3015

4 1090 8.692e-04 9740 8472 2653

979 0 10341 8745 3685

6 1096 8.692e-04 9714 8460 3504

989 0 10310 8724 3580

8 1101 8.692e-04 9646 8430 3571

998 0 10232 8696 3643

20 0.944 N/D N/D N/D 26384 18280 9580

1 1083 8.692e-04 18809 15528 6231

855 0 22372 16113 8044

2 1086 8.692e-04 18720 15502 6062

862 0 22222 16075 7266

4 1091 8.692e-04 18661 15482 7379

873 0 22122 16051 8451

6 1096 8.692e-04 18623 15467 7277

1036 0 19544 15723 7370

8 1102 0 18091 15233 8341

1102 0 18091 15233 8341

30 0.945 N/D N/D N/D 37345 25444 10706

1 1140 8.692e-04 26066 21798 8121

1026 0 29260 22721 8341

2 1142 8.692e-04 26031 21785 7393

1027 0 29258 22719 8212

4 1200 4.346e-04 23423 20795 6678

1031 0 28976 22629 8491

(continued)
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Table 1 (continued)

#Trees Accuracy Feature groups Saved bits Error LUT Register Slices

6 1202 4.346e-04 23330 20758 6710

1200 0 23433 20797 6661

8 1204 4.346e-04 23249 20707 6610

1202 0 23357 29746 6624

40 0.948 N/D N/D N/D 47455 32370 13671

1 1083 8.692e-04 37055 29218 10611

1026 0 38840 29682 10735

2 1086 8.692e-04 36925 29171 10237

1030 0 38637 29633 10883

4 1046 8.692e-04 34451 28409 10196

1037 0 38593 29613 10870

6 1149 4.346e-04 34381 28385 10164

1146 0 34460 28412 10233

8 1203 8.692e-04 30847 27034 9060

1152 0 33811 28170 10017

for each feature group test, we pick Pareto-optimum solutions: the most bit-saving

solution and one with minimum error.

At first glance, the experiments highlight the effectiveness of the approach, i.e.

area saving, ranging from 15.21 to 47.41% LUTs, from 8.30 to 38.27% Registers,

from 11.78 to 59.85% Slices. Furthermore, in the majority of cases, the 8 groups tests

saves more resources. This confirms that the best results are obtained by separately

approximating the most discriminative features, while leaving the other in a single

group.

As demonstrated in Table 1, the percentage of saved area occupation decreases

as the number of trees increases. This is because the voter is not involved by the

approximation process.

Moreover, Pareto frontiers are characterized by solutions which are not affected by

any classification accuracy error: for each experimental campaign, there is a Pareto-

solution with no error. This is the most important result because it demonstrates that

for MCSs model this approach allows us to reduce hardware circuitry even without

compromising model accuracy. Let us consider the comparison between a single DT

and the Random Forest model made up of 10 trees. The DT model occupies about

5% of the Virtex5 resources. The original Random Forest with 10 trees increases the

accuracy of 3.2% and the area it occupies is about 40%. In our tests we demonstrate

that 40% of the Virtex5 area can be occupied by approximating without errors a

Random Forest made up of 30 trees, so giving rise to a further improvement of the

accuracy (up to the 4%).
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5 Conclusions

In this paper, we advanced the implementation of hardware circuits for Decision

Tree-based Multiple Classifier Systems by exploiting FPGA devices. Compared to

previous approaches, we adopted the Approximate Computing bit-width reduction

technique to reduce the area overhead despite the introduction of classification accu-

racy loss. To this aim, we illustrated a novel Approximate Computing approach,

which makes use of a mutation-code tool and a design space exploration for search-

ing Pareto-optimum solutions, that is clang-Chimera and 𝕀DE𝔸 tools. We extended

these tools and proposed an original design flow to obtain an approximated variant

of Decision Tree-based Multiple Classifier Systems models.

Through a real case study, we proved the feasibility of the proposed methodology,

which was always able to produce approximated models with no classification errors,

saving up to the 72.31% of the occupied resources.
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Abstract In the Big-Data era, many engineering tasks have to deal with extracting

valuable information from large amount of data. This is supported by different

methodologies, many of which strongly rely on curve fitting (both linear and

non-linear). One of the most common approach to solve this kind of problems is the

use of least squares method, usually by iterative procedures that can cause slowness

when applied to problems that require to repeat the fitting procedure many times. In

this work we propose a method to speed-up the curve fitting evaluation by means

of a Look-up Table (LuT) approach, exploiting problems resilience. The considered

case study is the fitting of breast Dynamic Contrast Enhanced-Magnetic Resonance

Imaging (DCE-MRI) data to a pharmacokinetic model, that needs to be fast for clin-

ical usage. To validate the proposed approach, we compared our results with those

obtained by using the well-known Levenberg-Marquardt algorithm (LMA). Results

show that the proposed approach and LMA are not statistically different in terms

of MSE (with respect to the observed data) and in terms of Sum of Differences in

the parameter and in the solution spaces. Considering the computational effort, the

proposed LuT approach is an order of magnitude faster than the LMA on the same

dataset.
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1 Introduction

Nowadays almost every field of research deals with extracting valuable information

behind the huge amount of available raw data. Although this is supported by dif-

ferent methodologies, many of them strongly rely on curve fitting, an optimization

method that aims to find the parameters’ values of a mathematical model that best

fit some given data points [1]. It has a crucial role in many engineering tasks, since

the derived parameters allow the user to infer the function values for those points

whose measurements are not available [2]. Common real-world problems must have

constraints on parameters, since they often represent well-known natural or artificial

properties (such as physics, biological, mechanical, etc.) that have to range within

well defined boundaries. For this reason, it is common to have more equations than

unknowns function parameters, so giving rise to an overdetermined system problem.

The standard solving approach is the least squares method which consists in mini-

mize the sum of squared residuals between the observed data (points to be fitted) and

the fitted values, obtained by evaluating the fitting function [3]. Least-squares can

be distinguished in linear and non-linear according to the linearity of residual in all

the unknowns. This characterisation has a deep impact both on the solution evalua-

tion feasibility and on the accuracy. The former has in fact a closed-form solution,

while the latter usually does not and needs to be solved by different approaches, such

as iterative procedures that operate by approximating step-by-step a linear system.

Since many real engineering problems fall in non-linear least squares family, differ-

ent procedures to deal with it were so far proposed. Among them, it is worth to men-

tion the Levenberg-Marquardt algorithm (LMA) [4, 5], an iterative approach that

merges Gauss-Newton algorithm and the Gradient Descent method to derive a more

robust procedure (meaning that it can converge even starting far aside from the min-

imum). For its iterative nature, one of the main disadvantages of this algorithm is its

slowness when applied to problems that require repeating the fitting procedure over

a huge amount of different observed data. Despite this limitation, many engineering

problems are resilient to small perturbations in the data, allowing to settle on a near-

optimum solution. In this paper we proposed a method to speed-up the curve fitting

parameter evaluation by means of a Look-up Table (LuT), properly built off-line. We

will demonstrate that our approach can strongly speed-up the curve fitting, without

affecting the reliability of the obtained results. One of the research field that deals

with curve fitting (but that has also some resiliency capacity) is the Dynamic Contrast

Enhanced-Magnetic Resonance Imaging (DCE-MRI, Fig. 1) automatic processing.

In recent years it has gained popularity as an important complementary diagnostic

methodology for early cancer detection [6, 7].

In DCE-MR images each voxel (volumetric pixel) is associated with a Time

Intensity Curve (TIC), that reflects the absorption and the release of the contrast

agent. A very important TIC property is that it can be modelled by means of dif-

ferent Physiologically-Based Pharmacokinetic (PBPK) models, leading the basis

to accurately estimate the contrast agent concentration from the TIC data [8]. As

a case study, we will focus on fitting the contrast agent concentration to a given



Look-Up Tables for Efficient Non-Linear Parameters Estimation 51

Fig. 1 The DCE-MRI study
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physiological model for breast DCE-MRI, with the aim to compare different motion

correction techniques. To validate the suitability of the proposed approach, we com-

pare our results with those obtained by using the Levenberg-Marquardt algorithm.

The paper is organized as follows. In Sect. 2 we describe the proposed approach and

present the considered case-study. In Sect. 3 we report the results of our analysis.

Finally, in Sect. 4 we discuss the results and draw some conclusions.

2 The Proposed Approach

Extracting information behind the data implies defining the mathematical model

that describes relations and processes behind the data itself. If the values of the

model parameters are unknown, it is possible to estimate them from the observed

data, through curve-fitting procedures. A non-linear least-squares approach usually

requires an iterative approximation of the solution and, therefore, it is time expensive

and computationally heavy. Our proposal aims to strongly reduce the computational

overhead due to iterations, by approximating the solution using a one-time and off-

line generated Look-Up Table (LuT), properly indexed to allow fast access to the

required information (model parameters).
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Model

f (x)

f (x)x

Look-Up Table
LuT params LuT data

Fig. 2 Creating a LuT starting from a model

2.1 Curve Fitting Using Look-Up Tables

A LuT is, basically, a table composed of N rows Ri, each one containing a given para-

meters combination LuTparams
i and the values LuTdata

i of the function f𝜙(x) evaluated

by using the parameters 𝜙 in the same row (see Fig. 2).

2.1.1 Creating the LuT

Since the LuT represents the parameters and the relative function values for a spe-

cific problem, it can be calculated off-line and used when a parameter estimation is

required. The procedure for creating a LuT requires to define the range [Pmin
j ,Pmax

j ]
where each parameter Pj is defined and a step value 𝛿j for sampling the values of

these parameters. This range can be directly derived from the model: if the parame-

ters represents known properties, their values can be constrained in a well-known

range; otherwise, if the parameters are mathematical quantities, their range can be

sharply chosen. Choosing the right 𝛿j is crucial: while a too big sampling step can

introduce an unacceptable parameter approximation, a too small sampling step will

produce a bigger LuT.

2.1.2 Using the LuT

Obtaining the desired fitting parameters using the LuT requires to search in the table

for the fitted values that better approximate the observed data and to extract the rel-

ative parameters. In practice, we are searching for the row Ri having the smallest

difference between the observed data and the LuTdata
i in the least-square sense. This

means that using the LuT for the fitting first i requires the evaluation of the differ-

ences along the whole table and then ii a search for their minimum. Due to the huge

amount of data contained in the LuT, the time performance required by a sequen-

tial search could be comparable, or even worst, with respect to that of an iterative

curve-fitting procedure. Moreover, since these differences depend on the observed

data, it is not possible to evaluate them at creation-time, preventing the definition

of a suitable index. To overcome this limit, we propose to pre-select a fraction of

the LuT, enabling a sequential search on a smaller table. We chose to characterize
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Look-Up Table
LuTparams LuT dataAUC

Index

1

5.499
48932
48933
48934

83234

5.497

5.501

14.632

0.063
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Fig. 3 Indexes for speeding-up the search in the LuT. An index helps to first select the orange

curves (AUCobserved ± 𝛿) and then selecting the best curve (in red)

the curve shape by its Area Under Curve (AUC), allowing to pre-select all those

rows whose AUC (AUCfitted) are in a range [AUCobserved − 𝛾, AUCobserved + 𝛾] (see

Fig. 3). Choosing 𝛾 is critical: small values ensure a faster research, but could lead to

inaccurate fitting, while bigger values produce more precise fittings, but can be com-

putationally inefficient. It follows that the actual 𝛾 value should be tailored on the

fitting model. Even if 𝛾 improves the performance, it could introduce an additional

error. To limit it, if the actual fitting error is within the mean error ± the standard

deviation calculated over the last K fittings, then the fitting is accepted; otherwise,

the search is repeated over the whole LuT, accepting a slower search in order to get

a more precise result.

As already stated, the actual values of 𝛿, 𝛾 and K should be suitable selected.

2.2 Case-Study: Fitting PBPK Models in Breast DCE-MRI

In our previous work [9] we proposed a novel Quality Index (QI) to rank the effec-

tiveness of different Motion Correction Techniques (MCTs) in breast DCE-MRI.

The key concept underlying the proposed QI is fitting the DCE-MRI data to a given

PBPK model. As stated in the Sect. 1, the TIC can be modelled by means of differ-

ent PBPK models. Among them, one of the models that we have proven [10] to be

well suited for ranking MCTs in breast DCE-MRI is the Extended Tofts-Kermode

(ETK) combined with the Arterial Input Function (AIF) proposed by Parker et al.

[11] (from now on ETK-P).

2.2.1 ETK-P Model

The ETK model [12] uses a compartmental approach to represent blood plasma and

the extra-vascular extracellular space (EES). The contrast agent (CA) concentra-

tion in each voxel Cv(t) is calculated as the convolution of an exponential impulsive

response and the Parker AIF Cp(t) as in Eq. 1,
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Cv(t) = Ktrans ∫
t

0
e−

Ktrans

ve
(t−s)

⋅ Cp(s) ds + vpCp(t)

Cp(t) =
2∑

i=1

Ai

𝜎i

√
2𝜋

e
−(t−Ti)2

2𝜎2i + 𝛼
e−𝛽t

1 + e−s(t−𝜏)

(1)

where Ktrans
is the tissue volume transfer constant (or permeability) [ 1

min
]; ve is

the EES volume per unit volume of tissue and vp is the plasma volume fraction.

Parker et al. [11] report the ETK-P model parameters values obtained according

to a population-averaged evaluation.

2.2.2 LuT in ETK-P Fitting

In the considered case-study we need to fit contrast agent concentration to the ETK-P

model for each voxel within the breast volume. As shown in our previous works [9,

10], this operation is slow and can take up to 15 hours per patient. In this context,

LuT has been created by using the following setting: Ktrans
ranges in [0, 10] with 𝛿

= 0.01; ve ranges in (0, 1] with 𝛿 = 0.01; vp ranges in (0, 1] with 𝛿 = 0.01; 𝛾 = 0.4;

K = 50.

The resulting LuT is composed exactly of 10.010.000 rows and 13 columns, where

the first three are the parameters (LuTparams
), while the last ten are the values of the

ETK-P model evaluated using the parameter in the same row (LuTdata
). At the same

time, an array with the same number of rows is generated in order to contain the

AUC index.

3 Experimental Results

In this work we used a dataset composed of breast DCE-MRI data from 30 patients

(average age 40 years, in range 16–69) with 14 benign lesions and 16 malignant

lesions, histopathologically proven. All patients underwent imaging with a 1.5 T

scanner (Magnetom Symphony, Siemens Medical System, Erlangen, Germany)

equipped with breast coil. DCE T1-weighted FLASH 3D coronal images (80 slices

each) were acquired (Scanning Sequence/Variant: GR/SP; ScanOptions: PFP;

RT/ET: 9.8/4.76 ms; FA: 25 degrees ; FoV 370 × 185mm
2
; thickness: 2 mm; gap:

0; acquisition time: 56s). One series (t0) was acquired before and 9 series (t1-t9)

after the intravenous injection of Gadolinium-diethylene-triamine penta-acetic acid

(Gd-DOTA, Dotarem, Guerbet, Roissy CdG Cedex, France). All the results are com-

pared with those obtained by using the Levenberg-Marquardt algorithm (LMA) eval-

uated on an Intel Core i7–3630 QM 64 bit Quad Core 2, 4 GHz CPU equipped

with 16 GB RAM. All comparisons are reported by using box-plots where median,
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Fig. 4 LuT performance evaluation. On the left: performance comparison in terms of throughput

(TIC/s). In the middle: MSE comparison between LuT and LMA. On the right: the sum of differ-

ences in the parameter and curve spaces between LuT and LMA. With the aim of highlighting the

medians and the corresponding IQRs, the MSE axis has been accordingly centred, causing some

outliers to fall out of the plotted interval

quartiles, Inter-Quartile Ranges (IQRs) and outliers are shown. When needed, we

have also drawn notches to highlight 95% confidence intervals of the medians.

Figure 4 (on the left) compares LuT and LMA throughput in terms of number

of fitted TIC per second over the whole dataset. It is worth noticing that a fair com-

parison should also consider the LuT building time that, however, can be amortized

over the total number of TIC to be fitted (#fittings) since the LuT has to be calcu-

lated only once. This implies a trade-off in preferring building the LuT versus the

use of LMA, quantified by a break-even point Nb representing how many successive

fittings are required in order to make the LuT approach more convenient. In our case

study, since Nb = 218400 is less than #fittings = 3207195, the LuT is preferable and

its creation affects each fitting for less than 0.0094s.
Figure 4 (in the middle) compares LuT and LMA approaches in terms of

goodness-of-fit (Mean Square Error - MSE) over the whole dataset. The MSE

evaluated for both LMA and for proposed LuT approaches are comparable with

95% of confidence (as shown in the notches on the boxplot): MSELMA = 5.5119 ×
10−3±8.5270 × 10−4 and MSELuT = 6.1329 × 10−3±7.6470 × 10−4.

Finally, we compare the suitability of the proposed LuT approach with respect

to the LMA by calculating the Sum of Differences both in the parameter and in

the solution spaces over the whole dataset (Fig. 4 — on the right). The boxplot

also shows that the 0 value is contained within the 95% confidence interval for the

sum of differences both in the parameters and in the solutions space (between LuT

and LMA): DIFFparameters = 2.0000 × 10−4±7.2255 × 10−4 and DIFFsignal_intensity =
−4.0000 × 10−4±2.0180 × 10−3.
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4 Discussion and Conclusions

The aim of this paper was to propose a method to speed-up the curve fitting prob-

lem by means of a Look-up Table (LuT) in those situations in which a fast near-

optimum solution is strongly preferred over a more precise, but much slower, one.

The considered case study is the fitting of breast DCE-MRI tumour data to a PBPK

model. Results showed that the proposed LuT approach can be effectively used with-

out affecting the reliability of the fitting results. This is supported by Fig. 4 (in the

middle), in which it is possible to note that box plots of MSE evaluated between the

fitted points and the original DCE-MRI data almost overlap. Results also show that

the best fitting parameters obtained by applying the Levenberg-Marquardt are not

statistically different from those obtained by applying the proposed LuT approach.

The same can be stated for the fitted values. These assertions can be derived from

Fig. 4 (on the right), showing that the 0 value is contained within the 95% confidence

interval for the sum of differences both in the parameters and in the solutions space

(between LuT and LMA). Finally, we compared the required fitting time. Figure 4

(on the left) shows that the proposed LuT approach is more than an order of mag-

nitude faster than the LMA one in terms of number of fitted TIC per seconds. The

speed-up is achieved since the LuT is evaluated off-line and only once for a given

fitting function. This implies that, since the LuT evaluation effort is amortized over

all patient, more time a given LuT is used, less its evaluation affects the computing

time. Future works will investigate if it is worth applying the LuT approach even for

ordinary least squares and when using others curve fitting resolution algorithms.
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On the UTA Methods for Solving the Model
Selection Problem

Valentina Minnetti

Abstract In this paper, the multiple criteria UTA methods are proposed for solving

the problem of model selection. The UTA methods realize a ranking of the models,

from the best one to the worst one, by means of the comparisons of their global utility

values. These values are computed by means of Linear Programming problems. Two

UTA methods are illustrated. An example, that examines the performances of some

classification models in the web context, is presented.

Keywords UTA methods ⋅ Linear programming ⋅ Classification models

1 Introduction

The model selection is one of the modern scientific enterprises [1]. It is an impor-

tant part of any statistical analysis [1]. Both frequentist and Bayesian schools have

dealt with this issue, proposing several algorithms for choosing a “good model” and

proposing criteria for judging the quality of the models [1]. The Bayes factor, the

Bayes Information Criterion (BIC), the Akaike Information Criterion (AIC), the

bootstrap criterion, the cross-validation criterion, are some of the statistical crite-

ria that evaluate the performances of the statistical models [1, 2]. As well as, the

indices R2
and the Mallow’s statistic are used for the evaluation of the regression

models [1, 2].

The model selection can be extended to all types of models, statistical and non

statistical, whose performances can be measured by indicators and indices. When

there are many models (models of different families or models in the same fam-

ily), the choice of the best one can be a hard problem. So, rather than to choose the

“best model”, according to some criterion, it is more reasonable to disregard those

which are obviously poor, maintaining a subset for further consideration [1]. Also,
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when there are many, different, conflicting criteria (to be minimized and/or to be

maximized), the task of selecting a subset of models is a hard problem.

The proposal of this paper is to deal the problem of model selection with multiple

criteria approach. In the context of Multiple Criteria Decision Aiding (MCDA), the

UTA methods provide a solution to the problem of conflicting criteria, by creating a

unique criterion that synthesizes all the criteria under consideration. By constructing

a unique criterion, the selection of a subset of models is performed and thus, the

deleting of the worst ones is a simple task.

In the next section, a brief introduction to MCDA and to two UTA methods are

described. Then, the analysis of an example in the web context is presented.

2 The UTA and the UTASTAR Methods

In this section an introduction to the MCDA and to two UTA methods are presented,

without too many details.

In MCDA, a finite set of n objects (alternatives, projects) A = {a1, a2,
… , an} is evaluated by means of a finite set of m criteria G = {g1, g2,… , gm}. A

criterion is a real-valued function gj ∶ A → ℜ, whereby gj(ak) indicates the perfor-

mance of the alternative ak on the criterion gj. The comparison of any pair of alter-

natives ai and ak, by means of a binary relationship, can be performed by comparing

the values gj(ai) and gj(ak), according to the structure of the criterion gj [3]. For

example, the true criterion works as follows:

∙ if gj(at) = gj(as), then atIjas or asIjat
∙ if gj(at) > gj(as), then atPjas
where Ij represents the indifference binary relationship (∼j) and Pj the strict prefer-

ence binary relationship (≻j) on the criterion gj. Both binary relationships are tran-

sitive. Such structure of the preferences is rather rigid, because the DM must be

rational. It means that a little difference of two performances is meaningful in order

to express a strict preference binary relationship.

Let g∗j and gj∗ be the best and the worst values of the criterion gj, respectively;

let g
j
= minak∈A[gj(ak)] and gj = maxak∈A[gj(ak)] be the minimum and the maximum

value of the criterion gj, respectively. A criterion gj can be either of gain or cost type.

In the first case, the Decision Maker (DM) prefers high values of gj (i.e. g∗j = gj or

gj∗ = g
j
), while in the second case, the DM prefers low values of gj (i.e. g∗j = g

j
or

gj∗ = gj).
The UTA (UTilité Additives) methods are based on the true criterion. It means

that, in order to establish the relationship at ≻ as, a system of linear inequalities must

be considered in the following manner:

{
gj(at) > gj(as) ∀gj ∶ g∗j = gj
gj(at) < gj(as) ∀gj ∶ g∗j = g

j
(1)



On the UTA Methods for Solving the Model Selection Problem 61

And, in order to establish the relationship ak ∼ ah, the equality gj(ak) = gj(ah) must

hold for all criteria.

The UTA methods solves the multiple criteria ranking problem, which consists

in ordering the alternatives from the best one to the worst one, by comparing their

global utility values [4]. In the UTA methods, the idea is to described the global util-

ity function as the sum of the marginal utility functions and a residual value, which

defines an estimation error. For the alternative ak this error measures the distance

between the theoretical utility value, obtained by the utility model and the empirical

utility value, provided by DM, of ak, as follows:

𝜀(ak) =
||||||U(ak) −

m∑
j=1

uj[gj(ak)]
|||||| (2)

The DM expresses his/her preferences in terms of utility values on the reference
alternatives, belonging to the reference set AR. So, taking into account the structure

of the true criterion, for each pair of consecutive reference alternatives, either the

strict preference binary relationship or indifference binary relationship must hold. In

other to find them, utility values have to be assigned by the DM, as follows:

∙ if U∗(a′

k) = U∗(a′

k+1), then a′

k ∼ a′

k+1
∙ if U∗(a′

k) > U∗(a′

k+1), then a′

k ≻ a′

k+1

With this representation of the DM’s preferences, the chain of the binary rela-

tionships has the form of a weak order. In the case of a strict preference rela-

tionships (≻), the DM is asked to assign different utility values. In case of uncer-

tainty of the DM, it is sufficient that he/she fixes a value 𝛿, defined as follows:

𝛿 = U(a′

k) − U(a′

k+1),∀(a
′

k, a
′

k+1) ∈ AR ∶ a′

k ≻ a′

k+1.

The marginal utility function u(gj) must be monotonic, in order to maintain the

property of monotonicity of the true criterion [4]. In particular, u(gj) is approxi-

mated with piecewise linear function, of which the segments connect the breakpoints(
gij, uj(g

i
j)
)

. The abscissas of these points are found, as follows:

gij = g
j
+ i − 1

𝛽j − 1

(
gj − g

j

)
,∀i = 1,… , 𝛽j (3)

where 𝛽j is the number—fixed by DM—of the breakpoints of the marginal utility

function u(gj). The values gij in (3) divides the interval [g
j
, gj] of the criterion gj into

𝛽j − 1 subintervals, having equal size. Clearly, when a criterion gj is of gain type,

g1j = gj∗ and g𝛽jj = g∗j .

The ordinates uj(gij) are the marginal utility values to be estimated by means of

the Linear Programming (LP). As a consequence, the marginal utility values of each

performance gj(ak) must be computed as linear function of uj(gij) by using the linear

interpolation, according to the following formula:
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uj[gj(ak)] = uj(gij) +
gj(ak) − gij
gi+1j − gij

[uj(gi+1j ) − uj(gij)] (4)

where [gij, g
i+1
j ] is the interval, containing the value gj(ak) on the criterion gj.

Let 𝛥(ak, ak+1) be the difference between the two theoretical global utility val-

ues U(ak) and U(ak+1). For all pairs (a′

k, a
′

k+1) ∈ AR ∶ a′

k ≻ a′

k+1, their corresponding

empirical utility values, assigned by the DM, must be compared with their theoretical

utility values, in the following manner:

𝛥(a′

k, a
′

k+1) = U(a′

k) − U(a′

k+1) ≥ 𝛿 (5)

where

U(a′

k) =
∑m

j=1

{
uj(gij) +

gj(a
′

k) − gij
gi+1j − gij

[uj(gi+1j ) − uj(gij)]

}
+ 𝜀(a′

k).

Given a reference set AR, composed of at least two alternatives, the marginal utility

values uj(gij) and the estimation errors 𝜀(a′

k) are estimated by solving the following

LP problem:

min z =
∑
a′k∈AR

𝜀(a′

k) subject to

𝛥(a′

k, a
′

k+1) ≥ 𝛿 ∀(a′

k, a
′

k+1) ∈ AR ∶ a′

k ≻ a′

k+1 (6.1)
𝛥(a′

k, a
′

k+1) = 0 ∀(a′

k, a
′

k+1) ∈ AR ∶ a′

k ∼ a′

k+1 (6.2)∑m
j=1 uj(g

∗
j ) = 1 (6.3)

uj(gj∗) = 0 ∀j = 1,… ,m (6.4)
uj(gi+1j ) − uj(gij) ≥ 0 ∀j = 1,… ,m,∀i = 1,… , 𝛽j − 1 (6.5)
uj(gij) ≥ 0 ∀j = 1,… ,m,∀i = 1,… , 𝛽j (6.6)
𝜀(a′

k) ≥ 0 ∀a′

k ∈ AR (6.7)

The two normalized constraints (6.3) and (6.4) are necessary to find the marginal

utility values in the interval [0,1].

The constraint (6.5), regarding to an increasing utility function is necessary to

maintain the property of monotonicity of the true criterion [4]; but, the phenom-

enon uj(gi+1j ) = uj(gij), when gi+1j ≻ gij can occur. It means that the marginal utility

functions can be piecewise linear with steps.

The optimal objective function value is reached when z∗ = 0, if all the estimation

errors are equal to 0. In this case, multiple optimal solutions can be found; they lead

to a perfect representation of the same weak order [4]. While, in the case z∗ > 0, the

corresponding optimal solutions are accepted, if they satisfy the Kendall’s index [4].

This statistical index measures the concordance between the ranking provided by the

DM and those obtained lobal utility function.

In order to overcome the non uniqueness of the optimal solution and the sit-

uation z∗ > 0, the suggestion is to solve 2m LP problems, in the phase called
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post-optimality analysis [4]. Then, the final solution is computed as the arithmetic

mean of the two solutions, obtained by solving the following problems LPmin
j and

LPmax
j for j = 1,… ,m:

min uj(g∗j ) subject to max uj(g∗j ) subject to

z∗ − z ≥ k(z∗) (7.1) z − z∗ ≤ k(z∗) (7.1)
constraints (6.1) − (6.7) constraints (6.1) − (6.7)

where k(z∗) is a positive threshold which is a small proportion of the z∗ [4].

An improved version of the UTA method is the UTASTAR method [4]. This

method distinguishes the estimation error in the overestimation error 𝜀

+
and the

underestimation error 𝜀
−

. Moreover, UTASTAR uses the variables wji, defined as

follows wji = uj(gi+1j ) − uj(gij), from the constraint (6.5).

Hence, the LP problem for the UTASTAR method becomes:

min f =
∑
a′k∈AR

𝜀

+(a′

k) + 𝜀

−(a′

k) subject to

𝛥(a′

k, a
′

k+1) ≥ 𝛿 ∀(a′

k, a
′

k+1) ∈ AR ∶ a′

k ≻ a′

k+1 (8.1)
𝛥(a′

k, a
′

k+1) = 0 ∀(a′

k, a
′

k+1) ∈ AR ∶ a′

k ∼ a′

k+1 (8.2)∑m
j=1

∑𝛽j−1
i=1 wji = 1 (8.3)

wji ≥ 0 ∀j = 1,… ,m,∀i = 1,… , 𝛽j − 1 (8.4)
𝜀

+(a′

k) ≥ 0, 𝜀−(a′

k) ≥ 0 ∀a′

k ∈ AR (8.5)

The optimal objective function value is reached when f ∗ = 0, if all the estimation

errors are equal to 0.

In the case of non uniqueness of the optimal solution and when f ∗ > 0, the sug-

gestion is to compute the final solution as the arithmetic mean of the m solutions,

obtained by solving the following problems LP∗
j , for j = 1,… ,m:

max

𝛽j−1∑
i=1

wji subject to∑
a′k∈AR

[𝜀+(a′

k) + 𝜀

−(a′

k)] − f ∗ ≤ 𝜉 (9.1)
constraints (8.1) − (8.5)

where 𝜉 is a very small positive value, fixed arbitrarily by DM [4].

The number of all the LP problems, including those in the post-optimality analy-

sis, is equal to 2m + 1 for the UTA method and m + 1 for the UTASTAR method. It

is evident that the UTASTAR method is preferable to the UTA method. But, both the

methods with their post-optimality analysis are considered in the next application,

in order to compare the final rankings.

In the next section, the analysis of an application in the web context is presented.
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Table 1 Performances of the eight learners on the six indicators

Learner I1 I2 I3 I4 I5 I6
L 0.83 0.53 0.89 0.01 0.53 0.01650

NB 0.80 0.46 0.87 0.00 0.46 0.99490

RF 0.83 0.53 0.90 0.01 0.55 0.00006

BA 0.82 0.44 0.90 0.03 0.48 0.11520

BOO 0.81 0.50 0.88 0.00 0.50 0.56530

NN 0.82 0.52 0.89 0.01 0.52 0.10180

SVM 0.83 0.59 0.89 0.01 0.57 0.00018

SLAD 0.87 0.64 0.92 0.01 0.65 <2e−16

3 An Application of the UTA and UTASTAR Methods

In this section, an application of the UTA and UTASTAR methods in the web context

is presented.

In this application, the input data are the result of an experiment which was car-

ried out by the Italian National Institute of Statistics and by other member states

in the EU [5]. The aim of this experiment was to predict the values Yes/No of the

variable “On line ordering or reservation or booking (shopping cart)”, inserted in

the “Survey on ICT usage and e-Commerce in Enterprises”, by using some machine

learning techniques, as the Logistic (L) model, the Naïve Bayes Network (NB), the

Random Forest (RF), the Bootstrap criterion or Bagging (BA), the Boosting (BOO),

the Neural Network (NN), the Support Vector Machine (SVM) and the Statistical

and Logical Analysis of Data (SLAD) learners.

The learner SLAD was proposed in [6] as an improved method of the classical

Logical Analysis of Data.

The performances of all the learners were evaluated by the following indicators:

I1 is the Accuracy, which is the rate of the correct predictions on the total number

of the units;

I2 is the Sensitivity, which is the rate of the true positives on the total number of

the positives;

I3 is the Specificity, which is the rate of the correct true negative on the total

number of the negatives;

I4 is the difference between the proportion of the observed positives on the total

number of the units and the proportion of the predicted positives on the total number

of the units;

I5 is the harmonic mean, which is the harmonic mean of the recall and the preci-

sion indicators;

I6 is the p-value related to the test Accuracy > Non Informative Rate [5].

The matrix of the input data describes the performances of the eight learners on

the six indicators, as reported in the Table 1.
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Table 2 Global utility values for all the learners, computed by UTA and UTASTAR

Learner UTA Learner UTASTAR

SLAD 0.88883 SLAD 0.88883

SVM 0.61015 RF 0.83792

RF 0.57208 SVM 0.83001

L 0.53891 L 0.76924

NN 0.45321 NN 0.68619

BA 0.40087 BOO 0.58802

BOO 0.16670 BA 0.46032

NB 0.16670 NB 0.20000

The DM must fix the number of the breakpoints for each criterion, must choose the

reference alternatives and must fix the value 𝛿 (or the utility values of each reference
alternative). For each criterion, three breakpoints were fixed, of which the abscissas

are g1j , g
2
j , g

3
j , where g2j is the middle value of g1j = g

j
and g3j = gj. The value 𝛿 was

fixed equal to 0.01; but the same results were found by fixing it equal to 0.001 and

0.01.

In this application, no preference information was provided by the DM.

In absence of preference information, all the possible weak orders must be indi-

viduated in an objective way, following the structure of the true criterion. Let

𝛺R = {AR1
,AR2

,… ,AR
𝜔

} be the set of all the possible reference sets. With multi-

ple reference sets, the total number of all the LP problems, including those in the

post-optimality analysis, is equal to |𝛺R| ⋅ (2m + 1) for the UTA method and to|𝛺R| ⋅ (m + 1) for the UTASTAR method.

Considering that I1, I2, I3, I5 are gain criteria and I1, I2 are cost criteria, for each

pair of alternatives of the input data, there is no indifference binary relationship,

while there is only one strict preference binary relationship SLAD ≻ BA, according

to the system (1). So, 𝛺R = {AR} where AR = {SLAD,BA}. For the unique reference
set, thirteen and seven LP problems must be solved for the UTA method and for

the UTASTAR method, respectively. From their results, the global utility values are

computed and reported in the Table 2. In this table, the learners are ranked, from the

highest utility value to the lowest utility value.

The first comment is that the learner Naïve Bayes is always ranked in the last

position, with the lowest utility values, while the SLAD learner is always ranked in

the first position, with the highest utility values.

It is interesting to note that it is possible to individuate three clusters: one in

the head (C1), one in the body (C2) and one in the tail (C3) of the final rankings.

The meaning of each cluster seems to be evident. The cluster C1 contains the best

learners, the cluster C3 contains the worst learners and the cluster C2 the remaining

ones.

In this application, comparing the two final rankings, the SLAD, the SVM and

the Random Forest learners can be considered the best learners and the Boosting,



66 V. Minnetti

Bagging and Naïve Bayes can be considered the worst learners. As said in the intro-

duction, the last three learners can be deleted from the DM’s decisional process.

But, the DM can decide to individuate only two cluster: one in the tail, containing

the alternatives to be disregarded and one in the head, containing the remaining ones

to be considered for further analysis.

It can occur that 𝛺R is an empty set. In this case, in order to find a weak order in

an objective way, the system (1) must be analyzed, for all the pairs of alternatives.

The criterion gs with the highest frequency of not satisfied inequalities cannot be

considered for searching the weak order. The suggestion is to leave out the criterion

gs from the search of the weak order. Anyway, this criterion gs can participate to the

construction of the global utility values.

4 Conclusions

The aim of this paper is to propose an efficient methodology for solving, in an easy

and quick way, the problem of model selection, for all types of models, whose per-

formances can be measured by indicators and indices.

The problem of model selection can be viewed as a ranking problem in the MCDA

context. Among the methods solving the ranking problem [7], the UTA methods are

well suited, because they construct a unique criterion, which synthesizes the indica-

tors or indices, that can be conflicting. The unique criterion, describing the global

utility values of each models under consideration, is constructed by means of linear

programming problems. The use of linear programming guarantees global optimal

solutions; moreover, in the post-optimality analysis, the unique global optimal solu-

tion is guaranteed.

In this paper, also a proposal of a methodology when the DM is not able to pro-

vide any information or judgments on at least two alternatives, is suggested. Such

a methodology consists in finding all the possible weak orders in an objective way,

according to the system (1). Then, for the corresponding each reference set, all the

LP problems, including those in the post-optimality analysis, must be solved. This

process is necessary in order to have a global knowledge of the information provided

by the input data only.

In the future works, the other variants of the UTA methods family [4, 8] will be

used, in order to improve the methodology suggested in this short paper.
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The Importance to Manage Data
Protection in the Right Way: Problems
and Solutions

Hassan Mokalled, Daniele Debertol, Ermete Meda
and Concetta Pragliola

Abstract Data has become the most important asset for the companies, and data
protection against loss is fundamental for their success. Most of the companies are
connected to internet for business reasons and this is potentially risky.
Cyber-attacks, hacks and security breaches are no longer an exception Arora et al.
(Empir Anal Inf Syst Front 8(5), 350–362, [1]). They can range from no or limited
impact to Distributed Denial of Services (DDoS), stealing/manipulation of data, or
even taking over control of systems and harm the physical world Andrew et al.
(Decision Support Approaches for Cyber Security Investment, [2]). Some compa-
nies work on critical projects that contain documentation to be protected and not
publicly disclosed. Data leakage or loss could lead to hazardous situations, so data
confidentiality, integrity and protection should be conserved. To reach this goal, it
is better to adopt an efficient data protection management, i.e. having effective
processes and methodologies in place to enable prevention, detection and reaction
to any threat that could occur. Companies should give importance to actions, plans,
polices, and address the organizational aspect, and be aware and prepared to
manage crisis situations, using the best technological solution for each stage of the
cybersecurity management. In this paper, we present solutions and key steps to
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manage data protection inside Ansaldo STS Company from organizational and
technological sides, by using an Information Security Management System that
implements the cybersecurity strategy of the company through three phases (pre-
vention, detection and reaction, and checks for compliance and improvement) and
by adopting a defense-in-depth approach and maturity models to deploy control in a
prioritized and effective way.

Keywords Data protection ⋅ Cybersecurity ⋅ ISMS

1 Introduction

The use of computers, storage, networking and other devices to create, store and
exchange all forms of data has increased significantly in the last years. Intercon-
nectivity and data generated by devices has resulted in ‘an unprecedented
improvement in the quality of life’ [3]. At the same time, the vast amount of data
available about activities is giving rise to cybersecurity and privacy challenges.
Data can be said to be the most valuable asset that companies strive to protect. Data,
such as technical and non-technical documentation, financial and health records,
and intellectual property may be worth millions of euros in the hands of hackers and
data thieves. If organizations and companies do not address data security issues,
critical threats to information privacy may develop. Businesses and other organi-
zations thus must take action to secure the sensitive data they control [4]. With the
diffusion of the internet and new storage media, data may be compromised on a
larger scale and at a faster pace. With the sharing of data on networks, a threat to
data security is becoming a major concern. Protection of information is necessary to
establish and maintain trust between an institution and its stake holders. Protecting
data is not just a technology issue anymore [1]. Entire management systems inside
companies now are giving enormous attention to organizational aspect. Policies,
proved objectives, audits, training and awareness activities, compliance with legal
and regulatory requirements for security and privacy have become important factors
to be addressed in information security. One of the main requirements toward all of
this stands the assessment of risk and its evaluation [5]. Consequently, companies
must realize the necessity of paying attention to the organizational aspects of data
protection. And so managing data protection can be better treated addressing two
points of view: the organizational and the technological ones. Ansaldo STS is a
leading company operating in the sector of high technology for railway and urban
transport. The Company has the experience and resources to supply innovative
transport systems for freight yards, regional and freight lines, underground and
tramway lines, and standard and High-Speed railway lines. With an international
geographical organization, The Company operates worldwide as lead contractor,
system integrator and supplier “turnkey” of the most important projects of mass
transportation in metro and urban railways. Ansaldo STS has a great experience in
the design, implementation and management of systems and services for signalling
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and supervision of railway and urban traffic. For the described goal, Ansaldo STS
adopts an information security strategy implemented by an Information Security
Management System (ISMS) which describes the organizational aspects of data
protection inside the company, adopting the governance, risk and compliance
approach. From a technological point of view, Ansaldo STS adopts a
defense-in-depth approach and maturity models to deploy the security controls in a
prioritized and effective way in accordance to the organization’s overall strategies
and policies. This paper is divided as follows: the next section describes the aspects
of data protection, the third section presents the strategy adopted by Ansaldo STS to
protect its data, the forth section is about the experience of Ansaldo STS and its
ISMS, and section five is the conclusions.

2 Data Protection Aspects

Information and communication technology (ICT) has made remarkable impact on
the society, especially on companies and organizations. The use of computers,
databases, servers, and other technologies has made an evolution on the way of
storing, processing, and transferring data. However, companies access and share
their data on internet or intranet, thus there is a critical need to protect this data from
destructive forces and from the unwanted actions of unauthorized users. To design a
solution that truly protects the data, we must understand the security requirements
relevant to our site, and the scope of current threats to our data [6, 7]. To correctly
manage data protection, it is important to take in account some aspects in the
procedure of data protection, the main aspects are:

i. Data classification levels.
ii. Threats and Vulnerabilities.
iii. Data security requirements.

2.1 Data Classification Levels

Data is one of the strategical components of the corporate assets essential to a
company. For this reason, it should be protected within a company in accordance
with its own value and its significance to the company’s business by implementing
a classification process. Data classification is also useful to identify who should
have access to the technical data used to run the business versus those who are
permitted to access test data and programs under development. Data classification
must take into account legal/regulatory/internal requirements for maintaining con-
fidentiality, integrity and availability. Data classification should define:
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a. The owner of the information asset
b. Who has access rights (need to know)
c. The level of access to be granted
d. Who is responsible for determining the access rights and access levels
e. Which approvals are needed for access
f. The extent and depth of security controls.

However, data shall be classified by means of a method entailing an established
structure of criticality and protection levels, which shall be determined in accor-
dance with the potential impact on the company (e.g. the economic value, the
damage to the company’s reputation, the legal constraints and the strategical sig-
nificance). An example of the classification levels defined in a decreasing order of
criticality can be as follows:

• PRIVILEGED: Data that has not to come to the public domain, because might,
if reaching the public domain, affect the prices of such financial instruments to a
significant extent.

• CONFIDENTIAL: Data concerning the company and/or its own subsidiaries,
which may, when disclosed freely, cause an economical damage or affects the
Company’s reputation.

• RESTRICTED: Data that can be freely accessed by the personnel working at
the Company. This is the default classification level that shall be assigned every
time a new piece of information is created.

• PUBLIC: Data that can be freely disclosed outside the Company, since its
disclosure shall cause no damage to the Company itself.

2.2 Threats and Vulnerabilities

The two main kinds of security threats that affect a company are internal and
external threats. Internal threats occur from within the organizations. This is
probably one of the most dangerous situations because for instance co-workers may
know passwords to access systems and are aware of how the systems are set
up. Computers that are left unattended can be easily accessed by workers. And
external threats are attacks done by hackers [6].

• Internal Threats: Previous research on cybersecurity has focused on protecting
valuable resources from attacks by out-siders. However, statistics [8, 9] show
that a large amount of security and privacy breaches are due to insiders. Pro-
tection from insider threats is challenging because insiders may have access to
many sensitive resources and high-privileged system accounts. Similar style of
exploitation is reported in [10, 11].

• External threats: External threats are those done by individuals from outside a
company or organization, who seeks to break defenses and exploit vulnerabil-
ities. Spying or eavesdropping, DoS, Spoofing, Phishing, viruses, etc., are all
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examples of external threats or cyber-attacks. However, one of the emerging
threats and the latest criminal invention is the Ransomware which is a special
type of virus that does not destroy any data but simply encrypts all the data it
finds on a PC with an encryption key that only the criminal has, and asks for
money to give the key.

• Vulnerabilities: Weakness in the organization or company cyber-assets that a
malicious attacker could use to cause damage. Vulnerabilities could exist in
system, installed software, and network.

2.3 Data Security Requirements

Data security concerns the use of a broad range of information security controls to
protect the whole system (potentially including the data, the applications or stored
functions, the database systems, the database servers and the associated network
links) against compromises of their confidentiality, integrity and availability [6].
Data protection must address these main security requirements:

• Confidentiality: This means that data must not be exposed to unauthorized
individuals. And access must be restricted to those authorized to view the data.
Confidentiality has several different aspects: privacy of communications,
securing storage of data, authentication of users, and access control.

• Integrity: Data integrity means that data should be protected from corruption
while it is stored in the database or transmitted over the network. Integrity has
different aspects: only authorized users can change data, protecting the network
and data against viruses designed to corrupt or delete.

• Availability: Data must be available to authorized users, without delay.
Denial-of-service attacks are attempts to block authorized users’ ability to access
and use the system when needed [6].

3 A Data Protection Management Approach

Data protection aims at protecting the Confidentiality, Integrity and Availability
(CIA) of company data and information whether it is processed, transmitted, stored
on and/or in transit through networks and systems. Data protection involves the
protection of all the cyber-space used in the company to store, process and transfer
this data against unauthorized use, disclosure, transfer, modifications or destruction,
whether accidental or intentional, or the loss of availability of these assets or
business processes to authorized users. Data protection is ensured by an information
security (cybersecurity) strategy used to secure all assets involved in the storage,

The Importance to Manage Data Protection … 73



processing, transmission of data such as databases, computers, servers, network
devices, etc. The need for cybersecurity is becoming increasingly important due to
our dependence on Information and Communication Technology (ICT) to store,
process and transmit data. Companies do not want to be associated with cyberse-
curity hacks or viewed as having not taken appropriate security measures [2]. On
the other hand, different types of threats and vulnerabilities that threatens company
data varies between internal and external ones, and this requires different types of
countermeasures starting by setting plans, policies, complying to laws and stan-
dards, training internal staff, and so on, and also setting appropriate countermea-
sures. For this reason, data protection requires a strategy that covers both
organizational and technological security aspects inside a company, applied on the
cybersecurity phases of prevention, detection, and reaction (Fig. 1).

From the organizational point of view, it is essential to set policies, actions,
plans, responsibilities and ensure audits. On the technological side, the goal is to
specify and implement the selected controls in the policies against threat scenarios.
Both aspects should cover all phases of cybersecurity:

i. Prevention phase: proactive phase for the defense of company assets.
ii. Detection phase: monitoring of company assets.
iii. Reaction phase: incident management.

In this section, we aim to describe the data management approach designed by
Ansaldo STS aiming to protect the company’s data both from the organizational
and the technological side, and which was inspired by the ISO 27001 requirements.
This approach is implemented by an ISMS from an organizational aspect, and
follows the Governance, Risk, and Compliance (GRC) framework. And from the
technological aspect, a defense in depth approach is adopted to deploy the controls
selected by type and in a prioritized and effective way.

Fig. 1 Data protection strategy process
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3.1 Using an Information Security Management System
(ISMS) Based on the GRC Framework

An Information Security Management System (ISMS) consists of the policies,
procedures, guidelines, and associated resources and activities, collectively man-
aged by an organization, in the pursuit of protecting its information assets.
An ISMS is a systematic approach for establishing, implementing, operating,
monitoring, reviewing, maintaining and improving an organization’s information
security to achieve business objectives. The goal of ISMS is to minimize risk and
ensure continuity by pro-actively limiting the impact of a security breach [12].
The ISMS shall be balanced and integrated into the daily actions of employees; in
addition, it shall be balanced among business goals, productivity and ensuring
adequate data protection levels of the company and it shall ensure the privacy of
employees. Business and IT staff, relevant for information security activities, shall
be trained in order to ensure the application of the defined ISMS, and awareness
initiatives shall be deployed to all employees. For this purpose, Ansaldo STS
implements an ISMS and related documents are created, developed and published
as means to implement data protection strategy, in accordance with the company
business requirements, strategies, and relevant laws, regulations, and contractual
agreements. This ISMS is based on a governance, risk and compliance framework.

a. Governance: Governance activities involve setting objectives to achieve and
defining a way to achieve them while maintaining transparency with internal and
external stakeholders. Governance tools, such as system controls and policies, are
implemented in order to ensure that processes are followed in a proper manner.
The Governance includes all activities necessary to define and implement a
framework aimed at ensuring a proper data protection management. The main
activities should define: roles and responsibilities, processes, policies and pro-
cedures (including supporting and monitoring tools), audit plans. Main activities
reported above must be executed according to the Segregation of Duties (SoD)
principle. SoD aims at avoiding situations where a single person could execute or
control several phases of the same process, or different processes identified as
incompatible. The aim is to mitigate potential exposures to human mistakes or
fraud events. Correct implementation of data protection strategy is verified
through periodical audits performed by IS departments and by third parties.

b. Risk: Risk Management activities involve risk identification, assessment and
mitigation plan definition. All risk management activities shall be performed on
an ongoing basis in order to ensure that new risks are identified and previous
identified risk are mitigated. Risk management acts as an internal control system
that has to grow together with the business growth. The process of assessment,
management and monitoring of risks through establishing and maintaining an
appropriate risk framework is performed by the IS Manager. The assessment
allows to identify the action plan to put forth mitigating the identified risks and
protect the Confidentiality, Integrity and Availability of assets.
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c. Compliance (Compliance to international standards and norms): Compli-
ance activities involve regulatory analysis in order to ensure the compliance
with global and local applicable laws. Applicable laws are identified on the basis
of the regulatory framework applicable to industry and country in which the
company operates. Compliance can be oriented to internal policies and rules or
to external laws and regulations, but, in any case, it represents a fundamental
step in order to maintain the organization control inside its specific regulatory
environment. In this context, compliance shall:

• be maintained with all applicable national and international privacy legis-
lation, and with international information security standards such as ISO/IEC
27001, GDPR (General Data Protection Manager) or other equivalent best
practice/regulation required by the business;

• ensure that all employees/third parties follow all security requirements.
• ensure that all employees and collaborators as well as third parties with

access to information systems are aware of their responsibility to report any
security incident as quickly as possible.

3.2 Technological Point of View-Defense in Depth
Approach

Data protection from a technological side is about executing the ISMS plans and
operations, by selecting the right counter measures, specifying their types, priori-
tizing them by maturity levels, day to day operation, etc. To fully protect the data
during its lifetime, each component of the information system must have its own
protection mechanisms. The building up, layering on and overlapping of security
measures is called defense in depth.

3.2.1 Defense in Depth Approach

Defence in Depth (DiD) is an efficient operational approach that enables to manage
(by a risk-oriented approach) people, processes and technology. In IT environ-
ments, DiD is intended to increase the costs of an attack against the organization, by
detecting attacks, allowing time to respond to such attacks, and providing layers of
defense so that even successful attacks will not fully compromise an organization.
A DiD strategy is necessary because of new security threats and the importance of
IT security monitoring of assets. Main variables that have increased the importance
of DiD strategy definition are for example: the increased value of data, globaliza-
tion, mobile working, virtualization, and decentralization of services. In this con-
text, the company shall recognize the need to provide coordinated and multi-layered
security architectures to mitigate security risks. Implementing DiD requires an
understanding of enterprise strategy, applicable internal and external threats,
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information asset classification, and technology supporting controls. The Defense in
Depth strategy shall define all layers and technologies which, given company
environment and security requirements, are necessary for all the different parts of
the organization, as depicted in the figure below. Referring to Best Practice and
Guidelines, Ansaldo STS adopted the DiD by using five levels to describe security
actions based on the plans and policies of the ISMS (Fig. 2).

3.2.2 Maturity Levels

Referring to Maturity Model, Ansaldo STS intended their policies to be applicable
completely although at a different pace, so they divided them according their
complexity (to verify where controls would go deeper and where has been less
deep). The maturity levels are used to set the level of security and control of a
specific configuration or solution. The Maturity Model adopted by the company
includes the following maturity levels:

L1: INITIAL

• Minimum set of acceptable security measures and control activities are designed
and in place.

• Security measures and control activities have been documented and communi-
cated to stakeholders and interested parties.

L2: IMPROVED

• Standardized controls with periodic testing for effective design and operation
with reporting to management are in place.

Fig. 2 Defense in depth: Layering and setting technologies
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• Improved or selected security measures are in place to harden specific controls
or business areas.

• Automation and tools may be used in a limited way to support control activities
and security measures effectiveness.

L3: OPTIMIZED

• An integrated control framework with real-time monitoring by management for
continuous improvement (enterprise-wide risk management) of the security
measures is in place.

• Automation and tools are widely used to support control activities and allow the
organization to make rapid changes to the security measure in place.

• High level of security measures are available, addressing the trade-off between
residual risk and costs.

4 The ISMS of Ansaldo STS

In this section we describe the ISMS designed by Ansaldo STS used to manage data
protection inside our company. The ISMS implements the whole information
security process used to protect the data within the company. Both information
security and information technology departments are involved, and they have the
responsibility and accountability of executing the sub process.

4.1 ISMS Process

The activities of an information security process implemented by the ISMS can be
divided into four vertical domains with different responsibilities and accountabili-
ties represented by the company area in Fig. 3:

• Governance and Risk: defining strategy, policy (security levels), requirements
(constraints), procedures, and conformity depending on internal or external
requirements, laws and international standards. Then evaluate the Risk and
identify the countermeasures to be taken to obtain an acceptable level of risk.

• Design: defining information security architectures and technology solutions
based on the countermeasures to be adopted and the approved budget in
accordance with the defined strategy.
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• Operation (Operate and Execute): putting the activities defined into operations,
including the new transitions, the change of existing ones, day-by-day opera-
tions and maintenance of the equipment.

• Control: assessing the adherence of current levels and security configurations to
the policy, requirements and compliance set out in governance phase.

4.2 Segregation of Duties

Ansaldo ISMS is developed in accordance to the “segregation of duties” principle
as stated by the A6.1.2 control of Annex A in ISO 27001. The A6.1.2 control of the
ISO 27001 states that conflicting tasks and areas of responsibility must be separated
to reduce the chances of misuse, unauthorized or unintentional modification of the
assets of the organization [13]. Each phase has a responsible department within the
company (Fig. 3), with the Information Security Department (IS) and the Infor-
mation Technology Department (IT) being the involved departments.

• Governance: IS department has responsibility and accountability for this phase.
• Design: The IT Dept. has responsibility and accountability for this phase.
• Operation: The IT Department has the responsibility and the accountability for

this phase. However, under this phase, the IS Dept. retains responsibility and
accountability for the Incident Management task. In case an incident occurs, the
IS department tries to understand the incident, find a solution and define the
remediation, and finally gives the IT department the procedure to apply.

• Control: The IS department has responsibility and accountability for this phase.

Fig. 3 The IS process implemented by the ISMS for data protection management
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4.3 Documentation of the ISMS

At the end, the documentation of the ISMS is carried out. There are five main
categories of documents to describe the ISMS of Ansaldo STS Company (Fig. 4):

• Process Description (PRD): It is a high level describing the whole ISMS with—
and includes all the responsible, accountable, consulted and informed depart-
ments involved in the ISMS.

• Manual (MNL): This type of document is a high-level directive. It describes the
strategy, governance, and rules.

• Procedures (PRC): These documents indicate who does what. They describe the
responsible individuals and their duties.

• Instructions (INS): These are the instructional documents. They give a brief
description for the way of operation or installation indication how it is done.

• Module—Template—Checklist (FOR): These are forms or check lists that must
be filled for the purpose of requesting a service from the IT department.

Fig. 4 Documentation of the ISMS
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5 Conclusion

Data must be treated as the core asset of any organization or company, which
should be protected from all kinds of threats. However, to best protect the data, it is
better to adopt a good management approach, which minimizes errors, saves time,
increases awareness and prepares the company to incidents. In information security,
taking due care of strategies, setting policies, plans, preparing and training staff, and
complying to internal or external laws and standards should be given the same
importance as operating technical tools. The focus should be on both organizational
and technical sides. Ansaldo STS company gives a great significance to the orga-
nizational side of data protection, which is shown by its ISMS which was created in
accordance with the international standards and frameworks. Anyway,
Ansaldo STS realizes the necessity to verify that the ISMS is working effectively in
the sense that all the defined requirements are correctly implemented, and this can
be obtained by regular audits to reach continuous improvement. Ansaldo STS also
realizes that not all assets are correctly managed, in fact there are some areas not
completely covered such as laboratories, plants connections an so on. And so it is
important to extend the coverage of the ISMS to these areas and not only to office
areas. In the next future, Ansaldo STS is going to comply with the international
standard ISO 27001 on some strategic scopes with the aim to obtain a certification
which represents a key goal for the company and its business.
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The Use of Configurational Analysis
in the Evaluation of Real Estate Dynamics

Enrico G. Caldarola, Valerio Di Pinto and Antonio M. Rinaldi

Abstract The shape of urban space together with the choices that lead to its config-

uration have been the base of long and multidisciplinary debates taking into account

several and heterogeneous factors. In this context, the goal of decision makers is to

create and improve the value of a given area and manufactures. In this paper we

propose a quantitative approach based on configurational analysis in the domain of

real estate. The use of geographic information systems to integrate and analyze data

form different data sources shows similarities among social-economics models and

spatial approaches which consider completely different parameters.

1 Introduction

One of the most relevant aspect among urban phenomena is the distribution of real

estate values. It is not surprising that many researchers believe that all issues affect

the city arise from the lack of knowledge, and the consequent unsuitability of shares,

about growth mode of land prices. This statement, however, contrasts with the quan-
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tity of literature. Economists are always engaging real estate rent; almost ever about

the way land prices be developed. Theories they have been developing for a century

largely disagree. The latter, as simpler empirical models about position rent, gener-

ally connect every aspect of urban behavior to a rational selection of simple variables

such as distance or economical budget [1]. The outcome is a city picked from a single

sight neglecting any information about site or real estate peculiarities. On the other

hand, every human urban behavior is handled as the result of efficient and fitting

assessments (lengths of time, distances, ...). This condition is the natural outcome of

the choice to schematize the city in order to reach reproducible results in the frame of

an objective environment, but it is less solid than it seems. The perfect rationality of

the users is an arbitrary position and it seems unclear why it is related just to a mat-

ter of time and cost. Environmental psychology and social sciences suggest us that a

clear optimization of simple variables is not a feature of this kind of experience [2].

Most times seem to take priority other elements, despite hard to be listed, attributable

to the link between users and their environment. In light of the above, it is possible

to think about a new kind of model approaching real estate price distribution starting

from the space, and where it plays a dominant role as generative variable of the city

as a system. One of the most innovative theory about urban dynamic concerns to

show the outcome of the human perception of the space through a non-local prop-

erty of the city-system based on the concept of universal distance: the configuration.

This theory and related techniques have been developed in a more general framework

as known as Space Syntax [2, 3]. Configurational analysis is based on the hypoth-

esis of the being of a movement rate, called natural movement, only dependent on

the shape of the urban grid. More precisely, it depends on the connections between

the set of lines of the matrix which is possible to reduce the entire system. Natural

movement is considered the primary factor in the spawning of urban movement. At

the same time it certainly expresses an indicator of the way users understand the

city, interiorise it, use it: percept it. All urban phenomena underlie the rule of nat-

ural movement [4]. The main aim of the paper is to verify if the configuration of

the city is an effective variable in the distribution of real estate values, proving the

existence of a strong correlation between the configurational concept of multi-scalar

centrality, the configurational indexes describing such centrality, and the values of

the real estate market, patterned as a set of polygons covering the entire city. The

work take into account residential estate only, so as to reduce the noise due to the

presence and distribution of commercial and tertiary activities working as attractors.

With this aim, working on one of the largest Italian urban area, the paper compares

the dimension of equal price areas and the parameters resulting from configurational

analysis both at global and local level.

Results can be effectively used to support decision processes in urban and trans-

portation domain, for example to predict the real estate patchwork after a major ter-

ritorial transformation.

In Sect. 2 an analysis of existing literature has been presented and discussed; the

proposed methodology is described in Sect. 3 and a complete case study on a real

city is shown in Sect. 4; experimental results has been presented in Sect. 5 and con-

clusions and future works are in Sect. 6.
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2 Literature Review

During the last two centuries many approaches to the study of land and real estate val-

ues distribution have been developed. They have charted an ideal course conditioning

our thinking still today, thanks to the functional definition of concepts like rarity and

centrality. Contributions can be collected in two differently categories: theories about

elements affecting land prices formation, and theoretical models detailing classic

economists ideas. They have explained the influence of land rent on urban growth

and conversely, although under eased hypothesis, omitting any role of the space.

Flourishing of theoretical models was the basement to the growth, especially in the

60’s of nineteenth century, of organic theories about real estate prices formation and

distribution. They also involved the manner of cities and land uses transformation.

The work of Wingo [5] had particular relevance to formalize in a solid mathematical

way the relationship between length time and land price. Wider than that is the con-

tribution of Alonso [6]. He proposed to explain land prices formation on the base of

spatial economy theories. That affected the basic model hypothesis as smooth plain,

and the interests about as real estate as rural marked by twice perspective: families

and companies. Alonso’s model allows to make predictive assessments on the system

of property values to vary one of the parameters, such as income, the cost of trans-

portation, and the intended land use. Ultimately, it is the most organic formalization

of a way to understand urban phenomena in an extremely simple, fixed and ratio-

nal mode. It assumes the hypothesis of monocentricity (Central Business District—

CBD). Muth [1], saving a distance decay cost (from CBD) structure, or rather con-

sidering accessibility without space as a key variable. It makes CBD exogenous to

the model [7]. This is one of the main limitations of traditional models about position

rent. The issue is the interpretation of the distance from the CBD as a specific individ-

ual estate element quality, dependent on its local urban structure. This would confer

CBD the characteristics of an endogenous element into the model. Recent studies

investigated the effect of global and local accessibility on office and residential rent

and values by using Space Syntax to support a hedonic model. The results suggest

the model has good predictive power in explaining the variation in the log of the rent,

striving spatial integration and choice indexes [7, 8]. Space Syntax spatial analysis

is a set of techniques and theories for the interpretation of configuration of spatial

layout in general and urban layout, by using the concept of universal distance under

the interpretation of the centrality as a social phenomenon. Recent studies proved

that Space Syntax could also take into account urban forms by means of ontologies

representing the meanings of city elements [4, 9]. The aim of this paper is to examine

residential property value variations of the whole city of Naples using Space Syn-

tax analysis and a database of values built on a set of 3402 normalized transactions

registered during 2011-second semester. Different from other approaches previous

discussed, our innovation is in the use of quantitative analysis to better understand

how configurational centrality at different levels (global and local) affect residential

property values distribution.
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3 The Proposed Methodology

The approach of study that is intended to follow to address any starting issues has

been chosen according to what was experienced in Space Syntax literature. They

were built separately a spatial model, only containing configurational variables, and

an information model, which collects territorial and real estate data. Just later, they

were joined in a third correlation model. All three models have been constructed

or adapted in GIS environment to take advantage of its geo-statistical and infor-

mative full potential. Inside the correlation model, two separate regression models

have been developed. A global one, studying the influence of the main integrator

in the formation of price areas, and a local one, aiming to describe the correlation

between configurational indexes and real estate values. The analysis of urban grid

configuration was carried out according to techniques and methodologies defined

and experimented [3] in the last few years by the Bartlett School. Public spaces of

the whole city have been split in the set of the larger and fewest convex spaces. The

minimal set of lines that reciprocally correlate them, has been then traced, so as to

create a matrix of lines, known as axial map. Afterward, the axial map has been

processed making use of a specific software provided by the Space Syntax Lab-

oratory of the U.C.L. (DepthMap). Adopting ASA technique [10] configurational

indexes have been assigned to every line. Resulting map has then been exported

in GIS environment as an ESRI geodatabase mainly hosting feature class of linear

typology, storing geometry and configurational informations. The creation of real-

estate values Geo-Database has been conversely made by hand, according to avail-

able data. Raster maps have been vectorized by drawing their geometry in CAD envi-

ronment, and then, after the exportation into GIS environment as polygonal feature

class, adding non-geographical attributes. In the same information system, territo-

rial data have been added such as orthophotos, the system of public transport, the

main thoroughfares, and the contour lines. ArcGIS environment have been used to

the regression model also. Inside it, two different models was developed to study how

urban grid centrality, at global and local level, relates to real estate values. To better

take into account local independence on the grid, the least number of points of polar-

ization of the local integration index were identified by progressively narrowing the

metric radius of investigation, from 6.400 to 400 m. The identification of individual

points of polarization was obtained by employing the geo-statistical instrument of

kriging, identifying, for each variation of the analysis radius, the centroid (midpoint)

of each line of the system. In this way, the distribution of the local centrality has been

evaluated apart from the simple identification of thresholds for peak.
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4 The Case Study

The model has been built in step with its application on the case study of Naples,

one of the major Italian and Mediterranean city. It is the capital of Campania and,

with 960.000 inhabitants living within its administrative boundary, it is the third

Italian city after Rome and Milan. The urban area of the city has about 3.5 million

inhabitants, about an extra million in the metropolitan area. Naples is thus given as

the eighth urban area of the European Union and one of the largest metropolitan

areas in the Mediterranean. The administrative area enclosed within the perimeter is

approximately 120 km
2
, in view of a very high population density, higher than 8.000

inhabitants/km
2
. Urban morphology is very complex. Along the east-west direction,

the city is surrounded by the Mount Vesuvius (a still active volcano) and the Campi

Flegrei volcanic complex. Similarly, it is flattened along the north-south from the

coast line and a range of hills that divides it from a broad plain at the back, which

slopes down towards the sea detaching the urban area into two large flat zones that

communicate through tunnel paths. This particular morphology forced the city to

grow on itself, presenting today a complex urban maze, heavily layered and histori-

cized. In a context of narrow and intricate spaces, large and spectacular urban arteries

of the late nineteenth century unfold their paths, as well recent and still evolving fast

mobility and public transport infrastructure.

The complexity of the city is evident from the configurational analysis of its urban

grid. It has been extended to the whole urban area, refusing the purely administra-

tive perimeter and identifying the natural limits of the Naples basin. The axial map

has 5.613 lines (fewest-line map—minimal), about 18.000 the segment map derived

from it (Fig. 1a). The result of the processing shows how the trend of the global

integration index (the most important configurational parameter) is characterized by

a strong centre-periphery gradient, with high values inside the ancient city and in

their neighbors and much more segregated lines in the edge of the town. In this way

(a) The Urban network - ASA technique (b) Graphical output of kriging

Fig. 1 Urban network and Geo-statistics
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it was easy to identify a single global centrality. Otherwise, for the identification of

local centrality, on the basis of a distribution of local integration index (metric radius

400) flat with very few large peaks, we proceeded in a GIS environment according

to the methodology first hatched (Fig. 1b). Were thus identified 47 local centrality

distributed widely, but unevenly, with a clear concentration around the global main

integrator and progressive thinning, although contradicted locally from a few excep-

tions. Having regard to the high number of lines, the transition from DepthMap to

ESRI GIS environment has been done without ever dissociate geometric and infor-

mation data. Filling out of the real estate values geo-database has been approached

into two phases. The first one consisting in the georeferentiation of raster maps, con-

taining the perimeters of homogenous price areas obtained by the Stock Exchange of

Naples Real Estate. Then a second one of building the informative database contain-

ing market values and rental fees (both expressed per square meter of floor-type) for

different types of real estate (residential, commercial, manufacturing, box) as well

as support information such as local administration references. For the last step of

the model, having already made uniform the work environment, the various infor-

mation has been overlaid. At this stage, it was decided, through the specific capa-

bilities of the GIS environment, to associate to each line of the configurational map

its real estate value, attributed by reason of their geographical location. Even in this

case it was necessary to manually correct the inconsistencies due to the overlap of

urban routes. Likewise have been eliminated lines geographically belonging to areas

devoid of price due to the impossibility to transact in them, such as the public or the

public interest. To sum up, it is thus obtained a model that integrates on the same

vector element all the information necessary for the development of the regression

models first introduced, as well as a clear informative support able to allow a direct

verification of the results in a way as simple and effective (Fig. 2).

The first of the two regression models, aimed at the study of phenomena on a

global scale, relates the variation of the size of homogeneous price areas, seen as

(a) Integrated GIS model (b) Zoomed image of the GIS model

Fig. 2 Integrated spatial data approach
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an indicator of sensitivity to the attractiveness/accessibility of urban space, with the

distance from the global centrality. To obtain this result, the average size of homoge-

neous price areas was pushed on the centroid of each one of the 47 local centrality,

considering the distance of 400 m along routes of public access as the criterion to

determine which of the price area have to be associated to every local centrality.

Associating the average surface to local centrality allows the regression to describe

the real estate local market as an endogenous variable of the spatial model. Result

that would have been unachievable if the distances of the individual areas from the

global centrality had been purely considered, as it would not have taken into account

the actual role played by the spatial configuration on local behavior and urban pattern

use.

The second regression model, aimed at the study of local phenomena, relates real

estate market trends and the configurational indexes, through the implementation of

a ordinary least square model, using prices as explanatory variable and local inte-

gration index (metric radius 400) as response variable. A set of esteemed property

values due to the distribution of configurational indexes have been so obtained. The

difference between the estimated value and the recorded value has been calculated

also, as well the deviation mapped.

5 Experimental Results

In the case of Naples, the correlation between the number of local centrality and

the distance that separates them from the global centrality has a natural logarithmic

trend through which it is possible to notice that as you move away from the center of

the city, the decrease of high independent areas (high value of the local integration

index—metric radius 400) will face more and more pronounced. This means the

probability to be nigh to a local centrality decreases proceeding from the core to the

outside of the city, in any direction.

It is valid, of course, the contrary assertion: whatever access to the city the chance

to be close to a local centrality increases moving towards the core. The phenomenon

occurs with great significance (Fig. 3a). Similarly, the number of local centralities

increase as their own size get smaller, as shown by the stacked graph in Fig. 3b. This

returns the city as composed of many small, fragmented areas.

Looking at homogeneous price areas, the correlation between their distribution in

size and the distance from the main integrator clearly highlight a concentration near

the global centrality. It is linear and sufficiently strong from the probabilistic point

of view, being the coefficient of determination (R
2
), which is the square of the Pear-

son correlation coefficient, relatively high (R
2

= 0.7955). It means that the 79.55%

of the total variation in size of homogeneous price areas is explained by the rela-

tionship between it and the distance from the integration core (Fig. 3c). This result is

congruent with the common interpretation in Space Syntax that the global centrality

catalyzes the fragmentation of the areas according to a distance decay function [11].

This phenomenon is also congruent with the generative logic of the movement in
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Fig. 3 Experimental results

urban areas, and especially with the experimental measurements which show that in

the most integrated urban pattern its noticeable a logarithmic multiplier of pedes-

trian and vehicular flows [12]. Actually, a similar “area’s effect” arises looking at

the variation of real estate rent: it acts logarithmically, due to the increasing of the

distance from the main integrator. Global level outcomes have some local inconsis-

tencies, especially related to two of the 47 identified local centralities. Inserting the

latter in the regression model, in fact, the statistical quality drops drastically in the

correlation between distance and size of price areas (R
2
=0.4287) (Fig. 3d). This is

presumably due to the presence, in the influence sphere of such centralities, of an

exceptional number of attractors, son of a fifty-year planning process of infrastruc-

tures and transports. This suggest the idea that the area’s effect is just a function of

non-homogeneous distribution of the attractors as is amply demonstrated in the liter-

ature referring to other phenomena, consistently with the essential dynamics of urban

spaces [13]. Locally, the comparative study between the arrangement of configura-



The Use of Configurational Analysis in the Evaluation of Real Estate Dynamics 91

tional indexes (metric radius 400) and the property values has been formalized, as

seen previously, through the use of the statistical tool of the Ordinary Least Squares

(OLS). The result is the association with each line of an expected value of residen-

tial real estate. It shows very clearly the relationship which exists within the basin of

each centrality, allowing us to extrapolate a series of evidence. Defined a confidence

interval considered acceptable for the price volatility (5%) it is possible to see as the

number of lines belonging to it grows logarithmically in moving from the integration

core to the outside of the map (Fig. 3e). This situation confirms what was previously

said, in global terms, as it shows that moving away from the core the sensitivity to

accessibility and attractiveness decreases. This shows also that in areas where the

presence of attractors is low , which are predominantly residential areas, the config-

uration is a correct indicator of the real estate market. If we analyze the centrality

next to the core, the outlook is considerably more complicated. Specifically there

is an interference between the purely local and global phenomena. This profoundly

alters the interpretation of the market. Focusing on the lines that fall both in local

centrality basins that in the core, the higher the percentage of difference between

actual and expected market values linearly increases the number of lines that belong

directly to the core or that are within a range of 20 m from it (Fig. 3f). This shows

how the multiplier effect of commercial activities affect in a decisive manner the for-

mation of real estate values, in compliance with what happens to pedestrian flows.

The strength of this phenomenon blows over the market trend in mixed-use areas. It

is the real phenomenon in place, which depends substantially on the variability of

prices. This explains why just moving too little from the lines belonging to the core

we record a substantial decrease of the differences between expected and recorded

values. Local phenomena at smaller scale, certainly present, are not amenable to

clear configurational contributions, at least in the context of the available data.

Major experimental result are graphically summarized in Fig. 3.

6 Conclusion and Future Works

This paper examines the relationship between configurational indexes, both at global

and local level, and between the distributions of real estate values, accounted as

a proxy of location choices in the city. An empirical model was built in order to

correlate endogenous locational measures (configurational indexes of angular seg-

ment integration and choice) varying analysis metric radius (6400 to 400 m), and

real estate registered prices, gleaned over six months of market observations (more

than 3400 normalized transactions during 2011 second semester). Configurational

indexes have been shown to account for the distribution of movement intensity pat-

terns for various transportation modes (pedestrian, cycle, motorized, and rail), and

so they are good at culling spatial accessibility. Likewise, show their ability to seize

the dynamics of the distribution of property values. At the global level, they offer

a snapshot of the city consistent with the logic of the models AMM, or with a gra-

dient distribution of prices decreasing from areas with high index values (CBD).
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This gradient occurs in natural logarithmic terms, regardless of the local structure of

the individual areas of homogeneous price. This is to say that the findings of clas-

sical economic geography are in fact confirmed as regards the interpretation of the

phenomenon. Unlike these, however, the concept of centrality assumes endogenous

nature. This then allows the model to capture the generative dynamics of the differ-

ent price scenarios. It seems linked to the action of an areal effect that is distributed

homogeneously in the surroundings of the local centrality (angular segment integra-

tion index metric radius 400) solely because of their distance from the global cen-

trality (main integrator). Actually, we are investigating on the use of both objective

aspects of urban space using an algorithmic approach and subjective issues related to

the perception of communities which change the city, recurring to the formalism of

ontology to represent urban elements both from a conceptual and topological point

of view.
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1 Introduction

By wiring we mean the positioning of conducting wires (cables) to make operative
the electrical components of a device/system, connecting them to the control unit.
A positioning, to be effective and efficient, should be made gathering together, in
common paths, the largest number of wires. This definition can be obviously
extended to the car industry, where wiring a vehicle means setting up all the cables
to make operative all the electrical components required by a customer. More
precisely, vehicles can be equipped with different standard options (installed by
default) and extra options (installed on request). In other words, given a set of
options chosen by a customer (i.e., a demand), wiring a vehicle means installing the
required cables (wiring configuration) to make them operative.

Nowadays, the number of available options is very large (from 10 to about 50)
and it is not going to decrease, since market trend pushes towards differentiation
and highly customized products. Hence, even if a customer cannot require any
combination of options because of wiring constraints, the number of possible
demands is growing faster and getting huge. To give an idea of the real problem
sizes, a vehicle with 20 options has 196,608 admissible requests. By wiring con-
straints, we mean several restrictions on the installation of two or more options
together. Three main kinds of constraints must be considered:

1. Incompatibility. Two or more options are said to be incompatible if they cannot
co-exist in the same demand. For example, right and left control for the audio
car system cannot be installed together.

2. Exclusivity. Two or more options can be installed just if others are already
present. For example, steering wheel controls are linked to the presence of car
radio and door remote control is linked to central locking.

3. Functional package. Two or more options compose a modular system, hence
they must be always positioned together, e.g. car radio is sold either with 4/6
loudspeakers and subwoofer or with a satellite navigator.

In this context, for a car industry, satisfying all the admissible demands just
using exactly the related cables, would mean to have a specific wiring configuration
for each of them. This is obviously impossible, since it would mean that a car
industry should produce in advance and manage at the assembly line a huge number
of wiring configurations. For this reason, car industries produce a limited number of
opportunely chosen wiring configurations. Then, if a wiring configuration con-
taining just the options of an admissible demand is not produced, the car industry
substitutes it with a compatible (dominating) one. For the sake of the clarity, let us
consider a small example. A configuration U of 3 options has to be installed:
U = {A, B, C}. This configuration could be substituted by the dominating config-
uration V, U ⊆ V, with the following 4 options: V = {A, B, C, D}. This substitution
allows the car industry to overcome the problem of managing a great number of
wiring configurations. However, on the other side, each time the car industry
performs such substitution, it also sustains an additional wiring cost (extra-cost),
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since it is giving “as gift” the cables for one or more options not demanded by the
customer.

Hence the choice of the number and the kind of wiring configurations to produce
should be done in order to minimize this extra-cost. This problem, referred in the
literature to as optimal diversity management (ODM), has been introduced by
Briant and Naddef [2] and formulated and solved as a p-median problem in Avella
et al. [1]. The problem that is going to be tackled in this paper comes downstream
the one just described. Indeed, given the set of options and related costs, the set of
available wiring configurations at the assembly line and the set of admissible
demands, the car industry wants to synthetically represent the sub-set of demands
(partitions) assigned to each wiring configuration through the usage of ternary
strings, referred to as patterns. Hence, a variant of the set partitioning problem
arises, where the aim is defining the minimum number of patterns coherent with the
available wiring configurations, covering all the admissible demands and main-
taining the condition that each demand is assigned to the configuration covering it
at the minimum cost. As will be better explained in the following section, this
problem has been already defined in the field of the Logical Analysis of Data
(LAD) first described in [4]. More precisely it can be considered as a particular
variant of the simple pattern minimality problem [5, 6] which in turn, coincides
with the minimum disjunctive normal form problem that is NP-complete [3].

The work is structured as follows: in Sect. 2 we explain the simple pattern
minimality problem and the variant we tackle in this work; in Sect. 3 we propose a
heuristic approach for our problem; finally, in Sect. 4, we will present several
computational results.

2 Problem Description and Setting

In order to describe the problem, let us define the following sets:

• O set of available options with the related installation cost co;
• WR set of wiring configurations, expressed as binary strings of |O| elements.

The generic element WRi(o) of a wiring configuration WRi, assumes value 1, if
WRi contains the cable of option o, 0, otherwise

• D set of admissible demands, expressed as binary strings of |O| elements. The
generic element dj(o) of a demand Dj assumes value 1, if the demand Dj contains
option o, 0, otherwise

• P set of patterns, expressed as ternary strings of |O| elements. The generic element
pk(o) of a pattern Pk assumes value 1, if the option o is in the pattern Pk; 0, if the
option o is not in Pk; 2, if the option o can or cannot be in the pattern Pk. A pattern
covers a demand just iff dk(o) = pk(o) for each o such that pk(o)∈ {0, 1}.
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To better explain the concept of pattern, let us consider the example of Fig. 1,
where we report a pattern, P1 and related demands D1, D2, D3 and D4.

In the simple pattern minimality problem (SPMP) the aim is determining the
minimum number of patterns covering exactly the set of demands D, with no
restriction on the generation of pattern (each demand can be covered by more than
one pattern). The car industry problem tackled in this work is a particular variant of
the SPMP, where the main difference is in the fact that the determined patterns must
be partitions and not covers of the initial binary string data set. More precisely, it
can be summarized as follows: (1) determining the minimum number of demand
partitions; (2) generating the patterns representing the partitions, coherently with the
available wiring configurations (patterns have to be a cover of the wiring config-
uration); (3) assigning each generated pattern to exactly one coherent wiring con-
figuration, covering all the related demands at the minimum cost. For the sake of the
clarity, we provide a graphical representation and explanation of the problem. Let
us assume to have all possible patterns coherent with the available wiring config-
urations. Then the problem can be represented by a multi-level graph (Fig. 2), with
wiring configurations, patterns and demands on first, second and third level,
respectively. The arrows show the “coherency”, i.e. the possible assignments,

P1 0 1 0 0 0 2 0 2 1

D1 0 1 0 0 0 0 0 0 1
D2 0 1 0 0 0 0 0 1 0 
D3 0 1 0 0 0 1 0 0 0
D4 0 1 0 0 0 1 0 1 1 

Fig. 1 Patter example and
related covered demands

Fig. 2 Multi-level graph representation of the problem
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between wiring configurations and patterns, and, patterns and demands. We high-
light, by thicker lines, a feasible solution of the problem where each demand is
covered by a single pattern and each pattern is assigned to a single wiring con-
figuration covering it at the minimum cost, i.e., the extra cost for all the demands
paid when replacing a configuration with a richer one, is minimized.

Two issues must be further discussed about the structure of represented feasible
solution for the problem. First one is that the demand partitioning is guaranteed by
the fact that the selected patterns differ for at least one element (the second one)
which assumes value 0 in Pattern 3 and value 1 in Pattern 7. This means that the
two patterns have no demands in common. This would not occur if, for example,
the solution was made by Pattern 3 together with Pattern 9, since first and second
demands would have been covered by both patterns. Second issue concerns the
tradeoff between the extra cost and patterns (partitions) minimization. Indeed, if the
Pattern 9 was the only one to be selected to represent the four demands, it would
have been associated to the second wiring configuration, the only one coherent with
this pattern. Given that second wiring configuration is the most expensive one, this
would imply a higher extra-cost for the car industry with respect to the highlighted
solution, since demands 1 and 2 are not covered by the cheapest wiring
configuration.

3 Partitioning Based Heuristic

The basic idea of the proposed solving heuristic is the decomposition of the main
set partitioning problem in more set partitioning sub-problems, one for each wiring
configuration. The algorithm starts from the complete knowledge of the list of
admissible customer demands D but does not enumerate all the possible patterns
associated to the available wiring configurations. It develops in two phases:

• Preprocessing: Demand-Wiring configuration assignment. Definine the
sub-lists of demands assigned to each wiring configuration. Each demand has to
be assigned to the wiring configuration covering it at the minimum cost.

• Core: Pattern generation. Determine the patterns associated to each wiring
configuration with no multiple assignment of demands.

3.1 Preprocessing: Demand-Wiring Configuration
Assignment

In this phase a simple minimum coverage cost problem is solved. The steps to be
performed are two:
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1. Order the WRi for increasing cost values ∑o∈O coWRi oð Þ� �
,

2. Assign each demand to the wiring configuration covering it at minimum cost.

The assignment at the minimum cost between demands and wiring configuration
is obtained performing a bit-to-bit OR operation between the elements of the binary
string representing the wiring configuration and the binary string representing the
demand. The minimum cost assignment is guaranteed by the fact that the OR
operation is done for each demand and all possible wiring configuration starting
from the top of the ordered list. In this way demand sub-lists are generated for each
wiring configuration.

3.2 Core: Pattern Determination

Given the result of the preprocessing phase, a pattern list is generated by successive
aggregation of demands assigned to a wiring configuration WRi. In particular, the
pattern determination phase requires the following operations, where D and P de-
note the demand and the pattern list respectively:

Step 0. Order the list D for increasing values of the number of bits equal to 1;

set P= D1½ �, j=1 and i=2.

Step 1. Evaluate the “bit-to-bit difference” between Di and Dj, for each j ≤ i

• if there is just one bit of difference between Di and Dj, then change
value of the difference bit to 2 in the pattern Pk covering Dj

• else insert Di in P and set j = j + 1.

Step 2. Set i = i +1.
Step 3. If i ≤ |D| return to Step 2 else STOP

In order to better explain this phase, let us consider a small example (Fig. 3),
where a wiring configuration and related list of ordered demands are given.

The first three demands have the same number of elements equal to 1. This
means that, performing a bit to bit difference between two of them the result will
always have more than one bit of difference. Hence the first three demands are
directly inserted in the pattern list, which, after three iterations of the aggregation
procedure will have the following structure:

P1 = 000000100 P2 = 000001000 P3 = 000010000
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Let us consider now the forth demand D7 with two bits equal to 1, and perform
the bit-to-bit difference between this demand and the previous ones:

D7 = 000000101

D1 = 000000100

Diff . = 000000001

There is just one bit of difference between D7 and D1 and it is in correspondence
of element O9. For this reason, the two demands can be represented by the same
pattern, where the value of element O9 of the pattern to which D1 is assigned to is
changed to 2:

P1 = 000000102

Repeating the same procedure for fifth demand D5, we will obtain that P1 has to
be modified as follows:

P1 = 000002102

Concerning this modification, it is important to underline the fact that P1 has
been generated aggregating just three demands, but it synthetically represents four
demands, since it also includes the demand D* = [000001101]. This occurrence is
acceptable for the car industry firm since: if this demand is admissible, then it would
be in any case assigned to the same wiring configuration, which is the one covering
it at minimum cost; if it is not admissible, even if it is covered, it cannot be required
by any customer.

Repeating the same procedure for all the demands assigned to the WR1 wiring
configuration the following patterns will be obtained:

P1 = 000002102 P2 = 200001000 P3 = 020010000

O1 O2 O3 O4 O5 O6 O7 O8 O9

WR1 1 1 0 0 1 1 1 0 1

O1 O2 O3 O4 O5 O6 O7 O8 O9

D1 0 0 0 0 0 0 1 0 0
D2 0 0 0 0 0 1 0 0 0
D3 0 0 0 0 1 0 0 0 0
D7 0 0 0 0 0 0 1 0 1
D5 0 0 0 0 0 1 1 0 0
D8 1 0 0 0 0 1 0 0 0
D4 0 1 0 0 1 0 0 0 0
D6 0 0 0 0 1 0 1 0 1

Fig. 3 Wiring configuration
and associated ordered
demand sub-list
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As it can be noticed, in this way, instead of storing for WR1 wiring configuration
the complete set of covered demands, they are synthetically represented by the
usage of three patterns.

3.3 Algorithm Refinement

The above described algorithm has a weakness point which has to be taken into
account. The most time consuming part is the demand aggregation phase, since in
this phase we evaluate each current demand with all the previous ones with a small
number of bits equal to 1. This operation, given the huge amount of possible
demands, can be very heavy from the computation time point of view. For this
reason, in order to significantly reduce it, a small modification has been performed.
Instead of evaluating at each iteration the bit to bit difference of the current demand
with all the previous ones, we evaluate the bit to bit difference between the current
demand and all the patterns generated until that moment. This difference is per-
formed without considering the element of the patterns which have already been set
to 2, since this means that they can assume both values, 0 or 1. This adjustment
significantly reduce the number of bit to bit operations that have to be performed.
On the other side, it requires an additional control in order to avoid the possibility of
having a demand covered by more than one pattern. In fact, let us consider a
situation where, during the aggregation phase, the following two patters have been
generated:

P1 = 010120101 P2 = 012012101

Suppose now that the following demand has to be taken into account
D* = [011111101]. This demand has more than one bit of difference if compared
with P1 and just one bit of difference if compared with P2. Hence, it can be
aggregated to P2 setting the value of fourth element to 2. But if we perform such
modification of pattern P2, the demand D^ = [010100101] could be covered by
both patterns, violating single assignment constraints. For this reason, we have to
add a control which, each time a pattern should be modified, checks if this modi-
fication produces a pattern which completely covers another existing one. If this
happen the aggregation is not possible and the current demand is introduced in the
pattern list as a new pattern, otherwise the aggregation is performed.

4 Instance Details and Computational Results

The proposed algorithm has been experienced on six test cases provided by the car
industry. The details of these set cases are summarized in the Table 1: first column
reports the instance identifier; second column, the number of available options;
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third column, the number of wiring configurations; forth column, the number of
possible combinations of options; fifth column, the number of admissible customer
demands. As said above it is important to note that the number of admissible
demands is much lower than the one of the possible combinations and this is due to
the wiring constraints. This motivates the choice of using as input data of the
algorithm the complete list of the admissible demands.

Proposed algorithm has been run on a Windows XP 64 bit Intel(R) Core 2
Duo CPU T9300–2,50 GHz—RAM 4,00 GB. It has been compared in terms of
computation time and number of generated patterns with solutions already used by
the car industry, reported in third and fourth column of Table 2. It is easy to see that
the main criticalities of the available solution regard mainly medium and large size
instances (the last three test cases), for which the computation time started to
significantly increase. Moreover, no solution was available for test case 6. In fifth
and sixth column of Table 2, the results of the proposed algorithm are reported. It
can be observed that results on the first three test cases are very similar in terms of
number of patterns and computation time, whereas significant improvement have
been obtained on the last three instances on both quality of solution and compu-
tation time. More precisely the number of generated patterns are about a half of the
available solutions and computation time are less than half an hour (instead of
several hours and days) for test case 4 and 5. A solution for test case 6 has been
found in about 3 h and 30 min.

Table 1 Instance details

Test cases # options # WR # combinations # demands

1 20 61 1,048,576 196,608
2 26 81 67,108,864 1,179,648
3 33 37 8,589,934,592 393,600
4 36 50 68,719,476,736 111,476,736
5 38 24 274,877,906,944 215,239,680
6 47 25 140,737,488,355,328 2,179,989,504

Table 2 Computational results

Test cases # options # patterns
(avail. sol.)

Time
(avail. sol.)

# patterns
(alg. sol.)

Time
(alg. sol.)

1 20 66 <1 m 66 <1 m
2 26 131 <1 m 131 <1 m
3 30 250 2 m 250 <2 m
4 33 685 9 h 32 m 306 25 m
5 38 992 19 d 21 h 27 m 411 29 m
6 47 – – 496 3 h 30 m
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5 Conclusions

In this paper a particular variant of the SPMP, arising in the car industry, has been
tackled. Given the sizes of the real cases to be treated and the need to have good
solutions in reasonable computation time, the problem has been solved by an ad hoc
heuristic approach. The proposed algorithm develops in two phases and is based on
the decomposition of the main set partitioning problem in more sub-problems, one
for each available wiring configuration. All the test instances have been solved,
including also one hard large instance containing 47 options.

References

1. Avella, P., Boccia, M., Di Martino, C., Oliviero, G., Sforza, A., Vasilev, I.: A decomposition
approach for a very large scale optimal diversity management problem. 4OR: Q. J. Oper. Res. 3
(1), 23–37 (2005)

2. Briant, O., Naddef, D.: The optimal diversity management problem. Oper. Res. 52(4), 515–526
(2004)

3. Garey, M.R., Johnson, D.S.: Computers and intractability. A guide to the theory of
NP-completeness. A Series of Books in the Mathematical Sciences. W. H. Freeman and
Company, San Francisco (1979)

4. Hammer, P.L.: Partially defined boolean functions and cause-effect relationships. In: Lecture at
the International Conference on Multi-attrubute Decision Making Via OR-Based Expert
Systems. University of Passau, Passau, Germany (1986)

5. Lancia, G., Serafini P.: A set-covering approach with column generation for parsimony
haplotyping. JOC: J. Comput. 21(1), 151–166 (2009)

6. Lancia, G., Serafini P.: The complexity of some pattern problems in the logical analysis of
large genomic data sets. Sets. In: Ortuño, F., Rojas, I. (eds.), Bioinformatics and Biomedical
Engineering. IWBBIO 2016. Lecture Notes in Computer Science, vol. 9656. Springer, Cham

102 M. Boccia et al.



Part III
Health Care



Patient–Centred Objectives as an Alternative
to Maximum Utilisation: Comparing
Surgical Case Solutions

Roberto Aringhieri and Davide Duma

Abstract Operating Room (OR) planning and scheduling is a research topic widely

discussed in the literature, in which several performance criteria have been proposed

to evaluate the OR planning decisions. Although the OR utilisation is the leading

objective, from research experiences, long waiting lists lead to a satisfactory fill-

ing of ORs even fixing other objectives. In this paper we analyse the impact on OR

utilisation of two patient–centred objectives: the waiting time minimisation and the

workload balance. In the former the most commonly used patient–centred criterion

is taken into account, while the latter leads to a smooth stay bed occupancies deter-

mining a smooth workload in the ward and, by consequence, an improved quality of

care provided to patients. To the best of our knowledge, a comparison of the planning

determined by these criteria is not yet available in literature.

Keywords Surgery process scheduling ⋅ Patient–centred ⋅ Objective functions

Comparison

1 Introduction

Operating Room (OR) planning and scheduling is a research topic widely discussed

in the literature [9, 12, 21]. At the operational decision level [23], the problem aris-

ing is also called “surgery process scheduling” of elective patients, which usually

consists in (i) selecting patients from an usually long waiting list and assigning them

to a specific OR session (i.e., an operating room on a specific day) over a plan-

ning horizon [3, 17, 20], and (ii) determining the precise sequence of surgical pro-

cedures and the allocation of resources for each OR session [13, 18]. A further
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problem was recently introduced: the Real Time Management (RTM) of operating

rooms [2, 10] is the decision problem arising during the fulfillment of the surgery

process scheduling, that is the problem of supervising the execution of such a sched-

ule and, in case of delays, to take the more rational decision regarding the surgery

cancellation or the overtime assignment. The RTM with also non-elective patients is

studied in [11] in which a competitive analysis of the online algorithms is also dis-

cussed. Such problems are further challenged by the inherent stochasticity of their

main parameters, such as the surgery duration, the length of stay and the arrival of

non-elective patients [1, 6, 14].

Several performance criteria have been reported to evaluate the OR planning deci-

sions [9]. Usually, the maximisation of the OR utilisation is the most important cri-

terion, since ORs are the largest cost and revenue centre of hospitals [12]. However,

long waiting lists could lead to a satisfactory OR utilisation due to the broader variety

of surgery durations that can be selected adopting other objectives. Note that long

waiting lists is a common situation in many hospitals belonging to publicly funded

health care systems. Taking into account a patient–centred perspective, one of the

most commonly used criterion is the waiting time, which is addressed weighting

the patients according to the time elapsed from the referral day [3, 22, 24]. Con-

versely, the workload balance criteria is designed for workers in the wards, leading

to a smooth—without peaks—stay bed occupancies that determines a smooth work-

load and, by consequence, an improved quality of care provided to patients [4, 5,

19].

The main contribution of this paper is the comparison of the surgical planning

determined by these criteria. To the best of our knowledge, some attempts are avail-

able in the literature but they are applied to different operative contexts [7, 16] or

taking into account different goals [8]. To perform the comparison, we will consider

the surgical case assignment problem under the two criteria. Note that the surgical

case assignment problem has been proved to be ℕℙ–hard in [3]. We compute the

solutions of such problems considering a set of instances generated by using the

instance generator proposed in [15].

2 Mathematical Formulations

In this section, we propose simple integer linear programs to model the surgical case

assignment problem under the two criteria considered, that is the minimisation of the

waiting times and the workload balance. In the following we will consider a single

specialty with a large number of stay beds and a long waiting list of patients. These

assumptions would avoid or limit the impact on the solutions of exogenous factors.

The time horizon is one week composed of five operating days (from Monday to

Friday).

Let I, K and T be respectively the sets of patients, operating rooms and working

days of the planning horizon, each indexed by the corresponding letter, i, k and t.
Note that each OR session in the planning horizon is uniquely defined by a pair of
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indices (k, t). We denote by skt the time capacity of the OR session (k, t). For each

patient i ∈ I, the following information are given: the waiting time wi, expressed

in days and computed from the referral day; the expected duration of the surgery pi,
expressed in minutes; the expected Length of Stay (LOS) 𝜇i, expressed in days. Note

that we assume that the value of 𝜇i includes also the operating day, and that 𝜇i ≤ 3
to avoid the case in which a bed is used by a patient operated on the previous week.

Let xikt be the binary decision variable that models the assignment of the patient

i to the OR session (k, t) (xikt = 1), or not (xikt = 0).

M1 ∶ max zwaiting =
∑

i∈I
wi

∑

k∈K

∑

t∈T
xikt (1a)

s.t.

∑

k∈K

∑

t∈T
xikt ≤ 1 , i ∈ I (1b)

∑

i∈I
pixikt ≤ skt , k ∈ K, t ∈ T (1c)

The model M1 minimises the waiting time. The selection of the patients from the

waiting list and their assignment to OR sessions is modelled by the constraints (1b)

and (1c): constraints (1b) state that a patient can be scheduled at most once, while

constraints (1c) impose that the sum of the surgery times of the patients scheduled

in each OR session (k, t) may not exceed the time capacity skt. The objective func-

tion (1a) leads to a solution made of those patients having longest waiting time at

the moment of planning. In other words, the model would favour those patients with

longest waiting time instead of those with shorter ones.

M2 ∶ max zbalance = y (2a)

s.t.

∑

k∈K

∑

t∈T
xikt ≤ 1 , i ∈ I (2b)

∑

i∈I
pixikt ≤ skt , k ∈ K, t ∈ T (2c)

∑

k∈K
xikt = yit , i ∈ I, t ∈ T (2d)

max{t+𝜇i,𝓁
′′}∑

h=t
zih ≥ 𝜇iyit , i ∈ I, t ∈ T (2e)

t∑

h=min{t−𝜇i,𝓁′}
yih ≥ zit , i ∈ I, t ∈ T (2f)

∑

i∈I
zit ≥ y , t ∈ T (2g)

The model M2 balances the workload. As in the previous model, constraints (2b)

and (2c) represent the selection of the patients from the waiting list and their assign-

ment to OR sessions. Constraints (2d) define the value of the auxiliary variables yit,
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which is equal to 1 when the patient i is operated on the day t, 0 otherwise. Such a

variable is then used to count the number of stay beds used each day t of the plan-

ning horizon T by fixing the value of the auxiliary variables zit, which is equal to 1
when the patient i take up a stay bed during the day t, 0 otherwise through the con-

straints (2e) and (2f), in which the parameters 𝓁′
and 𝓁′′

represent the first and the

last working days in T , respectively. In order to model the work balance, we adopt

a bottleneck approach: the objective function (2a) seeks to maximise the number of

busy stay beds during the day with the minimal bed usage (constraints (2g)).

3 Comparison

In our comparison we consider a benchmark set of 11 instances whose case mix

has been generated using [15], rounding the value to the nearest integer to obtain

pi. With a different case mix, each instance is composed of 300 patients whose wi
and 𝜇i are uniformly distributed in [1, 365] and {1, 2, 3}, respectively. The operating

theatre is composed of 4 ORs for a total operating time of 9600min. The two models

are implemented and solved using Cplex Optimization Studio 12.5 with a running

time limit set to 300 s.

Table 1 reports the results of the comparison. For each instances (denoted as

in [15]), the running time, the gap, the number N of operated patients, the total utili-

sationD of the ORs (minutes), and the average pi of the operated patients are reported

for both models M1 and M2.

A first remark concerns the running time: the solution of the model M1 requires a

larger computational effort than the model M2 even if the average solution gap of the

model M1 is still quite limited. We observe that the solutions of the model M1 has

Table 1 Comparing M1 and M2 solutions: main parameters

Time Gap N D Avg. pi
M1 M2 M1 (%) M2 (%) M1 M2 M1 M2 M1 M2

CHI 300.05 299.91 1.27 1.27 177 190 9598 9308 54.2 49.0

ENT 300.06 0.67 0.16 0.00 157 156 9573 9003 61.0 57.7

EYE 300.14 0.48 0.16 0.00 194 182 9583 9007 49.4 49.5

GYN 300.14 0.69 0.12 0.00 162 162 9576 8999 59.1 55.5

MIX 300.13 0.69 0.07 0.00 203 211 9579 9279 47.2 44.0

NEU 300.08 1.22 0.03 0.00 254 266 9588 9413 37.7 35.4

ONC 300.08 0.73 0.14 0.00 168 162 9582 9207 57.0 56.8

ORT 300.06 1.09 0.17 0.00 164 167 9577 8997 58.4 53.9

PLA 300.09 0.8 0.30 0.00 146 150 9558 9114 65.5 60.8

THO 300.06 161.78 0.20 0.00 162 182 9571 9506 59.1 52.2

URO 300.06 0.42 0.26 0.00 170 172 9577 9097 56.3 52.9
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always a larger average OR utilisation than M2, that is 99.8 and 95.6% over the total

operating time, respectively. We observe that the OR utilisation of M1 is always close

to 9600 min because of the proxy effect of its objective function. Quite surprisingly,

the number N of operated patients not complies with the OR utilisation: those of

the model M2 is larger than those in M1 in 7 instances over 11. Note that there is

not a correlation between the value of N and D: actually, for the instance ORT, the

difference between the values of D is 580 in favour of M1 (the largest one) while

the difference between the values of N is 3 in favour of M2; for instances THO, the

difference between the values of D is 65 in favour of M1 (the smallest one) while the

difference between the values of N is 20 in favour of M2 (the largest one).

Table 2 reports the number of occupied stay beds for each day of the planning

horizon. Further, the columns with bold values report the difference between the

maximum and the minimum of those values. The reported results show the impact

of not considering the balance of the workload in the solution of model M1: while in

M2 the average difference between the maximum and the minimum of occupied stay

beds is 1.8, the same value in M1 is 43.7. We remark that the LOS of each patient

can have an impact: actually, the sum of the beds over the time horizon is greater

than the value of N. In the following tables we report the results for the instance CHI

and THO varying the LOS distribution as follows: in the scenario 1, the 60% of the

patients have 𝜇i = 1, the 20% have 𝜇i = 2, and the remaining 20% have 𝜇i = 3; on

the contrary, in the scenario 2, the 60% of the patients have 𝜇i = 3, the 20% have

𝜇i = 2, and the remaining 20% have 𝜇i = 1.

Table 3 reports the same type of results of those reported in Table 1 but only for

the instances CHI and THO. While the number of operated patients is almost the

same for model M1 in both scenarios, for model M2 the value of N increases in the

scenario 2, that is when the patients with maximum LOS are the majority.

Table 2 Comparing M1 and M2 solutions: occupied stay beds

Model M1 Model M2
1 2 3 4 5 1 2 3 4 5

CHI 41 73 70 70 58 32 79 79 79 79 79 0
ENT 40 66 70 50 55 30 60 64 65 60 60 5
EYE 40 66 91 72 68 51 65 66 66 65 65 1
GYN 33 61 78 66 56 45 59 65 59 59 59 6
MIX 43 77 81 90 81 47 85 88 85 85 85 3
NEU 49 126 116 83 96 77 115 115 115 115 115 0
ONC 34 57 67 67 69 35 57 57 59 57 57 2
ORT 34 56 78 65 62 44 68 69 68 68 68 1
PLA 29 51 57 56 51 28 56 56 56 56 57 1
THO 30 66 79 58 57 49 79 79 79 79 79 0
URO 32 61 65 61 75 43 63 63 63 63 64 1
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Table 3 Comparing M1 and M2 solutions: impact on the solution varying the LOS of the patients

Time Gap N D Avg. pi
M1 M2 M1 (%) M2 (%) M1 M2 M1 M2 M1 M2

Scenario 1

CHI 300.08 1.92 0.07 0.00 176 181 9588 9360 54.5 51.7

THO 300.06 100.08 0.20 0.00 162 169 9571 9567 59.1 56.6

Scenario 2

CHI 300.05 299.89 0.06 1.19 177 193 9590 9361 54.2 48.5

THO 300.08 2.25 0.17 0.00 161 176 9571 9232 59.4 52.5

Table 4 Comparing M1 and M2 solutions: occupied stay beds varying the LOS of the patients

Model M1 Model M2
1 2 3 4 5 1 2 3 4 5

Scenario 1

CHI 41 61 58 58 47 20 71 71 71 71 71 0
THO 28 45 55 51 58 30 62 62 62 62 62 0

Scenario 2

CHI 41 78 89 82 68 48 84 84 103 84 84 19
THO 28 68 81 66 77 53 74 74 108 74 74 34

Table 4 reports the same type of results of those reported in Table 2 but only for

the instances CHI and THO. For the scenario 1, the results confirm the previous

remarks. On the contrary, the results for the scenario 2 show a significant increment

of the difference between the maximum and the minimum of occupied stay beds for

model M2: actually, such a difference is due to a peak in the third day while the other

days are balanced; such a peak is due to the larger number of patients with 𝜇i = 3.

4 Conclusions

We proposed and analysed two integer linear programming models for the surgical

case assignment problem using patient–centred objectives as an alternative to the

maximum OR utilisation.

Quantitative analysis confirmed the ability of the two models to ensure a high level

of OR utilisation dealing with long waiting lists. The two criteria provided different

results. The minimisation of the waiting times is a fairness criterion among patients

that allowed us to have an OR utilisation close to 100% in all cases. Conversely, the

workload balance is a criterion to have a smooth workload along the week, which

has been able to schedule a high number of patients in most cases.
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The results of the model M1 showed that waiting time minimisation should be

a proxy of the OR utilisation maximisation, when the waiting list is quite long.

From this perspective, the most considerable and counter-intuitive result is the non-

compliance between the OR utilisation and the number of the planned patients, as

reported in Table 1.

A further work can be the study of the impact of these criteria when they are

adopted over time and if used concurrently with other optimization modules, such

as the RTM of operating rooms.
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A Hierarchical Multi-objective Optimisation
Model for Bed Levelling and Patient Priority
Maximisation

Roberto Aringhieri, Paolo Landa and Simona Mancini

Abstract Operating Rooms (ORs) are one of the highest cost drivers of hospital

budget and one of the highest source of income. Several performance criteria have

been reported to lead and to evaluate the OR planning decisions. Usually, patient

priority maximisation and OR utilisation maximisation are the most used objectives

in literature. On the contrary, the workload balance criteria, which leads to a smooth

ward stay beds occupancy seems less used in literature. In this paper we propose a

hierarchical multi-objective optimisation model for bed levelling and patient prior-

ity maximisation for the combined Master Surgical Scheduling and Surgical Cases

Assignment problems. The aim of this work is to develop a methodology for OR

planning and scheduling capable to take into account such different performance

criteria.

Keywords Operating room planning ⋅ Elective surgery

Multi-objective optimisation

1 Introduction

Operating Rooms (ORs) are one of the highest cost drivers of hospital budget and one

of the highest source of income. The challenge that hospital management has to face

is achieving a better and optimised use of hospital shared resources, able to reduce
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costs and increase profits. The adoption of decision methods as operations research

can provide tools able to address the complexity of OR planning and scheduling [8,

13]. Such a complexity is given by different characteristics of the hospital organisa-

tion, where wards access to shared and limited resources such as ORs, ward beds,

Intensive Care Unit (ICU) beds, Anaesthesiologists, Surgeons, Nurses. Other factors

increase the complexity, such as the uncertainty of patient clinical conditions (e.g.

the length of stay after the surgical intervention) and the patient surgery time in the

OR session that can lead to cancellations or delays of surgery in the schedule.

OR scheduling and planning can be defined by three hierarchical decisions lev-

els: strategic, tactical and operational that consider respectively the long, medium

and short term objectives. The strategic level considers resource allocation problem,

determining the number of surgeries, which staff to use for surgeries and defining the

amount of the resources available. At tactical level the master surgical schedule, that

is the assignment of OR blocks to surgical specialties, is defined together with the

number of surgeons, the definition of ward and ICU use, and the need of equipment.

Finally, at the operational decision level are defined two problems, that is (i) select-

ing elective patients usually from a long waiting list and assigning them to a specific

OR time session (i.e., an operating room open on a specific day) over a planning

horizon [10, 18], and (ii) determining the precise sequence of surgical procedures

and the allocation of resources for each OR time session [15, 19]. Such problems

are further challenged by the inherent stochasticity of their main parameters, such as

the surgery duration, the length of stay and the arrivals of non-elective patients [1,

2, 7, 11, 12, 16, 22].

Bed availability is a topic that recently received a particular attention. Ward bed

availability inside a hospital with different surgical specialties is considered in [3,

16, 22] while other studies [19, 23] consider only the use of Intensive Care Unit

(ICU) or Post-Anaesthesia Care Unit (PACU) [24], or both [6, 9].

Several performance criteria have been reported to lead and to evaluate the OR

planning decisions [8]. Usually, patient priority maximisation [10] and OR utilisa-

tion maximisation [14] are the most used, but also minimise delays and cancella-

tions [16], maximise patient satisfaction [20] and minimise fixed patient costs or

societal costs [23] were considered as objective function for OR planning. On the

contrary, the workload balance criteria leads to a smooth—without peaks—stay bed

occupancies determining a smooth workload in the ward and, by consequence, an

improved quality of care provided to patients [4, 5, 21].

In this paper we propose a hierarchical multi-objective optimisation model for

bed levelling and patient priority maximisation for the combined Master Surgical

Scheduling and Surgical Cases Assignment problems. The aim of this work is to

develop a methodology for OR planning and scheduling able to take into account

such different performance criteria. The problem description and the multi-objective

optimisation model are reported in Sect. 2. Preliminary computational analysis is

reported and discussed in Sect. 3. Section 4 closes the paper.
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2 Problem Statement and Mathematical Formulation

The problem addressed in this work can be formalised as follows. The goal is to

simultaneously assign the OR blocks to a surgical specialty and to schedule patient

surgeries in order to maximise a hierarchical objective function considering bed lev-

elling and patients priority. More in details, the primary objective consists in max-

imising the number of beds occupied in a surgical specialty department, in the day in

which the occupation is minimum, which represents the bottleneck of the problem.

The secondary objective consists in maximising the global patients satisfaction. To

each patient is assigned a score, which is computed as its priority level divided by

the waiting time between the diagnosis and the surgery. The global patient satisfac-

tion is defined as the sum of the scores related to the patients which are selected for

surgery within the planning horizon.

For each patient are known the surgical specialty to which he/she is assigned,

the priority level, the expected length of stay (LOS), the number of days elapsed

from the diagnosis, the expected surgery duration. For each specialty is known the

number of beds available on each day. Furthermore, the length of each OR block

is supposed to be known. The objective is twofold. First, we try to maximise the

minimum occupation of beds in a day in a department, secondly to maximise patients

satisfaction, as described in the previous paragraph. A patient can be assigned to an

OR block only if that block has been assigned to the surgical specialty which the

patient belongs. The total expected duration of surgeries scheduled in a OR block

can not exceed its length. Each scheduled patient occupies a bed in the day of his/her

surgery and for a number of following days equal to his/her LOS.

Before reporting the mathematical model, we are required to introduce the follow-

ing notation. Let I, J and K be respectively the sets of patients, surgical specialties

and operating rooms, each indexed by i, j and k. Let T = {1,… ,Nt} be the set of days

in the planning horizon, indexed by t. Let Ij be the subset of patients that belong to

specialty j, j ∈ J. For each patient i ∈ I, we are given the expected duration of the

surgery pi, the priority coefficient 𝜋i, and the expected Length of Stay 𝜇i, expressed

in days. Let Φit be the number of elapsed day between diagnosis of patient i and day

t. Note that each OR block in the planning horizon is uniquely defined by the pair of

indices (k, t). We denote by skt the time capacity of the OR session (k, t). Let Λjt be

the number of beds available for specialty j on day t. Finally, let P and M set to
∑

i 𝜋i
and

1
P+1

, respectively.

Let us introduce the following decision variables: a binary variable Xikt equals to

1 if patient i is assigned to block k on day t, and 0 otherwise; a binary variable Zjkt
equals to 1 if block k on day t has been assigned to specialty j, and 0 otherwise; a

binary variable Yit equals to 1 if patient i occupies a bed on day t, and 0 otherwise; a

binary variable Wit equals to 1 if patient i surgery is scheduled on day t. Let be also

O1 and O2 the primary and the secondary objective.
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max z =O1 +MO2 (1a)

s.t.

∑

k∈K

∑

t∈T
Xikt ≤ 1 , i ∈ I (1b)

∑

i∈Ij

Xikt ≤ |Ij|Zjkt , j ∈ J, k ∈ K, t ∈ T (1c)

∑

j∈J
Zjkt ≤ 1 , k ∈ K, t ∈ T (1d)

∑

i∈I
piXikt ≤ skt , k ∈ K, t ∈ T (1e)

Wit =
∑

k∈K
Xikt , i ∈ I, t ∈ T (1f)

min(t+𝜇i;Nt)∑

𝜏=t
Yi𝜏 ≥ min(𝜇i + 1;Nt − t + 1)Wit , t ∈ T (1g)

t∑

𝜏=max(t−𝜇i,1)
Wi𝜏 ≥ Yi𝜏 , t ∈ T (1h)

∑

i∈Ij

Yit ≤ Λjt , t ∈ T , j ∈ J (1i)

O1 ≤
∑

i∈Ij

Yit , t ∈ T , j ∈ J (1j)

O2 =
∑

i∈I

∑

t∈T

∑

k∈K

𝜋i

Φit
Xikt . (1k)

The hierarchical objective function is reported in (1a). The role of the multiplier

M is to ensure that if a solution S1 has a higher value of O1 with respect to S2 it

would be preferred whichever the correspondent values of O2. In other words, the

secondary objective intervenes in the solutions comparison only when the value of

O1 is exactly the same. Constraint (1b) states that only a subset of patients can be

selected from the long waiting list. A patient can be assigned to an OR block only

if it is assigned to the surgery specialty to which he/she belongs, as stated in con-

straint (1c). Constraint (1d) implies that each block must be assigned to at most one

specialty. Constraint (1e) imposes that the sum of the surgery times of the patients

scheduled in each OR time block (k, t) may not exceed the time block capacity skt.
Constraint (1f) allows to detect whether patient i surgery is scheduled on day t. Con-

straints (1g) and (1h) imply that, if a patient i is scheduled on day t, he/she will

occupy a bed for the following 𝜇i days. Constraints (1i) limits for each specialty the

number of beds occupied each day to the maximum number of available beds, given

the number of beds in the department. The primary objective function (1j) concerns

the maximisation of the number of beds used in the day and the specialty department

with the minimal bed usage, which works as bottleneck approach. The max min bed

occupation objective function tends also to implicitly fill as much as possible the
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OR blocks thus avoiding under utilisation of operating rooms. The secondary objec-

tive (1k) concerns the maximisation of the patient served multiplied by the relative

corresponding patient priority and divided by the waiting days from the diagnosis.

We decided to analyse also what happens if we exchange the roles of the pri-

mary and secondary objective function. This can be obtained modifying the objec-

tive function

max 𝜌O2 +
O1

𝜆min + 1
(2)

where 𝜌 represents a multiplier constant such as, whichever value O2 takes, 𝜌O2
is integer. We identify with 𝜆min a strict upper bound on O1, computed as 𝜆min =
min(i∈I,t∈T) Λ(i, t). In this way, the second term of the objective function takes always

values between 0 and 1. Therefore, a solution S1 which has a higher value of O2 with

respect to another solution S2, and a value null for O1, would results always better

than S2, whichever is the value of O1 for S2.

3 Quantitative Analysis

In this section we provide a quantitative analysis in order to evaluate the behav-

iour of the mathematical model (1b)–(1k) varying the two objective functions (1a)

and (2). To this end, we generate three sets of benchmark instances B1, B2 and B3 as

follows: the operating time pi case mix has been generated using the generator pro-

posed in [17]; the elapsed time Φit is uniformly distributed in [1,365]; the LOS 𝜇i
is generated accordingly to the expected surgery times, basing on the consideration

that longer surgeries usually require longer stays. Five different priority levels are

defined, and for each patient the priority level 𝜋i is randomly generated.

The first set, B1, is composed of 8 instances, divided in 2 groups, (1a-1b-1c-1d)

and (2a-2b-2c-2d), with 200 patients uniformly distributed among 4 different spe-

cialties, each specialty has an availability of 10 beds. For each specialty we consider

that some of the beds can be occupied by patients operated before the planning hori-

zon, therefore the actual availability of beds may results lower than the capacity of

the department. Priorities are different for each instance, while waiting time from the

diagnosis, expected surgery duration, and LOS are constant within the same instance

group, but varying among the two groups. The number of ORs is equal to 5, each

one with a single block for day with a duration of 480 min. The time horizon is equal

to 5 days but each OR is open only for 4 days. The day on which each OR is closed

changes among ORs, such that, on each day, 4 ORs result available. The second set,

B2, contains the same instances of B1 but consider a bed capacity equal to 20 beds for

each specialty. As in the previous set, actual bed availability may results lower than

the capacity, due to bed occupation by patients operated before the planning horizon.

Finally, the third set, B3, is composed by 4 instances (a, b, c, d) with 400 patients and

8 specialties. Each instance is obtained merging the patients of two smaller instances

in the B1 in such a way that the first instance belongs to the group 1 while the second
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to the group 2. The number of ORs is 10 and their availability is defined with the

same rule used for the other sets, hence 8 ORs are available on each day.

The computational results are obtained solving the model using Xpress 7.9. with

a time limit of 3600 s. The computational test have been performed on a PC with a

4-core Intel i7-5500U with 2.4 GHz CPU and 16 Gb of main memory.

Table 1 reports the results for benchmark B1. It is worth noting that the primary

objective could have an impact making more challenging the solution process: actu-

ally, the solutions with patient priority maximisation (2) have a larger average gap

(1.72%) and running time (3600 s) than those obtained with (1a) (0.00% and 57.89 s).

Table 2 reports the results for benchmark B2. The results confirm the remarks for

B1 even if the average gap for (2) is reduced to 0.62% and the average running time

for (1a) increases up to 342.28 s.

Finally, Table 3 reports the results for benchmark B3. We observe that for larger

instances, the previous remarks are totally overturned. Although all the solutions

reach the time limit, the average gap for (2) (3.26%) is smaller than the gap for (1a)

(26.77%). The difference in terms of average gap could depend on whether the

Table 1 Comparing solutions varying the objective functions (1a) and (2): benchmark B1

Objective (1a) Objective (2)

Instance O1 O2 Gap (%) Time O1 O2 Gap (%) Time

I200J4B10-1a 8 5.0230 0.00 64.84 7 5.4377 0.70 3600

I200J4B10-1b 8 4.7447 0.00 51.60 7 4.8893 3.86 3600

I200J4B10-1c 8 4.4770 0.00 30.13 7 4.7799 3.29 3600

I200J4B10-1d 8 5.7638 0.00 67.44 7 6.1313 2.31 3600

I200J4B10-2a 8 5.6571 0.00 95.74 7 5.9036 1.41 3600

I200J4B10-2b 8 6.9856 0.00 64.82 5 7.0913 0.35 3600

I200J4B10-2c 8 7.5927 0.00 42.48 5 7.7670 0.14 3600

I200J4B10-2d 8 9.2648 0.00 46.03 5 9.3825 1.70 3600

Table 2 Comparing solutions varying the objective functions (1a) and (2): benchmark B2

Objective (1a) Objective (2)

Instance O1 O2 Gap (%) Time O1 O2 Gap (%) Time

I200J4B20-1a 13 5.5446 0.00 480.28 6 5.9682 0.52 3600

I200J4B20-1b 13 5.2572 0.00 444.46 6 5.4323 1.26 3600

I200J4B20-1c 13 4.6907 0.00 955.57 6 5.2938 0.50 3600

I200J4B20-1d 13 6.1827 0.00 519.12 6 6.6528 0.56 3600

I200J4B20-2a 12 6.2183 0.00 53.16 5 6.4215 0.68 3600

I200J4B20-2b 12 7.1698 0.00 186.60 0 7.7247 0.57 3600

I200J4B20-2c 12 7.8644 0.00 74.10 5 8.3281 0.41 3600

I200J4B20-2d 12 9.4352 0.00 24.97 5 9.9327 0.44 3600
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Table 3 Comparing solutions varying the objective functions (1a) and (2): benchmark B3

Objective (1a) Objective (2)

Instance O1 O2 Gap (%) Time O1 O2 Gap (%) Time

I400J4B20-a 11 11.7966 21.42 3600 0 12.1370 2.79 3600

I400J4B20-b 10 12.3142 28.55 3600 0 12.5311 5.67 3600

I400J4B20-c 10 12.9874 28.55 3600 2 13.3342 2.64 3600

I400J4B20-d 10 15.9563 28.55 3600 0 16.3653 1.92 3600

instances in B3 have a larger number of patients but the same number of stay beds

than those, for instance, in B2: indeed, this situation results in an increased number

of the possible patient combinations that can be operated in compliance with the

operating constraints.

In terms of system performances, we can observe that taking into account only

O2 the system is not able to guarantee a smooth bed occupancy. Further, considering

O1 as primary objective, the solutions in terms of O2 are slightly worse than those

obtained considering O2 as primary objective, while the solutions in terms of O1 are

strongly better than those obtained considering O2 as primary objective, as showed

in Tables 1, 2, 3. By consequence, the use of O1 as primary objective seems to lead

to better global solutions.

4 Conclusions

In this paper we propose a hierarchical multi-objective optimisation model for

bed levelling and patient priority maximisation for the combined Master Surgical

Scheduling and Surgical Cases Assignment problems. The aim of this work is to

develop a methodology for OR planning and scheduling capable to take into account

such different performance criteria. The computational results prove the feasibility

of our approach showing also a counter-intuitive result. In fact, on small instances

the model where the primary objective function is the patient satisfaction results to

be more difficult to solve respect to the model where the primary objective is the

bed levelling, while on larger instances the model behaviour is totally overturned.

This aspect will be deeply investigated with further tests. Finally, the running time

required to obtain a solution suggested the need of developing ad-hoc solution algo-

rithms.
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Multi-Classifier Approaches for Supporting
Clinical Diagnosis

Maria Carmela Groccia, Rosita Guido and Domenico Conforti

Abstract Clinical diagnosis processes can result in many cases very complicated.

A misdiagnosis is expensive and potentially life-threatening for patients. Diagno-

sis problems are mainly in the scope of the classification problems. Multi-classifier

approaches can improve accuracy in classification task. In this work, we propose

Multi-classifier approaches based on dynamic classifier selection techniques. These

approaches have been tested on datasets known in the literature and representative

of important diagnostic problems. Experimental results show that a suitable pool

of different classifiers increases accuracy in classification task. This suggests that

the proposed approaches can improve performance of diagnostic decision support

systems.

Keywords Multi-classifier systems ⋅Diagnostic decision support systems

Machine learning

1 Introduction

Clinical diagnosis processes involve both biomedical information gathering and clin-

ical reasoning with the goal of determining patient’s health conditions. Such infor-

mation can be reported directly by the patient, acquired through physical examina-

tions or instrumental and laboratory tests. A clinical diagnosis process can result in

many cases very complex. Several factors make the process very difficult. First of

all data uncertainty. Often, different diseases share many characteristics with little
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differences and in these cases, identifying a correct diagnosis is very difficult. Clin-

icians need to consider more than one diagnostic hypothesis and gradually test all

of them but the probability of a misdiagnosis is high. A diagnostic process can be

improved with quantitative methods and technologies, properly implemented in com-

puter systems. Under this respect, multi-classifier approaches have been proposed for

supporting clinical diagnosis.

A Multi-Classifier System (MCS) is a system that uses different classifiers to per-

form classification task [1]. As reported in [2], a MCS is developed in three phases:

generation, selection and integration. In the generation phase, a pool of classifiers,

called also base classifiers, is generated. In the selection phase one or a subset of

the base classifiers is selected. Finally, in the integration phase a final decision is

made based on predictions of the selected base classifiers. Selection and integration

phases can be facultative. Two type of classifiers selection have been proposed in the

literature: static and dynamic. In a static classifiers selection, classifiers are selected

at the end of the training phase and then they are always used to classify every test

instance. In a dynamic classifier selection (DCS), specific classifiers are selected for

each test instance, given of the assumption that each base classifier is an expert in a

different local region. A local region consists of instances that are located near to a

given test instance. The technique selects the most appropriate classifiers in the local

region according to a competence criterion. An interesting review of dynamic selec-

tion methods is presented in [2]. The authors illustrate various dynamic selection

algorithms organized according to defined competence criteria. In [3] two meth-

ods that use accuracy as competence criterion are proposed. The first method, called

Dynamic Classifier Selection by Local Accuracy-Overall Local Accuracy (DCS LA

OLA), evaluates the accuracy of each base classifier as the percentage of correctly

labelled instances in the local region. The classifier that gets the highest accuracy

is considered the most competent. The second method, called Dynamic Classifier

Selection by Local Accuracy-Local Class Accuracy (DCS LA LCA), evaluates the

accuracy of each base classifier on a single output class. In this case, the accuracy

is defined as the percentage of instances correctly labelled in the local region and

belonging to the class assigned by the classifier to the test instance. Both methods

use a traditional k-Nearest Neighbours (k-NN) algorithm to define the local region,

i.e., parameter k is fixed. Here we propose different MCS approaches with a dynamic

classifier selection. Our contribution is twofold: (1) we define the local region of each

test instance dynamically; (2) the most competent classifier is selected by a proce-

dure based on recall and accuracy evaluated on a set of instances containing the local

region.

The paper is organized as follows. Section 2 describes the proposed multi-classifier

approaches. In Sect. 3, we test our approaches on publicly available diagnostic

datasets, and discuss the experimental results. In Sect. 4, we show the conclusions.
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2 Methods

In this section, we describe the proposed approaches to design a MCS based on DCS.

Each approach follows the general pattern of a supervised classification process: a

dataset is split in three disjunctive sets, i.e., training, validation and test set. The train-

ing set is used to train classifiers; the validation set is used to estimate the classifier’s

properties to recognize new instances; the test set contains the instances that have to

be labelled by the classifier.

LetD =
{
x1, x2,… , xn

}
be a dataset with n instances denoted by xi, i = 1, 2,… , n.

Each instance xi = {a1, a2,… , am, yk} consists of m attributes and a class label yk
from a finite set of disjoint labels y =

{
y1, y2,… , yk

}
.

Each multi-classifier is composed of existing classifiers and the aim is to enhance

their individual performances. A multi-classifier MC =
{
c1,… , ch

}
is then a pool

of base classifiers cj, j = 1,… , h. After the training phase of the pool of the base

classifiers, we define an adaptive k-NN algorithm to compute a local region in the

validation set. There are different adaptive k-NN algorithms [3, 4]. Here we pro-

pose an adaptive k-NN algorithm that selects the number of neighbours for each test

instance in a dynamic way. Let x∗i be a test instance. Our approach defines the local

region of x∗i , denoted by LRx∗i
, as the set of neighbours of x∗i in the validation set;

an instance of the validation set is a neighbour only if it is within a hypersphere of

radius R. The radius R is defined as

R =

{(
Rmax − Rmin

)
∕2 if Rmax > 3Rmin

Rmin otherwise
(1)

where Rmax and Rmin is the maximum and the minimum distance, respectively,

between x∗i and all other instances in the validation set. Distances have been measured

by using Euclidean norm. Depending on Eq. 1, the radius of the smallest hypersphere

is Rmin; The biggest radius is
Rmax

2
. The latter case occurs when Rmin is close to zero.

In this way we tried to define the local region according to the characteristics of each

test instance without using trial and error. The idea is to consider local instances as

close as possible to a given test instance.

Every trained classifier is then used to classify instances in the local region LRx∗i
.

In order to select the most competent classifier in LRx∗i
, we firstly remove from the

pool MC those classifiers that make mistakes on instances in LRx∗i
. Then, we select

the most competent classifier among the remaining classifiers. Three cases are pos-

sible after the removal phase:

1. Only one base classifier remains: it is used to classify x∗i
2. More base classifiers remain: they define the pool SMC ⊆ MC. We select the most

competent classifier in SMC through criteria based on two performance indices,

recall and accuracy evaluated on a given set of instances Spi:
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∙ Recall is the number of instances belonging to a class that are correctly

labelled by a classifier c ∈ SMC. We consider the class of majority instances

in LRx∗i
; let yk be this class. Then we evaluate the recall of the classifiers in

SMC on the class yk, and the classifier with the highest recall is selected

∙ Accuracy is the number of instances that are correctly labelled by a classifier

c ∈ SMC. The classifier with the highest accuracy is selected

3. None of the base classifiers remains: we select the most competent classifier in

the initial pool of base classifiers MC by the criterion based on recall or accuracy,

as in case (2)

It could occur that two or more classifiers have the same best value of the chosen per-

formance index. In order to select the best classifier, we define three different algo-

rithms depending on the set of instances Spi: Algorithm 1 uses both classifier results

on training and validation sets; Algorithm 2 uses only validation results; Algorithm

3 is a hybrid of the previous ones.

3 Results

To show the behaviour of the proposed approaches we use three datasets from UCI

Machine Learning Repository [5]: Wisconsin Diagnosis Breast Cancer (WDBC),

Cleveland Heart Disease (CHD) and Dermatology dataset. Each dataset describes

different features. The features in WDBC are computed from a digitized image of a

fine needle aspirate of a breast mass. They describe morphological characteristics of

the cell nuclei present in an image. The dataset is used to diagnose whether a breast

mass is benign or malignant. Each instance in the CHD dataset describes patient’s

clinical parameters. The class label refers to the presence or not of heart disease.

The Dermatology dataset contains both clinical and histopathological features. The

dataset is used to diagnose six different types of dermatology diseases. Table 1 sum-

marizes the main characteristics of each dataset. All datasets were normalized. We

did not use feature selection.

We built several pools of base classifiers with five different classifiers: Support

Vector Machines (SVM) [6], k-Nearest Neighbour (k-NN) [7], Naive Bayes (NB)

[8], Decision Tree (J48) [9] and Multi-Layer Perceptron (MLP) [10]. Our multi-

Table 1 Main characteristic of the used datasets: number of instances, number of attributes and

number of classes

Dataset Num. instances Num. attributes Num. classes

WDBC 569 30 2

CHD 303 13 2

Dermatology 366 34 6
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Table 2 Classification accuracy (%) of each single classifier on the datasets

Dataset SMO MLP NB J48 Ibk

WDBC 98.24 97.36 94.73 94.38 97.72

CHD 84.82 80.86 83.83 79.21 83.83

Dermatology 98.08 98.36 97.81 96.17 97.00

classifier approaches are implemented in Java whereas for each classifier we have

used the related algorithm implemented in Weka [11]. A parameters tuning phase

was carried out for each classifier on each dataset in order to find the best parameter

values. The results of the computational experiments are related to a stratified 10 fold

cross-validation, that is each dataset is split into 10 disjoint and balanced folds and

the algorithms are then applied on each fold. The accuracy reported in Table 3 is the

average value on 10 folds. We train and test each single classifier with the parame-

ter values found in the tuning phase per every dataset. Table 2 shows the classifiers

accuracy. In Weka, SVM is called SMO (Sequential Minimal Optimization) and k-

NN is called Ibk (Instance-based method with parameter k). As decision tree we use

the J48 algorithm implemented in Weka.

We compare the performance of the proposed approaches with other multi-

classifiers methods known in the literature, i.e., DCS LA LCA [3], DCS LA OLA

[3] and Vote [12]. We used the Vote classifier of Weka and implemented in Java the

versions of DCS LA LCA and DCS LA OLA reported in [3]. These two methods use

a traditional k-NN algorithm to define a local region. For this reason, we constructed

different local regions by varying the number of neighbours in the range 1–20, and

report for each pool of base classifiers the best accuracy in this range. We tested sev-

eral pools of base classifiers on each dataset. Table 3 shows the results of some of

them with the best performance on the WDBC, CHD and Dermatology dataset. For

each pool of base classifiers, the accuracy of Algorithm 1, Algorithm 2 and Algo-

rithm 3 in both versions is reported, i.e. recall (Ver Rec) and accuracy (Ver Acc) as

competence criterion; the best accuracy of both DCS LA LCA method and DCS LA

OLA method, and the accuracy of Vote method. The best results are in bold in each

row.

As reported in Table 3, in general, the proposed approaches outperform or show

the same accuracy of the other tested methods. More specifically, the MCS MC =
{NB, SMO} has the highest performance on the WDBC dataset; MC = {Ibk, SMO}
has the highest performance on the CHD dataset; and two MCSs, i.e., MC = {SMO,
MLP,NB} and MC = {MLP,NB, Ibk} have the highest performance on the Derma-

tology dataset. One can observe that the performance of our proposed approaches

decrease when the behaviour of the classifiers in a specific pool is almost the same,

since this implies that they make the same mistakes. Thus, if the number of classi-

fiers with the same behaviour in a pool increases, the likelihood of decreasing per-

formance is high. We can notice that, on the CHD dataset, the performance of the

pool composed by three classifiers decrease with respect to the pools composed by
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Table 3 Results in term of classification accuracy (%) on the WDBC, CHD and Dermatology

datasets

Base

classi-

fiers

Alg. 1 Alg. 2 Alg. 3 Best

DCS

LA

LCA

Best

DCS

LA

OLA

Vote

Ver Rec Ver Acc Ver Rec Ver Acc Ver Rec Ver Acc

WDBC dataset

NB-

SMO

98.24 98.24 98.24 98.24 98.24 98.24 98.24 98.24 98.24

MLP-

NB

97.36 97.36 97.54 97.54 97.54 97.54 97.54 97.36 96.31

NB-Ibk 97.19 97.72 97.01 97.01 97.01 97.01 97.19 96.31 93.5

CHD dataset

Ibk-

SMO

85.15 84.49 84.82 84.82 84.49 85.15 85.15 85.48 83.83

NB-Ibk 83.17 83.5 83.83 83.5 84.16 84.49 83.83 85.15 84.16

J48-

MLP-

NB

81.52 81.85 83.17 81.52 83.17 81.52 82.18 82.84 80.86

Dermatology dataset

MLP-

Ibk

98.36 98.36 98.63 98.63 98.63 98.63 98.36 98.36 96.72

SMO-

MLP-

NB

98.09 98.36 99.18 99.18 99.18 99.18 98.36 98.63 98.09

MLP-

NB-Ibk

98.63 98.36 99.18 99.18 99.18 99.18 97.54 98.36 98.09

two classifiers. The base classifiers in the pool behave roughly in the same way and

then cases of indecision are not well solved by our approaches. On the Dermatology

dataset instead, the performance of the pools with three classifiers increases with

respect to the performance of the pool with two base classifiers: indeed, the three

base classifiers are quite different from each other in each pool and the classification

accuracy improves with respect to the pool with two classifiers. In the following we

analyse more in detail the results of the selected multi-classifiers on each dataset.

WDBC dataset

∙ MC = {NB, SMO}: All methods show the same accuracy, i.e., 98.24%; this

value is better or the same of the individual classifier accuracy reported in

Table 2.

∙ MC = {MLP,NB}: Algorithm 2 and Algorithm 3, in both versions, have the

best accuracy 97.54%, which is equal to DCS LA LCA method and higher than

DCS LA OLA and Vote. This MCS outperforms the individual classifiers. The
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performance of Algorithm 1 is slightly lower than Algorithm 2 and 3 but the

classification accuracy is not worse than the accuracy of individual classifiers.

∙ MC = {NB, Ibk}: Algorithm 1 in accuracy version has the best performance

97.72% and it is not worse than the accuracy of individual classifiers.

CHD dataset

∙ MC = {Ibk, SMO}: The best performance, for this pool of base classifiers, is

achieved by Algorithm 1 in recall version and Algorithm 3 in accuracy version.

Their classification accuracy 85.15% is equal to DCS LA LCA, slightly lower

than DCS LA OLA and higher than Vote.

∙ MC = {NB, Ibk}: All algorithms have lower performance than DCS LA OLA

method. Algorithm 3 in recall versions has the best performance 85.15% which

is equal to Vote, higher than DCS LA LCA and outperforms the individual clas-

sifiers.

∙ MC = {J48,MLP,NB}: Algorithm 2 and 3 in recall version have the best per-

formance 83.17%. The other algorithms have performance higher than Vote and

slightly lower than DCS LA LCA and DCS LA OLA.

Dermatology dataset

∙ All MCSs outperform the individual classifiers. Algorithm 2 and 3 in both ver-

sions have always the best performance.

In general, the proposed approaches with different pools of base classifiers

improve accuracy with respect to single classifier and the different methods proposed

in the literature. The DCS methods define the local region using a k-nearest neigh-

bours algorithm; the same value for the k parameter is used for all test instances

and its suitable value is decided by experiments. On the contrary, the proposed

approaches allow us to dynamically adapt the value of the k parameter to test

instances. In particular, the k value is increased or decreased depending on char-

acteristics of instances in the validation set. Moreover, the selection step of DCS

methods uses only the accuracy of the base classifiers in the local region to select

the best classifier. In our approaches instead, the most competent classifier is selected

using both local accuracy of the base classifiers computed on the local region and

their performance evaluated on a set of instances containing the local region.

For that concerning possible effects of training set sizes on results we observe

that the WDBC dataset has 569 instances; then training and validation sets used to

train and evaluate the performance of the base classifiers are sufficiently large. The

CHD dataset consists of fewer instances than the WDBC dataset, so the sizes of

the training and validation sets are lower. This could affect the performance of the

proposed approaches. However, the achieved results are similar to the results of the

other methods proposed in the literature. The Dermatology dataset has six classes not

well balanced and the classes overlapping is smaller than the two previous datasets.

This could explain the good reached performance with respect to the performance

on WDBC and CHD datasets.
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4 Conclusions

In this paper, we presented multi-classifier approaches for supporting clinical diag-

nosis. The main advantage is to exploit the diversity of every base classifier. The pro-

posed approaches are based on a dynamic classifier selection technique. The local

region is dynamically computed for each test pattern and the selection criterion is

based on both misclassified instances and information about classifier’s performance

in a two-step process.

The experimental results suggest that a suitable combination of different classi-

fiers can improve the performances of a diagnostic decision support system based on

a single classifier. The achieved results in many cases outperform other techniques

proposed in the literature.

As future work, we plan to embed these approaches in diagnostic decision support

systems based on architectural organization composed by several clinical knowledge

modules. In this architectural organization, each knowledge module is a MCS trained

to diagnose a specific disease.
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Offline Patient Admission Scheduling
Problems

Rosita Guido, Vittorio Solina and Domenico Conforti

Abstract Patient admission scheduling problems consist in deciding which patient

to admit and at what time. More complex problems address also bed assignment

problems at the same time. The complexity of the problem motivates researchers to

design suitable approaches to support bed managers in making decisions. The aim of

this paper is to define an efficient model formulation for the offline elective patient

admission scheduling problem, which defines admission dates and assigns patients

to rooms. Due to the multiobjective nature of the problem, we suggest how to set

weight values, used to penalise constraint violations. These values are tested on a set

of benchmark instances. Improvements in schedule quality are presented.

Keywords Patient admission ⋅ Scheduling ⋅ Combinatorial optimization

1 Introduction

Patient admission scheduling problems (PASPs) concern with deciding which patient

to admit and at what time The patient bed assignment problem (PBAP) is a sub-

task of the PASP and aims to assign patients to suitable beds by taking into account

of medical constraints and patient needs. The PBAP is usually addressed as a bed

capacity problem [1]. It has been formalized as an offline and combinatorial opti-

mization problem in [2], and is an NP-hard problem as demonstrated in [3]. Ceschia

and Schaerf [4] extended the PBAP of [2] by proposing an interesting dynamic ver-

sion of the PASP defined as patient admission scheduling problem under uncertainty
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(PASU): patient admissions can be delayed in a defined interval of days and there

are some overstay risks. The goal is to define an admission date and a discharge

date for elective patients by assigning them to the most suitable bed-room-wards.

These authors constructed benchmark instances characterised by real-world features

(e.g., uncertainty in the length of stay, registration dates, emergency patients, delayed

admissions), which increase the search space of the problem.

The contribution of this study is threefold: (1) we extend our optimization mod-

els defined for PBAP in [5] to a PASP; (2) owing to the multiobjective nature of the

problem, we give some tips about how to set suitable penalty costs when some con-

straints are violated; (3) on the basis of the new setting of penalty costs, we improve

results on the benchmark instances in terms of values of constraint violations.

The paper is organized as follows. Section 2 presents the PASU and formally our

optimization model, which is an improvement of the optimization models proposed

in [4, 6] because we reduce at minimum the number of decision variables and take

into account of constraints not considered in the previous papers. We discuss also

different strategies to set penalty values. In Sect. 3 we present our computational

results on a set of the benchmarks of PASU and compare and discuss them with

those reported in [4]. Conclusions are drawn in Sect. 4.

2 Problem Statement and an Optimization Model

The PASU problem introduced in [4] is more challenging by a combinatorial point

of view than the PBAP of [2]. A set of elective patients have to be admitted within a

range of days to hospital and assigned to suitable rooms on the basis of their specific

characteristics. This set can be selected from waiting lists by considering registration

date (first come first served), patient status and such that resources are greater than

demand on each day. For each patient is known an admission day that can be delayed,

however before a date limit. A patient stay is given, in general, as Lp consecutive

nights between admission date and discharge date. For some patients the length of

stay (LOS) could be extended by some days. A transfer occurs when a patient is

assigned to different rooms during her/his stay. Planned transfers are allowed, even if

penalised, whenever they improve healthcare delivering to patients. Patients should

be assigned to suitable rooms in correspondence with their characteristics over a

planning horizon H. The reader is referred to [4, 7] for an example on PBAP and

more details about PASU problem. In the following, we introduce the used notation

related to departments, specialties, and patients.

A hospital has a number of departments. Each department has a set of main med-

ical specialties and a set of auxiliary medical specialties, which correspond to high

and medium levels of expertise in treating pathologies, respectively. Let Dep be the

set of departments and S be the set of specialties. Some departments have age restric-

tions (e.g. paediatric and geriatric departments). Let R, indexed by r, be the set of

rooms, and P be the set of elective patients, indexed by p, who have to be admitted
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Table 1 Room and patient attributes

Room

̄Sr Set of specialties that cannot be treated in room r
Cr Capacity, i.e., number of beds. Room capacities (e.g., single, double)

define the set of room categories, denoted by RC
Er Set of equipment, indexed by e; eqre = 1 if equipment e ∈ E is in room

r ∈ R, 0 otherwise. Room capacity defines the number of equipment e
in a room

gpr ∈ GP Gender policy. There are three gender policies: the restricted gender

policy (RGP), that is only male or female patients in a given room; the

dependency gender policy (DGP), that is only patients with the same

gender of patients already staying in a room can be assigned. We

define GP = {1, 2, 3, 4}, where 1 and 2 denote the two RGP; 3 and 4

denotes the DGP and no gender policy, respectively

aprj ∈ AP Age policy. AP is the set of age policies and aprj = 1 if room r is

subject to age policy j ∈ AP, 0 otherwise

Patient

ADp =
{
ap,… , a′

p

}
Range of admission dates where ap and a′

p is the first and latest

possible admission date, respectively

Lp Length of stay as consecutive nights

DDp =
{
zp,… , z′p

}
Range of discharge dates where zp is the first possible discharge date

computed as ap + Lp whereas z′p = a′
p + Lp is the latest possible

discharge date

Hp =
{
ap,… , z′p − 1

}
Period during which patient has a stay of Lp

spp ∈ S Patient specialty

Age We set apj = 1 if the patient age is consistent with age policy j ∈ AP, 0

otherwise

Health status Defines mandatory equipment and/or preferred equipment for a

patient. mepe = 1 if equipment e is mandatory, 0 otherwise

Gender Male or female

orp Possible overstay risk in days. The LOS of patients with overstay risk

could be extended by orp. For these patients DDo
p = DDp

⋃
DDor

p

where DDor
p =

{
z′p + 1,… , z′p + orp − 1

}

and then assigned to hospital rooms over a period Hp. The main attributes of rooms

and patients are reported in Table 1.

The overall set of patients is partitioned in four subsets, depending on the last

three characteristics reported in Table 1: Pm ⊆ P is the set of patients with mandatory

equipment; PF and PM is the set of women and men, respectively; Po is the set of

patients with overstay risk.

Constraints on preferred equipment, room capacity preference, gender policies,

department specialism, transfers, delayed admissions, and overcrowding risks are

tackled as soft constraints and then penalised by costs. Transfers are not allowed
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in overstay, thus patients remain on their last assigned room. Hard constraints are

on room capacity, mandatory equipment, age policy, and patient stay as consecu-

tive nights. The penalty values highly define schedules quality, as shown in the next

section.

2.1 An Optimization Model for Offline Patient Admission
and Scheduling Problems

Before to introduce our optimization model, we define the following decision vari-

ables, their meaning and report in Table 2 the penalty weights for the soft constraints.

xprd = 1 if patient p ∈ P is assigned to room r ∈ R on day d ∈ Hp, 0 otherwise

osprd = 1 if patient p ∈ Po is assigned to room r ∈ R on day d ∈ DDo
p, 0 otherwise

tpd = 1 if patient p ∈ P is transferred on day d ∈ Hp, 0 otherwise

adpd = 1 if patient p ∈ P is admitted on day d ∈ ADp, 0 otherwise

brd = 1 if both patient gender are in room r on day d ∈ H, 0 otherwise

ovrd overcrowding in room r on day d ∈ H due to possible overstay

delp ≥ 0 delayed admission (in days)

We define wpr as sum of the first four penalty weights reported in Table 2.

min
∑
p∈P

∑
r∈R

∑
d∈Hp

wprxprd +
∑

r∈R∣gpr=3

∑
d∈H

wgbrd +
∑
p∈P

d<z′p∑
d>ap

wttpd +
∑
p∈P

(wdeldelp)

+
∑
r∈R

∑
d∈H

woovrd (1)

Table 2 Violations of the soft constraints and related penalty weights

Violation Soft constraint Penalty weight Violation Soft constraint Penalty weight

v1 Preferred

equipment

wpe v5 DGP wg

v2 Room

capacity

preference

wcr v6 Transfers wt

v3 Department

specialism

wsp v7 Delay wdel

v4 RGP wg v8 Overcrowd

risk

wo
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∑
d∈ADp

adpd = 1 ∀p ∈ P (2)

∑
d∈Hp

xprd = 0 ∀p ∈ Pm, r ∈ R∣mepe>eqre (3)

∑
d∈Hp

xprd = 0 ∀r ∈ R, p ∈ P∣spp∈ ̄Sr (4)

delp =
∑

d∈ADp

adpdd − ap ∀p ∈ P (5)

d+Lp−1∑
k=d

∑
r∈R

xprk ≥ adpdLp ∀p ∈ P, d ∈ ADp (6)

∑
d∈Hp

∑
r∈R

xprk = Lp ∀p ∈ P (7)

∑
r∈R

xprd ≤ 1 ∀p ∈ P, d ∈ Hp (8)

Cr ≥
∑

p∈P|d∈Hp

xprd ∀r ∈ R, d ∈ H (9)

tpd ≥ xprd − xpr(d−1) − adpd p ∈ P, r ∈ R, d ∈ ADp (10)

tpd ≥ xprd − xpr(d−1) p ∈ P, r ∈ R, d ∈ ]a′

p, z
′

p[ (11)

∑
d∈]ap,z

′
p[

tpd ≤ nt ∀p ∈ P (12)

orp−1∑
k=0

∑
r∈R

ospr(d+Lp+k) ≥ adpdorp ∀p ∈ Po, d ∈ ADp (13)

osprzp ≤ xpr(zp−1) ∀p ∈ Po, r ∈ R (14)

osprd ≤ xpr(d−1) + ospr(d−1) ∀p ∈ Po, r ∈ R, d ∈ ]zp, z
′

p] (15)

osprd ≤ ospr(d−1) ∀p ∈ Po, r ∈ R, d ∈ DDor
p (16)

Cr + ovrd ≥
∑

p∈P|d∈Hp

xprd +
∑

p∈Po|d∈DDo
p

osprd ∀r ∈ R, d ∈ H (17)

brd ≥ xprd + xp′ rd − 1 r ∈ R∣gpr=3, d ∈ H, p ∈ PF∣d∈Hp
, p′ ∈ PM∣d∈Hp

′ (18)

xprd ≤ apj ∀p ∈ P, d ∈ Hp, j ∈ AP, r ∈ R∣aprj=1 (19)

xprd ∈ {0, 1} ∀p ∈ P,∀r ∈ R,∀d ∈ Hp (20)

osprd ∈ {0, 1} ∀p ∈ Po,∀r ∈ R,∀d ∈ DDo
p (21)

adpd ∈ {0, 1} ∀p ∈ P, d ∈ ADp (22)
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tpd ∈ {0, 1} ∀p ∈ P, d ∈ ]ap, z
′

p[ (23)

brd ∈ {0, 1} ∀r ∈ R∣gpr=3, d ∈ H (24)

ovrd ≥ 0 ∀r ∈ R, d ∈ H (25)

delp ≥ 0 ∀p ∈ P (26)

Objective function (1) aims to assign patients to rooms according to high qual-

ity of care and patient preferences. The first term takes into account of violations

v1 − v4 reported in Table 2. Penalty room assignments are evaluated per night by

wpr. The remaining terms penalise v5 − v8, respectively. Constraints (2) assure that

each patient is admitted only once inADp. Constraints (3)–(4) avoid that patients with

mandatory equipment are assigned to no well equipped rooms and to rooms without

patient specialty, respectively. Constraints (5) define delays and Constraints (6)–(7)

patient stay as consecutive Lp nights. Constraints (8) state that only one at most room

is assigned to a patient on a day. Constraints (9) assure that room capacity is greater

than the number of assigned patients. Constraints (10)–(11) define transfers and Con-

straints (12) limit their number to nt. Constraints (13)–(17) take into account of fur-

ther assignments due to possible overstays of some patients. Constraints (18)–(19)

are on DGP violations and age policy, respectively. Finally, Constraints (20)–(26)

are integrity relations.

2.2 How to Set Suitable Penalty Costs

The costs in objective function (1) penalise constraint violations on preferred equip-

ment, preference of room categories, patient specialty, gender policies, transfers,

delays and overcrowding risk. These weights have to be chosen accurately such

that a solver keeps the slack variables at zero, if possible. Owing the multiobjective

nature of the problem, weight values are crucial for a correct solution. We provide

tips regarding how to set suitable values with the following relationships among the

penalty values.

wg > wt > wpe = wsp > wcr > wdel > wo (27)

wg > wpe = wsp > wt > wcr > wdel > wo (28)

wo > wg > wpe = wsp > wt > wcr > wdel (29)

The above relationships have different effects on solutions: relationship (27) allows

transferring a patient in a room if gender policy is not violated, whereas relationship

(28) also if there are preferred features; relationship (29) highly penalises overcrowd-

ing in rooms. The default penalty values do not respect any of the relationships we

have just defined. We test them on a set of instances and compare the results with

those related to the default setting in the next section.
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Table 3 Violations of soft constraints and penalty values

Penalty

values

Penalty values

wpe wcr wsp wg wt wdel wo

Default 20 10 20 50 100 2 1

PV1 20 10 20 50 40 2 1

PV2 20 10 20 50 15 2 1

PV3 20 10 20 50 15 2 100

3 Computational Results

In this section we present computational results on the small short family of the

benchmark instances of [4]. This family consists of 50 instances with: H = 14
days, |Dep| = 4, |S| = 3, |R| = 8, |P| = 50. Table 3 reports the default penalty val-

ues defined in [4], and our values defined according to relationships (27)–(29). They

substantially differ for the value of wt and wo. We solve Model (1)–(26) by setting

the maximum number of transfers per patient as nt = 1.

The schedules related to the default setting have no transfers except in Instance

19, where there is only one transfer. This is due to the high value of wt. The sched-

ules related to our settings have transfers: their maximum number is 4 with PV1, and

9 with PV2. This important aspect suggests us that we can compare these schedules

with those obtained in correspondence of the default setting. Table 4 reports the mean

values of the objective function and those of the constraint violations, and variations

in percentage. There is a considerable improvement of the objective function values

withPV1 andPV2, excluding transfer costs, with respect to the objective function val-

ues found in correspondence to wt = 100. The greatest improvement in decreasing

order is related to constraints on preferred equipment, room capacity preference, and

department specialism with the setting PV1, and on DGP, RGP, preferred equipment,

department specialism, and room capacity preference with the setting PV2. Finally,

PV3 shows a similar mean objective function value with respect to the default setting,

but the lowest value for overcrowding risk. The last row of Table 4 reports the vari-

ations in percentage between the values related to PV2 and PV3 because they differ

only for wo value: although a worsening in objective function value, this last set-

ting is the best because avoids overcrowding in rooms (i.e., v8 = 0), that is possible

room capacity violations. Figure 1 summarises these comparisons. The computa-

tional experiments were performed using IBM ILOG CPLEX V15.5.1; the average

computational time is 150 s.
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Fig. 1 Mean values of constraint violations v1 − v5 with four penalty value settings

4 Conclusions

In this paper we defined an optimization model to manage offline patients admission

scheduling under uncertainty and tested three new penalty value settings. Owing

overstay uncertainty for some patients, we show that the best setting highly penalises

overcrowded rooms although the other two proposed penalty value settings show

lower objective function values. Future works are on testing these proposed penalty

values on all the instances of PASU and solve the online problem.
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Stochastic Dynamic Programming
in Hospital Resource Optimization

Marco Papi, Luca Pontecorvi, Roberto Setola and Fabrizio Clemente

Abstract The costs associated with the healthcare system have risen dramatically

in recent years. Healthcare decision-makers, especially in areas of hospital manage-

ment, are rarely fortunate enough to have all necessary information made available

to them at once. In this work we propose a stochastic model for the dynamics of

the number of patients in a hospital department with the objective to improve the

allocation of resources. The solution is based on a stochastic dynamic programming

approach where the control variable is the number of admissions in the department.

We use the dataset provided by one of the biggest Italian Intensive Care Units to test

the application of our model. We propose also a comparison between the optimal

policy of admissions and an empirical policy which describes the effective medical

practice in the department. The method allows also to reduce the variability of the

length of stay.

Keywords Stochastic dynamic programming ⋅ Healthcare resource optimization

Hospital management

1 Introduction

The costs associated with the healthcare system have risen dramatically in recent

years, and the increased public scrutiny to which the system has been subjected has

been accompanied by increased attention from operations researchers and systems

engineers. Research in this area has touched on nearly all aspects of the health-

care system, with particular emphasis being given to problems in hospital opera-
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tions management [1, 2]. Healthcare decision-makers, especially in areas of hospi-

tal management, are rarely fortunate enough to have all necessary information made

available to them at once. As a result, their decisions occur sequentially as infor-

mation becomes available and situations around them change. These problems can

be defined as sequential decision processes and solved with the use of stochastic

dynamic programming (SDP). SDP represents a technique often used to solve opti-

mization problems involving uncertainties, see [3]. Stochastic models have been suc-

cessfully used in several research works to describe the allocation of resources in the

healthcare system: [4–10]. In this paper we address the issue of an optimal admis-

sion strategy in the hospital department, see [8, 11, 12]. We propose a stochastic

optimization model to provide an operational guideline for an Intensive Care Unit

(ICU). We focus on the dynamics of the number of beds occupied and we formu-

late a finite horizon stochastic control problem, in discrete time, where the source of

uncertainty is given by the number of patients discharged from the department. The

main objective of the problem is to reduce the expected cost related to the occupancy

of the ICU. A stochastic dynamic programming technique is exploited to obtain the

optimal admission policy. Then we provide an empirical investigation based on the

data of the Cardiovascular Intensive Care Unit in the San Camillo-Forlanini Hospi-

tal, which is one of the largest general public hospital based in Italy.

2 Data, Objectives and Model

The Intensive Care Unit (ICU) of San Camillo-Forlanini Hospital in Rome is part

of the Department of Cardioscience. The data analyzed in this paper are referred to

the patients coming from Cardiac Surgery Unit and they consist of daily data related

to 11,770 patients (records), collected from 1999 to 2012, and the corresponding

items: the Intervention Date, the Length of Stay (LoS) in the Intensive Care Unit

and the EuroScore (ES). According to the literature, the LoS is considered a reliable

and valid proxy for measuring the consumption of hospital resources and the ES is a

synthetic risk score designed for the admission health status of a patient. As reported

in Table 1, from [13], there is evidence of a close relation between the Los, the ES

and the cost of hospitalization: the higher is the ES of a patient, the lower is his health

status and consequently his hospitalization will be more long and uncertain. Since

hospital ward is a system characterized by a finite number of resources, if a new

Table 1 Average cost (per day) in Cardiac Intensive Care Units in relation with Risk Score and

LoS (days), from [13]

Risk Score 0 1 2 3 5 11

LoS 8.3 8.9 9.7 10.3 10.0 11.3

Cost ($) 7,856 8,031 9,036 9,336 10,205 14,995
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Fig. 1 Average LoS and ES for different clusters of patients from San Camillo-Forlanini ICU

patient requires urgent treatment, it is reasonable to expect that less severe patients

are discharged or transferred to other departments. In fact, the average LoS depends

on the number of patient hospitalized in the department. We have validated this fea-

ture empirically, by considering, for each patient, the average number of patients that

stay with him during his hospitalization. At each patient we have associate a proxy

of the load factor
1

in the ward. Thus, the data have been clustered considering the

average number of patients and, for each cluster, we have evaluated the average LoS.

We applied a similar procedure to the evaluation of the average ES.

The results reported in Fig. 1 show, in particular, the relation between the average

number of patients in the department (x-axes) and the average LoS (y-axes). There is

a number of patients (around 6) that leads to the maximum LoS. The increase of the

number of patients implies an increase of the LoS. However when this occupation

level is achieved, the LoS starts to decrease. This feature can be explained consider-

ing that the ward is almost full and the admission demand forces physicians to dis-

charge the patients early. Therefore, we propose a dynamic optimization approach to

reduce the variability of the number of patients hospitalized in order to achieve two

objectives: 1) the early allocation of resources, 2) the stability of the average LoS of

patients toward values coherent with the risk profile of the hospitalized patients. To

this aim we consider a dynamic stochastic model based the knowledge of the proba-

bility distribution (estimated from data) of the number of discharges from the ICU,

conditional to the number of hospitalized patients.

1
The ratio of actual number of hospitalized patients and the capacity of the hospital department.
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Table 2 Average and standard deviation for the number of admissions, the number of discharges

and the number of patients by day of week

No. admissions No. discharges No. patients

𝜇 𝜎 𝜇 𝜎 𝜇 𝜎

Monday 3.11 1.53 1.77 1.33 5.09 2.07

Tuesday 2.98 1.36 2.82 1.59 5.25 2.05

Wednesday 3.10 1.40 2.91 1.44 5.44 2.12

Thursday 2.84 1.36 3.04 1.54 5.25 2.15

Friday 2.95 1.44 2.78 1.46 5.42 2.21

Saturday 0.43 0.63 1.55 1.33 4.30 1.96

Sunday 0.11 0.37 0.65 0.91 3.76 1.93

2.1 Conditional Distribution of the Number of Discharges

It is widely acknowledged that the number of operations, other procedure and diag-

nostic tests, vary from day to day. Hospital ward works 24/7 but there are peaks and

troughs in activity throughout the week. Table 2 reports the mean (𝜇) and the stan-

dard deviation (𝜎) for the number of admissions, the number of discharges and the

number of patients by day of week. The values show that the average number of dis-

charges depends strongly on the day of the week. Let nk be the number of patients

hospitalized at time (day) k = 1,… ,N, let uk be the number of patients discharged

at time k. We define the conditional distribution of uk, given nk−1, through a Poisson

model:

ℙ[uk = u|nk−1 = n] =
[𝜆k(n)]ue−𝜆k(n)

u!
, (1)

for integers n ≥ 0 and u = 0,… , n. Here 𝜆k(n) represents the average number of

discharges at time k, given the number of patients (=n) at time k − 1. Table 3 pro-

vides the estimation of 𝜆k. The increase in the number of patients corresponds to

an increase in the average number of discharges (if the ward occupancy rate raises,

the discharge probability raises too). Data endorse that exists a linear relationship

between nk−1 and 𝜆k. Hence the following linear model is assumed:

𝜆k(n) = m(k) × n + q(k), (2)

for any k and n. We also assume that the coefficients are periodic functions:

m(k) = m(k + 7) and q(k) = q(k + 7), for each k. This implies that the conditional

distribution of discharges depends only on the day of week. Table 4 shows the esti-

mated parameters for any day of week in model (2) and the AAE
2

between the

observed average and the estimated average number of discharges.

2
For a collection of data {yi}i=1,…,m and their estimated values {ŷi}i=1,…,m, it is AAE =

∑m
i=1

|yi−ŷi|
m

.
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Table 3 Average number of discharge 𝜆k for each cluster

nk−1 Mon Tue Wed Thu Fri Sat Sun

1 1.46 1.24 1.31 2.05 1.78 1.08 0.59

2 1.08 1.71 2.06 2.36 2.27 1.17 0.56

3 1.37 2.12 2.49 2.56 2.34 1.55 0.63

4 1.38 2.68 2.55 2.83 2.28 1.72 0.80

5 2.01 2.92 3.02 2.96 2.66 1.69 0.52

6 1.87 3.23 2.97 3.30 3.03 1.48 0.82

7 2.26 3.19 3.38 3.43 3.11 1.50 0.66

8 1.96 3.21 3.30 3.35 3.27 2.04 0.82

9 2.13 3.73 3.42 3.90 3.77 1.83 0.80

10 1.83 3.00 3.71 4.46 3.50 2.00 0.63

Table 4 Estimation results for the parameters in the linear model (2)

Mon Tue Wed Thu Fri Sat Sun

m 0.10 0.23 0.23 0.23 0.20 0.09 0.01

q 1.20 1.46 1.56 1.84 1.69 1.12 0.72

AAE 0.20 0.29 0.18 0.09 0.12 0.15 0.18

3 Dynamics of the Number Patients

In the ICU a patient is turned away when all beds are occupied, on the other hand, the

goal of the hospital is to assign beds in order to provide an adequate level of service

and consumption of resources. For a given time horizon (N days), we aim to find a

policy that specifies the action to take at each time in order to reduce the expected

cost. In our model, the underlying variable is the number of patients hospitalized at

time k, which follows a discrete-time dynamics:

nk+1 = nk + ek − uk+1, k = 0,… ,N − 1, (3)

where ek is the number of patients admitted at time k. In order to plan beds occupancy,

the decision-maker uses ek as a control variable. In fact, physicians cannot force the

discharge rate because it strictly depends on patients health status, on the other hand,

they can decide the number of patients that can be admitted. Here u1, u2,… , uN are

random variables defined on the same probability space (𝛺, ,ℙ), where  is the

𝜎-algebra of measurable events. Let k be the 𝜎-algebra generated by u1,… , uk;
we suppose that uk+1 is independent of k and ek is k-measurable, implying that

nk is k-measurable, for any k. In general, we assume that, for every k, there is a

cost function gk ∶ ℝ → ℝ+
which describes the waste of resources. The department

works during the week with different load capacity, hence the total cost is assumed
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to be additive in the sense that the cost incurred at time k accumulates over time.

Moreover, given the presence of the source of randomness uk, the cost is generally a

random variable and cannot be meaningfully optimized. Thus, the objective function

of the problem cis expressed as an expected cost value:

𝔼
[ N∑

k=0
gk(nk)

]

. (4)

The expectation is computed under the joint distribution of (n1,… , nN). Since nk
represents the number of patients, we need to ensure that it is nonnegative and lower

than the ward capacity (nmax). Thus, conditionally to nk−1 ∈ [0, nmax], the follow-

ing constraints must hold: if nk ≤ nmax, then ek−1 ≤ nmax − nk−1 + uk, if nk ≥ 0 then

ek−1 ≥ max(0, uk − nk−1). Since uk is random and ek−1 is only k−1-measurable, we

impose such conditions using a confidence interval. Precisely, for fixed 𝛼, 𝛽 ∈ (0, 1),
define

u𝛼k ≐ sup
{

ū ∶ ℙ(uk ≤ ū|nk−1) ≤ 𝛼

}

, u𝛽k ≐ inf
{

ū ∶ ℙ(uk ≥ ū|nk−1) ≤ 𝛽

}

.

(5)

Therefore the admissible set for ek−1 is the set of integers in the interval 𝛩k−1
(nk−1) = [u𝛽k − nk−1, nmax − nk−1 + u𝛼k ]. Using this approach, we get the condition

ℙ(nk ∈ [0, nmax]|nk−1 ∈ [0, nmax]) ≥ 𝛽 − 𝛼. We observe that u𝛼k , u𝛽k can be computed

by numerical inversion of the cumulative distribution function of uk|nk−1 given by

𝛤

(
⌊u + 1⌋, 𝜆k(nk−1)

)

⌊u⌋!
(6)

where ⌊u⌋ is the floor function and 𝛤 (x, y) is the incomplete gamma function defined

as 𝛤 (x, y) = ∫
∞
y tx−1e−tdt.

Let 𝜋 = {𝜇0,… , 𝜇N−1} be the policy where 𝜇k maps nk into ek = 𝜇k(nk) and such that

𝜇k(nk) ∈ 𝛩k(nk) for all nk, k = 0,… ,N − 1. Let J
𝜋
(n0) be the expected total cost of

𝜋, starting at n0, then the optimal cost function is

J∗(n0) = min
𝜋

J
𝜋
(n0). (7)

The optimal policy 𝜋
∗

satisfies J
𝜋∗ (n0) = J∗(n0). According with the principle of

optimality (see [14]), 𝜋
⋆

can be constructed in piecemeal fashion, by solving a finite

number of one-step optimization problems:

Jk(nk) = minek∈𝛩k(nk)∩ℕ 𝔼k

[

gk(nk) + Jk+1
(

gk+1(nk+1)
)]

= gk(nk) + e−𝜆k(nk) minek∈𝛩k(nk)∩ℕ
∑

u
1
u!
Jk+1(nk + ek − u)[𝜆k(nk)]u

(8)
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for k = N − 1,… , 0, starting from the terminal cost JN(⋅) ≡ 0. Here𝔼k is the expected

value conditional to k. J0(n0), generated at the last step, is equal to the opti-

mal cost J∗(n0) and the collection of the policies that minimize the functionals in

(8), 𝜋
∗ = {𝜇∗

0(nk),… , 𝜇
∗
N−1(nk)}, represents the optimal policy for the whole mini-

mization problem. It is easy to show that, in presence of convex cost functions gk,
k = 0,… ,N, the value functions Jk is also convex for all k = 0,… ,N. Therefore the

program is convex and general methods from convex optimization can be used in

this case.

3.1 Empirical Results

Our empirical investigation is based on the choice of the cost function gk(n) =
(n − n̄k)2, where n̄k is a target number of hospitalizations at time k. Using this cost

function we also pursue the reduction of the variability for the number of patients

according with the observations made in Sect. 2. We evaluate the stochastic dynamic

algorithm (SDP) in comparison with an empirical policy (LP), considered as a proxy

of the practice commonly applied in the department, that is based on the average

number of discharges:

ẽk =
[

n̄k − nk + 𝔼[uk+1|nk]
]+
, (9)

We compare SDP and LP policies for different values of the desired weekly aver-

age number of patients (n̄). Here the daily target number of patients is described as

follows:

n̄k =
{

⌊n̄ × wk⌋ if {n̄ × wk} ≤ 0.5,
⌊n̄ × wk⌋ + 1 if {n̄ × wk} > 0.5, (10)

where {⋅} denotes the fractional part of a number and w = [1.04 1.06 1.10
1.06 1.09 0.87 0.77] is computed according to an historical analysis of the

flow of patients in the ward. Setting 𝛼 = 0.03 and 𝛽 = 0.97 for the constraint on

the control variables, we have considered 104 simulated scenarios over a time hori-

zon of 28 days (4 weeks) in which the number of discharges are simulated accord-

ing to the proposed model. For each scenario, the relative average absolute distance

between the required number of patients and the hospitalized number is evaluated:

𝜖 = [1∕(28 ⋅ n)] ⋅
∑28

k=1 |nk − n̄k|. The numerical results (in percentage) are reported

in Table 5 together with the optimal SDP policy for n = 4. Given the periodicity of

the probability distribution of uk, we have reported only the optimal control for a

week. From the estimated error, we argue that there is evidence of a better perfor-

mance of the SDP strategy with respect to the LP policy, the difference being always

greater than 10%. We conclude that the application of the SDP policy could lead to

a substantial improvement in the planning of resources in the ICU.
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Table 5 Relative average absolute distance between the target and the hospitalized number of

patients and the SDP policy obtained considering n = 4

4 5 6 7 8 9 10 11

SDP 27.54 23.71 18.63 19.43 16.96 16.19 14.85 14.35

LP 36. 04 32.21 29.78 30.98 27.54 26.22 25.5 26.07

nk−1 Mon Tue Wed Thu Fri Sat Sun

1 4 4 5 5 4 4 3

2 3 3 4 4 3 3 2

3 2 2 3 3 2 2 1

4 1 2 2 2 2 1 0

5 0 1 1 1 1 0 0

6 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0

n̄

4 Conclusions

Hospital management takes place in an increasingly competitive environment and

it is therefore essential to focus on delivering high quality care to patients. The aim

of the hospital bed management is to allocate resources for patients while taking

into account capacity constraints. The study was conducted on an Italian Cardiology

Intensive Care Unit. In this work we propose a stochastic dynamic programming

(SDP) approach to control the number of admissions where the uncertainty is driven

by the number of discharges. The main objective consists in the minimization of

an expected cost function over a finite horizon. A comparison with a proxy of the

medical practice used in the ICU is also conducted. The numerical results show that

through the implementation of the SDP optimal policy, hospital managers could bal-

ance the cost of empty beds against the cost of turning patients away, thus facilitating

a good choice of beds provision, in order to have a low cost and high access to ser-

vice. This method allows to keep under control beds occupancy rate, the length of

stay (LoS) in the hospital department.

Acknowledgements This research is supported in part by San Camillo-Forlanini Hospital in

Rome.



Stochastic Dynamic Programming in Hospital Resource Optimization 147

References

1. Hans, E.W., Van Houndenhoven, M., Hulshof, P.J.: A framework for healthcare planning and

control. In: Handbook of Healthcare System Scheduling, vol. 168, pp. 303–320 (2012)

2. Harper, P., Shahani, A.: Modelling for the planning and management of bed capacities in hos-

pital. J. Oper. Res. Soc. 53, 11–18 (2002)

3. Herring, W.L.: Prioritizing patients: stochastic dynamic programming for surgery scheduling

and mass casualty incident triage. Doctoral Dissertations (2011)

4. Castaing, J., Cohn, A., Denton, B., Weizer, A.: A stochastic programming approach to reduce

patient wait times and overtime in an outpatient infusion center. IIE Trans. Healthc. Syst. Eng.

6(3), 111–125 (2015)

5. Erdelyi, A., Topaloglu, H.: Approximate dynamic programming for dynamic capacity alloca-

tion with multiple priority levels. IIE Trans. 43(2), 129–142 (2010)

6. Ozen, A.: Stochastic models for capacity planning in healthcare delivery: case studies in an out-

patient, inpatient and surgical setting. Doctoral Dissertations 2014-current. Paper 125 (2014)

7. Punnakitikashem, P., Rosenberger, J.M., Behan, D.B.: Stochastic programming for nurse

assignment. Comput. Optim. Appl. 40(3), 321–349 (2008)

8. Dong, M., Li, J., Zhao, W.: Admissions optimization and premature discharge decisions in

intensive care units. Int. J. Prod. Res. 53, 7329–7342 (2015)

9. Gilleskie, D.B.: A dynamic stochastic model of medical care use and work absence. Econo-

metrica 66, 1–45 (1998)

10. Xiao, G., van Jaarsveld, W., Dong, M., van de Klundertc, J.: Stochastic programming analysis

and solutions to schedule overcrowded operating rooms in China. Comput. Oper. Res. 74, 78–

91 (2016)

11. Gorunescu, F., McClean, S.I., Millard, P.H.: A queueing model for bed-occupancy manage-

ment and planning of hospital. J. Oper. Res. Soc. 53, 19–24 (2002)

12. Green, L.V.: Capacity planning and management in hospital. Oper. Res. Health Care 70, 15–44

(2004)

13. Kurki, T.S., Hakkinen, U., Lauharanta, J., Ramo, J., Leijala, M.: Euroscore predicts health-

related quality of life after coronary artery bypass grafting. Interact. Cardiovasc. Thorac. Surg.

7, 564–568 (2008)

14. Bertsekas, D.: Dynamic Programming and Optimal Control, vol. 2, 4th edn. Athena Scientific

(2011)



Part IV
Heuristics and Metaheuristics



Column Generation Embedding Carousel
Greedy for the Maximum Network Lifetime
Problem with Interference Constraints

Francesco Carrabs, Carmine Cerrone, Ciriaco D’Ambrosio
and Andrea Raiconi

Abstract We aim to maximize the operational time of a network of sensors, which

are used to monitor a predefined set of target locations. The classical approach pro-

posed in the literature consists in individuating subsets of sensors (covers) that can

individually monitor the targets, and in assigning appropriate activation times to

each cover. Indeed, since sensors may belong to multiple covers, it is important to

make sure that their overall battery capacities are not violated. We consider addi-

tional constraints that prohibit certain sensors to appear in the same cover, since

they would interfere with each other. We propose a Column Generation approach,

in which the pricing subproblem is solved either exactly or heuristically by means

of a recently introduced technique to enhance basic greedy algorithms, known as

Carousel Greedy. Our experiments show the effectiveness of this approach.

Keywords Column generation ⋅ Carousel greedy ⋅ Maximum lifetime problem

1 Introduction

The Maximum Lifetime Problem (MLP) and its variants have been the focus of many

studies in the last years. Given a geographical region in which some important tar-

get locations (or simply targets) have been individuated, the aim is to use a net-
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work of sensors for as long as possible to keep these locations under observation.

We assume the sensors to be located in advance, as opposed to other works focusing

on their placement (see [20]). The cover is a key concept; with this term, we refer

to a subset of sensors that is independently able to monitor all targets. A common

approach for facing MLP problems is the following: find a collection of covers, and

activate them one at a time. By activating a cover, we mean that all of its sensors are

switched to their sensing mode, while all other sensors are kept in an idle, energy-

saving state. Clearly, if a sensor belongs to more than a cover, the overall activation

times of these covers cannot exceed the maximum activation time imposed by the

sensor battery. Among the first works dealing with the MLP problem, we recall [3].

In this work, it is first shown that allowing non-disjoint covers can bring noticeable

improvements in terms of network lifetime. The authors also demonstrate that the

problem is NP-complete, and present LP-based and greedy heuristics. A resolution

approach to solve MLP based on Column Generation was presented in [15]. Several

MLP variants have been proposed and studied. In some works, sensors are allowed

to enlarge their sensing radii at the expense of additional energy consumption [13,

14, 19]. Other lines of research consider the case in which it is allowed to leave

some targets uncovered [7, 16, 21], sensors belong to different types [2, 5], or con-

nectivity issues are taken into account [1, 6, 8, 10, 18]. Fewer research efforts in

this context considered interference issues. Concurrent transmission of sensors that

are too close may cause data collision, which in turn is responsible for data loss and

additional energy expense; see for instance [17]. In [9], the authors present the Max-

imum Lifetime Problem with Interference Constraints (MLIC). In this problem, a

collection of pairs of conflicting sensors are considered. For each of these pairs, at

most one sensor can belong to any given cover. The authors present a Column Gen-

eration algorithm, whose pricing subproblem is solved either exactly or heuristically

by means of a greedy heuristic. In this work, we modify the algorithm presented in

[9] by facing the heuristic resolution of the pricing subproblem (called simply sub-

problem from now on) through Carousel Greedy, a novel paradigm for enhancing

greedy heuristics, originally proposed in [12]. The next sections illustrate the gen-

eral Column Generation approach for MLIC (Sect. 2), the proposed Carousel Greedy

procedure (Sect. 3), the results of our tests (Sect. 4) and our final remarks (Sect. 5).

2 Column Generation Approach

Let S = {s1,… , sm} be the set of the sensors, and T = {t1,… , tm} be the target

points. A cover Ck for the MLIC problem is a subset of S, such that each target tj ∈ T
is within the sensing area of at least one sensor si ∈ Ck (it is monitored, or covered by

it), and such that every couple of sensors (si, sj) ∈ Ck × Ck is not a conflicting pair.

As mentioned in the introduction, the objective is to maximize the network lifetime

by assigning appropriate activation times to covers. The overall number of covers

can be exponential in size; hence, in [9], a Column Generation (ColGen) approach

was proposed in order to implicitly discard most of them. Let C = {C1,… ,Cz} be
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a set composed by some feasible covers for MLIC. In [9], the master problem of the

ColGen approach for the MLIC problem is formulated as follows:

[MP]max
∑

Ck∈C
wk (1)

∑

Ck∈C∶si∈Ck

wk ≤ 𝜏i ∀si ∈ S (2)

wk ≥ 0 ∀Ck ∈ C (3)

Variables wk represent for how long each cover Ck ∈ C is kept in active state in

the solution, while parameter 𝜏i ∀si ∈ S represents the maximum amount of acti-

vation time available for the sensor, given its battery capacity. The column of each

variable wk in the coefficient matrix contains a 1 in the i-th position if si ∈ Ck, 0

otherwise. It is then clear that the optimal [MP] solution represents the maximum

lifetime that can be obtained by considering the subset of covers contained in C ,

while respecting the battery duration constraints. In order to evaluate whether this is

also the optimal solution for the whole problem, we need to solve a subproblem to

identify the nonbasic variable with maximum reduced cost. The subproblem formu-

lation, also presented in [9], is the following:

[SP]max 1 −
∑

si∈S
𝜋iyi (4)

∑

si∈S∶𝛿ij=1
yi ≥ 1 ∀tj ∈ T (5)

yi + yj ≤ 1 ∀(si, sj) ∈ S × S ∶ 𝛾ij = 1, i < j (6)

yi ∈ {0, 1} ∀si ∈ S (7)

The subproblem needs to build the column associated with a cover, therefore each

variable yi ∀si ∈ S will be equal to 1 if the sensor is chosen to belong to it, and 0 oth-

erwise. Parameters 𝜋i, weighting the yi variables in the objective function, represent

the dual prices associated with the sensors after solving [MP]. The coefficient of each

new entering variable in the objective function of the master problem will always be

1, hence the constant value in (4). Each parameter 𝛿ij is equal to 1 if sensor si ∈ S
can monitor target tj ∈ T and 0 otherwise. Finally, each parameter 𝛾ij ∀(i, j) ∈ S × S
is equal to 1 if (si, sj) is a conflicting pair and 0 otherwise. It follows that constraints

(5) and (6) make sure that the chosen sensors define a cover, while the objective

function maximizes its reduced cost. In particular, if 1 −
∑

si∈C 𝜋i < 0 for the newly

built cover C, then the solution found by [MP] was optimal for the MLIC problem.

Otherwise, C could potentially be used to find a better solution (it is defined to be

an attractive cover); it is added to the set C and the ColGen algorithm iterates. The

main drawback of this approach is that the subproblem is NP-Hard itself. Hence, in

[9], a greedy heuristic for the subproblem is presented. In this work we enhance this

heuristic by trasforming it into a Carousel Greedy, which is presented in next section.
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3 Carousel Greedy Approach for the Subproblem

The Carousel Greedy is a generalized method to enhance greedy algorithms, origi-

nally proposed in [12]. The aim is to obtain a procedure which is almost as fast and

simple as the greedy procedure on which it is based, while achieving accuracy lev-

els similar to those of a metaheuristic. The authors show the effectiveness of their

proposal for several classical combinatorial optimization problems. The main obser-

vation underlying Carousel Greedy is that during the execution of a constructive

heuristic, the later decisions are likely to be more informed and valid than the earlier

ones. Given this observation, a Carousel Greedy procedure increases the solution

space visited by a basic greedy, operating in three main steps:

∙ In the first step a partial (unfeasible) solution is built. The first step ends when the

partial solution size reaches a given percentage of the size of a complete (feasible)

solution.

∙ In the second step, the partial solution is modified by iteratively removing from it

the oldest choices and making new ones. The second step ends after a pre-defined

number of iterations.

∙ In the final step, the partial solution is completed to produce a feasible solution.

Our proposed Carousel-SP algorithm enhances Greedy-SP, a constructive heuris-

tic presented in [9] to solve the MLIC subproblem (in both names, SP stands for

subproblem). Carousel-SP works as follows:

∙ The first step starts from an empty set C, and iteratively adds sensors to it. The

sensors are chosen from a set of candidates Sc, representing sensors that are not

in C and are not in conflict with any of its elements. Therefore, Sc is initialized

with S. At each iteration, the algorithm uses a greedy criterion to select the next

sensor to be added to C. In more detail, it selects the sensor si ∈ Sc that minimizes

the quantity 𝜔i =
𝜋i

|Ti|
, where 𝜋i is the dual price of the sensor and |Ti| the amount

of additional targets that would be monitored by C by adding si to it. The greedy

criterion is designed to favor sensors with low dual prices that cover many targets.

After adding si to C, the elements of Sc that form a conflicting pair with si (as

well as si itself) are removed from Sc. This step ends as soon as the number of

uncovered targets is equal to or lower than 𝛽|T|, with 𝛽 ∈ [0, 1]. If Sc becomes

empty first, Carousel-SP ends in failure.

∙ In each iteration of the second step, the sensor in C corresponding to the oldest

choice is removed from it, and is replaced with a new one. After the removal of a

sensor si fromC, the set Sc is updated to include si and any sensor that was removed

because it was in conflict with si. Since some new targets may become uncovered

after the si removal, the 𝜔i values are updated as well. Each new sensor added to

C is selected according to the same greedy criterion used for the first step. Even-

tually, after one or more iterations of the second step, C may become a feasible

solution (that is, a cover); if this is the case, the feasible solution with the lowest

objective function value (
∑

si∈C 𝜋i) is stored as incumbent solution C′
. Further-

more, after having found a cover, two sensors instead than one are removed from
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C in the following iteration, to avoid cycling on the same solution. The second

step is iterated 𝛼h times, with 𝛼 ≥ 1 and h = |C| at the end of the first step. After

the last iteration, if an incumbent solution C′
exists, it is returned and Carousel-SP

ends its execution.

∙ The third step operates similarly to the first one, with two differences; it starts from

the C set returned by the second step, and it iterates until all targets are covered.

As soon as C becomes a feasible solution, it is returned, and Carousel-SP ends. If

Sc becomes empty first, Carousel-SP ends in failure.

We now discuss how Carousel-SP is integrated within the ColGen framework.

In each iteration, after solving [MP], we attempt to solve the subproblem using

Carousel-SP. If it returns an attractive cover C, it is added to C and the current

ColGen iteration ends. Otherwise, if Carousel-SP fails or if it returns an unattractive

cover, we solve the subproblem exactly using [SP]. Again, if an attractive cover is

found, it is added to C and a new ColGen iteration begins. Otherwise, the optimality

for the MLIC problem of the last solution found by [MP] has been proven.

4 Computational Results

In this section we compare our approach (CG+C), that embeds Carousel-SP, with

the ColGen algorithm (CG+G) proposed in [9], which uses Greedy-SP. Both CG+G

and CG+C were coded in C++. All tests were run on a Linux machine with an

Intel Xeon E5-2650 CPU running at 2.30 GHz and 128 GB of RAM. For both the

approaches, the Concert library of IBM ILOG CPLEX 12.6.1 was used to solve

the mathematical formulations. Tests were run in single thread mode, with a time

limit of 1 hour for each test. We considered the same set of instances used in [9],

with a number of sensors varying in the set {300, 400, 500, 750, 1000, 1250}, and

either 15 or 30 targets. All sensors have a battery duration normalized to 1 time unit.

Sensors and targets are disposed in a square area with size 500× 500. Each sensor

has a sensing (RS) and a conflict (RC) range. RS is equal to either 100 or 125; targets

with an euclidean distance within this value from a sensor are covered by it. RC is

equal to 175; two sensors within this distance from each other form a conflicting

pair. There are 4 different instances for each combination of parameters, for a total

of 96 instances. Note that the computational test carried out in [9] also considered

the case RC = 125. However, the authors have shown that these instances are usually

very easily solved; in particular, for RS = 125, the number of subproblems solved to

optimality is often equal to 1. In this context, it is pointless to apply Carousel-SP,

since it is more expensive than Greedy-SP and there are not margins to speed up

the convergence of the ColGen algorithm. Therefore, we report in the following the

computational results only for RC = 175. Regarding the Carousel-SP parameters,

after a preliminary test, the values 𝛼 = 3 and 𝛽 = 0.2 were chosen.
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Table 1 Computational results on the small instances with RC = 175

|S| |T| CG+G CG+C
LF Time SubInv LF Time SubInv Gap

(%)

RS = 100 300 15 13.75 4.57 75.50 13.75 4.66 74.25

300 30 9.16 9.35 72.25 9.16 10.10 74.25

400 15 18.25 12.11 84.75 18.25 12.71 89.25

400 30 14.25 34.84 127.25 14.25 33.32 123.50 4.36

500 15 25.50 42.36 177.75 25.50 39.20 164.25 7.46

500 30 19.00 118.05 204.25 19.00 121.56 200.75 −2.97

RS = 125 300 15 23.25 3.89 54.00 23.25 3.29 39.25

300 30 18.25 7.17 83.25 18.25 7.25 76.25

400 15 32.50 5.59 32.75 32.50 6.83 29.50 −22.18

400 30 26.75 30.48 150.50 26.75 28.95 138.75 5.02

500 15 41.25 35.52 122.00 41.25 29.23 87.50 17.71

500 30 38.00 85.67 228.25 38.00 88.24 226.25 −3.00

The results of the comparison between the two algorithms on the smaller instances

(|S| ≤ 500) are reported in Table 1, containing 12 rows split in 2 groups of 6 rows

each, associated with RS = 100 and RS = 125, respectively. The first two columns

show the number of sensors (|S|) and targets (|T|) in the scenarios. The next 6

columns report, for each algorithm, the lifetime rounded to 2 decimal digits (LF),

the computational time in seconds (Time) and the number of iterations with heuris-

tic fails, in which therefore the subproblem has to be solved to optimality (SubInv),

respectively. Each entry in these columns is an average value for the 4 instances of

a given scenario. Finally, the last column shows the percentage gap (Gap) between

the computational times, evaluated as
Time(CG+G)−Time(CG+C)

Time(CG+G)
. When the gap is lower

than 1 second, we consider it negligible and therefore we do not report its percentage

value. All the small scenarios are solved to optimality by both algorithms, and hence

we only focus on performances. On 5 scenarios, the time gap is negligible. On the

remaining scenarios, CG+C is faster than CG+G 4 times, with a percentage gap that

ranges from 4.36 to 17.71%, and is slower 3 times, with a percentage gap ranging

from 2.97 to 22.18%. Regardless of percentage gaps, the performances of the two

algorithms are very close for all these scenarios, since the time gap is always lower

than 7 s. The results obtained on the larger scenarios are more interesting. These

results are reported in Table 2. As expected, the computational times of CG+C and

CG+G are higher than the ones required to solve small scenarios, and there is a sce-

nario (marked with a “*” symbol) that is not solved within the time limit by CG+G

(|S| = 1250, |T| = 15 and RS = 100). The scenario is, instead, solved to optimality

by CG+C in around half an hour. CG+C results only once slower than CG+G, on

the scenario with |S| = 1000, |T| = 30 and RS = 125, with a percentage gap equal

to 0.51%, corresponding to about 7 s. On all the remaining scenarios CG+C is faster
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Table 2 Computational results on the large instances with RC = 175

|S| |T| CG+G CG+C
LF Time SubInv LF Time SubInv Gap

(%)

RS = 100 750 15 68.50 671.88 454.50 68.50 582.77 426.25 13.26

750 30 43.00 719.42 421.25 43.00 696.33 419.50 3.21

1000 15 60.25 962.01 257.25 60.25 487.45 120.00 49.33

1000 30 49.00 1704.59 499.50 49.00 1610.24 481.25 5.54

1250 15 85.91
∗

2274.69 453.50 86.75 2014.62 425.25 11.43

1250 30 52.75 2365.43 406.50 52.75 2145.40 389.75 9.30

RS=125 750 15 72.25 117.82 79.00 72.25 98.99 55.75 15.98

750 30 55.50 419.09 237.75 55.50 391.86 232.25 6.50

1000 15 96.75 796.88 239.75 96.75 660.31 181.25 17.14

1000 30 79.00 1360.21 406.50 79.00 1367.19 403.50 −0.51

1250 15 127.75 843.91 147.50 127.75 562.74 95.25 33.32

1250 30 68.25 2035.12 357.00 68.25 1707.32 321.75 16.11

than CG+G, with a percentage gap that ranges from 3.21 to 49.33% and a time gap

up to about 500 seconds. In particular, for 7 out of 12 scenarios, CG+C results at

least 10% faster than CG+G. The higher effectiveness of Carousel-SP is testified

by the smaller SubInv values of CG+C with respect to CG+G; this affects signifi-

cantly the related computational times. For instance, on the scenario with |S| = 1000,

|T| = 15 and RS = 100, the SubInv value and the computational time for CG+G are

about twice greater than the values for CG+C. Similar observations can be done for

the other scenarios.

5 Conclusions

We proposed a column generation algorithm to solve the Maximum Lifetime Prob-

lem with Interference Constraints. We improve a previous algorithm by introducing

a new method to solve heuristically the subproblem, based on the Carousel Greedy

paradigm. Computational tests show the effectiveness of our proposal, in partic-

ular for larger test instances. Further research will be focused on improving the

Carousel Greedy procedure through hybridization with metaheuristic approaches,

such as Tabu Search and Genetic Algorithm [4, 11].



158 F. Carrabs et al.

References

1. Alfieri, A., Bianco, A., Brandimarte, P., Chiasserini, C.F.: Maximizing system lifetime in wire-

less sensor networks. Eur. J. Oper. Res. 181(1), 390–402 (2007)

2. Awada, W., Cardei, M.: Energy-efficient data gathering in heterogeneous wireless sensor net-

works. In: Proceedings of the IEEE International Conference on Wireless and Mobile Com-

puting, Networking and Communications, pp. 53–60 (2006)

3. Cardei, M., Thai, M.T., Li, Y., Wu, W.: Energy-efficient target coverage in wireless sensor

networks. In: Proceedings of the 24th Conference of the IEEE Communications Society, vol.

3, pp. 1976–1984 (2005)

4. Carrabs, F., Cerrone, C., Cerulli, R.: A tabu search approach for the circle packing problem.

In: 2014 17th International Conference on Network-Based Information Systems (NBiS), pp.

165–171 (2014)

5. Carrabs, F., Cerulli, R., D’Ambrosio, C., Gentili, M., Raiconi, A.: Maximizing lifetime in wire-

less sensor networks with multiple sensor families. Comput. Oper. Res. 60, 121–137 (2015)

6. Carrabs, F., Cerulli, R., D’Ambrosio, C., Raiconi, A.: An exact algorithm to extend lifetime

through roles allocation in sensor networks with connectivity constraints. Optim. Lett. (to

appear). https://doi.org/10.1007/s11590-016-1072-y

7. Carrabs, F., Cerulli, R., D’Ambrosio, C., Raiconi, A.: A hybrid exact approach for maximizing

lifetime in sensor networks with complete and partial coverage constraints. J. Netw. Comput.

Appl. 58, 12–22 (2015)

8. Carrabs, F., Cerulli, R., D’Ambrosio, C., Raiconi, A.: Extending lifetime through partial cov-

erage and roles allocation in connectivity-constrained sensor networks. IFAC-PapersOnline

49(12), 973–978 (2016)

9. Carrabs, F., Cerulli, R., D’Ambrosio, C., Raiconi, A.: Prolonging lifetime in wireless sensor

networks with interference constraints. In: Au, M., Castiglione, A., Choo, K.K., Palmieri, F.,

Li, K.C. (eds.) Green, Pervasive, and Cloud Computing. GPC 2017. Lecture Notes in Computer

Science, vol. 10232, pp. 285–297. Springer, Cham (2017)

10. Castaño, F., Rossi, A., Sevaux, M., Velasco, N.: A column generation approach to extend life-

time in wireless sensor networks with coverage and connectivity constraints. Comput. Oper.

Res. 52(B), 220–230 (2014)

11. Cerrone, C., Cerulli, R., Gaudioso, M.: Omega one multi ethnic genetic approach. Optim. Lett.

10(2), 309–324 (2016)

12. Cerrone, C., Cerulli, R., Golden, B.: Carousel greedy: a generalized greedy algorithm with

applications in optimization. Comput. Oper. Res. 85, 97–112 (2017)

13. Cerulli, R., De Donato, R., Raiconi, A.: Exact and heuristic methods to maximize network

lifetime in wireless sensor networks with adjustable sensing ranges. Eur. J. Oper. Res. 220(1),

58–66 (2012)

14. Cerulli, R., Gentili, M., Raiconi, A.: Maximizing lifetime and handling reliability in wireless

sensor networks. Networks 64(4), 321–338 (2014)

15. Deschinkel, K.: A column generation based heuristic for maximum lifetime coverage in wire-

less sensor networks. In: 5th International Conference on Sensor Technologies and Applica-

tions SENSORCOMM 11, vol. 4, pp. 209–214 (2011)

16. Gentili, M., Raiconi, A.: 𝛼−coverage to extend network lifetime on wireless sensor networks.

Optim. Lett. 7(1), 157–172 (2013)

17. Moscibroda, T., Wattenhofer, R.: Minimizing interference in ad hoc and sensor networks. In:

2nd ACM SIGACT/SIGMOBILE International Workshop on Foundations of Mobile Comput-

ing (DIALM-POMC), pp. 24–33 (2005)

18. Raiconi, A., Gentili, M.: Exact and metaheuristic approaches to extend lifetime and maintain

connectivity in wireless sensors networks. In: Pahl, J., Reiners, T., Voss, S. (eds.) Network

Optim. Lecture Notes in Computer Science, vol. 6701, pp. 607–619. Springer, Heidelberg

(2011)

19. Rossi, A., Singh, A., Sevaux, M.: An exact approach for maximizing the lifetime of sensor

networks with adjustable sensing ranges. Comput. Oper. Res. 39(12), 3166–3176 (2012)

https://doi.org/10.1007/s11590-016-1072-y


Column Generation Embedding Carousel Greedy for the Maximum Network . . . 159

20. Sterle, C., Sforza, A., Amideo, E.A., Piccolo, C.: A unified solving approach for two and three

dimensional coverage problems in sensor networks. Optim. Lett. 10(5), 1101–1123 (2016)

21. Wang, C., Thai, M.T., Li, Y., Wang, F., Wu, W.: Minimum coverage breach and maximum

network lifetime in wireless sensor networks. In: Proceedings of the IEEE Global Telecommu-

nications Conference, pp. 1118–1123 (2007)



A Heuristic for Multi-attribute Vehicle
Routing Problems in Express Freight
Transportation
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Abstract We consider a multi-attribute vehicle routing problem arising in a freight

transportation company owning a fleet of heterogeneous trucks with different capac-

ities, loading facilities and operational costs. The company receives short- and

medium-haul transportation orders consisting of pick-up and delivery with soft or

hard time windows falling in the same day or in two consecutive days. Vehicle

routes are planned on a daily basis taking into account constraints and preferences

on capacities, maximum duration, number of consecutive driving hours and com-

pulsory drivers rest periods, route termination points, order aggregation. The objec-

tive is to maximize the difference between the revenue from satisfied orders and the

operational costs. We propose a two-levels local search heuristic: at the first level, a

variable neighborhood stochastic tabu search determines the order-to-vehicle assign-

ment, the second level deals with intra-route optimization. The algorithm provides

the core of a decision support tool used at the planning and operational stages, and

computational results validated on the field attest for an estimated 9% profit improve-

ment with respect to the current policy based on human expertise.
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1 Introduction

Vehicle routing Problems (VRPs) are a wide class of combinatorial optimization

problems of both theoretical and practical interest, arising in transportation and

logistics. In its basic version, the VRP considers a set of clients and a fleet of vehi-

cles and asks for determining a set of routes, originating and terminating at a central

depot, so that each client is visited by one vehicle and the total routes cost is mini-

mized. With the aim of devising algorithms for real-world applications, one of the

trends in recent research on VRPs is taking more and more attributes simultaneously

into account: vehicle capacities, time windows, pickup and delivery, heterogeneous

fleet, open routes, hours-of-service regulations etc. This gives rise to the so called

Multi-Attribute (or Rich) VRP (MAVRP [3, 7]).

Among the works in the Operations Reserch literature devoted to MAVRPs, we

cite the following. An exact approach suitable for many variants of the VRP is pro-

posed in [1, 2], where a set partition formulation is solved by combining dual-ascent

procedures and a cut-and-column generation algorithm. A real-world VRP involv-

ing several attributes (multiple capacities, hours-of-service regulations, open routes,

split-delivery, client-vehicle compatibility constraints etc.) is solved in [4] through

a column generation approach using a bounded bidirectional dynamic programming

algorithm for the pricing problem. [6] and [7] overview several flexible heuristics

able to adapt to the VRP definitions arising in different settings, and handle a variety

of objectives and side constraints. Metaheuristic approaches, such as Tabu Search,

Genetic Algorithms, Ant Colony Optimization etc., are very popular for solving

MAVRPs [5]. The research presented in [8] hybridizes genetic algorithms and local

search, and proposes a unified framework for solving a wide range of large-scale

vehicle routing problems with time windows, route-duration constraints and further

attributes related to client assignment.

We consider a MAVRP inspired by the daily operations at Trans-Cel, an express

freight transportation company operating a fleet of heterogeneous vehicles to service

short- and medium-haul transportation requests, consisting of pickups and deliveries

to be fulfilled according to time windows falling within the same day or two con-

secutive days. Clients ask for a flexible just-in-time service and issue their requests

fairly less than 24 h in advance. As a consequence, vehicle routes are planned on a

daily basis and further re-optimizations are triggered by requests issued during routes

operation. The scope of this paper is the development of an algorithm to support the

operations manager during the daily and real-time assignment of requests to routes.

The paper is organized as follows. Section 2 describes the problem, providing the

details of its attributes. Section 3 reports the proposed solution approach, based on

tabu search with multiple initial solutions, variable neighborhood, stochastic explo-

ration and heuristic neighbor evaluation. Different variants of the solution algorithm

have been tested on several real instances, and compared to the solution proposed

by the operations manager: the results are shown in Sect. 4 together with some final

remarks.
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2 Problem Statement

The entities that define the MAVRP under study are positions, vehicles, orders and

routes. Positions represent the addresses where pickups and deliveries take place. A

special position is the depot, corresponding to the main facility of the transportation

company. For each ordered pair (i, j) of positions, a distance dij is given. We con-

sider a heterogeneous fleet of vehicles: each vehicle has its own capacity (volume,

weight), loading facilities (e.g., tail lift, side door, crane) and operational costs (fixed

deployment cost and a cost per unit of distance). We remark that capacity relates to

on board freight (deliveries make capacity available again).

Orders represent the client’s pickup and delivery requests. Each order specifies

pickup and delivery positions, time windows within which pickup and delivery have

to start, service times, size (volume and weight) and value. Notice that an order may

have multiple deliveries, meaning that more delivery operations are specified for the

same pickup, and all of these operations have to be performed by the same vehicle.

The time windows can be hard (the operation must be performed within the time

limits) or soft (we pay a penalty proportional to the time window violation): how-

ever, in case a vehicle arrives early, it waits until the beginning of the time window.

A priority is associated to each order with three possible values: mandatory (must

be fulfilled), and urgent and normal, with different penalties in case they are not exe-

cuted. Finally, each order may specify the required loading facilities, if any, affecting

the set of vehicles it can be assigned to. For some fixed orders, the assignment to an

individual vehicle is a-priori fixed. We remark that the pickup and delivery dates of

an order fall in the same day (same-day order) or in two consecutive days (next-day
order). As a consequence the daily orders relevant for a specific day d are the same-

day and the next-day orders of d (the last leaving pending deliveries for day d + 1),

and the next-day orders of day d − 1 (pending deliveries for d). Related operations

are called today (resp. tomorrow) operations if their date is d (resp. d + 1).

A route is the daily sequence of pickups and/or deliveries to be executed by an

individual vehicle. Routes are normally open: a route starts at the position in which

the vehicle has been positioned the day before, and it ends at the position of the

last operation. In some cases a route may be forced to end at the depot (e.g. for

maintenance issues). The design of a route is subject to hours-of-service regulations

that introduce a compulsory break of at least 45 min after at most 4 h and 30 min

of total driving time, and a compulsory night break of at least 9 h after either 9 h of

total driving time or 13 h of total working (driving or waiting for pickup and delivery

operations) time.

Further attributes are related to preferences on assigning subsets of orders to the

same route (e.g. orders involving a same client), maximum route duration (e.g. due

to drivers’ requests or used to balance the long-term drivers’ workload), route ending

position, order assignment (e.g. preferred truck facilities). Also, constraints on order

precedences may exist, as well as on the minimum number of vehicles that must be

available at the depot at the end of the day.
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Summarizing, given the set of daily orders and the initial vehicle positions, we

want to determine an optimal set of orders to be executed and a set of feasible routes

through them. The objective is to maximize profit and preference matching, the profit

being defined as the difference between the total value of the executed orders, and

the costs associated to vehicle operations and penalties for missed orders and time

windows violation. Missed preferences are penalized in the objective function.

3 Two-Levels Tabu Search Approach

The operations manager has to solve the problem described above on a daily basis,

before the deployment of vehicles on their routes. Moreover, the company receives

further orders during the operations of the initially planned routes, and a

re-optimization is needed starting from the current vehicles status (positions and on

board orders), which is constantly available through the fleet management system.

The algorithm described in this section aims at supporting the operations manager

during the initial and the real-time route optimization. Due to the inner complexity

of the problem and the operational scenarios it supports, a meta-heuristic approach

has been devised.

As usual for MAVRPs, three main orders of decision have to be made: the assign-

ment of orders to vehicle routes, the sequencing of orders, and the computation of the

best path through the order positions. For the sake of algorithm design, we decom-

pose the problem into two levels: the first level determines the order-to-route assign-

ment, the second level deals with operations sequencing and best path computation,

that is, intra-route optimization.

For the first level, we propose a heuristic based on Tabu Search: it starts from

an initial solution (current solution) and it generates a set of neighbor solutions by

applying some perturbation to the current one; the solutions are evaluated accord-

ing to a score function and the best neighbor is chosen as the new current solution;

the process iterates until a termination condition occurs (e.g. maximum number of

iterations). The incumbent solution is updated each time a better current solution is

generated. In order to avoid cycling, a tabu list is maintained, storing information on

the last visited solutions, so that they are excluded from eligible neighbors. In order

to adapt this very general schema to our problem, we need to define the following

components: the score function to evaluate solutions, initial solution, neighborhood

and tabu list.

Solution Evaluation and Intra-route Optimization
According to the chosen problem decomposition, the Tabu Search explores the space

of all the possible assignments of orders to vehicle routes. Each solution is evaluated

by summing up the values of assigned orders and subtracting the following general-

ized cost function (r indexes the routes included in the solution):

∑

r

[
A(r) + wB B(r) + C(r) + wD D(r) + wE E(r)

]
+ F + wG G + wH H +

∑

𝜌∈{I,J,K,L}
w

𝜌

𝜌
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∙ A(r) is the actual vehicle cost: it includes the fixed deployment cost and the vari-

able cost depending on the length of r up to the last today operation;

∙ B(r) is the prospective vehicle cost: it is the variable cost depending on the length

of r between the last today and tomorrow operations. This cost component and the

related weight aim at better selecting the final route positions and drive the search

towards solutions accounting for the next-day costs;

∙ C(r) is the cost due to penalties for soft time windows violations on r;
∙ D(r) is the amount of hard time windows violations on r;
∙ E(r) is the time of r exceeding the working time threshold;

∙ F sums up the penalties associated to missed urgent and normal priority orders;

∙ G is the amount of missed mandatory orders;

∙ H counts the missing vehicles at the depot with respect to the minimum required;

∙ I, J, K, L account for the penalties associated to violated preferences on, respec-

tively, same route orders, route duration, ending positions and order assignment;

∙ wX is the weight (to be calibrated) of the performance indicator X. Non-weighted

components are estimated equivalent costs provided by the company.

Components D(r), E(r), G and H account for constraints violation: the proposed

tabu search allows visiting unfeasible solutions, which are suitably penalized.

We observe that, in order to evaluate most of the indicators above, the sequence

of operations must be determined, which corresponds to the second-level decisions,

that is, the intra-route optimization. We perform this task by a second-level heuristic

based on local search. It receives the orders to be inserted in the route from the

top level calling procedure (namely the first-level initial constructive heuristics and

neighborhood functions that will be described in the following). Each time a new

order o is inserted, the intra-route optimization runs the following steps:

1. set an initial position for o by evaluating (according to the score function defined

above) the best possible insertion of all the today operations of o between two

consecutive today operations already in the route;

2. if o is fixed, perform a local search by generating neighbor solutions from insert-

ing any today operation between each pair of today operations and moving to the

best neighbor if it improves over the current solution;

3. perform a local search by generating neighbor solutions obtained from swapping

the position of any pair of today operations and moving to the best neighbor if it

improves over the current solution;

4. complete the sequence by inserting tomorrow operations according to Nearest

Neighbor heuristic.

Notice that the local search moves and the insertions are discarded if they violate

any constraint other than the ones penalized in the score function.

Initial Solution

Two constructive heuristics are proposed to build the initial solution. The Round-
robin insertion with Priority (RP) heuristic defines three classes of vehicles: vehi-

cles with orders on board (they must be deployed), vehicles with starting position
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different from the depot, and initially empty vehicles at the depot. Vehicles within

the same class are sorted by ascending operational costs. Orders are assigned to vehi-

cles in the first class, one order at a time for each vehicle in a round-robin fashion.

To this end, orders are sorted by a proximity criterion: given a route r, the score

associated to an order o positioned in j is pr(j) = R(o) + d0j − mini∈Q(r)
{
dij
}

, where

Q(r) is the set of positions in r, 0 is the depot, and R(o) is a parameter depending on

the order priority. The ratio is to prefer the early (and hence hopefully better) inser-

tion of priority orders and orders far away from the depot. Once the capacities of the

vehicles in the first class are saturated, remaining orders are assigned to the second

class according to the same procedure. The assignment of remaining orders occurs

sequentially (a vehicle is saturated before considering the following one) for the third

class. In such a way, we try to accommodate as much priority orders as possible in

different routes, while saving the deployment of some vehicles.

The Best Insertion (BI) heuristic sorts the orders by descending distance from the

depot, and each order is inserted in the vehicle route optimizing the score function

of the partial solution under construction.

Notice that an insertion triggers the execution of the first-level heuristic for intra-

route optimization and it is discarded if it yields the violation of any constraints

other than the ones penalized in the score function (in case of fixed orders, a warning

is issued). All the unassigned orders are collected in a dummy route assigned to a

dummy vehicle.

Tabu Search Neighborhoods and Exploration Strategy

The following inter-route moves are defined to perturb the solutions in the first-level

tabu search and explore the space of order-to-vehicle assignments (we remark that

only non-fixed orders are involved):

∙ Single order relocation (1R): an order is moved from its current route to a new

route. The size isO(n ⋅ v), n and v being the number of non-fixed orders and routes,

respectively;

∙ Two-orders swap (2S): given two orders in two different routes, their assignment

is swapped. The size is O(n2);
∙ Two-orders relocation (2R): two orders assigned to a route r1 are moved to a route

r2. The size is O(n2 ⋅ v);
∙ Two-orders chain shift (2C): an order o1 assigned to route r1 is moved to a route

r2, and an order o2 assigned to r2 is moved to a third route r3. The size is O(n2 ⋅ v).

Evaluating a move involves the intra-route optimization procedure, to be called once

for each affected route. The complexity of the proposed neighborhoods depends on

the number of affected routes: two for 1R, 2S and 2R, three for 2C. For the sake of

efficiency, a granular exploration of 2C is proposed, discarding moves if they involve

nodes at a distance greater than a threshold Z.

The neighborhoods are sorted as listed above and explored in a variable neighbor-

hood fashion: at each iteration a neighborhood is explored if and only if the previous

one does not provide an improving solution, and the best solution from any of the
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explored neighborhoods is taken as the new current solution. A stochastic explo-

ration of the search space is also devised: in this case the new current solution is

chosen at random among the best five generated by any explored neighborhood, with

probability proportional to the score function. The tabu list stores the last T moves

yielding selected current solutions, as to forbid inverse moves. The first-level tabu

search stops as soon as a maximum total number M1 of iterations or a maximum

number M2 of iterations without improvement is reached.

4 Computational Results and Conclusions

The algorithm has been implemented in C++ (Microsoft compiler) and run on an

Intel Core i5-5200 2.20 GHz CPU, with 8 GB RAM. During a first phase, the algo-

rithm has been trained on several instances by analyzing the results in the light of

the operations manager’s solutions, and by discussing its features with the company

planning team, thus yielding the calibration of its parameters (the weights in the

score function and the tabu search parameters). In particular, we set Z = 100 km,

M1 = 500, M2 = 50 and T between 4 and 8, depending on the number of opera-

tions of non-fixed orders. During a second phase, the calibrated algorithm has been

compared to the operations manager’s solution on a set of 30 instances related to 30

working days in March and April 2016. Instances include from 8 to 46 orders (25.6

on average) and from 17 to 95 pickup and delivery operations (60.1 on average).

The number of operations for non-fixed orders ranges from 5 to 61 (22.0 on aver-

age), and the ones in fixed orders range from 12 to 54 (38.1 on average). The results

are summarized in Table 1. Rows are devoted to different algorithm configurations:

RP and BI refer to running only one initial heuristic; BestH runs the two heuristics

and choses the best solution; RP+DET (resp. BI+DET) runs the deterministic ver-

sion of the Tabu Search starting from the initial RP (resp. BI) solution; RP+RND

(resp. BI+RND) runs three repetitions of the stochastic version of the Tabu Search

Table 1 Computational results for different algorithm configurations

Algorithm Improvement (%) Running time (s) Win (%) Dom. (%)

Avg Min Max Avg Min Max

RP −10.5 −42.3 5.9 1.2 0.0 10.9 – –

BI 7.3 −10.2 15.3 0.1 0.0 0.3 – –

BestH 7.3 −10.2 15.3 1.3 0.0 11.1 – –

RP+DET 8.5 −3.9 15.3 9.6 0.0 53.5 53.3 16.7

RP+RND 8.4 −2.7 15.3 19.8 0.0 146.8 50.0 10.0

BI+DET 9.3 2.2 15.3 33.2 0.0 295.0 76.7 23.3

BI+RND 9.1 −1.3 15.3 72.6 0.0 528.7 63.3 6.7

BestTS 9.6 2.2 15.3 172.3 0.1 551.0 100.0 100.0
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starting from the initial RP (resp. BI) solution; BestTS runs all the previous Tabu

Search configurations and return the best solution. Columns report: the configuration

name; the percent improvement (A − B)∕A where A is the algorithm solution and B
is the operations manager’s solution (average, minimum and maximum), the running

time in seconds (average, minimum and maximum), the frequency the configuration

finds a solution within 1% of the best solution (provided by BestTS), the frequency

the configuration dominates all the others. The overall algorithm, including multiple

starts and neighborhood exploration strategies, is able to provide an average 9.6%

improvement over the operations manager’s solution within about 3 min (10 in the

worst case). On average, all the tested Tabu Search configurations improve over the

baseline by 8.4 to 9.3%, even if, for some configurations, the operations manager still

finds better solutions for some instances. The Tabu Search starting from BI heuristic

and deterministically exploring the variable neighborhood seems to better trade-off

efficiency, effectiveness and reliability, always providing solutions better than the

baseline, with an improvement between 2.2 and 15.3% (9.3% on average) obtained

within 33.2 s on average (5 min in the worst case). The last column shows that all

configurations reach a strictly better solution in some instances. Notice that all the

algorithms but RP give the same maximum improvement on a same medium-size

instance where BI is able to find a good solution that cannot be further improved

by tabu search. An analysis of the moves selected at each iteration shows that all

the proposed neighborhoods play a significant role: as expected, the most selected

moves are 1R (70.9% of times); 2S, 2C and 2R follow in the given order, selected

the 15.4%, 8.3% and 5.4% of times, respectively.

The algorithm is currently integrated in the operations planning activities, and

is used for both the initial daily planning and the real-time insertion of new orders:

the initial solution is taken from the current fleet status, by fixing all the orders but

the new ones, and the algorithm is able to suggest a solution within a few seconds.

Also, the operations manager has the opportunity of performing what-if analyses:

she/he changes the solution provided by the algorithm and reruns it with new fixed

orders and precedence constraints. Further ongoing research aims at improving the

efficiency of the algorithm through the implementation of incremental neighborhood

evaluation, and the design of a more focused diversification phase.
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Global Optimization Procedure to Estimate
a Starting Velocity Model for Local Full
Waveform Inversion

Bruno Galuzzi, Elena Zampieri and Eusebio Stucchi

Abstract Finding an efficient procedure to solve a seismic inversion problem, such

as Full Waveform Inversion, still remains an open question. This is mainly due to the

non linearity of the misfit function, characterized by the presence of multiple local

minima, that cause unsuccessful results of local optimization strategies when the

starting model is not in the basin of attraction of the global minimum. Therefore, the

use of a global optimization strategy in order to estimate a suitable starting velocity

model for Full Waveform Inversion is a crucial point. In this work we propose a

new method which is based on the application of the Adaptive Simulated Annealing

algorithm using a coarse inversion grid, different from the domain modelling one,

that allows the reduction of the number of unknowns. Numerical results show that the

application of our strategy to an acoustic Full Waveform Inversion provides a good

starting model for a local optimization procedure, lying in the basin of attraction of

the global minimum.
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1 Seismic Exploration and Inversion

1.1 Seismic Tomography

Seismic exploration estimates the geological properties of the subsurface using

techniques based on recording, processing and studying artificially induced seis-

mic waves [10]. The source consists of a device that generates controlled seismic

energy. Once it is activated, the receivers, located on the surface at increasing dis-

tance from the source, record the waveforms of the seismic events caused by the

subsurface rock discontinuities. Figure 1a shows a sketch of a 2D marine seismic

acquisition. The acquired data of a single shot is a called seismogram and is formed

by the recording of all the receivers, ordered as a function of the distance from the

source, that is called offset. Figure 1b shows an example of seismogram, highlighting

the traveltimes of the main seismic events.

The aim of seismic tomography is to estimate the elastic properties, that explain

the events observed in a seismogram (reflections, refractions, diffractions). It can be

formulated as an inversion problem:

m = H(dobs), (1)

where the observed data dobs are one or more seismograms obtained during a seismic

acquisition, m = m(x⃗) is the model of the elastic properties of the Earth, and H is a

non-linear inversion operator. In this work we consider the Full Waveform Inversion

(FWI), that is a recently developed technique to solve this problem, exploiting the

full waveform of the recorded seismic events.

Fig. 1 a Sketch of a marine seismic acquisition; b A seismogram given by the recording of all the

receivers of a single shot
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1.2 Full Waveform Inversion (FWI)

The basic idea of FWI is to formulate the inversion problem as a minimization one

[13, 14]: find m ∈ M such that

F(m) = min
m∈M

F(m), (2)

where M is the set of all possible geological models and F(m) ≥ 0 is a misfit function

F(m) = ||dpred(m) − dobs||, (3)

that measures the difference between the observed dobs and the predicted seismogram

dpred(m), obtained by the numerical solution of the wave equation operator G applied

to a model m:

dpred = G(m), (4)

with G ≈ H−1
. A classical function used in the contest of FWI is the L2-norm

difference between the observed and the synthetic seismograms

F(m) = 1
2

nr∑

r=1
∫

T

0
[dpred(t, x⃗r,m) − dobs(t, x⃗r)]2dt, (5)

where x⃗r ∈ Xr
and nr represent the positions and the number of receivers,

respectively, and T is the recording time. The solution of this problem depends

both on the type of wave equation operator and on the numerical scheme adopted

to approximate the propagation of the seismic waves.

1.3 Acoustic FWI in Case of FD Scheme

If we consider in the geological model only the spatial distribution of the P-wave

velocity v(x⃗), the generation and propagation of seismic wave is modeled by the 3D

acoustic wave equation [1]:

p̈(x⃗, t) − v(x⃗)2𝛥(x⃗, t) = 𝛿(x⃗ − x⃗0)s(t), (6)

where t ∈ [0,T] is the recording time, x⃗ ∈ D ⊂
⃗R3

is the space domain, p is the

acoustic pressure of the wave, x⃗0 is the location of the source, and s is the seismic

wavelet. The predicted seismograms dpred correspond to the restriction on Xr
of the

solution of the acoustic wave equation:

dpred(t, x⃗r, v) = p(x⃗, t)|x⃗r∈Xr . (7)
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Then the FWI problem in (2) becomes an acoustic optimization problem:

min
v∈V

F(v) = min
v∈V

(

1
2

nr∑

r=1
∫

T

0
[dpred(t, x⃗r, v) − dobs(t, x⃗r)]2dt

)

(8)

with V the set of all possible P-wave velocity models.

The approximation of Eq. (6) using finite differences [11] can be performed by sam-

pling D with a uniform step dx, obtaining a regular grid Di,j,l
, formed by nx ⋅ ny ⋅ nz

grid nodes, with i = 1,… , nx, j = 1,… , ny and l = 1,… , nz. The velocity model

must be sampled on the grid nodes vi,j,l = v(xi, yj, zl) as well.

According to this parametrization, the acoustic FWI problem in (8) can be approxi-

mated by an optimization problem with the number of unknowns given by the num-

ber of nodes in the modeling grid

min
v∈V

F(v) ≈ min
vi,j,l∈Vi,j,l

F(vi,j,l) (9)

where Vi,j,l
represents the set of the P-wave velocity models discretized on the grid

Di,j,l
.

2 Global FWI Using ASA and Two Grid Methods

2.1 Iterative Procedures for FWI

Since F(m) is generally a complicated non-linear function of the model m, iterative

minimization procedures [7] are normally used to attain the global minimum m of F.

Starting from a plausible initial model m0, iterative minimization updates the current

model mk to a new model mk+1, given by:

mk+1 = mk + 𝛾khk (10)

where F(mk+1) < F(mk) and hk and 𝛾k ∈ ⃗R+
are the descend direction and the step

length, respectively. A local optimization procedure, such as the steepest descend or

the conjugate gradient method, under certain regular assumptions for the misfit func-

tion, converges to the local minimum mloc in the basin of attraction of the starting

model m0 [7]. Unfortunately, seismic inverse problems, and in particular FWI, are

characterized by the presence of multiple local minima due to cycle-skipping effect

caused by the oscillatory behaviour of the seismic data.

To avoid the convergence towards local minima, it is necessary to estimate a start-

ing model m0 that is in the basin of attraction of the global minimum m. Usually,

when the number of unknowns is very high, as in the FWI case, parallel algorithms

are preferred [8]. However, in this work we propose to use the Adaptive Simulated
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Annealing (ASA), which is an algorithm that shows a good rate of convergence in

many test global optimization problems when the number of unknowns is limited

[9]. To reduce the high number of unknowns in the FWI, a coarse grid, different

from the modelling grid, is used for the inversion problem [5, 6].

2.2 Adaptive Simulated Annealing

The simulated annealing (SA) [4] is a stochastic optimization method that models the

metallurgical annealing process by using the concepts of cooling and heating, creat-

ing an iterative sequence of models {mk}k≥0. Figure 2 shows a sketch of an iterative

minimization, using the SA. For each iteration k, a new candidate model is generated

in a neighborhood of the current model using the generation formula

y = mk + 𝛥mk(Tg,k, p), (11)

where 𝛥mk is the step size, depending on a parameter Tg,k = Tg(k) > 0, called gen-

eration temperature, and p is a random uniform distributed numbers in [0, 1]. The

step size is proportional to Tg. Once the candidate model y is created, the algorithm

chooses whether the model is accepted or not, according to the following formula:

mk+1 =

{

y, if p < min (1, e−
f (y)−f (xk )

Ta,k )
mk, otherwise

(12)

where Ta,k = Ta(k) > 0 is a parameter called acceptation temperature. The new

model is always accepted if the new value of the objective function is lower, whereas

if this value is higher, the model is accepted with a probability dependent on Ta,k.
At the early stages of the optimisation, the initial generation and acceptation tem-

peratures (Ta,0,Tg,0) are set to hight values, for a wide exploration of the model space;

subsequently, their values are progressively reduced to the final values (Ta,f ,Tg,f ) to

Fig. 2 An example of an

iterative minimization

sequence, generated by SA,

to find the global minimum

(red point). Note the

climbing point (green point)
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focus the search on the most promising zones of the model space. In this work we

used a variant of SA, called adaptive simulated annealing (ASA) [3], that uses dif-

ferent generation formulas for each i-th direction of the model space:

mi
k+1 = mi

k + 𝛥mi
k(T

i
g,k, p

i), i = 1,… , n (13)

where n is the dimension of the model space, Ti
g,k are the generation temperatures,

𝛥mi
k are the step sizes and pi are random numbers uniformly distributed over [0, 1].

The different step sizes are obtained using the formula:

𝛥yik = sgn

(

pi − 1
2

)
([

1 + 1
Ti
g,k

|2pi−1|
]

− 1

)

Ti
g,k. (14)

The generation and acceptation temperatures are characterized by an exponential

decrease with respect to the number of iterations k and of accepted models ka, respec-

tively: {
Ti
g,k+1 = Ti

g,0e
−ci

n√k
,

Ta,k+1 = Ta,0e−ca
n√ka

(15)

where ci and ca are scalability factors. Both Ti
g,k and Ta,k, after a given number of

iterations niter, reach their final values and remain constant.

According to the concept of local adaptability and to reduce the possibility of becom-

ing trapped in a local minimum, both the generation and the acceptation temperature

can be increased again (re-annealing) as a function of k and ka, respectively.

2.3 Two Grid Methods

Stochastic optimization methods require expensive computational time when applied

to inverse problems characterized by large dimension of the model space [9]. Unfor-

tunately, the number of possible unknowns for a FWI can be very high. For instance,

in case of acoustic FWI using a finite difference approximation of Eq. (6), the

unknowns are the values of the P-wave velocity on the nodes of the modelling grid

and can be as many as some thousand.

To address this issue, we can describe the geophysical properties of the subsurface

model on a coarse grid, thus reducing the number of unknowns. The coarse grid can

be a subset of the modelling grid where the number and the distribution of the nodes

is settled as a function of the accuracy’s degree. The transition from the coarse to

the modelling grid can be fulfilled through an interpolation procedure. We use the

ASA algorithm to estimate a smooth starting velocity model for a local inversion in

an affordable computational time.
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(a) (b)

(c)

Fig. 3 a The true velocity and the coarse grid, represented by the black dots. b The recording

spread formed by 16 sources and 192 receivers. c The source wavelet

3 Example of Application on the Marmousi Model

We test the inversion procedure on a portion of the Marmousi model (see Fig. 3a)

[12]. In order to obtain the observed data, we simulate a marine seismic acquisition

consisting of 16 different seismic shots recorded by a spread of 192 receivers, equally

spaced 24 m apart (see Fig. 3b). Both sources and receivers are at a depth of 24 m.

To simulate the seismograms we implemented the 2D acoustic wave equation (6)

and computed the solution on the receiver nodes. Source wavelet is a Ricker wavelet

with peak frequency of 6 Hz and maximum frequency of 18 Hz (see Fig. 3c). In the

numerical implementation we set dt = 0.002 s (sampling time), T = 3 s (recording

time), and dx = 24 m (sampling space). The modelling grid is made of 9216 grid

nodes, with nx = 192 and nz = 48; the water layer is modelled by the first two rows

of the grid and remains fixed during the inversion. The coarse grid, indicated by the

black dots in Fig. 2a, is composed of 100 nodes and we use a bilinear interpolation

to bring the velocity model from the coarse to the modelling grid.

To apply the ASA algorithm, we set niter = 1000, Ti
g0 = 100 and Ti

gf = 10−18 ∀i =
1,… , 100. Besides, we consider Ta0 =

1
5
∑5

i=1 F(mi), with mi random models, and

Taf = 10−18.

Figure 4a shows the 1D starting model we chose for the ASA algorithm, while

Fig. 3b shows the best model obtained after 100000 iterations. We used these two

models as starting point for two different local optimization procedures on the fine

grid along that make use of the conjugate gradient method (CG) [2]. In Fig. 4c and

d we show the final models obtained after 3000 iterations respectively.

The outcome of the first local optimization procedure in Fig. 4c is quite different

from the true model in Fig. 3a. This means that a local optimization alone can give a

solution that does not correspond to the real geological model in the area on inves-

tigation and therefore some previous steps of velocity estimation must be accom-

plished before the local optimization is started. The second model is very similar to

the true one, except in some areas near the lateral and the bottom boundaries, where
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(a) (b)

(d)(c)

Fig. 4 a The model at ASA’s first iteration. b The best model obtained by ASA after 30000 iter-

ations. c The final model obtained through CG algorithm, starting from (a). d The final model

obtained through CG algorithm, starting from (b)

the seismic illumination is poor. This means that the starting model of the local pro-

cedure, estimated by the ASA algorithm on the coarse grid, is very close to—or in

the basin of attraction of—the global minimum.

4 Conclusions

Using a global optimization procedure, consisting of a stochastic optimization algo-

rithm and a two-grid approach, it is possible to estimate a good starting velocity

model for a local optimization algorithm, that allows to solve seismic inversion prob-

lems. We test the procedure in the case of an acoustic Full Waveform Inversion, car-

ried out on a portion of the Marmousi model. The good correspondence between the

true and the final model obtained makes this procedure of particular interest espe-

cially in seismic inversion problems which are characterized by highly non-linearity

and multiple local minima.
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Ant Colony Optimization Algorithm
for Pickup and Delivery Problem
with Time Windows

M. Noumbissi Tchoupo, A. Yalaoui, L. Amodeo, F. Yalaoui
and F. Lutz

Abstract This paper presents an efficient meta-heuristic for the Pickup and Deliv-

ery Problem with Time Windows (PDPTW) based on Ant Colony Optimization cou-

pled to dedicated local search algorithms. The objective function is the minimiza-

tion of the number of vehicles and the minimization of the total distance travelled. In

PDPTW, the demands are coupled and every couple is a request which must be sat-

isfy in the same route. Thus, the feasible solution space is tightly constraint and then

makes the design of effective heuristics more difficult. Experimental results on 56

instances of 100 customers of Li and Lim’s benchmark show that the ACO coupled

with PDPTW dedicated local search algorithms outperform existing algorithms. It

returns in 98.2% (55/56) of cases a solution better or equal to the best known solution,

and find a better solution than the best know in 44.6% (25/56).

1 Introduction

The Pickup and Delivery Problem with Time Windows (PDPTW) can be described

as the design of a least cost routing plan to satisfy a set of transportation requests

by a given identical vehicle fleet. Each request consists of delivering goods from

a predefined location (pickup customer) to another one (delivery customer). In this
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problem, the routing plan is designed such that all vehicles start and end at the depot.

The amount of goods must not exceed the vehicle’s capacity. Each customer must be

serviced within a given time windows. The service time indicates how long it will

take for the pickup or delivery to be performed. For each request, the corresponding

pickup customer must be visited before the corresponding delivery customer by the

same vehicle and in the same route but not necessary immediately after. A vehicle

is allowed to arrive at a location before the beginning of its time windows, and in

this case must wait until the start of the time window. The problem is NP-hard as

it contains the Travelling Salesman Problem with Time Windows (TSPTW) (See

Dumas et al. [3]).

Numerous study have been done in PDPTW with the objective to minimize the

number of vehicle (primary objective) and the total travelled distance (secondary

objective). A simulated annealing with tabu search was proposed by Li and Lim

[5] to solve PDPTW. Bent and Van Hentenryck [2] proposed a two-stage hybrid

algorithm for PDPTW, where in the first stage the number of vehicles is decrease,

while in the second stage the total travel cost is minimized by a Large Neighbour-

hood Search algorithm (LNS). An adaptive large neighbourhood search heuristic was

proposed by Ropke and Pisinger [9]. Nagata and Kobayashi [6] successfully applied

a Guided Ejection Search Algorithm to PDPTW. Nalepa et al. [7] proposed a par-

allel guided ejection search algorithm to solve PDPTW. In their approach, parallel

processes co-operate periodically to enhance the quality of results and to accelerate

the convergence of computations.

Tchoupo et al. [11] developed a Bender’s decomposition algorithm for PDPTW

with heterogeneous fleet (HVRPPDTW) to minimize the hierarchical objective. In

the homogeneous case, their proposed approach was able to solve optimally instances

up to 100 demands in reasonable computational time. To our knowledge, this method

is the only exact algorithm for the PDPTW with hierarchical objective. For a survey

on pickup and delivery problems see [8].

In the state of the art, there are not effective constructive heuristic to solve

PDPTW. Indeed, the studies used iterative methods based on insertion and remove

of requests. The greatest challenge in a constructive method is to find fast heuris-

tics to choose the next demand to satisfy and verify there exists a path to achieve

all delivery demands in current vehicle, whose corresponding pickup demands are

not yet satisfied. Finding a feasible path to serve a given set of delivery demands

is equivalent to solve a Hamiltonian path problem (NP-complete). This issue had

been previously identified by Dumas et al. in [3] when they proposed a labelling

algorithm for the Elementary Shortest Path Problem with Time Windows, Capacity,

and Pickup and Delivery (ESPPTWCPD). In a proposed labelling algorithm, they

proposed to consider only the subsets of deliveries of cardinality one and two.

The model proposed by Goss et al. [4] to explain the foraging behaviour of ants

was the main source of inspiration for the development of ant colony optimization.

The ACO was applied successfully to solve Vehicle Routing Problem as done by

Belmecheri et al. [1] to solve the Vehicle Routing Problem with Heterogeneous fleet,

Mixed Backhauls, and Time Windows.
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To our knowledge, the proposed algorithm based on ACO algorithm coupled with

local search algorithms depicted in this paper is the first effective constructive algo-

rithm for the addressed problem in this study.

The remainder of the paper is organized as follow. Section 2 proposes a mixed

integer linear program for the PDPTW problem. Section 3 describes the ACO, with

the pheromone initialization, their updating and the computation of the visibility.

Section 4 presents three local search algorithms. The setting of parameters and the

experimental results are reported in Sect. 5.

2 Mathematical Model

This section presents a new mixed integer linear program to model the addressed

problem. It is based on the model proposed by [11] for the PDPTW with hetero-

geneous fleet. We note N the set of 2n customers, node 0 represents depot (origin

and destination) and V = N ∪ {0} the set of 2n + 1 nodes. P = {1,⋯ , n} is the set

of pickup demands, the set of n delivery demands is noted D = {n + 1,⋯ , 2n}, K
is the set of m identical vehicles with a capacity of Q items. A is the set of arcs, 𝛿

is the fixed cost of using a vehicle, dij represents the distance between the vertices i
and j, tij is the time between the location of vertices i and j, si represents the service

time required by the node i, |qi| is the amount of goods to pickup or delivery, ei the

earlier time at which the service may begin at node i and li the latest time at which

the service may begin at node i. We assume that:

∀i ∈ P, qi > 0 and qn+i = −qi and (i, j) ∈ A ⟺ ei + si + tij ≤ lj.

The problem is formulated as a mixed integer linear program (MILP). For each

arc (i, j) ∈ A and each vehicle k ∈ K, let xkij be a binary variable equals to 1 if the

vehicle k travels from location of demand i to location of demand j, and 0 otherwise.

For each node i ∈ N, and each vehicle k ∈ K, letBk
i the time at which vehicle k begins

the service at node i. Qk
ij is the load of vehicle k on the arc (i, j). The formulation is

the following:

Min
∑

i∈P
𝛿xk0i +

∑

k∈K

∑

i∈N

∑

j∈N
dijxkij (1)

∑

(i,j)∈A

∑

k∈K
xkij = 1, ∀i ∈ P; (2)

∑

j|(i,j)∈A
xkij =

∑

j|(n+i,j)∈A
xkn+i,j, ∀(i, k) ∈ P × K; (3)

∑

i∈P
xk0i ≤ 1, ∀k ∈ K; (4)
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∑

i∈P
xk0i =

∑

i∈D
xki0, ∀k ∈ K; (5)

∑

j|(i,j)∈A
xkij =

∑

j|(j,i)∈A
xkji, ∀(i, k) ∈ P ∪ D × K; (6)

∑

j|(i,j)∈A
xkij =

∑

i∈P
xk0i, ∀(i, k) ∈ P ∪ D × K; (7)

∑

j|(i,j)∈A

∑

k∈K
Qk

ij +
∑

j|(j,i)∈A

∑

k∈K
Qk

ji = qi, ∀i ∈ P; (8)

∑

i∈P

∑

k∈K
Qk

0i +
∑

i∈D

∑

k∈K
Qk

i0 = 0; (9)

Qk
ij ≤ Q × xkij, ∀(i, j) ∈ A, ∀k ∈ K; (10)

Bk
i − li + (li + si + tij)xkij ≤ Bk

j , ∀(i, j) ∈ A, ∀k ∈ K; (11)

ei
∑

j|(i,j)∈A
xkij ≤ Bk

i ≤ li
∑

j|(i,j)∈A
xkij, ∀(i, k) ∈ N × K; (12)

Bk
i + (si + ti,n+i) ×

∑

j∈N
xkij ≤ Bk

n+i, ∀(i, k) ∈ P × K; (13)

xkij ∈ {0, 1}, Qk
ij ≥ 0, Bk

i ≥ 0, ∀(i, j) ∈ A, ∀k ∈ K. (14)

The objective function (1) minimizes the number of vehicles used and the total dis-

tance travelled. Constraints (2) and (3) ensure that each pickup demand is served

exactly once and the corresponding delivery demand is served by the same vehicle

in the same route. Constraints (4) and (7) guarantee that the route of each vehicle

starts and ends at the depot. The respect of the time windows and the capacity of

vehicle is ensured by constraints (8) to (12). Constraint (13) assures that every deliv-

ery demand is satisfied after the corresponding pickup demand but not necessary

immediately after the pickup point.

3 Ant Colony Optimization (ACO)

In this study, we apply a variant of ACO called Ant Colony System (ACS), character-

ized by introduction of a local pheromone update. Ant colony optimization is chosen

because it is a constructive method which does not require reparation procedure.
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3.1 Construction of Solution

A solution is composed of a set of routes and each route is realized by one vehicle. An

ant constructs the routes of a solution sequentially. Ant keeps inserting demands in

the current route as long as the are non-satisfied demands that respect the constraints

(capacity, times windows and paring). If in a partial solution there still are non-visited

nodes but none of them can be inserted in the route being built, the ant close the

current route and start a new one. Let 𝜌 a partial solution formed by r − 1 complete

routes and a rth route in construction. Let i the last demand completed in route r, Qr
the load of the vehicle after satisfied demand i and  the set of unsatisfied delivery

demands such that their corresponding pickup demands has been served. A demand

j is eligible to be satisfy if it didn’t have been completed yet and if one of these

conditions is satisfied:

1. 0 < j ≤ n and there exists a path to satisfied all demands in  ∪ {n + j}
2. n < j ≤ 2n ∧ j − n ∈ r and there exists a path to satisfied all demands in  ⧵ {j}

An eligible demand j to be inserted in the partial solution 𝜌 is chosen randomly using

probability:

P𝜌

ij =
(𝜏ij)𝛼(𝜂

𝜌

ij)
𝛽

∑
d∈S𝜌i

(𝜏ij)𝛼(𝜂
𝜌

ij)𝛽
if j ∈ S𝜌i , and 0 otherwise. (15)

P𝜌

ij represents the probability to choose a demand j to complete from the current

demand i. 𝜏ij denotes the trail of pheromone on arc (i, j). S𝜌i is the set of eligible

demands that we can performed after demand i. The parameters 𝛼 et 𝛽 modulate the

importance between the visibility and the pheromone. 𝜂
𝜌

ij is the visibility value used

to guide ant.

𝜂

𝜌

ij =
𝛼1|S

𝜌∪{j}
j |

dij
(16)

with 𝛼1 ∈]0, 1] a fixed scalar.

Given a partial solution 𝜌, ending by satisfying demand i, the eligibility of a

demand j is obtained by finding a feasible path in a graph. Indeed, it shall be demon-

strate that after performed demand j, there exists a feasible path to satisfy all unsatis-

fied delivery demands whose corresponding pickup demands were satisfied in route

being built in 𝜌. This problem is a Hamiltonian path problem, which is NP-complete

and to solve it, an insertion heuristic Algorithm 1 is proposed.

3.2 Pheromone Updating

At the beginning of ACS, pheromones are initialized by:
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Algorithm 1 Insertion heuristic for Hamiltonian path problem

1: Inputs:  (a set of demand to satisfy),ItMax1 (a number of iterations), i (the current demand)

and t ( the time at the end of service of demand i)
2: while number of iterations < ItMax1 and no feasible path which satisfy all demands in  is

found do
3:  ′

= 

4: Initialize a route r beginning at node i at the time t
5: while  ′

in not empty do
6: Choose a random delivery d ∈  ′

, remove d in  ′
, and try to insert it in r at the best

position.

7: if d is not inserted in r then
8: Go back to step 3.

9: end if
10: end while
11: end while

𝜏ij = 𝜏0 if (i, j) ∈ A, and 0 otherwise. (17)

with 𝜏0 a fixed scalar. As we mentioned, ACS has two types of pheromone update:

∙ local updating : 𝜏ij = 𝜖1𝜏ij + 𝜏0,

used to diversify the search in a given iteration.

∙ global updating used:

𝜏ij = 𝜖2𝜏ij + (1 − 𝜖2)Δ∗
ij if (i, j) belong in the best ant, and 𝜖2𝜏ij otherwise. (18)

with Δ∗
ij =

(number of demands in r∗i )
𝛼2

total distance travelled on r∗i
, r∗i the route which contain the demand i,

𝜖1, 𝜖2 ∈]0,1[ fixed and 𝛼2 a positive fixed scalar.

4 Local Search Algorithm

This section describes three local search algorithms used in this work. Each local

search is dedicated to specific feature of the objective function of PDPTW.

Heuristic H1 is inspired from the two-stage method used in [6]. For a given solu-

tion, H1 is used to decrease the number of vehicles. For a each route in the solution,

H1 removes a route from it, and try to insert all its requests in the remaining routes

of the solution. The order of insertion is the order of completion in the delete route.

Every request is inserted in the route and in the positions (pickup and delivery posi-

tions) that minimize the total distance travelled. If finally, all the request presents in

the deleted route are inserted, the solution is updated.
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The second heuristic H2 is proposed to reduce distance travelled for a given route.

The idea is to generate randomly (uniform distribution) an insertion order of pickup

demand. And inserted at the best position the requests in this order.

The third local search H3 is proposed to minimize total distance travelled for a

given solution. At each iteration, a route r and a demand d (in r) are chosen randomly.

The corresponding couple of pickup and delivery demands for d is remove from the

solution and reinserted in the route and at the position whom minimise total cost. H3

is inspired from a part of LNS algorithm developed by S. Ropke in [8]. The pseudo

code of hybrid ACS used is given by Algorithm 2.

Algorithm 2 Pseudo code of hybrid ACS

Initialization of parameters

while the best solution is not improved in ItMax iterations do
for each ant of the population do

Construct a solution to complete all demands

while we can remove a route do
Apply respectively algorithms: H2, H1 and H3

end while
if the current solution have the same number of vehicles as the best solution found then
while we decrease the total distance travelled do

Apply respectively algorithms: H2 and H3

end while
end if
Apply the local updating pheromone

end for
Apply the global updating pheromone

end while

In the algorithm, the order H2, H1 and then H3 is used to first optimize each route,

and then try to decrease the vehicles number and finally, minimize the total distance

travelled.

5 Computational Results

The proposed approach has been implemented on eclipse, the programming language

was C++ and the experiments have been carried on a 1.5 GHz and 3.3 GB of RAM.

Standard Li et Lim’s benchmark [9] is chosen to evaluate the performance of our

approach. For experiments, we keep the same value 𝜖 = 0.9 proposed by Belmecheri

et al. [2]. A sensibility analysis is made in order to fix the following parameters:

Number of ants ∈ { n
2
,

2n
5

n
3
}, 𝛼 ∈ {2, 3, 4}, 𝛽 ∈ {1, 2}, 𝛼1 ∈ {0.1, 0.2, 0.5, 1}, 𝛼2 ∈

{2, 3, 5, 10}, 𝜏0 ∈ {0.01, 1, 10}, ItMax1 ∈ {5, 10, 20} and Itmax2 ∈ {n, 2n, 3n}. We

obtain with this analysis that the best values are : Number of ants = 2n
5

, 𝛼 = 3, 𝛽 = 1,

𝛼1 = 0.2, 𝛼2 = 5, 𝜏0 = 1, ItMax1 = 10, Itmax2 = 2n. The algorithm stops when the

best solution is not improved after 100 iterations.
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Table 1 contains five types of columns: Instance is the name of instance, NV is

the number of used vehicles, TD is the total travelled distance, REF is a reference to

the paper which found the result and CPU is the computational time in seconds. The

symbol “∗” indicates that the instance is solved to optimality and the values in bold

emphasize that the proposed algorithm found a better solution.

The hybrid ACS algorithm returns in 98.2% (55/56) of cases a solution better or

equal to the best known solution. And find a better solution than the best know solu-

tion in 44.6% (25/56). It is important to remark that our method is able to performed

best known solutions on all configurations: lc (clustered), lr (Uniform distributed)

and lrc (Semi-clustered).

6 Conclusion

This paper proposes an efficient algorithm to solve a Pickup and Delivery Problem

with Time Windows with objective function : first minimize the number of vehicles

and second minimize the total distance travelled. The proposes algorithm is based

on ant colony optimization coupled with three fast local search algorithms. To our

knowledge, this approach is the first constructive method to solve PDPTW problem

with this objective. The experiments on the standard PDPTW benchmark of Li and

Lim [10] show that it outperforms existing algorithms. In the future, it would be

interesting to performed every feature of approach (construction, visibility, update

of pheromone and local search algorithms) to solve more large size instances and

generalized this approach on heterogeneous fleet case.
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Initialization of Optimization Methods
in Parameter Tuning for Computer Vision
Algorithms

Andrea Bessi, Daniele Vigo, Vincenzo Boffa and Fabio Regoli

Abstract Computer Vision Algorithms (CVA) are widely used in several applica-

tions ranging from security to industrial processes monitoring. In recent years, an

interesting emerging application of CVAs is related to the automatic defect detec-

tion in some production processes for which quality control is typically performed

manually, thus increasing speed and reducing the risk for the operators. The main

drawback of using CVAs is represented by their dependence on numerous parame-

ters, making the tuning to obtain the best performance of the CVAs a difficult and

extremely time-consuming activity. In addition, the performance evaluation of a spe-

cific parameter setting is obtained through the application of the CVA to a test set

of images thus requiring a long computing time. Therefore, the problem falls into

the category of expensive Black-Box functions optimization. We describe a simple

approximate optimization approach to define the best parameter setting for a CVA

used to determine defects in a real-life industrial process. The algorithm computa-

tionally proved to obtain good selections of parameters in relatively short computing

times when compared to the manually determined parameter values.
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1 Introduction

The calibration of computer vision algorithms (CVAs) is a time consuming and crit-

ical step in the effective use of CVAs in many applications, such as the automated

defect detection of pieces produced by an industrial plant. In this case, the final qual-

ity control check at the end of the production chain consists in the optical scan of the

produced pieces by a set of several CVAs. Each of them is designed to detect a spe-

cific type of defect and its behavior is controlled by a large set of parameters, which

influence the CVA sensibility and accuracy and must be determined to maximize its

detection efficacy on specific types of images. For a general overview of automated

defect detection see [7] (see also [5] for an example in the textile industry).

More precisely, given a set of images, the efficacy of the error detection is mea-

sured as a function of the positive and negative false ratios produced by the CVA

with a specific parameter set. As in many other applications parameter tuning of the

CVAs is, therefore, a crucial component for the overall efficacy of the system. To

the best of our knowledge, no optimization method has been developed so far for

parameter tuning in defect detection.

In the context of CVAs, the computation of the efficacy requires the application

of the CVA to a training set of test images. This is typically a very time-consuming

operation requiring several seconds per image, hence minutes or even hours for a

significant training set. Therefore, approaches based on black-box function optimiza-

tion (see, e.g., [2, 3]) must be used in this case. To this end, we developed a simple

Sequential Approximate Optimization (SAO) algorithm (see, e.g., [4]) to identify

the optimal parameter values for a CVA used to detect a specific error on the images.

During the optimization process, the solutions iteratively found by the algorithm are

evaluated by executing the target CVA on the training set of images. The comparison

between the CVA outputs obtained on the images and their real defectiveness state

produce the true/false positive index ratio for the solutions tested. Our goal is the

determination of the optimal input parameter combination for the CVA, leading to

the best possible false positive and negative ratios for each particular type of defect.

In Sect. 2 we describe in detail the characteristic of the problem under study. In

Sect. 3 the structure of the proposed algorithm is given and in Sect. 4 we present the

results of an experimental validation of the algorithm on data coming from a specific

real-world application.

2 Problem Definition

The calibration of the parameters of a CVA is an optimization problem which can

be described as follows. The variables to be optimized are the input parameters of

the CVA which are assumed here to be continuous and associated with a lower and

an upper bound) for their variation. The performance of the CVA is measured in

terms of two independent indicators, namely the number of false-negative and false-

positive in the solution, to be defined later.
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More precisely, we have a CVA whose behavior depends on a subset I of para-

meters whose value has to be determined. For each parameter i ∈ I we are given a

lower and upper bounds li and ui, respectively. For each parameter i ∈ I let xi be the

decision variable which represents its value. Given solution x⃗ we can evaluate its

quality by measuring the performance of the CVA on a training set S of images. To

this end, let fp(x⃗) be the number of false-positives returned by the CVA when applied

to the set S with parameters x⃗, defined as the number of non-defective images which

are classified as defective by the CVA. Similarly, let fn(x⃗) be the number of false-

negatives returned by the CVA, defined as the number of defective images which are

classified as non-defective by the CVA. Finally, let 𝛼p and 𝛼n be two nonnegative

weights associated with the two performance measures. The CVA Parameter Tuning

Problem (CVAPTP) can be formulated as follows

(CVAPTP) z = minF(x⃗) = {𝛼pfp(x⃗) + 𝛼nfn(x⃗)}, s.t. li ≤ xi ≤ ui ∀i ∈ I. (1)

3 A Sequential Approximate Optimization Algorithm

The Black Box Optimization (BBO) nature of the problem requires the use of an

inference intelligence able to predict the objective function value of an unsampled

solution to guide the search process. In the literature, such representation of the BB

function it is referred to as the Surrogate Model (SM, see [8]) for which a large

number of types and formulations were proposed.

As frequently done in the recent literature the SM is used within a Sequen-

tial Approximate Optimization (SAO) algorithm that iteratively updates the SM

by adding the solution points that are determined at each iteration. This sequen-

tial approach preserves a certain simplicity but provides some important advantages.

First, the rebuilding of the SM in order to capture the incoming information improves

its reliability at each iteration. Second, it guarantees to perform a global optimiza-

tion over the entire solutions domain, by reducing the possibility to being trapped

into local optima. The general scheme of the simple SAO algorithm we adopted is

depicted in Fig. 1.

The algorithm starts with the identification of the initial sample of solution points,

used to initialize the SM. Then, for each sample point, the corresponding value of the

objective function F(x⃗) in (1) is computed by applying the parameter values asso-

ciated with the point to the CVA over the entire images test set. The incumbent

solution is defined as the best solution found so far, hence it initially corresponds to

the best sample. The SM is built from the current set of points (x⃗,F(x⃗)) and used to

determine the next candidate solution. After this, the SM is interrogated in order to

search for the best candidate solution possibly improving the incumbent. This phase

is generally called adaptive sampling criteria. The process is iterated until termina-

tion criteria based on solution quality and running time are met.
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Fig. 1 Outline of the

sequential approximate

optimization algorithm

As to the type of SM used, in this work due to the BBO nature of the problem

we adopted a specific type of the so called Meshfree methods, named Radial Basis

Function (RBF) interpolation techniques. These are relatively easy to construct and

are widely used to approximate Black Box function responses. In RBF interpolation

the model, s(x⃗), is defined as the sum of a given number K of radial functions 𝜙:

s(x⃗) =
K∑

J=1
𝛾j𝜙(‖x⃗ − ⃗x̄j‖) (2)

where x⃗j, j = 1, ⋅,K, is the set of sampled solution points representing the centers

of the radial functions 𝜙(), 𝛾 is a vector of weights to be determined, and x⃗ is the

unsampled point whose value has to be predicted. Regarding the radial functions 𝜙,

several type are available in literature, varying from parametrized to not parametrized

ones. In our case, the best trade off between a simple construction of the SM and

an acceptable reliability resulted with the use cubic basis function, that assume the

form:

𝜙(‖x⃗ − x⃗j‖) = ‖x⃗ − x⃗j‖3 (3)



Initialization of Optimization Methods in Parameter Tuning . . . 199

We refer the reader to [1] for an overview of Meshfree methods, and to [6] for an

example of industrial use of cubic RBF.

As to the initial sample generation through which initialize the SM, several tech-

niques exists in literature, typically referred to as Design of Experiment (DoE). Since

in our problem the parameters xj are not subject to other constraints besides the upper

and lower bounds, classical DoE as the Factorial Design are suitable. In particular,

a Full Factorial Design (FFD) permit to cover the entire domain space, selecting all

the points of the grid generated by the discretization of each design variable (i.e., the

parameters in our problem). This methodology is appropriate with the cubic RBF

interpolation since it guarantees a sufficient reliability only inside the convex hull of

the sampled points. However, in our case the computation of F(x⃗) is extremely time-

consuming and using grids in which the parameter’s values are discretized is not

practically possible. For this reason, we decided to initialize our algorithm through

a |I|2 FFD, using just the domain vertices obtained with the lower and upper bounds

of the parameters to be optimized. To improve the initial sample quality we also

considered an initialization in which H additional random points selected inside the

domain hypercube are considered. The adaptive sampling strategy that we adopt to

perform the search of the candidate solution on the SM is the minimization of its pre-

dictor s(x⃗). To avoid to being trapped in a local minimum and perform an efficient

search over all the domain, we implement a multi-start gradient descent algorithm

and run it by using a discrete grid of starting points.

Finally, we terminate the algorithm after a maximum number of objective func-

tion evaluations or after a given number of non-improving iterations.

4 Experimental Validation

We applied our algorithm to the tuning of a CVA used to detect a specific type of

defects on tyre images obtained in a real-world production environment. The training

set is made up of 160 images for which the presence or absence of defects is known.

Six parameters were selected as the target for the optimization. Each such parameter

has a maximum and minimum value and a default value manually determined by

the CVA designers. The behavior of the CVA with the default parameter values is

used here as a benchmark reference to evaluate the performance of the optimized

parameters set.

We tested the impact of three variants for the initialization step, leading to three

different overall algorithms A1,A2, and A3. In A1 we used H1 = 100 random points

to initialize the algorithm. In A2 the sample set is constituted by the 26 points of

the simple FFD described in Sect. 3. Finally, in A3, we added to the FFD set H3 =
36 random internal points. The overall algorithm is run for a total of 200 objective

function evaluations (including those for the initialization step). The gradient descent

search for the candidate solution is performed from a 96 discrete grid fo points.
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Fig. 2 Evolution of the proposed algorithms with weight combination (1,5) in comparison with

the manual tuning

Fig. 3 Evolution of the proposed algorithms with weight combination (1,10) in comparison with

the manual tuning

To account for possible different relative importance of false positives and false

negatives in the defect detection, we considered two different pairs of weights in the

objective function (1). Namely, we considered (𝛼p, 𝛼n) = {(1, 5), (1, 10)}.

The results for the three algorithms are illustrated in Figs. 2 and 3 for the (1,5)

and (1,10) weight combinations, respectively. The figures report the evolution of the

objective function for each algorithm compared with the benchmark reference equal

to 42 for both weight combinations. By observing the figures it clearly appears that

all proposed algorithms generate better parameter combinations with respect to the

manual ones. In particular, for the (1,5) case A1,A2 and A3 produce solutions with

value 29, 29 and 27, respectively, which are 31% and 36% better that then manual

ones. For the (1,10) case, they find a solution with value 38, 40 and 32, which are
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10%, 5%, and 24% better, respectively. In general, we can observe that the mixed

initialization of A3 provides better final results but the simple FFD of A2 improves

quite rapidly and may constitute a good alternative when less time is available.
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Abstract In this paper we propose a new use of Machine Learning together with
Mathematical Optimization. We investigate the question of whether a machine,
trained on a large number of optimized solutions, can accurately estimate the value
of the optimized solution for new instances.We focus on instances of a specific prob-
lem, namely, the offshore wind farm layout optimization problem. In this problem
an offshore site is given, together with the wind statistics and the characteristics of
the turbines that need to be built. The optimization wants to determine the optimal
allocation of turbines tomaximize the park power production, taking themutual inter-
ference between turbines into account.Mixed Integer Programmingmodels and other
state-of-the-art optimization techniques, have been developed to solve this problem.
Starting with a dataset of 2000+ optimized layouts found by the optimizer, we used
supervised learning to estimate the production of new wind parks. Our results show
that Machine Learning is able to well estimate the optimal value of offshore wind
farm layout problems.
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1 Introduction

Mathematical Optimization (MO) and Machine Learning (ML) are two very popu-
lar disciplines. A successful application of the two together arises in the so-called
Prescriptive Analytics field [2], where ML is used to predict a phenomenon, and
MO techniques are used to optimize an objective over that prediction. In the present
work, we will instead investigate a different way to merge MO and ML, where the
optimization model comes first, and its optimized solutions are used as training set
for Linear Regression and Neural Networks. The idea can be used for many different
optimization problems and applications (transport, logistic, scheduling,etc.).Wewill
focus on a specific application, already studied by the first author in [5], namely the
offshore wind park layout optimization problem.

The wind farm layout optimization problem consists of finding an optimal alloca-
tion of turbines in a given offshore site, to maximize the park power production. A
particularly challenging feature of this problem is the interaction between turbines,
also known aswake effect. Thewake effect is the interference phenomenon forwhich,
if two turbines are located close to each other, the upwind one creates a shadow on
the one behind. This is of great importance in the design of the layout since it results
into a loss of power production for the turbine downstream, that is also subject to
a possibly strong turbulence. For many years, this problem has been unknown or
underestimated, and old wind parks have been designed with a very regular (and
highly wake-affected) layout. It was estimated in [1] that, for large offshore wind
farms, the average power loss due to turbine wakes is around 10–20% of the total
energy production. It is then obvious that power production can increase significantly
if the wind farm layout is properly optimized. However, the large size of the problem,
the complexity of the wake effect, and the presence of other constraints, makes it
impossible to create a good layout without the usage of an advanced optimization
tool. Since the difference in power production between optimized solution and unop-
timized ones can be significant, it is even difficult to estimate the potential power
production of a site, without running a complete optimization of the layout. In this
paper, we aim at developing a ML algorithm able to better estimate the potential
of a site, without running a complete optimization. Such a ML algorithm could be
used, for example, in an early stage of the project, when the company has to decide
where to build the park. Having, for example, the possibility of selecting among a
(possibly) large number of offshore sites, the ML algorithm could quickly estimate
which of the sites has the highest expected power. Once the site is selected, a detailed
(and more time-consuming) optimization can be run to define the actual layout. To
be more specific, in the present paper we address the case where a company wants
to construct a specific number of turbines in an offshore area. Even if the production
would increase by spreading the turbines to reduce the wake effect, the infrastructure
costs to connect turbines very far away would also increase. Therefore we assume
that, even if a large sea area is available, the company would discretize it in a num-
ber of smaller rectangular sites. These sites will typically have different dimensions,
and the wind can greatly vary from site to site. The company could also be inter-
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ested in investigating the potential of different sites for different turbine types. We
therefore considered rectangular instances of different dimensions, with different
wind scenarios (taken from real-world parks) and with different turbine types. We
defined and optimized over 2000 instances using the MO tool developed in [5]. The
power production of all these optimized instances is used as training set for our ML
algorithm.

A distinctive feature of our work is that we do not expect to estimate the optimal
solution (which is arguably very problematic for the ML state of the art), but we
content ourselves with the estimate of the optimal value of it.

2 The Optimization Model

At the optimization stage, an offshore site is given together with the wind statistics
in the site. We are asked to determine the optimal allocation of turbines in the area,
in order to maximize the park power production. The optimization needs to consider
that a minimum and maximum number of turbines can be built, a minimal separation
distance must be guaranteed between two turbines to ensure that the blades do not
physically clash (turbine distance constraints), and the power loss due to wake effect.

We first discretize the area in a number of possible turbine positions. Let V denote
this set and let

• Ii j be the interference (loss of power) experienced at position j when a turbine is
installed at position i , with I j j = 0 for all j ∈ V ;

• Pi be the power that a turbine would produce if built (alone) at position i . We used
a Jensen’s model to compute it [6];

• NMI N and NMAX be the minimum and maximum number of turbines that can be
built, respectively;

• DMI N be the minimum distance between two turbines;
• dist (i, j) be the symmetric distance between positions i and j .

In addition, let GI = (V, EI ) denote the incompatibility graph with EI = {[i, j] :
i, j ∈ V, dist (i, j) < DMI N , j > i}.

In our model, we define binary variables xi for each i ∈ V to indicate whether a
turbine is built in position i (xi = 1) or not (xi = 0). The quadratic objective function
(to be maximized) reads

∑
i∈V Pi xi − ∑

i∈V (
∑

j∈V Ii j x j ) xi and can be restated as

∑

i∈V
(Pi xi − wi ) (1)

where

wi := ( ∑

j∈V
Ii j x j

)
xi =

{∑
j∈V Ii j x j if xi = 1;

0 if xi = 0
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denotes the total interference caused by position i . Our MILP model then reads

max z = ∑
i∈V (Pi xi − wi ) (2)

s.t. NMI N ≤ ∑
i∈V xi ≤ NMAX (3)

xi + x j ≤ 1 ∀{i, j} ∈ EI (4)
∑

j∈V Ii j x j ≤ wi + Mi (1 − xi ) ∀i ∈ V (5)

xi ∈ {0, 1} ∀i ∈ V (6)

wi ≥ 0 ∀i ∈ V (7)

where the big-M terms Mi = ∑
j∈V

[i, j]/∈EI
Ii j are used to deactivate constraint (5) in

case xi = 0. Note that constraint (3) can be used to impose the construction of a
fixed number of turbines by setting NMI N = NMAX . Note that the power production
Pi and the interference value Ii j vary with the wind. Using statistical data, one
can in fact collect a large number, say K , of wind scenarios k, each associated
with its own Pk

i , I ki j and with a probability πk . As shown in [5], one can take wind

scenarios into account in our model by simply defining Pi :=
K∑

k=1

πk P
k
i (i ∈ V ) and

Ii j :=
K∑

k=1

πk I
k
i j (i, j ∈ V ).

To solve large-scale instances (with 20000+ possible positions) some ad-hoc
heuristics and a MILP-based proximity search [4] heuristic has been used on top of
this basic model. We refer the interested reader to [5] for details.

3 Data Generation

We used the model presented in Sect. 2 to determine the optimized power production
of a large number of realistic instances. These instances have been created by consid-
ering rectangular areas of different sizes, different turbine types, and different wind
statistics from different real-world sites. In particular, we generated different sites
by generating sets of possible points on a regular grid (10m point-to-point distance)
inside rectangles of different dimensions (all possible combinations of edge sizes
6000, 7000, 8000, 9000, 10000, 11000, 12000, 13000 and 14000m). We computed
power production and interference based on the data from the following real-world
turbines:

• Adwen 8 MW, with a rotor diameter of 180m;
• Vestas 8.4 MW, with a rotor diameter of 164m;
• Siemens 7 MW, with a rotor diameter of 154m;
• Vestas 8 MW, with a rotor diameter of 164m;
• Siemens 3.2 MW, with a rotor diameter of 113m;
• Siemens 2.3 MW, with a rotor diameter of 101m.
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Note that different rated powers and different rotor diameters affect the power
production Pi and the interference Ii j of each turbine and therefore the total power
production of the park. Finally, we considered different real-world wind statistics for
the wind scenarios, namely from the real offshore wind parks named Borssele 1 and
2, Borssele 3 and 4, Danish Krigers Flak and Ormonde. These parks are in-operation
or under-construction parks located in the Netherlands, Denmark, and the United
Kingdom. By considering all the possible combinations of sites, turbine types and
winds, we obtained 2268 instances. We imposed that a fixed number of 50 turbines
need to be located in the site, at a minimum distance of 5 rotor diameters. For each
instance we computed:

(1) the so-called gross production, i.e., the power production of the optimized solu-
tion neglecting the interference factor (this is an upper bound of the optimized
power production of the site);

(2) the optimized layout and its power production.

Note that (1) requires very short computational time and can be calculated in a pre-
processing step. Optimization for the difficult case (2) was instead obtained through
the MILP-based heuristic of [5], with a time limit of 1 h on a standard PC using IBM
ILOG CPLEX 12.6.

The output of the optimization has been used to train the ML models presented
in Sect. 4, where the results of case (1) are considered as input features, while (2) is
the figure that we aim at estimating.

4 Machine Learning

Feature definition is a key point in the development of ML models. In particular,
we need to give to the ML model valuable information on the turbine type used, the
wind and the site. In order to asses which is the most useful information to consider,
we used our knowledge of the problem and different visualizations of the data. We
concluded our analysis by selecting the following features:

• the rated power of the turbine: this is the maximum power (MW) that the turbine
can produce (at high wind speeds); this feature describes the turbine model, and
impacts both park production and interference;

• the rotor diameter of the turbine: this describes the dimension of the turbine and
impacts the interference and the minimum distance between turbines;

• the gross power production: this capture the wind in the site;
• the area (in m2) of the site;
• the ratio between the two edges of the rectangle: this captures the shape of the site.
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Note that, in order for our ML models to work, we need to encode our features in a
way that is easy for the model to interpret. This is why, for example, we preferred to
use the ratio between the edges instead of their individual length. In the same way,
we did not explicitly pass the wind statistics of the site to the ML model , but we
used instead the gross production (that gives richer information, as it relates the wind
with the turbine type used).

Finally, instead of directly estimating the optimized production of a site, we esti-
mate its normalized difference from the gross production, defined as

reduction = gross production − optimized production

gross production
(8)

This is a value between 0 and 1 that can easily be compared between instances
with production of different scales.

Wedefined twodifferentMLmodels to estimate the reduction in power production
due to the interference, namely Linear Regression and Neural Networks (NNs). In
addition, we also defined a simple baseline model (denoted in the following asMean
Value), that regardless of its input always predicts the mean reduction of the training
set. This last model mimics what is normally done by humans, and is used for
comparison.

We provided the previously described features on input to the ML models, orga-
nizing them in a vector x. The estimated reduction in power production ŷ was then
modelled through a function f that depends on some unknown parameters w to be
learned during the training phase, i.e. ŷ = f (w, x) .We used the Root Mean Squared
Error (RMSE) [3] to measure the quality of our ML models. RMSE gives a good
description of the deviation between the predictions of the model and the true values,
and is therefore widely used in the ML community to evaluate regression models.
Given a training data set containing input-output pairs {(xn, yn), n = 1, . . . , Ntrain},
the RMSE formula reads:

E(w) =
√
√
√
√ 1

Ntrain

Ntrain∑

n=1

(yn − ŷn)2 =
√
√
√
√ 1

Ntrain

Ntrain∑

n=1

(yn − f (w, xn))2

where E(w) is minimized when our estimate ŷn is as close as possible to the “real
value” yn . The optimal parameters w� for our ML models are therefore found as
w� = argminw E(w).

5 Preliminary Results

We defined the training set by randomly choosing 60% of the 2268 generated
instances. The remaining 40% of the instances is only used for testing purposes (test
set), and will give us a measure of how much our models generalize to previously-
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Table 1 RMSE of the test set for the different models

Model RMSE

Mean value 0.0235

Linear regression 0.0101

Neural network 0.0059

unseen data. As these models are very sensitive to different scaling of the input
features, we standardize all the features to have mean 0 and standard deviation 1
over the training set.

For NNs we choose the different parameters (number of layers, number of hidden
units, learning rate, amount of weight regularization and activation function) using
the scikit-learn [7] function GridSearchCV, that exhaustively considers all parameter
combinations on a grid (5-fold cross-validated on the training set). According to our
tests, the best architecture is a single-layer neural network with 20 hidden units and
hyperbolic tangent non-linearity. All the models were implemented using Python’s
machine learning library scikit-learn [7].

In Table1we compare the performance of themodels in terms of RMSEon the test
set. We see that both the baseline Mean Value estimator and Linear Regression are
outperformed by the NN, suggesting that modelling non-linearities is fundamental
for the task in hand. In Fig. 1 we visualize the test set predictions: on the y-axis we
report the true reduction and on the x-axis its estimate from the model. Each point in
the graph represents a test instance. If the predictions were perfect, all points should
lay on the y = x line (in red in the plot). The Mean Value strategy predicts always
the same value (so it appears as a vertical line in the plot) and fails in capturing
the problem complexity. The Linear Regression strategy tends to underestimate the
reduction (for lowor high reduction values) or to overestimate it (formiddle reduction
values). NNs, instead, are able to estimate the reduction well (in the figure, all points
are close to the y = x line). The comparison between NNs and Mean Value, in
particular, shows the importance of usingML instead of a manual operator to analyse
the data.

Note that all the training data comes from optimized solutions: without having a
MO optimizer, the company would probably estimate the value of a site by consider-
ing suboptimal layouts, e.g., a layout with turbines on a regular grid. If we compare
the production of a layout of 50 turbines on a regular grid (with 5-rotor-diameter
distance between adjacent turbines) with the production of an optimized layout on
the same site, the difference in our instances can be as high as 13%. This shows the
importance of using MO models in the training phase.
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(a) Mean Value (b) Linear Regression

(c) Neural Network

Fig. 1 Comparison between the predicted reductions ŷ (x axis) and the true reductions y (y axis)
of the test set. The optimal predictions are shown with the dashed red line

6 Conclusions and Future Work

The present preliminary work showed the relevance of usingMO andML techniques
together. We have shown that ML techniques (NNs in particular), trained on a large
number of optimized solutions, could well predict the optimal value of new instances
of the same problem. In this work, we have focused on the wind park layout problem.

A possible extension of the model could be to allow for different numbers of
turbines or different shapes of the park site (not only rectangles). Finally, other ML
models could be developed and compared on a larger dataset. More ambitiously,
future work could investigate the application of our approach to different OR prob-
lems. One could, indeed, address the problem of estimating the optimal value of an
optimization problem by using ML algorithms trained on optimized solutions com-
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puted by time-consuming MO solvers. This estimate can be of interest by itself (as
in the wind farm application studied in this paper), but can also be very useful, e.g.,
for heuristic node pruning in a branch-and-bound solution scheme.
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Mathematical Programming Bounds
for Kissing Numbers

Leo Liberti

Abstract We give a short review of existing mathematical programming based

bounds for kissing numbers. The kissing number in K dimensions is the maximum

number of unit balls arranged around a central unit ball in such a way that the inter-

section of the interiors of any pair of balls in the configuration is empty. It is a cor-

nerstone of the theory of spherical codes, a good way to find n equally spaced points

on the surface of a hypersphere, and the object of a diatribe between Isaac Newton

and David Gregory.

1 A Brit and a Scot Went Down the Pub. . .

“Kissing” is billiard jargon. British players would say two adjacent billiard balls

on the table “kiss”. The term found its way into mathematics thanks to Isaac New-

ton (whom everyone knows) and David Gregory (a professor of Mathematics at

Edinburgh—without having ever obtained a degree—and then Savilian Professor

of Astronomy at Oxford thanks to Newton’s influence). In the 1690s, scared of the

social unrest in Scotland, Gregory left and visited Newton in Cambridge. Accord-

ing to rumours and well-established British protocol, the brit and the scot went

down the pub for a few pints of ale and a game of pool. There, among kissing

balls and fumes of alcohol, they got into a brawl about the number of balls that

could kiss a central ball on the billiard table. Still sober enough, they counted

them, and came to agree on the number six. As the number of pints increased,

the two started blabbering about gravity-defying floating balls passionately kiss-

ing in three dimensions, and disagreed: Newton, embracing the voice of Kepler,

said no more than twelve balls could be arranged around a central one. Gregory,

who had to gain his master’s approval by attempting to be brilliant and surprising,

said that perhaps thirteen could fit? George Szpiro [20] recounts a different story
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in plus.maths.org/content/newton-and-kissing-problem (some

nonsense about astronomy and planets), but since neither he nor I were present at

the quabble, his word on the matter is just as good as mine.

1.1 Applications

Quite aside from the satisfaction I get out of spreading academic gossip on Isaac

Newton, it turns out that arranging balls in a kissing configuration has applications.

If we only consider the points of contact of n surrounding balls of radius r with

the central unit ball, we obtain a set of unit vectors x1,… , xn in ℝK
that have pairwise

distances at least
2r
1+r

. This can be seen in the figure on the left (a two-dimensional

section of part of some K-dimensional balls configuration), together with the pro-

portion 2r ∶ (1 + r) = dij ∶ 1, where dij = ‖xi − xj‖2. This is useful if you ever want

to send one of the vectors xi (for i ≤ n) over a noisy communication channel. You

might receive a vector y different from all xi’s, but assuming the channel is not too

noisy, you can simply assume that y is a corruption of the closest xi. This type of

error correcting code is called a spherical code, and denoted by A(n,K, r). There

is interest in maximizing r, since this corresponds to larger balls and consequently

more errors being corrected by the code. Kissing number configurations correspond

to spherical codes A(n,K, 1) where n is maximum for a given K. Finding a spherical

code given n,K, r is the SPHERICAL CODE PROBLEM (SCP).

The other (less cited) application is finding n equally spaced points on the K-

dimensional sphere SK−1. On websites such as http://stackoverflow.com or http://

math.stackexchange.com, it seems people expect this to be an easy problem (possibly

because the circle is a simple case: place xi on the circle at an angle 2i𝜋∕n). Some 3D

solutions advise scattering equally spaced points on a spiral going from one pole to

the opposite, warning readers that it does not guarantee equal spacing. The problem

can be formulated for any K by means of spherical codes where the smallest r is

maximum. Finding n equally spaced unit vectors on SK−1 is the EQUALLY SPACED

SPHERICAL POINTS PROBLEM (ESSPP).

http://stackoverflow.com
http://math.stackexchange.com
http://math.stackexchange.com
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1.2 Contents

Most of the results in this paper are known. I propose a new SDP-based heuristic for

finding lower bounds, and I give a practitioner’s view of Delsarte’s Linear Program-

ming (LP) upper bound [7], which is useful for conducting experiments in view of

trying to improve current bounds ([2, 14] also discuss practical issues of computing

these bounds). All the experiments reported in this paper are preliminary. Lastly,

I enjoyed writing this paper more informally than is usual—I hope readers won’t

object!

2 The Kissing Number Problem

Finding kissing numbers and kissing configurations is known as the KISSING NUM-

BER PROBLEM (KNP). Formally, this consists in finding the maximum number n
of vectors x1,… , xn ∈ ℝK

such that ‖xi‖22 = 1 for all i ≤ n and xi ⋅ xj ≤
1
2

for all

i < j ≤ n. If n is the kissing number in K dimensions, we write kn(K) = n. We

know that kn(2) = 6, kn(3) = 12 (so Newton was right), kn(4) = 24, and we do not

know kn(5) but it is at least 40. We also know kn(8) = 240 and kn(24) = 196560 [4,

p. 510], and have bounds in many other dimensions (see https://en.wikipedia.org/

wiki/Kissing_number_problem).

2.1 Computational Complexity

The computational complexity of solving KNP, as an optimization or even a decision

problem, is a prominent and embarassing question mark. Since the input is a pair of

integers n,K, mapping an NP-complete problem (e.g. SAT) to a KNP, such that an

instance of one problem is yes if and only if the corresponding instance of the other

problem is also yes, really seems quite hard.

On the other hand, the KNP is certainly very hard to solve empirically, and no-

one working on this problem ever suggested that there might be a polynomial-time

algorithm for solving it—even on a real RAM computational model.

Reductions between decision versions of KNP, SCP and ESSPP are as follows:

the KNP is included in the SCP by definition (so it trivially reduces to the SCP),

and, as pointed out in Sect. 3.2, the KNP can be decided by the decision version of

the ESSPP (so, again, it reduces to the ESSPP). The decision versions of the SCP

and ESSPP are really the same (though the optimization versions differ). The only

reduction I cannot immediately prove is from SCP/ESSCP to the KNP, since only

the latter fixes the angular separation at 𝜋∕3.

I am not aware of any method for proving 𝐍𝐏-hardness of problems whose input

consists of a constant number of integers. For example, the complexity status of the

https://en.wikipedia.org/wiki/Kissing_number_problem
https://en.wikipedia.org/wiki/Kissing_number_problem
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well-known PACKING EQUAL CIRCLES IN A SQUARE (PECS) problem is as yet

undetermined [6]. This is certainly an interesting open problem in computational

complexity.

A referee pointed out an interesting link with another problem having unde-

termined complexity status: the PALLET LOADING PROBLEM (PLP), which asks

whether n identical a × b rectangles can be packed in a given X × Y rectangle [12,

§2.C]. Thus, PLP instances, like KNP ones, are described by a constant number of

integers. Again, establishing reductions between KNP, SCP, ESSPP, PECS and PLP

is an open question.

3 Lower Bounds

Since the KNP is a maximization problem, the cardinality of any kissing configura-

tion of balls yields a lower bound. Since any heuristic method might be able to find

a good configuration, lower bounds for the KNP are considered “easy” to obtain.

3.1 The Formulation of Maculan, Michelon and Smith

We start with the MMS95 formulation proposed in [11], a Mixed-Integer Nonlinear

Program (MINLP) which correctly formulates the KNP:

max
x∈[−1,1]𝜏K ,𝛼∈{0,1}𝜏

𝜏∑

i=1
𝛼i

∀i ≤ 𝜏 ‖xi‖22 = 𝛼i

∀i < j ≤ 𝜏 ‖xi − xj‖22 ≥ 𝛼i𝛼j,

⎫
⎪
⎪
⎬
⎪
⎪
⎭

(1)

where 𝜏 is some (estimated) upper bound to the kissing number. The 𝛼i (binary) vari-

ables choose whether vector xi is part of the configuration or not. Note that the angu-

lar separation constraint xi ⋅ xj ≤
1
2

is replaced by a Euclidean distance separation

‖xi − xj‖22 ≥ 1, which is equivalent since 1 ≤ ‖xi − xj‖22 = ‖xi‖22 + ‖xj‖22 − 2xi ⋅ xj =
2 − 2xi ⋅ xj (whence xi ⋅ xj ≤ 1∕2) as the vectors all have unit norm. Since the prob-

lem is formulated exactly, an exact MINLP solver would provide a feasible and opti-

mal solution if it exists, given some guessed upper bound.

Unfortunately, the state of the art in MINLP solver technology cannot even pro-

vide an answer in K = 2 if 𝜏 = 7 (one more than kn(2) = 6) in “reasonable time” of

a “reasonable laptop” using Eq. (1).
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3.2 A Feasibility Formulation

Given K and n, the formulation below finds the configuration of n unit vectors where

the minimal separation between closest vectors is maximum [10]:

max
x∈[−1,1]nK ,𝛼≥0

𝛼

∀i ≤ n ‖xi‖22 = 1
∀i < j ≤ n ‖xi − xj‖22 ≥ 𝛼.

⎫
⎪
⎬
⎪
⎭

(2)

Equation (2) has a single scalar 𝛼 variable, which is continuous and represents the

minimum distance between pairs of vectors. Solving this nonconvex Nonlinear Pro-

gram (NLP) to global optimality and obtaining an optimal 𝛼 ≥ 1 yields a proof that

kn(K) ≥ n; if 𝛼 < 1 then kn(K) < n. The issue with this strategy for proving kissing

numbers is the same as for Eq. (1): current solvers just cannot solve these instances

to global optimality for interesting values of n,K.

On the other hand, Eq. (2) can be used heuristically to find KNP configurations

given n,K. Moreover, these feasible solutions will in general spread points over the

K-sphere quite evenly, each point being at roughly the same distance from its closest

points. They will therefore provide a practical solution to the ESSPP.

3.3 Semidefinite Programming Relaxations

Semidefinite Programming (SDP) relaxations of Eqs. (1) and (2) have not been

looked at yet, as far as I know. I performed a few preliminary tests on both, and while

the SDP from Eq. (1) seems extremely slack (trivially yielding the upper bound 𝜏 for

whatever given 𝜏, probably due to relaxed integrality), I found the SDP relaxation of

Eq. (2) more interesting:

max
X∈[−1,1]n2 ,𝛼≥0

𝛼

∀i ≤ n Xii = 1
∀i < j ≤ n Xii + Xjj − 2Xij ≥ 𝛼

X ⪰ 0.

⎫
⎪
⎪
⎬
⎪
⎪
⎭

(3)

Based on past experience with other problems involving Euclidean distance con-

straints, I tried the following heuristic strategy:
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1. solve Eq. (3) and obtain an optimal solution ( ̄X, �̄�);
2. perform Principal Component Analysis (PCA) using the K largest eigenvalues of

̄X to obtain an n × K matrix x̄ such that the i-th row x̄i is a vector in ℝK
;

3. use x̄ as a starting point for a local NLP solver deployed on Eq. (2), obtain a

“good” feasible solution (x∗, 𝛼∗).

Using Mosek [15], a Python implementation of PCA, and IPOPT [5], I was able

to derive the following KNP configurations on my “resonable laptop” based on a 3.1

GHz Intel Core i7 with 16 GB RAM.

(n,K) (6, 2) (12, 3) (24, 4) (40, 5) (72, 6)
𝜀 0 0 0.04 0.05 0.07

CPU (s) 0.02 0.02 0.32 1.57 12.26

The first row measures the (additive) solution error with respect to a valid KNP

configuration: 𝛼
∗ = 1 − 𝜀 for all 𝛼 < 1 (whereas 𝛼

∗
> 1 whenever 𝜀 = 0). Unfortu-

nately, the next interesting case, n = 12 and K = 7, made Mosek crash for lack of

RAM (the computational bottleneck on solving SDPs is well known).

4 Upper Bounds

In general, upper bounds to the KNP are considered hard to obtain. Each new upper

bound either requires a completely new theoretical point of view, or a substantial

body of theoretical work and some computation.

4.1 Direct LP and SDP Bounds

A couple of easy upper bounding techniques, however, are readily available in the

optimization literature: LP and SDP relaxation. Expanding the Euclidean distances

in Eqs. (1) and (2) yields a MINLP and, respectively, a nonconvex NLP involving

products of decision variables as the only type of nonlinearity. Using McCormick’s

[13] for bilinear products and the secant relaxation for square terms one can obtain

an LP. For having tested it in the past while I worked on [10], I know that this kind

of LP bound is as slack as they come.

Based on some preliminary experiments using the Mosek SDP solver [15] on

Eq. (3) for K ∈ {2, 3}, I observed a regular decrease in the optimal value �̄� of the

objective function of Eq. (3) as n increases for a given fixedK, as shown in the figures

below.
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The decreasing sequence of optimal �̄� values appears to be converging to 2 for

both K = 2 and K = 3. I have not even started considering how to prove it (or dis-

prove it), nor whether it would have any interesting consequence.

4.2 Delsarte’s LP Bound

This is an adaptation to the spherical context of Delsarte’s upper bound technique

for binary codes [8], based on LP.

Broadly speaking, Delsarte’s idea is based on deciding the distance distribution

of the code so as to maximize its cardinality. Let at be the fraction of the vectors in a

KNP configuration code A(n,K, 1) that have scalar product equal t. Since these codes

contain n vectors, there are at most n2 values of t (there could be fewer if many scalar

products have the same value). In any case, summing over the at we obtain n2∕n = n,

which is the cardinality of the code. Also, since these are fractions, at ≥ 0. Moreover,

there are exactly n scalar products having value 1, namely xi ⋅ xi = ‖x‖22 = 1 for all

i ≤ n, thus a1 = n∕n = 1. Hence, the LP

max{
∑

t
at | a1 = 1 ∧ a ≥ 0} (†)

is of interest to us, insofar as it maximizes the cardinality of the code it describes.

The issue at this point is that this LP is unbounded—there is nothing that links the

decision variables at to the “code structure”. Delsarte’s idea consists in finding a

family F = {𝜙1, 𝜙2,…} of functions 𝜙 ∶ [−1, 1] → ℝ such that

∀𝜙 ∈ F
∑

t
at𝜙(t) ≥ 0 (‡)

is a valid constraint for the LP (†).

Delsarte’s “main theorem” has been proved many times, and generalized in var-

ious ways [4, §2.2]. Its statement is also valid for the SPC and the ESSPP, as it

considers an arbitrary separation angle 𝜁 with cos 𝜁 = z.
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Theorem 1 Let c0 > 0 and f ∶ [−1, 1] → ℝ such that:

(i)
∑

i,j≤n f (xi ⋅ xj) ≥ 0
(ii) ∀t ∈ [−1, z] f (t) + c0 ≤ 0
(iii) f (1) + c0 ≤ 1.

Then n ≤
1
c0
.

My favorite proof is the one-liner given in [18]. Let g(t) = f (t) + c0, then:

n2c0 ≤ n2c0 +
∑

i,j≤n
f (xi ⋅ xj) =

∑

i,j≤n
g(xi ⋅ xj) ≤

∑

i≤n
g(xi ⋅ xi) = ng(1) ≤ n,

whence n ≤ 1∕c0. This suggests that the problem max{c | (i)–(iii)} (∗) is relevant, as

higher values for c0 correspond to tighter bounds. We look for a function f written as

a linear combination of functions 𝜙h ∈ F , and introduce the coefficients ch so that

f (t) =
∑

h ch𝜙h(t).
We now come to the family F : Delsarte’s LP bounding techniques require an

orthogonal family of polynomials. In the KNP case, this family consist of Gegen-
bauer polynomials C(𝜆)

h (t) [1, p. 776], that encode certain properties of SK−1. For

example, so far our description of Delsarte’s LP has failed to include any information

about K, which is provided by this choice of F , notably by setting 𝜆 = (K − 2)∕2
[19, §3]. Another crucial property is that if a function f is a conic combination of

Gegenbauer polynomials, then (f (xi ⋅ xj)ij) ⪰ 0, whence condition (i) of Theorem 1

holds; moreover, conversely, any function satisfying (f (xi ⋅ xj)ij) ⪰ 0 can be written

as a conic combination of Gegenbauer polynomials [19]. We therefore adjoin the

constraints (‡) quantified over G K = {C(K−2)∕2
h (t) | h ∈ H} (for some set H) to the

LP (†).

We explicitly write the LP (∗) by requiring that the f appearing in Theorem 1

should be a conic combination of elements of G K
:

max
c≥0

{c0 | ∀t (f (t) =
∑

𝜙h∈G K

ch𝜙h(t) ∧ c0 + f (t) ≤ 0) ∧ c0 + f (1) ≤ 1}. (4)

As observed in [17], (†) and (∗) are a pair of dual LPs. You have to “massage” (∗)

somewhat before the duality relation with (4) becomes apparent, though (eliminate

c0 and minimize
∑

h ch, see [2, Eq. (5), p. 615]). By duality, we only focus on one

LP, namely Eq. (4).

4.2.1 Getting Your Hands Dirty

As stated, Eq. (4) is infinite in both dimensions: F is countably infinite (if we restrict

𝜆 to be integer) and t varies in the uncountably infinite set ̄T = [−1, 1∕2] ∪ {1}. Only

a couple among the many works in the literature mention this as a difficulty (without
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providing a discussion, however). The only paper I found that provides a satisfactory

discussion of this issue is [2].

1. For an upper bound to kn(K), start with polynomials in G K
up to degree, say, 15

[17], and gradually work your way up the degrees to see if the bounds improve (be

wary of floating point errors arising from evaluating polynomials large degrees—

they may invalidate the bound, see [2, Lemma 1]). You can also use any polyno-

mial from G 𝓁
for 𝓁 ≥ K (though not for 𝓁 < K), since Gegenbauer polynomials

having lower 𝜆 “dominate”—in the sense that they yield larger values of c0—

those for higher 𝜆. Essentially, the minimum 𝓁 for which you choose elements in

G 𝓁
determines the dimensionality of the KNP instance you are going to compute

a bound for.

2. A safe way to deal with the fact that ̄T is infinite is to choose any finite T ⊆
̄T ,

as removing constraints yields a relaxation (and hence a valid bound). A few

experiments will convince you that this discretization has a very small impact

on the value of the bound—moreover, since these are “small LPs”, you can still

instantly obtain answers even when |T| is pretty large (e.g. O(105)).
3. In order to obtain closed form expressions for Gegenbauer polynomials, I used

Mathematica’sGegenbauerC[h,𝜆,t]. However, Eq. (4) expects Gegenbauer

polynomials to be normalized so that C𝜆

h (1) = 1, whereas Mathematica’s imple-

mentation normalizes them differently—you have to remember to evaluate

GegenbauerC[h,𝜆,t] / GegenbauerC[h,𝜆,1].

I obtained the following (standard) LP upper bounds using Gegenbauer fami-

lies C0.5
h and C1

h respectively, for h ≤ 10: kn(3) ≤ ⌊13.1583⌋, kn(4) ≤ ⌊25.5581⌋ and

kn(5) ≤ ⌊46.3365⌋.

4.3 Extensions

I would like to emphasize three among the extensions to Delsarte’s LP bound:

(a) Oleg Musin’s extension [16], which brought us the proof that kn(4) = 24;

(b) Pfender’s extension [18], yielding new upper bounds for K ∈ {10, 16, 17,
25, 26};

(c) Bachoc and Vallentin’s extension [3], which brought us kn(5) ≤ 45 (further

improved to kn(5) ≤ ⌊44.99899685⌋ = 44 in [14], obtained using the GNU

Multiple Precision (GMP) arithmetic library: if you trust the GMP library, you

should also trust this bound.

The first two extensions are based on enriching the function family F : in case (a)

by including some polynomials f such that condition (ii) of Theorem 1 is violated

for a fixed xi and finitely many xj (the exceptions that ensue are dealt with combi-

natorially); and in case (b) by adding a new family of functions to F that are not

convex combinations of Gegenbauer polynomials but satisfy the conditions of The-

orem 1. The case (c) is even more interesting as it considers distance distributions on
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triplets of vectors (rather than pairs) and derives a semidefinite programming (SDP)

formulation instead of an LP.

See [4] for further extensions.
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Learning Greedy Strategies at Secondary
Schools: An Active Approach

Violetta Lonati, Dario Malchiodi, Mattia Monga
and Anna Morpurgo

Abstract We describe an extra-curricular learning unit for students of upper sec-

ondary schools, focused on the discovery of greedy strategies. The activity, based

on the constructivistic methodology, starts by analyzing the procedure naturally aris-

ing when we aim at minimizing the total number of bills and coins used for giving

change. This procedure is used as a prototype of greedy algorithms, whose strategies

are formalized and subsequently applied to a more general scheduling problem with

the support of an ad hoc developed software.

Keywords CS teaching ⋅ Active teaching ⋅ Greedy algorithms

1 Introduction

After several dark decades during which school pupils were often forced to iden-

tify informatics with mere dexterity with ICT tools, the education systems are now

starting to reconsider the importance of the core aspects of the discipline. Many ini-

tiatives [4, 5, 13, 14, 16] have worked hard to change the general perception and

it is now ongoing an explicit effort to bring into play key informatic concepts such

as abstraction, logic, data representation and a general attitude to ‘computational
thinking’ [6, 8], i.e. to think about problems and their solutions in a way suitable

to automatic processing. In this context, algorithms are becoming a very important
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topic, and there is a need to design new activities to foster learning how to reason

on non trivial algorithms. Optimization algorithms, with their compelling useful-

ness, are very good candidates. Thus, we started thinking on potential activities with

them, and we decided to focus on greedy strategies, well suited even for pupils of

non vocational secondary schools.

In fact, a greedy strategy is a very natural way to cope with optimization prob-

lems: its short-sighted structure is attractive even for untrained minds, often uncom-

fortable with more elaborate planning of computing steps. However, while intuitive

to adopt, a greedy solution is not always optimal and choosing the right greedy crite-

rion (and convincing oneself that the choice is indeed optimal) is much more difficult

and “unnatural”. We decided, however, that this could be an important computational

thinking learning objective. Thus, by following the chapter on greedy algorithms in

the book by Jon Kleinberg and Éva Tardos [9], we developed a learning unit on

greedy strategies for upper secondary schools based on constructivistic approach,

and in paticular using our methodology called algomotricity [1–3, 11, 12].

The paper is organized as follows: in Sect. 2 we sketch our methodological root,

in Sect. 3 we describe the learning unit, and in Sect. 4 we draw some conclusions.

2 Constructivistic Learning Theory and Computer
Science Education

Constructivist learning theory, which has its origins in Piaget and Vygotsky [15, 17],

states that people construct their own understanding and knowledge of the world

through experiencing things and reflecting on those experiences. The learners are

the creators of their own knowledge, and the learning process relies to a large extent

on what they already know and understand; when faced with something new they

need to reconcile it with their current mental schemes and conceptions.

Starting from this assumption, the question of what stimuli and tools, methods and

strategies are more effective is fundamental. If knowledge cannot be simply trans-
ferred but must be constructed, its acquisition should be an individually tailored

process, where learners are in charge of the learning process and the role of teachers

is to create suitable contests and materials that favor such process, accompany the

learners’ discoveries, and promote a metacognitive reflection about what they are

doing and how their understanding is developing.

Work in small groups has the power to foster cognitive development and thus to

empower learning. The group is a place to belong to and as such it provides sup-

port and motivation; it promotes cooperation and the activation of latent cognitive

potentials through the sharing of different competences and working/thinking styles;

it supports co-construction of knowledge by socialisation and reciprocal negotiation

of meanings. Through the socio-cognitive conflict that emerges in groups, learners

have the opportunity and the need to explain, confute and defend their beliefs; new

aspects and prospects can be seen; personal experiences and point of views can be

downsized and put in perspective.
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Knowledge

• Definition of optimization problems.
• Outline of greedy strategies and their limits.
• Approaches to analyze the correctness of a greedy algorithm.

Skills

• Describing a greedy strategy/procedure.
• Executing a greedy algorithm.
• Establishing if a greedy algorithm finds an optimal solution on a given input of small size.
• Establishing if an instance provides a counterexample for optimality of a greedy algorithm.

Competences

• Searching for a counterexample to disprove a property, or general reasons/proofs to conclude
that a property holds.

Fig. 1 Learning goals of the unit on greedy algorithm

This approach is especially fruitful to develop competences in problem solving,

which are usually difficult to acquire by means of explanations and examples only. On

the contrary, the learning process can be activated when facing a problem for which

one’s own repertoire of known procedures is insufficient [7, 10]: with exploration

and discovery activities in small working groups, learners can learn together what

they need to know in order to solve the problem.

Having these premises in mind, since 2011 we are experimenting with active

workshops sharing a common strategy, which we call algomotricity. As the name

suggests (a portmanteau combining algorithm and motoric), our approach exploits

kinesthetic learning activities, having the aim of informally exposing students to a

specific informatics topic, followed by an abstract learning phase devoted to let stu-

dents build their mental models of the topic under investigation and a final computer-

based phase to close the loop with their previous acquaintance with applications.

Our activities start “unplugged”, but they always end with work in which students

are confronted with specially conceived pieces of software in order to make clear the

link (but also the intellectual hierarchy) with the computing technology.

The learning goals of the unit are summarized in Fig. 1.

3 The Learning Unit

The learning unit is organised in two main phases. In the first one students work on

an algorithm for giving change using the minimum number of available coins and

bills; in the second one they are faced with a scheduling problem that can be tackled
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by using a simple software tool we developed ad hoc.
1

Most activities are carried

out actively by students; only between the two phases and at the end of the unit some

taught explanations are given.

3.1 Giving the Change

The class is faced with the (simple) task of giving change using coins and bills.

Some examples are computed with the whole class, in order to make evident that

everybody is able to accomplish such a task easily, with no need of deep reasoning.

The question then is asked whether the number of bills/coins used to give the change

is as small as possible: usually students have no doubts that this is the case.

After this introduction, they are asked to work in pairs to put in written words the

procedure to compose a given amount by using the smallest number of bills/coins.

To avoid the use of technical jargon or constructs (what occurs for instance with

students who already have some programming background) and in order to make the

required level of detail clear, students are invited to “write the procedure so that it can

be executed by a 10 years old child who is familiar with basic arithmetic operations”.

A set of play money can be used to help formalize the procedure and to test it through

a step-by-step execution.

Most groups usually propose a procedure that manages to accumulate the change

through subsequent selections of one coin/bill having the highest value yet not

exceeding the residual change; some use a more succint approach exploiting the

quotient and remainder of the division between the residual change and a coin/bill

nominal value. Some explicit an initial step that sorts coins and bills according to

their value, some leave such natural/obvious sorting implicit.

Working pairs are then merged into groups of 4–6 people so that pairs whose

procedures share a common approach are put together. Each group is required to

socialize the procedures of the pairs merged in the group, and agree upon a (possibly

new) common procedure.

When all are ready, each group, in turn, reads its algorithm aloud, while the

remaining ones test it. Remarks are welcomed, both on the features of the presented

procedures and on their commonalities or differences. Starting from these remarks,

the conductor draws and highlights the commonalities and proposes the unifying

schema in Fig. 2, while ascertaining that students recognize their own procedures.

1
The scheduling software is available at http://aladdin.unimi.it/sw/scheduling/scheduling.html (in

Italian).

http://aladdin.unimi.it/sw/scheduling/scheduling.html
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1. Sort coins and bills in decreasing order of their nominal value;
2. For each bill/coin, namely X , taken in that order:

if the value of X is not higher than the residual change
then use it,
else reject it (and never consider again bills/coins with this value).

Fig. 2 General schema for a greedy strategy

Fig. 3 General form of optimization problems and general outline for greedy strategies

3.2 Outline of Optimization Problems and Greedy Strategies

At this point, the conductor can generalize such approach to a more abstract proce-

dure for a generic optimization problem which builds the solution by considering a

set of objects in a given order, and for each of them decides whether or not it has to

be enlisted in the solution according to a validity constraint (see Fig. 3). It should be

emphasized that this constitutes an example of greedy procedure, in that each object

is considered only once for (possibly multiple) addition to the solution, without any

possibility to remove objects previously added to the solution.

3.3 A Scheduling Problem

The second part of the unit consists in asking the students to apply such approach

to a scheduling problem, namely that of maximizing the number of movies to be

seen in a film festival whose program contains several, partially overlapping movies.

First, students are guided to find the analogies between this problem, the one con-

cerning money change and the abstract description of a greedy procedure. Table 1

highlights such analogies: for instance, students tend to easily spot that movies, as

well as coins/bills, play the role of objects. Analogously, the validity constraints are

that of checking whether: (i) a movie does not overlap with the ones already in the

solution, and (ii) the considered coin/bill has a nominal value smaller than the resid-

ual change. Once the analogies have clearly emerged, the discussion can be focused
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Table 1 Comparison between the scheduling and money change problems

Change problem Scheduling problem

Objects Coins/bills Movies

Sorting order Nominal value, decreasing Several alternatives

Validity constraint Value not greater than the

residual change

No overlapping between one

movie and the ones already

added

on the feasibility of a greedy approach to find an optimal solution for the scheduling

problem. The main effort here is to figure out how to sort the movies, what instead

was obvious in the case of coins and bills. Brainstorming should be suggested in

order to collect several possible sorting criteria; the following are usually spotted:

starting or ending time, number of intersections with the other movies, or movies’

length (either ascending or descending).

Once all alternatives are clear, students are asked to work in pairs to verify which

criteria ensure the greedy procedure to maximize the number of seen movies. In

particular, students are asked to find counterexamples to reject non-optimal criteria.

Our piece of software supports them, by generating at random a set of movies (cfr.

Fig. 4a) or letting them choose an initial set, rearranging it according to a chosen

sorting criterion, and applying the greedy procedure (cfr. Fig. 4b). Thus students

may experiment different sorting criteria on different instances of the scheduling

problem and observe and confront the obtained solutions; they eventually realize

that a counterexample is enough to discard a sorting criterion, whereas a proof is

needed to accept one as optimal.

Consider for instance the case shown in Fig. 4b. With movies sorted according to

decreasing number of overlaps, the greedy procedure would suggest to watch only

one movie (the highlighted one on the top), discarding all the remaining ones. How-

ever, it would be possible to see four different movies: the sixth (18, 19), the eight

(17, 18), the ninth (12, 15), and the tenth (23, 24) from the top, and this is a coun-

terexample proving that the criterion does not guarantee optimality.

Students in different groups tend to find counterexamples for most criteria, mainly

observing the outputs produced by the tool on random instances or inventing

instances to test a specific idea and detecting the suitable ones. In these cases they

should be invited to devise the smallest examples as possible, in order to have insights

about the reason why a criterion is not “good in general”. However, usually three

criteria endure the attempts of finding counterexamples, namely the one based on

increasing ending time and its symmetric based on decreasing starting time, and the

one considering the number of intersections. Students’ attempts then start swing-

ing between building a suitable counterexample and finding an explanation why a

counterexample cannot be found for such criteria.

Actually, one can prove that the first one (and its symmetric) guarantees the opti-

mality of the built solution, whereas for the latter counterexamples exist but they are

necessarily larger than those for the other criteria. In our experience, no one succeeds
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Fig. 4 The software showing a a randomly generated set of movies and b applying the greedy

procedure according to a selected sorting criterion (number of overlappings)

in getting these results within the time devoted to the activity; however most were

eager to know the correct answer and paid strong attention to the formal proof the

conductor showed after a while. In several cases, some students asked to delay the

final explanation to the next lesson, in order to have the possibility to think further

about the problem, and indeed someone succeeded in the task with their own great

satisfaction.

3.4 Final Recap

In a final recap, the outcome of the previous activity is used to stress that a greedy

procedure does not always lead to the optimal solution: this happens for instance if

using the non-optimal criteria for the movie festival problem. Moreover, there are

some optimization problems that cannot be solved by any greedy algorithm, in that

no greedy algorithm is known that can guarantee to find an optimal solution. To let

students address this fact on their own, they are asked to reconsider the money change
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problem with other sets of coins/bills: is it true that the procedure they wrote at the

beginning of the workshop will always output the minimum number of coins/bills, or

are there cases when this property is not guaranteed? The question usually surprises

students because they had not even contemplated this issue before, but the answer

now appears to be not obvious at all. Indeed, after a few attempts, the class is able

to devise a suitable set of coins/bills and to make a counterexample. For instance, if

we have coins with values 1, 12, 20 and we want to give the change of 24, the greedy

algorithm would give 5 coins/bills, namely one piece with value 20 and four pieces

with value 1, whereas a better solution would be formed by two pieces with value

12. Other examples of such money systems can be signaled, for instance the British

coin system before the decimalisation (15 February 1971) or the one described in

Harry Potter’s books.

4 Conclusion

There is a growing interest in teaching informatics within the standard curricula even

in non-vocational school, thus marking a shift with reference to the past identifica-

tion of this discipline with the use of software applications. Within this trend, we

proposed a learning unit rooted on the constructivism and focused on the discovery

of greedy strategies in order to solve optimization problems. The learning unit has

been developed and fine tuned with bachelor computer science students, and subse-

quently proposed as an extracurricular activity to some high-school classes between

2015 and 2017. We proposed it mainly as part of a vocational guidance effort and we

did not set up any formal assessment. However, the general impression is that most

students, even the less mathematically sophisticated, did in fact grasp the idea of an

abstract greedy procedure. Many understood the importance to analyze the proce-

dure to check if it works properly for the optimization task. A companion software

tool helped several pupils in sensing the impact of the sorting criteria, and realizing

that most of the criteria can be discarded through the use of counterexamples.
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Comparison of IP and CNF Models
for Control of Automated Valet Parking
Systems

Abdullah Makkeh and Dirk Oliver Theis

Abstract In automated valet parking system, a central computer controls a number

of robots which have the capability to move in two directions, under cars, lift a car

up, carry it to another parking slot, and drop it. We study the theoretical through-

put limitations of these systems: Given a car park layout, an initial configuration

of a car park (location of cars, robots), into a desired, terminal configuration, what

is the optimal set of control instructions for the robots to reorganize the initial into

the terminal configuration. We propose a discretization and compare an Integer Pro-

gramming model and a CNF-model on real-world and random test data.

Keywords Discrete optimization and control ⋅ Emerging applications ⋅ Logistics

1 Introduction

In May 2015, the Miami Herald [7] printed an article about a fancy condominium

tower in Miami. That building was equipped with a state-of-the-art automated valet

parking system. In these systems, a central computer controls a small army of robots

moving in the parking area. The robots have the capability to move in two directions,

move under cars, lift a car up, carry it to another parking slot, and drop it. A human

driver drops off his car at a vehicle transfer station, where the car is picked up by

a robot. The robots store away the car in the parking lot until the driver requests to

retrieve it. Systems like these are installed in parking lots of apartment complexes,

airports, and malls in many countries.
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According to the Miami Herald, in that apartment complex Miami, the following

was happening. In the mornings, when the inhabitants of the apartments wanted to

drive to work, the system was overloaded: Its algorithms were not able to steer the

robots to satisfy a large number of requests within a small time window. Car owners

experienced long waiting times (20–30 min) between the time when they requested

their cars, and when they were delivered to the vehicle transfer stations. According

to the Miami Herald, the car owners took Ubers to work, instead of waiting for the

sluggish machines to drag out their cars. The operator promised improvement of

the algorithms [7], but ultimately had to shut down the project [6], went into bank-

ruptcy [8], and was sued by the residents [4].

This example illustrates nothing else than the need for optimization in the robot

operated car parking systems: according to the New York Times, “the technology is

there” [12].

In this paper, we study a fundamental optimization problem involved in the con-

trol of an automated car parking system. We study the theoretical throughput limita-

tions of these systems: Given a car park layout, an initial configuration of a car park

(location of cars, robots), into a desired, terminal configuration, what is the optimal

set of control instructions for the robots to reorganize the initial configuration into the

terminal configuration. By “optimal”, we mean fastest, in terms of clock-on-the-wall

waiting time until the robots have completed their tasks.

With the ultimate goal of heuristic algorithms for the control of the robots, in this

paper, we study exact algorithms. We propose an Integer Programming (IP) model

and a Constraint Programming model (Boolean variables with constraints in con-

junctive normal form, CNF), and compare the two approaches by testing them on

parking lot scenarios.

In an attempt to stay very close to the application, both approaches model very

closely a realistic model of the way a particular type of robots operates, with specific

velocities of loaded and empty robots along with acceleration times, speeds of car

lift and drop, etc. The goal of the engineers who designed these robots was to turn

existing, human-operated parking lots into robot operated ones, rather than building

the whole parking lot from scratch, with the idea to increase the packing density of

cars on parking lots in densely populated cities. In particular, in this paper we will

consider the case study of parking lots in big condos in Tallinn, Estonia.

The rest of this paper is organized as follows. In the next section, we review lit-

erature relevant for our problem. In Sect. 3, we give an overview of the IP model

and the CNF clauses. In Sect. 4 we describe the data, the computational experiments

we ran, and we discuss the obtained results. In Sect. 5, we draw some conclusions

regarding the problem.

We defer to the supplement [5] for full details of our models, in case the referees

would like to verify their soundness.
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2 Basic Approach and Related Work

2.1 Problem Data and Basic Modelling Approach

The technical details of the problem were the result of a collaboration with a company

which considered entering the market of automated valet parking installations. In the

considered parking lots, all slots have the same width (3 m) and length (6 m), and

all slots are parallel: the width is in East-West direction, the length in North-South

direction. The parking lots have a rectangular bounding box: e.g., if the bounding

box is 300 m in wide and 600 m long, the parking lot can contain up to 10 × 10 =
100 slots. Correspondingly, slots are identified by x (East-to-West) and y (South-

to-North) coordinates. We allow for slots to be unusable, due to either obstacles

(walls, pillars, broken down robots) or simply parked cars which, for some reason,

we currently don’t want to move. The robots can move either in North-South or in

East-West direction (but not, e.g., diagonally); also they don’t need to “rotate”. A

robot must come to a complete stand still before changing directions. The robots’

maximum speed is 3 m/s when empty, or 1.5 m/s when carrying a car; they require

1 s to accelerate to maximum speed or decelerate from maximum speed to standing

still. (We don’t allow for a robot to stand still between two slots.) The robot needs

6 s to lift a car and 2 s to drop it.

These data suggest to discretize time into intervals of 0.25 s. E.g., Fig. 1 shows a

complete sequence of a North-movement by a robot carrying a car from a slot (x, y)
to a slot (x, y + 2) and then accelerate West. In time interval t0, the robot picks up

speed, and moves 1/8 of the length of a slot. In time intervals t0 + 1,… , t0 + 7, the

robot moves at full speed. In time interval t0 + 8, it slows down and comes to a stand

2 places north of where it started. The control instruction “ready” causes the robot to

initiate stopping. In time interval t0 + 9, the robot could be executing a new control

instruction; in the figure, it is accelerating West.
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Fig. 1 North movement of a loaded robot. t = time interval; p = position associated and S = stage

of the move. Robots is drawn in the physical location which it occupies at the beginning of the time

interval
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The discrete optimal control problem we aim to solve is now the following: Given

two configurations of locations of robots and cars on the parking lot, an “initial

configuration” and a “terminal configuration”, determine a feasible set of control

instructions for the robots which transforms the initial configuration into the termi-

nal configuration; minimize the time the reconfiguration takes. Clearly equivalent to

a set of control instructions is a sequence of configurations, each one of which can

be derived from the previous one by a feasible move of the robot.

In a practical application, there is usually no need to fix initial and terminal loca-

tions of each individual car. It is, e.g., not relevant whether car #47 goes to vehicle

transfer station #23 and car number #54 goes to vehicle transfer station #22—or vice

versa. Hence, we work with “colored” cars, and the initial and terminal configura-

tions specify only whether a slot is occupied by a car and if so, what the “color” of

that car should be. In our computer code, we formulate and solve IP and CNF models

whose feasible solutions are sequences of configurations, for 3 colors.

2.2 Simplifications and Literature Review

Simplified versions of the problem have been studied theoretically. Most importantly,

disregarding the role of robots (i.e., assuming that the cars move by themselves) and

the speeds gives variants of pebble motion and reconfiguration problems in grids,

or, more generally graphs: Vertices represent parking slots, and edges represent slots

sharing an edge. We now review what is known.

The most famous problem in this group is the 15-Puzzle: on a 4 × 4 grid, 15 ver-

tices are occupied by labeled pebbles. (“Labeled” means that each pebble has a color

of its own.) The decision version of the problem is whether a given initial configu-

ration can be transformed into a given terminal configuration through a sequence of

moving pebbles to adjacent vertices; the optimization version asks for a reconfigu-

ration with the smallest number of total moves. The decision problem can be solved

in polynomial time [14]. The optimization problem on grids is NP-hard [11], but

constant factor approximation algorithms exist [10].

For graphs in general, Papadimitriou et al. [9] proved that with two labels, one

pebble has a unique label, the problem is NP-hard. They also gave a polynomial

time algorithm, using flow techniques, for the optimal solution on trees. The result

was later improved to O(n5) by Auletta et al. [1]. Călinescu et al. [2] showed that

the optimization problem on graphs is APX-hard. Moreover, when allowing more

pebbles to move at the same time, Yu and LaValle [15] proved that the optimization

problem on graphs is NP-hard. It follows from [2, 15] that there is no polynomial

time (approximation) scheme for the simplified version of our problem, unless P =
NP.
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3 IP and CNF Models

Let C ∶= {0, 1,… , |C| − 1} denote the set of colors of cars. The models require an

upper bound on the number of time intervals: Each time interval is identified by an

element of T = {0, 1,… , tmax}. The configuration at t = 0 is the initial configuration,

the configuration at t = tmax is the terminal configuration. A car is called stationary
if it is not carried by a robot.

The Variables

For every time interval and every slot, four types of variables determine what is hap-

pening there and then: slot occupation status (whether there’s a stationary car, and if

so, of what color), slot robot-status, SRS (whether there’s a robot, and if so, what it

is carrying and doing), robot vertical process (if there is a robot lifting or dropping a

car, which phase of that process is it executing), robot horizontal movement (if there

is a moving robot, which phase of the movement is it executing). All variables are

Boolean (0/1). At most one of the variables in each group is 1. Here they are.

Slot Occupation Status xv,t,c, for every slot v = (x, y), every time interval t = 0,… ,

tmax, and every c ∈ {𝜙} ∪ {C}. The symbol𝜙 stands for “no car”. Example: xv,t,𝜙 = 1
iff during time interval t, there is no stationary car at the slot with coordinates v;

xv,t,2 = 1 iff during time interval t, there is a stationary car of color 1 at the slot with

coordinates v.

Slot Robot-Status (SRS) sv,t,c,d, for every slot v, every time interval t, every

c ∈ {𝜙} ∪ {C}, and every d ∈ {𝜖, 𝜌, 𝜇, 𝜁}. The symbol 𝜖 stands for “no robot”, 𝜌

stands for “ready”, 𝜇 stands for “robot moving”, 𝜁 stands for “vertical process”.

Example: sv,t,𝜙,𝜌 = 1 iff at the slot with coordinates v, during time interval t, there

is a robot doing executing the “ready” control instruction, i.e., it is doing one of

the following: (1) nothing (being idle); (2) ending a movement (decelerating); (3)

ending lifting or dropping a car. Another example: sv,t,2,𝜁 = 1, iff at the slot with

coordinates v, during time interval t, there which is in the process of either lifting or

dropping a car of type 2.

Robot Vertical Process (RVert) zv,t,p, for every slot v, every time interval t, and every

p ∈ {𝜆0, 𝜆1, 𝜆2, 𝜆3, 𝜆4, 𝛿}. The symbols 𝜆i for 0 ≤ i ≤ 4 stand for the phases of “lift-

ing”, 𝛿 stands for “dropping”. Example: zv,t,𝜆2 = 1 iff during time interval t, the robot

is in the third phase of lifting at the slot with coordinates v. The following diagram

shows the interconnection between x-, s-, and z-variables:

t = t0 xv,t,3 = 1, sv,t,𝜙,𝜌 = 1, zv,t,∗ = 0 a car of color 3, a robot

t = t0 + 1 xv,t,𝜙 = 1, sv,t,3,𝜁 = 1, zv,t,𝜆0 = 1 no car; a robot lifting a car of color 3

⋮ ⋮ ⋮
t = t0 + 5 xv,t,𝜙 = 1, sv,t,3,𝜁 = 1, zv,t,𝜆4 = 1 no car; a robot lifting a car of color 3

t = t0 + 6 xv,t,𝜙 = 1, sv,t,3,𝜌 = 1, zv,t,∗ = 0 no car; robot executing “ready”

Robot Horizontal movements (RMove) mv,t,c,e, for every slot v, every time interval t,
every c ∈ {𝜙} ∪ {C}, and every e ∈ {Nacc} ∪ {Ni𝒿0 ≤ i ≤ 3} ∪ {Sacc} ∪ {Si𝒿0 ≤
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i ≤ 3} ∪ {Ea} ∪ {Ei𝒿0 ≤ i ≤ 1} ∪ {Wacc} ∪ {Wi𝒿0 ≤ i ≤ 1}. The symbol Nacc

stands for “acceleration in the north direction” and Ni for 0 ≤ i ≤ 3 stands for the

phases of “northern move”. Similarly the other stand for the other directions. Exam-

ple: mv,t,2,E1
= 1 iff during time interval t, the robot moving E1 at the slot with coor-

dinates v towards its east. The interconnection between the x- and the m-variables is

similar to the RVert case.

IP-Model Constraints

Collision

The setup of the variables allow to formulate both the IP- and the SAT-model by

linking only consecutive time intervals t, t + 1. Care has to be taken to allow for all

feasible movements, while making sure that collisions (see the figure on the right)

are ruled out. The following constraints describe a loaded robot on (x, y) moving

north.

|C|−1∑

i=0
m(x,y),t,i,N0

≤ s(x,y+1),t,𝜙,𝜖 +
|C|−1∑

i=0
(m(x,y+1),t,i,N0

+ m(x,y+1),t,i,Nacc

+ m(x,y+1),t,i,1 + m(x,y+1),t,i,N2
+ m(x,y+1),t,i,N3

)
+ m(x,y+1),t,𝜙,Nacc

+ m(x,y+1),t,𝜙,N1
(1)

|C|−1∑

i=0
m(x,y),t,i,Nacc

≤ s(x,y+1),t,𝜙,𝜖 +
|C|−1∑

i=0
(m(x,y+1),t,i,Nacc

+ m(x,y+1),t,i,N1

+ m(x,y+1),t,i,N2
+ m(x,y+1),t,i,N3

) + m(x,y+1),t,𝜙,Nacc

+ m(x,y+1),t,𝜙,N1
(2)

|C|−1∑

i=0
m(x,y),t,i,N1

≤ s(x,y+1),t,𝜙,𝜖 +
|C|−1∑

i=0
(m(x,y+1),t,i,N1

+ m(x,y+1),t,i,N2

+ m(x,y+1),t,i,N3
) + m(x,y+1),t,𝜙,N1

(3)

|C|−1∑

i=0
m(x,y),t,i,N2

≤ s(x,y+1),t,𝜙,𝜖 +
|C|−1∑

i=0
(m(x,y+1),t,i,N2

+ m(x,y+1),t,i,N3
) (4)

|C|−1∑

i=0
m(x,y),t,i,N3

≤ s(x,y+1),t,𝜙,𝜖 +
|C|−1∑

i=0
m(x,y+1),t,i,N3

(5)
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|C|−1∑

i=0
m(x,y),t,i,N0

≤ s(x,y−1),t,𝜙,𝜖 +
|C|−1∑

i=0
m(x,y−1),t,i,N0

(6)

First (1) says that if a robot is moving in stage N0 then north of it there can be nothing

or robot accelerating in the same direction as it and so on. E.g., when the robot is

moving N1 from (3) there can’t be a robot to the north of it accelerating since a

collision will occur. Moreover, since N0 is the stage of north movement when the

robot arrives to (x, y) and is almost occupying all of this spot, then by (6) (x, y − 1)
is unoccupied or there is a robot moving N0. We defer to the supplement [5] for the

full details of the IP-model. Now we state the following result.

Proposition 1 The IP-formulation using the x-, s-, z-, and m-variables on an n × n
grid has O(tmaxn2) inequalities.

The Objective Function. We made numerous experiments with different objective

functions. The idea is to “nudge” the robots into movement, while trying to sup-

port reaching the terminal configuration as quickly as possible. For each time inter-

val, f (t) = t
100⋅tmax

was the cost of the SRS excluding sv,t,𝜙,𝜌 and sv,t,𝜙,𝜖 . The objective

function is as follows,

∑

∀v∈V ,∀t∈T ,∀i∈C
f (t) ⋅ (sv,t,i,𝜌 + sv,t,𝜙,𝜇 + sv,t,i,𝜇 + sv,t,𝜙,𝜁 ) (7)

The computational results in the next section use a linear dependence on the time for

that. Details can be found in the supplement [5].

SAT-Model Clauses

The SAT-model follows the same basic approach as the IP-model. Indeed, many of

the clauses have a direct counterpart in an inequality, and vice versa. Overall, deriv-

ing the CNF clauses from the control requirements and the variables is an exercise

in logical thinking. The following clauses determine the situation of a slot v at time

t after lifting or before dropping.

∀i ∈ C sv,t+1,i,𝜌 ∨j∈C
j≠i

sv,t+1,j,𝜌 ∨ xv,t,𝜙 ∨ zv,t,𝜆4 (8)

∀i ∈ C sv,t,i,𝜌 ∨j∈C
j≠i

sv,t,j,𝜌 ∨ xv,t,𝜙 ∨ zv,t+1,𝛿 (9)

∀i, j ∈ C ¬sv,t+1,i,𝜌 ∨ ¬sv,t+1,j,𝜌 (10)

∀i, j ∈ C ¬sv,t,i,𝜌 ∨ ¬sv,t,j,𝜌 (11)

By (8) and (10), in t + 1, if a loaded robot (car of type i) will be ready on v, then,

in t, v has no cars or the robot is done with lifting a car of type i. Similarly (9) and

(11), if in t, the loaded robot is ready on v, then, in t + 1, v will have no cars or the

robot will drop a car of type i. We defer to the supplement [5] for the full details.
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4 Computational Results

The data. We have two sets of parking lots. Five parking lots are derived from an

existing parking area in Tallinn, Estonia. That parking area has been split up into

parts, based on requirements such as having vehicle transfer stations accessible from

elevators for pedestrians. (Humans and robots cannot use the same floor area for

operational safety.) Then there is a set of 5 parking lots generated randomly: Starting

from an m × n grid, we place “walls” between parking slots with a given probability.

Each parking lot gives rise to several instances to be solved, by choosing the initial

and terminal configurations of the cars and robots. All configurations were chosen

randomly (discarding those with no reconfiguration of initial to terminal configura-

tions.) The total number of instances is 30. The largest instances were 13 × 10 (only

41 free spot). In those 7 cars of 3 different colors and 5 robots were used. Also we

had small instances (4 × 5 and 9 free spots) with 6 cars of 3 different colors and 2

robots. Compared to real world problems, the instances are small in terms of num-

ber of cars, but the sizes and number of colors are compatible with real world ones.

The full description of the all parking lots and instances can be found in the supple-

ment [5].

Finally each instances is solved several times, for varying tmax. (The difficulty is

that no good upper bound on tmax is known.)

Hard- and Software We used the Gurobi optimizer [3] in version 7.0 for the IP-

model, and CryptoMiniSat 5 [13] as SAT solver. The times were taken on a com-

pute server with Intel(R) Core(TM) i7-4790K CPU (4 cores) and 16 GB of RAM.

(Both solvers were run with one thread.) Gurobi was run with the parameters

MIPFocus = 2, Presolve = 2. CryptoMiniSat was run with preproc = 1.

Both solvers were given a time limit of 10000 s.

The time to read in the data from file and construct the models was negligible.

Results. CryptoMiniSat 5 very significantly outperformed Gurobi.

For only one of the resulting Integer Programs a solution was found within the

time limit. For that one IP, in that case, the solve time was 90 s, whereas the solve

time for the corresponding CNF model was 76 s.

The SAT-model, on the other hand, gave relatively satisfactory results. Cryp-

toMinSat terminated within the given time limit for 85% the CNF-models (yielding

either a feasible solution or the information that there was none). In 60% of instances,

the running time was below 3600 s. In only 20% instances, the running time was

larger than 6000 s.

The full computational results (tables) can be found in the supplement [5]. The

code, instances and solutions are on GitHub (Abzinger/crobots).
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5 Conclusion

Difficult discrete optimal control problems arise in the control of automated valet

parking systems. For the study of exact methods for the problems, we devised

a time-expanded model, and compared its solution via Integer Programming and

CNF-based Constraint Programming. Using state of the art software for the two

approaches, we found that Integer Programming was useless.

The CNF-model, however, proved to be usable. Now, the next goal is to (design

and) compare the solution qualities (amount of time needed to reach a terminal con-

figuration from a current configuration) of heuristic algorithms to optimal solutions,

which can be found or at least bounded using our CNF-model.
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A Districting Model to Support
the Redesign Process of Italian Provinces
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Abstract In the general context of welfare reforms in western economies, many
actions concerning the rationalization of local administrative structures have been
undertaken. In particular, in Italy a recent debate has been addressed about the
reduction of the overall number of provinces and the rearrangement of their borders.
As provinces are responsible of providing some essential services to the population
within their boundaries, any possible scenario should combine the need for more
efficient territorial configurations with the safeguard of the services’ accessibility.
From a methodological point of view, such problem involves aspects from both
facility location and districting problems. In this work, we formulate a mathematical
model to support the decision making process and we compare scenarios provided
on four benchmark problems, built on the real data associated to the most repre-
sentative Italian regions.
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1 Introduction

From an administrative point of view, the Italian country is subdivided into regions
(NUTS2), provinces (NUTS3) and municipalities (LAU) [1]. Each government
level is characterized by specific competences and it is responsible of providing
some essential services to the population living within the borders of the related
areas. Chapter 5 of Italy’s Constitution focuses on the way power should be dis-
tributed and divided between the central government and various local adminis-
trative levels.

Recently, a heated debate has concerned the opportunity of reducing the overall
number of provinces in the country and of redesigning their borders. Such proposal
has mainly twofold motivations. On one side, the economic crisis imposed the need
of reducing public expenditure through the reorganization of systems providing
public services, such as healthcare, education, justice. In this context, the redesign
of provinces would allow the reduction of management costs through the amal-
gamation of political jurisdictions and their public service provision areas. On the
other side, in the last years, the competences traditionally assigned to provinces
have been gradually reduced and, at the current state, they take care solely of road
network management and education, with reference to the upper secondary level
[2]. For these reasons, the actual configuration, characterized by a huge number of
provinces and an unbalanced distribution of population and area among them, have
been considered not sustainable anymore.

The debate around the reorder of Italian Provinces is still ongoing and it is
testified by a series of reform proposals, that found huge obstacles in reaching a
consensus [3, 4]. Probably, this is due to the difficulty, faced by government, in
implementing solutions capable of combining the need for efficient territorial
configurations and the safeguard of users’ accessibility to the provided services.
One of the last governmental proposal provided specific guidelines to support the
redesign process, by fixing constraints about the minimum population
(Pmin = 300.000 inhabitants) and the minimum extension Sminð = 2.500 km2), that
all provinces in the final configuration need to meet, and left to the single regions
the possibility to propose their own reorder plans, according to the specific exi-
gencies and characteristics [3]. At this aim, the availability of models and methods
able to support regional authorities in such complex decision making process could
be beneficial.

From a methodological point of view, the described problem involves aspects from
both facility location [5, 6] and districting problems [7, 8] (FLP and DP). Indeed, it
concerns decisions about facilities (province centers) to be closed in a given study
region and, at the same time, about the new partition of municipalities in districts.

In the last years, in the literature related to FLPs, several works started to analyze
problems aimed at modifying the territorial configuration of existing facilities in a
study region, by closing, relocating, merging some of them and/or by downsizing/
redistributing their operating capacitites [9–12]. Such territorial re-organization
problems are usually motivated by occurred or potential changes in the
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facilities’ operating conditions (i.e., demand distribution and/or budget constraints),
that make the existing organization inefficient and/or unsustainable. ReVelle et al.
[9] introduce two different models to deal with facilities’closure, both in a com-
petitive and non-competitive environment. Bruno et al. [10–12] focus on applica-
tions related to the public context, by considering other reorganization actions, as
facilities merging and capacities downsizing. In the public sector, such decisions
have to be made by carefully evaluating their potential impact on users’ accessi-
bility to services and equity consideration [13, 14]. In particular, Bruno et al. [11]
also propose a classification of re-organization models, in the attempt of sytem-
atizing the literature focused on this class of problems. In particular, they distin-
guish between single-period and multi-period models (see for instance [9, 15]), and
between ex-ante and ex-post models, if decisions are taken before or after changes
motivating re-organization occur (see for instance [10, 16]).

In the DP literature, some papers address the problem of modifying the current
partition of territorial units in districts [17, 18]. In particular, Bruno et al. [18]
introduce four different models to perform re-districting decisions, based on dif-
ferent strategies to take closure (optimal vs. prescriptive) and units’ reallocation
decisions (merging vs. re-assignment).

In this work, with reference to the above literature streams, we formulate a
model to support the redesigning process of Italian provinces, that may be viewed
as an extension of the Optimal Reassigning Model (ORM) by Bruno et al. [18]. The
proposed model is tested on four instances, built on the real data of the most
representative Italian regions. Provided results are reported and analyzed, in order
to show the usability of the model and its efficacy in providing interesting insights
to support the decision making process.

2 A Mathematical Model for the Re-design of Italian
Provinces

In the current Italian administrative subdivision, each region is composed of a
certain number of municipalities i∈ I, grouped in provinces j∈ J. Then, the set I is
partitioned in m components Ij, each representing the subset of territorial units
assigned to province j∈ Jð∪ j∈ JIj = IandIj ∩ Ij′ =∅∀j, j′ ∈ JÞ. In each province, a
specific municipality cj (named provincial chief town) hosts facilities providing a
set of services to the population living within its borders.

The problem consists of reducing the overall number of active provinces/chief
towns and then modifying the partition of municipalities, in order to produce a
trade-off solution between the need of obtaining more efficient territorial configu-
ration and the goal of containing as much as possible the impact on the users, in
terms of accessibility to the provided services.

In order to take into account the efficiency of the produced scenario, we consider
the requirements defined by the central government, in terms of minimum
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population Pmin (300.000 inhabitants) and area Smin (2.500 km2) per province. On
the other side, in order to take into account the accessibility of reallocated
users/municipalities to the new assigned chief-units, we consider their related
distances.

Then, the model is aimed at determining how many and which provinces have to
be closed, in such a way the reassignment of municipalities to active provinces will
produce feasible configurations (meeting the governmental requirements) and will
optimize the accessibility to services provided by new province centers.

By introducing the binary variables yj, equal to 1 if and only if the chief town of
district j gets closed, and xij, equal to 1 if and only if unit i is assigned to the chief
town of district j, the model can be formulated as follows:

minz= ∑
i∈ I

∑
j∈ J

pid2icj xij ð1Þ

xij ≤ 1− yj ∀i∈ I,∀j∈ J ð2Þ

∑j∈ J xij =1 ∀i∈ I ð3Þ

∑i∈ Ij xij ≥ γ Ij
�
�
�
� 1− yj
� �

∀j∈ J ð4Þ

∑i∈ I pixij ≥Pminð1− yjÞ ∀j∈ J ð5Þ

∑i∈ I sixij ≥ Sminð1− yjÞ ∀j∈ J ð6Þ

yj ∈ 0, 1f g; xij ∈ 0, 1f g ∀i∈ I, j∈ J ð7Þ

The objective function (1) is one of the classical measures of compactness,
defined as sum of the weighted square distances among each unit i and the chief
town of its assigned district j. Constraints (2–4) rule the reallocation of territorial
units to active districts. In particular, constraints (2) impose that territorial units can
be assigned only to active districts, while constraints (3) ensure the allocation of
each territorial unit to one (and only one) district. Constraints (4) impose a simi-
larity condition for active provinces; in particular, they impose, for each active
province, that at least a given percentage γ 0≤ γ ≤ 1ð Þ of units initially assigned to
jði∈ IjÞ have to be assigned to j in the final configuration. For γ =1, units belonging
to active districts cannot be reassigned, while for γ=0, any unit may be re-allocated
and the initial partition does not affect the final solution. Conditions (5–6) represent
the requirements constraints. In particular, they impose that active districts in the
final configuration will be characterized by an area larger than Smin and a population
larger than Pmin. The total area and population for each district j have been com-
puted by summing up the population pi and the area si of the single municipalities
assigned to it. Finally, constraints (7) define the nature of the decision variables.
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3 Results

The introduced model has been tested on the most representative Italian Regions, in
terms of number of districts and municipalities. The selected regions are indicated
in Table 1, along with some feagures associated to their global characteristics, in
terms of total population and area, and others associated to their current partition in
provinces, such as the minimum, maximum and average values of population, area
and radius per province (i.e. the distance between the province chief town and its
farthest municipality). It is possible to notice that, in all the cases, the distribution of
population and area across provinces is not balanced, being the range between min
and max values very significant. Moreover, the current partition in provinces do not
satisfy the government requirements, being the minimum values under the fixed
thresholds.

In order to solve the model, for each considered region, population and extension
associated to each municipality have been retrieved by the National Office of
Statistics; while the distances have been calculated as shortest paths (km) on the
road network. The test problems have been solved using Cplex 12.2 on an Intel
Core i7 with 1.86 GHz and 4 GB of RAM, in very limited running times.

The model has been solved first assuming k as decision variable, so as to find the
minimum number of chief towns kminð Þ to be closed in order to have feasible
provinces, and then by considering it as a parameter and varying for higher values,
(i.e. by introducing in the model the additional constraint ∑j∈ J yj = k, k> kmin).

In order to compare different scenarios, in the following we report solutions with
the same number of active provinces, equal to 5, obtained by fixing a similarity
value equal to 1. In particular, for each considered region, the map representing the
scenario proposed by the model (Figs. 1, 2, 3 and 4), along with a table (Tables 2,
3, 4 and 5) indicating its characteristics, in terms of number of territorial units, total
population, total extension ðkm2Þ and radius per province, are reported.

It is possible to notice that new provinces are feasible, being their total popu-
lation and extension higher than the governmental requirements. However, the
distribution among provinces is quite different within the four Regions. In partic-
ular, in the case of Piemonte Region, the population is not well balanced, as all the
values are under the threshold of 610.000 inhabitants except one that is higher than
2.000.000. The other regions present a better population distribution, especially
Veneto and Emilia Romagna. In terms of area, Toscana Region does not present a
good balance, being the minimum value equal 2.585,7 km2 and the maximum one
equal to 6.440,5 km2. In terms of provincial radius, Piemonte region presents the
worst condition (154,8 km), while Veneto Region present the more balanced dis-
tribution, being all the provincial radius within the range 75,0–95,0 km.

In order to evaluate how varies the accessibility of users to provincial chief units
when the number of closed provinces increases, we report, for each region, the
results provided by the model, in terms of minimum, maximum and average
provincial radius, by varying k (Fig. 5). In each Figure, also the value associated to
the current partition (CP) is reported.

A Districting Model to Support the Redesign Process of Italian … 249
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As expected, the accessibility gets worse when the number of closed provinces
increases. However, this representation may be very useful as it allows to compare
different scenarios according to the two conflicting objectives to be taken into
account in the decision-making process (i.e. efficiency vs. accessibility). For
example, in the case of Toscana Region, it is interesting to see that by increasing the
number of closed provinces from 5 to 6, the situation does not change too

Fig. 1 Toscana (k = 5)

Table 2 Toscana - New
provinces characteristics

TUs Pop Area
(kmq)

Rmj

(km)

49 368.534 2.585,7 112,4

74 1.585.999 5.477,3 75,2

56 925.559 3.604,8 112,4

56 434.974 4.878,8 89,4

52 357.136 6.440,5 122,6
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much; indeed, the average is quite constant as well as the range between min and
max. In this condition, the decision maker could decide to close 6 instead of 5
provinces without producing a significant worsening in the users’ conditions. On
the contrary, for values higher than 6 the radius increases significantly. In the case
of Emilia Romagna Region, different scenarios are characterized by similar radius,

Fig. 2 Piemonte (k = 3)

Table 3 Piemonte - New
provinces characteristics

TUs Pop Area
(kmq)

Rmj

(km)

141 355.109 3.085,0 154,8

347 2.275.353 7.167,4 99,6

197 534.011 3.577,7 105,5

250 586.378 6.894,9 114,4

271 606.053 4.652,4 70,7
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Fig. 3 Emilia romagna
(k = 4)

Table 4 Emilia Romagna -
New provinces characteristics

TUs Pop Area
(kmq)

Rmj

(km)

59 359.139 3.342,4 77,6

107 1.348.923 6.538,2 117,1

92 1.419.964 5.915,6 82,3

41 672.089 4.097,0 81,9

49 542.020 2.559,7 106,5

Fig. 4 Veneto (k = 2)
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so it could be interesting for the decision maker comparing the characteristics of
single scenarios into details, in order to evaluate if it is reasonable to enforce the
closure of an higher number of provinces without damaging too much users.

Table 5 Veneto - New
provinces characteristics

TUs Pop Area
(kmq)

Rmj

(km)

108 922.251 3.303,2 78,0

135 976.036 3.045,3 75,9

107 475.074 4.621,7 76,0

85 1.316.124 3.593,8 93,6

146 1.167.725 3.843,4 79,5

(a) Toscana (b) Piemonte

(c) Emilia Romagna (d) Veneto
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Fig. 5 Provincial radius in the produced scenarios
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4 Conclusions

In this work, we introduced a model to address the real problem of the reorder of
Italian provinces and we tested it on some benchmark problems, built on real-world
instances derived from Italian regions territorial configurations.

Moreover, a sensitivity analysis on the number of closed provinces has been
performed, in order to evaluate how the accessibility of users to provincial chief
units varies when the number of closed provinces increases. This analysis is very
useful in order to compare scenarios on the basis of the two conflicting goals to be
considered in the decision-making process.

Finally, computational results highlight that models can be solved in very limited
running times, even for instances of significant size.

Further researches will be addressed at enhancing the models formulations in
order to take into account further practical operational aspects.
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A Stochastic Maximal Covering Formulation
for a Bike Sharing System

Claudio Ciancio, Giuseppina Ambrogio and Demetrio Laganá

Abstract This paper discusses a maximal covering approach for bike sharing sys-

tems under deterministic and stochastic demand. Bike sharing is constantly becom-

ing a more popular and sustainable alternative transportation system. One of the

most important elements for the design of a successful bike sharing system is given

by the location of stations and bikes. The demands in each zone for each period is

however uncertain and can only be estimated. Therefore, it is necessary to address

this problem by taking into account the stochastic features of the problem. The pro-

posed model determines the optimal location of bike stations, and the number of

bikes located initially in each station, considering an initial investment lower than a

given predetermined budget. The objective of the model is to maximize the percent-

age of covered demand. Moreover, during the time horizon, it is possible to relocate

a certain amount of bikes in different stations with a cost proportional to the traveled

distance. Both deterministic and stochastic models are formulated as mixed integer

linear programs.

Keywords Bike sharing system ⋅ Stochastic model

1 Introduction

Due to the constant growth of interest over climate change a great attention is being

given in the last years to possible alternative sustainable transportation modes. Bike

sharing systems are an emerging mode of transportation that provide the tempo-

rary rental of bikes and have the potential to reduce car usage hence congestion [1].
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Moreover they have an impact on the promotion of an healthy lifestyle and on the

reduction of pollution in the city. One of the most important factor for the success

of a bike sharing system is the ability to react according to the variations in user

demand [2]. Even if the daily demand on each location is characterized by random

variations, there are relationships that can be identified and estimated through appro-

priate statistical analysis. The bike sharing system has to be planned and managed

to maximize the level of customer satisfaction. Therefore, it is necessary to reduce

as possible situations in which a user arrives at a station to take a bike and finds the

station empty, or in which he arrives at the station to return the bike and the sta-

tion is completely full. To this aim, it is necessary to analyse and solve opportunely

strategic, tactical and operational problems. First, at a strategic level, it is neces-

sary to define the location of the bike sharing stations. Second, at a tactical level,

it is necessary to determine the number of docks and bikes located in each station.

Last, at an operational level, a bike repositioning plan has to be defined for mov-

ing bikes, from one station with an excess to a station with a shortage, in order to

satisfy the demand forecast for the next periods of the time horizon [3]. Different

mathematical formulations can be used for the definition of the optimal location of

the bike stations. Lin and Yang [4] proposed an integer non-linear problem to deter-

mine the optimal location of bike stations, based on cost minimization assuming a

penalty for uncovered demand. However the model does not consider the relocation

of bicycles but assumes that the number of bikes is always sufficient to satisfy the

required demand. O’Mahony and Shmoys [5] addressed the problem of maintain-

ing system balance during peak rush-hour usage as well as rebalancing overnight to

prepare the system for rush-hour usage. Yan et al. [6] developed different models

under deterministic and stochastic demands based on a time-space network to deter-

mine the locations of bike rental stations, bike fleet allocation and bike routing in

which the objective function minimizes the sum of the operating costs of the bike

rental system plus the fixed costs of locating the bike rental stations. Brinkmann

et al. [7] proposed a multi-periodic inventory routing problem in which they took

into account both time-dependent requests and target fill levels given by optimiza-

tion models on the tactical management level. Kloimüllner et al. [8] introduced a

problem where bike stations are marked for pick-ups or deliveries. Service times are

considered as static and pick-up and delivery stations have to be visited alternately.

A cluster-first route-second heuristic is implemented to assign stations to vehicles.

Martinez et al. [9] formulated a mixed-integer linear model solved through a heuris-

tic approach that allow optimizing the location of shared bike stations, assuming a

fleet size and bicycle relocation calculation for a regular operating day. According

to the model proposed by Frade and Ribeiro [10] we formulated the problem with

a maximal covering location approach. The main decisions taken into account in

the model here proposed are: the location of the public bike rental stations, the bike

inventory levels of each station in each period and how the available not rented bikes

have to be relocated during the investigated planning horizon. Therefore, even if the

model is mainly developed as a support decision tool for strategic decisions (location
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of stations, fleet size) it is also used to support operational decisions regarding bikes

relocation. Both problems are however strictly related since the optimal relocation

strategy is affected by the fleet size and the stations location.

2 Mathematical Formulation

The main goal of the mathematical model presented in this section is to maximize

the percentage demand covered while taking into account constraints on the initial

budget and required level of service. The model requires some input data such as the

estimated demand for every period for each considered point of the graph, the maxi-

mum and minimum capacity of the stations, the price to locate stations and bicycles,

the relocations costs and the available budget. The following notation has been used

to represent the decision variables and input parameters, in the deterministic variant

of the model:

Sets

I set of demand zones, indexed by i and j
T set of time periods, indexed by t

Decision Variables

xtij percentage of demand in the zone i in the period t covered by a station located

in the zone j
yi binary variable with value 1 if a bike station is activated in the zone i, 0 other-

wise

zi number of blocks situated in the station in the zone i
vti number of bikes located in the zone i at the period t
rtij number of bikes relocated from i to j at the period t

Parameters

qti demand in the zone i in the period t
zmin minimum number of bikes located in each block

zmax maximum number of bikes located in each block

cs fixed cost of a station

cb unit price of a bicycle

cB unit price of a block

cr variable unit relocation trip cost

dij distance from zone i to zone j
B initial budget

k number of periods in the project horizon

dmax maximum distance from the station
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This notation has been used to define the following mathematical model

max z =
∑

i∈I

∑

j∈I

∑

t∈T
xtijq

t
i (1)

vti = vt−1i +
∑

j∈I
rt−1ji −

∑

j∈I
rt−1ij ∀i ∈ I ∀t ∈ T (2)

v1i = vki ∀i ∈ I (3)

xtij = 0 ∀(i, j) ∶ dij > dmax ∀t ∈ T (4)

vti ≥
∑

j∈I
qtjx

t
ji ∀i ∈ I ∀t ∈ T (5)

vti ≥ zminzi ∀i ∈ I ∀t ∈ T (6)

vti ≤ zmaxzi ∀i ∈ I ∀t ∈ T (7)

∑

j∈I
rtij ≤ vti ∀i ∈ I ∀t ∈ T (8)

∑

i∈I
(csyi + cBzi + cbv1i ) +

∑

i∈I

∑

j∈J

∑

t∈T
crrtijdij ≤ B (9)

xtij ≤ yj ∀i ∈ I ∀j ∈ I ∀t ∈ T (10)

0 ≤ xtij ≤ 1 ∀i ∈ I ∀j ∈ I ∀t ∈ T (11)

yi, zi ∈ {0, 1} ∀i ∈ I (12)

vti, r
t
ij ∈ ℕ+ ∀i ∈ I ∀j ∈ I ∀t ∈ T (13)

The objective function (1) maximize the total demand covered by the bike sharing

system during the analyzed planning horizon. Constraints (2) are flow conservation

constraints. In particular the number of bikes located in the zone i at time t is given by

the number of bikes available in the previous time step and the total net flow of bikes

relocated from or to i in the previous period. Equation (3) impose that the number

of bikes at the beginning and at the end of the planning horizon is the same for each

zone. This constraint is added since the model considers a periodic time horizon

of one week. The demand of service in the zone i can be satisfied only by stations

located in zones j at a distance dij less than a predetermined threshold dmax (4). The

number of bikes located in the zone i at the period t has to be enough to satisfy the

demand (5) and in a range defined according to the number of blocks located in the
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Fig. 1 Scenario tree

station (6–7). The number of bikes relocated from the zone i has to be less or equal

of the inventory level in the zone i at the same period t (8). The bike sharing system

have to be compatible with the available budget B (9). Constraints (10) define the

relationship between decision variables x and y. Finally Eqs. (11, 12, 13) define the

decision variables domain.

2.1 Stochastic Model

In real contexts, operational decisions regard use of bikes are made for a number

of decision points t ∈ T . In every decision point t, a solution have to be planned

according to different demand scenarios. Every decision leads to a deterministic

post-decision state. A stochastic transition then leads to different decision states for

the next time period t + 1.

The stochastic model was formulated based on a scenario tree. For this version of

the model the following decision variables were used Fig. 1:

xni,j percentage of demand in the zone i in the period t(n) on the node n covered by

a station located in the zone j
yi binary variable with value 1 if a bike station is activated in the zone in i, 0

otherwise

zi number of blocks situated in the station in the zone i
vni number of bikes located in the zone i at the period t(n) on the node n
rnij number of bikes relocated from i to j at the time t(n) on the node n

All the input parameters related to the time t will now refer to the correspondent

node n of the scenario tree. For each node is defined a time tn, a predecessor node

𝛼n and the number of child nodes 𝛽n. We refer as pn the probability with which node

n occurs which is equal to pn = p𝛼n
𝛽
𝛼n

. Finally we indicate as N the node set and as Nl

the set of leaf nodes. The stochastic model is formulated as follow:

max z =
∑

n∈N

∑

i∈I

∑

j∈I
xnijq

n
i p

n
(14)
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vni = v𝛼ni +
∑

j∈I
r𝛼nji −

∑

j∈I
r𝛼nij ∀i ∈ I ∀n ∈ N (15)

v1i = vni ∀i ∈ I ∀n ∈ Nl (16)

xnij = 0 ∀(i, j) ∶ dij > dmax ∀n ∈ N (17)

vni ≥
∑

j∈I
qnj x

n
ji ∀i ∈ I ∀n ∈ N (18)

vni ≥ zminzi ∀i ∈ I ∀n ∈ N (19)

vni ≤ zmaxzi ∀i ∈ I ∀n ∈ N (20)

∑

j∈I
rtij ≤ vni ∀i ∈ I ∀n ∈ N (21)

∑

i∈I
(csyi + cBzi + cbv1i ) +

∑

i∈I

∑

j∈J

∑

n∈N
pncrrnijdij ≤ B (22)

xnij ≤ yj ∀i ∈ I ∀j ∈ I ∀n ∈ N (23)

0 ≤ xnij ≤ 1 ∀i ∈ I ∀j ∈ I ∀n ∈ N (24)

yi, zi ∈ {0, 1} ∀i ∈ I (25)

vni , r
n
ij ∈ ℕ+ ∀i ∈ I ∀j ∈ I ∀n ∈ N (26)

3 Case Study

In this section, we discuss some computational experiments carried to evaluate the

performance of the proposed approach. Both deterministic and stochastic algorithms

were implemented as single thread code in Java and solved through Cplex 12.6. All

tests are performed on a desktop computer equipped with an Intel Core i7 proces-

sor with 2.4 GHz, 8 GB RAM, and running Windows 10. The mathematical model

presented in the previous section was applied to the city of Cosenza in Italy. For this

application we assumed the following assumptions: the maximum bike capacity of

each station is proportional to the number of blocks (each block contains 10 docks)

and is assumed to be 8 for each block while the minimum value is assumed to be 3.

The instance is characterized by the following data reported in Table 1.

We considered an instance with 12 time periods. Each period represents a time length

of 3 h. Bike relocation is allowed only at night (every 4 periods). Moreover we
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Table 1 Input data

Parameter Value Parameter Value

Number of points 50 Bike station cost 3000e

Number of daily

requests

1480 Bike cost 300e

Time horizon 12 periods Bike docks 400e

Number of scenarios 2048

impose that the bike inventory is the same for each station at the end of the first day

(after 4 periods) and at the end of the time horizon. This assumption is performed

since we consider the first 4 periods of time to represent a weekday and the other 8

periods for Saturday and Sunday.

3.1 Demand Analysis

One of the main problems for the BSS design is the estimation of the potential

demand to the service. Survey questions were designed to determine the nature of the

trip and possible destinations. Specifically, the aim of the survey was to determine:

what travels (starting and end location) and how many users would be attracted by a

BSS; the maximum distance that a user would be willing to travel to reach the closest

station; the frequency and time with which each user will make use of the system;

the average time of each trip. In addition, we asked demographic questions related

to sex, income, and age.

3.2 Numerical Results

The stochastic problems has been solved considering the data collected from the

survey and subsequently through the use of a scenario generation technique. We

considered three different configurations related to different initial budgets between

300000e and 700000e. The results of the optimal solution given by the model are

reported in Table. 2.

For the first test (initial budget of e300000) the system covers 748 daily requests

(50.5% of the total demand) defining the location of 16 stations in the geographic

area and it makes use of a total amount of 192 bikes. The total investment ise298500

(slightly less than the available budget). In the second test, we assumed a budget

of e500000. The optimal solution, covers 1128 daily requests (76.2% of the total
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Table 2 Numerical result of the stochastic model with different budgets

Initial investment e300000 e500000 e700000

Number of trips

covered

748 1128 1480

Number of stations

located

16 28 41

Total number of docks 240 450 665

Total number of bikes 192 360 532

Total cost e298500 e498200 e699600

VSS 33 51 28

demand) and locates 28 stations. Finally, in the last test, the initial budget is increased

to e700000. The optimal solution covers all 1480 daily requests, locates 41 stations

and the fleet contains 532 bikes. To measure the quality of the stochastic model com-

pared to the deterministic version we used the VSS indicator (Value of the Stochas-

tic Solution). The value we obtained ranged between 28 and 51 additional covered

requests. It is interesting to note that in the last test the system is able to cover all

1480 requests using the stochastic version of the model while 28 requests are not

satisfied by solving the correspondent deterministic problem.

4 Conclusions

This paper discusses a mathematical formulation to determine the optimal location

of a set of bike-sharing stations, the number of bikes allocated in each station and

can be used to estimate a short-time operational plan and the related cost based on

the demand estimated trough surveys. The problem has been addressed by means

of a maximum coverage model subjected to constraints related to the initial budget

and on a minimum level of service measured based on the distance between user

and station. The proposed methodology can provide a decision support tool to urban

managers and therefore it has the potential to contribute significantly to the quality

of the bike-sharing system. Moreover, the stochastic formulation allows identifying

the optimal bike relocation plan according to different possible demand scenarios

during an investigated time horizon. The approach was used on a case study for

the city of Cosenza in Italy. The model was solved considering different operational

constraints and initial budget levels. The results show that the stochastic model gives

better indications compared to the equivalent deterministic variant.
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A Model and Algorithm for Solving
the Landfill Siting Problem in Large Areas

Mariano Gallo

Abstract In this paper we study the problem of siting landfills over large
geographical areas. An optimisation problem is formulated and solved with a
heuristic algorithm. The formulation of the problem explicitly considers economic
compensation for the population of areas affected by the landfill. The approach is
used to solve the problem in the real-scale case of the southern Italian region of
Campania, with 551 possible sites. The proposed methodology is able to solve the
problem with acceptable computing times.

Keywords Landfills ⋅ Location problems ⋅ Waste management

1 Introduction

Finding suitable locations for landfills, incinerators or other major waste
management sites constitutes a major and somewhat thorny problem for public
decision makers, especially at regional level. Besides technical and economic con-
siderations, a critical issue concerns the strong opposition of local communities that
live in the area chosen for siting the facility: the well-known NIMBY (Not In My
Back Yard) syndrome. This phenomenon in some cases can spark violent demon-
strations and road blockades. Since a waste management facility, especially a
landfill, can actually lead to a reduction in property values in adjacent zones, eco-
nomic compensation should be paid to residents in the areas affected by the facility.

Several approaches to the problem of landfill site location have been proposed in
the literature. Waste management models were reviewed by Morrisey and Browne
[1], while multi-criteria approaches were proposed by Melachrinoudis et al. [2],
Hokkanen and Salminen [3], Cheng et al. [4], Vasiloglou [5], Kontos et al. [6],
Chang et al. [7], Xi et al. [8], Gorsevski et al. [9] and Gbanie et al. [10]. Al-Jarrah
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and Abu-Qdais [11] proposed a system based on fuzzy inference, while Bennis and
Bahi [12] studied criteria for landfill location. GIS-based procedures were proposed
by Sumathi et al. [13], Zamorano et al. [14] and Simsek et al. [15]. A comparison
between actual locations and optimal locations of landfills was attempted by Eiselt
[16], while the joint location of landfills and transfer stations was proposed by Eiselt
and Marianov [17]. By contrast, Guiqin et al. [18] proposed an analytical hierarchy
process (AHP) for landfill site selection.

In this paper we formulate an optimisation model for solving the landfill location
problem, taking explicitly into account: (a) transportation costs from waste pro-
duction sites to landfills; (b) construction and maintenance costs of the facility;
(c) the costs of economic compensation for the residents in adjacent areas. While
costs (a) and (b) are usually considered in almost all waste facility siting models,
costs (c) are usually not explicitly considered.

This problem can be seen as a p-median problem [19]; Daskin and Maass, [20]; a
literature review of p-median problems can be found in ReVelle et al. [21]. For
solving the model, we propose a heuristic algorithm that is able to give a good,
albeit sub-optimal, solution in an acceptable computing time also for large
real-scale problems. This algorithm is a variant of a greedy heuristic [22] coupled
with a multi-start technique [23]. This paper focuses mainly on the proposed model
for solving or limiting the Nimby problem, and on the case study; the model can be
solved with other algorithms proposed in the literature: a comparison among
algorithms is outside the scope of the paper.

Below we make reference to landfills, since they are the facilities that generate
the strongest opposition from local communities and for which economic com-
pensation should be highest. However, the model can be easily extended to the
siting of other “undesirable” plants. Moreover, we examine a region where waste
sources are represented by the municipalities and the subjects affected by economic
compensation are all people (households) living in each municipality (except for
large cities, which can be partitioned into zones). The model can be easily extended
to smaller areas for different kinds of plants.

2 Problem Description and Model Formulation

We assume that several landfills have to be located in a geographically large area,
such as a region, to satisfy waste disposal requirements, and that the location of all
waste sources is known, as is the annual waste production of each source. Moreover,
all eligible sites in the area are initially identified and the cost of each site depends on
the quantity of waste that it has to treat each year (construction costs are appropri-
ately amortised and attributed on an annual basis). In addition, the compensation
costs for the residents concerned are then considered. Finally, the cost per ton-km of
transported refuse is known. The constraints of the problem concern the kind of
variables and the maximum number of facilities (the minimum is, obviously, equal to
1). The objective function, to be minimised, is the total yearly cost, comprising the
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sum of transportation costs, construction/maintenance costs and compensation costs.
Finally, this problem is NP-hard like almost all facility siting problems [24].

The decision variables of the problem are binary, xi = 0/1, where i indicates an
eligible site and xi = 1 if a landfill is envisaged in site i, xi = 0 otherwise; they may
be organised in a vector, x. We indicate with m the maximum number of landfills
envisaged for the area and with n the number of eligible sites. We assume that, for
each possible solution, the waste produced by a town is allocated to the nearest
landfill, that is:

wi xð Þ= ∑i wpj ⋅ ai, j xð Þ

where wpj is the annual waste production of town j and ai,j is equal to 1 if the
distance between i and j, di,j, on the road network is the minimum compared to all
distances between j and any other site i. Below, dj,min is used to indicate this
minimum distance and hence ai,j = 1 if di,j = dj,min.

The annual cost, yci, of each landfill is known and is represented by a function,
yci(wi(x)), that has to be calibrated. We use ini to indicate the number of inhabitants
in town i (or in zone i for cities) and cc for the annual compensation cost per ton of
waste per inhabitant. Finally, ctkm is the cost per ton-km of transported waste, that
we assume independent of the kind of roads to be travelled along (the problem can
be easily extended to roads with different running costs, acting on the calculation of
dj,min).

The objective function is the sum of three terms: the first is the annual
construction/maintenance cost of the landfills, the second is the cost of trans-
portation and the last is the compensation cost. Under these assumptions, the
optimisation model can be formulated as follows:

xopt =Argxmin ∑i yci wi xð Þ ⋅ xið Þ+ ∑j dj,min xð Þ ⋅wpj ⋅ ctkm+ ∑i ini ⋅wi xð Þ ⋅ cc
� �

s.t. xi =0 ̸1 ∀i
1≤ ∑i xi ≤m

This model is a binary non-linear constrained optimisation model: function
yci(wi(x)) may not be linear and the values dj,min(x) change with x in a non-linear
manner since, with each solution, the destination i for the waste produced by town
j may change. Analogously, the terms wi(x) change non-linearly with x.

3 Solution Algorithm

In order to solve this problem we propose a heuristic algorithm based on exhaustive
mono-dimensional searches and a multi-start procedure. First of all, the proposed
algorithm is simpler to manage if we organise the decision variables differently as
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follows: (a) an integer number is associated to each landfill site i; (b) m pointer
variables, χk (collected in vector χ ), are defined; each pointer variable can assume
an integer value between 0 and n which indicates the corresponding site i or, if
χk = 0, that this pointer variable is not associated to any site i. In this way, each
solution of the problem can be represented by the values assumed by the pointer
variables. In Fig. 1 an example with n = 20 and m = 5 is reported.

There are two advantages of this transformation: (1) the constraint on the
maximum number of landfills is automatically included in the problem formulation
(and also that on the minimum number, imposing that with 0 landfills the trans-
portation cost is infinite); (2) the space of all solutions is limited only to those that
respect this constraint, since solutions with more than m xi = 1 are ipso facto
excluded.

The proposed algorithm works on the pointer variables to identify a solution to
the optimisation problem. With the variable transformation the optimisation prob-
lem is modified as follows:

χ opt =Argχmin ∑i yciðwiðχ Þ ⋅ xiðχ ÞÞ+ ∑j dj,minðχ Þ ⋅wpj ⋅ ctkm+ ∑i ini ⋅wiðχ Þ ⋅ cc
� �

s.t. 0≤ χk ≤ n ∀k
χk integer ∀k
∑k χk ≥ 1

The proposed algorithm is articulated in the following phases:
Phase 0—Initialisation. All variables χk are set equal to 0, the counter of iter-

ations is fixed to 0 and the value of the objective function is assumed infinite.
Phase 1—Mono-dimensional exhaustive search (1st cycle). A mono-dimensional

exhaustive search is performed, examining all solutions obtained by changing only
the first pointer value from 0 to n; having identified the best value, the first pointer is
fixed and the mono-dimensional exhaustive search is performed for the second
pointer and so on. This phase ends either when the optimal value of a pointer is
equal to 0 (no other landfills) or when all pointers have been exhaustively explored.
At the end of this phase, the algorithm tested at most m ⋅ n solutions.

Phase 2—Mono-dimensional exhaustive search (2nd cycle). Mono-dimensional
exhaustive searches are performed as in the 1st cycle, starting from the values
obtained at the end of the previous phase. If the best objective function value at the
end of this phase is equal to the best value obtained in the previous phase, the
search ends; otherwise, phase 2 is repeated until the stop condition is reached or a
maximum number of solutions have been examined.

Fig. 1 An example of
variables transformation
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The general scheme of the algorithm is reported in Fig. 2a. This algorithm is
able to generate a local optimum: all the neighbouring solutions, obtained by
changing the value of any pointer, are worse than the solution obtained with the
algorithm. Since the problem is not convex, in order to explore the solution space,
we propose to test the same algorithm starting from randomly generated different
initial solutions, instead of all pointers equal to 0. In such cases, only the second
cycle has to be performed (see Fig. 2b). The complexity of each mono-dimensional
exhaustive search is O(m ⋅ n).

4 Numerical Results

The proposed model and algorithm were tested on a real-scale case, namely the
region of Campania, to ascertain the applicability of the proposed approach to
large-scale problems. In this test we used the following data:

• total waste produced by each municipality in the region was obtained from
official ISPRA data [25];

• average transportation cost was assumed equal to 0.4 €/t-km, obtained from
some regional tenders for commissioning waste transport;

• the annual compensation cost was assumed equal to 0.0001 €/t per inhabitant;
• all 551 municipalities of Campania were considered candidate sites for the

landfills and distances were measured between the centroids representing the
municipalities (see Fig. 3a);

• the maximum number of landfills is equal to 5.

The distance matrix, required for estimating the transportation costs, was gen-
erated by implementing with the software Omnitrans 6 the regional road network;

Fig. 2 Algorithm framework
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the network graph comprises over 20,000 mono-directional links representing over
6,000 km of roads (Fig. 3b). The annual cost of a landfill was calculated with the
following formula Eiselt and Marianov [17]:

yciðwiðχÞÞ= c0 +wiðχÞ ⋅ c1ðwiðχÞÞ

where c0 is a constant cost (€/year) of the landfill, independent of wi, and c1(.) is a
variable cost (€/t-year) that depends on wi for considering the scale economy. The
parameters of this function should be calibrated with real data; in these initial results
we used the parameters proposed by Eiselt and Marianov [17], appropriately
converted to euros: c0 = €220,000 and c1(wi(χ )) = 428.015 ⋅ wi(χ )

−0.209.
The proposed algorithm, starting from all pointers equal to 0, examined 1654

solutions in about 21 min. The suboptimal solution thus obtained identifies two
landfills, located in the municipalities of Massa di Somma and Giungano. The value
of the objective function is €89,898,825 per annum, made up of transportation costs
(€34,274,833/year), construction/maintenance costs (€54,311,274/year) and com-
pensation costs (€1,312,718/year). The multi-start procedure, starting from 15
random solutions, led to the same local optimal solution. We tested the same
procedure without considering the compensation costs; in this case two landfills
were identified in the municipalities of Casoria and Battipaglia and the value of the
objective function is €86,024,933 per annum, made up of transportation costs
(€30,270,389/year) and of construction/maintenance costs (€55,754,544/year). In
Fig. 4 the locations are reported for both cases.

In order to evaluate the quality of the solution, an exhaustive search was per-
formed among all solutions that have only two landfills (151,525 solutions, com-
puting time about 32 h); this search led to the same result obtained with the
proposed algorithm.

Fig. 3 Case study: (a) municipalities and centroids; (b) road network
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5 Conclusions

In this paper a model and an algorithm were proposed for solving the landfill siting
problem. The procedure was tested on a real-scale case, the southern Italian region
of Campania with 551 possible site locations. The problem is formulated by con-
sidering also compensation costs for the resident population affected by the facility
in order to avoid or limit the NIMBY syndrome. Initial results highlight the
applicability of the proposed approach and the different solutions obtainable with
and without considering the compensation costs in the objective function.

Future research will seek to improve the model by considering actual possible
locations and actual construction/maintenance costs, and proposing methods for
defining compensation costs, considering the distances of inhabitants from landfills,
albeit residents in other municipalities. A comparison with other algorithms pro-
posed in the literature, in terms of computing times and goodness of the solution,
and with some optimisation software will be object of future research.
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Optimal Content Distribution and
Multi-resource Allocation in Software
Defined Virtual CDNs

Jaime Llorca, Antonia M. Tulino, Antonio Sforza and Claudio Sterle

Abstract A software defined virtual content delivery network (SDvCDN) is a vir-

tual cache network deployed fully in software over a programmable cloud network

infrastructure that can be elastically consumed and optimized using global infor-

mation about network conditions and service requirements. We formulate the joint

content-resource allocation problem for the design of SDvCDNs, as a minimum cost

mixed-cast flow problem with resource activation decisions. Our solution optimizes

the placement and routing of content objects along with the allocation of the required

virtual storage, compute, and transport resources, capturing activation and opera-

tional costs, content popularity, unicast and multicast delivery, as well as capacity

and latency constraints. Numerical experiments confirm the benefit of elastically

optimizing the SDvCDNs configuration, compared to the dedicated provisioning of

traditional CDNs.
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1 Introduction

With the soaring number and heterogeneity of video-capable devices, high quality

video content, and video-based cloud services, communication networks are faced

with increasingly tighter requirements (e.g., several Gbps bandwidth and a few ms

latency). In this challenging environment, operators can leverage distributed cloud

networking technologies that enable the deployment of a wide range of services in

the form of software functions instantiated over general purpose hardware at mul-

tiple cloud locations distributed throughout the network [1, 2]. In this context, net-

work functions virtualization (NFV) and software defined networking (SDN) play

a key driving role. NFV enables porting network functions, today residing on ded-

icated hardware platforms, to a virtualized cloud infrastructure; while SDN allows

programmatically configuring the network that interconnects the distributed cloud

locations [1]. The confluence of NFV and SDN hence enables a highly adaptable

cloud network platform that provides dynamic allocation of resources and chore-

ographed inter-networking.

A software defined virtual content distribution network, or SDvCDN, is a vir-

tual cache network deployed fully in software over a programmable cloud network

infrastructure that can be elastically consumed and optimized using global informa-

tion about network conditions and service requirements. In a SDvCDN, both virtual

caches at distributed cloud locations as well as their virtual connectivity can be adap-

tively configured in order to meet service requirements with minimum overall use of

the physical infrastructure. In this work, we focus on the end-to-end configuration

of SDvCDNs, a problem that involves jointly optimizing the placement and rout-

ing of content objects, as well as the allocation of storage, compute, and transport

resources. We develop a novel minimum cost mixed-cast flow formulation for the

joint content-resource allocation problem in SDvCDNs that integrates placement,

routing, and (virtual) resource allocation decisions in the form of a mixed integer

linear program (MILP). These three problems have been separately considered in

previous works:

1. Data placement problem (DPP). It is an NP-hard problem introduced in [3] that

consists in determining the placement of data objects in an arbitrary network with

capacity constrained caches, such that user requests are satisfied with minimum

total access cost. Each object request is assumed to be served by the closest replica

without considering routing optimization nor transport capacity constraints. A

number of approximation algorithms (e.g., [3, 4]) and greedy algorithms (e.g.,

[5–8]) have been proposed under several assumptions, such as uniform object

sizes, network symmetry, and/or hierarchical topologies.

2. Content distribution problem (CDP). It is a generalization of the DPP that inte-

grates placement and routing decisions in an arbitrary capacitated cache network.

The goal is to minimize both transport and storage costs while satisfying possible

delivery deadline constraints [9].

3. Virtual network embedding problem (VNE). It is an NP-Hard problem whose

goal is to optimize the allocation of resources from a substrate network to vir-
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tual network requests that specify a set of virtual nodes, virtual links, and traffic

demands [10]. As opposed to the CDP, VNE addresses the resource allocation

problem, but the placement of data sources is given as an input to the problem.

While in traditional CDNs, the allocation of dedicated physical appliances hap-

pens at a much longer time-scale than the actual placement and routing of content

objects, the increased elasticity of SDvCDNs offers overall efficiency improvements

by jointly optimizing content distribution and resource allocation [11–15] . In this

paper, we formally address the joint content and multi-resource allocation prob-

lem in SDvCDNs. Our solution jointly optimizes the placement and routing of con-

tent objects along with the allocation of storage, compute, and transport resources,

applies to arbitrary network topologies, and captures activation and operational costs,

popularity settings, unicast and multicast delivery, as well as capacity and latency

constraints. Our work extends the concepts and preliminary results presented by the

authors in [16].

The remainder of this paper is organized as follows: the problem setting and MILP

model are presented in Sect. 2; Sect. 3 describes numerical results on large-scale

network settings; finally, conclusions are given in Sect. 4.

2 System Model and Problem Formulation

We model a distributed cloud network as a directed graph G = (V ,E ) with |V |

nodes representing distributed cloud locations in which virtual caches can be instan-

tiated over general purpose servers, and |E | edges representing the logical (e.g., IP)

connectivity over which virtual links can be instantiated.

We formulate the joint content-resource allocation problem in SDvCDNs as a

mixed-cast flow network design problem with the following input parameters and

decision variables:

Input Parameters

∙ est
i , epr

i , and etr
ij : efficiency (in terms of costs) of the storage, compute, and transport

resources at node i ∈ V and link (i, j) ∈ E , respectively

∙ cst
i,k and ast

i,k: capacity and activation cost of k ∈ K st
i storage servers at node i ∈ V ,

where K st
i is the set of integers denoting the possible number of active storage

servers at node i ∈ V
∙ cpr

i,k and apr
i,k: capacity and activation cost of k ∈ K pr

i compute servers at node

i ∈ V , where K pr
i is the set of integers denoting the possible number of active

compute servers at node i ∈ V
∙ ctr

ij,k and atr
ij,k: capacity and activation cost of k ∈ K tr

ij IP links between nodes i and

j, where K tr
ij is the set of integers denoting the possible number of active IP links

between i and j
∙ 𝜆d,o: demand for content object o ∈ O at destination d ∈ V

∙ qd,o
i : binary parameter that takes value 1 if 𝜆d,o > 0 and i = d; 0 otherwise
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∙ Bo: size of content object o ∈ O
∙ Hd,o: maximum acceptable delay for the delivery of object o ∈ O to node d ∈ V

Decision Binary Variables

∙ User-object flows: f o
i indicates the maximum amount of object o at node i ∈ V ;

f d,o
i indicates the fraction of object o stored and processed at node i ∈ V for desti-

nation d ∈ V ; f d,o
ij the fraction of object o ∈ O carried by link (i, j) for destination

d ∈ V .

∙ Global flows: f st
i is the total amount of information stored at node i ∈ V , f pr

i is

the total amount of information processed at node i ∈ V ; f tr
ij is the total amount

of information carried by link (i, j).
∙ Resource activation variables: yst

i,k = 1 indicates the activation of k storage servers

at node i ∈ V , ypr
i,k = 1 the activation of k compute servers at node i ∈ V ; yij,k = 1

the activation of k IP links between nodes i and j.

The joint content-resource allocation problem is then formulated as follows:

minimize:

∑

i∈V

(

est
i f st

i +
∑

k∈Ki

ast
i,kyst

i,k

)

+
∑

i∈V

(

epr
i f pr

i +
∑

k∈Ki

apr
i,kypr

i,k

)

+

∑

(i,j)∈E

⎛
⎜
⎜
⎝

etr
ij f

tr
ij +

∑

k∈Kij

atr
ij,kytr

ij,k

⎞
⎟
⎟
⎠

(1)

s.t.

qd,o
i +

∑

j∈𝛿+(i)
f d,o
ij = f d,o

i +
∑

j∈𝛿−(i)
f d,o
ji ∀i ∈ V , d ∈ V , o ∈ O (2)

f d,o
i ≤ f o

i ∀i ∈ V , d ∈ V (3)

∑

o∈O
f o
i Bo = f st

i ∀i ∈ V (4)

∑

o∈O

∑

d∈V
f d,o
ij 𝜆d,oBo = f tr

ij ∀(i, j) ∈ E (5)

∑

o∈O

∑

d∈V
f d,o
i 𝜆d,oBo = f pr

i ∀i ∈ V (6)

f st
i ≤

∑

k∈Ki

cst
i,kyst

i,k ∀i ∈ V (7)

f pr
i ≤

∑

k∈Ki

cpr
i,kypr

i,k ∀i ∈ V (8)

f tr
ij ≤

∑

k∈Kij

ctr
ij,kytr

ij,k ∀(i, j) ∈ E (9)
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∑

k∈Ki

yst
i,k ≤ 1 ∀i ∈ V (10)

∑

k∈Ki

ypr
i,k ≤ 1 ∀i ∈ V (11)

∑

k∈Kij

ytr
ij,k ≤ 1 ∀(i, j) ∈ E (12)

∑

(i,j)∈E
f d,o
ij +

∑

i∈V
f d,o
i 𝛾

pr
≤ Hd,o ∀d ∈ V , o ∈ O (13)

yi,k, yij,k ∈ {0, 1} ∀i, (i, j), k (14)

f o
i , f

d,o
i , f d,o

ij ∈ {0, 1} or ∈ [0, 1] ∀i, (i, j), d, o (15)

The objective is to minimize the total network cost, taking into account the cost

of activating and operating the physical storage, compute, and transport resources

allocated to the SDvCDN, and it is computed as a function of the global flows and the

set of active resources, as described in (1). Constraints (2) impose flow conservation

at each node. The outgoing flow is composed of the transport flow leaving node i to

its outgoing neighbors, 𝛿
+(i), for demand (d, o), and the local demand qd,o

i , which

must be equal the the incoming flow, composed of the transport flow entering node

i from its incoming neighbors, 𝛿
+(i), for demand (d, o), and the storage flow at node

i for demand (d, o). Constraints (3) and (4) model the unicast or multicast nature

of storage and transport flows. Since a single stored object can be used to satisfy

multiple demands, storage flows are said to be multicast. Hence, user-object storage

flows for the same object, but for different destinations, are allowed to overlap. On

the other hand, since the use of multicasting cannot be exploited for today’s dominant

video on-demand services, we assume transport flows to be unicast. As such, user-

object transport flows cannot overlap and must be added across both objects and

destinations. Note that user-object transport flows must be sized by both the size

of the object, Bo, and the request rate for object o at destination d, 𝜆d,o. Finally,

constraints (6) compute the load on the processing resources that prepare the content

to be delivered. Content flows must be processed for each demand (d, o) and hence

are unicast flows, but they only get processed once for each (d, o) at the location

where the content is stored. Constraints (7), (8) and (9) are capacity constraints and,

constraints (10), (11) and (12) impose that only one capacity level can be activated.

Finally, constraints (13) impose a maximum delay for the delivery of each demand

(d, o). Note that the delay associated to the delivery of object o for destination d
is computed by adding the user-object flows for demand (d, o) over all links (for

transport delay) and nodes (for processing delay, 𝛾
pr

), which essentially computes

the number of (transport and processing) hops on the path used to deliver o to d. It

is important to note that constraint (13) requires the use of binary flow variables. In

fact, precisely computing end-to-end delay with fractional flow variables is a hard

open problem [17].
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We remark that, while the complexity of a MILP solution increases exponentially

with the number of integer (binary) variables, in our problem, this number can be

significantly reduced based on the following observations. Regarding the flow vari-

ables, as shown in [9], if maximum delay constraints are not required, binary flow

variables in mixed-cast flow problems can be relaxed to be fractional without violat-

ing feasibility if any of the following conditions are satisfied: (1) all flows are unicast

(e.g., unicast delivery with fixed stored content sources); (2) the network topology

is a tree; (3) the network can perform intra-session network coding (e.g., random

linear coding). With respect to the binary resource activation variables, they can be

completely eliminated in the case of: (1) linear costs, which is a common assump-

tion in existing content distribution studies, or, as used in lower-bounded facility

location problems [18], (2) when capturing resource consolidation savings by lower-

bounding the load on each resource. Note that this indicates the existence of regimes

of practical interest in which the joint content-resource allocation problem admits

solutions of reduced and even polynomial-time complexity.

3 Numerical Experiments

This section is devoted to the experimentation of the proposed MILP formulation

on a sample network. In order to precisely capture delay constraints and activation

costs, we consider the ILP that results from constraining both activation and flow

variables to be integer (binary).

3.1 Instance Description

We consider a representative US continental network, composed of core and metro

network segments. For the core network segment, we use the Abilene US continen-

tal core network [19], comprising 11 nodes and 28 directed links. We assume that

each core node has a hierarchical metro network attached to it. We consider a rep-

resentative metro network with 2 layers: the metro Point of Presence (PoP) layer,

with 3 PoP nodes, and the metro edge layer, with 5 edge nodes per PoP. The links

between core nodes and PoP nodes, and between PoP and edge nodes are directed in

the downstream direction. Since we focus on a content distribution application, we

ignore the upstream metro links. Hence, each metro comprises 18 directional links.

The network has then a total of 209 nodes and 226 directed links. Edge nodes aggre-

gate wireline or wireless access points and hence are the only nodes in our network

generating demand. We then have 165 destination nodes. We assume a future sce-

nario in which the cloud network operator will have DCs hosting cloud resources at

each of the 209 (core and metro) network nodes. In the following, we refer to this
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network as Real. Moreover, in order to show the advantage of creating additional

virtual links, we consider the networks resulting from the addition of the following

two sets of virtual links:

∙ Set 1: The set of directed links between each core node and every edge node in

their respective metros (165 directed links);

∙ Set 2: The set of directed links between any two nodes that are two hops away in

the Real core network (38 directed links).

The network resulting from the addition of Set 1 is referred to as Virtual1, while

the one resulting from the addition of both Set 1 and Set 2 is referred to as Virtual2.

The Virtual2 network with all the Set 2 virtual links and a subset of the Set 1 virtual

links for one of the metros is illustrated in Fig. 1 (virtual links are represented in light

grey, while black is used for the Real network).

In terms of storage, compute, and transport costs and capacities, we consider the

following values, derived from real undisclosed US operators’ annual capital and

operational expenses:

∙ Storage and processing efficiencies are assumed to be homogeneous across net-

work nodes: est
i = 1 ($/GB); epr

i = 100 ($/Gbps).

∙ Transport efficiencies are homogeneous across network segments: etr
ij = 300 +

10 lij∕lmax ($/Gbps) between core nodes, where lij is the length of link (i, j) and lmax
is the maximum link length; etr

ij = 200 ($/Gbps) between core and metro PoP; and

etr
ij = 100 ($/Gbps) between metro PoP and metro edge. We use etr

ij = 250 ($/Gbps)

for virtual links between a core and a metro edge node, and etr
ij = 400 ($/Gbps) for

virtual links between two core nodes.

∙ Storage and processing activation costs are homogeneous across network nodes,

with two capacity levels, one from 0 to 50% and another one from 50 to 100% of

Fig. 1 Illustration of the Virtual2 network topology
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the entire library size |O|Bo (for storage), and of the entire demand rate |D|𝛽 (for

processing): ast
i,1 = 1000 $ and ast

i,2 = 1500 $; apr
i,1 = 10000 $; apr

i,2 = 15000 $.

∙ Transport activation costs are homogeneous across network links with two capac-

ity levels, one from 0 to 50% and another one from 50 to 100% of the entire demand

rate |D|𝛽: atr
ij,1 = 500 $; atr

ij,2 = 1000 $.

Regarding the content to be delivered by the SDvCDN, we consider Netflix con-

tent as the most dominant VoD provider. In particular, we consider a total of 50, 000
movie titles of size 3 GB each. We assume movie titles are requested according to

a Zipf popularity distribution [20] with Zipf shape parameter equal to 0.8 [21]. We

classify the 50, 000 titles into |O| = 50 popularity classes. In order to achieve higher

granularity for the most popular titles, we set the size of the object popularity classes

containing the most popular titles to be the smallest. In particular, we set each popu-

larity class to account for the same aggregate demand, leading to very small groups

for the most popular titles and increasingly larger groups for the least popular titles.

This allows making finer decisions for the most popular objects that tend to get stored

in different levels of the network, while making joint decisions for large groups of

unpopular objects that typically end up getting stored together at the core network

level. In terms of demand rates, we consider the total metro video traffic, measured

in year 2014, and projected for years 2018 and 2022, from a major US network oper-

ator, and assume Netflix traffic accounts for 30% of total video traffic [22], leading

to the following demand rates per destination (metro edge node), 𝛽d = 𝛽,∀d: year

2014, 𝛽 = 72 Gbps; year 2018, 𝛽 = 157 Gbps; year 2022, 𝛽 = 313 Gbps.

Finally, regarding the maximum delay constraints, we assume homogeneous

delay constraints Hd,o = H,∀d, o, with H ranging from 1 to 3 hops depending on

the scenario under investigation. The processing delay is assumed to be equivalent

to one transport hop and hence 𝛾

pr = 1.

3.2 Results

In the following, we present the results obtained by solving the proposed ILP for-

mulation on different problem instances. The goal is to illustrate the effect of the

different features captured by our model, including the effect of resource activation

costs, delay constraints, and virtual connectivity. All instances were solved using the

optimization software CPLEX on an Intel(R) Core(TM) i7-4600M, CPU 2.90 GHz,

8,00 GB RAM. Remarkably, all instances are solved within 15 mins, and most of

them within 5 mins, confirming the suitability of our approach for the reconfigura-

tion of SDvCDNs in which significant traffic demand changes due to variations in

object popularity happen at the hours time-scale. We present results for 2014, 2018,

and 2022 VoD traffic on the following network settings:

∙ Real_nAC_nH: Real network with no activation costs, and no delay constraints;

∙ Real_AC_nH: Real network with activation costs, and no delay constraints;

∙ Real_AC_H=3: Real network with activation variables, and delay H = 3;
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∙ Real_AC_H=2: Real network with activation costs, and delay H = 2;

∙ Virtual2_AC_H=2: Virtual2 network with activation costs, and delay H = 2;

For each year and network instance, Table 1 reports: the number of active nodes

at each network level; the three efficiency cost components; the three activation cost

components; and the total cost. We make the following observations:

1. When no activation costs are taken into account, the optimal solution activates

all network nodes. While not shown in Table 1 due to space limitations, the solution

distributes the smaller-size object classes containing the most popular files at the

metro edge, and then progressively stores the larger object classes (containing lower

popularity files) at the metro PoP and core levels. In particular, for Real_nAC_nH
under 2022 traffic, objects [1–22] are stored at the 165 metro edge nodes, objects

[23–45] are stored at the 33 metro PoP nodes, and objects [46–50] are stored at the

11 core nodes.

2. The introduction of the resource activation costs that model the fact that operators

have to pay a fixed cost when reaching certain capacity levels, significantly affect the

structure of the optimal solution. Indeed, the results for Real_AC_nH show that no

metro edge nodes are activated. In this case, all objects are stored at either metro PoP

or core network levels. Note that since no maximum delay constraints are imposed,

the solution has the freedom to consolidate resources in order to save costs without

worrying about resulting delay penalties.

3. When imposing maximum delay constraints, the optimal solution is now pushed

towards higher levels of distribution, specially for some of the objects stored at the

core network level that may be violating the delay constraints. This effect is specially

visible in Real_AC_H=2, where all the objects are forced to be stored at the metro

PoP level.

4. When we take into account the ability to create virtual links, the model returns

solutions where the network can still achieve a good level of resource consolidation,

and hence costs savings, while still meeting the delay constraints. In fact, observ-

ing the solutions for Virtual2_AC_H=2, and comparing them with the solutions

for Real_AC_H=2, we can see how in Virtual2_AC_H=2 core network nodes can

become active again to consolidate a significant number of object classes, while still

meeting the delay constraint by delivering the requested objects via direct virtual

links between core and metro edge nodes.

Finally, note that all above observations hold for each traffic demand year. While

the trends are similar, observe that the total cost increases with the increase of total

traffic demand. In addition, while not shown in Table 1 due to space limitations, the

level of distribution also increases with the traffic demand, as higher traffic demands

translate into higher transport costs that push content closer to the edge.
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4 Conclusions

In this paper, we formulate the joint content-resource allocation problem in

SDvCDNs as a minimum cost mixed-cast flow problem that integrates placement,

routing, and (virtual) network design decisions in the form of a mixed integer linear

program (MILP). Our solution jointly optimizes the placement and routing of con-

tent objects along with the allocation of storage, compute, and transport resources, is

applicable to arbitrary network topologies, and captures activation and operational

costs, popularity settings, unicast and multicast delivery, as well as capacity and

latency constraints. We show results for a number of network settings based on the

Abilene US continental core network and representative US metro networks that

illustrate the advantage of optimizing the allocation of resources in a rich SDvCDN

environment. We show that the binary version of the problem can be efficiently

solved within minutes for the tested scenarios. Future research developments could

try to investigate further facility location concepts and ideas, already used in other

fields and consolidated in the location theory [23, 24], to integrate them, if possible,

in communication network context.
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Facility Location with Item Storage
and Delivery

Stefano Coniglio, Jörg Fliege and Ruth Walton

Abstract We discuss part of an ongoing research activity involving the University

of Southampton and the Royal British National Lifeboat Institution (RNLI), aimed

at improving the RNLI’s warehousing and logistics operations. In particular, we

consider a facility location problem to determine the optimal number and location of

warehouses and which items are to be stored in each of them, minimising the costs

of storage and transportation. We propose a mixed-integer non-linear programming

formulation for the problem, which we then linearise in two different ways and solve

to optimality with CPLEX. Computational results are reported and illustrated.

Keywords Facility location ⋅ Warehousing ⋅ Mixed-integer linear programming

1 Introduction

The paper describes a portion of an ongoing research activity carried out by the

authors at the University of Southampton in collaboration with the British Royal

National Lifeboat Institution (RNLI). The RNLI is the largest life-saving charity

active on the coasts of UK, Ireland, Channel Islands and Isle of Man. It currently

operates 237 lifeboat stations and more than 350 lifeboats, with an (almost entirely

volunteer) crew of 4600 people. They respond to emergency calls from around the

country, supporting Her Majesty’s Coastguard (the section of the maritime and

coastguard agency which coordinates maritime search and rescue operations) and

provide a 24 h search and rescue service to any people or vessels in distress.
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The research activity is part of a larger project encompassing an overall review

of the RNLI’s current warehousing and logistics operations. The RNLI currently

operates a single warehouse in the UK, the location of which is under review. Marine
items, encompassing anything related to the lifesaving operations of the RNLI around

the coast, such as parts required for boat maintenance, are currently delivered to the

warehouse from suppliers (external companies which are based in various locations

across the UK). From there, they are transported to lifeboat stations, area support

centres and divisional bases (to which we refer, collectively, as demand points) by

an in-house logistics network.

The aim of the paper is to develop optimization techniques to assess the quality of

the current warehousing operations at the RNLI and propose improving alternatives

by suggesting where to open new warehouses and what to store in them. The work

is based on R. Walton’s M.Sc. thesis [7].

The Problem

Given a demand cik for each marine item i ∈ I at each demand point k ∈ K, the road

distance djk between each potential warehouse (or facility) site j ∈ J and demand

point k ∈ K, as well as the road distance eij between the supplier of each item i ∈ I
and each potential facility site j ∈ J, we tackle the problem of deciding how many

facilities to open, where to locate them, and which items should be stored in each

location, so to meet the demand of marine items at minimum cost. The latter is com-

posed of two parts: that associated with the transportation of goods from suppliers to

warehouses and from warehouses to demand points, with a cost per unit distance of

transportation equal to 𝛼, and the overhead cost associated with warehouses, namely,

a fixed cost sj(p) for each warehouse j ∈ J, which is decreasing with p, the total

number of warehouses, and the annual cost ti for storing any item requiring special-

ist storage, such as hazardous materials. We categorise the items in I as common
(set IC) and non-common (set IN), where common items, due to having regular and

geographically evenly distributed demand, are stored at all warehouses.

In the problem, each item can be assigned to one or more warehouses, and each

demand point is assigned a warehouse from which each individual item is deliv-

ered. See Fig. 1 for an illustration. The problem is similar to the multi-activity facility
location problem proposed in [1], where the decision is not just about where the new

facilities should be sited, but also about which items (or activities, as they are called

in [1]) must be stored (or included) at each facility, so to satisfy the corresponding

demand. For more references on facility location problems, we refer the reader to the

monography [3].

An additional aspect of the problem we tackle in this paper that takes it away

from classical facility location problems is the presence of variable costs sj(p), cor-

responding to the annual cost of warehousing at site j ∈ J, which depends on the total

number of warehouses, p. This is rationalised by the fact that the overhead costs of

running one warehouse do not necessarily scale linearly as the number of open ware-

houses increases. As discussed in the next section, this aspect introduces an element

of non-linearity into the problem.
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Fig. 1 Illustration of an instance with two non-common items i1, i2, with facilities to be sited on

a grid. Item labels by suppliers, facilities and demand points represent, respectively, items that are

offered, stored and required by each of them

Working on the assumption that any new warehouse will not be required to store

more items than what is kept in the single warehouse that is currently operated by

the RNLI, we assume that storage of an appropriate size is always available for the

items assigned to any given location where a warehouse is sited. For this reasons, we

do not introduce any warehouse capacity in the problem. It follows that each demand

point will be assigned to receive an item from the closest storage location in which

that item is stored, as there is no limit on the number of demand points that can be

assigned to an individual facility.

Contributions

We tackle the problem with Mixed-Integer Linear Programming (MILP)

techniques, proposing in Sect. 1 a non-linear formulation which we then linearise

in two different ways. We discuss the implementation and results of the formulation

to the RNLI case in Sect. 3. Concluding remarks and recommendations for further

work are presented in Sect. 4.

2 Mathematical Programming Formulations

We start with a mixed-integer non-linear programming formulation for the problem

described in the previous section, then followed, after a note on the hardness of the

problem, by two alternative linearised formulations. In the first one, the number of

warehouses p is treated as a (general integer) variable. In the second one, we fix p
as a constant—by solving the problem multiple times, for different values of p, an

optimal solution to the original problem is obtained.

Integer Non-linear Programming Formulation

Let the integer variable p be the number of facilities in the solution, xj = 1 if

a facility is located at site j (and 0 otherwise), yij = 1 if item i ∈ I is stored at

location j ∈ J (and 0 otherwise), zijk = 1 if item i ∈ I stored at the facility sited at

location j ∈ J is supplied to demand point k ∈ K (and 0 otherwise).
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With the definition of 𝛼, cik, eij, djk, sj(p) and ti as in the previous section, an integer

non-linear programming formulation for the problem is:

min 𝛼

(∑
i∈I

∑
j∈J

eijyij +
∑
i∈I

∑
j∈J

∑
k∈K

cikdjkzijk

)
+
∑
j∈J

sj(p)xj +
∑
i∈I

∑
j∈J

tiyij (1a)

s.t. xj = yij ∀i ∈ IC, j ∈ J (1b)

xj ≥ yij ∀i ∈ IN , j ∈ J (1c)

yij ≥ zijk ∀i ∈ I, j ∈ J, k ∈ K (1d)∑
j∈J

yij ≥ 1 ∀i ∈ N (1e)

∑
j∈J

zijk = 1 ∀i ∈ I, k ∈ K (1f)

∑
j∈J

xj = p (1g)

zijk = zi′jk ∀i, i′ ∈ IC, i ≠ i′, j ∈ J, k ∈ K (1h)

xj, yij, zijk ∈ {0, 1} ∀i ∈ I, j ∈ J, k ∈ K (1i)

p ∈ ℤ+
. (1j)

Constraints (1b) and (1c) ensure that, for every assignment of an item i ∈ I to a loca-

tion j ∈ J, a facility is sited at that location. Constraints (1b) impose that common

items be stored at every location. Constraints (1c) guarantee that, if an item i ∈ I
is stored at a location j ∈ J, a facility must be open at that location. Similarly, Con-

straints (1d) ensure that an item i ∈ I is supplied to demand point k ∈ K from facility

site j if and only if the facility at site j stores that particular item. Constraints (1e)

ensure that all non-common items i ∈ N are stored in at least one location j ∈ J. This

is not required for common items, as the corresponding constraint is superseded by

Constraint (1b). Constraints (1f) guarantee that each demand point k ∈ K receives

each inventory item from exactly one location j ∈ J. Constraint (1g) ensures that

exactly p facilities are open, while Constraints (1h) impose that each demand point

receives all common inventory items from the same facility. The nature of the deci-

sion variables is specified by Constraints (1i) and (1j).

Note the presence of the term sj(p)xj, which is non-linear due to xj being a variable

and sj(p) depending on the variable p.

Hardness

We note that the hardness of this problem formalised in (1) is easily established, as it

admits the classical Uncapacitated Facility Location Problem (UFLP), which is NP-

hard in the strong sense [4], as a special case. By setting I to contain just one common

item, the variables yij become obsolete, and setting eij, ti = 0 for all i ∈ I, j ∈ J and

assuming sj(p) is a constant, we see that the resulting problem is the UFLP, and as

such the problem underlying Formulation (1) is also strongly NP-hard.
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MILP Formulation with p as a Variable

Aiming towards a MILP formulation, we eliminate the non-linearity in the objective

function as follows. For all q ∈ {1,… , |J|}, let the binary variable 𝜇q be equal to 1 if

and only if p = q. This can be imposed by introducing the constraints
∑|J|

q=1 q𝜇q = p
and

∑|J|
q=1 𝜇q = 1. This way, we can restate the term sj(p) as

∑|J|
q=1 sj(q)𝜇q, where sj(q)

is a constant, and the term sj(p)xj as
∑|J|

q=1 sj(q)𝜇qxj, thus shifting the non-linearity

to 𝜇qxj. Now let the continuous variable 𝜆jq be equal to 𝜇qxj. Since both 𝜇q and xj
are binary, we can guarantee 𝜆jq = 𝜇qxj via the following four McCormick envelope

constraints [2]:

𝜆jq ≤ 𝜇q ∀j, q ∈ J (2)

𝜆jq ≤ xj ∀j, q ∈ J (3)

𝜆jq ≥ 𝜇q + xj − 1 ∀j, q ∈ J (4)

𝜆jq ≥ 0 ∀j, q ∈ J. (5)

With those, and the introduction of𝜇q ∈ {0, 1} for all q ∈ {1,… , |J|}, we can restate

the original non-linear term
∑

j∈J sj(p)xj in the objective function as
∑

j∈J
∑|J|

q=1
sj(q)𝜆jq.

MILP Formulation with p as a Parameter

An alternative way to circumvent the non-linearity in Formulation (1) is to assume

that the number of open warehouses p is fixed to a given constant. An optimal solu-

tion to the unrestricted problem is then obtained by solving the formulation with a

fixed p for each value p can take, i.e., up to |J| times.

As better discussed in the next section, there is benefit in being able to compare

the solutions that are obtained for different values of p, as this provides the decision

maker with a set of solutions which can be evaluated and compared according to

other factors and metrics not accounted for in the original formulation.

3 Computational Results

The results that we present in this section have been obtained from an altered version

of the original data set provided by the RNLI to prevent sensitive information from

being disclosed. The alteration is done in such a way that the final instances are still

sufficiently close to the original to allow for computational comparisons, whereas

the solutions achieved are not comparable to ensure confidentiality of the results.

The original RNLI instances considered in the project include |I| = 24 items,|K| = 233 demand points and |J| = 91 candidate warehouse sites. The latter are

obtained by discretising the UK map on a grid with a granularity of 50 km
2
; this
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approach enables us to consider the whole country with a tractable set of poten-

tial facility sites, while retaining a sufficiently good geographical precision. To help

ensure computational feasibility, the number of items considered is less than the

total number of those stored by the RNLI, as including all of them would dramati-

cally increase the problem size. The items that we consider in the experiments are

those which an analysis of demand identified as the most representative ones.

Road distances eij and djk between facility sites, suppliers, and demand points are

obtained via Open Source Routing Machine [6], a C++ routing API for use with

road networks, based on Open Street Maps [5].

We assume the annual cost per warehouse sj(p) to be the same for all j ∈ J—the

generalisation to the case where this function varies with j is straightforward. Unlike

the warehouse costs, we also consider specialist storage costs ti which vary not based

on the facility location, but on the nature of the item i ∈ I being stored. The value of

𝛼 is chosen based on vehicle running costs and fuel cost.

We generate a set of partially randomised instances to provide comparisons with

that with RNLI data in terms of computation times. They are generated by randomis-

ing the item demands cik, as these are the values which are most likely to change

when adopting the methods that we propose in future instances of the problem, thus

representing a viable method for testing the robustness of the formulation. The val-

ues of cik are sampled from an exponential distribution fitted to the data provided

by the RNLI. We consider instances with increasing |I| (up to |I| = 48). In addition,

we test on instances in which the density of the matrix C = {cik}i∈I,k∈K is increased

from 60% (equal to the density in the original RNLI instance) to 100%, to provide

further comparisons.

We solve the problem to optimality with CPLEX 12.5, using the two linearised

formulations we have introduced (the one with variable p, and the one with a fixed

p, whose value is set iteratively from 1 to 20). LP relaxations are solved with the

barrier method after disabling cutting plane generation. The experiments are run

on a single node of the University of Southampton’s high performance computing

cluster IRIDIS (equipped with 16 dual 2.6 GHz Intel Sandybridge processors with

64 GB of RAM), using 6 processors. For comparative purposes, we also solved the

MINLP and the MILP formulation with p as a variable using SCIP 4.0.0. For the

only (very small, with |I| = |J| = |K| = 10) instance we managed to solve with both

formulations, the MINLP one was found to be 7.3 times slower than the linearised

alternative. For all the larger instances we tested, SCIP terminated due to exceeding

the 16GB RAM limit with a substantially large optimality gap, whereas the linearised

formulation was solved to optimality in a matter of minutes.

The results are summarised in Table 1. For larger densities, we register an increase

in computation time when employing the formulation with a variable p, whereas no

significant changes occur when adopting the formulation with p as a fixed parameter.

Although both formulations are sensitive to increases in |I|, with computing times

more than doubling from |I| = 24 to |I| = 48, the formulation with p as a parameter

appears less sensitive to the size of |I|. In both cases, optimal solutions can still be

computed in a reasonable amount of time. We note that with p = 1 CPLEX solves
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Table 1 Computation times with the two MILP formulations, for instances of different size and

density

Variable p Fixed p
p = 1 p = 2 p = 3 p = 4

|I| Rndm cik Dens cik(%) p Time Time Time Time Time

24 No 60 13 1379.0 163.6 61.2 76.9 77.3

24 Yes 60 10 1306.5 161.7 53.7 60.6 58.9

24 Yes 100 15 2713.2 164.5 55.8 60.6 58.0

36 Yes 60 12 3099.7 353.8 85.9 94.5 90.2

48 Yes 60 12 7433.0 631.5 118.2 136.4 126.8

all the instances entirely in presolve, differently from the cases with p > 1 where

branch-and-bound is applied after a much shorter presolve phase.

The results of the instance with non-randomised values of cik are reported in the

first row of the table. For that instance, p = 13 is the value which produces the best

result. Only the first four results are shown for the formulation with p as a parameter,

as the computation times remain almost identical for subsequent iterations up to

p = 20. The objective function values obtained on the same instance with the iterated

formulation for increasing values of p ∈ {1, 20} are illustrated in the Fig. 2:

Although a minimum occurs at p = 13, the objective function curve is reasonably

flat around that value, with a steep derivative only for small values of p—we observe

a reduction of 18.2% in the objective function value from p = 1 to p = 5, and of

3.1% from p = 5 to p = 13. The total reduction from p = 1 to p = 13 is 20.7%. By

looking at the results in more detail, we see that this reduction in cost comes solely

from transportation costs. The total cost of warehousing increases with p due to

the additional fixed charge cost with each new warehouse, however the savings in

transportation costs overcome the larger warehousing expenses. Indeed, we observe

a 65.4% reduction in the total travel distance from p = 1 to p = 13.

Fig. 2 Objective function

values as a function of

p ∈ {1, 20} on the instance
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Note that all the formulations we proposed assume items are all delivered sepa-

rately, i.e., we consider an individual delivery, per item, from supplier to warehouse

nd from warehouse to demand point. Since, in reality, the RNLI operates a number of

deliveries, each covering more than a single demand point, one should also consider

this vehicle routing aspect when solving the problem. Since individual deliveries,

to which solutions to our formulations are restricted, are clearly a feasible vehicle

routing option (although possibly suboptimal), our results provide conservative esti-

mates (i.e., upper bounds) for the generalised problem encompassing vehicle rout-

ing aspects. It follows that an overall reduction in the distance travelled using our

approach gives a strong indication of a potential for savings when optimal routing

has been included.

4 Conclusions

We have considered a facility location problem arising in the context of warehouse

optimisation within a joint research project involving the University of Southampton

and the British Royal National Lifeboat Institution (RNLI). We have proposed two

MILP formulations of the problem which allow for variable costs, depending on the

number of facilities that have been sited and removing the assumption of identical

facilities which is common in facility location problems. We have solved the prob-

lem to optimality using both methods, identifying potential savings in transportation

costs with the introduction of additional warehouses.

In order to give a more in-depth analysis of potential savings, future work includes

the development of solution methods for a joint facility location-vehicle routing

problem, where the routing aspect of delivering items from and to any new ware-

house site is directly considered.
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A Shared Memory Parallel Heuristic
Algorithm for the Large-Scale p-Median
Problem

Igor Vasilyev and Anton Ushakov

Abstract We develop a modified hybrid sequential Lagrangean heuristic for the p-

median problem and its shared memory parallel implementation using the OpenMP

interface. The algorithm is based on finding the sequences of lower and upper bounds

for the optimal value by use of a Lagrangean relaxation method with a subgradi-

ent column generation and a core selection approach in combination with a simu-

lated annealing. The parallel algorithm is implemented using the shared memory

(OpenMP) technology. The algorithm is then tested and compared with the most

effective modern methods on a set of test instances taken from the literature.

Keywords p-median problem ⋅ Parallel computing ⋅ OpenMP

1 Introduction and Problem Statement

In this short paper we address a famous discrete facility location problem has been

in focus of many researchers for more than 50 years. Given a set I = {1,… ,m} of

potential sites for locating p ≤ m facilities, a set J = {1,… , n} of customers to be

served from open facilities, and dij defining the distances (transportation costs) of

serving customer j ∈ J from the facility i ∈ I. The p-median problem consists in

locating p facilities such that the overall sum of distances from each customer to

its closest facility is minimized. Originally, the p-median problem, first introduced

in [9], is to find p vertices of a weighted graph G(I,A) such that the sum of weighted

distances between the nodes and their closest medians is minimal. In this paper

we suppose that G(I,A) is a simple weighted oriented graph with node set |I| = m,

the arc set A = {(i, j) ∶ i, j ∈ I; i ≠ j}, and the weights dij > 0 attached to each arc
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(i, j) ∈ A. To formulate the problem as an integer program, we introduce the standard

sets of boolean decision variables yi, i ∈ I, and xij, (i, j) ∈ A. A variable yi indicates

whether the node i ∈ I is chosen to be a median, while a variable xij takes the value

1 if the node i is a median and j is assigned to it. Thus, the p-median problem can be

written as follows [3]:

min
(x,y)

∑

(i,j)∈A
dijxij, (1)

∑

i∈𝛿−(j)
xij + yj = 1, j ∈ I, (2)

xij ⩽ yi, i ∈ I, j ∈ 𝛿

+(i), (3)

∑

i∈I
yi = p, (4)

yi, xij ∈ {0, 1}, i ∈ I, (i, j) ∈ A. (5)

The objective function (1) is to minimize the overall sum of arc weights between

nodes and their closest medians. The constraints (2) ensure that either a node j is

a median or it is assigned to a median. Constraints (3) impose that each node can

only be assigned to medians. The constraint (4) enforces that the number of medians

must be p. Let us also introduce the sets 𝛿

−(j) = {i ∈ V| ij ∈ A} and 𝛿

+(i) = {j ∈
V| ij ∈ A}.

Note that the p-median problem is proved to be NP-hard on general networks for

an arbitrary value of p [16]. Through the years the p-median problem has received

considerable attention and various both exact and heuristic solution methods have

been proposed (for a survey see [5, 18, 20]). The problem has also become popular

due to its broad applicability. Maybe one of the most important application of the

p-median problem is clustering [12].

Though the p-median problem is often able to provide competitive and high

quality solutions to the cluster analysis problem [22, 23], they do not often apply

it to large scale datasets due to the absence of effective methods of solving such

large p-median problem instances. The most advanced state-of-the-art approaches

are able to find exact or good suboptimal solutions to problems on graph with sev-

eral tens of thousands nodes. Among them are the primal-dual variable neighbor-

hood search [11], branch-and-bound and column generation [6], multistage hybrid

algorithm using demand points aggregation and variable neighborhood search [14], a

Lagrangean heuristic combined with a data aggregation approach and core

heuristic [2]. By now computational results for problem instances with up to 89600
nodes are reported.

There are also parallel algorithms for the p-median problem including parallel

variable neighborhood search [4, 7], a parallel scatter search [8], GPU-based parallel

vertex substitution algorithm [17], a parallel cooperative hybridization approach, and

a parallelized Lagrangean relaxation-based approach for the discrete ordered median

problem [19]. Note that most of the listed approaches are parallelized multi-start

techniques. Moreover, there are no any reported computational results for large-scale
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problem instances confirming their effectiveness. A distributed parallel algorithm

for finding lower bounds for the optimal values of large-scale p-median problem

instances was developed in [10].

In this paper we develop an improved modification of the sequential approach

proposed in [2] for the p-median problem and its shared memory parallel implemen-

tation using the OpenMP interface. The algorithm is based on finding the sequences

of lower and upper bounds for the optimal value by use of a Lagrangean relaxation

method with a subgradient column generation and a core selection approach in com-

bination with a simulated annealing. The parallel algorithm is implemented using

the shared memory (OpenMP) technology. The algorithm is then tested and com-

pared with the most effective modern methods on a set of test instances taken from

the literature.

2 Sequential Lagrangian Core Heuristic

First of all, let us consider the Lagrangian core heuristic, described in details in [2].

In this short paper we only focus on the main idea of the proposed approach and new

features which allows us to improve its efficiency.

First, the Lagrangian dual function is build by relaxing the assignment con-

straints (2):

(𝜆) = min
(x,y)

{
∑

ij∈A
dijxij −

∑

j∈I
𝜆j

(
∑

i∈𝛿−(j)
xij + yj − 1

)

∶ subject to (3)–(5)

}

,

where 𝜆 =
(
𝜆1,… , 𝜆n

)
are corresponding Lagrange multipliers. Recall that for any

set of 𝜆 the Lagrangean dual function provides a lower bound for the objective value.

Let 𝜇ij(𝜆) = dij − 𝜆j and 𝜌i(𝜆) =
∑

j∈𝛿+(i)
𝜇ij(𝜆)− − 𝜆i be the reduced cost of the vari-

ables xij and yj respectively. Let 𝜌i(𝜆) be ordered increasingly, i.e. we are given with

permutation i1,… , in such that 𝜌i1 (𝜆) ≤ · · · ≤ 𝜌in(𝜆).
Thus, the value of the Lagrangean dual function is obtained by summing-up the

best (i.e. smallest) reduced costs of the variables y plus the sum of all the multipliers

𝜆, i.e.

(𝜆) =
p∑

k=1
𝜌ik (𝜆) +

∑

i∈I
𝜆i,

To find the best lower (dual) bound, we form the following dual problem max
𝜆

(𝜆),
which is solved with a subgradient algorithm.

Since the efficient computing of (𝜆) and its subgradient requires keeping in

RAM the whole ordered distance matrix, we use the approach combining a sub-

gradient algorithm with a delayed column generation and the stabilization technique

preventing the oscillation of Lagrange multipliers [11].
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To find an upper bound for the optimal value, we apply the well-known core

selection approach. Its idea consists in selecting a subset (core set) of “promising”

variables and then solving the reduced original problem (1)–(5) over it. Let ̄
𝜆 be

the Lagrange multipliers returned by the subgradient column generation. To deter-

mine the core set and formulate the corresponding core problem, we select only the

variables whose reduced costs are smaller than given thresholds 𝛼 and 𝛽, i.e. those

variables yi and xij satisfying

i ∈ I( ̄𝜆, 𝛼) ≜ {i ∈ I ∶ 𝜌i( ̄𝜆) ≤ 𝛼},
(i, j) ∈ W( ̄𝜆, 𝛽) ≜ {(i, j) ∶ i ∈ I( ̄𝜆), j ∈ 𝛿

+(i), 𝜇ij ≤ 𝛽}.

In contrast to [2], we developed a parallel implementation of a classical simulated

annealing to solve the core problem rather than using a commercial solver. Note that

our computational experiments have shown that this approach turns out to be more

effective and efficient than solving the core problem with IBM ILOG CPLEX 12.6.3.

We adapted a simple cooling rule T(t + 1) = qT(t), where q = (t0∕tmin)1∕(Mout−1),

Mout—a fixed number of temperature reductions, t0 and tmin are initial and final tem-

perature respectively.

3 OpenMP Implementation Issues

OpenMP interface allows us simply dividing the computation between parallel

threads using the shared memory. At the first glance, almost all cycles of our algo-

rithm can be easily parallelized, but some issues to prevent a so-called data race have

to be carefully addressed.

Analysing and profiling our code of subrgadient optimization and simulating

annealing algorithms, we identified the most time consuming parts and bottlenecks

which are worth paying close attention:

1. Distance matrix. Each column of the distance matrix can be computed and sorted

in parallel independently.

2. Objective function. The objective function can be computed by running through

the sorted columns of the distance matrix from the smallest element to the first

median. It can also be done in parallel. For heuristic algorithms, which use a

median swapping, several fast computational scheme have been proposed [21,

24]. But it has been our experience that such procedures embedded into our

approach are inefficient or even inapplicable in case of large-scale instances, since

they require additional amount of RAM for storing auxiliary data.

3. Dual function. To compute the value of the dual function, the reduced costs 𝜌(𝜆)
of y variables have to be computed and then p of them with the smallest values

have to be taken and summed. To compute 𝜌i(𝜆), the columns of distance matrix

are scanned in parallel. But to avoid a data race, each parallel thread has to keep

its own private variables which have then to be summed up. To find p smallest
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reduce cost values of variables y, we apply the quickselect algorithm [13]. Note

that its sequential nature interfered with any our attempts to take advantage of its

parallelization, therefore this part of the parallel algorithm remains completely

serial.

4. Subgradient. Each element of subgradient is computed by scanning the corre-

sponding column of the distance matrix, so there is no any problem for paral-

lelization.

We can conclude that our approach is well adapted for parallelization, but the

procedure of computing the value of the Lagrangean dual function reduces the par-

allel efficiency. This effect will be clearly seen in the results of the computational

experiment in the next section.

4 Computational Results

In this section we report our preliminary computational results on a subset of large-

scale test instances which has previously been used in [2, 11, 14, 15]. The experi-

ments are carried out on the HPC-cluster “Academician V. M. Matrosov” [1]. Our

test bed consists of large-scale clustering problems (from 25000 up to 89600 nodes)

taken from the literature (e.g. see [11]).

For our parallel subgradient column generation procedure we set the same value

of the parameters as in [2]. The parameters 𝛼 and 𝛽 defining the size of the core

problem were set so that |I( ̄𝜆, 𝛼)| = 10p and |W( ̄𝜆, 𝛽)| = 20m.

We tested the algorithm using one AMD Opteron 6276 2.3 GHz “Interlagos”

processor with 16 cores and 64 GB of RAM available. The quality of the obtained

solutions is reported in Table 1, where Name is the instance with corresponding m
and p, BUB is the best known upper bound obtained by the approach from [14,

15], DIV is the relative difference between the upper bound (UB) corresponding to

the found solution and BUB (DIV = UB−BUB
BUB

⋅ 100%), GAP is the relative difference

between the upper (UB) and lower (LB) bounds found, i.e. (GAP = UB−LB
BUB

⋅ 100%).

Note that for the two largest instances ds1n11 and ds1n12 with relatively small num-

ber of medians p, we set |I( ̄𝜆, 𝛼)| = 15p and |W( ̄𝜆, 𝛽)| = 30m.

One can observe that the differences between the solutions found with our par-

allel heuristic algorithm and the best know solutions [14] are negligible. Moreover,

it should be pointed out that our parallel approach has an important advantage over

methaheuristics like one from [14]: It provides both lower and upper bounds for the

optimal value, permitting to estimate the quality of found solutions. In our experi-

ments one can see that the solutions are very close to be optimal.

The parallel simulated annealing allowed us to partially overcome the main draw-

back of core selection approach in case of small number of medians. In [2] the authors

managed the size of core problem such that it can be solved by a commercial solver.

On the other hand, our computational experiments demonstrated that the core prob-
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Table 1 Quality of solutions

Name m p BUB DIV (%) GAP (%)

ds1n01 25000 25 31229.3 0.000 0.001

ds1n02 36000 36 45115.6 0.000 0.001

ds1n03 49000 49 61384.1 0.001 0.003

ds1n04 64000 64 80053.7 0.001 0.003

ds1n05 30000 25 37563.6 0.000 0.002

ds1n06 43200 36 54191.4 0.000 0.002

ds1n07 58800 49 73626.8 0.000 0.002

ds1n08 76800 64 96039.0 0.001 0.003

ds1n09 35000 25 43902.1 0.000 0.002

ds1n10 50400 36 63169.2 0.000 0.002

ds1n11 68600 49 85833.5 0.001 0.002

ds1n12 89600 64 112059.2 0.008 0.009

Table 2 Computational time

Name Time (s) Speed-up

IS 1 2 4 8 16 2 4 8 16

ds1n01 240 556 295 161 96 78 1.9 3.5 5.8 7.1

ds1n02 569 1090 549 299 182 137 2.0 3.6 6.0 7.9

ds1n03 934 1835 934 503 310 225 2.0 3.6 5.9 8.2

ds1n04 1694 2810 1404 762 462 343 2.0 3.7 6.1 8.2

ds1n05 340 780 407 229 137 106 1.9 3.4 5.7 7.3

ds1n06 662 1573 786 431 260 196 2.0 3.7 6.0 8.0

ds1n07 1209 2660 1348 696 425 306 2.0 3.8 6.3 8.7

ds1n08 2305 4099 2092 1079 607 423 2.0 3.8 6.8 9.7

ds1n09 539 1066 546 299 176 132 2.0 3.6 6.0 8.1

ds1n10 984 2267 1111 595 356 249 2.0 3.8 6.4 9.1

ds1n11 1754 3702 2056 974 552 398 1.8 3.8 6.7 9.3

ds1n12 3158 5606 2840 1514 829 590 2.0 3.7 6.8 9.5

lem can be increased and successfully solved with the parallel simulated annealing,

providing in some cases better upper bounds.

Table 2 illustrates the computational time (in seconds). IS is the running time of

Irawan and Salhi’s approach from [14, 15], while the next columns represent the

running time and parallel speed-up of our approach with respect to the number of

computational cores. The speed-up is computed by Speed-upi =
T1
Ti

, where Ti is the

computational time on i parallel processes. The time IS is taken from [15] and nor-
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malized with respect to one core of our processor using common benchmarks.
1

Such

a comparison is certainly not totally fair, but the code of the approach from [15] is

not available.

Analysing the presented results we can come to the following conclusions. It is

immediately seen that our approach has only one drawback with respect to computa-

tional time. But this weakness is overcome by the parallel implementation. Actually,

Irawan and Salhi’s approach is quite fast, but can be excelled by ours even on two

computational cores, while the computational time is significantly reduced up to 16

cores. Moreover, our parallel approach is more general and can be adapted for the dif-

ferent types of data and similarity metrics [23], while Irawan and Salhi’s approach,

on our opinion, is focused only on well studied two dimensional data on a plane.

Observe that the main advantage of our parallel approach, which might be more

important than the computational time, is that it finds solutions with tight lower

bounds. It allows us to make conclusion on the quality of obtained solutions without

prior information (e.g. best known solutions), which is a very valuable feature for

practitioners.

We think that highly competitive computational results can be achieved on

instances of other types containing several hundreds of thousands nodes without

a lot of effort. For larger instances (with several millions nodes) shared memory par-

allel implementation does not seem to be effective, since its scalability is limited to

the number of cores in one processor. Actually, the use of more than 16 cores did

not improve the running time even though the processors are on the same board.

We assume that the right direction of improving parallel efficiency is to couple the

shared memory with the message passing technology. We believe that it allows us to

deal with much larger instances on modern high performance computing clusters.
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Robust Plasma Vertical Stabilization
in Tokamak Devices via Multi-objective
Optimization

Gianmaria De Tommasi, Adriano Mele and Alfredo Pironti

Abstract In this paper we present a robust design procedure for plasma vertical

stabilization systems in tokamak fusion devices. The proposed approach is based on

the solution of a multi-objective optimization problem, whose solution is aimed at

obtaining the desired stability margins under different plasma operative scenarios.

The effectiveness of the proposed approach is shown by applying it to the ITER-like
vertical stabilization system recently tested on the EAST tokamak.

Keywords Control theory ⋅ Robust control ⋅Multi-objective optimization

Control in nuclear fusion devices

1 Introduction

Tokamaks [20] are experimental reactors aimed at proving the feasibility of energy

production by means of fusion reaction.
1

In a tokamak, a plasma (a practically fully

ionized gas) of hydrogen ions, is confined by magnetic fields and heated to tem-

peratures of the order of several keV (i.e. tens to hundreds millions of degrees). At

such high temperatures, collisions between ions can overcome the Coulomb repul-

sive forces, resulting in fusion reactions. The construction of a tokamak involves the

1
The tokamak concept was first developed in the former Soviet Union in the early 1960s. Indeed,

the name tokamak stems from the Russian words for toroidal chamber and magnetic coil, which

is toroidalnaya kamera i magnitnaya katiushka.
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Fig. 1 Simplified scheme of a tokamak

wrapping a set of toroidal coils around the vacuum vessel to produce a toroidal mag-

netic field. An additional external poloidal field is needed in order to induce current

into the plasma itself, and to change its shape and position. Combining the various

components, the net magnetic field lines wind helically around the torus, as shown

in the simplified schematic reported in Fig. 1.

Control of the external magnetic field in a tokamak is necessary for a number of

reasons; for a complete overview of magnetic control in tokamak devices, the reader

is referred to the monograph [5]. Among the various magnetic control systems, the

Vertical Stabilization (VS) system is essential to operate tokamaks with elongated

and hence vertical unstable plasmas (see [10, Sect. III.A]).

Control algorithms with a simple structure are usually preferred on existing

machines when tackling the vertical stabilization problem; indeed a simple structure

enables the deployment of effective adaptive algorithms, aimed at robust operations

under various scenarios [16, 19]. However, such adaptive algorithms are not always

straightforward to be determined; moreover their tuning may require a considerable

effort in terms of time, as well as a considerable experience on the specific machine.

Motivated by this fact, an alternative approach for robust vertical stabilization

based on multi-objective optimization is presented in this paper. Rather than exploit-

ing online algorithms to adapt the controller gains, robustness is achieved by
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solving an offline multi-objective optimization problem. As a case study, the pro-

posed approach is applied to the design of the VS system for the EAST tokamak [21].

The paper is structured as follows: the next section briefly introduces the plasma

vertical stabilization problem and the VS control algorithm for EAST originally pro-

posed in [1]. Section 3 presents the main contribution of the paper, i.e. the multi-

objective optimization problem exploited to design robust VS system. The effective-

ness of the proposed design procedure is illustrated in Sect. 4, by applying it to the

design of the EAST VS system. Eventually some conclusive remarks are given.

2 Plasma Vertical Stabilization

In this section, the plasma vertical stabilization problem is briefly introduced. Then

the VS control algorithm considered in Sects. 3 and 4 is presented.

High performance in tokamaks is achieved by plasmas with elongated poloidal

cross-section and magnetic X–points, as for the double null plasma shown in Fig. 2

(see also [6, Tutorial 7]). Besides the benefit in terms of fusion performance, the main

drawback of such elongated plasmas is that they are vertically unstable (a simplified

explanation for plasma vertical instability can be found in [10, Sect. III.A]). It follows

that an active stabilization control system is necessary to operate modern tokamaks.

In the current generation of tokamaks with external superconductive coils, an

additional pair of in-vessel copper coils are connected in anti-series, in order to

form a circuit fed by a single power supply. This circuit generates the required

radial magnetic field, on a time scale which is effective to vertically stabilize the

Fig. 2 EAST pulse #46530

at t ≅ 5.7 s. Elongated cross

section of a double null

plasma
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plasma. Therefore, such in-vessel circuit is usually used as actuator by the VS sys-

tem (among the various tokamak that include the in-vessel coils circuit, there are

ITER [3], EAST [21], KSTAR [15] and JT-60SA [8]).

The control algorithms typically adopted for vertical stabilization in existing toka-

maks are characterized by a simple structure, which permits to envisage effective

online adaptive strategies. The same simple structure can be exploited by the offline

approach based on multi-objective optimization proposed in this paper.

In the next sections, we will consider the following VS control algorithm, which

was originally proposed for the ITER tokamak in [3], and successfully tested at the

EAST tokamak [2]. In particular, the voltage request to the power supply of the in-

vessel circuit VIC is computed as a linear combination of the plasma vertical speed vc
and of the current flowing in the in-vessel circuit itself; that is the transfer func-

tion [12] of the VS control algorithm is

VIC(s) =
1 + s𝜏1
1 + s𝜏2

⋅
(
Kv ⋅ ̄Ipref ⋅ Vc(s) + KIC ⋅ IIC(s)

)
, (1)

where IIC(s) is the Laplace transform of the current in the in-vessel coil, while ̄Ipref is

the nominal value for the plasma current at each time instant. Moreover, the follow-

ing parameters of the control algorithm need to be specified: Kv, which is the speed
gain2

; KIC, which is the current gain; 𝜏1 and 𝜏2, which are the time constants of

the lead compensator [12]. In the next section a procedure based on multi-objective

optimization is exploited to set these parameters, in order to achieve robust vertical

stabilization in different plasma operational scenarios.

3 Robust VS Design via Multi-objective Optimization

The proposed robust design procedure for the design of VS systems is presented

in this section, with reference to the control Algorithm (1). The procedure requires

the solution of a multi-objective optimization problem, aiming at maximizing the

stability margins ([12, Chap. 6]) for a set of linearized models, which represent the

possible plasma scenarios.
3

In order to compute the stability margins, we consider the single-input-single-

output (SISO) transfer function obtained by opening the control loop shown in Fig. 3

in correspondence of the VS control system output.
4

Given the i-th plasma linearized

2
The speed gain is multiplied by Ipref in order to scale the overall gain according to the actual value

of the plasma current.

3
The plasma linear models exploited to solve the optimization problem are generated by the CRE-

ATE magnetic equilibrium codes [9].

4
When computing the open loop transfer function, the simplified model of the power supply of the

in-vessel circuit is also considered.
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Fig. 3 Block diagram of the closed loop system considered for the design of the VS system. The

plant block includes the power supply of the in-vessel coil, the plasma, the surrounding coils and the

so called magnetic diagnostic, which is the system that provides the plant and plasma parameters

needed by the magnetic control systems [11, 17]

model, in what follows we will consider an objective function F⟩ that depends on

the stability margins of the considered SISO function. Taking into account that the

stability margins themselves depend on the parameters of the control algorithm (1),

the objective function Fi is given by

Fi = c1 ⋅
(
PMt − PM(Kv ,KIC , 𝜏1 , 𝜏2)

)2

+c2 ⋅
(
UGMt − UGM(Kv ,KIC , 𝜏1 , 𝜏2)

)2 + c3 ⋅
(
LGMt − LGM(Kv ,KIC , 𝜏1 , 𝜏2)

)2
, (2)

where PM is the phase margin of the SISO open loop function, UGM and LGM
are the upper and lower gain margins, respectively, while c1 , c2 and c3 are positive

weighting coefficients. PMt ,UGMt and LGMt are the desired values (targets) for the

stability margins.

Given a set of N linearized models for the plasma and the surrounding coils, the

proposed robust design approach requires to minimize N objective functions (2), one

for each plasma equilibrium, exploiting a multi-objective optimization approach. In

particular, the following optimization problem is solved

min
Kv ,KIC ,𝜏1 ,𝜏2

𝜇 (3)

s.t.F (Kv ,KIC , 𝜏1 , 𝜏2) − 𝜇 ⋅ w ≤ 0 ,

where F is a vector function

F (Kv ,KIC , 𝜏1 , 𝜏2) =
(
F1(Kv ,KIC , 𝜏1 , 𝜏2) … FN(Kv ,KIC , 𝜏1 , 𝜏2)

)T
,

and w is a vector of weights.
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Problem (3) can be solved using a sequential quadratic programming method,

with modifications to the line search and Hessian [7, 14, 18]. In particular, in the next

section, the Matlab
Ⓡ

function fgoalattain [13] will be exploited to solve (3).

4 A Case Study: The ITER-like VS Controller at the EAST
Tokamak

In this section we apply the approach described in Sect. 3 to tune the VS

algorithm (1) for the EAST tokamak, which is operated in Hefei, by the Institute

of Plasma Physics of the Chinese Academy of Sciences.

In particular, N = 4 plasma equilibria have been considered when solving (3).

These four equilibria have been chosen so as to represent the possible different oper-

ational scenarios for the VS system, in terms of plasma shapes and main parameters

(among which we have considered the so called plasma growth rate 𝛾 , which is the

unstable eigenvalue that corresponds to the vertical instability). The main parame-

ters for the considered equilibria are summarized in Table 1. Moreover, the following

target values have been used for the stability margins

PMt = 70◦ , UGMt = 10 dB ,LGMt = 10 dB ,

while the coefficients in (2) have been set equal to c1 = 0.1 , c2 = c3 = 5.

The multi-objective problem (3) has been solved using the Matlab
Ⓡ

function

fgoalattain, by setting w =
(
1 1 1 1

)T
. The results are summarized in Fig. 4,

where the values of the stability margins obtained solving (3) are compared with the

results obtained solving the single-objective optimization problem

min
Kv ,KIC ,𝜏1 ,𝜏2

Fi(Kv ,KIC, 𝜏1 , 𝜏2) , (4)

Table 1 Main plasma parameters of the four EAST equilibria considered to tune the ITER-like VS

system (1). The values of the plasma current Ipeq and of the growth rate 𝛾 of the vertical instability

are reported for each considered equilibrium. Note that each equilibrium is specified by the number

of the correspondent EAST pulse and the considered time instant during the pulse itself; these

information are reported in the first column of the table

Equilibrium Shape type Ipeq (kA) 𝛾 (s−1)

46530 at t = 3 s Double-null 281 137

52444 at t = 3 s Limiter 230 92

60938 at t = 6 s Upper single-null 374 194

64204 at t = 3.5 s Lower single-null 233 512
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Fig. 4 Comparison of the stability margins obtained using the multi-objective approach presented

in Sect. 3, and a single-objective approach based on the solution of Sect. 4

for the i-th plasma equilibrium, with i = 1 ,… ,N. From the results shown in Fig. 4,

it turns out that the multi-objective approach achieves almost the same phase mar-

gin PM, if compared with the single-objective one, while it manages to improve the

lower gain margin LGM at the expenses of the upper gain margin UGM. In order to

better understand the advantage of the multi-objective approach, it should be noticed

that, applying to one equilibrium the VS parameters obtained when solving (4) for

another one, stability is not guaranteed. Indeed, Table 2 reports the maximum real

part of the closed loop eigenvalues computed by using the gains returned when solv-

ing (4) for the i-th equilibrium, to the j-th one, with i ≠ j. It can be noticed that none of

the gains computed on the first three equilibria can stabilize the EAST pulse #64204,

which is, among the considered, the one with the largest growth rate. Furthermore,

even when stability is achieved, when using the parameters obtained solving (4) on

one equilbrium to the other ones, may result in a worsen of the stability margins,

as it is shown in Fig. 5. Indeed, by applying the optimal VS parameters—w.r.t prob-

lem (4)—obtained for the EAST pulse #64204 to the other equilibria, the gain mar-

gins are worst than the ones obtained solving (3).

Finally, if we apply the set of VS gains obtained by solving (3) using the four equi-

libria reported in Table 1 to the equilibrium of the EAST pulse #70131 at t = 4.5 s,
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Table 2 Maximum real part of the closed loop eigenvalues computed by using the gains returned

by the single-objective approach for the i-th equilibrium, to the j-th one, with i ≠ j
46530 52444 60938 64204

Single-objective

pulse #46530

– –0.365 –0.088 255.99

Single-objective

pulse #52444

–0.360 – –0.358 897.01

Single-objective

pulse #60938

–0.360 –0.364 – 153.57

Single-objective

pulse #64204

–0.360 –0.365 –0.358 –
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Fig. 5 Comparison of the stability margins obtained using the multi-objective approach presented

in Sect. 3 and by using the VS parameters obtained using the single-objective approach for the

EAST pulse #64204

which corresponds to a single-null plasma with Ipeq = 232 kA and a growth rate 𝛾 ≅
369 s−1, the closed loop system results to be stable with the following margins

PM ≅ 29.6◦ , UGM ≅ 4.8 dB , LGM ≅ 11.8 dB .
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Conclusive Remarks

A robust design procedure for VS systems based on multi-objective optimization

has been presented in this paper. The proposed approach can be effectively used

to vertically stabilize tokamak plasmas under different scenarios, without the need

of online adaptive algorithms. Moreover, differently from other model-based robust

approaches, such as [4], the one proposed in this paper, permits to directly specify the

requirements in terms of stability margins. The effectiveness of the proposed design

procedure has been shown by applying it to the design of the ITER-like VS system

deployed at the EAST tokamak.
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Annunziata Esposito Amideo and Maria Paola Scaparra

Abstract Critical infrastructures are network-based systems which are prone to

various types of threats (e.g., terroristic or cyber-attacks). Therefore, it is paramount

to devise modelling frameworks to assess their ability to withstand external disrup-

tions and to develop protection strategies aimed at improving their robustness and

security. In this paper, we compare six modelling approaches for identifying the most

critical nodes in infrastructure networks. Three are well-established approaches in

the literature, while three are recently proposed frameworks. All the approaches take

the perspective of an attacker whose ultimate goal is to inflict maximum damage to

a network with minimal effort. Specifically, they assume that a saboteur must decide

which nodes to disable so as to disrupt network connectivity as much as possible. The

formulations differ in terms of the attacker objectives and connectivity metrics (e.g.,

trade-off between inflicted damage and attack cost, pair-wise connectivity, size and

number of disconnected partitions). We apply the six formulations to the IEEE24
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and IEEE118 Power Systems and conduct a comparative analysis of the solutions

obtained with different parameters settings. Finally, we use frequency analysis to

determine the most critical nodes with respect to different attack strategies.

Keywords Critical infrastructures ⋅Network vulnerability

Critical node detection problem

1 Introduction

Various recent disasters, either natural (e.g., Katrina hurricane, Chelyabinsk meteor

crash), accidental (e.g., US and Italian blackouts) or intentional (e.g., 9/11 terror-

ist attack, STUXNET cyber attack), have demonstrated that Critical Infrastruc-
tures (CI) (e.g., power grids, telecommunication networks, etc.,) are highly vulner-

able to disruptions. These often lead to complete or partial interruptions of lifeline

services provided to communities and, consequently, can have dramatic and even

life-threatening consequences. Moreover, due to the high level of interdependency

among their sub-components, CIs are prone to cascading failures and localized dis-

ruptions can often spread throughout the system with amplified deleterious effects.

As an example, the 2003 US blackout was caused by a software glitch into the alarm

system of a private energy society in Ohio. The initial local blackout triggered a

series of events and ultimately resulted in a widespread outage that affected 8 States

and more than 45 million people. To reduce risk and mitigate the aftermath of poten-

tial disasters, it is therefore necessary to define modeling approaches to identify the

most critical assets and plan protection efforts.

In the next section we briefly overview some of these modeling approaches.

Section 3 introduces some notation and definitions. Six formulations for identify-

ing critical nodes are discussed and compared in Sect. 4. An application of the

approaches is discussed in Sect. 5, while Sect. 6 offers some conclusive remarks.

2 Literature Review

Since the early 2000s, researchers have acknowledged the need to include network

topological aspects into modeling approaches aiming at assessing CI vulnerability

[1, 2]. The most critical network components, in fact, can be identified by assuming

that an attacker, who has knowledge of the network topology, tries to inflict maxi-

mum damage with minimal effort by disabling nodes and/or links [3–5]. This type

of problems can be formulated mathematically as optimization models, where the

component criticality is defined according to different metrics which depend on the

specific application domain (e.g., maximal flow, shortest paths and connectivity [6]).

In this paper, we focus on critical nodes with respect to connectivity metrics.
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A well-known problem in this context is the Critical Node Detection Problem
(CNP) [7–9]. The CNP assumes that an attacker disables a fixed number of nodes so

as to minimize the network pairwise connectivity (PWC) (i.e., the number of node

pairs that are still connected after the attack) [10]. A dual version of CNP is the 𝛽-
Vertex Disruptor problem [11], which aims at identifying a minimized set of nodes

whose removal degrades PWC to a desired degree. A slightly different problem is

the Cardinality Constrained Critical Node Detection Problem (CC-CNP) [12]. CC-

CNP minimizes the number of nodes to be disabled so that the largest connected

component is smaller than a user-defined threshold. Another problem variant, the

Component-Cardinality-Constrained Critical Node Problem (C3-CNP) [13], mini-

mizes the weight of the nodes to be removed so that the total connection costs of

each connected component does not exceed a given bound.

It has been argued that critical node detection problems are inherently multi-

objective. Major disruptive attack, in fact, could be the one which minimizes different

connectivity metrics simultaneously. A multi-objective version of CNP is proposed

in [14] to identify the set of K nodes whose removal maximizes the total number

of connected components and minimizes the variance in the cardinality (number of

nodes) among the connected components. Other multi-objective formulations have

been recently introduced by a subset of this work authors in [15, 16].

3 Modelling Preliminaries

Let G = {V ,E} denote an undirected graph with a finite number n of nodes vi ∈ V
and e edges (vi, vj) ∈ E ⊆ V × V . A path over G, starting at a node vi ∈ V and ending

at a node vj ∈ V , is a subset of links in E that connects vi and vj without creating

loops. The length of a path is its number of edges. A connected component |Vi| of

G = {V ,E} is the maximal set of nodes S ⊂ V such that for each vi ∈ S and vj ∈ S,

there exists a path in G from node vi to node vj. Let ĜA = {V ,E ⧵ EA} be the residual
graph obtained from G by removing all edges EA ⊆ E incident to each node in a set

A ⊆ V . Namely, A represents the set of attacked nodes. When a node is attacked, all

its incident edges are disabled. As a result, G is partitioned into a graph ĜA and |A|
isolated nodes. Note that the isolated nodes in A are non included when counting the

number of connected components after an attack.

Pairwise Connectivity (PWC) is a useful metric to evaluate network robustness

and resilience after the removal of some network components [10]. For a graph

G = {V ,E}, PWC(G) is defined as the number of distinct node pairs connected

through a path over G. Formally:

PWC(G) = 1
2

∑

vi,vj∈V ,vi≠vj

p(vi, vj) ∈
[

0, n(n − 1)
2

]

(1)
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where p(vi, vj) = 1 if the pair (vi, vj) is connected; 0, otherwise. Note that, for undi-

rected graphs, the PWC is a function of the size |Vi| of each connected compo-
nent Gi = {Vi,Ei}. In fact, for each connected component Gi of G, there are exactly

|Vi|(|Vi| − 1)∕2 distinct pairs of connected nodes. Assuming that G contains m con-

nected components, we can alternatively express Eq. (1) as

PWC(G) = 1
2

m∑

i=1
|Vi|(|Vi| − 1) (2)

A normalized version of PWC which only takes values in [0, 1] is the index nPWC,

defined as:

nPWC(G) = 2PWC(G)
n(n − 1)

(3)

4 Critical Node Detection Optimization Approaches

In this section, we review the main features of six different formulations aimed at

identifying critical nodes in a network. The six formulations, whose features are

summarized in Table 1, are the following:

(I) CNP—Critical Nodes Detection Problem [7];

(II) 𝛽-Vertex Disruptor [11];

(III) CC-CNP—Cardinality Constrained Critical Node Detection Problem [17];

(IV) MPS Optimization—Max Partition Size [15];

(V) PNS Optimization—Partition Number and Size [16];

(VI) MOO—Multi-Objective Optimization [16].

Note that with the exception of the MOO formulation, all the other approaches

are Integer Linear Programs (ILP). In terms of objectives, the CNP formulation min-

imizes the PWC by removing a fixed number of nodes k (a proxy of the attack cost).

Both the 𝛽-vertex disruptor and the CC-CNP minimize the attack cost but differ in

terms of constraints: the former limits the PWC, while the latter the largest admis-

sible partition size (L). The MPS approach minimizes a linear combination of two

sub-objectives: the attack cost and the size of the largest partition in the residual

graph ĜA, while imposing a bound on the number of connected components, m. The

PNS approach uses the same two sub-objectives as MPS. However, in this model the

number of connected components in ĜA is also maximized instead of being bounded

in a constraints. The resulting objective is therefore a weighted combination of three

sub-objectives. Finally, the MOO uses a true multi-objective approach to minimize

both the nPWC and the attack cost. The model, which does not include constraints

on the other problem features (m or L), identifies all the solutions on the Pareto front.
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Table 1 Main features of the formulations

CNP 𝛽-vertex CC-CNP MPS PNS MOO

Formulation

class

ILP ILP ILP ILP ILP Non-linear

multi-objective

Number of

objectives

1 1 1 1 (2 sub-

objectives)

1 (3 sub-

objectives)

2

Objective

function

min(PWC) min(k) min(k) min(𝛼k +
(1 − 𝛼)L)

min(𝛼1k +
𝛼2L −
𝛼3m)

min(PWC, k)

Attack cost (k) Bounded Free Free Free Free Free

Largest parti-

tion size (L)

Free Free Bounded Free Free Free

Partitions

number (m)

Free Free Free Bounded Free Free

PWC/nPWC Free Bounded Free Free Free Free

Number of

constraints

O(n2) O(n3) O(n2) O(n2e) O(n2e) Unconstrained

Number of

variables

O(n2) O(n2) O(n2) O(n2) O(n2) O(n)

5 IEEE-24 and IEEE-118 Power Network Case Study

In this section, we compare the six approaches through their application to the

IEEE24 [18] and IEEE118 [19] Power Systems, two networks respectively composed

by: n = 24 vertices and e = 32 edges, and n = 118 vertices and e = 186 edges.

Approaches I–IV handle the intrinsic multi-objective nature of the critical node

detection problem by constraining one of the possible degrees of freedom (e.g.,

attack cost, partitions size, number of partitions, and network connectivity). For these

formulations, we explore different solutions obtained by varying the constrained

value within a specified range. The first results we report are related to the IEEE24

network. The application of Approach I requires a specific attack cost, k, that we

vary in the range [0, n]. The plot on the left of Fig. 1a displays the value of the CNP

objective function (i.e., the nPWC) for different values of k. When the attack cost

k increases, the connectivity decreases quite significantly. By removing 5 nodes the

connectivity index nPWC drops from 1 to less than 0.1 to denote that the network

is highly vulnerable to attacks. The same plot also shows the results of Approach II,

which captures the behavior of an attacker aiming at reducing the network connec-

tivity below a threshold value 𝛽. For this approach, we consider 21 different values

of 𝛽 in the interval [0, 1].
Approach III constraints the size of the largest partition to be smaller than L. We

vary L in the range [1, 24]. The plot in the top right corner of Fig. 1a shows that the

attack cost (blue solid line) decreases for increasing values of L. By contrast, the
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(a) CNP and -vertex disruptor comparison varying the attack cost and connectivity (left).
CC-CND results varying the largest partition size (top right corner). MPS results varying
the number of partitions (bottom right corner).

(b) PNS results for 66 combinations of the objective weights (left). MOO Pareto Front
(right)

Fig. 1 Formulations comparison on the IEEE24 power network

values of PWC and L (i.e., max(|Vi|)) are positively correlated (red dashed line), as

implied by Eq. 2.

Approach IV constraints the minimum number of connected components, m. To

generate only realistic attack plans, we vary the value of m in the range [1, 10]. In this

analysis, we set 𝛼 = 0.8. We can observe that, by increasing the number of desired

partitions (plot in the bottom right corner of Fig. 1a), both the largest partition size

(blue solid line) and the PWC (red dashed line) decrease. This also confirms the

relation between the number of partitions, their size, and the network connectivity

expressed by Eq. 2.

Approaches V and VI do not include constraints on the solution characteristics.

The left-hand side of Fig. 1b shows the results of the PNS approach in terms of

nPWC, largest partition size, and number of partitions. The approach was run with

66 different combinations of the objective weights 𝛼1, 𝛼2, and 𝛼3, so as to reproduce

a variety of attack plans (i.e., plans with more emphasis on the attack cost and plans

prioritizing other features such as the number and size of the partitions). As expected,

the results show that the nPWC and the largest partition size are positively correlated

while the nPWC and the number of partitions are negatively correlated.
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Table 2 Most critical nodes in IEEE24 power network

CNP 𝛽-vertex CC-CNP MPS PNS MOO

id freq
(%)

id freq
(%)

id freq
(%)

id freq
(%)

id freq
(%)

id freq
(%)

16 88 10 71.4 10 60 16 90 9 93.9 10 78.5

13 60 9 47.6 9 48 9 90 16 86.3 16 71.4

11 60 16 33.3 16 44 10 90 10 84.8 9 71.4

24 56 15 23.8 15 32 13 30 11 77.2 21 57.1

20 56 13 14.2 19 28 21 30 24 65.1 11 42.8

Finally, for Approach VI, Fig. 1b shows the 14 solutions on the Pareto front, which

capture the relation between the nPWC and the attack cost.

The solutions generated by the six approaches with different parameters form a set

of possible attack strategies. To study the similarities of these solutions and identify

the most critical nodes with respect to different attack strategies, we compute the

frequency of occurrence of each node. Namely, we consider the solutions obtained

by applying CNP with 25 different values of parameter k, 𝛽-vertex with 21 distinct

values of nPWC, CC-CNP with 25 values of L, MPS with 10 values of m, and PNS

with 66 combinations of 𝛼1, 𝛼2, and 𝛼3. For MOO, we consider the 14 solutions on the

Pareto front. Table 2 displays the five most frequent nodes in the solutions obtained

with each formulation, along with their frequency.

According to Table 2, it can be noted that the nodes with id 9, 10, and 16 are the

most critical nodes: they are the most frequently attacked nodes in the solutions of

all the approaches, with the exception of CNP.

The graph induced by the deletion of these three nodes is characterized by a

nPWC = 0.1703, and is composed by 5 partitions, the largest of which includes 7

nodes. This solution can be obtained by solving CNP with k = 3, 𝛽-vertex with 𝛽 =
0.1703, CC-CNP with L = 7, MPS with m = 5, and PNS with 𝛼1 = 0.7,

𝛼2 = 0.2, and 𝛼3 = 0.1. It is also one of the Pareto front solutions of MOO with

nPWC = 0.1703 and a cost equal to 3. This particular solution is highlighted in each

plot of Fig. 1 by a marker (star) or a dashed box.

Whereas the identification of the three most critical nodes is quite straightforward,

the criticality of additional nodes is more difficult to assess as it varies across different

models. For example, node 11 is quite critical when formulations CNP, PNS and

MOO are used (it appears in the top 5), however it is not as critical according to the

attack plans identified by the other approaches.

To have an overall view of the node criticality, in Table 3 we rank all the nodes

based on their frequency of occurrence in the 160 solutions generated with all the

approaches. Based on this ranking, other highly critical nodes are 21, 24, 13 and 23.

In summary, the frequency with which each node appears in the solution sets can be

used as a metric of node criticality.
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Table 4 Most critical nodes in IEEE118 power network

CNP 𝛽-vertex CC-CNP MPS PNS MOO

id freq
(%)

id freq
(%)

id freq
(%)

id freq
(%)

id freq
(%)

id freq

(%)

100 95.6 100 47.6 69 47.8 100 100 100 90.9 49 96.7

80 95.6 49 38 65 43.4 49 100 80 90.9 100 87

49 95.6 69 33.3 49 34.7 37 100 49 89.3 65 82.2

12 91.3 65 33.3 100 30.4 17 100 37 84.8 23 79

92 86.9 23 33.3 80 30.4 77 90 17 83.3 69 72.5

77 86.9 77 23.8 77 30.4 23 90 77 81.8 77 62.9

Table 4 displays the results for the IEEE118 network. Due to the large size of this

network, the models were solved with an ant colony-based heuristic with a fixed run-

time of 180 s. Overall, 169 sub-optimal solutions were obtained with the following

parameter settings: k and L vary in the range [5, n] in steps of 5, m varies in [5, 50]
in steps of 5; the Pareto front includes 26 solutions; 𝛽, 𝛼1, 𝛼2, and 𝛼3 are set as for

the IEEE24 network. As expected, the solutions for this larger network are more

dissimilar. Nevertheless, it is still possible to identify some highly critical nodes

(e.g. 100, 49, and 77), which recur quite frequently in the solutions.

6 Conclusions and Future Work

In this work we reviewed several formulations used to identify the most critical nodes

in a network. Each formulation mimics the behaviour of an attacker who aims at

disrupting the network connectivity by disabling some critical nodes. To analyse

the differences of the solutions obtained when considering different attacker behav-

iours, we applied six formulations with different parameter settings to the IEEE24

and IEEE118 Power networks. The results suggest that there is a small core set of

high critical nodes which consistently appear in the solutions irrespectively of the

attacker preferences. However, the remaining set of selected nodes varies depend-

ing on the connectivity features and attack cost used by the model. Future research

should investigate the integration of these attack models into multi-level optimiza-

tion approaches to identify cost-effective protection strategies and increase network

resiliency to external disruptions.
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Stable Matching with Multi-objectives:
A Goal Programming Approach

Mangesh Gharote, Nitin Phuke, Rahul Patil and Sachin Lodha

Abstract Stability in matching has been well studied in the literature. In practice,

there are many matching applications where along with stability, other measures such

as equity, welfare, costs, etc. are also important. We propose a goal programming

based approach for finding a Stable Matching (SM) solution with multi-objectives

such as equity and welfare. The goal values are obtained by solving the linear assign-

ment models. On the comparison with prior art, the results of our experiment shows

comparable and in many cases significant improvement in the solution quality.

Keywords Stable matching ⋅ Multi-objective ⋅ Optimization ⋅ Goal programming

1 Introduction

In a matching problem, there are two set of agents (say n men and n women). Each

man ranks the women in order of his preferences, and each woman ranks the men in

order of her preferences. The matching is said to be unstable, if there exists any two

agents who are not matched to each other but strictly prefer the other to their partner.

Gale and Shapley (1962) proposed a Deferred Acceptance (DA) polynomial algo-

rithm for Stable Matching (SM) problem. The DA algorithm produces a man-optimal
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solution, if man proposes first or a woman-optimal solution, if woman proposes first.

Thus, the algorithm produces a gender biased matching solution. Since then SM has

been widely studied and used in many applications, such as matching of medical

students to hospitals [1], students-school admission [2], roommates matching [3],

worker-task matching [4], trainee-project matching [5], etc.

In many applications, along with stability other matching measures, like overall

preferences matching (welfare), fairness in matching (equity), cost of allocation are

also important [6]. For example in an employee-to-project stable matching problem

studied by [7], the cost of matching, average preferences satisfaction and stability

are all important criteria that need to be considered. Other example, in the marriage

problem, the solution should be gender-neutral as well as the agents should get the

best match.

Many variants of the SM problem (such as SM with ties in preferences and incom-

plete list) has been addressed in the literature, but SM with multi-objectives prob-

lem is less explored. [8] addressed this problem using evolutionary algorithm and

reported the need for an efficient method for solving this problem. The issue of multi-

objective matching is addressed in the classical Assignment Problem (AP) literature

[9]. AP can be solved efficiently because of the total unimodularity of its coefficient

matrix. But with the addition of objective constraints in Goal Programming, it loses

this property. The main difference between the AP and SM is the stability criteria

[10]. The solutions produced by the assignment problem are not stable. Finding a

SM solution with optimum fairness (equity) and social welfare score is computa-

tionally challenging [11]. In this paper, we address the SM with multi-objective

problem where the preferences of the agents are complete and strictly ordered. The

main contributions are as follows:

∙ A Goal Programming (GP) based approach for solving the SM with multi-objective

problem.

∙ Pareto-optimal solution for SM with equity and welfare as objectives.

∙ Substantial reduction in the computational time compared to evolutionary algo-

rithm [8].

2 Related Work

Gale and Shapley [2] showed that stable marriages always exist and proposed

Deferred Acceptance O(n2) algorithm to find stable marriages. The algorithm pro-

duces gender-biased (man or woman optimal) matching solutions, according to who

proposes first in the DA algorithm. To overcome this issue of gender-bias, many new

approaches have been proposed. Irving et al. [12] reported an O(n4) algorithm for

finding optimal SM, with the objective criteria of maximum preferences matching.

Vate (1989) showed how to solve optimal SM problem as a linear program. The

mathematical model comprised of basic assignment constraints (one-to-one match-

ing) and stability constraint which ensures that blocking pairs are not formed in the

matching solution.
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Many other variants of SM with different objectives have been studied [13]. The

problem of finding the welfare-optimal, minimal regret, and fairness optimal stable

matching becomes NP-hard and sometimes even hard to approximate [11]. Many

researchers focused on local search approaches such as neighborhood search [14]

for finding near optimal solutions. Also evolutionary based methods, mostly genetic

algorithm have been studied to obtain SM solution [8]. These approaches are not

scalable and often do not produce stable matching.

In this paper, we designed a Goal Programming (GP) based approach to solve the

SM Multi-Objective (SMMO) problem. The key idea in using GP is to find solutions

which attain a pre-defined target for equity and social welfare function. If there exists

no solution which achieves targets in both functional criteria, the task is to find stable
solutions which minimize deviations from targets [9]. The results of experimentation

are compared using Equity and Social Welfare, the functional criteria as discussed

in [8]. We also compared our results with the DA algorithm [2], Neighbourhood

Search (NS) algorithm [14] and Linear Programming for SM by [15], which are not

addressing SMMO problem but can produce quality results compared to [8].

Deferred Acceptance Algorithm (DA) The DA-Man proposal algorithm proceeds

in rounds. In each round, the man makes a proposal to the most preferred woman who

has not yet rejected him. Each woman retains the proposal of the most preferred man

she has received (if any), and rejects the rest. The algorithm continues till all men are

matched. As the man is proposing first, the solution obtained is biased towards man

and is man-optimal SM. Similarly, if woman proposes first then we obtain woman-

optimal SM. Thus [2] produces extreme stable marriages.

Linear Programming for SM [15] proposed linear program for SM. Here, we

describe a mathematical formulation [15] that can be used to find a stable solution.

Notations:

Nm Number of men m = 1,… ,Nm
Nw Number of women w = 1,… ,Nw
j ≺m w Man m prefers woman w over woman j
i ≺w m Woman w prefers man m over man i
Xmw = 1, if m is assigned to w, otherwise 0.

Nm∑

m
Xmw = 1 ∀w = 1,… ,Nw (1)

Nw∑

w
Xmw = 1 ∀m = 1,… ,Nm (2)

Nw∑

j≺mw,j≠w
Xmj +

Nm∑

i≺wm,i≠m
Xiw + Xmw ⩽ 1 ∀m = 1,… ,Nm,∀w = 1,… ,Nw (3)

Xmw ∈ {0, 1} ∀m,w; (4)
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3 Problem Statement

Given a complete and strictly ordered preference list of nmen and nwomen. The task

is to find a stable matching, which maximally meets the objectives. Here we have

considered Equity (fairness) and Social Welfare (better preferences) as the objec-

tives. The definitions are as follows: Let,

rm(w) denotes rank of woman w in man m preference list

rw(m) denotes rank of man m in woman w preference list

Equity (E) determines the fairness in preferences matching. For example, in a

Matching M, rm(w) = 2 and rw(m) = 6. The equity score is |rm(w) − rw(m)| = |6 −
2| = 4.

SocialWelfare (W) determines better preferences matching. For the above example,

social welfare score is {rm(w) + rw(m)} = 6 + 2 = 8.

Note, as ranks are ordered from 1 to n, a rank of one means best preference. Lower

score for both E and W is desired.

Our Solution Approach

∙ Obtain the target values for GP by solving k linear assignment problems, each

having a different single objective, where k is number of objectives. We have con-

sidered Equity (Eopt) and Welfare (Wopt) as two linear objectives (k = 2).

Eopt =
Nm∑

m

Nw∑

w
|rm(w) − rw(m)| ∗ Xmw (5)

Wopt =
Nm∑

m

Nw∑

w
{rm(w) + rw(m)} ∗ Xmw (6)

∙ Solve the SM problem as a weighted GP optimization problem.

∙ Generate multiple (Pareto-optimal) solutions by varying weights in the objective

function.

Goal Programming
Given parameters: Weights 𝜔1 and 𝜔2;

Optimal Equity Eopt and Social Welfare Wopt Score

Decision variables: Xmw = 1, if m is assigned to w, otherwise 0.

Deviations 𝜌1 and 𝜌2
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Minimize
𝜔1𝜌1 + 𝜔2𝜌2 (7)

Subject to
Nm∑

m
Xmw = 1 ∀w = 1,… ,Nw (8)

Nw∑

w
Xmw = 1 ∀m = 1,… ,Nm (9)

Nw∑

j≺mw,j≠w
Xmj +

Nm∑

i≺wm,i≠m
Xiw + Xmw ⩽ 1 ∀m = 1,… ,Nm,∀w = 1,… ,Nw

(10)

Nm∑

m

Nw∑

w
|rm(w) − rw(m)| ∗ Xmw − 𝜌1 = Eopt (11)

Nm∑

m

Nw∑

w
{rm(w) + rw(m)} ∗ Xmw − 𝜌2 = Wopt (12)

Xmw ∈ {0, 1} ∀m,w; 𝜌i ≥ 0 ∀i (13)

The objective is to minimize the undesirable deviation variables. Equations 8 and

9 are one-to-one assignment constraints. Equation 10 is a stability constraint which

ensures that the unstable pairs are not produced [15]. Here,
∑N

j≺mw
Xmj = 1 means,

man m is matched to the woman j that is ranked lower than the woman w in the

man‘s preference list. For the solution to be stable Xmw = 1, then
∑N

i≺wm,i≠m
Xiw = 0

and
∑N

j≺mw,j≠w
Xmj = 0.

As stated earlier, target values Eopt and Wopt are obtained by solving linear assign-

ment problems (Eqs. 5 and 6) without stability constraints. The solution generated

using GP will always lie within Eopt and Wopt scores. To obtain SM solution with

lower E and W scores, the undesirable negative deviation variables (𝜌1, 𝜌2) are added

in the Eqs. 11 and 12. Hence, in the objective function the undesirable deviation vari-

ables are minimized Eq. 7.

3.1 Illustration

We illustrate with a matching problem of size 8 (men = women). The preference

lists shown in Table 1 is taken from [12] paper. In the example, m1 ranks w3 as

his first preference, while w1 ranks m4 as her first preference. The numbers in bold

indicate the matching solution obtained using our approach (GP). Table 2 displays

SM solutions obtained using various methods. Avg. Rank-Men denotes, the average
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Table 1 Preferences men and women

Rank→ 1st 2nd 3rd 4th 5th 6th 7th 8th 1st 2nd 3rd 4th 5th 6th 7th 8th

m1 3 1 5 7 4 2 8 6 w1 4 3 8 1 2 5 7 6

m2 6 1 3 4 8 7 5 2 w2 3 7 5 8 6 4 1 2

m3 7 4 3 6 5 1 2 8 w3 7 5 8 3 6 2 1 4

m4 5 3 8 2 6 1 4 7 w4 6 4 2 7 3 1 5 8

m5 4 1 2 8 7 3 6 5 w5 8 7 1 5 6 4 3 2

m6 6 2 5 7 8 4 3 1 w6 5 4 7 6 2 8 3 1

m7 7 8 1 6 2 3 4 5 w7 1 4 5 6 2 8 3 7

m8 2 6 7 1 8 3 4 5 w8 2 5 4 3 7 8 1 6

Table 2 Illustration results–stable matchings and measures

Method m1 m2 m3 m4 m5 m6 m7 m8 E W Avg.

rank-men

Avg. rank-

women

GS-Male 3 1 7 5 4 6 8 2 35 55 1.25 5.63

GS-Female 7 8 2 1 6 4 3 5 41 57 6.12 1.00
Vande-Vate 1 3 7 8 4 5 6 2 23 57 2.25 4.87

Our

approach

5 4 3 8 2 7 6 1 4 54 3.50 3.25

preference rank of men, while Avg. Rank-Women denotes the average preference

rank of women. As discussed, GS-Male proposal DA algorithm produces Male-

optimal solution (1.25), while women gets worst preferences (5.63). Similarly, GS-

Female results in better preferences matching for women (1.0) and worst for men

(6.12). Vande-Vate results in a fair stable solution compared to Gale-Shapley. Vate

solves linear program without considering any specific objective function. Using our

approach we get best E-Equity and W-Welfare matching stable solution compared to

other approaches. The target values (Eopt = 4 and Wopt = 49) were first obtained,

by solving linear assignment problem. Then GP SM problem (Eqs. 7–13) is solved

using the weights (𝜔1 = 𝜔2 = 1).

4 Results and Discussion

Experimental Settings We tested our approach on randomly generated synthetic

data sets. The data set comprised of complete and strictly ordered preference list of

each man and woman. The generated preferences are uncorrelated as per the exper-

imentation set-up considered in [8]. The results are displayed on six different prob-

lems, the problem size varying in the range of 50 to 430. The problem size is defined

by the number of men and the equal number of women. We could run the compu-
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tations up to 430 size matching problem, due to memory limitation. In GP, weights

are varied in the range of [0–2] with step size of 0.2, where 𝜔1 + 𝜔2 = 2. For each

fixed weight, model Eqs. (7)–(13) was executed. Such 10 trials for each problem

instance were conducted to obtain the Pareto-optimal solutions. All the experiments

were carried out on Intel(R) Core i5-4590T CPU 2GHZ processor with 4 GB RAM.

In the following section, we discuss our experimentation results.

Our Approach versus Local Search Approaches [8] addressed SM with multi-

objectives problem using evolutionary based method. They considered objective

function criteria as equity and welfare. We implemented their genetic algorithm and

experimented with the given parameters (mutation rate = 0.4, crossover rate = 0.6,

population size = 50, generations = 5000 and repetitions = 100) as stated in [8]

paper. The fitness function is computed in terms of blocking pairs, where lower the

fitness value better is the solution. [8] reported results for very small size (20) prob-

lem set and in many instances could not find stable solutions. We tested GA for 20

and 100 size problem. Out of 25 replications of problem size 20, on average 5 solu-

tions were found. In case of 100 size problem, GA could not find stable solution

even with 20,000 generations. While, with our approach, we could solve large size

matching problem and always provide a stable solution.

[14] proposed variants of neighborhood search (NS) algorithms for different SM

problems such as ties and incomplete preference list. They have not looked at the

multi-objective SM problem. But we found an algorithm (SML2) proposed [14] for

SM with strict preferences matching quite relevant to the problem addressed. We

tested on problem size of P50 and P100, were NS algorithm could not find stable

solution even in 1000 steps (773 s), but the number of blocking pairs are significantly

less than GA. Thus, NS algorithm is effective than Genetic Algorithm (GA) [8]

because it exploits the problem structure while in GA there is no criterion for making

the solution stable.

Our Approach versus Classical Methods In this section, we compare our results

with the existing methods which provide stable solutions, but do not address the

multi-objective problem. Table 3 displays the experimentation results for six test

cases. The (DA) algorithm [2] produces bias solution. The average preference rank

of Male proposal—DA algorithm (GS-Male) is always the best (Table 3 Column 5)

compared to all other approaches, while females get worst preference match. Sim-

ilarly, Female proposal—DA algorithm (GS-Female) results in female optimal SM

solution (Table 3 Column 6). In both the GS algorithms, equity and social welfare

score are poor as they produce biased solutions.

In few problem instances, [15] gives the same results as Gale-Shapley DA algo-

rithm even though it solves linear program without any objective function. Our

approach explicitly address the problem of multi-objectives using goal programming

and finds Pareto-optimal stable solutions. Hence, our approach produces best results

compared to other approaches (see Table 3) in all the instances. Also the average

preference rank of men and women using our approach is fair.
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Table 3 Comparison of Our Approach with Prior Art

Test case Method Equity Welfare Avg. rank men Avg. rank

women

(1) (2) (3) (4) (5) (6)

P50 GS-Male 371 679 4.2 9.1

GS-Female 405 737 10.7 3.8
Vande Vate 371 679 4.2 9.1

Our approach 277 667 6.1 7.0

P100 GS-Male 2141 2930 7.1 14.8

GS-Female 3684 3844 33.3 2.7
Vande Vate 1221 2107 13.1 7.8

Our approach 940 2083 10.1 10.0

P200 GS-Male 3276 6134 9.9 20.5

GS-Female 6610 8324 36.7 4.6
Vande Vate 6610 8324 36.7 4.6

Our approach 2839 5739 17.5 11.0

P300 GS-Male 5226 10818 13.4 22.4

GS-Female 19981 22107 69.7 3.6
Vande Vate 4934 10222 19.1 14.7

Our approach 4769 10177 15.4 18.3

P400 GS-Male 11234 18058 10.9 34.1

GS-Female 29730 33258 78.3 4.5
Vande Vate 7746 15416 20.5 17.9

Our approach 7487 15277 19.8 18.3

P430 GS-Male 10793 19819 14.3 31.6

GS-Female 38143 41677 92.4 4.26
Vande Vate 18740 24978 49.6 8.2

Our approach 8340 17848 20.2 21.2

Computational Time From computational time front, Gale-Shapley is very effi-

cient O(n2) than Vande-Vate using revised simplex to solve the linear program. In

our approach, one has to solve 2 linear assignment problems and then with differ-

ent weights solve the GP problem. For problem size of 430, the computation time

is as follows: GS-Male (1.025 s), GS-Female (0.5 s), Vande-Vate (CPLEX run-time

117 s) and total time for GP is 300.7 s. These methods though do not address the

multi-objective SM problem are quite efficient and in some cases give comparable

results. Genetic Algorithm [8] took significant time i.e. 24 min for very-small size

problem (20). With our GP approach, we could find Pareto-optimal SM solution in

4.2 s. Thus, our approach gives substantial reduction in the computational time com-

pared to evolutionary algorithm.
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Fig. 1 Chart A shows Pareto-optimal solutions. Chart B shows SM solutions obtained using dif-

ferent approaches

Results Validity To check the validity of our results, we run 10 replications for a

specific test case (P100). Each replication comprised of different data set which was

solved using the process discussed before. We got an average improvement in Equity

score as (30%) and Social Welfare score as (14.5%) compared to both Gale-Shapely

and Vande-Vate approaches.

Pareto-optimal Solutions Fig. 1 displays the Pareto-optimal SM solutions for a par-

ticular problem instance (P100), which are obtained by varying weights in GP. Chart

B in Fig. 1 displays better solutions obtained using GP compared to Gale-Shapley [2]

and Vande-Vate [15].

5 Summary

Applications of stable matching are wide. In practice, other matching criteria such

as fairness and welfare, along with stability play an important role. The local search

methods addressed in the literature such as Genetic Algorithm (GA) and Neigh-

bourhood Search (NS), were found to be quite inefficient for solving even small-

size problems. The classical methods though do not explictly address the SMMO

problem provided better results compared to the GA and NS. In this paper, we pro-

posed a Goal Programming based approach which captures the multi-objective cri-

teria (Equity and welfare) in the SM problem. The target values in GP are obtained

by solving the linear assignment models. Using this approach one can solve large

size SMMO problem. Our approach in comparison with [2] and [15] produced

comparable results and in many cases provided significant improvement in solution

quality.
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On Relation of Possibly Efficiency
and Robust Counterparts in Interval
Multiobjective Linear Programming

Milan Hladík

Abstract We investigate multiobjective linear programming with uncertain cost

coefficients. We assume that lower and upper bounds for uncertain values are known,

no other assumption on uncertain costs is needed. We focus on the so called possibly

efficiency, which is defined as efficiency of at least one realization of interval coeffi-

cients. We show many favourable properties including existence, low computational

performance of determining possibly efficient solutions, convexity of the dominance

cone or connectedness or the efficiency set. In the second part, we discuss robust opti-

mization approach for dealing with uncertain costs. We show that the corresponding

robust counterpart is closely related to possible efficiency.

Keywords Interval linear programming ⋅ Multiobjective linear programming

Robust optimization

1 Introduction

Many real-life problems suffer from various kind of uncertainty, including inexact

measurements, vague, categorized, estimated or even partially unknown data. Deci-

sion making under uncertainty thus became a sound research area; see, e.g., a recent

tutorial [18]. In this paper, we focus on multiobjective linear programming with cost

coefficients to be known with interval uncertainty only.

Consider a multiobjective linear programming (MOLP) problem

min
x∈

Cx, (1)

where C ∈ ℝs×n
and  ≠ ∅ is a convex polyhedron. We assume that it takes the

form of

M. Hladík (✉)

Department of Applied Mathematics, Charles University,

Malostranské Nám. 25, 11800 Prague, Czech Republic

e-mail: hladik@kam.mff.cuni.cz

© Springer International Publishing AG 2017

A. Sforza and C. Sterle (eds.), Optimization and Decision Science: Methodologies
and Applications, Springer Proceedings in Mathematics & Statistics 217,

DOI 10.1007/978-3-319-67308-0_34

335



336 M. Hladík

 ∶= {x ∈ ℝn ∣ Ax ≤ b}, (2)

where A ∈ ℝm×n
and b ∈ ℝm

. Other variants are handled analogously.

Practically, there can hardly exist a feasible solution that minimizes simultane-

ously all objectives. That is why a common concept of a solution is the so called

efficient (or Pareto optimal, or non-dominated) solution [4], which is a solution that

cannot be simultaneously improved in all objectives. We will employ the relation

u ≨ v with the meaning u ≤ v and u ≠ v.

Definition 1 A feasible solution x∗ is called efficient if there is no x ∈  such that

Cx ≨ Cx∗.

An important characterization of efficient solution is that they are exactly the

optimal solutions obtained by positive weighted sum scalarization of (1).

Theorem 1 A point x∗ ∈  is efficient if and only if it is an optimal solution of
minx∈ 𝜆

TCx for some 𝜆 > 0.

1.1 Interval Objectives

An interval matrix is defined as

C ∶= {C ∈ ℝs×n; cij ≤ cij ≤ cij ∀i, j},

where C,C ∈ ℝs×n
are given lower and upper bound matrices, respectively. We will

also employ the notation of the midpoint and the radius of C defined respectively as

Cc ∶=
1
2
(C + C), CΔ ∶= 1

2
(C − C).

Let C be a given interval matrix, and consider a family of MOLP problems (1)

with C ∈ C. The notion of efficiency can be adapted in two basic ways.

Definition 2 A feasible solution x∗ is called possibly efficient if it is efficient to (1)

for at least one C ∈ C. A feasible solution x∗ is called necessarily efficient if it is

efficient to (1) for every C ∈ C.

Next, we denote by P and N the set of possibly and necessarily efficient solu-

tions, respectively. The concepts of possibly and necessarily efficiency were pio-

neered be [2], and many nice properties were explored also by [12, 14, 15].

Necessary efficiency gives a guarantee that the solution remains efficient for any

realization of uncertain data. However, this concept has also serious drawbacks. First,

it is computationally hard even to verify whether a given feasible solution is necessar-

ily efficient [10]. Second, a necessarily efficient solution needn’t exist at all even if
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is nonempty and bounded. This motivated research to develop sufficient conditions

for checking necessary efficiency [8, 9] and heuristics for computing necessarily

efficient solutions [16].

In this paper, we focus more on possible efficiency. We show that it has many

nice properties: A possible efficient solution exists under general assumptions, it can

be easily computed by means of linear programming, and the possible efficiency

dominance relation represents a convex polyhedral cone. We also inspect a close

relation to robust counterparts of robust optimization approaches to solving interval-

valued MOLP problems.

2 Possibly Efficiency

To find a possibly efficient solution is usually a trivial task. It is sufficient to choose

any C ∈ C, and compute any efficient solution of the corresponding realization of the

MOLP problem (1). This approach can, however, fail if we choose a wrong instance

having no efficient solution. The fail-safe method is described in the proof of the

following theorem. It finds a possibly efficient solution or states that there is no one.

Theorem 2 Checking P ≠ ∅ is a polynomial problem.

Proof Let C ∈ C and we will first be interested in the problem of finding weights 𝜆 >

0 such that the weighted-sum scalarization minx∈ 𝜆

TCx has an optimal solution

(Theorem 1). The recession cone of  is described by Ax ≤ 0, so we need to find

𝜆 > 0 such that

min 𝜆

TCx subject to Ax ≤ 0

has the optimal solution in the origin. Equivalently, the system

−𝜆TC = ATv, v ≥ 0, 𝜆 ≥ e

has a solution with respect to variables v, 𝜆. As C varies in C, the vector 𝜆
TC attains

any value in the interval [𝜆TC, 𝜆

TC]. Thus we come to the system

𝜆

TC ≤ −ATv ≤ 𝜆

TC, v ≥ 0, 𝜆 ≥ e.

If it has no solution, then P = ∅. If v, 𝜆 is any solution, then minx∈ 𝜆

TCx is

bounded and its optimal solution lies in P. □

A related question is: Given x∗ ∈ , is it possibly efficient? This question can

also be answered effectively just by checking solvability of one linear system; see

[12] for details.

Below, we discuss topology of the set of possibly efficient solutions.
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Theorem 3 The set P is a union of connected faces of  provided  is bounded.

Proof For any C ∈ C, the set of efficient solutions of the corresponding MOLP prob-

lem (1) is a union of connected faces of . Therefore, P must also be formed by a

union of faces of .

It remains to show connectedness. Let x1, x2 ∈ P, that is, there are instances

C1
,C2 ∈ C, for which they are efficient. Even more, there are 𝜆

1
, 𝜆

2
> 0 such that xi

is an optimal solution of minx∈(𝜆i)TCix, i = 1, 2. Consider a convex combination

of the objective vectors

c(𝛼)T = 𝛼(𝜆1)TC1 + (1 − 𝛼)(𝜆2)TC2
,

where 𝛼 ∈ [0, 1]. We first show that c(𝛼) = 𝜆

TC for some 𝜆 > 0 and C ∈ C by writ-

ing

c(𝛼)T =
s∑

i=1
𝛼𝜆

1
i C1

i∗ + (1 − 𝛼)𝜆2i C2
i∗ ≡

s∑

i=1
𝜆iCi∗,

where 𝜆i ∶= 𝛼𝜆

1
i + (1 − 𝛼)𝜆2i > 0, and

Ci∗ ∶=
𝛼𝜆

1
i

𝜆i
C1

i∗ +
(1 − 𝛼)𝜆2i

𝜆i
C2

i∗ ∈ Ci∗.

Now, consider the parametric LP problem

min c(𝛼)Tx subject to x ∈ .

From the theory of parametric programming [5, 6, 13] it is known, that when moving

by 𝛼 from 0 to 1, then the optimal solutions make a connected set of faces of . □

For the real-valued MOLP problem (1), x∗ ∈  is efficient if and only if it is not

dominated by another feasible solution, that is, there is no x ∈  such that C(x −
x∗) ≨ 0. What is an analogy of this relation in the interval case?

Theorem 4 Let x∗ ∈ . Then the following are equivalent:

(i) x∗ ∉ P,
(ii) ∀C ∈ C ∃x ∈  ∶ C(x − x∗) ≨ 0,

(iii) ∃x ∈  ∀C ∈ C ∶ C(x − x∗) ≨ 0,
(iv) ∃x ∈  ∶ Cc(x − x∗) + CΔ|x − x∗| ≨ 0.

Proof Equivalence (i) ⇔ (ii) is by definition. Consider the interval linear system

C(x − x∗) ≨ 0. Condition (ii) says that the interval system is strongly solvable, that

is, each realization C(x − x∗) ≨ 0 with C ∈ C is solvable. In contrast, condition (iii)
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says that the system possesses a strong solution, that is, a solution that is common

to all systems C(x − x∗) ≨ 0 with C ∈ C. Surprisingly, for standard interval linear

inequalities, these two properties are equivalent (see [11, 17]), yielding condition

(iv) as another characterization. Slight modification of those results generalizes to

the relation “≨” as well by reformulating C(x − x∗) ≨ 0 as standard linear system

C(x − x∗) ≤ y ≤ 0, eTy = −1. □

This theorem shows two interesting properties. First, if x∗ ∈  is not possibly

efficient, there it is dominated by some x ∈  common for all realizations C ∈ C.

Second, the interval analogy of the dominance relation C(x − x∗) ≨ 0 reads Cc(x −
x∗) + CΔ|x − x∗| ≨ 0. Surprisingly, in spite of the absolute value in the description,

the dominance cone represents a convex polyhedral cone.

Theorem 5 The dominance relation of possibly efficiency represents a convex poly-
hedral cone.

Proof The dominance relation (with ≤ instead of ≨) Ccx + CΔ|x| ≤ 0 equivalently

reads

Ccx + CΔz ≤ 0, −z ≤ x ≤ z,

which describes a convex polyhedral cone. □

Despite convexity and polyhedrality of the dominance cone, not all problems can

be effectively solved. The dominance relation Ccx + CΔ|x| ≤ 0 can be reformulated

by linear inequalities as

(Cc + CΔ diag(s))x ≤ 0, s ∈ {±1}n
,

where diag(s) denotes the diagonal matrix with entries s1,… , sn. This system has

exponentially many constraints. Even though some may be redundant, in general a

polynomial characterization by means of linear inequalities in x needn’t exists, as the

following example shows.

Example 1 Let

C =
(
1 [−1, 1] … [−1, 1]

)
.

Then the dominance relation Ccx + CΔ|x| ≤ 0 equivalently reads

x1 ± x2 ± · · · ± xn ≤ 0.

This system consists of 2n−1
inequalities and due to symmetry no one is redundant.
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3 Robust Counterparts

Robust solutions for multiobjective programming was investigated, e.g., in [7]. In

the following sub-sections, we analyze robust counterparts for two basic multiobjec-

tive programming methods. We show that the solutions relate to possibly efficient

solutions, so they needn’t be robust in the traditional meaning.

3.1 Robust Counterpart for the Charnes and Cooper Method

Let x0 ∈  and C ∈ C. The Charnes and Cooper method [3, 4] to compute an effi-

cient solution (and to check efficiency of x0 in one) is based on solving the following

linear program

max eTy subject to C(x − x0) + y ≤ 0, y ≥ 0, x ∈ . (3)

Let (x∗, y∗) be an optimal solution. Then x∗ is an efficient solution. Moreover, x0 is

efficient if and only if the optimal value is 0, or equivalently, y∗ = 0.

Robust approach to uncertain optimization is based on considering such feasible

solutions that are resistant against all realizations of uncertain coefficients [1]. Thus,

the natural robust counterpart to (3) reads

max eTy subject to C(x − x0) + y ≤ 0 ∀C ∈ C, y ≥ 0, x ∈ .

From the results of strong solvability (solvability of each realization of interval val-

ues) of interval systems [11, 17], we rewrite the problem as

max eTy subject to Cc(x − x0) + CΔ|x − x0| + y ≤ 0, y ≥ 0, x ∈ . (4)

The absolute value can be reformulated by means of linear constraints, yielding a

linear program

max eTy subject to Cc(x − x0) + CΔz + y ≤ 0, y ≥ 0, −z ≤ x − x0 ≤ z, x ∈ .

(5)

Relation to possibly efficiency is stated in the following observation.

Theorem 6 Let (x∗, y∗, z∗) be an optimal solution of (5). Then

(i) x∗ ∈ P,
(ii) x0 ∈ P if and only if the optimal value of (5) is 0 (i.e., y∗ = 0).

Proof (i) Suppose to the contrary that there is x ∈  such that Cc(x − x∗) + CΔ|x −
x∗| ≨ 0. Then
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Cc(x − x0) + CΔ|x − x0| + y∗

≤ Cc(x − x∗) + Cc(x∗ − x0) + CΔ|x − x∗| + CΔ|x∗ − x0| + y∗

≨ Cc(x∗ − x0) + CΔ|x∗ − x0| + y∗ ≤ 0.

This is a contradiction with optimality of y∗.

(ii) This is obvious in the light of Theorem 4. □

3.2 Robust Counterpart for the Weighted Sum Scalarization

Weighted sum scalarization is a basic computational approach in multiobjective pro-

gramming. For a particular C ∈ C and positive weights 𝜆 ∈ ℝs
, the linear program

min 𝜆

TCx subject to x ∈ 

always yields an efficient solution (Theorem 1). Let us rewrite the problem equiva-

lently as

min 𝛼 subject to 𝛼 ≥ 𝜆

TCx, x ∈ .

Now, the natural robust counterpart for uncertain values C ∈ C draws

min 𝛼 subject to 𝛼 ≥ 𝜆

TCx ∀C ∈ C, x ∈ .

As in the above case, we have an equivalent form

min 𝛼 subject to 𝛼 ≥ 𝜆

TCcx + 𝜆

TCΔ|x|, x ∈ ,

or formulation as a linear program

min 𝛼 subject to 𝛼 ≥ 𝜆

TCcx + 𝜆

TCΔz, −z ≤ x ≤ z, x ∈ . (6)

This robust counterpart has again a strong relation to possibly efficiency.

Theorem 7 Let (x∗, z∗) be an optimal solution of (6). Then x∗ ∈ P.

Proof Suppose to the contrary that there is x ∈  such that Cc(x − x∗) + CΔ|x −
x∗| ≨ 0. On account of 𝜆 > 0, we get

𝜆

TCc(x − x∗) + 𝜆

TCΔ|x − x∗| < 0.

Since |x − x∗| ≥ |x| − |x∗|, we have

𝜆

TCc(x − x∗) + 𝜆

TCΔ(|x| − |x∗|) < 0,
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from which

𝜆

TCcx + 𝜆

TCΔ|x| < 𝜆

TCcx∗ + 𝜆

TCΔ|x∗|.

This is a contradiction with optimality of x∗. □

4 Conclusion

We discussed properties of possibly efficient solutions of interval-valued MOLP.

In contrast to necessarily efficient solutions, they have many convenient solutions

such as guaranteed existence, low computational cost and others. They also naturally

appear when considering robust counterparts of the interval optimization models.

Acknowledgements The author was supported by the Czech Science Foundation Grant P402/13-

10660S.

References

1. Ben-Tal, A., El Ghaoui, L., Nemirovski, A.: Robust Optimization. Princeton University Press

(2009)

2. Bitran, G.R.: Linear multiple objective problems with interval coefficients. Manage. Sci. 26,

694–706 (1980)

3. Charnes, A., Cooper, W.: Management Models and Industrial Applications of Linear Program-

ming. Wiley, New York (1961)

4. Ehrgott, M.: Multicriteria Optimization, 2nd edn. Springer, Berlin (2005)

5. Gal, T.: Postoptimal Analyses, Parametric Programming, and Related Topics. McGraw-Hill,

Hamburg (1979)

6. Gal, T., Greenberg, H.J. (eds.): Advances in Sensitivity Analysis and Parametric Programming.

Kluwer Academic Publishers, Boston (1997)

7. Goberna, M.A., Jeyakumar, V., Li, G., Vicente-Pérez, J.: Robust solutions to multi-objective

linear programs with uncertain data. Eur. J. Oper. Res. 242(3), 730–743 (2015)

8. Hladík, M.: Computing the tolerances in multiobjective linear programming. Optim. Methods

Softw. 23(5), 731–739 (2008)

9. Hladík, M.: On necessary efficient solutions in interval multiobjective linear programming. In:

Antunes, C.H., Insua, D.R., Dias, L.C. (eds.) CD-ROM Proceedings of the 25th Mini-EURO

Conference Uncertainty and Robustness in Planning and Decision Making URPDM 15–17

April 2010, Coimbra, Portugal, pp. 1–10 (2010)

10. Hladík, M.: Complexity of necessary efficiency in interval linear programming and multiob-

jective linear programming. Optim. Lett. 6(5), 893–899 (2012)

11. Hladík, M.: Weak and strong solvability of interval linear systems of equations and inequalities.

Linear Algebra Appl. 438(11), 4156–4165 (2013)

12. Inuiguchi, M., Sakawa, M.: Possible and necessary efficiency in possibilistic multiobjective

linear programming problems and possible efficiency test. Fuzzy Sets Syst. 78(2), 231–241

(1996)

13. Nožička, F., Guddat, J., Hollatz, H., Bank, B.: Theorie der Linearen Parametrischen Opti-

mierung. Akademie-Verlag, Berlin (1974)

14. Oliveira, C., Antunes, C.H.: Multiple objective linear programming models with interval

coefficients—an illustrated overview. Eur. J. Oper. Res. 181(3), 1434–1463 (2007)



On Relation of Possibly Efficiency and Robust Counterparts in Interval . . . 343

15. Rivaz, S., Yaghoobi, M.A.: Some results in interval multiobjective linear programming for

recognizing different solutions. Opsearch 52(1), 75–85 (2015)

16. Rivaz, S., Yaghoobi, M.A., Hladík, M.: Using modified maximum regret for finding a necessar-

ily efficient solution in an interval MOLP problem. Fuzzy Optim. Decis. Mak. 15(3), 237–253

(2016)

17. Rohn, J.: Solvability of systems of interval linear equations and inequalities. In: Fiedler, M.

et al. (eds.) Linear Optimization Problems with Inexact Data, chapter 2, pp. 35–77. Springer,

New York (2006)

18. Wiecek, M.M., Dranichak, G.M.: Robust multiobjective optimization for decision making

under uncertainty and conflict. In: Gupta, A., Capponi, A. (eds.) Optimization Challenges in

Complex, Networked and Risky Systems, chapter 4, pp. 84–114 (2016) (INFORMS)



Sustainable Manufacturing:
An Application in the Food Industry

Maria Elena Nenni and Rosario Micillo

Abstract This paper aims at providing an enhancement to the decision support
systems for sustainable manufacturing. We thus propose a hierarchical multi-level
model to evaluate the sustainability of the production process. Our work tries to fill
the gap in literature as it takes in account all the sustainability dimensions (eco-
nomic, environmental and social one as well). Moreover, it is an effective decision
support system as it can evaluate the impact of improvements to optimize the
sustainability. We applied the model in a company operating in the food industry,
by running the Analytic Hierarchy Process (AHP) method followed by a sensitivity
analysis to test the model robustness.

Keywords Sustainable operations ⋅ Triple-bottom-line ⋅ Analytic hierarchy
process (AHP)

1 Introduction

Managing operations in a sustainable manner has become an increasing concern
and during the last years, there has been a proliferation of papers on it. One of the
greatest scholar in sustainability has been Seuring, who has been constantly
working on literature reviews and developing conceptual models since 2008 [14].
Other relevant contributions have focused on theory building [3], case analysis [11]
and surveys [4], until to the interesting research by O’Rourke (2014) concerning
how predicting and preventing unsustainable practices [10].

Otherwise previous researches are still failing in integrating the
triple-bottom-line dimensions, as they still give priority to the economic dimension,
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than to the environmental one. In any case the social dimension is very often
neglected [14].

Moreover, the attention is focused on the supply chain, as main source of risks of
unsustainable performance. On the contrary, in our opinion it is important to realize
that it is impossible to achieve a sustainable supply chain without sustainable firms
and the contribution of manufacturing can be relevant.

In view of the above, we aim at exploring the relationship between business
decision-making and manufacturing sustainability as our research is close to
decisions for the implementation of sustainable programs at the plant level, con-
sidering the impact of environmental and social programs simultaneously with the
economic one.

In this work, as first step of our research study, we aimed at individuating
indicators for evaluating manufacturing sustainability. Developing metrics for
sustainable manufacturing is critical to enable manufacturing companies to quan-
titatively measure the sustainability performance in specific manufacturing pro-
cesses [8].

Several measures and metrics by means of indicators, indices, and frameworks
for analysing sustainable manufacturing have also been developed. Basically,
previous papers with this goal returned frameworks that are not easily operational,
mostly due to the great amount of required data, or not consistent with the
triple-bottom-line approach. We summarized the complete analysis of these papers
in Table 1.

The model being proposed here builds on the previous research of Galal et al. in
2015 [5] but it enlarges the goal. In fact, Galal aims to maximize sustainability
through the optimization of the product mix, while our model can evaluate the
sustainability level of a production process in the planning period considering the
resources from each operation. Successively through an Index Analysis it is pos-
sible to identify critical areas and to select the most convenient one for optimization
of the outcomes.

We used Analytic Hierarchy Process (AHP) to evaluate the weight of each index
of the same category. We developed then a hierarchical structure of indicators and

Table 1 Summarization of past literature and analysis of main issues

Main issues Papers

Not uniform measures for the three dimensions Letmathe and
Balakrishnan [8]
Tsai et al. [15]
Rădulescu, et al. [12]

The model can’t really support the optimization of the
manufacturing processes

Jayal et al. [6]

Social dimension is neglected Li et al. [9]
Metrics are not properly interrelated Vimal et al. [16]

Joung et al. [7]
Tools for sustainability evaluation are not adequately used Samuel et al. [13]

Al-Sharrah et al. [1]
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adopted an AHP approach for attaching priorities to the elements in the structure.
A sensitivity analysis has been performed as well to test the model robustness.

The model has been then applied in a company of the food industry. Even if
sustainability is a major issue for every industry, food and fashion ones are mainly
interested because they are under constant scrutiny of the public attention and they
have moreover demonstrated impacts that makes them unstainable [2].

2 The Model

The index used as the objective function is composed of different hierarchal levels.
At the first level, there are three pillars of sustainability, the Environmental, Eco-
nomic and Social dimensions. Each of them is composed of additional indexes and
sub-indexes of inferior hierarchical levels which have been further split in separate
groups. The value of each index and sub-index has been determined by the
resources used during the process and appropriate weight. The weight represents the
relative value that stakeholders assign to an index in comparison with other indexes
of the same group. We used AHP to evaluate the weight of each index of the same
category. The objective function can assume a value between 0 and 1; the complete
sustainability of the process would therefore assume value 1. Moreover, the sum of
all indexes in each group multiplied by proper weight can assume a value between 0
and 1.

After the definition of objective function, the constraints of typical production
were introduced in the model. Those constraints limit the feasibility area and rep-
resent the minimum or maximum human or material resources available for the
process.

Firstly, for the application of our model we chose a product and analysed
complete production process ranging from raw materials to retail market.

Secondly, we made the following assumptions: (i) Only one type of emissions is
considered, which is CO2; (ii) Demand is deterministic and constant; (iii) Exact
amounts of raw material required are known.

Thirdly, through the application of the triple bottom line we created the indexes
(see Appendix) and we split them into different levels and groups creating a hier-
archical scale. Specifically, we attributed one level to Economic and Social
dimensions and two levels to Environmental dimension as shown in the Fig. 1.

Through the application of the Analytic Hierarchy Process (AHP) we could
calculate the weight of the indexes, which was attributed by stakeholders. The value
of the weight depends on the sample of stakeholders taken in consideration (age,
social status, cultural level, etc.).

At this point we define the feasibility area by introduction of constraints that
limit the objective function to be within the maximum amount of resources (see
Appendix).
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According to hierarchy scale, indexes and sub-indexes below the three main
dimensions are aggregated as reported:

IENV = ∑
4

i=1
∑
ni

j=1
w1ijI1ij

Sustainable 
manufacturing

Environmental

Economic

Social

Energy

Water

Materials

Emission

Renewable 
energy

Energy used

Recyclable 
materials

Hazardous 
materials

Scraps

Direct

Indirect

Profit

Defective 
products

Range of 
products

Budget for 
training

Overtime (%)

Labour cost

Fig. 1 Hierarchical scale used in the objective function
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IEC = ∑
3

l=1
w2lI2l

ISOC = ∑
3

l=1
w3lI3l

The objective function is being expressed as:

SI =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

I2ENV + I2EC + I2SOC
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑4
i=1 ∑

ni
j=1 w1ij

� �2
+ ∑3

l=1 w2l

� �2
+ ∑3

l=1 w3l

� �2
r

The outcome of this function will be the level of sustainability of the process in
percentage.

In Table 2 we report the Consolidated Global Priorities, which are crucial to
recognize the key areas for process sustainability maximization, and Index values
multiplied by Global Consolidated Priorities. At this point, through an analysis of
the results and consideration of the weights of different indexes we can introduce
new data and get a forecast of the effect of possible investment on process sus-
tainability. Obviously, keeping the resources that we are planning to invest con-
stant, we will be reaching the maximum improvement of sustainability when
targeting the index with the highest weight.

Table 2 Consolidated global priorities and index values multiplied by global consolidated
priorities

Indexes Consolidated global priorities
(GCP) (%)

Index values multiplied by GCP
(%)

Renewable energy 8 1.6
Energy used 2.7 2.6
Recyclable
materials

0.5 0.02

Hazardous
materials

1.5 0.8

Scraps 1.5 1.5
Direct emission 2.7 2.4
Indirect emission 8 0.2
Water 3.6 2.9
Profit 36.4 31.1
Defective products 6 5.8
Range of products 14.8 5.9
Budget for
training

2.3 0.01

Overtime 7.7 5.1
Labour cost 4.2 0.1
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3 Conclusion and Future Work

Findings from our work can be relevant for assessing the operations sustainability
in a plant or developing any multi-criteria decision system aiming at maximizing
the sustainable performance. This has implications for decisions and processes
associated with all aspects of operations management including strategy, design,
planning and control, and improvement.

Appendix

Indices:

i Elements of the first hierarchy level of environmental indicators;
j Elements of the second hierarchy level in environmental indicators;
k Product type, k = 1, …, N;
l Elements of the first hierarchy level in economic and social indicators;
p Input type;
m Hazardous material type;

Parameters:

MHk Man-hours/unit weight of product k;
N Number of products;
βk Ratio of recyclable products;
δmk Amount of hazardous material m in product k (kg);
RT Available regular time (h);
Wk Amount of water consumed per unit weight of product k (m3/kg);
WWk Amount of waste water per unit weight of product k (m3/kg);
QCk Amount of CO2 generated for producing one unit weight of product k;
cp1 Emissions from 1 kWh from conventional generation (kg CO2/KWh);
cp2 Emissions for transportation of a unit weight per unit distance (kg CO2/

tKm);
λk Percentage of defects of product k;
Dk Demand for product k (kg);
ek Energy consumed in producing a unit weight of product k (KWh/kg);
Emin Minimum allowable percentage of renewable energy used (%);
Emax Maximum percentage of renewable energy used (%);
B Available working capital (Euro);
Ce Cost of 1 kWh of electricity via renewable resources (Euro/KWh);
Cc Price of electricity purchased from the grid (Euro/KWh);
qpk Quantity of input type p in product k (%);
cp Unit cost of input type p (Euro/kg);
pk Selling price of the unit weight of product k (Euro/kg);
dk Transportation distance of product k (km);
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Q The maximum possible number of diversified products;
M Total manpower;
fk Product fraction;
El Labor rate for regular time (Euro/working hours);
Eo Labor rate for over time (Euro/working hours);
Hm Maximum permissible amount of hazardous material of type m (kg);
Ovmax Maximum allowed overtime expressed as a % of regular time (%);
Btmin Minimum training budget (Euro);
W1ij Weight of sub-indicator i of the j-th element of the environ. indicators
W2l Weight of the l-th element of economic indicators;
W3l Weight of the l-th element of social indicators;

Decision Variables:

Bt Training budget (Euro);
xk Amount produced from product k (kg);
er Renewable energy used as the percentage of total energy necessary to produce

a unit weight of product (%);
rk Amount of product k to be recycled (kg);
sk Amount of product k to be scrapped (kg);
Ov Amount of overtime needed (h);

Indexes

1. Renewable energy: I111 =
er ∑k xkek
∑k xkek

2. Energy used:

I112 = 1−
∑k xkek½Ceer +Cc 1− erð Þ�

∑k ∑p cpqpkxk + ∑k ekxk Ceer +Ccð1− erÞ½ �+RT ×M ×El

+E0½maxð∑k MHkxk −RT ×M, 0Þ�

3. Recyclable materials: I121 = 1− ∑k sk
∑k ∑p qpkxk

4. Hazardous materials: I122 = 1− ∑k ∑m δmkxk
∑k ∑p Hmxk

5. Scraps: I123 = fk = xk
∑k xk

∀k, xk ≠ 0

6. Direct CO2 emissions:

I131 = 1−
∑k QCkxk

∑k QCkxk + cp1 ∑k xkek 1− erð Þ+ cp2 ∑k dkxk
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7. Indirect CO2 emissions:

I132 = 1−
cp1 ∑k xkek 1− erð Þ+ cp2 ∑k dkxk

∑k QCkxk + cp1 ∑k xkekð1− erÞ+ cp2 ∑k dkxk

8. Water: I14 = 1− ∑k WWKxk
∑k WKxk

9. Profits

I21 =

∑k xkpk − f∑k ∑p cpqpkxk + ∑k ekxk Ceer +Ccð1− erÞ½ �+RT ×M ×El

+E0½maxð∑k MHkxk −RT ×M, 0Þ�+Btg
∑k xkpk

10. Defective products: I22 = 1− ∑k λkxk
∑k xk

11. Range of products: I23 =
∑N

k=1 fk lnðfkÞ
lnð1 ̸QÞ

12. Budget for Training.

I31 =
Bt

∑k ∑p cpqpkxk + ∑k ekxk Ceer +Ccð1− erÞ½ �+RT ×M ×El

+E0½maxð∑k MHkxk −RT ×M, 0Þ�+Bt

13. Overtime: I32 = 1− maxð∑k MHkxk − RT × M, 0Þ
Ovmax

14. Labour cost:

I33 =
RT ×M ×El +E0½maxð∑k MHkxk −RT ×M, 0Þ�

∑k ∑p cpqpkxk + ∑k ekxk Ceer +Ccð1− erÞ½ �+RT ×M ×El

+E0½maxð∑k MHkxk −RT ×M, 0Þ�+Bt
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Part VIII
Optimization Under Uncertainty



The Optimal Energy Procurement Problem:
A Stochastic Programming Approach

P. Beraldi, A. Violi, G. Carrozzino and M.E. Bruni

Abstract The paper analyzes the problem of the optimal procurement plan at a

strategic level for a set of prosumers aggregated within a coalition. Electric energy

needs can be covered through bilateral contracts, self-production and the pool. Sign-

ing bilateral contracts reduces the risk associated with the volatility of pool prices

usually incurring higher average prices. Self-producing also reduces the risk related

to pool prices. On the other hand, relying mostly on the pool might result in an

unacceptable volatility of procurement cost. The problem of defining the right mix

among the different sources is complicated by the high uncertainty affecting the para-

meters involved in the decision process (future market prices, energy demand, self-

production from renewable sources). We address this more challenging problem by

adopting the stochastic programming framework. The resulting model belongs to

the class of two-stage model with recourse. The computational results carried out by

considering a real case study shows the validity of the proposed approach.

Keywords Energy procurement ⋅ Stochastic programming ⋅ Risk management

1 Introduction

Increasing energy prices and growing concern towards environmental aspects rep-

resent driving forces pushing towards the definition of an optimized management of

the electric energy resources. Nowadays, various local production/consumption units
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(prosumers) tend to form coalitions that can better exploit the available resources to

satisfy the aggregated energy needs. The aggregator, seen as the entity responsible

for managing available resources in an integrated fashion, is thus called to define

the procurement plan that minimizes the overall costs. Energy demand can be sup-

plied by three main procurement sources: bilateral contracts (with fixed prices), self-

production and the day-ahead electricity market (DAEM). However, the reduction of

the risk associated with the volatility of market prices usually comes at the cost of

high average prices for the signed contracts. Self-producing also reduces the risk

related to pool price. On the other hand, relying mostly on the market might result

in an unacceptable volatility of procurement costs. Hence, the aggregator faces the

problem of defining the optimal procurement by the three different sources to sat-

isfy the energy requirement at the minimum cost. The problem has a strategic nature

since the selection of the bilateral contracts along with the committed energy amount

should be defined in advance with the respect to the time period in which they are

actually used. Moreover, these determined values may represent input data for other

problems concerning the definition of the optimal management plan of the available

resources for medium and short-time horizons.

One of the main challenge in dealing with the optimal procurement problem is

represented by the uncertainty. For example, the required energy demand is typically

difficult to exactly predict since it refers to future needs. Market prices are known

only after all producers and consumers submit their selling and bidding curves [1],

and, thus, they are unknown in advance. Furthermore, the power generation from

renewable resources can not be accurately predicted because it can depend, for exam-

ple, on the weather conditions.

In order to appropriately address this challenging problem, we propose a stochas-

tic programming approach (see [2] for a general introduction of SP) that provides the

aggregator with a proactive procurement plan that takes simultaneously into account

“all the possible circumstances” that can occur in the future. Recourse actions can

be also considered to guarantee the satisfaction of the stochastic demand constraints

but they are highly penalized in the objective function. Some examples of application

in the energy market field are reported in [3–5]. As far as the specific procurement

problem is concerned, we observe that most of the contributions that analyze the

problem from both a producer’s and/or a consumer’s viewpoint are deterministic

(see, for example, [6, 7], and the references therein). Carrion et al. [8] apply sto-

chastic programming to optimality solve the electricity procurement problem faced

by a large consumer under electricity price uncertainty. The authors also propose

the use of the Conditional Value at Risk (CVaR) to show the trade-off between risk

and expected cost, but they do not consider uncertainty affecting electricity demand.

Beraldi et al. in [9] analyze the problem under electricity demand and price uncer-

tainty. The two-stage model, referring to a short-term time horizon, is solved in a

rolling-horizon fashion.

Differently from the above referred papers, here we analyze the problem from the

viewpoint of an aggregator, which role has been already stated. Since the model has

a general validity, we also consider the production of energy from renewable sources

and the possibility to sell the energy in excess to the DAEM. Moreover, we study the
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impact related to the introduction of the risk in the decision-making process, empha-

sizing the difference between risk-neutral and risk-averse position. The definition of

this more involved stochastic programming problem along with its application to a

real case study defined for an Italian aggregation may be viewed as the main contri-

butions of the present work. The rest of the paper is organized as follows. Section 2

introduces the stochastic programming formulation for the procurement problem.

Section 3 reports on the computational experiments carried out the assess the pro-

posed approach. Concluding remarks and future research developments can be found

in Sect. 4.

2 Problem Formulation

We consider a time horizon of a year that can be considered a “usual” planning hori-

zon when the procurement plan for a coalition at a strategic level is defined. Month

t is a single elementary period. We assume that the single hours of the different days

can be classified in a set F of time blocks (e.g. peak, intermediate and off peak). We

assume that the coalition energy needs can be covered by bilateral contracts (BC),

self-production (from renewable and/or non renewable) units and the DAEM. Let N
be the set of bilateral contracts to be evaluated. For each i ∈ N, we denote by Bitf the

unit price for purchasing energy from the contract i for the block f of month t. We

also consider a fixed component FBi that accounts for administrative costs. While

the bilateral contract prices are known, market prices, aggregated energy needs and

production from renewable sources are not known in advance. In order to explicitly

address the inherent stochastic nature of the optimal procurement problem, we have

adopted the stochastic programming (SP) framework. Here, the uncertain parame-

ters are modeled as random variables defined on a given probability space (𝛺, F ,

P). Under the assumption of discrete distributions, the future uncertain evolution of

DAEM prices, electricity demands and renewable production is represented by a set

S of scenarios, each occurring with probability 𝜋s. We denote by Ds
tf the uncertain

overall demand and by Ps
tf the unitary price from purchasing energy from the market

at month t and block f under scenario s. Our model also considers the possibility to

sell energy in excess to the demand, so Ws
tf is the selling price for the market zone in

which the coalition is located. We observe that demand and supply prices could be

different. As far as the production from renewable sources, we denote by Rs
tf the pro-

duction under scenario s for the time-block configuration. The scenario set provides

the input data for the proposed SP formulation. In particular, we adopt a two-stage

framework, where the first-stage decisions are related to procurement plan, whereas

second-stage decisions model corrective actions that guarantee the fulfillment of the

energy needs by drawing energy from the balance market. We denote with Vs+
tf and

Vs−
tf the cost related to these actions, usually much less convenient than the DAEM

prices. The following decisions formalize the procurement plan:
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∙ xitf the amount of electricity to purchase through contract i, time t, block f ;
∙ zi binary decision variable (1 if the contract is selected and 0 otherwise);

∙ ytf ,wtf amount to buy/sell from/on the DAEM for month t and block f ;
∙ Qtf amount to produce at time t and block f from controllable production units;

∙ 𝛥
s−
tf , 𝛥

s+
tf the amounts of energy required to balance (excess/shortage) the aggre-

gated needs under scenario s.

The proposed model takes into account a set of constraints that represent real-life

operating conditions.

∑

i∈N
xitf + ytf − wtf + Qtf + 𝛥

s+
tf − 𝛥

s−
tf = Ds

tf − Rs
tf ∀t,∀f ,∀s (1)

Qtf ≤ Qmax
f ∀t,∀f (2)

wtf ≤ Qtf + Rs
tf ∀t,∀f ,∀s (3)

LBitf zi ≤ xitf ≤ UBitf zi ∀i,∀t,∀f (4)

∑

i∈N
zi ≤ Nmax

(5)

Constraints (1) represent the energy balance for each time block of each month and

under each scenario: the overall quantity procured, by bilateral contracts, by DAEM

and produced by conventional systems, minus the energy eventually sold, should sat-

isfy the overall demand, reduced by the production from renewable plants, also con-

sidering the possibility of an adjustment through bids on secondary markets. Con-

ditions (2) are capacity limits on the quantity that can be produced by conventional

systems, while constraints (3) impose that the energy sold on the DAEM cannot be

greater than the self-produced energy. The energy bought form each bilateral con-

tract is bounded by means of (4). With constraint (5) a maximum number of active

bilateral contracts is set.

The final aim of the aggregator is to minimize the total expected procurement cost,

but at the same time the minimization of the risk related to a long term planning. We

consider as risk the excess of costs w.r.t. a target for the entire planning horizon. The

two goals can be potentially conflicting in a scenario based formulation, so we have

adopted a “mean-risk” structure for the objective function:

min

[
(1 − 𝜆)

∑

s∈S
𝜋sCs + 𝜆CVaR

𝛽

]
, (6)

where the first term is the expected value of the overall cost, CVaR
𝛽

is a risk measure

and 𝜆 is a parameter representing the risk-aversion attitude of the decision-maker.

The greater the value of 𝜆 the more “conservative” the solution. The overall cost

under each scenario is given by the sum of different components:
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Cs = CBC + CProd + CMKT
s + CErr

s ∀s (7)

CBC =
∑

i∈N

[
∑

t∈T

∑

f∈F
Bitf xift + FBizi

]
(8)

CProd =
∑

t∈T

∑

f∈F
PCtf Qtf (9)

CMKT
s =

∑

t∈T

∑

f∈F
(Ps

tf ytf −Ws
tf wtf ) ∀s (10)

CErr
s =

∑

t∈T

∑

f∈F
(Vs+

tf 𝛥
s+
tf − Vs−

tf 𝛥
s−
tf ) ∀s. (11)

CBC
is the cost related to the bilateral contracts, and is made of both a variable and

a fixed amount, as already stated, while CProd
represents the cost of the energy pro-

duced by conventional production systems. These cost components are deterministic,

since they do not depend on the outcomes of uncertain parameters. On the contrary,

CMKT
s is the net cost (or profit) for market operations under scenario s and CErr

s rep-

resents the cost for the energy balance on the secondary market. As regards the risk

function, we have chosen the Conditional Value at Risk for a specific confidence

level 𝛽 (usually set at 95%), a modern and widely-adopted risk measure (see [10,

11]), which allows to have an accurate measure of potential losses and can be lin-

earized as follows:

CVaR
𝛽
= VaR

𝛽
+ 1

1 − 𝛽

∑

s∈S
𝜋s𝜎s (12)

𝜎s ≥ Ls − VaR
𝛽

∀s (13)

Here, Ls represents the possible “loss”, that is an overall cost higher than a fixed

target, and 𝜎s is an auxiliary positive variable. The resulting model belongs to the

class of mixed-integer multiperiod two-stage stochastic programming problems. It is

worthwhile noting that the binary variables are just related to the selection of bilateral

contracts, thus their number is limited for real-life decision problems.

3 Computational Experiments

In this section, we report on the computational experiments carried out to assess

the validity of the proposed approach. The model has been implemented by using

GAMS 24.7.4
1

as algebraic modeling system, with CPLEX 12.6.1
2

as solver for the

mixed integer linear problems. All the test cases have been solved on a PC Intel

Core I5 (2.3 GHz) with 4 GB of RAM. As testbed for the computational experience

1
http://www.gams.com.

2
https://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/.

http://www.gams.com
https://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
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we have considered a “virtual” coalition, made up of a large electricity prosumer,

University of Calabria, which has several independent departments, and one pho-

tovoltaic (PV) plant, also located in Calabria, with a rated power of about 2 MWp.

A conventional production system is available as well, with a capacity of 2 MW.

We have considered a planning horizon of 12 months, starting from January 2017,

and 3 time blocks for each month, according to the Italian electricity market. The

expected value of coalition demand, production from the renewable plant and the

market prices have been calculated by analyzing the available historical series of

these data. The scenario set for each instance of the problem has been generated

by using a Monte Carlo technique, which, as regards electricity prices, performs

a Mean Reverting Process approach (see [12]). The overall demand and production

from renewable systems have been derived starting from the hourly expected demand

plus increments/decrements. We have assumed that energy demand and production

are independent from market prices, according to the “price-taker” assumption. This

mutual independence allows to generate the whole scenario set by merging the sin-

gle scenario sets through the Cartesian product. For the computational experience

we have considered the availability of 10 bilateral contracts, with different charac-

teristics, as reported in Table 1.

Moreover, each bilateral contract has a different price variability along time: just

for example, BC2 energy price in F2 goes from 34.6 e/MWh in January to 47.6

e/MWh in February. Bilateral contracts differ also for lower and upper bound on

the procured energy for each time block of each month. The complete data of the

bilateral contracts are available in the technical report [13]. The differences between

the available bilateral contracts call for the selection of a mix of them that bet-

ter can satisfy the coalition needs. Moreover, we have considered as cost target

the amount for satisfying the “net” overall energy needs just by purchasing on the

DAEM. Preliminary computational experiments have been carried out in order to

validate the decision support the model can provide. First of all, it provides manage-

rial insights about the energy procurement process of the entire coalition. Figure 1

shows the solution obtained for a value of the risk-aversion parameter (𝜆) equal to

0.5, in terms of procurement decisions. The optimal mix between the possible pro-

curement opportunities, is quite variable, on both months and time blocks. This is

due to the great flexibility that the proposed model provides. As regards the energy

procured by bilateral contracts, only 5 contracts have been activated, as reported in

Fig. 2, which shows also the consumption planning for each month in time bock F1.

Table 1 Available bilateral contracts

BC1 BC2 BC3 BC4 BC5 BC6 BC7 BC8 BC9 BC10

Average unit price (e/MWh) F1 42.3 42.3 42.3 41.6 41.4 42.0 40.9 40.8 40.9 40.8

F2 43.3 43.3 43.3 43.7 42.4 41.3 41.3 40.9 40.9 41.4

F3 35.8 35.7 35.6 35.6 35.1 34.6 34.5 34.5 34.4 34.7

Fixed cost (e) 650 675 575 375 725 650 625 500 550 850
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Fig. 1 Energy procurement solution for 𝜆 = 0.5

Fig. 2 Energy procured from bilateral contracts for F1

The mean-risk structure of the objective function makes the model also a use-

ful tool to manage and control the risk exposure of the coalition in terms of cost

under adverse scenarios. Figure 3 reports the efficient frontier, that is a set of “non-

dominated” solutions, obtained for different values of the risk aversion parameter

𝜆. We observe that a conservative attitude (high values of 𝜆) corresponds to a more

expensive procurement plan, while a more risky strategy can lead to more conve-

nient solutions, but can expose to higher losses. This result shows that our model

can allow to implement different policies or to find the best trade-off between risk

and economic convenience.
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Fig. 3 Efficient frontier

4 Conclusions

The paper has addressed the problem of the optimal energy procurement faced by

a coalition of prosumers at a strategic level. This decision plan can be viewed as

the first step of a more complex and dynamic management process, including also

tactical and operational phases, such as the day-by-day market bid definition. The

proposed model provides the aggregator of the coalition with a decision support

tool for the long-period procurement planning, in particular for the bilateral con-

tracts selection, which usually are settled in advance for several months. Moreover,

our formulation considers the uncertain nature of energy demand, market prices and

production from renewable systems, and allows to control the risk related to this

uncertainty. Preliminary computational experiments have shown the value of the

proposed decision support and its effectiveness as a tool for the risk management.
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Best and Worst Values of the Optimal Cost
of the Interval Transportation Problem

R. Cerulli, C. D’Ambrosio and M. Gentili

Abstract We address the Interval Transportation Problem (ITP), that is, the trans-

portation problem where supply and demand are uncertain and vary over given

ranges. We are interested in determining the best and worst values of the optimal cost

of the ITP among all the realizations of the uncertain parameters. In this paper, we

prove some general properties of the best and worst optimum values from which the

existing results derive as a special case. Additionally, we propose an Iterated Local

Search algorithm to find a lower bound on the worst optimum value. Our algorithm

is competitive compared to the existing approaches in terms of quality of the solution

and in terms of computational time.

Keywords Transportation problem ⋅ Uncertainty ⋅ Interval optimization

1 Introduction

The Transportation Problem (TP) is a well-known optimization problem which has

been studied for decades [2, 3]. The TP belongs to the general class of network flow

problems [4–7] and consists of finding the minimum cost transportation plan to ship
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goods from a set of suppliers to a set of customers while satisfying all customer

demand and not exceeding the available capacity of the suppliers. Several contri-

butions in the literature have addressed the TP and its variants by assuming supply

and demand parameters to be known with certainty. However, in the real world, the

precise values for these parameters are usually not known (i.e., level of demand and

supply, as well as the underlying network structure, could change over time). In this

paper, we focus on the specific transportation problem where supply and demand are

assumed to vary within a prespecified interval, namely the Interval Transportation

Problem (ITP). Under this assumption, the total transportation cost will also vary

over a range. Our focus is on determining the best and worst values of the optimal

cost of ITP among all the realizations of the uncertain parameters. This problem is

known in the interval literature as the Optimal Value Range Problem [8]. In particu-

lar, it has been proved that finding the best optimum value of the objective function

of a general linear programming problem with interval right-hand side is a poly-

nomially solvable problem, while finding the worst optimum value is an NP-hard

problem [9]. To the best of our knowledge, there exist only four contributions in the

literature which specifically address the optimal value range problem for the Interval

Transportation Problem. Chanas [10] presented a transformation technique to trans-

form the ITP into a classical TP to find the best value of the optimal cost. Liu [11]

constructed two mathematical models to find the best and worst optimum values.

Specifically, he provided a linear programming problem formulation whose solution

provides the best optimum, and he provided a non-linear mathematical formulation

to determine the worst optimum. Juman and Hoque [12] provided a heuristic solution

algorithm to determine a lower bound on the worst optimum. Xie et al. [1] provided

a genetic algorithm for the same problem. Additionally, Xie et al. [1] provided a nec-

essary and sufficient condition under which finding the worst optimum becomes a

polynomially solvable problem.

The contribution of this paper is twofold: (i) we prove some general properties

of the worst value of the optimal cost from which the existing results in [1] derive

as a special case; (ii) we propose an Iterative Local Search algorithm to find a lower

bound on the worst optimum value.

The remainder of the paper is organized as follows. Section 2 introduces the

formal definition of the problem and some needed notations. Section 3 describes

some general properties of the problem which constitute the basis for our algorithm

described in Sect. 4. Our computational results are presented in Sect. 5, and further

research directions are discussed in Sect. 6.

2 Problem Definition

Let I = {1, 2,… ,m} denote the set of m suppliers, and J = {1, 2,… , n} the set

of n customers. Available supply at supplier i and required demand at customer j
are uncertain quantities which vary over predefined non-negative ranges, [si, si] and



Best and Worst Values of the Optimal Cost of the Interval Transportation Problem 369

[dj, dj], respectively. Finally, let cij ≥ 0 denote the unit transportaton cost from sup-

plier i ∈ I to customer j ∈ J. The Interval Transportation Problem (ITP) consists

of finding the minimum cost transportation plan for shipping goods from each sup-

plier to each customer such that capacity at each supplier is not exceeded and each

customer demand is satisfied. The mathematical formulation of the problem is the

following:

(ITP) ∶ min
∑

i∈I,j∈J
cijxij (1)

s.t. (2)∑

j∈J
xij ≤ [si, si] ∀i ∈ I (3)

∑

i∈I
xij = [dj, dj] ∀j ∈ J (4)

xij ≥ 0 ∀j ∈ J,∀i ∈ I (5)

where xij is the amount of goods transported from i to j. We define the pair (𝐬,𝐝) to be

a scenario of (ITP). Specifically, 𝐬 is an m-dimensional vector such that si ≤ si ≤ si
for each of its components, while 𝐝 is an n-dimensional vector such that dj ≤ dj ≤

dj for each of its components. Given a scenario (𝐬,𝐝), we denote by TP(𝐬,𝐝) the

corresponding classical transportation problem, whose formulation is the following:

TP(𝐬,𝐝) ∶ min
∑

i∈I,j∈J
cijxij (6)

s.t. (7)∑

j∈J
xij ≤ si ∀i ∈ I (8)

∑

i∈I
xij = dj ∀j ∈ J (9)

xij ≥ 0 ∀j ∈ J,∀i ∈ I (10)

We denote by F(𝐬,𝐝) the feasible region of TP(𝐬,𝐝) and by z(𝐬,𝐝) its optimal trans-

portation cost. Note that F(𝐬,𝐝) ≠ ∅ if and only if
∑

i∈I si ≥
∑

j∈J dj. We are inter-

ested in determining the range [z, z] where:

z = {min z(𝐬,𝐝) ∶ ∀(𝐬,𝐝) s.t. F(𝐬,𝐝) ≠ ∅} (11)

z = {max z(𝐬,𝐝) ∶ ∀(𝐬,𝐝) s.t. F(𝐬,𝐝) ≠ ∅} (12)

The range [z, z] constitutes the best and the worst optimal costs, respectively, of

ITP computed among all the feasible scenarios. Chanas [10] and Liu [11] showed

that z can be determined in polynomial time by solving an appropriate linear pro-
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gramming problem. Xie et al. [1] showed that z can be found in polynomial time

under the assumption that
∑

i∈I si ≥
∑

j∈J dj, and its value is such that z = z(𝐬,𝐝).
Additionally, Xie et al. [1] provided a genetic algorithm to find a lower bound of z,
that is, a value ̂z ≤ z.

3 Properties of z

In this section, we prove some general properties of problem (12). These properties

constitute the basis for our Iterated Local Search algorithm for finding a lower bound

of z.
The lemma below follows directly from the fact that if the sum of the upper bounds

of the supplier capacity is equal to the sum of the lower bounds of the demand, then

the only feasible scenario is (𝐬,𝐝) and z = z:

Lemma 1 Given ITP such that
∑

i∈I si =
∑

j∈J dj, then z = z(s, d).

Lemma 2 below states that if we consider scenarios with the same demand values,

then the optimal value of the objective function increases (or remains constant) when

the level of the supply decreases.

Lemma 2 If (𝐬1,𝐝) and (𝐬2,𝐝) are two scenarios of ITP such that s1i ≤ s2i , ∀i ∈ I,
then z(𝐬1,𝐝) ≥ z(𝐬2,𝐝).

Proof If s1i ≤ s2i , ∀i ∈ I then F(𝐬1,𝐝) ⊆ F(𝐬2,𝐝) and hence the thesis follows. □

Theorem 1 below states that if we consider scenarios with the same supply values,

then the optimal value of the objective function decreases (or remains constant) when

the level of the demand decreases.

Theorem 1 If (𝐬,𝐝1) and (𝐬,𝐝2) are two scenarios of ITP such that d2j ≤ d1j , ∀j ∈ J,
then z(𝐬,𝐝2) ≤ z(𝐬,𝐝1).

Proof Let us assume by contradiction that z(𝐬,𝐝2) > z(𝐬,𝐝1) and let x2 and x1 be the

corresponding optimal points. By the hypothesis d1j ≥ d2j , ∀j ∈ J, w.l.o.g. we can

assume that there exists at least one customer j∗ such that d1j∗ > d2j∗ . Let us consider

the quantity 𝛥j∗ = d1j∗ − d2j∗ > 0. Starting from x1, we can build a new feasible solu-

tion x̂ for the scenario (𝐬,𝐝2) as follows:

∙ x̂ij = x1ij, ∀j ∈ J, j ≠ j∗, ∀i ∈ I
∙ x̂ij∗ = x1ij∗ − 𝛿i,∀i ∈ I, such that: 𝛿i ≥ 0,∀i ∈ I, x̂ij∗ ≥ 0,∀i ∈ I,∀j ∈ J and

∑
i∈I

𝛿i = 𝛥j∗ .

The new solution x̂ is feasible for (𝐬,𝐝2) since
∑

j∈J x̂ij ≤
∑

j∈J x1ij ≤ si, ∀i ∈ I and
∑

i∈I x̂ij = d2j , ∀j ∈ J by construction. Let us denote by ẑ =
∑

i∈I,j∈J cijx̂ij. Since the
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cost coefficient cij ≥ 0,∀i ∈ I,∀j ∈ J, it follows that ẑ < z(𝐬,𝐝1). This would imply

that ẑ < z(𝐬,𝐝2) which is a contradiction since z(𝐬,𝐝2) is the minimum cost for sce-

nario (𝐬,𝐝2). □

From Lemma 2 and Theorem 1, the theorem proved in [1] results as a corollary:

Corollary 1 Given ITP such that
∑

i∈I si ≥
∑

j∈J dj then z = z(s, d).

4 Our Iterated Local Search Algorithm

Our solution algorithm is a local search based metaheuristic which starts from a

feasible solution and iteratively tries to improve it by an intelligent exploration of

the solution space. For this reason, a neighborhood structure is required which is

used to explore the search space. We define the following neighborhood structures:

k- Plus -Neighborhood: N+
k (𝐬,𝐝)

A scenario (�̂�, ̂𝐝) ∈ N+(𝐬,𝐝) if and only if there exists i∗ ∈ I and j∗ ∈ J such that: (1)
ŝi = si,∀i ≠ i∗, (2) ̂dj = dj,∀j ≠ j∗, and (3) ŝi∗ = si∗ + k, ̂dj∗ = dj∗ + k.

k- Minus -Neighborhood: N−
k (𝐬,𝐝)

A scenario (�̂�, ̂𝐝) ∈ N−(𝐬,𝐝) if and only if there exists i∗ ∈ I and j∗ ∈ J such that: (1)
ŝi = si,∀i ≠ i∗, (2) ̂dj = dj,∀j ≠ j∗, and (3) ŝi∗ = si∗ − k, ̂dj∗ = dj∗ − k.

That is, a plus-neighbor (minus-neighbor) of a scenario (𝐬,𝐝) is obtained by choosing

one supplier and increasing (decreasing) its supply by a given quantity k, and by

choosing a customer and increasing (decreasing) its demand by the same amount k.

Our algorithm consists of three phases: initialization, intensification, and diver-
sification.

The initialization phase constructs a feasible initial solution by solving a trans-

portation problem corresponding to a feasible scenario (𝐬,𝐝) chosen according to

the following method. The demands dj, for each customer j ∈ J, are chosen such

that
∑

j∈J dj is as low as possible, and the values si for each supplier i ∈ I, are set

such that
∑

i∈I si =
∑

j∈J dj by solving an appropriate linear programming problem.

During the intensification phase our procedure exploits the two neighborhoods

N+
k (𝐬,𝐝) and N−

k (𝐬,𝐝) by alternatively setting k = 1 and k = 2. More precisely, we

start the search procedure with the plus neighborhood with k = 1. When the search

ends at its best local optimum, the minus neighborhood with k = 1 is explored. When

the search ends at its best local optimum, the plus neighborhood with k = 2, and suc-

cessively the minus neighborhood with k = 2, are explored. This process is repeated

until no improvement is possible for a predefined number of iterations. If this is the

case, the diversification phase starts.

The diversification phase is applied whenever the search is trapped at a local max-

imum. During this phase, we first change the neighborhoods to be explored by vary-

ing k between 1 and a maximum number of iterations (exploration step). That is, the
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plus and minus neighborhoods are alternately explored by increasing the value of k
by one unit each time up to a maximum value which we set equal to 20 after a tuning

phase. If during this exploration step, a solution better than the incumbent local max-

imum is found, then an intensification phase is started. Otherwise, if the value of k is

increased up to 20 without any improvement, the current local maximum is shaken

(shaking step), and an intensification phase starts on the new shaken solution. The

shaking step generates a new feasible solution by solving a transportation problem

corresponding to a shaken scenario obtained as follows. Let us denote by ̂dj,∀j ∈ J,
the demands corresponding to the current local maximum solution, and let 𝛥 be a

randomly generated positive number. The shaking step generates new demands dj
such that

∑
j∈J dj =

∑
j∈J

̂dj + 𝛥 and sets the values of the supplies si,∀i ∈ I such

that
∑

i∈I si =
∑

j∈J dj by solving an appropriate linear programming problem. Note

that the random number 𝛥 is generated so that the new shaken scenario is feasible.

The algorithm terminates when a predefined number of iterations without

improvement is reached.

5 Computational Results

We compared our algorithm with the genetic algorithm provided by Xie et al. [1] on

the set of 60 instances they used in their paper. The instances include problems of

different sizes, namely 2 × 3, 3 × 5, 4 × 6, 5 × 10, 10 × 10, and 20 × 20. Our algo-

rithm is coded in C++ and runs on a PC with Intel Core i5 2.4 GHz and 16.00 GB

of RAM.

Table 1 compares the values returned by the two algorithms on each of the 60

instances, while Table 2 shows the normalized [13] average computational time (in

seconds) for the two algorithms on each set of 10 instances of the same size. These

results show that our algorithm is competitive compared to the genetic algorithm

both in terms of quality of the solution and computational time.

Our iterative local search algorithm has a lower average computational time on all

the sets of instances with the exception of those of size 10× 10 with an increase in the

average computational time of 35%. On all the other sets of instances the improve-

ment in the computational times achieved by our algorithm varies between 1% and

41%. The two algorithms find the same solution for 46 of 60 instances, probably

because these are the optimum z values. Our algorithm finds a better lower bound

for 10 instances (instances number 1, 2, and 7 of size 5 × 10; instances 4 and 7 of

size 10× 10; and instances 2–6 of size 20 × 20), while it returns a lower value than

the one returned by the genetic algorithm of Xie et al. for 4 instances (instance 8 of

size 3× 5, instance 9 of size 10×10, and instances 7 and 10 of size 20× 20).
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Table 1 Comparison of the results provided by the genetic algorithm of Xie et al. [1] and our
Iterated Local Search (ILS)
Instances Xie et

al.

ILS Instances Xie et

al.

ILS Instances Xie et

al.

ILS

data2x3_1 22800 22800 data4x6_1 27125 27125 data_10x10_1 36180 36180

data2x3_2 27390 27390 data4x6_2 20635 20635 data_10x10_2 43260 43260

data2x3_3 27390 27390 data4x6_3 23615 23615 data_10x10_3 38915 38915

data2x3_4 27210 27210 data4x6_4 22375 22375 data_10x10_4 38845 38905
data2x3_5 18570 18570 data4x6_5 19500 19500 data_10x10_5 50150 50150

data2x3_6 30900 30900 data4x6_6 11380 11380 data_10x10_6 29885 29885

data2x3_7 22020 22020 data4x6_7 17245 17245 data_10x10_7 44100 44145
data2x3_8 18450 18450 data4x6_8 24180 24180 data_10x10_8 41950 41950

data2x3_9 21450 21450 data4x6_9 24060 24060 data_10x10_9 37465 37180
data2x3_10 14130 14130 data4x6_10 22825 22825 data_10x10_10 48920 48920

data3x5_1 16410 16410 data_5x10_1 25760 25810 data_20x20_1 9405 9405

data3x5_2 14820 14820 data_5x10_2 24980 25055 data_20x20_2 9015 9140
data3x5_3 20650 20650 data_5x10_3 19635 19635 data_20x20_3 9335 9405
data3x5_4 12940 12940 data_5x10_4 30260 30260 data_20x20_4 8930 9130
data3x5_5 16650 16650 data_5x10_5 23590 23590 data_20x20_5 9275 9420
data3x5_6 16540 16540 data_5x10_6 23075 23075 data_20x20_6 10220 10320
data3x5_7 10195 10195 data_5x10_7 22375 22740 data_20x20_7 8685 8630
data3x5_8 13360 12620 data_5x10_8 30000 30000 data_20x20_8 9260 9260

data3x5_9 11010 11010 data_5x10_9 24675 24675 data_20x20_9 9885 9885

data3x5_10 12915 12915 data_5x10_10 39985 39985 data_20x20_10 9225 9220

Table 2 Average normalized computational times (in seconds) of each algorithm on each set of

10 instances of the same size

Instance size Xie et al. ILS

2× 3 1.54 1.33

3× 5 7.70 4.51

4× 6 12.33 9.96

5× 10 49.31 29.62

10× 10 92.45 124.60

20× 20 1458. 40 1439.40
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6 Conclusions and Further Research

We addressed the problem of finding the range of the optimal cost of a transportation

problem when supply and demand vary over an interval. We consider the specific

version of a transportation problem with supply inequality constraints and demand

equality constraints. We investigated some theoretical properties of the problem

of finding the worst optimum value and presented an Iterated Local Search algo-

rithm. Our results show that our algorithm is competitive compared to the existing

approaches both in terms of quality of the returned solution and in the computational

time.

We are now focusing on improving the computational performance of our Iterated

Local Search algorithm and on extending the experimental analysis. We are also

investigating theoretical properties and efficient algorithms for finding the range of

the optimal cost for different versions of the transportation problem with interval

supply and demand. In particular, we are investigating the version with supply and

demand equality constraints and the version with supply equality constraints and

demand inequality constraints.
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A Queueing Networks-Based Model
for Supply Systems

Massimo De Falco, Nicola Mastrandrea and Luigi Rarità

Abstract In this paper, a stochastic approach, based on queueing networks, is

analyzed in order to model a supply system, whose nodes are working stations. Unfin-

ished goods and control electrical signals arrive, following Poisson processes, at the

nodes. When the working processes at nodes end, according to fixed probabilities,

goods can leave the network or move to other nodes as either parts to process or con-

trol signals. On the other hand, control signals are activated during a random expo-

nentially distributed time and they act on unfinished parts: precisely, with assigned

probabilities, control impulses can move goods between nodes, or destroy them. For

the just described queueing network, the stationary state probabilities are found in

product form. A numerical algorithm allows to study the steady state probabilities,

the mean number of unfinished goods and the stability of the whole network.

Keywords Queueing networks ⋅ Supply systems ⋅ Product–form solution

1 Introduction

A great interest has always been devoted to model industrial processes managed

by supply systems. Such an exigence has become higher due to the necessity of

obtaining safe and fast processes that could avoid, in some way, unwished situations,

such as bottlenecks, dead times, and so on.
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Various mathematical models have been studied for this aim. Several approaches

are continuous and mainly based on differential equations, see for instance [3, 9]. In

these cases, supply chains are characterized by: parts dynamics described by conser-

vation laws; Queues, that are in front of each supplier and are defined by ordinary

differential equations. There are also other models, that focus on individual parts

and deal with exponential queueing networks. A theoretical example is given in [8]

for waiting lines, while various applications for manufacturing systems are in [4,

11], with emphasis on possible numerical approaches in [10]. In this direction, some

variants have been studied, such as the “G-networks” (see [5, 6]), introduced by

Gelenbe, motivated by analogies with neural networks, and interested by the simul-

taneous presence of positive customers, negative customers, signals and triggers.

Positive customers are the common ones, who join a queue for a service, and they

can be destroyed by a negative customer arriving at a non-empty queue. Triggers dis-

place positive customers from a queue to another one, while a signal behaves either

as a negative customer or a trigger. Exhaustive descriptions of G-networks are in

[1, 2], where exact solutions are found in product form.

In this paper, focusing on some G-networks described in [7], we consider a queue-

ing network, that models a supply system, characterized by either parts dynamics

or control electrical signals in the working stations. Unfinished goods and control

impulses, these last ones generated by a Control Station (CS), arrive, following two

different and independent Poisson processes, at each node from outside the network.

Parts are processed one by one at each node, and service times of the unfinished

goods are exponentially distributed. After the working process, a part travels from

a node to another one with fixed probabilities as either a good to process or a con-

trol signal, or leaves the network. The activation time of a control electrical signal is

exponentially distributed. Activated impulses with fixed probabilities either move a

good from the node they are activated to another one or destroy an unfinished good.

For such a queueing network, the stationary state distribution is obtained in product

form, and numerical results, also focusing on the ergodicity condition, are then com-

puted. Notice that the queueing network analysed in this paper is a model of a system

for car engines inside a real Italian company. The main advantage, with respect to

the existing models in the scientific literature, is the extension of the G-networks by

introducing phenomena that usually occur in the real industrial systems.

The paper is structured as follows. Section 2 describes the supply system and its

mathematical formulation. Section 3 contains some numerical results. Conclusions

end the paper in Sect. 4.

2 A Model for Supply Systems

Focus on a supply system, modelled via a queueing network with the following

features:
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∙ Each node represents a working station, that receives raw material flows of either

external type (flows from outside the network) or internal one (flows from nodes

inside the network). Materials are processed one by one at each node, characterized

by an own working frequency and an infinite buffer.

∙ A Control Station (CS) provides each node some electrical control impulses that

rule dynamics for the working stations.

∙ Beside the control signals generated by the CS, each node has a set of non-active

impulses, that have their own frequency action and are activated only if necessary.

In particular, if a node has not goods to process (namely, it is empty), the activation

of a control impulse has no effects, the impulse is disabled and is not activated

anymore.

∙ An unfinished good, once it has been processed in a node i, either leaves the net-

work or moves to another node j. Inside node j, the good can be further manu-

factured, or behave like a control signal. In this last case the unfinished part can

destroy a good, which is inside node j, or move the good itself to another node k.

From a mathematical point of view, the queueing network is identified by the

couple (V , E ), where V ={0, 1, 2,… ,M} and E =
⋃

i∈V , j∈V

{
𝜀ij
}

represent, respec-

tively, the set of nodes and arcs. Precisely, node 0 indicates the external of the net-

work, while node i, i = 1,… ,M, is a generic working station, which belongs to the

queueing network; 𝜀ij is the arc that connects nodes i and j, i ∈ V , j ∈ V .

The queueing network has M working stations with infinite buffers. External

arrival flows are independent Poisson processes. Precisely, the arrival rates of exter-

nal unfinished goods and electrical control impulses, generated by the CS, at node i,
i = 1, ...,M, are, respectively, indicated by A1

0i and A2
0i. Each node i has one server,

hence goods are processed one by one with a frequency b1i . An unfinished good, that

leaves node i, moves to node j, j = 1,… ,M, with: probability 𝛾

1
ij as a part that has to

be processed inside node j; probability 𝛾

2
ij as a control impulse for node j. Finally, the

unfinished part leaves the network with probability 𝛾i0 = 1 −
M∑
j=1

(
𝛾

1
ij + 𝛾

2
ij

)
. Define

the matrices 𝐆𝟏 ∶=
(
𝛾

1
ij

)
and 𝐆𝟐 ∶=

(
𝛾

2
ij

)
. Then, 𝐆 = 𝐆𝟏 +𝐆𝟐 ∶=

(
𝛾

1
ij + 𝛾

2
ij

)
rep-

resents the transition matrix of a Markov chain for the dynamics of parts.

A control impulse is activated at a random instant of time t. An impulse, sent

to node i, works in ]t, t + 𝛥[ with probability b2i (k)𝛥 + o (𝛥), provided that k non-

activated signals are inside node i at the time instant t. When the activation period

ends, a control impulse: with probability 𝜉

1
ij moves a good, that is inside node i, to

node j with the aim of continuing the working process; with probability 𝜉

2
ij moves to

node j an unfinished part, that belongs to node i, and the moved good behaves like

a control impulse inside node j. Finally, 𝜉i0 = 1 −
M∑
j=1

(
𝜉

1
ij + 𝜉

2
ij

)
is the probability

that a control impulse destroys an unfinished part inside node i. When this event

occurs, the control impulse ends its own action and is not activated inside node i
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anymore. Consider now the matrices𝐇𝟏 ∶=
(
𝜉

1
ij

)
and𝐇𝟐 ∶=

(
𝜉

2
ij

)
. Then, the matrix

𝐇 = 𝐇𝟏 +𝐇𝟐 ∶=
(
𝜉

1
ij + 𝜉

2
ij

)
is the transition matrix of a Markov chain, that focuses

on all possible dynamics for control impulses.

2.1 Equilibrium Equations and Stationary Probabilities

The just described system is modelled by a queueing network, represented by a

homogeneous Markov process {Z (t) , t ≥ 0}, with state space:

𝜁 =
{((

x1, y1
)
,

(
x2, y2

)
,… ,

(
xM , yM

))
, xi ≥ 0, yi ≥ 0, i = 1,… ,M

}
.

Notice that the state
((
x1, y1

)
,

(
x2, y2

)
,… ,

(
xM , yM

))
indicates that, for a defined

instant of time, node i, i = 1,… ,M, has xi unfinished goods and yi non-activated

impulses. Define the quantities:

𝐱 ∶=
(
x1, x2,… , xM

)
, 𝐲 ∶=

(
y1, y2,… , yM

)
,

(𝐱, 𝐲) ∶=
((
x1, y1

)
,

(
x2, y2

)
,… ,

(
xM , yM

))
, A1

0 ∶=
M∑

i=1
A1
0i, A2

0 ∶=
M∑

i=1
A2
0i,

and indicate by 𝐞i the vector, whose i−th component is 1 while the other ones are

zero. Assume that 𝜋 (𝐱, 𝐲) is the stationary probability of the state (𝐱, 𝐲), namely the

probability that the queueing network has, for large times, xi unfinished goods and

yi non-activated impulses inside node i, ∀ i = 1,… ,M. If 𝜋 (𝐱, 𝐲) exists, then the

following Chapman-Kolmogorov equations system holds:

𝜋 (𝐱, 𝐲)
(
A1
0 + A2

0 +
M∑

i=1
b1i

(
1 − 𝛾

1
ii

)
u
(
xi
)
+

M∑

i=1
b2i

(
yi
)
)

=
M∑

i=1
𝜋

(
𝐱 − 𝐞i, 𝐲

)
A1
0iu

(
xi
)
+

+
M∑

i=1
𝜋

(
𝐱, 𝐲 − 𝐞i

)
A2
0iu

(
yi
)
+

M∑

i=1
𝜋

(
𝐱 + 𝐞i, 𝐲

)
b1i 𝛾i0u

(
xi + 1

)
+

+
M∑

i=1
𝜋

(
𝐱 + 𝐞i, 𝐲 + 𝐞i

)
b2i

(
yi + 1

)
𝜉i0 +

N∑

i=1
𝜋

(
𝐱, 𝐲 + 𝐞i

)
b2i

(
yi + 1

) (
1 − u

(
xi
))

+

+
M∑

i=1

M∑

j=1, j≠i
𝜋

(
𝐱 + 𝐞i−𝐞j, 𝐲

)
b1i 𝛾

1
ij u

(
xi + 1

)
u
(
xj
)
+
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+
M∑

i=1

M∑

j=1
𝜋

(
𝐱 + 𝐞i, 𝐲 − 𝐞j

)
b1i 𝛾

2
ij u

(
xi + 1

)
u
(
yj
)
+

+
M∑

i=1

M∑

j=1
𝜋

(
𝐱 + 𝐞i−𝐞j, 𝐲 + 𝐞i

)
b2i

(
yi + 1

)
𝜉

1
iju

(
xj
)
+

+
M∑

i=1

M∑

j=1, j≠i
𝜋

(
𝐱 + 𝐞i, 𝐲 + 𝐞i−𝐞j

)
b2i

(
yi + 1

)
𝜉

2
iju

(
yj
)
+

+
M∑

i=1
𝜋

(
𝐱 + 𝐞i, 𝐲

)
b2i

(
yi
)
𝜉

2
ii, (𝐱, 𝐲) ∈ 𝜁, (1)

where b2i (0) = 0 and u (x) is a unit Heavyside function. The system (1), that allows

to get the steady state probability 𝜋 (𝐱, 𝐲), has been obtained considering all transi-

tions from/to the state (𝐱, 𝐲) by balancing incoming and outgoing flows for such state

(similar examples are in [7]).

Now, a general product-form solution for the equations system (1) is provided.

Indicate by A1
i and A2

i the total steady state rates of arrival of goods and control

electrical impulses, respectively, at node i, and define the quantities:

x2i ∶= A2
i + b1i , 𝜌i ∶=

A1
i

x2i
, q2i (j) ∶=

A2
i

b2i (j)
, i = 1,… ,M, j = 1,… ,M;

Remark 1 Notice that 𝜌i is the stationary probability that the queue of the working

station i is busy.

The following traffic equations hold (see [1, 5–7] for further details):

A1
i = A1

0i +
M∑

j=1
𝜌j

(
b1j 𝛾

1
ji + A2

j 𝜉
1
ji

)
, i = 1,… ,M, (2)

A2
i = A2

0i +
M∑

j=1
𝜌j

(
b1j 𝛾

2
ji + A2

j 𝜉
2
ji

)
, i = 1,… ,M. (3)

We get the following theorems (for ideas of the proofs, see [7]):

Theorem 1 (Solution of traffic equations) If matrices 𝐆 and 𝐇 are irriducible, the
solution

{
A1
i ,A

2
i

}
, i = 1,… ,M, to equations (2) and (3) is unique.

Theorem 2 (Product-form solution for stationary probabilities) If matrices 𝐆 and
𝐇 are irreducible and the following conditions hold:
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𝜌i < 1, 𝛿i =
+∞∑

yi=0

yi∏

j=1
q2i (j) < ∞, i = 1,… ,M,

then the Markov process {Z (t) , t ≥ 0} is ergodic and its stationary distribution is
represented in product form as:

𝜋 (𝐱, 𝐲) =
M∏

i=1
𝜋i
(
xi, yi

)
,

𝜋i
(
xi, yi

)
=

(
1 − 𝜌i

)
𝜌

xi
i

𝛿i

yi∏

j=1
q2i (j) , xi ≥ 0, yi ≥ 0, ∀i = 1,… ,M,

and
0∏
j=1

≡ 1.

3 Simulations

In this section, we describe some numerical results for a supply system, depicted in

Fig. 1: there are five nodes (working stations). Each node is interested by external

flows of goods, while only nodes 1 and 2 are characterized by electrical signals sent

by the CS. Following some fixed probabilities, unfinished goods can move from node

i to node i + 1, i = 1, 2, 3, 4; from node 5, parts either leave the system or come back

to node 1. For electrical impulses, the dynamics is the same of the unfinished goods.

Notice that such system describes the different construction steps of car engines in a

real Italian company. For privacy reasons, names and/or details about the real func-

tionalities of each node are avoided.

Fig. 1 Topology of the

supply system
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Assume that:A1
0i = 20 ∀ i = 1,… , 5, b11 = 30, b12 = b15 = 40, b13 = b14 = 35, where

all such quantities are seen as number of parts per minute; A2
01 = A2

02 = 5, A2
03 =

A2
04 = A2

05 = 0; b11 = 30, b12 = b15 = 40, b13 = b14 = 35; b21 = b22 = b23 = b24 = 35, b25 =
30, where such last quantities are intended as number of control signals per minute.

As for matrices 𝐆1
, 𝐇1

, 𝐆2
and 𝐇2

, they have zero elements with the follow-

ing exceptions: 𝐆1 (m,m + 1) = 𝐇1 (m,m + 1) = 𝐆2 (m,m + 1) = 𝐇2 (m,m + 1) =
0.5 ∀ m = 1,… , 4; 𝐆1 (5, 1) = 𝐇1 (5, 1) = 0.2.

Table 1 reports some values of the stationary probabilities for node 2. The choice

of considering such node is due to the fact that it is inside the network and interested

by both external parts and control signals rates. If the number of control impulses

grows, 𝜋2
(
x2, y2

)
decreases. This occurs because controls in nodes determine vari-

ations of the ordinary parts dynamics, in terms either of movements to other nodes

or possible destructions.

In order to analyze the behaviour of stationary probabilities versus the number of

parts, we define the probability 𝜋i
(
xi
)
∶=

+∞∑
yi=0

𝜋i
(
xi, yi

)
that a node i, i = 1,… , 5,

has xi goods. In Table 2, we have some values of 𝜋1 and 𝜋2.

Notice that 𝜋i
(
xi
)

grows when the number of parts decreases and, moreover,

𝜋2
(
x2
)
> 𝜋1

(
x1
)
, indicating that node 2 tends to have more goods than node 1.

Further studies are done by computing the mean number of parts in the network,

defined as:

Np ∶=
+∞∑

xi=0
xi
⎛
⎜
⎜⎝

+∞∑

yj=0
yj𝜋i

(
xi, yj

)⎞⎟
⎟⎠
.

If we depict N versus A1
01 (Fig. 2, left) and versus A2

02 (Fig. 2, right), we get an

idea of the ergodicity condition of the network process.

In particular, if the network is simulated with:

Table 1 Values of 𝜋2
(
x2, y2

)
for different values of x2 (columns) and y2 (rows)

x2∖y2 1 2 3
1 0.0606621 0.0327992 0.01773410
2 0.0349247 0.0188833 0.01021000
3 0.0201070 0.0108716 0.00587813

Table 2 𝜋i for node i (columns), i = 1, 2, assuming xj unfinished goods (rows), j = 1, 2, 3
i∖xj 1 2 3
1 0.162585 0.129363 0.1029290
2 0.244266 0.140630 0.0809641
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Fig. 2 Np versus A1
01 (left) and A2

02 (right)

∙ A1
01 variable and other parameters equal to the ones used before, node 1 becomes

instable when A1
01 ≃ 27, leading to the instability of the whole network;

∙ A2
02 variable and other parameters equal to the ones used before, the network

process is not ergodic anymore if A2
02 ≥ 21.

Similar phenomena occur by analyzing the behaviour of Np vs A1
02 and versus A2

01.

4 Conclusions

In this paper, a queueing network, that models a real supply chain to assemble car

engines, is described. For such a system, steady state probabilities have been com-

puted in product form. Numerical tests have established that the control signals inside

each node influence deeply the dynamics of the overall network.

Future work activities aim at applying the proposed model to scenarios, that

involve other real supply systems in different contexts. In this direction, obvious

modifications of the mathematical background foresee a fuzzy logic approach in

order to obtain a robust optimization for the performances of the supply systems.
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Capital Asset Pricing Model—A Structured
Robust Approach

Raquel J. Fonseca

Abstract We present an alternative robust formulation to the determination of the

Capital Asset Pricing Model. We consider that both the asset and the market returns

are uncertain and subject to some structured perturbations, and calculate a robust

beta. The resulting structured robust model can be easily solved using semidefinite

programming and is subsequently tested with data from the portuguese stock mar-

ket. Numerical results have shown that the robust beta is, not only greater than the

traditional least squares beta, but also that it tends to increase with a growing number

of perturbation matrices, thus yielding a higher level of systematic risk.

Keywords Robust optimization ⋅ Capital asset pricing model ⋅ Linear regression

1 Introduction

Praised for its simplicity, but criticized by its lack of performance, the Capital Asset

Pricing Model (CAPM) has been studied, tested and refuted by the academic com-

munity for many years. Yet it still remains as the most commonly used method to

estimate the cost of capital, despite its difficulties, limitations and the poor correla-

tion between the risk premiums, as Fernandez [5] so well described it.

First developed by Sharpe [9] and Lintner [8], the CAPM has been subject to

numerous empirical tests with financial data from several different countries. Fama

and French [4] provide an extensive review of the main CAPM theory and assump-

tions, early and recent empirical tests, limitations, as well as more suitable alterna-

tives such as the Three-Factor-Model.

We propose the use of robust optimization techniques as developed by El Ghaoui

and Lebret [3], where coefficient matrices in least-square problems are unknown but

bounded. Their work is then extended by Hindi and Boyd [6]. Calafiore and Dabbene
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[1], and Calafiore et al. [2] have applied these novel methods to least square problems

with stochastic uncertainty and to worst case residual minimization, and Vanli et al.

[11] on regret minimization.

The main contributions of this study may be summarized as follows:

∙ We apply a robust optimization technique to a financial pricing model, by devel-

oping a structured model as in [3]. Although robust optimization techniques have

been exhaustively applied to portfolio optimization problems, no research has been

conducted, to our knowledge, on the determination of a worst case beta in accor-

dance with the CAPM;

∙ Based on financial historical data from the portuguese stock market, we estimate

the historical betas corresponding to the robust structured case, and compare them

to the regular, non robust case;

∙ We estimate the Security Market Line (SML) given the least squares beta and the

robust beta, concluding on the better results of the latter in terms of data fitting.

The next section briefly introduces the CAPM and its main assumptions, while

in Sect. 3 we present the robust counterpart of the model, as well as the uncertainty

set for the coefficient matrices. Section 4 describes some of the numerical results

obtained with real data from the portuguese stock market. We conclude in Sect. 5.

2 The Capital Asset Pricing Model

The CAPM as proposed by Sharpe [9] and Lintner [8] describes a linear relationship

between the asset risk premium and the market risk premium:

E(r) − rf = 𝛽[E(rM) − rf ], (1)

where E(r) and E(rM) stand for the expected asset and market returns, respectively,

and rf is the risk free rate. The goal is to find the parameter 𝛽 representing the system-

atic risk of the asset, that is, risk that can not be diversified. Estimation of 𝛽 usually

entails minimizing the sum of squared errors,
∑n

i=1 |ei|
2
, of:

(r − rf ) = 𝛼 + 𝛽(rM − rf ) + ei, (2)

over a set of n historical observations. Throughout the manuscript, we reverse to the

most commonly used matrix notation, with:

min
𝛼,𝛽

n∑

i=1
|ei|2 = |[𝛼 + 𝛽(rM − rf )] − (r − rf )|2 (3)

= ||Ax − b||2, (4)

and solution given by: x = (ATA)−1ATb. In the next section, we try to improve on

these results by applying worst case scenario techniques.
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3 The Robust Counterpart

Let us now assume that both matricesA and b are subject to perturbations, and that we

do not know their exact value, or are unable to estimate them properly. From CAPM

main assumptions, only the asset and the market returns are subject to perturbations.

The risk free rate, by its implicit nature, is not subject to any risk and its value is

known exactly. While finding an appropriate proxy for the risk free asset is one of the

limitations of the CAPM, the main problem, however, derives from the relationship

between the asset and the market returns.

We consider a perturbation 𝛿 and the following matrices: A0,… ,AL ∈ ℝn×m
, and

b0,… , bL ∈ ℝn
, such that the uncertainty set 𝛯 may be written as:

𝛯 =

{

[𝛿 𝛥A 𝛥b] ∶ 𝛥A =
L∑

i=1
𝛿iAi, 𝛥b =

L∑

i=1
𝛿ibi, ||𝛿||p ≤ 𝜌

}

(5)

Matrices A0 and b0 correspond to our original matrices, which include the mea-

sured or estimated data. Parameter p states the norm over which the uncertainty set

is built. Unless otherwise stated, this will be the Euclidean norm, therefore p = 2.

The worst case residual may be determined by the following formulation:

min
x

max
[𝛥A 𝛥b]∈𝛯

||(A0 + 𝛥A)x − (b0 + 𝛥b)||2 (6)

Using semidefinite programming, we may solve problem (6) to optimality. We

start by defining a new matrix M:

M(x) =
[
A1x − b1,… ,ALx − bL

]
.

Additionally:

F = M(x)TM(x), g = M(x)T (A0x − b0), and h = ||A0x − b0||2

Applying this new notation, the structured problem (6) may be written as:

min
x

max
||𝛿||2≤𝜌

[
1
𝛿

]T [h gT
g F

] [
1
𝛿

]

Proof Let the inner maximization problem be written as:

max
||𝛿||2≤𝜌

[
h + 𝛿g gT + 𝛿F

]
[
1
𝛿

]

= h + 𝛿Tg + (gT + 𝛿TF)𝛿
= h + 𝛿Tg + gT𝛿 + 𝛿TF𝛿.
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After replacing the above expression with the newly defined notation:

max
||𝛿||2≤𝜌

||A0x − b0||2 + 𝛿TM(x)T (A0x − b0) + [M(x)T (A0x − b0)]T𝛿 + 𝛿TM(x)TM(x)𝛿

= ||A0x − b0 + 𝛿TM(x)||2
= ||A0x − b0 + 𝛿T [A1x − b1,… ,Apx − bL]||2

= ||A0x − b0 +
L∑

i=1
𝛿i(Aix − bi)||2,

we arrive at our original robust structured problem (6).

We continue to simplify our model by stating that:

min
x,𝜆

𝜆, s.t.

[
1
𝛿

]T [
𝜆 − h −gT
−g −F

] [
1
𝛿

]

≥ 0, ∀𝛿 ∈ 𝛯 (7)

Theorem 1 (S -lemma) Given two symmetric matrices W andS of the same size
and assuming the inequality 𝝃′W 𝝃 ≥ 0 is strictly feasible, that is, �̄�′W �̄� > 0 for
some �̄� ∈ ℝk, then the following equivalence holds:

[
𝝃′W 𝝃 ≥ 0 ⇒ 𝝃′S 𝝃 ≥ 0

]
⇔ ∃𝜏 ≥ 0 ∶ S ⪰ 𝜏W . (8)

Relationship S ⪰ 𝜏W indicates the matrix (S − 𝜏W ) is positive semidefinite.

Given that:

W =
[
𝜌 0
0 −1

]

, S =
[
𝜆 − h −gT
−g −F

]

, and 𝝃 = 𝜹 =
[
1
𝛿

]

,

we conclude, by applying the S -lemma, that there exists some 𝜏 ≥ 0, such that:

S ⪰ 𝜏W
[
𝜆 − h −gT
−g −F

]

⪰ 𝜏

[
𝜌 0
0 −1

]

[
𝜆 − h − 𝜌𝜏 −gT

−g 𝜏I − F

]

≥ 0

We re-write problem (7) as:

min
x,𝜆,𝜏

𝜆, s.t.

[
𝜆 − h − 𝜌𝜏 −gT

−g 𝜏I − F

]

≥ 0, (9)
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whose solution may be found by solving the following semidefinite problem (SDP)

using interior-point methods:

min
x,𝜆,𝜏

𝜆, s.t.

⎡
⎢
⎢
⎣

𝜆 − 𝜌𝜏 0 (A0x − b0)T
0 𝜏I MT

(A0x − b0) M I

⎤
⎥
⎥
⎦

≥ 0 (10)

Proof By using Schur complements in constraint (10) above, we show that:

[
𝜆 − 𝜌𝜏 0

0 𝜏I

]

−
[
(A0x − b0)T

MT

]
[
I −1] [(A0x − b0) M

]
≥ 0

[
𝜆 − 𝜌𝜏 0

0 𝜏I

]

−
[
(A0x − b0)T (A0x − b0) (A0x − b0)TM

MT (A0x − b0) MTM

]

≥ 0
[
𝜆 − 𝜌𝜏 − (A0x − b0)T (A0x − b0) −(A0x − b0)TM

−MT (A0x − b0) 𝜏I −MTM

]

≥ 0

Note how, by replacing with the notation previously defined, this formulation is

equivalent to our original problem (9).

4 Numerical Results

In simulating the perturbation matrices, we follow a similar aproach to Kuhn et al.

[7], in which portfolio wealth is maximized for the worst case returns. The nominal

matrices A0 and b0 are subject to some perturbations, determined at the same time

by the standard deviation of the returns and by a second parameter D, that measures

the distance from the nominal value in terms of the standard deviation. In our com-

putational experiments, parameter D was set to any value between −2 and 2. This

ensures that not all of the returns are wrongly estimated at the same time, since in

some cases D will take the value 0.

From the uncertainty set 𝛯 defined in (5), we have:

𝛥A = 𝜎A

L∑

i=1
𝛿iDi, and 𝛥b = 𝜎b

L∑

i=1
𝛿iDi.

For simplicity, we assume matrices Di are the same for both uncertain matrices

Ai and bi, but this does not need to be the case.

In order to run the structured robust model, monthly historical returns from Janu-

ary 2006 to December 2011 were collected, with a total of 72 observations. As asset

returns, we used the returns from 12 of the companies included in the portuguese

stock market index, PSI-20 (not all companies were included as some did not have

available data as early as 2006). The European market risk premium was taken from
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the data library of Fama and French, defined as “the return on a region’s value-weight

market portfolio minus the U.S. 1 month T-bill rate.” This index includes equity

from the following european countries: Austria, Belgium, Switzerland, Germany,

Denmark, Spain, Finland, France, Great Britain, Greece, Ireland, Italy, Netherlands,

Norway, Portugal and Sweden.

As a starting point, the robust model was ran with parameter 𝜌 equal to one and ten

perturbation matrices D, using the solver SDPT3 [10]. Figure 1 shows preliminary

results from this model and compares the least squares beta and the robust structured

beta for two of the studied companies, Mota-Engil and Sonae, chosen by the highest

coefficient of determination.

For comparison purposes, Table 1 shows the least squares beta and the structured

robust beta for the same two companies considered. The robust beta was determined

for a growing number of perturbation matrices in order to conclude about this rela-

tionship. The R2
for the least squares model is also shown as a measure of the ade-

quacy of the model. As expected, given other empirical tests of the CAPM, its value

tends to be quite low, below 40%.

From Table 1, we are drawn to conclude that the robust beta tends to be higher

than the least squares beta, meaning that the level of systematic or non-diversifiable

risk has increased. This is consistent with the premisses of robust optimization: since

(a) Mota-Engil (b) Sonae

Fig. 1 Least squares and robust structured betas

Table 1 Least squares and robust betas with growing perturbations

Companies Mota-Engil Sonae

R2
0.3733 0.3975

Least squares 0.9331 0.9439

D = 3 1.4185 1.4632

D = 5 1.4004 1.4942

D = 10 1.5054 1.3960

D = 15 1.5273 1.4795
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the investor is accounting for the worst case scenario, she will tend to be more con-

servative and estimate a higher risk level.

Secondly, as the number of perturbation matrices increases, so does the robust

beta. Again, an increase in the number of perturbations leads to an enlargement of the

uncertainty set, and the consideration of a greater number of asset and market returns

in the optimization problem. Optimizing for the worst case scenario will therefore

result in an increased beta. Additionally, the robust beta has remained positive in all

of the model runs, not questioning the fact, therefore, that these are risky assets.

To assess the predictive power of the robust beta, we conducted a preliminary ex-

post analysis. Figure 2 plots the annualized average asset risk premium from 2012

to 2015 for the twelve companies included in the study, against the least squares and

the robust beta. The later points represent a shift towards the right hand side of the

graph as the robust beta is always greater than the least squares beta. The Security

Market Line (SML) is obtained for both cases by linear regression techniques.

We can directly observe that the robust SML (based on the robust betas) is flatter

than the least squares SML, confirming some of the previous findings in the area

regarding the long run SML [4]. In terms of goodness of fit measured by the coef-

ficient of determination, the regression based on the robust betas has a greater R2
,

22.4% compared to 20.9% of the least squares beta. Results are affected by the pres-

ence of an outlier: company Pharol, the only one with a negative annualized average

return of 38.9% and a least squares and a robust beta of 0.29 and 1.04, respectively.

Without this observation, while the robust R2
decreases to 20%, the least squares

R2
drops to zero, accentuating the difference between the two betas and the better

results of the robust beta.

Fig. 2 Ex-post analysis: security market line
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5 Conclusion

From the preliminary tests described in the previous section, we tend to conclude

that not only the robust beta is greater than the least squares beta, but also that it

yields better results in terms of predictive power. The SML estimated through linear

regression provides a better fit to the observed values when the robust betas are used,

and it appears to be flatter, which was one of the limitations atributted to ordinary

least squares estimation of betas from previous studies. These results are therefore

motivating in order to extend this approach to the estimation of portfolio betas. The

use of robust optimization techniques in portfolio optimization problems stems from

the minimum return guarantees provided. Further research on whether similar guar-

antees may be given in these type of problems still needs to be accomplished.
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On the Properties of Interval Linear
Programs with a Fixed Coefficient Matrix

Elif Garajová, Milan Hladík and Miroslav Rada

Abstract Interval programming is a modern tool for dealing with uncertainty in

practical optimization problems. In this paper, we consider a special class of interval

linear programs with interval coefficients occurring only in the objective function

and the right-hand-side vector, i.e. programs with a fixed (real) coefficient matrix.

The main focus of the paper is on the complexity-theoretic properties of interval lin-

ear programs. We study the problems of testing weak and strong feasibility, unbound-

edness and optimality of an interval linear program with a fixed coefficient matrix.

While some of these hard decision problems become solvable in polynomial time,

many remain (co-)NP-hard even in this special case. Namely, we prove that testing

strong feasibility, unboundedness and optimality remains co-NP-hard for programs

described by equations with non-negative variables, while all of the weak proper-

ties are easy to decide. For inequality-constrained programs, the (co-)NP-hardness

results hold for the problems of testing weak unboundedness and strong optimality.

However, if we also require all variables of the inequality-constrained program to be

non-negative, all of the discussed problems are easy to decide.
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1 Introduction

Practical optimization problems are often flawed by uncertainty or inexactness due

to errors in measurements, approximations and estimations. To create an accurate

mathematical representation of the real world, these inaccuracies need to be consid-

ered and included in the model. Many different approaches to modeling uncertainty

in optimization have emerged throughout the last years, such as robust optimization,

stochastic programming or parametric programming.

In this paper, we assume the form of interval-valued coefficients enclosing the

exact data. We adopt the approach of so-called interval linear programming, which

can be seen as a special case of multiparametric programming. Unlike stochastic

programming, we have no further assumptions on the probability distribution of the

given data. While some of the concepts used in interval programming are similar

to those of robust optimization [1], we do not necessarily assume the worst-case

realization of the data—we are interested in the properties of all possible realizations.

Also, we focus mainly on the properties of the uncertain program as a whole, rather

than studying the properties of some stable feasible or optimal solutions.

The paper discusses the complexity properties of a special class of interval linear

programs, in which only the objective function and the right-hand side are affected

by uncertainty. We build on a survey by Hladík [5] providing a summary of the com-

plexity results for the general case. Obviously, all problems solvable in polynomial

time remain polynomial for the special case. For the hard problems, the situation is

different. Since most of the referenced NP-hardness proofs are based on programs

with an interval coefficient matrix, we cannot directly infer any results about the

complexity of the harder problems in our special case.

2 Interval Linear Programming

Let us introduce some notation and conventions: For a vector v ∈ ℝn
we denote by

diag(v) the diagonal matrix with entries diag(v)ii = vi for i ∈ {1,… , n}. The sym-

bol e denotes the all-ones vector (1,… , 1)T . The inequality relations on the set of

matrices, as well as the absolute value operator | ⋅ |, are understood entry-wise.

Given two matrices A,A ∈ ℝm×n
, we define the interval matrix 𝐀 = [A,A] as the

set of matrices {A ∈ ℝm×n ∶ A ≤ A ≤ A}, where the matrices A,A are the lower and

upper bound of 𝐀, respectively. An interval matrix can be also represented by the

center Ac = 1∕2(A + A) and radius A
𝛥

= 1∕2(A − A). Interval vectors and matrices

are distinguished from reals by bold letters. The set of all m × n interval matrices

will be denoted by 𝕀ℝm×n
, the symbol 𝕀ℝn

denotes the set of n-dimensional interval

vectors.

Let 𝐀 ∈ 𝕀ℝm×n
, 𝐛 ∈ 𝕀ℝm

and 𝐜 ∈ 𝕀ℝn
be given. An interval linear program (ILP)

is then defined as the family of linear programs
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minimize cTx subject to x ∈ M (A, b), (1)

whereA ∈ 𝐀, b ∈ 𝐛, c ∈ 𝐜 andM (A, b) denotes the feasible set. For the sake of nota-

tional simplicity, we will write problem (1) shortly as

minimize 𝐜Tx subject to x ∈ M (𝐀,𝐛). (2)

A particular linear program in an ILP is called a scenario. If some of the coefficients

are fixed, we also use the term “scenario” to refer to a choice of the interval coeffi-

cients, which uniquely determine the program. A vector x ∈ ℝn
is a weakly feasible

(optimal) solution of (2), if it is a feasible (optimal) solution of some scenario.

In this paper, we consider the special case of programs with a fixed coefficient

matrix A ∈ ℝm×n
, interval right-hand side 𝐛 ∈ 𝕀ℝm

and interval objective 𝐜 ∈ 𝕀ℝn
.

We assume that the program is given in one of the following commonly used forms:

minimize 𝐜Tx subject to Ax = 𝐛, x ≥ 0, (I)

minimize 𝐜Tx subject to Ax ≤ 𝐛, (II)

minimize 𝐜Tx subject to Ax ≤ 𝐛, x ≥ 0. (III)

In classical linear programming, programs can be equivalently restated in any of the

forms using the standard transformations. However, this is not always possible for

ILPs, therefore, we need to study programs in various forms separately.

3 Properties of Interval Linear Programs

We will now explore the complexity of some decision problems related to the prop-

erties of interval linear programs with a fixed coefficient matrix. The three main

properties that will be considered are:

∙ Feasibility: Are all/some scenarios feasible?

∙ Unboundedness: Do all/some scenarios have an unbounded objective function?

∙ Optimality: Do all/some scenarios possess an optimal solution?

An ILP is called weakly feasible (optimal), if there exists a scenario having a feasi-

ble (optimal) solution. An ILP is weakly unbounded, if there exists a feasible sce-

nario with an unbounded objective function. Similarly, it is strongly feasible/optimal
/unbounded, if the corresponding property holds for each scenario.

These properties have been studied mostly for general intervals programs, see

Table 1 for an overview of the results based on survey [5]. In the rest of the paper,

we will show that for programs with a fixed matrix, the complexity properties sum-

marized in Table 2 hold (the changes compared to Table 1 are emphasized).

Another interesting problem in interval optimization is the computation of lower

and upper bounds on the optimal value of the objective function, or the optimal
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Table 1 Complexity of testing properties of general ILPs

min 𝐜Tx min 𝐜Tx min 𝐜Tx
𝐀x = 𝐛, x ≥ 0 𝐀x ≤ 𝐛 𝐀x ≤ 𝐛, x ≥ 0

Strong feasibility co-NP-hard [10] Polynomial [10] Polynomial [10]

Weak feasibility Polynomial [10] NP-hard [10] Polynomial [10]

Strong unboundedness co-NP-hard [7] Polynomial [5] Polynomial [5]

Weak unboundedness Open NP-hard
1

Polynomial [5]

Strong optimality co-NP-hard [9] co-NP-hard
2

Polynomial [5]

Weak optimality NP-hard
3

NP-hard
3

Open

1
Follows from NP-hardness of testing weak feasibility using the construction in Theorem 3

2
Follows from the result for type (I) by duality

3
Follows from NP-hardness of testing weak feasibility for type (II), then by duality for type (I)

Table 2 Complexity of testing properties of ILPs with a fixed coefficient matrix

min 𝐜Tx min 𝐜Tx min 𝐜Tx
Ax = 𝐛, x ≥ 0 Ax ≤ 𝐛 Ax ≤ 𝐛, x ≥ 0

Strong feasibility co-NP-hard Polynomial Polynomial

Weak feasibility Polynomial Polynomial Polynomial

Strong unboundedness co-NP-hard Polynomial Polynomial

Weak unboundedness Polynomial NP-hard Polynomial

Strong optimality co-NP-hard co-NP-hard Polynomial

Weak optimality Polynomial Polynomial Polynomial

value range. For the main results on the optimal value range, we refer the reader

to an overview by Rohn [9]. Since the corresponding NP-hardness proof is already

based on a problem with a fixed matrix, the results also hold for the special case

considered here.

Regarding the set of optimal solutions, there are two interesting questions often

discussed in interval linear programming: describing the set of all optimal solutions

and determining, whether a given solution is (weakly) optimal. The former problem

was studied in the thesis of the first author [2], where an exponential description of

the optimal set is given for programs with a fixed matrix. For the latter problem,

a polynomial-time algorithm was proposed by Li et al. [8] for linear programs with

an interval right-hand side.

3.1 Feasibility

Feasibility of interval linear systems was studied by Rohn [10] and the results were

generalized by Hladík [6] to mixed systems. Rohn proved that testing strong feasi-

bility of systems of equations with non-negative variables is co-NP-hard and testing
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weak feasibility of systems of inequalities is NP-hard. Theorem 2 shows that the

former result remains true even in our special case.

Let us now prove an auxiliary result, which will be used for reductions in the

upcoming NP-hardness proofs:

Theorem 1 Testing weak feasibility is NP-hard for interval systems in the form

Ax ≤ 0, 𝐛Tx < 0. (3)

Proof By the results of Hladík [4], we have that checking feasibility of the system

|Ax| ≤ e, eT |x| > 1 (4)

is an NP-hard problem. Let us now show that checking feasibility of system (4) is

equivalent to checking feasibility of the system

|Ax| ≤ ey, y ≥ 0, eT |x| > y. (5)

Obviously, if x is a feasible solution of (4), then the pair (x, 1) solves system (5).

Conversely, let (x, y) be a solution of (5). If y > 0, then the vector x∕y is a solution of

system (4). For y = 0we have a solution x of system (5) satisfying Ax = 0, eT |x| > 0.

Consider the vector x′ = x
eT |x|−𝜀

for some 𝜀 with 0 < 𝜀 < eT |x|. Then x′ solves sys-

tem (4), since |Ax′| = 0 ≤ e and

eT |x′| = eT
|
|
|
|

x
eT |x| − 𝜀

|
|
|
|
= eT |x|

eT |x| − 𝜀

> 1.

By a variant of the Gerlach theorem [3], the inequality eT |x| − y > 0 is feasible if

and only if the interval inequality [−e, e]Tx + y < 0 is weakly feasible. This finishes

the proof, since we have shown that it is NP-hard to test feasibility of systems in the

form Ax − ey ≤ 0, −Ax − ey ≤ 0, −y ≤ 0, [−e, e]Tx + y < 0. □

In the considered special case, testing strong feasibility of ILPs of the correspond-

ing types can be performed by testing feasibility of the systems (see [10]):

(I) Ax = bc + diag(p)b
𝛥

, x ≥ 0 for each p ∈ {±1}m,

(II) Ax ≤ b,

(III) Ax ≤ b, x ≥ 0.

The following theorem justifies the exponential condition for programs of type (I).

Theorem 2 Testing strong feasibility is co-NP-hard for interval linear systems of
type Ax = 𝐛, x ≥ 0.

Proof By the Farkas lemma, the system Ax = b, x ≥ 0 is infeasible if and only if

the system ATy ≥ 0, bTy < 0 is feasible. Therefore, an ILP of type (I) is weakly

infeasible if and only if the interval system
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ATy ≥ 0, 𝐛Ty < 0 (6)

is weakly feasible. However, by Theorem 1, this is an NP-hard decision problem. □

On the other hand, weak feasibility can be tested in polynomial time for all types

of problems with a fixed matrix by testing feasibility of the following linear systems:

(I) b ≤ Ax ≤ b, x ≥ 0,

(II) Ax ≤ b,

(III) Ax ≤ b, x ≥ 0.

3.2 Unboundedness

Strong unboundedness of interval linear programs was studied by Koníčková [7].

She proved that testing the property is co-NP-hard for general problems of type (I).

By Theorem 3, this also holds for problems with a fixed coefficient matrix.

Theorem 3 Testing strong unboundedness is co-NP-hard for ILPs of type (I).

Proof We construct a reduction from the strong feasibility problem, which is known

to be co-NP-hard by Theorem 2. Given an interval linear system in the form

Ax = 𝐛, x ≥ 0, consider the ILP

maximize z subject to Ax = 𝐛, x ≥ 0, z ≥ 0. (7)

If the system Ax = b, x ≥ 0 is feasible for some b ∈ 𝐛, then the corresponding linear

program in (7) is unbounded, since it is feasible and the value of z increases above

all bounds. Therefore, if the interval system Ax = 𝐛, x ≥ 0 is strongly feasible, then

each scenario of ILP (7) is unbounded and the program is strongly unbounded. Con-

versely, if (7) is strongly unbounded, then it is by definition also strongly feasible.

This shows that problem (7), which is an ILP of type (I), is strongly unbounded if

and only if the corresponding interval system Ax = 𝐛, x ≥ 0 is strongly feasible. □

To characterize strong unboundedness of an ILP, we can use unboundedness of the

following linear programs (see [7]):

(I) minimize cTx subject to Ax = bc + diag(p)b
𝛥

, x ≥ 0 for each p ∈ {±1}m,

(II) minimize cTx1 − cTx2 subject to A(x1 − x2) ≤ b, x1 ≥ 0, x2 ≥ 0,

(III) minimize cTx subject to Ax ≤ b, x ≥ 0.

Unfortunately, little is known about weak unboundedness in the case of general

interval linear programs. It is easy to see that in the special case with a fixed matrix,

testing weak unboundedness can be done in polynomial time for problems of type (I)

and (III). Non-negativity of the variables is crucial in this case, as illustrated by

Theorem 4. To test weak unboundedness of an ILP with a fixed matrix, we can check

weak feasibility of the following systems:
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(I) b ≤ Ax ≤ b, x ≥ 0, Ad = 0, d ≥ 0, cTd ≤ −1,

(II) Ax ≤ b, Ad ≤ 0, (cTc − cT
𝛥

diag( p))x ≤ −1 for some p ∈ {±1}n,

(III) Ax ≤ b, x ≥ 0, Ad ≤ 0, d ≥ 0, cTd ≤ −1.

Theorem 4 Testing weak unboundedness is NP-hard for ILPs of type (II).

Proof An ILP of type (II) is weakly unbounded if and only if the system

Ax ≤ b, Ad ≤ 0, 𝐜Td < 0 (8)

is weakly feasible, i.e. there exists a feasible scenario with an unbounded direction,

along which the objective function decreases. Since we know that testing weak fea-

sibility of the subsystem Ad ≤ 0, 𝐜Td < 0 is NP-hard, in general (see Theorem 1),

this also holds for the problem of testing weak unboundedness of (II). □

3.3 Optimality

The problem of testing strong optimality of an interval linear program was studied

as the finite range problem (deciding finiteness of the lower and upper bound on

the optimal objective value) by Rohn in [9]. The original theorem gives a co-NP-

hardness result for equation-constrained programs with non-negative variables and

an interval coefficient matrix. Theorem 5 provides a strengthening of the original

results.

Theorem 5 Testing strong optimality is co-NP-hard for ILPs of types (I) and (II).

Proof First, note that an ILP is strongly optimal if and only if the ILP formed by the

dual linear programs is strongly optimal. Since the dual of an interval program of

type (II) can be directly transformed into form (I), it is sufficient to prove the result

for programs of type (I).

Again, we show a simple reduction from the strong feasibility problem. For an

interval system Ax = 𝐛, x ≥ 0 consider the program

minimize 0Tx subject to Ax = 𝐛, x ≥ 0. (9)

It is easy to see that program (9) is strongly optimal if and only if the corresponding

system of type (I) is strongly feasible. □

Since strong optimality requires that both the primal and the dual ILP are strongly

feasible, testing strong optimality can be performed using the conditions stated in

Sect. 3.1 by testing feasibility of the systems:
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(I) Ax = bc + diag(p)b
𝛥

, x ≥ 0, ATy ≤ c for each p ∈ {±1}m,

(II) Ax ≤ b, ATy = cc + diag(p)c
𝛥

, y ≤ 0 for each p ∈ {±1}n,

(III) Ax ≤ b, x ≥ 0, ATy ≤ c, y ≤ 0.

In general, it is hard to determine whether a given ILP is weakly optimal. How-

ever, contrary to the general case, we can test weak optimality of a program with

a fixed matrix in polynomial time. By duality, this only requires to find a scenario,

for which both the primal and the dual program are feasible.

Since we have a fixed coefficient matrix, the scenarios of the interval systems are

only determined by the independent choice of b ∈ 𝐛 for the primal a c ∈ 𝐜 for the

dual problem. This reduces the problem to testing weak feasibility of the primal and

dual ILP, which is easy to test for all types of program. Using this approach, we need

to test feasibility of the following systems:

(I) b ≤ Ax ≤ b, x ≥ 0, ATy ≤ c,

(II) Ax ≤ b, c ≤ ATy ≤ c, y ≤ 0,

(III) Ax ≤ b, x ≥ 0, ATy ≤ c, y ≤ 0.

4 Conclusion

We have explored the decision problems related to the properties of interval linear

programs on the special class of programs with a fixed coefficient matrix. Namely,

we have addressed the problems of testing (weak and strong) feasibility, optimal-

ity and unboundedness of the program. While the restriction of the coefficients to

real matrices may seem like a strong assumption, we have shown that many of the

decision problems remain hard to decide even in this special case.

The complexity of the discussed problems for the three most commonly used

types of interval linear programs is summarized in Table 2. For those problems,

which remain (co-)NP-hard for programs with a fixed matrix, we have strengthened

the previously known results by formulating new proofs that also hold for the con-

sidered special case.
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Bounding Multistage Stochastic Programs:
A Scenario Tree Based Approach

Francesca Maggioni and Elisabetta Allevi

Abstract Multistage mixed-integer stochastic programs are among the most

challenging optimization problems combining stochastic programs and discrete opti-

mization problems. Approximation techniques which provide lower and upper

bounds to the optimal value are very useful in practice. In this paper we present

a critic summary of the results in Maggioni et al., J Optim Theory Appl 163:200–

229 (2014), [4] and in Maggioni et al., Comput Manag Sci 13:423–457 (2016), [5]

where we consider bounds based on the assumption that a sufficiently large dis-

cretized scenario tree describing the problem uncertainty is given but is unsolv-

able. Bounds based on group subproblems, quality of the deterministic solution and

rolling-horizon approximation will be then discussed and compared.

Keywords Multistage stochastic programs ⋅ Bounds ⋅ Group subproblems

1 Introduction

In general the uncertainty of multistage stochastic programs is defined by means of

a scenario process which may take uncountable infinite values. In order to solve it,

is possible to consider a sufficiently large discretized scenario tree describing the

uncertainty and considering it as benchmark. However in most of the real cases

this problem is unsolvable requiring the inclusion of a large number of samples.

Bounding its solution is then of practical interests.
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The aim of the paper is to present a brief and critic summary of bounds in multi-

stage mixed-integer stochastic programs introduced in [4, 5] based on the assumption

that a sufficiently large discretized scenario tree describing the problem uncertainty

is given but is unsolvable. Chain of lower bounds less complex than the original

problem are solved by solving sets of group subproblems made by fixed and free sce-

narios, and taking an expectation across scenario groups. Monotonicity results are

provided. Other approximations of the optimal stochastic solution have been quan-

tified by the introduction of measures of the quality of the deterministic solution

and rolling horizon measures which update the estimation and add more informa-

tion at each stage. The general idea behind construction of the proposed bounds, is

that for every optimization problem of minimization type, lower bounds to the opti-

mal solution can be found by relaxation of constraints and upper bound by inserting

feasible solutions. Bounds for multistage convex problems with concave risk func-

tionals based on scenario tree approaches are also provided in [7]. Other approaches

bounding the infinite problem are presented in [8].

The paper is organized as follows: Sect. 2 introduces the notation and basic defi-

nitions. Lower bounds based on solving group subproblems are in Sect. 3 and upper

bounds for the optimal multistage objective value are in Sect. 4. Section 5 concludes

the paper.

2 Preliminaries

We consider the following scenario formulation of a multistage mixed-integer sto-
chastic program (see [11]):

RP = min
𝐱

E𝝃H−1z(𝐱, 𝝃H−1)

= min
x1,…,xH

c1x1 +
S∑

s=1
𝜋s

(
c2

(
𝜉

1
s
)

x2
(
𝜉s
)
+⋯ + cH (

𝜉

H−1
s

)
xH(

𝜉s
))

s.t. Ax1 = h1,
T1(𝜉1s )x

1(𝜉s) + W2(𝜉1s )x
2(𝜉s) = h2(𝜉1s ), s = 1,… , S, (1)

⋮

TH−1(𝜉H−1
s )xH−1(𝜉s)+WH(𝜉H−1

s )xH(𝜉s)=hH(𝜉H−1
s ), s=1,… ,S,

xt(𝜉j′ ) = xt(𝜉j′′ ),∀j′, j′′ ∈ {1,… , S} for which 𝜉

t
j′ =𝜉

t
j′′ , t = 2,… ,H,

where c1 ∈ ℝn1 and h1 ∈ ℝm1 are known vectors, A ∈ ℝm1×n1 is a known matrix,

ht ∈ ℝmt , ct ∈ ℝnt , Tt−1 ∈ ℝmt×nt−1 , Wt ∈ ℝmt×nt
, t = 2,… ,H are the uncertain

parameter vectors and matrices. The random process 𝜉
t
, t = 1,… ,H − 1, is revealed

gradually over time in H periods and 𝝃t ∶= (𝜉1,… , 𝜉

t), t = 1,… ,H − 1 denotes the

history of the process up to time t. 𝜉t
is defined on a probability space (𝛯 t

,A t
, p)with

support 𝛯
t ∈ ℝnt and given probability distribution p on the 𝜎−algebra A t

(with
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Fig. 1 Scenario tree representation of the random process 𝝃H−1
with approximate distribution

A t
⊆ A t+1

) and E
𝜉

t denotes the expectation with respect to 𝜉

t
. Let 𝜉1,… , 𝜉S, be the

possible realizations (or scenarios) of 𝝃H−1
, 𝛯 the finite support of possible scenar-

ios and 𝜉

t
s the history of the s-realization, s = 1,… , S, up to stage t, t = 1,… ,H − 1.

Let 𝜋s the probability of scenario s, s = 1,… , S. See Fig. 1 for a scenario tree visu-

alization of the scenario process with approximate distribution. The decision vector

𝐱 ∶= (x1, x2,… , xH), with xt ∈ ℝnt−dt
+ × ℕdt , t = 1,… ,H, is nonanticipative which

means it depends on the information up to time t. The last set of constraints enforce

this condition. In the following, for a simpler presentation, the feasibility condition

on xt
will be omitted even if assumed to be satisfied.

The main principle to obtain lower bounds of problem (1) is given by the relax-

ation of some constraints. This is the case of the multistage wait-and-see problem

(WS), where the nonanticipativity constraints are relaxed. WS is then obtained by

averaging the total costs of the S deterministic programs:

WS=
S∑

s=1
𝜋s minx1(𝜉s),…,xH (𝜉s) c1x1(𝜉s) + c2(𝜉1s )x

1(𝜉s) +…+ cH(𝜉H−1
s )xH(𝜉s)

s.t. Ax1(𝜉s) = h1,
T1(𝜉1s )x

1(𝜉s) + W2(𝜉1s )x
2(𝜉s) = h2(𝜉1s ),

⋮

TH−1(𝜉H−1
s )xH−1(𝜉s) + WH(𝜉H−1

s )xH(𝜉s)=hH(𝜉H−1
s ).

(2)

The Expected Value problem EV is obtained by replacing all random parameters by

their expected values and solving the deterministic program, with

̄𝝃 ∶=( ̄𝜉1, ̄𝜉2,… ,
̄
𝜉

H−1)=(E𝜉1,E𝜉2,… ,E𝜉H−1):

EV ∶= min
𝐱

z(𝐱, ̄𝝃). (3)
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2.1 Basic Bounds

The following relations between RP, WS and EV have been proved in [3].

Theorem 1 For multistage stochastic mixed-integer programs of the form (1), the
following inequalities hold true

WS ≤ RP ≤ EEV, (4)

where EEV denotes the solution value of the RP model, having the first stage deci-
sion variables fixed at the optimal values obtained by using the expected value of
coefficients.

Similarly EEVt
, t = 1,… ,H − 1 (see [2, 4]), is defined by fixing the decision

variables up to stage t of RP at the optimal values obtained by using the problem

EV. The Value of the Stochastic Solution at stage t, VSSt
is then defined as VSSt ∶=

EEVt − RP, t = 1,… ,H − 1.

However, in several problems of practical interest the difference between EEVt

and WS is quite large. In the next sections we will discuss how to solve simpler

problems for finding lower and upper bounds and proceed to find tighter and tighter

bounds to RP.

3 Lower Bounds by Group Subproblems

In order to obtain lower bounds on RP problem which improve the left-hand side

inequality in (4), one can solve smaller problems than the original one. The pro-

posed approach (see [5]) divides a given problem into independent subproblems.

We suppose to fix a number 1 ≤ R < S of reference scenarios among the possible

S scenarios. Let R = {1,… ,R} be the index set of fixed scenarios. Without loss of

generality we suppose they are the first R scenarios among the available S ones. We

choose among the K = S − R scenarios (𝜉i, i = R + 1,… S) a subgroup of cardinality

k = 1,… ,K. Let K = {R + 1,… , S} be the index set of scenarios excluding those

belonging to the fixed scenario set R. Let P(K ) the power set of K excluding the

empty set. Let Pk(K ) the set of all subset of P(K ) with cardinality k. For any

subset 𝛹k ∈ Pk(K ), let 𝜋(𝛹k) =
∑

i∈𝛹k
𝜋i be the probability assigned to scenarios

group 𝛹k.

Definition 1 For any given scenario group 𝛹k, the group subproblem MGR(𝛹k,R)
is defined as min zR(𝛹k) ∶=
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Fig. 2 Representation of the Group Subproblem MGR(𝛹4, 2) with R = 2 reference scenarios (in

red) and one subset 𝛹4 (in blue)

min
x1,…,xH

(
c1x1+

R∑

r=1

(
𝜋r

H∑

t=2
ct(𝜉t−1

r )xt(𝜉r)

)
+(1 −

R∑

r=1
𝜋r)

∑

i∈𝛹k

𝜋i

𝜋(𝛹k)

H∑

t=2
ct(𝜉t−1

i )xt(𝜉i)

)

s.t. Ax1 = h1,
Tt−1(𝜉t−1

r )xt−1(𝜉r) + Wt(𝜉t−1
r )xt(𝜉r) = ht(𝜉t−1

r ), r ∈ R, t = 2,… ,H (5)

Tt−1(𝜉t−1
i )xt−1(𝜉i) + Wt(𝜉t−1

i )xt(𝜉i) = ht(𝜉t−1
i ), i ∈ 𝛹k, t = 2,… ,H

xt(𝜉j′ ) = xt(𝜉j′′ ),∀j′, j′′ ∈ R ∪ 𝛹k for which 𝜉

t
j′ = 𝜉

t
j′′ t = 2,… ,H.

Remark 1 MGR(𝛹1, 1) reduces to the definition of PAIRS subproblem (see [4]).

A representation of MGR(𝛹4, 2) is shown in Fig. 2 with R = 2 reference scenarios

(in red) and one subset 𝛹4 (in blue).

Definition 2 Given an integer k ∈ {1,… ,K}, and R fixed scenarios, the Multistage
Expected value of the Group Subproblem Objective function with k scenarios in each

group and R fixed scenarios, MEGSO(k,R) is defined as

MEGSO(k,R)∶= 1(
K − 1
k − 1

)
(1 −

∑R
r=1 𝜋r)

[
∑

𝛹k∈Pk(K )
𝜋(𝛹k)min zR(𝛹k)

]
. (6)

Remark 2 The Multistage Sum of Pairs Expected Values, MSPEV [4] reduces to

MEGSO(1, 1) as follows

MSPEV = MEGSO(1, 1) = 1
1 − 𝜋a

∑

𝛹1∈1(K )
𝜋(𝛹1)min zP(𝛹1). (7)
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Theorem 2 Given an integer R, 1 ≤ R < S and an integer k, 1 ≤ k ≤ K the follow-
ing chains of inequalities hold true

WS≤MEGSO(1,R)≤MEGSO(2,R)≤⋯≤ MEGSO(K,R)=RP, (8)

MEGSO(k, 1) ≤ MEGSO(k, 2) ≤ ⋯ ≤ MEGSO(k, S − k) = RP. (9)

Theorem 2 says that MEGSO is monotonically nondecrasing in the cardinality k
of scenarios of the subsets 𝛹k with R fixed and monotonically nondecrasing in the

number of reference scenarios R with k fixed. The proof can be found in [5].

4 Upper Bounds

In this section we discuss and compare some types of upper bounds for multistage

mixed-integer programs. We focus on bounds based on solving group subproblems,

quality measures of the deterministic solution and on rolling horizon measures.

4.1 Upper Bounds from Multistage Group Subproblems

In this section we recall upper bounds for multistage stochastic programs based on

solving group subproblems (see [10] for the two-stage case and [5] for the mul-

tistage one). Given �̌�1R the optimal first stage solution of the stochastic problem

min𝐱 z(𝐱, 𝜉1,… , 𝜉R), based only on the R reference scenarios, then a possible upper

bound of RP is:

MEVRS1,R ∶= E𝝃H−1 min
𝐱(2,H)

z(�̌�1R, 𝐱
(2,H)

, 𝝃H−1). (10)

A tighter upper bound to RP is the Multistage Expectation of Group Subproblems
MEGS(k,R), which represents the minimum optimal value among those obtained

by solving the original stochastic program (1), using the optimal first stage solution

x̂1
𝛹k ,R

of each group subproblem (5). This can be expressed as follows:

MEGS(k,R) ∶= min
𝛹k∈k(K )∪R

(E𝝃H−1 min
𝐱(2,H)

z(x̂1
𝛹k ,R

, 𝐱(2,H)
, 𝝃H−1)). (11)

The following inequality holds (see [5]).
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Proposition 1 For a fixed number R of reference scenarios and any 1 ≤ k ≤ K we
have

RP ≤ MEGS(k,R) ≤ MEVRS1,R
. (12)

4.2 Upper Bounds Based on the Expected Value Skeleton
Solution

Measures of the structure (skeleton) of the deterministic solution such as the Multi-
stage Loss Using the Skeleton Solution MLUSS has been introduced in [4], in rela-

tion to the standard VSS (see in [9] the definition in the two-stage case). The aim of

these measures is to identify meaningful information, which can be extracted from

the solution of the deterministic problem, in order to reduce the size of the stochas-

tic one. MLUSSt
are computed as the difference between the optimal values of the

stochastic problem RP and its reduced version MESSVt
obtained by fixing the out-

of-basis variables up to stage in the expected value solution. Having a MLUSSt
close

to zero suggests that the out-of-basis variables chosen by the expected value model

until stage t are correct also in a stochastic environment. The following relations hold

true (see [4]):

Proposition 2

MLUSSt+1
≥ MLUSSt

, t = 1,… ,H − 2, (13)

RP ≤ MESSVt
≤ EEVt

, t = 1,… ,H − 1. (14)

In these lines, other measures of the goodness of deterministic solutions based on

reduced costs of the deterministic solution are proposed in [1].

4.3 Upper bounds based on Rolling Horizon approaches

Multistage problems such as EEVt
are often infeasible since they require to fix

many variables to their value obtained via the expected value model. An alterna-

tive approach to consider is the rolling time horizon procedure taking into account

the arrival of new information at each stage. This is obtained by solving a sequence of

H scenario trees with random parameters in periods t,… ,H − 1 replaced with their

expected value and solve the associated model with fixing the solutions obtained

in the previous steps (see Fig. 3). The Rolling Horizon Value of the Expected Value
Solution is then given by the difference with respect to RP. In similar way other

rolling horizon measures are defined in [4] and in [6].
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Fig. 3 Procedure to compute the rolling horizon value of the expected value solution

5 Conclusions

In this paper lower and upper bounds for mixed-integer multistage stochastic pro-

grams have been discussed and compared. The bounds are based on the assump-

tion that a sufficiently large scenario-tree process is given as approximation of the

general infinite problem and it is considered as a benchmark. The lower and upper

bounds proposed are based on groups subproblems, quality of deterministic solution

and rolling horizon approaches. The approach discussed is both of theoretical and

practical importance arising when solving problems of large instances where it is

fundamental to have approximations of the optimal solution.
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A Polyhedral Study of the Robust
Capacitated Edge Activation Problem

Sara Mattia

Abstract Given a capacitated network, the Capacitated Edge Activation problem

consists of activating a minimum cost set of edges in order to serve some traffic

demands. If the demands are subject to uncertainty, we speak of the Robust Capac-

itated Edge Activation problem. We consider the capacity formulation of the robust

problem and study the corresponding polyhedron to generalize to the robust problem

the results that are known for the problem without uncertainty.

Keywords Polyhedral study ⋅ Capacity formulation ⋅ Robustness

1 Introduction

Modern telecommunications networks must be resilient to traffic peaks and

possible failures. Therefore, to increase the reliability of the system, they are designed

to have redundant components. One common type of redundancy is to install extra-

capacity on the edges. Keeping all the redundant components active is very expen-

sive, both from an economical point of view and from a sustainability perspective.

Then, those components are usually deactivated and switched on only when a fault

occurs [1, 23]. The Capacitated Edge Activation (CEA) problem selects the mini-

mum cost set of edges to be activated to guarantee the routing of a set of demands.

Differently for the Network Loading (NL) problem, where the capacities must be

computed and are not subject to restrictions, the edges in the CEA problem have

given (bounded) capacities. When the demands are subject to uncertainty, it must be

ensured that all the traffic matrices belonging to a given uncertainty set are served.

This is the Robust Capacitated Edge Activation (RCEA) problem. Different versions

of the problem can be defined according to the possibility to split the demands and to

adapt the routing to the specific traffic matrix that is considered. If the commodities
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are restricted to follow a single path in the network, we speak of unsplittable flows

(denoted by unsplit). Otherwise, we have splittable flows (denoted by split). If the

routing must be the same, independently of the specific traffic matrix to be served,

it is said to be static (denoted by stat). If it can be changed according to the matrix,

it is called dynamic (denoted by dyn).

In this paper we consider a capacity formulation of the problem, that is, a formulation

that contains only design variables (the ones related to the activation of the edges),

but no routing variables (the ones that define the routes for the demands). Instead, we

call flow formulation a model including both design and routing variables. For split-

table flows, capacity formulations are usually obtained through Benders-like refor-

mulations. Benders decomposition [6] is popular technique that has been applied to

many problems, ranging from personnel scheduling [25] to black-out prevention [9].

For applications of this framework to network design problems see [12, 24]. For

unsplittable flows instead, some kinds of combinatorial Benders cuts [10, 11, 17,

23] are usually needed. We study the polyhedron corresponding to the capacity for-

mulation and generalize to the RCEA problem some results that are known for the

problem without uncertain demands [17, 23], presenting results for splittable and

unsplittable flows, static and dynamic routing. As far as we know, this is the first

time that the polyhedral properties of the RCEA problem are investigated. In Sect. 2

we present a review of the literature. In Sect. 3 polyhedral results are derived. In

Sect. 4 conclusions are discussed.

2 Literature

The NL problem is very popular in the literature: many approaches have been pro-

posed and different formulations and the related polyhedra have been investigated.

We address the reader to [4, 5, 8, 18, 26] and references therein for additional details.

Uncertainty in the demands has also been considered: properties and algorithms for

some robust versions of the RNL problem and related problems are investigated in

[3, 15, 21, 22, 24], among the others. Lagrangian relaxations for the flow formu-

lation of the splittable CEA problem are presented in [13]. A Lagrangian heuristic

to be used within a branch-and-bound approach to solve the splittable CEA prob-

lem is illustrated [14]. The CEA problem with unsplittable flows and survivability

requirements is considered in [1]. The authors present valid inequalities and derive a

branch-and-cut algorithm to solve the problem, but no capacity formulation is used.

A problem with unsplittable flows where multiple capacity modules can be sepa-

rately activated on the edges of a network is studied in [7]. Valid inequalities for

the polyhedron of the single edge problem to be added to a flow formulation are

presented and a branch-and-cut algorithm is proposed.

Results for the capacity formulation of the CEA problem with splittable flows where

a connected network is also required are presented in [2]. Valid inequalities and

polyhedral results for the capacity formulation of the CEA problem with splittable

and unsplittable flows are presented in [23]. The author shows that the tight metric
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inequalities, that completely define the polyhedron of the capacity formulation of

many network design problems [4, 19–21], do not provide the complete description

of the polyhedron corresponding to the CEA problem. As far as we know, there is

no paper in the literature presenting a polyhedral study of the capacity formulation

of the RCEA problem.

3 Polyhedral Results

Denote by G(V ,E) the undirected graph representing the network and by K the set of

node pairs (commodities) to be served. For each k ∈ K, sk is the source, tk the desti-

nation and dk ≥ 0, which is uncertain, the amount. Different amounts correspond to

different traffic matrices. Let D be a non-empty and bounded set including the traffic

matrices that must be served and assume that there is at least one matrix in D such

that dk > 0 for any k ∈ K. Let ce > 0 be the cost of activating edge e. Assume that,

when activated, all the edges provide the same capacity, that we denote by U. Let

R = {split, unsplit} be the set of the routing policies and let F = {stat, dyn} be the

set of the flows policies.

T ⊆ E is a bridge set if the simultaneous removal from the network of the edges in T
makes the problem infeasible. The status of T depends on the demands, on the flows

and on the routing, as T may be a bridge set for a given demand/flow/routing triple

(D , f , r), but not for another one. We say that a bridge set is minimal for (D , f , r)
if it does not strictly contain another bridge set. Denote by B(D , f , r) the minimal

bridge sets for D if flows f and routing r are used. Let xe be a binary variable taking

value one if e is active and zero otherwise. The RCEA problem can be formulated

as below.

SC(D , f , r) min
∑

e∈E
cexe

∑

e∈B
xe ≥ 1 B ∈ B(D , f , r)

𝐱 ∈ {0, 1}|E|

Trivially, E is a bridge set. A cut is a bi-partition of V into {S,V ⧵ S}. Given a cut,

let 𝛿(S) and K(S) be edges having endpoints in different sets of the partition and the

demands separated by the cut. If K(S) ≠ ∅, then 𝛿(S) is a bridge set, see Example 1.

A bridge set not corresponding to a cut is reported in Example 2.

Example 1 Consider a complete graph on three nodes where U = 1. Let the uncer-

tainty set be D = conv{D1
,D2}, where d112 = 1, d1ij = 0 otherwise, d213 = 1, d2ij = 0

otherwise. Consider cut {{1}, {2, 3}}, with 𝛿(S) = {(1, 2), (1, 3)}. Set 𝛿(S) defines a

minimal bridge set for any r ∈ R, f ∈ F.

Example 2 Consider a complete graph on four nodes. Assume that U = 1. Let D =
conv{D1

,D2}, where d113 = d114 = 1, d1ij = 0 otherwise and d213 = d223 = 1, d2ij = 0
otherwise. T = {(1, 3), (2, 4)} ⊆ E is a minimal bridge set for (D , unsplit, stat).
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Remove the edges in T . The only feasible unsplittable routing for D1
is d14 routed

on {(1, 4)} and d13 routed on {(1, 2), (2, 3)}. It is not possible to route D2
if we keep

the same routing used in D1
for d213 .

Note that the set T in Example 2 is not a bridge set for (D , split, r), for r ∈ R or for

(D , f , dyn), for f ∈ F. Moreover, it does not correspond to the edge set 𝛿(S) of any

cut {S,V ⧵ S}. Let P(D , f , r) denote the convex hull of the integer feasible solutions

of formulation SC(D , f , r). We assume that there is no bridge set of cardinality one,

that is, the removal of a single edge from the network does not make the problem

infeasible. We now generalize to the RCEA problem some results presented in [17,

23] for the CEA problem.

Lemma 1 P(D , f , r) is full-dimensional.

Proof Let 𝐱e be the solution having xeh = 1 for h ∈ E ⧵ {e} and xee = 0. Since there

are no single edge bridge sets, 𝐱e is feasible for any e. Let 𝐲 be the solution with

yh = 1 for all h ∈ E. Vectors 𝐲 and 𝐱e for e ∈ E are |E| + 1 affinely independent

vectors in P(D , f , r). □

Simple valid inequalities are:

xe ≥ 0 e ∈ E (1)

xe ≤ 1 e ∈ E (2)

Theorem 1 The following results hold:

1. inequalities (1) are facet-defining for P(D , f , r) for r ∈ R and f ∈ F, if {e, h} ∉
B(D , f , r), for any h ∈ E ⧵ {e};

2. inequalities (2) are facet-defining for P(D , f , r) for r ∈ R and f ∈ F.

Proof Part 1. One can find |E| affinely independent vectors in P(D , f , r) as follows.

Let 𝐲 be the solution having yq = 1 for all q ∈ E⧵{e} and ye = 0. For any h ∈ E⧵{e},

let 𝐱eh be the solution with xehq = 0 for q ∈ {e, h} and xehq = 1 otherwise. Part 2. For

t ≠ e, consider vector 𝐳te having zteq = 1 for all q ∈ E ⧵ {t} and ztet = 0. Vectors

𝐰 = 𝟏 and 𝐳te for t ∈ E ⧵ {e} are |E| affinely independent vectors of P(D , f , r). □

No facet of the form 𝐚T𝐱 ≥ b can have negative coefficients, but for inequalities (2).

Theorem 2 Let 𝐚T𝐱 ≥ b be a valid inequality for P(D , f , r). If ∃e ∶ ae < 0, then
either 𝐚T𝐱 ≥ b is the upper bound inequality (2) for edge e or it is not a facet of
P(D , f , r).

Proof Assume that 𝐚T𝐱 ≥ b is a facet and that there exists one edge e having ae < 0.

Suppose that 𝐲 is a feasible solution satisfying 𝐚T𝐱 ≥ b with equality and that ye = 0.

Then, solution 𝐳 obtained as zt = yt for t ∈ E ⧵ {e}, ze = 1 is still feasible, but

𝐚T𝐳 = 𝐚T𝐲 − ae = b − ae < b. Hence, any feasible solution that satisfies 𝐚T𝐱 ≥ b
with equality also satisfies facet xe ≤ 1 with equality. □
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Given a cut, the cutset inequalities (3) are valid for P(D , f , r).

∑

e∈𝛿(S)
xe ≥ max

K∈D

⌈∑
k∈K(S) dk
U

⌉

(3)

Indeed, if the active edges of a cut do not support the maximum demand separated

by the cut, no feasible solution exists. Consider now a two-node problem, where the

graph may have parallel edges and commodities. Let P2(D , f , r) be the corresponding

polyhedron.

Theorem 3 Inequalities (3) are facet-defining for P2(D , split, r) for r ∈ R, if and
only if |E| > maxK∈D

⌈∑
k∈K(S) dk∕U

⌉
> 0.

Proof Since the flows are splittable and we are considering a two-node problem,

the commodities in K can be replaced by a unique commodity with source node 1,

destination node 2 and demand d12 = maxK∈D
∑

k∈K(S) dk∕U. Let D(S) = ⌈d12⌉. Part

1. Since the maximum flow across the cut can be as large as U|E|, if |E| < D(S) no

integer feasible 𝐱 exists. Part 2. If D(S) = 0, then the cutset inequality is dominated

by the non-negativity constraints. If |E| = D(S), then each edge is a bridge and

the cutset inequality is dominated by the upper bound constraints. Assume then that

|E| > D(S), hence no set of r = |E|−D(S) edges is a bridge set. Let 𝐲i be the vector

having D(S) consecutive ones starting from entry ei (restarting from e1 once the last

edge is reached), whereas the other entries are equal to zero. Vectors 𝐲i for ei ∈ E are

|E| affinely independent feasible solutions satisfying the inequality with equality. □

Given a cut {S,V ⧵ S}, a corresponding two-node problem can be derived by shrink-

ing each subset into a node. We denote the polyhedron of the two-node problem

associated with cut {S,V ⧵ S} by P
S
2(D , split, r). It is possible to prove that, under

some conditions, the cutset inequalities that are facets of P
S
2(D , split, r), are facets

of P(D , split, r) as well. Let R
S
2(D , split, r) ⊆ PS

2(D , split, r) be the integer fea-

sible solutions satisfying the cutset inequality with equality. Consider a problem

where the activation status of the edges in J ⊆ E has already been decided. Let

BJ(D , split, r, �̄�) denote the minimal bridge sets of the problem with demand set D ,

flows f , routing r and activation status �̄� for the edges in J.

Theorem 4 If S and V ⊆ S are connected, |E| >
⌈
maxK∈D

∑
k∈K(S) dk∕U

⌉
> 0 and

{e} ∉ B𝛿(S)(D , split, r, �̄�) for any e ∈ E ⧵ 𝛿(S), �̄� ∈ RS
2(D , split, r), then the corre-

sponding cutset inequality is a facet of P(D , split, r).

Proof Suppose that S is not connected and let V1
i ,… ,Vq

i be its connected compo-

nents. Then the inequality corresponding to {S,V ⧵ S} is dominated by the ones

corresponding to cuts {Vi,Vi ⧵ S}, i = 1,… , q. The same if V ⧵ S is not connected.

Assume that S and V ⧵ S are connected. Since the conditions of Theorem 3 are met,

then the inequality is a facet of P
S
2(D , split, r). Let 𝐳1,… , 𝐳|𝛿(S)| be affinely indepen-

dent vectors of R
S
2(D , split, r). Let 𝐲i ∈ {0, 1}|E| be the vector having yie = 𝐳ie for

e ∈ 𝛿(S), yie = 1 for e ∈ E ⧵ 𝛿(S). Choose a vector 𝐳j. For any t ∈ E ⧵ 𝛿(S) let 𝐰t
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be the vector having wt
e = zje for e ∈ 𝛿(S), wt

e = 1 for e ∈ E ⧵ 𝛿(S) ⧵ {t}, wt
e = 0

for e = t. Vectors 𝐲i for i ∈ 𝛿(S) and 𝐰t
for t ∈ E ⧵ 𝛿(S) are |𝛿(S)| + |E ⧵ 𝛿(S)|

affinely independent feasible solutions of P(D , split, r) satisfying the inequality with

equality. □

On the contrary, the cutset inequalities defined above are valid for the unsplittable

RCEA problem, but they are not facets for P2(D , unsplit, r), as the RCEA prob-

lem includes the CEA problem (and then the Bin-Packing problem) as special case

[17, 23].

Exact separation of cutset inequalities is, in general, NP-hard, even for a prob-

lem without uncertainty, as it corresponds to solve a Max-Cut problem [5]. Cut-

set inequalities can be separated, for example, by adapting the heuristic algorithm

used for the RNL problem in [21]. For unsplittable flows, the right-hand-side of the

inequalities can be strengthened as in [17, 23] by applying the technique originally

proposed for the Bin-Packing problem in [16].

4 Conclusions

We studied from the polyhedral point of view the capacity formulation of the robust

version of the CEA problem. We identified facets and valid inequalities, providing

the first polyhedral results for this problem. In fact, we generalized to the RCEA

problem the results known for the CEA problem.

References

1. Addis, B., Carello, G., Mattia, S.: Survivable green traffic engineering with shared protection.

Networks 69(1), 6–22 (2017)

2. Agarwal, Y., Aneja, Y.: Fixed charge multicommodity network design using p-partition facets.

Eur. J. Oper. Res. 258, 124–135 (2017)

3. Altın, A., Yaman, H., Pınar, M.: The robust network loading problem under hose demand

uncertainty: formulation, polyhedral analysis, and computations. INFORMS J. Comput. 23(1),

75–89 (2011)

4. Avella, P., Mattia, S., Sassano, A.: Metric inequalities and the network loading problem.

Discret. Optim. 4, 103–114 (2007)

5. Barahona, F.: Network design using cut inequalities. SIAM J. Optim. 6, 823–834 (1996)

6. Benders, J.F.: Partitioning procedures for solving mixed-variables programming problems.

Numer. Math. 4, 238–252 (1962)

7. Benhamichea, A., Mahjoub, R., Perrot, N., Uchoa, E.: Unsplittable non-additive capacitated

network design using set functions polyhedra. Comput. Oper. Res. 66, 105–115 (2016)

8. Bienstock, D., Chopra, S., Günlük, O., Tsai, C.Y.: Minimum cost capacity installation for mul-

ticommodity network flows. Math. Program. B 81, 177–199 (1998)

9. Bienstock, D., Mattia, S.: Using mixed-integer programming to solve power grid blackout prob-

lems. Discret. Optim. 4, 115–141 (2007)

10. Botton, Q., Fortz, B., Gouveia, L., Poss, M.: Benders decomposition for the hop-constrained

survivable network design problem. INFORMS J. Comput. 25, 13–26 (2013)



A Polyhedral Study of the Robust Capacitated Edge Activation Problem 419

11. Codato, G., Fischetti, M.: Combinatorial Benders’ cuts for mixed-integer linear programming.

Oper. Res. 54(4), 756–766 (2006)

12. Costa, A.: A survey on benders decomposition applied to fixed-charge network design prob-

lems. Comput. Oper. Res. 32, 1429–1450 (2005)

13. Crainic, T., Frangioni, A., Gendron, B.: Bundle-based relaxation methods for multicommodity

capacitated fiwed charge network design. Discret. Appl. Math. 112, 73–99 (2001)

14. Holmberg, K., Yuan, D.: A lagrangian heuristic based branch-and-bound approach for the

capacitated network design problem. Oper. Res. 48, 461–481 (2000)

15. Lee, C., Lee, K., Park, S.: Benders decomposition approach for the robust network design

problem with flow bifurcations. Networks 62(1), 1–16 (2013)

16. Martello, S., Toth, P.: Lower bounds and reduction procedures for the bin packing problem.

Disc. Appl. Math. 28, 59–70 (1990)

17. Mattia, S.: The capacity formulation of the capacitated edge activation problem. Submitted

18. Mattia, S.: Separating tight metric inequalities by bilevel programming. Oper. Res. Lett. 40(6),

568–572 (2012)

19. Mattia, S.: Solving survivable two-layer network design problems by metric inequalities.

Comput. Optim. Appl. 51(2), 809–834 (2012)

20. Mattia, S.: A polyhedral study of the capacity formulation of the multilayer network design

problem. Networks 62(1), 17–26 (2013)

21. Mattia, S.: The robust network loading problem with dynamic routing. Comput. Optim. Appl.

54(3), 619–643 (2013)

22. Mattia, S.: The cut property under demand uncertainty. Networks 66(2), 159–168 (2015)

23. Mattia, S.: Benders decomposition for capacitated network design. In: Proceedings of ISCO

2016. LNCS, vol. 9849, pp. 71–80 (2016)

24. Mattia, S., Poss, M.: A comparison of different routing schemes for the robust network loading

problem: polyhedral results and computation. Submitted

25. Mattia, S., Rossi, F., Servilio, M., Smriglio, S.: Staffing and scheduling flexible call centers by

two-stage robust optimization. Omega 72, 25–37 (2017)

26. Raack, C., Koster, A., Orlowski, S., Wessäly, R.: On cut-based inequalities for capacitated

network design polyhedra. Networks 57(2), 141–156 (2011)



Performance Evaluation of a Push Merge
System with Multiple Suppliers,
an Intermediate Buffer and a Distribution
Center with Parallel Channels: The Erlang
Case

Despoina Ntio, Michael Vidalis, Stelios Koukoumialos
and Alexandros Diamantidis

Abstract In this paper, the most important performance measures of a two stage,
push merge system are estimated. More specifically, S non identical and reliable
suppliers send material to a distribution center (DC) of one product type. The DC
has N possible parallel identical reliable machines. Between the suppliers and the
DC a buffer with unlimited capacity, is located in order the material flow to be
controlled. All stations processing and replenishment times are assumed stochastic
and follow the Erlang distribution. The considered model is developed as Markov
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1 Introduction and Literature Review

Production systems are networks that consist of work stations, distribution centers
and buffers. Production systems structure must serve the purpose and the needs of
production procedure. According to the production type, materials or finished goods
pass through the system in a specific way. Also, every station is located so as the
material flow to be facilitated. As a result, a production system topology take
various forms such as serial, merge or convergent, split or divergent or general
topology. Both the production systems structure and complexity have crucial
impact on its performance measures. The most important performance measures of
production systems are the throughput (average production rate of the system), the
work in process (average inventory in the system or in the buffer), the Cycle Time
or Flow Time (the average time that an item remains in the system). This work
focuses on the performance measure computation of a two stage, push merge
system.

Merge production systems are extension of the classical production lines. They
are more complex networks where many upstream machines converge to only one
downstream node. Queuing theory has a great contribution on the study of pro-
duction systems. In the existing literature there are many researchers that adopt the
queuing theory framework for the analysis of production systems. For example, [1],
analyzed a production system with one station, [2], proposed a method that
decomposed an initial system into individual and less complex queues. In [3], the
authors examined production systems with mixed topology (merge and split). [4],
studied a production system that was capable of producing many type of products.
The model examined in this work is also developed using the framework of queuing
theory.

Moreover, in the literature many studies examine systems with unreliable
machines. More Specifically, [5–7], studied two stage unreliable merge production
systems with continuous material flow. [8, 9], analyzed a two stage unreliable
merge system with two suppliers, a shared buffer and one downstream machine.
[10], examined a production system with multiple product types using the
decomposition approach. Finally, at the field of systems with unreliable machines
[11], examined a two stage system with two parallel machines at the first stage, an
intermediate buffer, and two parallel machines at the second stage. Considering
merge systems with reliable machines, most studies examine discrete material flow
systems with two stages, and stochastic processing times. Most of the models were
developed as Markovian processes with discrete states. More specifically, [12],
studied a two stage system with two suppliers, a buffer and one machine at DC
where all machines processing times followed the Erlang distribution. [13, 14],
examined push merge systems with multiple reliable merging suppliers an inter-
mediate buffer and a downstream DC with multiple reliable machines. [15]
examined a push-pull merge system with multiple merging suppliers where the
demand was covered from the finished goods buffer. [16] examined a push-pull
merge-split system with two merging suppliers where the demand was satisfied by
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two retailers. This study is a clear extension of the work presented in [12, 13] where
the exponential distribution was used to model all processing and replenishment
times. The model considered here diferrs significantly from the models of those two
studies. More specifically, in this work the Erlang distribution is adopted for
modeling the processing times which enables the study of systems with different
variability.

2 Description of the Model

This study deals with a two echelon merge production network of a single product.
The examined system is a push system with an infinite number of merging suppliers
S, an intermediate shared buffer with infinite capacity, a DC with an infinite number
of parallel machines and infinite number of Elrlang phases for all processing times
(Fig. 1). Infinite number has the meaning that the proposed algorithm can handle
theoretically (depending always on the computational limits of the hardware that
executes the algorithm) any large value for these four parameters. The merging
suppliers are reliable and non identical and the parallel machines at the DC, are also
reliable and identical without failures. Moreover, there is an unlimited supply of
materials towards the suppliers and an unlimited capacity shipping area after the
distribution center. Furthermore, the processing times of the merging suppliers and
of the parallel machines at the DC are stochastic and follow the Erlang phase type
distribution. All merging suppliers have the same number of Erlang phases and all
parallel machines at the DC have the same number of Erlang phases. The pro-
cessing goods, due to Erlang distribution, must definitely pass through K number of
phases. The physical interpretation of Erlang phases could be the production of dub
processes such as construction, assembly, packaging, distribution e.t.c. The Erlang
distribution is used because it has smaller coefficient of variation (CV) than the
exponential distribution, in order to capture real life situations. The practical added
value is the exploration of how these phases of the Erlang distribution can affect the

Fig. 1 A merge production
system with infinite,
suppliers, buffer capacity and
parallel machines at the DC
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performance measures of the supply chain. Finally, blocking appears (at the sup-
pliers) when one or more suppliers have finished their process, the buffer is full and
all parallel machines at the DC are occupied. We should note that there is no
blocking at the DC, due to the unlimited capacity shipping area after the specific
center.

The blocking remains until at least one of the machines at the DC finishes
processing. As a result, one unit from the buffer enters the DC and the system
becomes unblocked. In case where more than one supplier is blocked, the supplier
with the smallest index has priority over the others to send its finished product to
the buffer. Suppliers are ranked in ascending order indicating their unblocking
priority. For the model variable, the following notation is introduced:

• S, the number of merging suppliers of the system, S = 1, 2, 3, 4, 5,…, (infinite)
• B, the capacity of buffer, B = 1, 2, 3, 4, 5,…, (infinite)
• N, the number of machines in the DC, N = 1, 2, 3, 4, 5,…, (infinite)
• μ= μ1, μ2, . . . , μSð Þ the vector of mean processing rate for every supplier i = 1,

2,…, S
• m= m,m, . . . ,mð Þ the vector of mean processing rate for every j = 1, 2,…, N

machine of DC.
• k = 1, 2, 3, 4, 5,…, the number of Erlang phases for every i = 1, 2,…, S

supplier.
• kM = 1, 2, 3, 4, 5,…, the number of Erlang phases for every j = 1, 2,…, N

machine at the DC.

3 Solution Procedure and Structure of the Transition
Matrix

The above production system is analyzed as a continuous time Markov process with
a finite number of states. If we want to determine the stationary probabilities, a set
of linear flow balance equations need to be solved. Each flow equation is associated
with one state of the system. If we have systems with a large number of states, and
we want to find exact solutions, the only way to do this is if structural properties of
the equations or equivalently of the transition matrix structure can be exploited
[17].

The structure of the transition matrix is affected by the following system
parameters: number of suppliers (S), capacity of distribution centre (DC), capacity
of buffer (B) and number of Erlang phases for every i = 1, 2,…, S supplier and
every j = 1, 2,…, N machine of the DC. Since the exanimate system can be viewed
as a birth-death stochastic process (births are the inputs to the buffer and DC and
deaths are the outputs from the DC) the transition matrix is a diagonal matrix which
consists in general of three group of sub-matrices: The sub-matrices in the main
diagonal, the sub-matrices above the main diagonal and the sub-matrices below the
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main diagonal. The existence of the Erlang distribution and the fact that the Erlang
phases affect directly the structure of the transition matrix makes the considered
system much more complicated than a similar system in which the exponential
distribution could have been used instead. Furthermore the way that the transition
matrix is generated is also more complicated in comparison with the exponential
case.

Specifically, in order to create the transition matrix PS,B, N
ðk, kMÞ of the whole system

we must follow a reductive procedure contained five steps: (i) creation of the initiate
matrix (generator matrix) of the simplest system P1, 0, 1

ð2, 2Þ , (ii) creation of the transition

matrix P1, 0, 1
ðk, kMÞ according to the previous generator matrix and to the influence of

Erlang phases k and km, (iii) structure of the matrix P1, B, 1
ðk, kMÞ with the influence of

buffer capacity B using steps (ii), (iv) using the matrix in previous step we create the
matrix PS, B, 1

ðk, kMÞ taking into consideration the influence of the number of suppliers of

the system S, and finally (v) creation of the final transition matrix PS, B,N
ðk, kMÞ taking into

consideration the number of machines in the D.C., N, the number of Erlang phases
k, kM, and the transition matrix PS, B, 1

ðk, kMÞ, from the previous step.

4 Performance Measures and Validation of the Model

Once the steady-state probabilities have been calculated, all the performance
measures of the system can be estimated. The most important performance mea-
sures of the system are the average number of work in process of the system
(WIPsystem), the average number of work in process of the buffer (WIPbuffer), the
average number of work in process of the D.C. (WIPD.C.), the average number of
work in process of the final process (WIPfinalprocess), the mean output rate or
throughput of the system (THR), and the mean time that a unit remains in the
system (CT). More specifically:

WIPsystem = number of suppliers S + mean buffer level + Mean number of
Occupied machines in DC, WIPbuffer = mean buffer level + Mean number of
Blocked Parallel Servers, WIPD.C. = Mean number of Occupied machines in DC,

WIPfinalprocess =WIPbuffer +WIPD.C

THR= probmachines of D.C. to be to the last phase kmof the processð Þ*km*m,

CT =WIPsystem ̸THR.

All the above performance measures, which were taken from the analytical
Markovian model, were validated against simulation. For all the examined cases,
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the percentage error between the simulation results and the results obtained from the
algorithm for all the performance measures is negligible, and fluctuates between
0.02 and 0.20%.

5 Numerical Results

This section presents the impact of each parameter variability on the performance
measures of the considered system. For this purpose extensive numerical results
were obtained assuming that only one system parameter changes at a time (while
others remain constant). Due to space limitation the tables with the numerical
results are omitted but are available on request. Therefore only the conclusions
obtained by the analysis of the numerical results are presented. The main tool used
to describe the impact of each parameter variability is the elasticity of the perfor-
mance measures as function of the system parameters. The numerical results
obtained for balanced systems (systems where mean processing rate for all merging
suppliers = mean processing rate for all machines at the DC) for the case where all
the suppliers were identical.

Considering the throughput (THR) as the explored performance measure, the
numerical results showed that a reduction of the coefficient of variation (CV) for the
suppliers and the DC processing times leads to an increase of the throughput.
The CV elasticity of the throughput was found to be −0.2124 meaning that
reducing CV by 1% has as a result an increment of throughput by 0.2124%. The
impact of the buffer size on the throughput was also measured. The main conclusion
is that an increment of the buffer size leads to an increment of the throughput and
the buffer elasticity of throughput was found to be 0.0245. Another interesting
conclusion is that the above elasticity value decreases when the buffer size and the
number of suppliers increase simultaneously.

Furthermore the impact of the number of suppliers on the throughput was also
measured. The numerical results showed that an increase of the number of the
suppliers leads to an increase of the throughput and the number of suppliers elas-
ticity of the throughput was also found to be equal to 0.0099.

Comparing all the above mentioned values of elasticity the main conclusion is
that the reduction of the CV processing times of the suppliers and the DC, have the
highest impact on the throughput increment, followed by the buffer size increment,
whereas the increment of the number of suppliers have the lowest impact on the
throughput increment.

When the examined performance measure is WIPsystem, the numerical results
showed that a reduction of the coefficient of variation (CV) for the suppliers and the
DC processing times leads to an increase of the WIPsystem. The CV elasticity of the
WIPsystem was found to be–0.0601. The impact of the buffer size on the WIPsystem

was also measured. The main conclusion is that an increment of the buffer size leads
to an increment of the WIPsystem and the buffer elasticity of WIPsystem was found to
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be 0.1576. Also the above elasticity value decreases when the buffer size and the
number of suppliers increase simultaneously.

Furthermore the impact of the number of suppliers on the WIPsystem was also
explored. The numerical results showed that an increase of the number of the
suppliers leads to an increase of the WIPsystem and the number of suppliers elasticity
of the WIPsystem was also found to be equal to 0.5961. Comparing all the above
mentioned values of elasticity that main conclusion is that the increase of the
number of suppliers have the highest impact on the WIPsystem increment, followed
by the buffer size increment, whereas the reduction of the CV processing times of
the suppliers and the DC have the lowest impact on the WIPsystem increment.

When the examined performance measure is WIPbuffer, the numerical results
showed that a reduction of the coefficient of variation (CV) for the suppliers and the
DC processing times leads to a reduction of the WIPbuffer. The CV elasticity of the
WIPbuffer was found to be 0.3686. Furthermore the impact of the number of sup-
pliers on WIPbuffer was also measured. The numerical results showed that an
increase of the number of the suppliers leads to an increase of the WIPbuffer and the
number of suppliers elasticity of the WIPbuffer was found to be equal to 0.2243.

Apart from balanced systems, the behavior of unbalanced systems and especially
systems under a constrained process (systems where mean processing rate for all
merging suppliers > mean processing rate for all machines at the DC) was also
explored. For unbalanced systems the main concern was to explore the evolution of
all the performance measures (THR, WIPsystem, WIPbuffer, WIPD.C. and CT) as a
function of specific system parameters such as S = 3, 4,…, 8, B = 0, 2, 4, 6, 8, 10,
N = 1, μi = 1, m1 = 2, and k = km = 2. Due to space limitation only the evolution
of the THR and the CT is presented in Figs.2a and 2b, respectively. THR initially
increases while the number S increases but up to a specific number of S (Fig. 2a).
From that point of S, THR remain constant. The same happens with the influence of
buffer capacity. There is a number of B that makes THR to remain again constant.

Fig. 2 Evolution of THR (a) and CT (b) for a constrained process system with S = 3, 4,…, 8,
B = 0, 2, 4, 6, 8, 10, N = 1, μi = 1, m1 = 2, and k = km = 2
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Finally, CT increases while both number of S and capacity of B is increased
(Fig. 2b). It is interesting that CT increases linearly as a function of B. A linear
regression of CT based on B and S is a target of future research.

6 Further Research

Possible area for further research could be the study of similar systems with both
unreliable suppliers and non identical unreliable machines at the DC, as well as
systems with parallel servers at each merging supplier. Similarly, unbalanced
systems should be analyzed thoroughly (using as an indicator elasticity) in order to
explore the impact of the system parameters on the performance measures of such
systems. Additionally, the considered model in this manuscript could be examined
from an economic point of view to explore the optimal combination of the system
parameters in order to minimize a cost function. Furthermore, an interesting topic
could be the analysis of a similar push-pull system with external demand.
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A Push Shipping-Dispatching Approach
for High-Value Items: From Modeling
to Managerial Insights

Jean Respen and Nicolas Zufferey

Abstract A real shipping-dispatching problem is considered in a three-level

supply chain (plant, wholesalers, shops). Along the way, different perturbations are

expected (when manufacturing, when forecasting the demand, and when dispatching

the inventory from the wholesalers level), and accurate reactions must be taken. An

integer linear program is proposed and some managerial insights are given.

Keywords Inventory management ⋅ Shipping ⋅ Dispatching ⋅ Simulation

1 Introduction

A company XYZ (it cannot be named because of a non-disclosure agreement) is

facing a three-level inventory deployment problem (P). The considered supply chain

is composed of a single factory (where high-value items of different products are

manufactured), the wholesalers and the shops. There is no inventory policy from a

downstream level to any upstream level: a push policy from the plant is imposed by

XYZ, and any shortage at the shop level results in a lost sale. A shop can only be

delivered from its single associated wholesaler. From a XYZ perspective, the shops

are the final points of interest, and the final client, which actually buys an item, is

not integrated in the supply chain as the shops are often not owned by XYZ.

The decisions are made at the plant level. Three perturbations are encountered: at

the production-plan level (because of unreliable suppliers); at the dispatching level

(because of unexpected shipping decisions made by the wholesalers); on the demand

(as the actual demand is different from the forecasted demand). The planning horizon

is a year. At the end of each time period (a week), the only decision to make is the
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number of items of each product to send from the plant to each shop. A solution is

a shipping plan for a whole year. The objective function involves three components:

shortages, rarity (as opposed to the assortment diversity) and inventory. Because of

the uncertainties, simulation is a relevant way to evaluate a solution.

Different surveys on simulation can be found in [3, 7, 17]. Simulation-

optimization approaches are proposed in [14, 15] for inventory-management prob-

lems. When transportation costs are encountered, a multi-level inventory manage-

ment problem is investigated in [9]. Centralized and decentralized ordering models

are compared numerically. A two-level inventory problem is studied in [5], where

order-up-to-S replenishment policies (i.e., anytime an order is placed, it should bring

the available inventory up to the level S) are applied in the case retailers face different

compound Poisson demand processes. A related problem is proposed in [1], where

simple recursive procedures are developed for measuring the shortage costs. In [2],

simulation is used to analyze distribution systems with stochastic demands. Advan-

tages of echelon stock [4] and installation stock [8, 11] are evaluated. In [10], a

survey is proposed on facility location and supply chain management, in addition to

recent advances in optimization techniques for such problems and inventory deploy-

ment.

Relying on [13], where problem (P) and associated solution methods were intro-

duced, the contributions of this work are the following. First, an integer linear pro-

gram is proposed. The resulting exact method is able to tackle some markets faced

by XYZ. Second, managerial insights are provided. The problem features are pre-

sented in Sect. 2. An ILP (integer linear programming) formulation in depicted in

Sect. 3, along with a summary of the best-existing solution method. Experiments are

conducted in Sect. 4. Section 5 concludes the paper.

2 Presentation of the Perturbations and of Problem (P)

For various reasons (e.g., suppliers being unreliable, problems in raw-material deliv-

eries), the production plan can weekly suffer two different types of perturbation: (1)

some products are not produced at all; (2) some items of some products are not pro-

duced, because of a lower production rate. Let p̂it be the planned number of items of

product i to be produced in week t, and pit be the corresponding actual number involv-

ing the perturbation. Each week, at most 𝛿1% of products are not produced, due to

non deliveries from the supplier level. Thus, pit = 0 for these products, instead of

pit = p̂it. Two weeks are impacted by such a perturbation, and the missed production

must be compensated later. In this case, we have pit = pit+1 = 0 for such products.XYZ
imposed that pit+2 = p̂it+2 + p̂it + p̂it+1 and proposes 𝛿1 ∈ [5%, 15%]. On the remaining

1 − 𝛿1 percent of the products (which are produced), each product has a risk of 𝛿2%
to be slowed down. It means that at most 𝛿3% of p̂it is produced in week t + 1 instead

of week t. At the end of week t, the total number of unproduced items because of a

reduced production performance is Qt = ̂Pt − Pt, where ̂Pt =
∑

i p̂it and Pt =
∑

i pit.
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On the total number ̂Pt of items expected to be produced at week t, a given thresh-

old of 𝜀% of items are allowed to be slowed down, meaning that if Qt ≤ 𝜀 ⋅ ̂Pt, XYZ
does not react. But if Qt > 𝜀 ⋅ ̂Pt, Ct = Qt − 𝜀 ⋅ ̂Pt items have to be compensated (i.e.,

other products are manufactured instead of the planned ones). Products which are not

slowed down at week t and planned at week t + 1 are eligible for compensation, as

well as the products which were not expected to be produced at week t (i.e., p̂it = 0)

but are expected to be produced at week t + 1 (i.e., p̂it+1 > 0). For such eligible prod-

ucts, some items (randomly selected, one at a time) have to be produced in week t, as

long as quantity Ct is not reached. XYZ proposes 𝛿2 ∈ [45%, 55%], 𝛿3 ∈ [5%, 15%],
𝜀 ∈ [5%, 15%].

Unsurprisingly, there is a gap between the actual and the forecasted demands for

the shop level. Based on the forecasted demand patterns given by XYZ, for each

week and each product, a normal mean and a standard deviation of the perturbation

is associated with each shop. The forecasted demand and the perturbation are thus

used to generate the actual demand. The wholesalers belong to XYZ. It is expected

that the different wholesalers ship the received items to the decided shops (at the

plant level), but perturbations however occur (as each wholesaler has its favorite

shops). With each shop j is associated a priority wj, and let wmax
(set to 3 by XYZ)

be the largest possible priority (i.e., the priority of the most important shops). Each

wholesaler can modify the decisions (planned at the plant level) by sending the items

to a shop j′ that differs from the expected shop j . XYZ assumes that 𝛿4% of the items

do not go to the expected shop. On these 𝛿4%, 𝛿5% are shipped to a lower-priority

shop. XYZ proposes 𝛿4 ∈ [30%, 50%] and 𝛿5 ∈ [60%, 80%].
Problem (P) can be described as follows. N different products are manufactured

in the plant. M is the total number of wholesalers. There are W weeks in a year (set

to 47 by XYZ). At the end of each week t, pit items of product i are shipped from the

plant. As imposed byXYZ, all the items are weekly pushed (no inventory is kept in the

plant). A setJ of shops must be supplied by the wholesalers level, and each shop j is

associated with exactly one wholesalermj. In other words, we can havemj = mj′ even

if j ≠ j′. For week t, Ii,mj
t denotes the on-hand inventory of wholesaler mj associated

with product i. Each wholesaler delivers to its associated shops and tries to have zero

stock. Let x̂i,jt be the number of items of product i supposed to arrive at shop j at week

t from the corresponding wholesaler mj. x̂
i,j
t is a decision variable determined at the

plant level. As each decision variable x̂i,jt is an expected/planned value, let xi,jt denote

the corresponding observed/simulated value. Moreover, there is a lead time of Lmj

weeks from the plant to the wholesaler mj. Another lead time of Lmj

j weeks occurs

then to reach the shop j from the corresponding wholesaler mj. For each week t, a

demand ̂di,jt is forecasted for product i at shop j, and let di,jt be the corresponding actual

demand. When the items xi,jt arrive in the shop j, the associated on-hand inventory

of shop j is updated as follows: Ii,jt = max(0, Ii,jt−1 − di,jt−1 + xi,jt ). We similarly have:

̂Ii,jt = max(0, ̂Ii,jt−1 − ̂di,jt−1 + x̂i,jt ). The inventory at period t is thus set as the inventory

at period t − 1 decreased by the demand at period t − 1 and augmented by the number

of delivered items. A solution ̂S is formulated as ̂S = ( ̂S1, ̂S2,… ,

̂St,… ,

̂SW ), which is
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a per week list of ̂St’s, where ̂St = ( ̂S1t , ̂S
2
t ,… ,

̂Sit,… ,

̂SNt ) is the corresponding solu-

tion for week t for each product i. ̂Sit = (x̂i,1t , x̂i,2t ,… , x̂i,jt ,… , x̂i,Jt ) is a vector of deci-

sion variables for each shop j ∈ J , each week t and each product i.
The considered objective function f is made of three components (f1, f2, f3) that

have to be minimized lexicographically (no deterioration on fi can be compensated by

improvements on fi+1). f1 is the expected shortage penalty of item i at week t in shop

j. It occurs if ̂Ii,jt <

̂di,jt . Let ̂Bi,j
t = max(0, ̂di,jt − ̂Ii,jt ) be the expected shortage quantity

of product i at week t in shop j, and v̂i,jt be a binary value which is 0 if x̂i,jt > 0, and

1 otherwise. f1 is formulated in Eq. (1) as the sum of the shortage penalties, where

a shortage that has started a long time ago costs more than a recent one. For any

product i in shortage, XYZ assumes that if an item of product i arrives in a shop j
at week t, then the corresponding shortage penalty is set back to 0 from that time

period, even if the resulting on-hand inventory is below the demand.

f1 =
J∑

j=1
wj

W∑

t=1

t−1∑

t′=1
(t − t′)

N∑

i=1

̂Bi,j
t′ ⋅ v̂

i,j
t (shortage penalty) (1)

Let ŷi,jt = 1 if ̂Ii,jt = 0, and ŷi,jt = 0 otherwise. Equation (2) presents f2 as a measure

of rarity of each product i in each shop j for each week t.

f2 =
1

J ⋅W ⋅ N
⋅

W∑

t=1

J∑

j=1

N∑

i=1
ŷi,jt (rarity, as opposed to assortment diversity) (2)

Equation (3) formulates f3 as a weighted inventory penalty (the inventory cost is

smaller for the shops with higher priorities, as the margin are larger for these shops).

f3 =
J∑

j=1

[
(wmax + 1) − wj

]
[ W∑

t=1

N∑

i=1

̂Ii,jt

]

(inventory penalty) (3)

3 Exact and Solution Methods

Two types of methods are presented to generate solutions for (P): EM (an exact

method using CPLEX) and HM (the best heuristic method). A simulator is needed

to evaluate the actual value of any given planned solution (built with an optimization

method). At the end, the decision-maker of XYZ can modify and evaluate again the

solution, based on her/his expertise and on the non-modeled features.

The reader is referred to [13] for an accurate presentation of HM, which is some-

what related to ingredients from ant algorithms [22]. It consists of three steps: (1)

generate a set A of a (parameter tuned to 100) solutions with the constructive heuris-

tic BUILD; (2) construct a set B with the best (according to the expected value f )
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b (parameter tuned to 25) solutions of A; (3) simulate the k (parameter tuned to 5)

most distant solutions of B (as detailed in [13], these k solutions are quickly found

with an ILP formulation using CPLEX, and a distance function able to measure the

structural difference between any pair of solutions) and return the solution with the

best simulated value. With such parameters, a single simulation roughly requires

three minutes on the used computer, and HM needs always between 20 and 30 min

to provide its final solution with the above three steps (as such computing times are

in line with the needs of XYZ, we will not comment further on this aspect). Note that

in each step of BUILD, one item is assigned to a randomly selected shop in the set of

the most promising shops, which is computed based on the priority and on the short-

age potential of each shop. As in [6], BUILD is based on a technique to accelerate

the search by significantly reducing the decision space.

f1 is not linear as it contains the multiplication of two decision variables. In order

to use CPLEX and to allow benchmarking the results of HM, a linear model is pro-

posed for (P). For this purpose, f1 is linearized as proposed in Eq. (4). The only

difference is that f ′1 does not reset the penalty to 0 if at least one item arrives at week

t. Therefore, it is a reasonable approximation of f1 (i.e., a solution minimizing f ′1 is

likely to have many common features with a solution minimizing f1). Even more, it

opens new perspectives for XYZ to measure the shortage penalties.

f ′1 =
J∑

j=1
wj

W∑

t=1

t−1∑

t′=1
(t − t′)

N∑

i=1

̂Bi,j
t′ (4)

It is of course possible to keep a lexicographic approach while using a single

objective function f with three components (f1, f2, f3). Indeed, let 𝛼, 𝛽 and 𝛾 be three

coefficients such that 𝛼 = 1, 000, 000, 𝛽 = 1, 000 and 𝛾 = 1. The objective function

can then be formulated in Eq. (5). The three coefficient are different enough to pre-

serve the lexicographic approach. The lexicographic multi-objective optimization

approach proposed here is common practice, as reported in [12, 16, 18, 20, 21].

The constraints are given in Eqs. (6)– (10). Constraints (6) ensure a correct short-

age computation by setting ̂Bi,j
t above ̂di,jt − ̂Ii,jt . Thanks to the minimization of f , this

replaces the formulation of ̂Bi,j
t = max(0, ̂di,jt − ̂Ii,jt ). Constraints (7) and (8) ensure

a correct computation of the inventory, which is updated using ̂di,jt−1 and x̂i,jt , and is

used to set ŷi,jt correctly (ŷi,jt = 1 if ̂Ii,jt = 0, and using the minimization of f , ŷi,jt = 0
otherwise). Constraints (9) ensure that non-existent items are not created. Finally,

Constraints (10) ensure that x̂i,jt , ̂B
i,j
t and ̂Ii,jt are non-negative integers. Below, t, i, j

denote a time period, a product and a shop, respectively.

min f = 𝛼 ⋅ f1 + 𝛽 ⋅ f2 + 𝛾 ⋅ f3 (5)

̂Bi,j
t ≥ ̂di,jt − ̂Ii,jt , ∀ t, i, j (6)

̂Ii,jt ≥ 1 − ŷi,jt , ∀ t, i, j (7)

̂Ii,jt ≥ ̂Ii,jt−1 − ̂di,jt−1 + x̂i,jt , ∀ t, i, j (8)
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∑

j
x̂i,jt ≤ p̂i

t−Lmj−L
mj
j

+
∑

j

̂Ii,mj

t−L
mj
j

, ∀ t, i (9)

x̂i,jt , ̂B
i,j
t ,

̂Ii,jt ∈ ℕ, ∀ t, i, j (10)

4 Results

Tests were performed on an Intel Quad-core i7 @ 3.4 GHz with 8 GB DDR3 of

RAM memory. An instance is composed of the following data: the involved mar-

ket (defined by the number N of products, the number M of wholesalers, and the

number J of shops with their associated priorities), the uncertainty parameters (i.e.,

(𝛿1, 𝛿2, 𝛿3, 𝛿4, 𝛿5, 𝜀), and the perturbations of the demands), the production plan, the

lead times, and the inventory levels (for wholesalers and shops). Based on the input

from XYZ, the following reference values are used for the perturbations: 𝛿1 = 10%,

𝛿2 = 50%, 𝛿3 = 10%, 𝛿4 = 40%, 𝛿5 = 70%, 𝜀 = 10%.

EM (tested with CPLEX 12.5) is compared withHM (which also uses f ′1 as the first

objective) for 25 instances, ranging from small to larger markets. CPLEX is tested

with a time limit of 3 hours per objective and a memory limit of 7 GB (it was never

reached). The three objectives are solved sequentially, which is a common practice.

The model is first solved by ignoring f2 and f3. Next, f ′(opt)1 is set as a constraint and the

model is solved minimizing f2 only. Finally, f ′(opt)1 and f (opt)2 are set as constraints, and

the model is solved minimizing f3 only. The results are summarized in Table 1. The

first three columns indicate the considered market (N,M, J). The next three columns

gives the output of EM for each objective-function component, where O stands for

optimality (i.e., CPLEX finds the optimal solution), and B indicates that only an

upper bound on the optimal value was returned within the allocated time limit. Any-

time B is indicated for an objective, a “−” is given for the lower-level objectives.

From a market size of (N,M, J) = (60, 7, 80), no optimal information can be pro-

vided by EM. The last three columns give the percentage gaps of HM with respect

to the results returned by EM. We can see that EM is able to find optimal solutions

for a market size up to (N,M, J) = (24, 4, 30). The results also allows benchmark-

ing the efficiency of HM: it was never outperformed by EM, and it even finds better

upper bounds (i.e., negative gaps) for the larger instances. Such negative gaps allow

determining the market limitation of EM, which is typically (N,M, J) = (50, 6, 70).
Note that if the involved market is the whole world, (N,M, J) are roughly around

(150, 10, 200). In other words, even if EM could initially appear as very limited (in

terms of the market size), it can however involve a couple of countries. When con-

sidering computing-time aspects, note that HM is also very efficient. For instance,

HM requires only 580 s for the instance with (N,M, J) = (50, 6, 70).
Managerial insights are now provided, with the goal to be as general as pos-

sible for the involved decision-maker DM (i.e., no specific market is considered).
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Table 1 Comparison of the exact method with HM
Instance EM: output HM: gap

N M J f1 f2 f3 f1 (%) f2 (%) f3 (%)

12 2 15 O O O 0.00 0.00 0.00

12 2 15 O O O 0.00 0.00 0.00

12 2 15 O O O 0.00 0.00 0.00

12 2 15 O O O 0.00 0.00 0.00

12 2 15 O O O 0.00 0.00 0.00

24 4 30 O O O 0.00 0.00 0.00

24 4 30 O O O 0.00 0.00 0.00

24 4 30 O O O 0.00 0.00 0.00

24 4 30 O O O 0.00 0.00 0.00

24 4 30 O O O 0.00 0.00 0.00

30 4 50 O B – 0.00 0.00 –

30 4 50 O B – 0.00 0.00 –

30 4 50 O B – 0.00 0.00 –

30 4 50 O B – 0.00 −0.05 –

30 4 50 O B – 0.00 0.02 –

50 6 70 B – – 0.00 – –

50 6 70 B – – 0.00 – –

50 6 70 B – – −0.03 – –

50 6 70 B – – −0.01 – –

50 6 70 B – – 0.00 – –

HM is designed such that the best simulated solution (among k = 5 satisfying solu-

tions according to f ) is returned. Sometimes, due to non-modeled information, DM
could decide to select another solution. For this purpose, we propose to return the k
best solutions (provided with HM) to DM, thus s/he can select her/his preferred one

among k options. It is thus important to propose five solutions with various structures

(which is the case because of the distance function used within HM). In addition, we

propose a measure rob, which is a reliability indicator of a simulation, defined as

the standard deviation of f over the sim runs (knowing that a single simulation-run

is based on the average results over sim = 40 replications to be reliable). In realis-

tic conditions, the lower rob( ̂S) is, the higher is the probability that, if ̂S is used for

multiple years, the corresponding actual solutions (with perturbations) are similar

to each others. Moreover, it results in a good control on the costs. The above fea-

tures are illustrated in Table 2, for which k = 5 solutions (denoted as S1 to S5) are

returned for a specific instance. For each solution and each objective-function com-

ponent, its gap with respect to the best generated value is given. Solution S3 has the

best f1-value (as the indicated gap is 0), but it has a rather high rob-value. DM could

decide to sacrifice 0.25% on f1 and select S4, which has the lowest f3-value and a
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Table 2 Comparison of five solutions provided by HM
Objective S1 (%) S2 (%) S3 (%) S4 (%) S5 (%)

f1 1.31 0.05 0.00 0.25 0.87

f2 0.04 0.00 0.12 0.01 0.18

f3 1.58 0.63 0.75 0.00 1.25

rob 11.08 0.00 16.22 9.34 18.33

much better rob-value. Alternatively, s/he could select S2 by sacrificing 0.05% on f1
and get the best proposed values of f2 and rob. This example shows that DM could

decide to sacrifice a small gap for one top objective and favor a lower-level objec-

tive because of the reliability indicator. Depending on the situation, DM could also

decide to select the solution with the lowest rob-value, even if it is outperformed on

the other objectives by the other solutions. In any case, the provided five solutions

are competitive, as they are the most promising among a = 100 solutions.

5 Conclusion

In this paper, we study a shipping-dispatching problem (P). We propose an integer

linear program that is relevant for some markets encountered by the involved com-

pany XYZ. The exact model also allows showing the complexity of (P). We also pro-

vide managerial insights that can help decision-makers selecting a solution based on

criteria that differs from quality only. Future works include the consideration of addi-

tional types of perturbations (e.g., on the lead-times). Moreover, XYZ could evaluate

and optimize an integrated supply chain where suppliers, production and dispatching

are centralized in a common system. It would allow XYZ reducing the perturbation

parameters by reinforcing its control on the whole supply chain. A production plan-

ning allowing rejection and tardiness of jobs [19] would certainly inspire relevant

models for an integrated approach.
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Packing and Cutting



Optimization Models for Cut Sequencing

Claudio Arbib, Pasquale Avella, Maurizio Boccia, Fabrizio Marinelli
and Sara Mattia

Abstract The paper describes models for scheduling the patterns that form a

solution of a cutting stock problem. We highlight the problem of providing the

required final products with the necessary items obtained from the cut, choosing

which pattern feeds which lot of parts. This problem can be solved prior to sched-

ule cuts, or in an integrated way. We present integer programming models for both

approaches.

Keywords Cutting stock ⋅ Pattern sequencing ⋅ Integer programming

1 Introduction and Background

The well-known CUTTING STOCK PROBLEM (CSP) [7] calls for finding the best way

of cutting a given set of small objects (items or parts) from larger ones of given shape.

A part type indicates a class of items with identical features (shape, material etc.). A

solution of a CSP consists of a partition of the item set into subsets K1,… ,Kn called

cuts. A feasible cut has the geometric feature to admit a non-overlapping packing
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of the items it consists of into a single large object. Identical cuts (that is, identical

subsets Kt) can be grouped into a single class called pattern, along with a description

of the way in which the large object is to be cut. The number of cuts that belong to a

pattern gives its run length and specifies how many times the cut must be replicated.

Depending on application and technology, a cut can be operated on a single sheet or

a sheet pack. In general, however, all the cuts of a pattern are operated consecutively

to reduce slitter set-ups. So we will use the term “pattern” to indicate an indivisible

cut operation that produces a known set of items.

The natural goal of a CSP is trim-loss minimization. In industrial production,

however, not only one expects that cuts reduce material usage, but also that produc-

tion is scheduled according to internal plant logistics and to order relevance/urgency.

Therefore, a problem arises to decide how the cuts must be scheduled. When due-

dates are associated with orders, a typical goal is the minimization of a due-date

related objective function, such as the weighted sum of the orders tardiness [1], the

maximum lateness of an order [2], or the weighted number of tardy jobs [3]. In other

relevant cases, the objective is not related to order urgency but to production orga-

nization (e.g., minimizing the number of orders that are pending at any time [4, 5])

or general cost reduction (that may, e.g., include inventory [6]).

The scheduling problem can either be integrated with the CSP (as in [1, 2, 4–6]),

or solved after an optimal CSP solution has been found [3, 8], i.e. first a CSP solution

is found, then the resulting cuts are scheduled according to need: scheduling the cuts

of a CSP solution to minimize the deviation of order completion times from due-

dates is generally referred to as the PATTERN SEQUENCING PROBLEM (PSP).

The PSP can in turn be approached as a whole or by decomposition in two sub-

problems:

(i) assign items to lots corresponding to the orders to be fulfilled;

(ii) schedule the lots to minimize some objective function measuring the deviation

from due-dates.

Problem (i) will be here referred to as the ITEM-TO-LOT ASSIGNMENT PROBLEM

(ILAP). To illustrate the ILAP, consider the 12 patterns of Fig. 1, derived from a

real-world application. They all have run length 1, except pattern 7, 10, 12. Two lots

are shown: 1 (red), 2 (green). Cut sequence clearly affects lot completion time, but

this also depends on what patterns feed what lots: in the example, three type 4 items

are cut according to pattern 10 and sent to lot 2, whereas one item of the same type

comes from pattern 11 and feeds lot 1; the same pattern sequence would terminate

the lots in different instants, should type 4 item for lot 1 be produced by pattern 10.

In principle, the choice of the solution approach depends on goal priorities or

shop-floor practice, as well as on problem size and computational resources avail-

able. The computational burden of the integrated approach, as well as the fact that the

CSP solution algorithms used in the industrial practice are black-boxes not accessible

by users, make pattern sequencing an obliged choice in general industrial practice.

Nevertheless, compared to other problems in the cutting stock literature, the PSP

and the problems derived from its decomposition have not yet received considerable

attention to the best of our knowledge.
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Fig. 1 Item-to-lot assignment in a pattern set

In this paper, we focus on the PSP and survey a few optimization models for

finding the best schedule of a given set of cuts. In Sect. 2 we present a model for the

ILAP with the objective of controlling how orders are spread through patterns: its

preliminary solution provides an input for a subsequent PSP where each item has a

non-ambiguous due-date, namely the one of the lot the item belongs to. The general

PSP that integrates item-to-lot assignment and pattern sequencing is addressed in

Sect. 3.

2 Item-to-lot Assignment and Order Spread

This problem arises when scheduling the n cut operations obtained as a solution of

a cutting stock problem. Each operation produces different parts, and those parts are

generally required in heterogeneous lots by downstream departments.

Specifically, suppose to produce r different part types and consider the problem

of sequencing patterns to optimize a due-date related objective. A decision is to be

made between pattern construction and scheduling: in fact, part type k is produced by

various patterns and required by various lots, so one has to determine which pattern

feeds which lot. For example, part type k, required in amounts bk𝛼, bk𝛽 by lots 𝛼 and

𝛽, is produced in quantities apk , a
q
k by patterns p, q. Since supply and demand are

balanced, we have apk + aqk = bk𝛼 + bk𝛽 , but we still have to decide what amount of

supply from patterns p and q will feed lot 𝛼 and, therefore, lot 𝛽.

This decision affects lots’ minimum processing times (what we here call lot
spread), because a lot is finished as soon as all the cuts of the patterns that feed it are
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completed: therefore, the decision indirectly affects the quality of pattern scheduling.

What is a good spread then? At a first approach, it appears reasonable that the less

urgent lots are those getting a larger spread, and vice-versa.

To formulate the ILAP, let

I be the set of the small objects to be produced (|I| = m); i ∈ I denotes an indi-

vidual item, that is, identical items of the same type (shape, size, material etc.)

receive different indexes.

R be the set of part types (|R| = r): I is partitioned into subsets I1,… , Ir, with Ik
containing all the items of type k required.

L be the set of all the lots to be produced to fulfill an order (|L| = l); a lot 𝓁 ∈
L is a heterogeneous collection of items of I, and is represented as an integer

r-vector 𝐛𝓁 , where bk𝓁 is the number of type k parts lot 𝓁 requires; 𝓁 ∈ L may be

associated with a due-date d𝓁 .

P be the set of patterns (|P| = n): each p ∈ P is just an operation that produces apk
items of type k ∈ R, therefore it is represented by an integer r-vector 𝐚p.

T be the set of time slots (|T| = n).

Let xpk𝓁 be the integer variable measuring the number of type k parts that pattern

p sends to feed lot 𝓁. The pattern capacity (number apk of type k parts produced by

pattern p) must be respected:

∑

𝓁∈L
xpk𝓁 = apk ∀p ∈ P, k ∈ R (1)

The demand bk𝓁 of parts of type i from lot 𝓁 must be fulfilled:

∑

p∈P
xpk𝓁 = bk𝓁 ∀k ∈ R,𝓁 ∈ L (2)

with
∑

p a
p
k =

∑
𝓁 bk𝓁 .

As noticed, in an ideal lot feeding, urgent lots are as less as possible spread over

patterns. One possibility is to minimize the largest time required to operate the pat-

terns that feed each single lot, weighted according to lot urgency. Using 0–1 variables

yp𝓁 to indicate that pattern p feeds lot 𝓁, hence we must first enforce

xpk𝓁 ≤ min{apk , bk𝓁}y
p
𝓁 ∀k ∈ R,𝓁 ∈ L, p ∈ P (3)

then bind the total minimum feeding time from above

w𝓁

∑

p∈P
tpyp𝓁 ≤ s ∀𝓁 ∈ L (4)

and finally minimize the weighted spread s. In the last formula, w𝓁 is a weight that

increases with lot due-date d𝓁 , and tp denotes the time spent to process pattern p.
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3 Pattern Sequencing

To formulate a pattern sequencing problem that integrates item-to-lot assignment,

one can start from Gramani et al. coupled cutting stock and lot sizing model, keeping

in mind that, unlike [6], the pattern set is in our case given.

In our case we do not consider aggregate demand, production and stock of fin-

ished products. This position reflects make-to-order productions as in the furniture

industry, where each final product generally corresponds to a single order with an

individual due-date. Order setup and holding cost are however taken into account,

as in [6].

Our formulation assigns items to lots, and patterns and lots to time periods. To

express this and the decisions regarding lot feeding and scheduling, we use the fol-

lowing main 0–1 decision variables:

xpt = 1 iff pattern p ∈ P is scheduled at time t ∈ T
yi𝓁 = 1 iff item i ∈ I is sent to lot 𝓁 ∈ L
zt𝓁 = 1 iff lot 𝓁 ∈ L is fed (by some pattern) at time t ∈ T .

These variables are subject to the constraints described in the following.

3.1 Main Constraints

The x-variables define pattern permutations and are thus subject to matching

equations:

∑

t∈T
xpt = 1 ∀p ∈ P (5)

∑

p∈P
xpt = 1 ∀t ∈ T

i.e., every pattern must be scheduled at some time, and no two patterns can be sched-

uled at the same time. On the other hand, the y-variables are bound to an equivalent

of lot demand condition (2) and to item assignment conditions

∑

i∈Ik

yi𝓁 = bk𝓁 ∀𝓁 ∈ L, k ∈ R (6)

∑

𝓁∈L
yi𝓁 = 1 ∀i ∈ I

which ensure that every lot 𝓁 gets the required amount of parts of type k produced

and that every item is assigned to exactly one lot.

Then, both x- and y-variables are involved in an implication on lot timing:

xp(i),t + yi𝓁 − zt𝓁 ≤ 1 ∀i ∈ I,𝓁 ∈ L, t ∈ T (7)
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where p(i) is the pattern that produces item i: meaning that if item i is assigned to

lot 𝓁 and is produced at time t, then lot 𝓁 is still fed at time t.

3.2 Objectives

To write the objective function, we need auxiliary variables. One is the completion

time C𝓁 of lot 𝓁, which cannot be less than the last time instant at which 𝓁 is fed:

C𝓁 ≥ tzt𝓁 ∀𝓁 ∈ L, t ∈ T (8)

(in constraint (8) we assume that each pattern is cut in unit time). Two more variables

ut𝓁 , v
t
𝓁 define the time span in which 𝓁 is fed with parts, and are subject to:

ut−1𝓁 ≥ ut𝓁 ≥ zt𝓁 vt+1𝓁 ≥ vt𝓁 ≥ zt𝓁 (9)

where ut𝓁 = 1 (vt𝓁 = 0) indicates that 𝓁 is not completed (not started) yet at time t.
The u- and v-variables can be mutually constrained as explained in Sect. 3.3.

Various objectives can be written via the variables and constraints introduced:

Total weighted completion time

Ctot =
∑

𝓁∈L
w𝓁C𝓁 (10)

Total weighted tardiness
Ttot =

∑

𝓁∈L
w𝓁T𝓁 (11)

with T𝓁 ≥ C𝓁 − d𝓁 for all 𝓁 ∈ L.

Weighted number of tardy jobs

Jtot =
∑

𝓁∈L
w𝓁𝜂𝓁 (12)

with 𝜂𝓁 ≥ zt𝓁 for t > d𝓁 and all 𝓁 ∈ L.

Maximum lateness
Lmax ≥ C𝓁 − d𝓁 (13)

for all 𝓁 ∈ L.

Maximum number of unfinished lots (open stacks)

Omax ≥
∑

𝓁∈L
(ut𝓁 + vt𝓁 − 1) (14)
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for all t ∈ T .

Total inventory (holding) cost

Htot =
∑

𝓁∈L

∑

t∈T
ht𝓁(u

t
𝓁 + vt𝓁 − 1) (15)

where ht𝓁 is the cost of holding lot 𝓁 ∈ L during period t ∈ T .

3.3 Valid Inequalities

Let R𝓁 denote the set of part types required by lot 𝓁, and 𝜏 (a lower bound to) the

value of an optimal solution of the following cutting stock problem:

𝜏 ≤ min
∑

p∈P
xp (16)

∑

p∈P
apkx

p
≥ bk𝓁 k ∈ R𝓁

xp ∈ {0, 1} p ∈ P

In the above formulation, apk is the number of parts of type k produced with pattern

p at full run length. Then 𝓁 cannot be completed before 𝜏 time periods, which means

vt𝓁 − vt−1𝓁 − ut+𝜏𝓁 ≤ 0 ∀t ≤ |T| − 𝜏 (17)

In fact, if 𝓁 begins at time t, then it is active at time t and not t − 1: in this case the

first two terms of inequality (17) sum up to 1, thus implying 𝓁 active at time t + 𝜏.

3.4 Formulation Size

In typical applications there are n = 30 to 100 patterns that produce m = 100 to

1, 000 items of r = 50 to 100 different types to feed l = 10 to 20 lots. The table

of Fig. 2 reports an indication of the number of main variables and constraints with

n ranging between 30 and 100. We suppose that each pattern produces on average 10

items, for a total amount that ranges from 300 to 1,000. The number l of lots varies

between 6 and 20: each lot is assumed to contain around 50 items of 5 distinct types.

Figure 2 reports the relevant numbers of variables and constraints.
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Fig. 2 An indication of the growth of problem size with problem parameters

4 Conclusions

In this paper we have introduced two optimization problems to schedule the cuts

resulting from the solution of a cutting-stock problem (CSP), namely the Pattern

Sequencing Problem (PSP) and a derived subproblem, called Item-to-Lot Assign-

ment Problem (ILAP). Both the optimization problems are of great interest in the

industrial practice. For each of them, we have discussed integer programming for-

mulations, to be used as starting points to devise IP-based solution algorithms.

Acknowledgements Work supported by the Italian Ministry of Education, National Research Pro-
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Bin Packing Problems with Variable Pattern
Processing Times: A Proof-of-concept

Fabrizio Marinelli and Andrea Pizzuti

Abstract In several real-world applications the time required to accomplish a job

generally depends on the number of tasks that compose it. Although the same also

holds for packing (or cutting) problems when the processing time of a bin depends

by the number of its items, the approaches proposed in the literature usually do not

consider variable bin processing times and therefore become inaccurate when time

costs are worth more than raw material costs. In this paper we discuss this issue by

considering a variant of the one-dimensional bin packing problem in which items

are due by given dates and a convex combination of number of used bins and maxi-

mum lateness has to be minimized. An integer linear program that takes into account

variable pattern processing times is proposed and used as proof-of-concept.

Keywords One-dimensional bin packing ⋅ Scheduling

Mixed integer programming

1 Introduction

The general bin-packing problem (BP) consists of assigning a set of items to identical

bins in order to minimize the number of filled bins. A solution of the BP is feasible if

each item is packed without overlapping with any other and it is completely contained

inside a bin. A large literature focuses on the study of the BP and its extensions,

see [11].
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Due to its mathematical structure, the BP arises in many real applications among

which cutting optimization in manufacturing, loading operations in logistics, data

packets allocation in telecommunication and advertisement scheduling in public-

ity [6]. It is also well-known that the BP can be regarded as a scheduling prob-

lem in which each item corresponds to a job that consumes the availability of some

resources represented by the bins [7].

If a time dimension is also considered and each item is provided with a specific

due-date, then a solution of the BP can be generally understood as a sequence of

bins each one processed at a prescribed time instant. Then, a multi-criteria problem

arises if additional scheduling objectives, i.e. functions of the completion times, are

taken into account, such as the sum of (weighted) completion times, the maximum

lateness, the (weighted) tardiness or the number of tardy jobs.

A growing number of papers in the last years addresses the effects of scheduling

issues in the BP and cutting stock problems. Among them, both exact [2, 3] and

heuristic [4, 10] approaches are proposed for different scheduling objectives and BP

variants. However, two common assumptions are made about the packing (or cut-

ting) process: the packing time is constant and independent from the structure of the

pattern, and the items of a bin are all released only once the packing of the whole bin

is completed. To the best of our knowledge, only in [5] the authors explicitly treat the

reduction of the number of cuts to minimize the cutting costs of a three-staged cutting

problem; nevertheless, time is worth more than material waste in many real cutting

and packing industrial processes, and in all such cases potential variable processing

time of bins should be specifically addressed. Meaningful examples can be found in

paper or steel manufacturing, where the minimization of the used raw material can

be formulated as a one-dimensional BP. Generally, it is supposed that machines are

equipped with a set of automatic slitting knives and each pattern is performed with a

single parallel cut in constant cutting time. Still, due to the particular application, it is

not unlikely to have machines equipped with a single manual slitting knife. In these

cases, each bar (or roll) is sequentially cut into slices (accordingly to the prescribed

pattern): each item is therefore available as soon as it is processed, and the total time

required to process the bar strictly depends by the number of cuts performed, that is

by the number of slices that compose the pattern.

This paper is a first attempt to explicitly take into account patterns with variable

processing times in the context of the BP with scheduling issues. In particular, we

address the one-dimensional bin packing problem (1BP-VPT) where each item is

provided by a due-date and is processed in constant time, and propose a mixed integer

linear programming formulation (MILP) that minimizes a convex combination of the

number of used bins and the maximum lateness.

In Sect. 2 the problem 1BP-VPT is formalized, and the MILP formulation is

described. In Sect. 3 we report some computational results and discuss the outcomes

implied by the introduction of variable processing times; finally, in Sect. 4 some con-

clusions are depicted.
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2 Problem Definition and Model Formulation

In the classic one-dimensional BP problem, the set I = {1,… , n} of items is

described by positive integer lengths l1,… , ln, and the bins have identical integer

size W such that li ≤ W, i = 1,… , n. The purpose is to find a feasible solution in

which all the items are packed within the minimum number z∗ of bins.

In 1BP-VPT each item i ∈ I is also due by a given date di and requires a constant

time t to be packed. Moreover, each bin requires a constant time s to be set-up for

the packing, as assumed in the cutting stock problem with the number of patterns

minimization [1, 12]. A solution of 1BP-VPT consists of a set of packing patterns and

the sequence in which the patterns are applied to bins. Let qi be the position of the bin

(in the sequence of patterns) that contains the item i, and pi be the absolute position

of the item i in the sequence of the packed items, i.e., pi = k if the total number of

items packed before i, from the first bin on, is k − 1. Then, the completion time Ci of

the item i is given by sqi + tpi and its lateness is Li = Ci − di. The objective function

of 1BP-VPT is F = 𝛼1z + 𝛼2Lmax, with 𝛼1, 𝛼2 ≥ 0 and 𝛼1 + 𝛼2 = 1, that is a convex

combination of the number z of used bins and the maximum lateness Lmax = max
1≤i≤n

Li.
Parameters 𝛼1 and 𝛼2 describe the relative ratio between material and delay costs, and

their value is strictly application-dependent. The definition of Ci describes the fact

that the item i is available as soon as it is processed, instead of at the completion time

of the whole bin in which it is packed. Actually, a solution of 1BP-VPT describes a

sequence of items instead of a sequence of patterns.

Aside from its practical usefulness, the choice of Lmax as reference scheduling

term has been suggested by the small elasticity that it exhibits with respect to the

items processing time t. Indeed, Lmax only depends by the item with the largest delay,

while the value of other scheduling objective functions generally takes into account

the delay of each item. A small example clarifies such behaviour: let I be the set of

four items with lengths {l1, l2, l3, l4} = {6, 4, 3, 5} and due-dates {d1, d2, d3, d4} =
{1, 1, 1, 2}. Let moreover W = 10, s = 1 and let us consider

∙ the total tardiness FT =
∑

Ti, where Ti = max{0,Li}, and

∙ the number of tardy jobs FU =
∑

Ui, where Ui =

{
1 if Ci > di
0 otherwise

.

Any optimal solution requires two bins and, for t = 0, Lmax = FT = FU = 1, since

one of the items 2 or 3 must be packed in the second bin. On the other hand, for t =
0.2, the value of Lmax just increases to 1.6, whereas FT is tripled and FU quadrupled,

and moreover the gap between Lmax and FT grows for increasing values of t.
Let J = {1,… ,m} denote the set of available bins, with m = n. For each i ∈ I

and j ∈ J, let us define the following decision variables:

∙ xij ∈ {0, 1}: xij = 1 if and only if the item i is assigned to the j-th bin;

∙ yj ∈ {0, 1}: yj = 1 if and only if the j-th bin is used;

∙ qi ∈ ℕ ⧵ {0}: qi = j if and only if the j-th bin contains the item i;
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∙ pi ∈ ℕ ⧵ {0}: pi = k if and only if the item i is processed as k-th item of the

sequence of packed items;

∙ 𝜋ih ∈ {0, 1}: 𝜋ih = 1 if and only if the item h is processed before the item i.

We propose the following MILP formulation (MVPT ):

minF = 𝛼1z + 𝛼2Lmax (1)

m∑

j=1
xij = 1 ∀i ∈ I (2)

n∑

i=1
lixij ≤ Wyj ∀j ∈ J (3)

z =
m∑

j=1
yj (4)

qi =
m∑

j=1
jxij ∀i ∈ I (5)

Ci = sqi + tpi ∀i ∈ I (6)

Ci − di ≤ Lmax ∀i ∈ I (7)

qi − qh ≤ (m − 1)𝜋ih ∀i, h ∈ I ∶ i ≠ h (8)

qh − qi ≤ (m − 1)(1 − 𝜋ih) ∀i, h ∈ I ∶ i ≠ h (9)

pi − ph + 1 ≤ n𝜋ih ∀i, h ∈ I ∶ i ≠ h (10)

ph − pi + 1 ≤ n(1 − 𝜋ih) ∀i, h ∈ I ∶ i ≠ h (11)

xij, yj ∈ {0, 1} ∀i ∈ I, j ∈ J (12)

qi, pi ∈ ℕ ⧵ {0} ∀i ∈ I (13)

𝜋ih ∈ {0, 1} ∀i, h ∈ I ∶ i ≠ h (14)

Constraints (2)–(4) belong to the well-known assignment formulation [8] for one-

dimensional BP: (2) states that every item must be packed; (3) ensures that items do

not overlap and are completely contained within the bins; (4) defines the BP objective

function. Equation (5) expresses the position of the bin that contains item i, Eq. (6)

defines the completion time of item i, and constraint (7) bounds from below the

maximum lateness. Disjunctive inequalities (8)–(11) model the relationship between

the sequence of the bins and the processing order of the items: if the bin that contains

i strictly precedes the bin that contains h, then i must have been processed before h;

on the opposite, if i is processed before h, then i is packed in the same bin of h or in

a previous one; finally, if i and h are packed in the same bin, then a strict ordering of

the respective positions is guaranteed.
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Fig. 1 a Optimal for t = 0 and sub-optimal for t = 1; b optimal for t = 1 and sub-optimal for t = 0

Optimal solutions of 1BP-VPT are inherently different from those obtained by

considering constant processing times of bins. Indeed, the following example high-

lights that a solution which is optimal for t = 0, can be non-optimal for t > 0, i.e.,

when bin processing time is not constant, and vice-versa. Let I = {1, 2… , 8} be the

items set with lengths {l1, l2, l3, l4, l5, l6, l7, l8} = {1, 2, 3, 4, 6, 7, 8, 9} and due-dates

{d1, d2, d3, d4, d5, d6, d7, d8} = {1, 2, 3, 4, 8, 7, 6, 5}. Let moreover assume W = 10,

s = 1 and 𝛼1 = 𝛼2 = 0.5, with t = 0 in first place. Figure 1 shows two solutions in

which the sequence of bins (items) proceeds from top (left) and labels refer to the

item lengths. It is easy to see that solution a) with z = 4, Lmax = 0 and F = 2 is opti-

mal, whereas solution b) with z = 5, Lmax = 0 and F = 2.5 is not. On the contrary,

for t = 1, solution (a) is no longer optimal since it has z = 4, Lmax = 7 defined by

item 4 and F = 5.5, whereas solution (b) with z = 5, Lmax = 5 defined by item 5 and

F = 5 becomes optimal.

In this case the optimality changes to the looseness of the due-dates: for t = 0, the

number of bins is critical, while the lateness are not binding; for t = 1, the relevance

of the lateness increases over the number of bins weight and the use of an additional

bin is required to redefine the items ordering and reduce the lateness value. Generally

speaking, the introduction of item processing times modifies the balance among the

objective function terms in such a way that optimal solutions for t = 0 significantly

differ from the truly optimal value of F. Therefore, formulations that neglect the

item processing times may lead to sub-optimal solutions with meaningful optimality

gaps.

3 Preliminary Experiments

Some preliminary tests were made on MVPT for 1BP-VPT and comparison has been

made with the time-indexing MILP (MK) described in [3], a basic formulation to

solve the same packing and scheduling problem but with constant processing time

of patterns. Formulations were implemented with AMPL (version 20150214, MS
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VC++ 6.0, 32-bit) and solved by Cplex 12.5.0.0 with default setting. Tests were

carried out on an Intel
Ⓡ

Core
TM

i3 M350 2.27 GHz with 4 GB RAM.

Experiments were made on fifty instances with n = 10, W = 1000, li randomly

chosen in [1,W] for 1 ≤ i ≤ n, and integer due-dates randomly chosen in [1, ⌈(s +
tn)LBC⌉], where LBC is the continuous lower bound for the classic one-dimensional

BP [9]. The Lmax value of the solutions achieved by MK has been adjusted in order

to take into account the processing time t in the computation of completion times.

Finally, we used s = 1 and t = 0.2, and run two scenarios by setting 𝛼1 = 0.5 and

𝛼1 = 0.1, respectively. Tables 1 and 2 report the results of the two scenarios aggre-

gated in five classes, each one consisting of 10 instances. For each class, the mean

values of z and Lmax obtained by MVPT and MK are listed. Average running times are

also reported.

Results show that the Lmax term of the optimal solutions computed by MK has a

significant relative error with respect to the optimal values of 1BP-VPT (33.3% for

𝛼1 = 0.5 and 35.7% for 𝛼1 = 0.1, on average). We also observed that such relative

error increases as far as the due-dates get loose, i.e., the solutions for t = 0 are more

oriented to the minimization of the number z of bins. As showed by Table 2, the

effect of neglecting t is generally more evident when 𝛼2 increases. Indeed, when

Table 1 MVPT and MK results for 𝛼1 = 𝛼2 = 0.5
Class MVPT MK

z Lmax CPU time

(s)

z Lmax CPU time

(s)

I 4.6 1.08 0.663 4.6 1.72 0.020

II 4.5 1.66 0.803 4.5 2.20 0.214

III 4.7 1.64 0.780 4.7 2.12 0.045

IV 4.5 1.78 0.944 4.5 2.10 0.115

V 5.1 1.64 0.477 5.1 2.26 0.120

Average 4.7 1.56 0.734 4.7 2.08 0.103

Table 2 MVPT and MK results for 𝛼1 = 0.1, 𝛼2 = 0.9
Class MVPT MK

z Lmax CPU time

(s)

z Lmax CPU time

(s)

I 4.8 1.04 0.629 4.6 1.86 0.148

II 4.5 1.66 0.785 4.5 2.10 0.229

III 4.7 1.64 0.839 4.7 2.34 0.268

IV 4.7 1.72 0.941 4.5 2.00 0.165

V 5.2 1.62 0.471 5.1 2.08 0.254

Average 4.8 1.54 0.733 4.7 2.08 0.213
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Lmax gains weight, solutions with additional number of bins become attractive and

optimal solutions become more related to the delay reduction.

About the running times, MVPT computed optimal solutions in 0.734 s. (0.733 s.)

on average, whereas MK takes just 0.103 s. (0.213 s.) on average. Beside the larger

size of MVPT , the main reason of such worsening clearly lies in the presence of sym-

metries on variables 𝜋ij and disjunctive constraints (8)–(11).

4 Conclusions

In several real-world packing (or cutting) applications, items are sequentially

processed and the total time needed to realize a pattern depends by the number of

items that form it. When time is worth more than some other resource costs, item

processing times may considerably affect the solution costs, but available formula-

tions for BP usually do not consider variable pattern processing times and there-

fore often become inaccurate for computing optimal solutions. In this paper we dis-

cussed such issue and proposed a basic MILP formulation to solve 1BP-VPT, a one-

dimensional bin packing problem where the item processing times are explicitly

considered and the minimization of a convex combination of the number of filled

bins and the maximum lateness value is required. Some preliminary experiments

show that the difference between the optimal solution values of 1BP-VPT and those

obtained by considering constant pattern processing times is enough to highlight the

relevance of the issue being discussed.

Acknowledgements Work supported by the Italian Ministry of Education, National Research Pro-

gram (PRIN) 2015, contract n. 20153TXRX9.
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Upper Bounds Categorization
for Constrained Two-Dimensional
Guillotine Cutting

Mauro Russo, Antonio Sforza and Claudio Sterle

Abstract In the two-dimensional cutting problem, a large rectangular sheet has to
be dissected into smaller rectangular desired pieces. If limits exist on the number of
extracted pieces, the problem is classified as constrained, with a wide range of
applications. Most literature solving methods are based on ad hoc tree search
strategies, with top-down or bottom-up approach. In both cases, lower and upper
bounds are exploited, leading to branch and bound algorithms. We present a review
of the upper bounds and identify a set of features for their categorization.

Keywords Guillotine cutting ⋅ Upper bound categorization

1 Problem Formulation and Solution Methods

In the class of cutting and packing (C&P) problems, a strong interest has been
shown in literature for the two-dimensional problems. Main applications are in the
production of materials, for which the constraint of guillotine cuts is often needed.

We consider the problem where a large rectangular object (sheet or plate) has to
be dissected to extract rectangular piece types, with guillotine cuts. According to
[34], this problem is classified as guillotine variant of 2-dimensional rectangular
SLOPP (Single Large Object Placement Problem), but it is often referred to as
2-Dimensional Cutting, or 2DC/TDC (e.g. in [12]). This problem is NP-hard [22].
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In case of limited piece demands, the problem is constrained (C2DC), otherwise
unconstrained (U2DC) if all demands are unlimited. According to the relation
between profit and area of the pieces, the problem is weighted or unweighted. Most
authors use a fixed orientation, i.e. with no chance to rotate pieces.

We treat the C2DC, both weighted and unweighted, with fixed orientation. In the
following we formalize the problem and describe the existing methods to solve it.
In Sect. 2 we present four classification criteria for related upper bounds. In Sect. 3
we match the upper bounds with a proper list of literature papers.

A rectangular sheet (L,W) and n piece types (t1,…, tn) are given. Each type ti has
dimensions (li, wi), demand di and profit πi. We refer to the ratio πi/ (li ⋅ wi) as
profitability. The problem is unweighted if πi = li ⋅ wi for all i. The pieces cannot
be rotated to (wi, li). A vector B = (b1,…, bn) represents a set of pieces with
frequencies bi and profit π(B) = b1 ⋅ π1 + … + bn ⋅ πn. It is a cutting pattern if its
pieces can be extracted using guillotine cuts. It is feasible if bi ≤ di for all i. All
parameters are positive integers. The goal is to maximize π(B) over all feasible
patterns.

1.1 Dynamic Programming Methods

The knapsack function [15] fU gives the best profit in the unconstrained case for any
rectangle (l, w). It is computed in recursion (1)–(2.a, 2.b, 2.c) as best among fU,0
(one piece term), fU,v or fU,h (vertical/horizontal cut, i.e. horizontal/vertical merge).

fU l,wð Þ=max fU, 0 l,wð Þ, fU, v l,wð Þ, fU, h l,wð Þf g, 0≤ l≤ L; 0≤w≤W ð1Þ

fU, 0 l,wð Þ=maxf0; πi: li ≤ l,wi ≤wg ð2:aÞ

fU, v l,wð Þ=max 0; fU x1,wð Þ+ fU x2,wð Þ: 0 < x1 ≤ x2, x1 + x2 = lf g ð2:bÞ

fU, h l,wð Þ=max 0; fU l, y1ð Þ+ fU l, y2ð Þ: 0 < y1 ≤ y2, y1 + y2 =wf g ð2:cÞ

Two implementations exist. We refer to them as bottom-up and top-down
respectively, as used in literature for the tree search solution methods. In the first
case, an outer loop scrolls all couples (x2, y2) in increasing order (one line per time).
Two independent inner loops, on x1 and y1 respectively, generate horizontal or
vertical merging, with dimensions (x1 + x2, y2) or (x2, y1 + y2). This approach has
been followed in [15] and in recent improvements [28, 29]. In the second case, the
couples (l, w) scrolled at the outer loop represent the dimensions of a dissected
rectangle, whereas x1 and y1 in the inner loops correspond to cut coordinates.

If demands are limited, the piece sets have to be considered. Let B0 = (d1, d2,…,
dn) be the set with full demands di, and B a generic subset with frequencies bi ≤ di.

Let fC(l, w, B) be the best profit for a rectangle (l, w) with the available piece
set B. The following recursion (3)–(4.a, 4.b, 4.c), similar to (1)–(2.a, 2.b, 2.c),
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allows to compute all fC(l, w, B) values. In (4.b) and (4.c) the set B is partitioned
between the two sub-rectangles generated by the vertical or the horizontal cut
respectively.

fC l,w,Bð Þ=max fC, 0 l,w,Bð Þ, fC, v l,w,Bð Þ, fC, h l,w,Bð Þf g,
0≤ l≤L; 0≤w≤W ;ϕ⊆B⊆B0

ð3Þ

fC, 0 l,w,Bð Þ=max 0; πi: li ≤ l,wi ≤w, bi ≥ 1f g ð4:aÞ

fC, v l,w,Bð Þ=maxf0; fC x1,w,B1ð Þ+ fCðx2,w,B−B1Þ:
0 < x1 ≤ x2, x1 + x2 = l,ϕ⊆B1⊆Bg

ð4:bÞ

fC, h l,w,Bð Þ=maxf0; fC l, y1,B1ð Þ+ fCðl, y2,B−B1Þ:
0 < y1 ≤ y2, y1 + y2 =w,ϕ⊆B1⊆Bg

ð4:cÞ

Dynamic programming on (3)–(4.a, 4.b, 4.c) is impracticable for the huge
number of subsets. In relation (3) any frequency bi can be reduced if bigger than
⌊ðl ⋅wÞ ̸ðli ⋅wiÞ⌋, as noticed in [9], but the ratio ⌊l ̸li⌋ ⋅ ⌊w ̸wi⌋ is smaller and still
correct as limit.

In [11] there is a top-down implementation of (3)–(4.a, 4.b, 4.c). The authors define
the sum of two cutting patterns B′ = b′1, b

′

2, . . . , b
′

n

� �
and B′′ = b′′1 , b

′′

2 , . . . , b
′′

n

� �
as the

pattern with frequencies min di, b′i + b′′i
� �

. They assign a set F(l, w) of best partial
patterns to each couple (l,w). In thefirst inner loop, for example, for each x1 they add to
F(l,w) all patterns fromF(x1,w)⊕F(l−x1,w), defined as {B1 + B2:B1 ∈ F(x1,w),B2

∈ F(l−x1, w)}, and then keep only the best patterns of F(l, w).
In [9] and [27] a different recursion is exploited, in a relaxed state space. Any

piece set B = {b1, b2,…,bn} is mapped to a number s(B) through the scalar product
B × S. The mapping S = {s1, s2, … , sn} has pre-fixed non-negative integers. The
advantage is in the reduced size of the mapped space. An upper bound function fS is
then obtained with the recursion (5)–(6.a, 6.b, 6.c), i.e. fC(l, w, B) ≤ fS(l, w, s(B)) is
valid.

fS l,w, sð Þ=maxffS, 0 l,w, sð Þ, fS, v l,w, sð Þ, fS, h l,w, sð Þg,
0≤ l≤ L; 0≤w≤W ; 0≤ s≤ s0 =B0 × S

ð5Þ

fS, 0 l,w, sð Þ=maxf0; πi: li ≤ l,wi ≤w, si ≤ sg ð6:aÞ

fS, v l,w, sð Þ=maxf0; fS x1,w, s1ð Þ+ fSðx2,w, s− s1Þ: 0 < x1 ≤ x2,

x1 + x2 = l, 0≤ s1 ≤ sg ð6:bÞ

fS, h l,w, sð Þ=maxf0; fS l, y1, s2ð Þ+ fSðl, y2, s− s1Þ: 0 < y1 ≤ y2,

y1 + y2 =w, 0≤ s1 ≤ sg ð6:cÞ
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1.2 Branch and Bound Methods

The first type of tree search is based on the top-down approach [8]. The root node
contains the sheet as open rectangle. When a node N is chosen, its branching
consists in selecting an open rectangle from N, and then a child node is generated
for any possible guillotine cut to apply only on it. A special 0-cut makes the
rectangle closed, i.e. only one piece can be extracted. Hence, any node N contains
the rectangles generated by the sequence of guillotine cuts added from the root to N.

At any node, if (α1, β1) (α2, β2), … , (αk, βk) are its open rectangles, an upper
bound is computed by using the knapsack function but, for the set C of closed ones,
the best matching pieces-rectangles is found, with value opt(C). The result is

fUðα1, β1Þ+ fUðα2, β2Þ+ . . . + fUðαk, βkÞ+ opt Cð Þ ð7Þ

The first method with a bottom-up approach was heuristic [31, 33], later
improved into an exact tree search by [32]. It merges the rectangles (builds) with a
separating horizontal or vertical guillotine cut, starting by the pieces up to the sheet.
The root node is a dummy node with an empty build. At the first level, n different
nodes contain a rectangle equivalent to one piece of the corresponding type. Hence,
the search starts with n non-branched (or open) nodes, and their set is denoted by
O. Any node is identified with its build, i.e. a rectangle and a cutting pattern, and we
use the symbol B also to denote the builds and related nodes.

At any step, a build B is chosen from O, in order to be branched, hence moved
into the set C of closed nodes. The chosen build is combined with all builds from
C (itself too) in two ways, i.e. vertical or horizontal. Each combination generates a
new build, placed into O according to two conditions, otherwise it is dropped. First,
it has to fit inside the sheet. Second, no demand has to be exceeded.

2 Upper Bounds Classification

We present four criteria to characterize the upper bounds in tree searches for C2DC,
describing some details from topic literature papers. (a) the type of relaxation.
Four types can be identified: unconstrained relaxation, state space relaxation,
one-dimensional (or geometric) relaxation, non-guillotine relaxation. In geometric
case, additional options are the continuous frequencies or the container relaxation.
We avoid treating ILP relaxations, since just two ILP models exist, which allow to
solve only small instances [14, 25]. (b) the kind of node for which the bound is
computed: root or inner. In the first case the full sheet is available. In the second
case there is a residual area, with non-rectangular shape for bottom-up, or separated
parts for top-down. (c) the available piece set. Some upper bounds are
pre-computed at the begin of the algorithm with all desired pieces, and we call them
free. Other upper bounds are frequently computed using a residual subset of pieces.
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We refer to them as residual. (d) the geometric compatibility of piece types and
demands with respect to available areas. We shall describe the options in combi-
nation to the ones selected for the three previous features.

The four criteria are not independent. For example, in the root node all upper
bounds are free, the unconstrained relaxation implicitly integrates the geometric
compatibility, the geometric relaxations imply the non-guillotine relaxation.

2.1 Geometric Relaxations

The first two relaxations have been presented in Sect. 1.1, with the knapsack
function (unconstrained relaxation) and the state space relaxation. Two types of
one-dimensional relaxation exist. We call the first 1D-area, since it considers only
the area of both sheet and pieces [17, 20], by solving a knapsack problem. In the
second, the pieces are split into slices [36, 37], hence we call it 1D-slice.

The slices are used to fill the available area, which can be broken into empty
strips. The computation is simplified since only one pattern is used for equivalent
strips. In particular, for any piece type ti, the horizontal slice has length l’i,h = li,
width w’i,h = 1, profit π’i,h = πi / wi and demand d’i,h = min{di, ⌊L ̸li⌋}. The slice
profits are fractional, hence a truncation ⌊ ⋅ ⌋ is applied on the overall bound, even
when not explicit. This happens whenever continuous piece frequencies are used.

The best pattern is computed through a knapsack problem with capacity L. It is
vertically replicated W times with no care about the limited demands di, hence in
this phase the unconstrained relaxation is added. Vertical slices are similarly
defined and used, and the minimum is selected between the two orientations.

The two relaxations do not dominate each other, since the 1D-slice considers the
geometric limits on each axis, but it uses fractional frequencies and a partial
unconstrained relaxation, which would be full if d’i,h is replaced by d’’i,h = ⌊L ̸li⌋.
Also the 1D-area can be integrated with these relaxations on the frequencies.

2.1.1 Non-guillotine Relaxations

Geometric relaxations implicitly include the drop of the guillotine constraint, since
it has no meaning when treating with one-dimensional pieces. However the
non-guillotine relaxation can be independently considered and a better upper bound
would be obtained by dropping only this constraint. Unfortunately the problem
becomes more difficult. This kind of bounds is explicitly mentioned in [5, 11]. The
former is addressed to the U2DC. In the latter the non-guillotine solutions from
literature are manually imported, but only for the full sheet.

In literature two groups of upper bounds can be identified for the non-guillotine
case, which turn out to be valid also for the guillotine case. The first group is based
on geometric relaxations extending the 1D-slice and the 1D-area, often from pro-
posals given in the context of different problems, as the Strip Packing and the
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Orthogonal Packing problems. In 1D-slice case, one-dimensional cutting stock
problems raise (with strips as piece containers), for which ILP models exist in
literature. In 1D-area case, piece dimensions are modified through smart strategies
(e.g. dual feasible functions), leading to greater areas. However, all corresponding
bounds have been mainly experienced to check if a set of pieces fits into a rectangle.
Because of this different perspective, we shall not discuss further details, in par-
ticular about ILP models and relaxations, and we just underline that area increasing
represents a powerful pre-processing but it does not affect the skeleton of our
classification. The interested reader is addressed to [1, 3, 4, 13, 24].

The second group comes from relaxations (constraint removal, lagrangian, etc.)
applied to ILP models of the full non-guillotine problem, but we pursue the choice
to avoid using ILP models. The interested reader is addressed to [2, 6, 7].

2.2 Root Node and Inner Nodes

In the root node, the full sheet is considered, with no difference between top-down
and bottom-up approaches, as for the upper bounds previously described.

In top-down case, for the inner nodes the model of upper bounds has been given
in (7). In [20], for each open rectangle, the knapsack function and the 1D-area
relaxation are used, selecting the minimum between the two corresponding sums.

In the bottom-up methods, for any inner node with a build B, an upper bound is
given by π(B) + u(Γ), where u(Γ) is a bound for the best way to use the com-
plementary residual surface Γ when B is placed on the bottom-left corner of the
sheet.

No state space relaxation has been proposed for u(Γ). An upper bound with
1D-area relaxation can be computed straightly by using the area of Γ. For the
1D-slice relaxation, Γ can be divided in two parts [38] through a horizontal line
along the top edge of B. The bottom-right part of Γ is filled by using shorter strips.

In [32], an upper bound with unconstrained relaxation is based on the backward
recursion (8.a, 8.b)–(9.a, 9.b), where fU is the knapsack function and B has
dimensions (l, w).

VU L,Wð Þ=0 ð8:aÞ

VU l,wð Þ=max vU l,wð Þ, hU l,wð Þf g, 0≤ l≤L; 0≤w≤W ð8:bÞ

vU l,wð Þ=maxf0;VU l+ x,wð Þ+ fU x,wð Þ: 0 < x≤L− lg ð9:aÞ

hU l,wð Þ=maxf0;VU l,w+ yð Þ+ fU l, yð Þ: 0 < y≤W −wg ð9:bÞ

The value VU(l, w) plays the role of u(Γ). Another bound from [32], dominated
by VU(l, w) but faster, is given by fU(L−l, W) + fU(L, W−w).
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2.3 Free and Residual Upper Bounds

All upper bounds described above are free (all pieces available). In the inner nodes,
residual upper bounds can be used, by taking into account only the residual
available pieces. For unconstrained and state space relaxations there are no litera-
ture examples. For the 1D-area the bounds are based on reduced frequency limits.

For the 1D-slice relaxation, at the begin of the bottom-up algorithm in [36], the
authors compute the best strips not only with the full piece set B0, but also with the
n subsets where (only) one type is removed. In any node, also the bounds associated
to types with no residual demands are selected, and the minimum is chosen.

In general, note that the free upper bounds are pre-computed at the begin of the
algorithm, hence there is no need to be faster by using continuous frequencies,
which are instead useful for the residual upper bounds, frequently computed.

2.4 Geometric Compatibility

In this section we present residual and free upper bounds from literature, based on
one-dimensional relaxations, with focus on the options to filter piece types and piece
demands, according to the geometric compatibility with respect to the available areas.
Let T(α, β) be the subset containing the type indexes i for which li ≤ α andwi ≤ β.We
say that these pieces are compatible with the rectangle (α, β).

For unconstrained and state space relaxations, the restriction to the subsets T(α,
β) is implicit, since the constraints li ≤ l and wi ≤ w are used in (1) and in (6.a).

We shall first discuss the compatibility for residual 1D-area upper bounds, then
for strips construction, and finally for some free 1D-area upper bounds.

2.4.1 Residual Upper Bounds with Compatibility

Two residual upper bounds related to the 1D-area relaxation exist, both for the
bottom-up case. The first appeared in [10] with the sum of all residual piece profits,
with no limits on the sum of their area, hence ignoring Γ, and we refer to that as
container relaxation. However, the authors only use the piece types compatible
with Γ . We denote this set by TΓ. Hence, if bi are the frequencies in B, u(Γ) is

∑i∈ TΓ di − bið Þ ⋅ πi ð10Þ

In [32], if this expression is zero, then it is used in place of VU(l, w).
For the second upper bound, continuous frequencies are used, but it is better that

(10) since it takes into account the area of Γ as upper limit [18, 36]. For a given
build B, the knapsack formulation with b′i as variable frequencies is
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max∑i∈ TΓ b
′

i ⋅ πi s.t.0≤ b′i ≤ di − bi, ∑i∈ TΓ b
′

i ⋅ li ⋅wi ≤A= areaðΓÞ ð11Þ

2.4.2 Strips with Compatible Pieces

A bound for 1D-slice relaxation originally appeared in a top-down approach for
U2DC [37]. The best horizontal strip compatible with a rectangle (α, β) is

uhðα, βÞ=max∑i∈T π
′

i, h ⋅ bi s.t. ∑i∈T li ⋅ bi ≤ α; bi integer; bi ≥ 0 ð12Þ

The authors compute (12) only for β equal to piece widths. A similar definition
uv(α, β) is valid for the vertical slices. The minimum is selected as upper bound.

In [21, 38] this bound is applied to the bottom-up (for U2DC), but it is just
computed for the full sheet, and uh(α, β) is replaced by uh(α), with β = W in (12).

The bound was adapted to C2DC in [36] by adding constraints bi ≤ di in (12).
We refer to these strips as constrained strips. For a build with size (l, w), u(Γ) is
given, for example with horizontal strips, by (13), which we refine later according
to the discrete points. The authors also select the best residual bound (Sect. 2.3).

⌊uhðL− lÞ ⋅w+ uh Lð Þ ⋅ ðW −wÞ⌋ ð13Þ

2.4.3 Free 1D-Area Upper Bounds

In the top-down approach of [20] the geometric compatibility is integrated to the
1D-area relaxation. For an open (α, β), an integer knapsack problem is solved:

max∑i∈ T bi ⋅ πi s.t.∑i∈ T bi ⋅ li ⋅wi ≤A= α ⋅ β; bi integer; 0≤ bi ≤ ciðα, βÞ ð14Þ

with capacity α ⋅ β, the piece types of T(α, β), and the upper limits ci(α, β) = min
{di, ⌊α ̸li⌋ ⋅ ⌊β ̸wi⌋} for the integer variable frequencies bi . We refer to ci as
specific demands. When they are used we say there is full geometric compatibility.

For the bottom-up approach, the formulation given in [17] is equivalent to (14),
but the constraint li ≤ α and wi ≤ β should be replaced by li ≤ L−α or wi ≤ W−β,
as noticed also in [36]. In [18] an upper limit is defined for frequencies. We denote
it by cΓ,i(α, β). The authors set cΓ,i(α, β) = 0 if li > L−α and wi > W−β. When
only the first condition is valid, they set cΓ,i(α, β) = min{ di,
⌊L ⋅ W − βð Þ ̸ li ⋅wið Þ⌋}, and similarly if only the second is satisfied. In all other
cases, the total area of Γ is exploited, by setting cΓ,i(α, β) = min{di,
⌊areaðΓÞ ̸ li ⋅wið Þ⌋}.
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2.5 Mixed Upper Bounds

Upper bounds can be mixed by selecting the minimum. A better strategy, related to
(1)–(2.a, 2.b, 2.c) and (8.a, 8.b)–(9.a, 9.b), integrates the unconstrained and the
1D-area relaxations. In [23], fU(l, w) is replaced by fU,m(l, w) = min{f1D(l, w), fU(l,
w)}, where f1D refers to a 1D-area relaxation. Hence, fU,m can be smaller than fU.
The authors propagate any smaller value also to the bigger rectangles, since they
use fU,m in (1.b, 1.c) instead of fU, so leading to reduced functions fU,h,m and fU,v,m.

A similar strategy appeared in [18], with different perspectives. First, the authors
applied the mix to (8.a, 8.b)–(9.a, 9.b). Second, it is performed by replacing fU(x,
y) with min {f1D(x, y), fU(x, y)} in (9.a, 9.b). Hence, this mix only reduces the
propagation of fU.

2.6 Discrete Points

A way to improve a tree search approach is with the discretization of the cut
coordinates by considering only the integer combinations of the piece dimensions
[8, 16]. We denote the discrete points sets by DX (lengths) and DY (widths).

The useful portion of a rectangle (l, w) has dimensions (〈l〉x, 〈w〉y) and area
〈l〉x ⋅ 〈w〉y, where 〈l〉x = max{x ∈ DX: x ≤ l} and 〈w〉y = max{y ∈ DY: y ≤ w}.
These reductions imply smaller upper bounds for the 1D-slice and 1D-area
relaxations.

No example exists for top-down methods. In the bottom-up case, the dimensions
l and w of any build B are necessarily discrete points. The dimensions L−l and
W−w of the complementary surface Γ are reduced to 〈L−l〉x and 〈W−w〉y in [35].
We denote the reduced surface by 〈Γ 〉d. A reduction of Γ through discrete points is
also described in [18], before defining cΓ,i, but no formulation was given.

For the 1D-slice relaxation, the reduction has no effect on the construction of the
best strips but, for example, the replication of the horizontal ones is reduced on the
y-axis. Hence, the following refined expression is used in [36] instead of (13)

⌊uhðL− lÞ ⋅ W − ⟨W −w⟩y
� �

+ uh Lð Þ ⋅ ⟨W −w⟩y⌋ ð15Þ

where, in the second term, the factor (W−w) is replaced by 〈W−w〉y whereas, in the
first term, the factor w has been increased with an equivalent gap.

3 Literature Categorization

We characterize the upper bounds used in a set of significant literature papers, by
using our four criteria. Tables 1 and 2 refer to the top-down and bottom-up case
respectively. Last column reports if a bound mixing is used. In some cases the mix
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Table 1 Literature upper bounds for top-down algorithms

Paper Relaxation Root/Inner Free/Residual Geometric
compatibility

Bound
mixing

Christofides and
Whitlock [8]

Unconstrained Both Free Compatible No

Christofides and
Hadjiconstantinou
[9]

State space Both Free Compatible No

Morabito and
Arenales [26]

1D-Area + continuous Both Residual Compatible No

Hifi and
Zissimopoulos [20]

1D-area Both Free Full Yes

Hifi [19] 1D-area + continuous Inner Free Compatible No

Morabito and
Pureza [27]

State space Both free Compatible No

Table 2 Literature upper bounds for bottom-up algorithms

Paper Relaxations Root/Inner Free/Residual Geometric
compatibility

Bound
mixing

Wang [33] 1D-area + continuous
+ unconstrained

Both Free Unlimited No

Viswanathan
and Bagchi
[32]

Unconstrained Both Free Compatible Yes

Tschöke and
Holthöfer
[30]

1D-area Both Free Unlimited Yes

Hifi [17] 1D-area Both Free Unlimited Yes
Cung et al.
[10]

Container Inner Residual Compatible Yes

León et al.
[23]

Unconstrained mixed
to 1D-area

Both Free Unlimited on
1d-area

No

Hifi et al.
[18]

1D-area Root Free Unlimited Yes
Unconstrained mixed
to 1D-area

Both Free Compatible
on fu

1D-area + continuous Both Free Compatible
Dolatabadi
et al. [11]

1D-area Inner Residual Unlimited Yes

Yoon et al.
[36]

1D-slice with discrete
points

Both Free/residual Unlimited Yes

1D-area + continuous Inner Residual Compatible
Wei and Lim
[35]

1D-area Root Free Unlimited Yes
1D-area Inner Free Unlimited
1D-area + continuous Inner Residual Unlimited
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involves bounds from other papers, as better detailed in an extended report on-line,
accessible at opslab.dieti.unina.it and containing also formal formulations.
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Some Complexity Results for the Minimum
Blocking Items Problem

Tiziano Bacci, Sara Mattia and Paolo Ventura

Abstract In this paper, we study the Minimum Blocking Items Problem (MBIP)

as a generalization of the Bounded Coloring Problem for Permutation Graphs and

we motivate our interest by discussing some practical applications of MBIP to the

context of minimizing reshuffle operations in a container yard. Then we present some

results on the computational complexity of MBIP.

Keywords Bounded coloring problem ⋅ Block relocation problem ⋅ Complexity

1 Introduction

Let S be a system defined by w stacks of capacity (in terms of available slots) h.

Them let {1,… , n} be a set of items that enter the system according to the order

defined by the vector 𝜙, where 𝜙i is the i-th entering item.

The stacks can store items according to a last-in/first-out policy. When an item

enters the system, it has to be allocated in one of the stacks, in the first slot available

from the bottom to the top of the stack.

We call configuration, and we denote it by M, an assignment of the items {1,… , n}
to the slots of the w stacks that is compatible with the entering order 𝜙. Let M(j, k)
denote the item allocated in the k-th position of stack j (M(j, k) = 0 if the slot is

empty). Then, to be coherent with the order 𝜙, for each couple i, i′ ∈ {1,… , n} with

i < i′, it cannot exist a stack j such that M(j, k) = 𝜙i′ and M(j, k + 1) = 𝜙i for some

1 ≤ k < h.
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Fig. 1 Solutions Ma and Mb for Example 1

Furthermore, we say that item i = M(j, k) is blocking if there is an item i′ =
M(j, k′) < i for some 1 ≤ k′ < k (and therefore i′ is said to be blocked). Given a con-

figuration M, we denote by BI(M) the total amount of blocking items of M. Given

an input instance defined by n, 𝜙, w, and h, the Minimum Blocking Items Problem
(MBIP) is to find the configuration M that minimizes BI(M).
Below we provide and example of MBIP, with feasible and optimal solutions.

Example 1 Consider the input instance defined by n = {1,… , 7},w = 3, h = 3, and

𝜙 = [1, 3, 6, 5, 7, 4, 2]. Figure 1 shows two solutions Ma and Mb corresponding to

different values of BI(M). Specifically BI(Ma) = 3 and BI(Mb) = 1. An empty slot

is denoted by 0. In both cases, the blocking items are colored in gray. It is not difficult

to see that Mb is, in fact, the optimal solution of the problem.

In the following, we show that the problem of checking if there exists a configu-

ration M such that BI(M) = 0 is equivalent to the Bounded Coloring Problem on
Permutation Graphs [1], denoted here by BCPPG. Given a graph G(V ,E), a set of

colors {c1,… , cw} and a positive value h, the Bounded Coloring Problem consists

of finding an assignment of colors to the nodes of the graph so that the endpoints

of each edge have different colors and color cj is assigned to at most h nodes. We

call such an assignment a feasible coloring of G. Given a permutation 𝜙 of items

{1,… , n}, the corresponding permutation graph G(𝜙) = (V(𝜙),E(𝜙)) is defined as:

V(𝜙) = {1,… , n}; {i, j} ∈ E(𝜙) if and only if (i − j)(𝜙i − 𝜙j) > 0.

Now, if we associate nodes with items and colors with stacks, it is not difficult to

see that BCPPG has a positive answer (i.e. G admits a feasible coloring) if and only

if the corresponding MBIP admits a configuration M such that BI(M) = 0. Therefore

the following holds true:

Observation 1 The Minimum Blocking Items Problem is a generalization of the
Bounded Coloring Problem on Permutation Graphs.

Two other optimization problems that are generalizations of the BCPPG can be

defined by minimizing the number of edges (vertices, resp.) that have to be removed

from G in order to obtain a graph that admits a feasible coloring. In this cases,

we talk of Edge Deletion Bounded Coloring Problem on Permutation Graphs (ED-

BCPPG) and Vertex Deletion Bounded Coloring Problem on Permutation Graphs
(VD-BCPPG), respectively.

Indeed, one could think that MBIP could be reduced to one of these problems.

The following two examples show this is not true.
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Example 2 Consider the input instance defined by n = {1,… , 8},w = 2, h = 4, and

𝜙 = [3, 7, 2, 1, 6, 8, 5, 4]. It is not difficult to see that the (unique) optimal solution to

the ED-BBPPG has value 2 and is the one depicted in Fig. 2a, where the dashed

edges are those that have to be removed in order to get the feasible solution that

assign color 1 (white in the picture) to vertices {3, 2, 1, 8} and color 2 (gray in the

picture) to vertices {7, 6, 5, 4}. In the MBIP context, this corresponds to assign items

{3, 2, 1, 8} to stack 1, and items {7, 6, 5, 4} to stack 2, as illustrated in Fig. 2b. This

solution has 2 blocking items (gray in the picture) while the MBIP optimal solution

(shown in Fig. 2c) has value 1.

Example 3 In this case, let n = {1,… , 8},w = 2, h = 4 and𝜙 = [3, 8, 5, 4, 2, 1, 7, 6].
Also here it is not difficult to see that the (unique) optimal solution to the VD-BBPPG

has value 1 and is the one depicted in Fig. 3a, where vertex 3 (drown with a dashed

line) is the one to be removed in order so to have a feasible solution that assign color

1 (white in the picture) to vertices {5, 4, 2, 1} and color 2 (gray in the picture) to

vertices {8, 7, 6}. In the MBIP context, this corresponds to assign items {5, 4, 2, 1}
to stack 1, and items {3, 8, 7, 6} to stack 2, as illustrated in Fig. 3b. This solution has

3 blocking items (gray in the picture) while the MBIP optimal solution (shown in

Fig. 3c) has value 2.
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2 A Practical Application of MBIP

Here we consider the case where the configuration M defined in the previous section

represents a container yard and the items {1,… , n} correspond to containers that are

piled into w stacks of height h. In this context, when a container has to be retrieved

from the yard, each container that is located above it has to be reallocated, with a

reshuffle operation (or, simply, a reshuffle), into an other stack of the yard.

If the retrieval order of the containers from the yard is given—in this case we can

assume w.l.o.g. that it corresponds to [1, 2,… , n]—then Block Relocation Problem
(BRP) consists in deciding where to reallocate every container that is moved by a

reshuffle operation, in order to minimize the total number of reshuffles needed to

retrieve all the items. We denote by BR(M) such an optimal value.

Reshuffle operations represent the main operational cost in a container yard and,

because of the extremely fast growing in the last decades of the number of contain-

ers moved worldwide by means of ships, trains, and trucks—and therefore temporary

stocked into containers yards—the literature about BRP received a lot of contribu-

tions in the recent years.

The BRP is known to be NP-hard [3]. A huge amount of literature has been pro-

posed to define heuristic algorithms and exact approaches (see the recent surveys [2,

7]).

As the blocking items of a yard M will definitively need a reshuffle operation

in order to retrieve the items that are blocked, it is easy to see that BR(M) ≥ BI(M).
Then BI(M) is used as a lower bound for the optimal solution in the most performing

exact approaches for the BRP, as in [4, 9, 11].

Unfortunately, the exact methods proposed so far in the literature can solve in

practice only relatively small instances (defined by few dozens items) and cannot

tackle real life cases in which thousands of containers are involved. Therefore, heuris-

tic algorithms are very important in practice and most of the procedures proposed in

the literature (see [3, 6, 10, 11] among the others) rely on the solution of many MBIP
(or of some slight variation of it) smaller instances. Indeed, in all these approaches,

the common basic idea is to iteratively construct a feasible solution where, at each

iteration i (when item i is retrieved from the yard), all the containers that have to be

reshuffled (ordered from the current top position in the stack to the bottom one) are

reallocated in the other stacks of the yard according to a (heuristic or optimal) solu-

tion of the associated MBIP problem (or some slight modifications of it that vary in

the different contributions).

Therefore, we believe that the study of the Minimum Blocking Items Problem,

that, to our best knowledge, did not receive much attention in the literature so far,

can definitively help to improve the performances of these algorithms.

In the following section, we will give our contribution on some computational

complexity aspects of the problem.
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Table 1 Computational complexity of BCPPG

h ≥ n h < n fixed h < n
w < n fixed P P ⇐ P [1]

w < n
⇑
P [8] NP-hard [5] ⇒ NP-hard

3 Computational Complexity

It has been proved that BCPPG can be solved in polynomial time when the number

w of colors is fixed [1] or h ≥ n [8]. To the contrary, the problem is known to be

hard for any fixed 6 ≤ h < n [5]. Such results are reported in Table 1 and arrows rep-

resent implications between them. Notice that assuming h ≥ n corresponds to relax

the capacity constraints on the stacks. Then BCPPG reduces to a simple coloring

problem on permutation graphs, which is easy to solve, as permutation graphs are

perfect.

In the following we study the computational complexity of MBIP.

Because of Observation 1, the following holds.

Lemma 1 MBIP is NP-hard for w < n and any fixed 6 ≤ h < n.

As a consequence, we also have

Corollary 1 MBIP is NP-hard for w < n and h < n.

It is not difficult to see that, for w ≥ n, MBIP is easy, independently of h. Indeed, in

this case, it is sufficient to assign every item to a different stack to get a solution of

cost 0.

The main contribution of this paper consists of the following two theorems. In

particular, we consider the case when w < n is fixed.

We first prove that MBIP is polynomial time solvable when h < n.

Theorem 1 If w < n is fixed and h < n, MBIP is polynomial and can be solved in
O(nw+2hw).

Proof We will show that the problem can be reduced to find a shortest path on a suit-

able oriented graph G = (N,A) (see Fig. 4). The nodes of G are associated with the

feasible configurations and can be partitioned into layers, where each layer 0 ≤ l ≤ n
contains all (up to stack permutations) the configurations obtained with considering

only the items 𝜙1,… , 𝜙l (at layer 0, the only configuration, named p, is that with

all stacks empty). Each configuration is represented by a couple of w-dimensional

vectors s and t, where si is the minimum item located in stack i (si = +∞ if the stack

is empty) and ti is the number of items in the stack. Now let (s, t) be a node in layer

l < n. Then, for each stack j such that tj < h, there is a node (s′, t′) in the layer l + 1
that represents the configuration obtained from (s, t) by locating item 𝜙l+1 in stack
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Fig. 4 The graph G of Theorem 1 with n = 3,w = 2, h = 2, and 𝜙 = [2, 3, 1]

j, and an arc a from (s, t) to (s′, t′). Therefore, s′j = min {sj, 𝜙l+1}, t′j = tj + 1, and

s′j′ = sj′ , t′j′ = tj′ for all j′ ≠ j. Moreover, the arc a has weight 1 if 𝜙l+1 is blocking

in (s′, t′) (i.e. s′j = sj) and 0 otherwise (s′j = 𝜙l+1 < sj). Finally, add a dummy node

q and an arc of weight 0 from all the nodes in the layer n and q. Therefore, it is not

difficult to see the minimum number of blocking items corresponds to the shortest

path from p to q.

Since G is acyclic by construction, such a shortest path can be computed in O(|A|)
time. Moreover, it is not difficult to see that the number of nodes at each layer 1 ≤ l ≤
n is bounded by (l + 1)w(r + 1)w, where r = min {l, h}. Therefore, |V| = O(nw+1hw)
and, as every node has at most w leaving arcs, |A| = O(nw+2hw). ⊓⊔

As a consequence, we have also that

Corollary 2 If w < n and h < n are fixed, then MBIP can be solved in polynomial
time.

Then we consider the case where the capacity of the stacks is unbounded.

Theorem 2 If h ≥ n, MBIP can be solved in O( min {nw+1
, 2n+1}) time.

Proof The proof of this theorem mimics the one of Theorem 1 and again we reduce

MBIP to a shortest path problem on the acyclic graph G. In particular, since the
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Fig. 5 Graph G of

Theorem 2 for n = 4, w = 2,

𝜙 = [2, 4, 1, 3]

capacities of the stacks are unbounded, here the feasible configurations can be rep-

resented only by the vector s. Moreover, let s and s′ be two configurations in the

same layer such that sj ≥ s′j for each j ∈ {1,… ,w}. Than it is not difficult to see that

the shortest path from s to q cannot be longer than the one from s′ to q. This implies

that, if the shortest path from p to s is not longer than to one from p to s′, then s dom-
inates s′ (i.e. s′ can be removed from the graph without effecting the MBIP optimal

solution). Therefore, as illustrated in Fig. 5, the outgoing arcs of any configuration s
in layer l are at most two: (s, s1), of cost 1, associated with the fact that item 𝜙l+1 is

blocking (in this case s1j = sj for all j), and (s, s0), of cost 0, representing the choice

of locating item 𝜙l+1 in the stack ̄j = arg min {sj ∶ sj > 𝜙l+1}.

Then, the number of nodes at each layer 1 ≤ l ≤ n is bounded by min {(l +
1)w, 2l}. Therefore, in this case, |V| = O( min {nw+1

, 2n+1}) and, since every node

has at most two outgoing arcs, we have that |A| = O( min {nw+1
, 2n+1}). ⊓⊔

As for any fixed w there always exists a value n̄ such that 2n+1
> nw+1

for all n > n̄,

then the following holds

Corollary 3 If w < n is fixed and h ≥ n, MBIP is polynomial and can be solved in
O(nw+1).

By the previous results, MBIP complexity can be summarized in Table 2. We were

able to prove complexity results for all the considered settings, but for w < n and
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Table 2 Computational complexity of MBIP

h ≥ n h < n fixed h < n
w < n fixed P (Corollary 3) P (Corollary 2) ⇐ P (Theorem 1)

w < n ? NP-hard

(Lemma 1)

⇒ NP-hard

(Corollary 1)

h ≥ n, whose complexity is still unknown. Comparing Tables 1 and 2, it is easy to

see that, for all the cases where the complexity of MBIP is known than it matches

the corresponding BCPPG complexity.

4 Conclusions

We defined a new problem, the Minimum Blocking Item Problem, as a generalization

of the Bounded Coloring Problem on Permutation Graphs. We studied the complex-

ity of the proposed problem, providing results showing that it is NP-hard for w < n
and h < n, fixed or not; moreover, we proved that it can be solved in polynomial time

in all the other cases, but for w < n and h ≥ n, whose complexity is still open.
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AMILP Algorithm for the Minimization
of Train Delay and Energy Consumption
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Abstract A new timetable must be calculated in real-time when train operations

are perturbed. The energy consumption is becoming a central issue both from the

environmental and economic perspective but it is usually neglected in the timetable

recalculation. In this paper, we formalize the real-time Energy Consumption Mini-

mization Problem (rtECMP). The rtECMP is the real-time optimization problem of

finding the driving regime combination for each train that minimizes the energy con-

sumption, respecting given routing and precedences between trains. We model the

trade-off between minimizing the energy consumption and the total delay by consid-

ering as objective their weighted sum. We propose an algorithm to solve the rtECMP,

based on the solution of a mixed-integer linear programming (MILP) model. We

test this algorithm on the Pierrefitte-Gonesse control area, which is a critical area

in France with dense mixed traffic. In particular, we consider a one-hour traffic per-

turbation. In this situation, we take into account different routing and precedence

possibilities and we solve the corresponding rtECMP. This experimental analysis

shows the influence on the solution of the weights associated with energy consump-

tion and delay in the objective function. The results show that the problem is too

difficult to be solved to optimality in real time, but is indeed tractable.
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1 Introduction

In the railway system, the timetable is designed so that traffic can be smoothly

operated. However, when unexpected events occur during operations, causing train

delays, a new timetable must be computed in real-time. In practice, this computation

is usually not fully automated: a dispatcher manually establishes routes and sched-

ules to perform traffic operations minimizing delays.

The real-time Railway Traffic Management Problem (rtRTMP) is the problem of

automatically establishing the train routing and scheduling in real-time, minimiz-

ing a function of the delay propagation. In the literature, several algorithms have

been proposed for solving the rtRTMP [2, 3, 6, 9]. Typically, the rtRTMP does not

consider energy consumption, which is becoming a central issue both from the envi-

ronmental and economic perspectives. Hence, some authors propose approaches to

integrate the minimization of energy consumption in real-time railway traffic oper-

ations. In particular, [11] presents a method to find the optimal speed profiles and

control regimes for two trains running on a corridor. [1] proposes a fuzzy predictive

control approach to find energy-efficient locomotive operations in real-time when

speed limits change. [10] introduces a dual-speed curve approach for energy-saving

operation of a high-speed train in absence of traffic.

In this paper, we define the real-time Energy Consumption Minimization Problem

(rtECMP). Indeed, the energy consumption depends on the driving regimes followed

by the trains. The rtECMP finds the driving regime combinations which minimize

the energy consumption in real-time. These combinations consider as an input the

routing and the precedences between the trains of an rtRTMP solution and comply

with them. The objective of the problem is the minimization of the weighted sum of

energy consumption and total delay.

Moreover, we propose the Train Driving Regime Combination-MILP algorithm

(TDRC-MILP): a MILP-based algorithm for the rtECMP. It first calculates the trains

travel times and the energy consumption corresponding to different combinations

of driving regimes. Then, it solves the rtECMP through a MILP solver and returns

the optimal solution. We propose an experimental analysis on instances representing

traffic in the Pierrefitte-Gonesse control area in France. This control area corresponds

to a complex junction with dense mixed traffic.

The rest of the paper is organized as follows. Section 2 describes the problem.

Section 3 presents the algorithm and the MILP model. Section 4 reports the experi-

mental analysis and Sect. 5 concludes the paper.
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2 Problem Description

During train operations, unexpected events cause delays that often propagate due

to the emergence of conflicts. A conflict occurs when two trains, running at their

planned speed, would require incompatible block sections concurrently. Block sec-

tions are track portions delimited by signals and the block sections that share a track

section are called incompatible. To ensure that the safety distance is always main-

tained between consecutive trains, when a train driver encounters a signal with a

restrictive (different from green) aspect, he has n − 1 block sections to stop the train

where n is the number of aspects characterizing the signaling system [8]. According

to the characteristics of the train, an immediate brake may or may not be necessary.

When conflicts emerge and trains need to brake or stop, a new timetable needs

to be defined and followed, with new passing and stopping times and possibly with

different train routes. Train routes are sequences of block sections that can be tra-

versed between the trains’ origins and destinations in the control area. The decision

of the new train routes and precedences is made in the rtRTMP. Precedences are

described through train schedules, which are the times at which the trains enter each

block section of their routes. Typically, the rtRTMP minimizes delays considering

the trains traveling as fast as possible through the control area dealt with. Indeed,

there is a trade-off between delays and energy consumption.

The rtECMP is the real-time optimization problem of finding the new schedules

and driving regime combination for each train that minimize delays and energy con-

sumption, while respecting traffic management decisions. In the rtECMP, a solution

of the rtRTMP is considered as an input and the trains driving regime combinations

are optimized while satisfying it.

3 TDRC-MILP

The rtECMP problem is solved by means of TDRC-MILP, a first version of which

was introduced in [7]. The stations in the control area are represented by block sec-

tions where the trains can stop. Moreover, we consider a three-aspect signaling sys-

tem. For ease of formulation, we suppose that the visibility distance of all signals is

0, that is, a train entering a block section with a yellow aspect will have to stop at the

end of it. Once stopped, the driver sees the signal opening the next block section and

may immediately accelerate if the signal already turned green or yellow. The trains

start at the maximum allowed speed if they enter the control area from a neighboring

one, or at speed 0 if the origin of their route is a station within the control area. Each

train can change the driving regime in predefined positions within the block sections

belonging to its route.

The algorithm starts with the calculation of the travel times of trains and the

energy consumption for each train and for each of its block sections. The trains travel

times consist of the running and clearing times, which are, respectively, the times
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needed by a train to travel on and to clear each block section. In particular, a block

section is clear if the train’s tail has exited it. Then, based on these values, the TDRC-

MILP builds the MILP model and solves it.

In the definition of the algorithm we use the following notation:

T: Set of trains that travel in the control area

T ′
: Subset of trains that start from a station in the control area

i, j, k, l: Respectively, a train, a block section, a train initial speed and a train driving

regime combination

Bi: Sequence of block sections along the route of train i, ∀i ∈ T
Si: Set of stations where train i must stop, ∀i ∈ T
CO: Set of allowed driving regime combinations

s: Number of subsections in a block section

Vi0: Initial speed for train i in the first block section of its route in the control area

V0
ij : Set of possible initial speeds for train i in block section j ∈ Bi

rijkl: Running time of train i on block section j if entering at speed k and using driving

regime combination l
cijkl: Clearing time of train i on block section j if entering at speed k and using driving

regime combination l
Eijkl: Energy consumption of train i on block section j if entering at speed k and using

driving regime combination l
rj: Release time for block section j ∈ B
fj: Route formation time for block section j ∈ B
j◦i : First block section in Bi, that is, the origin of the route of train i,∀i ∈ T
j∗i : Last block section in Bi, that is, the destination of the route of train i,∀i ∈ T
Q(ij)k : Set containing pairs (k′, l) ∈ (V0

ij ,CO) of train initial speeds and driving regime

combinations that imply k as train final speed, for train i ∈ T and block section j ∈ Bi
Pjj′ : Set containing the ordered pairs (i, i′), i, i′ ∈ T , such that i′ traverses j′ ∈ Bi′
before i traverses j ∈ Bi, with j and j′ incompatible block sections

M: Big Constant >> 0
wij: Originally scheduled time at which train i should enter j ∈ Si, ∀i ∈ T , that is,

planned arrival time at the station

ei: Originally scheduled time at which train i should exit the last block section of its

route, ∀i ∈ T , that is, planned arrival time at destination

𝛼, 𝛽: Weights associated with the energy consumption and total delay in the objective

function.

3.1 Pre-computation

The train travel times and the energy consumption depend on the infrastructure, the

train initial speed and the driving regime combination. The algorithm calculates

these values for all trains in each block section of their route, considering all the

feasible driving regime combinations.
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We suppose that the possible driving regimes are acceleration until the maximum

possible speed, cruising at constant speed, coasting and deceleration. When accel-

erating, the maximum power is given to the engine to reach the maximum possible

speed. When cruising, the speed is maintained constant and the acceleration is null

(if the slope is null as well). When coasting, the engine is stopped and the train

moves by inertia. Finally, when decelerating, the train brakes. The energy evolves

differently during the four regimes depending on the tractive effort employed. In

particular, during the last two regimes, the energy consumption is null. We refer the

interested reader to [4] for more details.

We assume that each train can change its driving regime in some predefined points

of each block section. The algorithm splits each block section into s subsections.

For each of these subsections exactly one driving regime is chosen. For each block

section j ∈ Bi, starting from the possible initial speeds k, the algorithm calculates

running time rijkl, clearing time cijkl and energy consumption Eijkl for each possible

driving regime combination l and for each train i ∈ T .

3.2 Model Formulation

In the MILP model, the continuous variables are used for times: tij is the time at

which train i enters block section j; qij handles the possible stop duration of i at the

red signal at the end of j; di indicates the total delay of i at its intermediate stops and

at its exit from the control area. The binary variables are the following:

yijkl =

{
1 if i enters j with speed k and traverses j using combination l
0 otherwise,

zij =

{
1 if i enters j with a yellow signal

0 otherwise.

The objective is the minimization of a weighted sum of energy consumption and

total delay:

min 𝛼(
∑
i∈T

∑
j∈Bi

∑
k∈V0

ij

∑
l∈CO

Eijklyijkl) + 𝛽

∑
i∈T

di. (1)

In addition to the standard binary and non-negativity ones, the model includes

several constraints which are described in the following.∑
k∈V0

ij

∑
l∈CO

yijkl = 1 ∀i ∈ T , j ∈ Bi (2)
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∑
(k′l)∈Q(ij)k

yijk′l =
∑
l∈CO

yij′kl ∀i ∈ T , j ∈ Bi ⧵ j∗i , j
′ follows j,∀k ∈ V0

ij′ (3)

tij′ − tij =
∑
k∈V0

ij

∑
l∈CO

rijklyijkl + qij ∀i ∈ T , j ∈ Bi ⧵ j∗i , j
′ follows j, j ∉ Si (4)

tij′ − tij =
∑
k∈V0

ij

∑
l∈CO

rijklyijkl + dij + qij ∀i ∈ T , j ∈ Si, j′ ∈ Bi ⧵ Si, j′ follows j (5)

∑
(k,l)∈Q(ij)0

yijkl = 1 ∀i ∈ T , j ∈ Si (6)

tij′ ≥ wij ∀i ∈ T , j ∈ Si, j′ ∈ Bi, j′ follows j (7)

tij − ti′j′ ≥
∑
k∈V0

ij′

∑
l∈CO

(ri′j′kl + ci′j′kl + fj′ + rj′ )yi′j′kl

∀(i′, i) ∈ Pjj′ , j ∈ Bi, j′ ∈ Bi′ , j′ incompatible with j (8)

Mzij′′ + tij′′ ≥ ti′j′ +
∑
k∈V0

ij′

∑
l∈CO

(ri′j′kl + ci′j′kl + fj′ + rj′ )yi′j′kl

∀(i′, i) ∈ Pjj′ , j′′, j ∈ Bi, j follows j′′, j′ ∈ Bi′ , j′ incompatible with j (9)

∑
k∈Q(ij)0

yij′′kl ≥ zij′′ ∀i ∈ T , j′′ ∈ Bi (10)

qij ≤ Mzij ∀i ∈ T , j ∈ Bi (11)

∑
j∈Si

(tij − wij) + (tij∗i +
∑
k∈V0

ij

(
∑
l∈CO

yij∗i klrij∗i kl) − ei) ≤ di ∀i ∈ T (12)

Constraints (2) guarantee that each train follows exactly one combination of

driving regimes in each block section. Constraints (3) and (4) ensure that the final

speed in each block section is equal to the initial speed in the following one and that

each train arrives at each block section after spending the necessary running time in

the previous one, respectively. Constraints (5) and (6) state that each train stops at

least for the minimum dwell time in each station where it has a scheduled stop. For

Constraints (7), the train must not leave the station before its planned departure time.

Thanks to Constraints (8), only one train at a time can traverse each block section.

Recall that precedences between trains are inputs supplied by a rtRTMP solver. When
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train i must traverse block section j and i′ must traverse j′, if (i′, i) ∈ Pjj′ then i′ must

release j′ before i can enter j. Constraints (9) and (10) impose that a train stops with

red signal at the end of a block section when it has to give precedence to one or more

other trains. For these constraints to be meaningful, M must be at least equal to the

time distance between the time at which train i′ exits from j′ and the time at which

train i enters j′′ for all i, i′ ∈ T , j′ ∈ Bi′ , j′′ ∈ Bi. Constraints (11) state that qij is 0
when a train does not have to stop at a red signal. Finally, Constraints (12) assign

variables di according to the scheduled times of train i at the stations where it has a

scheduled stop and at its destination.

4 Experimental Analysis

We implement TDRC-MILP in Java and integrate it with IBM ILOG CPLEX Opti-

mization Studio V12.6.1 [5], with time and tree memory limit of one CPU hour and

e75∕8, respectively. We run the experiments on an Intel(R) Core(TM) i7-4790 CPU

@3.60 GHz, 8 cores, 16GB RAM with Ubuntu 16.04LTS Linux operating system.

We test the algorithm on the French Pierrefitte-Gonesse control area. This con-

trol area includes 89 track-circuits grouped into 79 block sections and 39 routes.

The traffic is dense and during a weekday 336 trains travel on the infrastructure. The

trains are of three types: high-speed trains, conventional passengers trains and freight

trains. Each train has particular rolling stock characteristics, for example, their max-

imum speed are, respectively, 300 km/h, 160 km/h and 100 km/h, while their mass

are 180 T, 1485 T and 180 T. We create a traffic perturbation by imposing that 20%
of trains, randomly selected, enter the control area with a random delay between

5 and 15 min. We consider the 1-h scenario between 6.00 AM and 7.00 AM that

includes 16 trains. For this scenario, the perturbation includes a total entrance delay

of about 63 min (3806 s) suffered by 6 trains. We obtain 15 rtECMP instances by

finding alternative feasible routes and precedence constraints through the rtRTMP

solver RECIFE-MILP [9].

We split each block section included in the train routes in 3 subsections of equal

length and vary the weights associated with energy consumption and delay in the

objective function (1). First, we consider 𝛼 = 0, 𝛽 = 1: the trains travel as fast as

possible and no attention is paid to the energy consumption. Second, we set 𝛼 =
1, 𝛽 = 0 and, third, both values equal to 0.5.

The average results are reported in Table 1. The trends of energy consumption

and delay follow the expectations: the higher the weight of a quantity in the objec-

tive function, the better the results in terms of this quantity and the worse the results

in terms of the other. Three observations can be made based on these results. First,

setting 𝛽 = 0 is probably not a wise choice, since in this case all variables di can be

set as large as possible without any impact on the solution. From here, the average

value of 1382400 which is equal to the variables upper bound (86400) multiplied by

the number of trains in an instance (16). In future studies, we will replace this weight

with a small but positive value to obtain more meaningful values of di’s. Second, with
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Table 1 Average results on 15 instances

Weights in (1.1) Energy

consumption

(MJ)

Delay (s) CPU time (s) Gap %

𝛼 = 0, 𝛽 = 1 5824 10420 2183 0
𝛼 = 0.5, 𝛽 = 0.5 100 35823 1541 0
𝛼 = 1, 𝛽 = 0 100 1382400 1230 0

𝛼 ≥ 0.5 the energy consumed in the optimal solutions does not change. This means

that 𝛼 = 0.5 is large enough to give prominence to energy consumption minimiza-

tion. Most likely this is due to the fact that energy consumption and delay assume

a value of different orders of magnitude, and hence the impact of the weights is not

balanced. In future works, we will normalize the two components of the objective

function to overcome this issue. Third, the difficulty of the instances, if we look at

the CPU time needed to solve them, increases with 𝛽. We don’t have an explanation

for this result yet, and we will investigate it deeply in future research. In particular,

the first step we will make is the deep investigation of the impact of the weighs of

delay and energy consumption in the objective function.

5 Conclusion

In this paper, we have formalized the rtECMP as the problem of minimizing train

delays and energy consumption given fixed routes and precedences. In a traffic man-

agement system, when trains operations are perturbed, the rtECMP receives these

routes and precedences by an rtRTMP solver. Then, it computes the efficient driving

regime combinations to be transmitted to the drivers.

After formalizing the problem, we presented TDRC-MILP. It is a MILP-based

algorithm for solving the rtECMP to optimality. We tested TDRC-MILP on instances

representing the peak-hour traffic in the French Pierrefitte-Gonesse control area. The

results show that realistic instances are tractable, but the optimal solutions can hardly

be found in real-time. In addition, the results give several hints for future research.
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Abstract In this paper we propose a reformulation of RECIFE-MILP aimed at

boosting the algorithm performance. RECIFE-MILP is a mixed integer linear pro-

gramming based heuristic for the real-time railway traffic management problem, that

is the problem of re-routing and rescheduling trains in case of perturbation in order

to minimize the delay propagation. The reformulation which we propose exploits

the topology of the railway infrastructure. Specifically, it capitalizes on the implicit

relations between routing and scheduling decisions to reduce the number of binary

variables of the formulation. In an experimental analysis based on realistic instances

representing traffic in the French Pierrefitte-Gonesse junction, we show the perfor-

mance improvement achievable through the reformulation.
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1 Introduction

Railway timetables extensively exploit the infrastructure for accommodating traffic,

especially at peak hours and at critical locations. This extensive exploitation often

translates into many trains traveling through critical junctions within short time hori-

zons, where junctions are physical areas in which multiple lines cross. Indeed, unex-

pected events, even of apparently negligible entity, may cause a relevant deviation

with respect to the scheduled timetable. In fact, according to the timetable, trains

may be scheduled to traverse the same track segment at a very short time distance.

If one of them is delayed due to an unexpected event, conflicts may emerge: mul-

tiple trains traveling at the planned speed would claim one or more track segments

concurrently, and hence some of them have to stop or slow-down for ensuring safety.

Conflicts may generate a severe delay propagation. In the practice, conflicts are tack-

led by dispatchers, who decide how to locally route and schedule trains based on their

experience and on quite basic visual support tools. Due to the absence of advanced

decision support tools, the decisions made by dispatchers may often be of a rather

low quality if compared to what may be possible thanks to optimization.

In the literature, the selection of the train routes and schedules for minimizing

delay propagation has been formalized as the real-time Railway Traffic Management

Problem (rtRTMP) [8]. This is one of the main railway optimization problems which

have been considered in the literature [5]. Several algorithms have been presented

to tackle this problem [1–3]. Among them, we proposed RECIFE-MILP [7]. It is

an algorithm based on the solution of a mixed-integer linear programming (MILP)

formulation [8]. It has been validated on several case-studies coming from France

[9, 11], Sweden, the UK and the Netherlands [10]. Despite the good performance

achieved in all these case-studies, it is indeed possible to define instances for which

RECIFE-MILP finds it difficult to return a high quality solution in real-time. The

difficulty is very often linked to the size of the formulation describing the instances,

which may easily include several tens of thousands of binary variables [7].

In this work, we propose an effective reformulation of the MILP formulation at

the basis of RECIFE-MILP, which allows a strong reduction of the number of binary

variables necessary to represent an instance. This can be done thanks to the exploita-

tion of the links which exist between routing and scheduling variables, and through

the reformulation of two sets of constraints. In the experimental analysis, we test this

reformulation on perturbations of real instances representing traffic in the French

control area of Pierrefitte-Gonesse. This analysis allows the quantification of the

improvement of the performance of RECIFE-MILP in terms of decrease of the com-

putational time necessary to prove the optimality of solutions and of improvement

of solution quality (reduction of delay propagation) achieved when the optimality

cannot be proven in the available computational time.

The rest of the paper is organized as follows. Section 2 describes the standard

RECIFE-MILP formulation. Section 3 introduces the reformulation. Section 4

reports the computational experiments performed, and Sect. 5 our conclusions.
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2 Standard RECIFE-MILP Formulation

In this section, we describe the main features of the MILP formulation that we use

in RECIFE-MILP [7], in the next sections referred as to standard RECIFE-MILP. It

models the infrastructure at the microscopic level and it implements the route-lock

sectional-release interlocking system [6]. The objective function to be minimized

is the total weighted delays suffered by trains at the intermediate stops and at their

exit from the infrastructure. Although very often RECIFE-MILP quickly finds the

optimal solution to realistic instances, it fails sometimes in delivering it within a

computational time in line with real-time purposes. In this case, it stops the search

process after the available time has elapsed and returns the best solution identified,

together with the optimality gap.

In addition to ensure the coherent movement of each train along the infrastructure,

RECIFE-MILP imposes disjunctive constraints to ensure the respect of the practical

safety constraints. These are the constraints we consider in the reformulation, and

hence the only ones we detail here for sake of brevity. We refer the interested reader

to [7, 8] for all the details of the formulation and the algorithm.

The disjunctive constraints are imposed on each track-circuit, which are track

sections on which the presence of a train is automatically detected. In a railway

infrastructure, sequences of track-circuits are grouped into block sections, which

are opened by a signal indicating their availability. Before a train can enter a block

section, all the track-circuits belonging to the same block section must be reserved

for the train itself. We name utilization time the sum of reservation and occupation

time. The constraints are formulated as:

𝑒𝑈 t,𝑡𝑐 −M(1 − yt,t′,𝑡𝑐) ≤ 𝑠𝑈 t′,𝑡𝑐∀t, t′ ∈ T , index t < index t′, 𝑡𝑐 ∈ 𝑇𝐶 t ∩ 𝑇𝐶 t′ (1)

𝑒𝑈 t′,𝑡𝑐 −Myt,t′,𝑡𝑐 ≤ 𝑠𝑈 t,𝑡𝑐∀t, t′ ∈ T , index t < index t′, 𝑡𝑐 ∈ 𝑇𝐶 t ∩ 𝑇𝐶 t′ (2)

with: T set of trains; 𝑇𝐶 t set of routes and track-circuits which can be used by train

t;M large constant; 𝑠𝑈 t,𝑡𝑐 ∈ ℝ+
time at which t starts utilizing 𝑡𝑐, ∀t ∈ T , 𝑡𝑐 ∈ 𝑇𝐶 t;

𝑒𝑈 t,𝑡𝑐 ∈ ℝ+
time at which t ends utilizing 𝑡𝑐, ∀t ∈ T , 𝑡𝑐 ∈ 𝑇𝐶 t; yt,t′,𝑡𝑐 = 1

if t utilizes 𝑡𝑐 before t′, 0 otherwise, ∀t, t′ ∈ T ∶ t < t′, 𝑡𝑐 ∈ 𝑇𝐶 t ∩ 𝑇𝐶 t′ . These last

variables need to be defined only for couples of trains t and t′ such that the index of

t is smaller than the one of t′, since yt′,t,𝑡𝑐 = 1 − yt,t′,𝑡𝑐 .
Remark that, if t chooses a route which includes 𝑡𝑐 and t′ does not, then yt,t′,𝑡𝑐 = 0:

𝑠𝑈 t,𝑡𝑐 and 𝑒𝑈 t,𝑡𝑐 are equal to the time at which t utilizes 𝑡𝑐; 𝑠𝑈 t′,𝑡𝑐 and 𝑒𝑈 t′,𝑡𝑐 are set to

0 by a set of constraints not detailed here, which ensure the coherence of the trains

travel. Specifically, if a train does not use 𝑡𝑐, its occupation and utilization (real)

variables will be set to 0, as if the train traversed 𝑡𝑐, and hence forbade other trains

doing so, starting at time 0 and for 0 s. Conversely, if only t′ chooses a route including

𝑡𝑐, then yt,t′,𝑡𝑐 = 1. If no train uses 𝑡𝑐 both values 0 and 1 are feasible for yt,t′,𝑡𝑐 , since

the utilization start and end will be 0 for both trains.
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3 RECIFE-MILP Reformulation

In this section, we exploit the dependency of yt,t′,𝑡𝑐 on the characteristics of the

infrastructure and on the routes chosen by the trains to reformulate RECIFE-MILP

with the aim of reducing the number of variables yt,t′,𝑡𝑐 .1 To this end, we first intro-

duce the concepts of track-circuit equivalence and representativeness. Then, we

reformulate Constraints (1) and (2) in terms of small sets of representative track-

circuits. To do so, we will use Rt as the set of routes and track-circuits which can be

used by train t, and 𝑇𝐶
r

as the set of track-circuits composing route r.
Given two trains t and t′ and two routes r ∈ Rt and r′ ∈ Rt′ , we define the follow-

ing relation in the set of the track-circuits 𝑇𝐶
r ∩ 𝑇𝐶

r′
shared by the two routes:

𝑡𝑐 ∼r,r′ t̂c if 𝑡𝑐, 𝑡𝑐 ∈ 𝑇𝐶
r ∩ 𝑇𝐶

r′
and t ≺ t′ on 𝑡𝑐 iff t ≺ t′ on 𝑡𝑐 for any feasible schedule.

In other words, in any feasible solution of RECIFE-MILP such that xt,r = xt′,r′ =
1, with xt,r binary variable stating whether train t chooses route r (= 1) or not (= 0), if

𝑡𝑐 ∼r,r′ 𝑡𝑐 then yt,t′,𝑡𝑐 = yt,t′,𝑡𝑐 : the precedence relation holding between t and t′ on 𝑡𝑐 is

necessarily the same as on 𝑡𝑐. As an example think of two consecutive track-circuits

on a single track line. This relation is an equivalence one. Accordingly, it induces a

partition of the set 𝑇𝐶
r ∩ 𝑇𝐶

r′
into equivalence classes. Here, an equivalence class

S is a maximal subset of 𝑇𝐶
r ∩ 𝑇𝐶

r′
defined by the equivalence relation ∼r,r′ : it

includes all track-circuits linked to each other by ∼r,r′ . Hereafter, we call section any

of these equivalence classes S. We define the following sets for any pair of trains t
and t′ in T:

∙ Sr,r′ = {S ⊆ 𝑇𝐶
r ∩ 𝑇𝐶

r′ ∶ S equivalence class of ∼r,r′ } for all r ∈ Rt and r′ ∈
Rt′ , i.e., Sr,r′ is the set of sections associated to the pair of routes r and r′;

∙ St,t′,𝑡𝑐 = {S ∈ Sr,r′ ∶ 𝑡𝑐 ∈ S, r ∈ Rt, r′ ∈ Rt′ } for all 𝑡𝑐 ∈ 𝑇𝐶 t ∩ 𝑇𝐶 t′ , i.e., St,t′,𝑡𝑐 is

the set of all the sections which include 𝑡𝑐 given all the possible pairs of routes r
and r′ that t and t′ may choose, respectively;

∙ St,t′ = ∪
𝑡𝑐∈𝑇𝐶 t∩𝑇𝐶 t′

St,t′,𝑡𝑐 , i.e., St,t′ is the set of all the sections for the two trains.

So far we have observed that, if 𝑡𝑐 ∼r,r′ 𝑡𝑐, variable yt,t′,𝑡𝑐 can play the role of

variable yt,t′,𝑡𝑐 provided that the two trains t and t′ respectively choose routes r and

r′. Next, we extend the concept of equivalence to cover all the possible route choices.

For any 𝑡𝑐 ∈ 𝑇𝐶 t ∩ 𝑇𝐶 t′ , we say that 𝑡𝑐 ∈ 𝑇𝐶 t ∩ 𝑇𝐶 t′ is representative of tc if it

satisfies the following conditions: (i) there exists at least a pair of routes r ∈ Rt and

r′ ∈ Rt′ such that 𝑡𝑐, 𝑡𝑐 ∈ 𝑇𝐶
r ∩ 𝑇𝐶

r′
; (ii) for all pairs of routes r ∈ Rt and r′ ∈ Rt′

such that 𝑡𝑐, 𝑡𝑐 ∈ 𝑇𝐶
r ∩ 𝑇𝐶

r′
, there exists S ∈ Sr,r′ such that 𝑡𝑐, 𝑡𝑐 ∈ S, or equiva-

lently 𝑡𝑐 ∼r,r′ 𝑡𝑐. Remark that any 𝑡𝑐 is always representative of itself. Moreover, the

representativeness is a symmetric relation.

1
For readability, in the following, with a slight abuse of notation, we say that we reformulate

RECIFE-MILP instead of the formulation at the basis of the RECIFE-MILP algorithm.
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As aimed, if t̂c is representative of tc then yt,t′,t̂c can play the role of yt,t′,tc for

any pair of routes r ∈ Rt r′ ∈ Rt′ such that 𝑡𝑐, 𝑡𝑐 ∈ 𝑇𝐶
r ∩ 𝑇𝐶

r′
. However, note that

representativeness concerns only the pairs of routes that contain both track-circuits.

We call i-th representative set of 𝑡𝑐, 𝑅𝑒𝑝
i
t,t′ (𝑡𝑐), a subset of representative track-

circuits 𝑡𝑐 of 𝑡𝑐 that covers the set St,t′,𝑡𝑐 : 𝑅𝑒𝑝
i
t,t′ (𝑡𝑐) ∩ S ≠ ∅ for any S ∈ St,t′,𝑡𝑐 .

Remark that at least the representative set {𝑡𝑐} exists for any 𝑡𝑐 ∈ 𝑇𝐶 t ∩ 𝑇𝐶 t′ . Let

𝑅𝑒𝑝t,t′ (𝑡𝑐) be the set of all possible representative sets of 𝑡𝑐. Hence, for any pair

of routes r ∈ Rt and r′ ∈ Rt′ , and for any 𝑅𝑒𝑝
i
t,t′ (𝑡𝑐) ∈ 𝑅𝑒𝑝t,t′ (𝑡𝑐), we can find a

t̂c ∈ Repit,t′ (tc) such that yt,t′,t̂c plays the role of yt,t′,tc if r and r′ are the routes chosen.

We are now ready to determine the minimal set H∗
t,t′ of representative track-

circuits in 𝑇𝐶 t ∩ 𝑇𝐶 t′ such that there exists a 𝑅𝑒𝑝
i
t,t′ (𝑡𝑐) ⊆ H∗

t,t′ for all 𝑡𝑐 ∈ 𝑇𝐶 t ∩
𝑇𝐶 t′ . To this end, for all 𝑡𝑐 ∈ 𝑇𝐶 t ∩ 𝑇𝐶 t′ , S ∈ St,t′,𝑡𝑐 , let us define the following

variables:

atc,t̂c,S = 1 if 𝑡𝑐 is a representative of tc and t̂c ∈ S, 0 otherwise,

z
𝑡𝑐

= 1 if 𝑡𝑐 ∈ H∗
t,t′ 0 otherwise

with 𝑡𝑐, 𝑡𝑐 ∈ 𝑇𝐶 t ∩ 𝑇𝐶 t′ and S ∈ St,t′,𝑡𝑐 . The optimal solution of the following binary

programming problem identifies the elements of H∗
t,t′ :

min
∑

𝑡𝑐∈𝑇𝐶 t∩𝑇𝐶 t′

z
𝑡𝑐

∑

𝑡𝑐∈S

atc,𝑡𝑐,Sz𝑡𝑐 ≥ 1, ∀𝑡𝑐 ∈ 𝑇𝐶 t ∩ 𝑇𝐶 t′ , S ∈ St,t′,𝑡𝑐 (3)

z
𝑡𝑐
∈ {0, 1} ∀𝑡𝑐 ∈ 𝑇𝐶 t ∩ 𝑇𝐶 t′

For each 𝑡𝑐 ∈ 𝑇𝐶 t ∩ 𝑇𝐶 t′ , we define the representative set for the reformulation of

RECIFE-MILP, 𝑅𝑒𝑝
∗
t,t′ (𝑡𝑐), as the minimum cardinality subset of H∗

t,t′ such that for

all S ∈ St,t′,𝑡𝑐 , S ∩ 𝑅𝑒𝑝
∗
t,t′ (𝑡𝑐) ≠ ∅. In words, it is a minimal subset ofH∗

t,t′ that includes

a representative track-circuit of 𝑡𝑐 for each section S that includes 𝑡𝑐 itself. The track-

circuits 𝑡𝑐 ∈ H∗
t,t′ are those for which a variable yt,t′,𝑡𝑐 must be defined. The ones in

𝑅𝑒𝑝
∗
t,t′ (𝑡𝑐) are those which need to be associated to 𝑡𝑐 in the reformulation to capture

the precedence relation between t and t′ on 𝑡𝑐 itself along any pair of available routes.

Problem (3) is NP-hard as it reduces to the hitting set problem [4]. However, our

experience suggests that its instances can be solved in a fraction of a second by any

commercial solver even for rather large infrastructures. In addition, all the operations

involving the definition of set H∗
t,t′ can be performed off-line, once the alternative

routes for the trains which may travel along the infrastructure are established a priori.

Assumption 1 For a pair of trains t and t′ which may both use track-circuit 𝑡𝑐, let

yt,t′,𝑡𝑐 = 1 if neither t nor t′ chooses a route which includes 𝑡𝑐.

With Assumption 1 we state that we choose to set yt,t′,𝑡𝑐 = 1 if no train uses 𝑡𝑐, with

no loss of optimality. In the explanation of Constraints (1) and (2), we discussed how,

if only t′ chooses a route which includes 𝑡𝑐, then yt,t′,𝑡𝑐 must be equal to 1. Conversely,
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if no train uses 𝑡𝑐, both values 0 and 1 are feasible. Hereafter, we will set yt,t′,𝑡𝑐 = 1
when t does not choose a route including 𝑡𝑐, independently of what t′ does.

Theorem 1 Constraints:

𝑒𝑈 t,tc −M

⎛
⎜
⎜
⎜
⎜⎝

1 − yt,t′,t̂c +
∑

r∈Rt∶
tc∈𝑇𝐶r∧t̂c∉𝑇𝐶r

xt,r +
∑

r′∈Rt′ ∶
tc∉𝑇𝐶r′ ∧t̂c∈𝑇𝐶r′

xt′,r′

⎞
⎟
⎟
⎟
⎟⎠

≤ 𝑠𝑈 t′,𝑡𝑐 (4a)

𝑒𝑈 t′,tc −M

⎛
⎜
⎜
⎜
⎜⎝

yt,t′,t̂c +
∑

r∈Rt∶
tc∉𝑇𝐶r∧t̂c∈𝑇𝐶r

xt,r +
∑

r′∈Rt′ ∶
tc∈𝑇𝐶r′ ∧t̂c∉𝑇𝐶r′

xt′,r′

⎞
⎟
⎟
⎟
⎟⎠

≤ 𝑠𝑈 t,𝑡𝑐 (4b)

∀t, t′ ∈ T , t < t′, 𝑡𝑐 ∈ 𝑇𝐶 t ∩ 𝑇𝐶 t′ , t̂c ∈ 𝑅𝑒𝑝
∗
t,t′ (𝑡𝑐),

can replace Constraints (1) and (2).

Proof Throughout this proof, let r and r′ be the routes used by trains t and t′, respec-

tively, i.e., the routes for which xt,r = 1 and xt′,r′ = 1.

First, consider the case in which both r and r′ include tc and 𝑡𝑐. In this case, Con-

straints (4a) and (4b) can replace (1) and (2) for the following reasons. By definition

of representative track-circuit, yt,t′,𝑡𝑐 = yt,t′,𝑡𝑐 since both 𝑡𝑐 and 𝑡𝑐 are used. In addi-

tion, the sum of x-variables in (4a) and (4b) cancels out. Analogous argument holds

for Constraints (4b).

Then, suppose that the route chosen by at least one train does not include both 𝑡𝑐

and 𝑡𝑐. In this case, Constraints (4a) and (4b) become negligible. We discuss only

Constraints (4a), as symmetric arguments hold for Constraints (4b).

∙ If 𝑡𝑐 ∉ 𝑇𝐶
r
, then (4a) is negligible as eUt,tc = 0 and the rest of the l.h.s. of the

inequality is at most 0, whether t uses of not 𝑡𝑐 and t′ uses or not 𝑡𝑐 or 𝑡𝑐.

∙ If 𝑡𝑐 ∈ 𝑇𝐶
r
, t̂c ∉ 𝑇𝐶

r
, then (4a) is negligible as

∑
r∈Rt∶𝑡𝑐∈𝑇𝐶r∧𝑡𝑐∉𝑇𝐶r xt,r = 1 and

the second part of the l.h.s. of the inequality is for sure negative, whether t′ uses

or not 𝑡𝑐 or 𝑡𝑐.

∙ If 𝑡𝑐 ∈ 𝑇𝐶
r
, 𝑡𝑐 ∈ 𝑇𝐶

r
, 𝑡𝑐 ∉ 𝑇𝐶

r′
, then (4a) is negligible as yt,t′,𝑡𝑐 = 0 as remarked

right above this theorem.

∙ If tc ∈ 𝑇𝐶
r
, t̂c ∈ 𝑇𝐶

r
, t̂c ∈ 𝑇𝐶

r′
, tc ∉ 𝑇𝐶

r′
, then (4a) is negligible as∑

r′∈Rt′ ∶tc∉𝑇𝐶r′ ∧𝑡𝑐∈𝑇𝐶r′ xt′,r′ = 1.

So far we have shown that Constraints (4a) and (4b) can respectively replace (1)

and (2) for a fixed t̂c and a fixed pair of routes r ∈ Rt and r′ ∈ Rt′ . Indeed, the cov-

ering of 𝑡𝑐 by the elements of 𝑅𝑒𝑝
∗
t,t′ (𝑡𝑐) depends of the trains’ route choices. Hence,

we conclude the proof by observing that the above replacement can be made for any

pair of routes r ∈ Rt and r′ ∈ Rt′ :
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Table 1 Summary of the results over 100 instances

KPI Standard RECIFE-MILP Boosted RECIFE-MILP

Mean computational time (s) 91 66
Optima proved 76 92
Best result achieved 82 98
Mean % gap (%) 9.87 2.61

∙ when tc ∈ 𝑇𝐶
r ∩ 𝑇𝐶

r′
, there exists S ∈ Sr,r′ ⊆ St,t′,tc such that if tc ∈ S, then the

previous argument applies as, by definition, 𝑅𝑒𝑝
∗
t,t′ (𝑡𝑐) contains at least a repre-

sentative track-circuit belonging to each section in St,t′,tc;
∙ when tc ∉ 𝑇𝐶

r ∩ 𝑇𝐶
r′

, at least one train route does not include both 𝑡𝑐 and 𝑡𝑐 for

all 𝑡𝑐 ∈ Rep∗(tc) and then, again, the previous argument applies.

⊓⊔

In the light of the definition of H∗
t,t′ and of Theorem 1, we can reformulate

RECIFE-MILP by replacing Constraints (1) and (2) with Constraints (4a) and (4b)

and by defining only the y-variables associated to track-circuits in H∗
t,t′ , for each pair

of trains t and t′. In the following, we will refer to the RECIFE-MILP algorithm

using this reformulation as the boosted RECIFE-MILP.

4 Experimental Analysis

In this section, we report the results of an experimental analysis performed to com-

pare the standard and the boosted RECIFE-MILP.

We consider instances representing traffic at the Pierrefitte-Gonesse junction,

in France. It is a critical location with mixed traffic. The timetable of a week-day

includes 340 trains crossing this control area: 120 high-speed and 129 conventional

passenger trains, and 91 freight trains. Starting from this one-day timetable, we cre-

ate 100 random scenarios: 20% of trains, randomly selected, suffer a random delay

between 5 and 15 mins at their entrance in the control area. We generate one instance

from each scenario by considering all the trains entering the control area between

7:00 and 8:00 am. This is the morning peak-hour, and each 1 h instance includes

between 22 and 28 trains (26 on the average). Each train can use between 3 and

8 routes (6 on the average), which translates into a MILP formulation (for stan-

dard RECIFE-MILP) with about 17000 continuous variables, 3400 binary variables

and 73000 constraints for an instance with 26 trains. No difference in the number

of constraints or continuous variables exists between the standard and the boosted

RECIFE-MILP. Instead, the number of y-variables goes from 2270 to 3754 (3119
on the average) for standard RECIFE-MILP, and from 800 to 1371 (1125 on the

average) for the boosted one. We run the experiments on a computer with eight Intel
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Xeon 3.5 Ghz processors and 128 GB RAM. The MILP solver used is IBM CPLEX

MILP solver v 12.6, and the allowed computational time is three wall clock minutes,

including the computation of the reformulation.

On the 100 instances solved, the boosted RECIFE-MILP obtains the best results

under all the key performance indicators (KPIs) considered (Table 1).

5 Conclusions

In this paper we proposed a reformulation of RECIFE-MILP, a MILP-based heuristic

algorithm for the real-time railway traffic management problem. This reformulation

exploits the link between scheduling and routing decisions, for decreasing the num-

ber of binary variables of the MILP formulation.

We reported the results of an experimental analysis in which we compare the

standard and the boosted RECIFE-MILP on realistic instances. We considered dif-

ferent KPIs, which all suggest that the reformulation proposed and implemented in

the boosted RECIFE-MILP allows a clear performance improvement.

In future works, we will compare the performance of the two RECIFE-MILP

versions on other case-studies to generalize this result. Moreover, we will propose

sets of valid inequalities to further improve the performance.
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The Impact of a Clustering Approach
on Solving the Multi-depot IRP

Luca Bertazzi, Annarita De Maio and Demetrio Laganà

Abstract We study the Multi-Depot Inventory Routing Problem (MDIRP) with

homogeneous vehicle fleet and deterministic demand. We implement a branch-and-

cut algorithm for this problem. Then, we design a matheuristic in which we first

optimally solve a modified version of the Capacitated Concentrator Location Prob-
lem (CCLP) to generate a cluster of customers for each depot and, then, we exactly

solve the problem based on these clusters with a branch-and-cut algorithm. Compu-

tational results are presented to compare the performance of the matheuristic with

respect to the branch-and-cut, in order to analyze the value of the clustering approach

in solving this problem.

Keywords Inventory routing ⋅ Branch-and-cut ⋅ Clustering

1 Introduction

Inventory Routing Problems (IRPs) spread out in the integrated optimization of

inventory and distribution management in supply chains. This is a win-win approach

in which a supplier coordinates the replenishment of a set of customers, decid-

ing when to visit each customer over a time horizon, the quantities to deliver and

the routes to travel. These problems received a remarkable attention in the recent

decades. Examples of real industrial applications can be found in the survey pre-
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sented by [1]. Different versions of the problem were investigated in the literature,

for example the single and multi-vehicle case, the single and multi-product case, the

cases with deterministic, stochastic and robust demand. For an in depth analysis of

the state of the art, the reader can refer to the tutorials by [5, 6] and to the survey

by [9].

IRPs are well known to be NP-hard problems. For this reason, the main challenge

is to design efficient exact algorithms on one side and effective heuristic algorithms

on the other side. Different solution methods were proposed in the past for the single-

depot case: exact methods can be found in [2, 10], while decomposition approaches

are proposed by [8, 11]. The Multi-Depot IRP (MDIRP) is not largely investigated

in literature. To the best of our knowledge, no branch-and-cut algorithms are avail-

able for it. A clustering technique to generate multi-depot instances was proposed

by [15]. Instead, the multi-depot case was studied for the simpler VRPs, where the

clustering of customers for each depot is often used. Effective clustering techniques

are designed also for Location–Routing Problems. The most recent and complete

survey about this class of problems is presented by [17] and an effective application

can be found in [7].

Our contribution is to provide the first branch-and-cut algorithm for the MDIRP
and to design a matheuristic algorithm, based on an optimal solution of a variant of

the classical Capacitated Concentrator Location Problem (CCLP). Computational

results are presented to evaluate the impact of the clustering on the solution quality

and on the computational time, with respect to the best solution provided by the

branch-and-cut.

The remainder of the paper is organized as follows. The MDIRP is formally

described and formulated in Sect. 2. The branch-and-cut algorithm is described in

Sect. 3. The matheuristic we propose is described in Sect. 4. The computational

results are shown in Sect. 5. Finally, conclusions are drawn in Sect. 6.

2 Problem Description and Formulation

In this section, the MDIRP is described and the corresponding mathematical formu-

lation based on binary edge-variables is presented. This formulation is an extension

of the single–vehicle and single–depot IRP formulation proposed by [2]. We con-

sider a complete undirected graph G(V ,E). A set of depots P = {1, 2,… , l} delivers

a product to a set I = {1, 2,… , n} of customers. The set with all vertices is denoted

by V = P ∪ I. The parameter cij is the travelling cost of the edge (i, j) ∈ E. These

costs satisfy the triangle inequality. Given S (a proper and non–empy subset of ver-

tices), S ∈ I, E(S) denotes the set of edges (i, j), such that i, j ∈ I. The set of the

vehicles is denoted by K = {1, 2,… ,M}. Each vehicle has capacity C. A discrete

time horizon H is given. The set of time periods is denoted by T = {1, 2,… ,H}.

Each customer i ∈ I defines a maximum inventory level Ui and has a given start-
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ing inventory level Invi0 ≤ Ui. At each time t ∈ T , each customer i has to satisfy the

deterministic demand dit. The variable Invit indicates the inventory level of customer

i at the begin of period t. The time H + 1 is included in the inventory computation

to take into account the consequences of the decisions at time H. The variable yiktp
represents the quantity delivered to customer i in period t by vehicle k from depot

p. The binary variable xijktp is equal to 1 if the edge (i, j) is traversed in period t by

vehicle k starting from depot p. The binary variable ziktp is equal to 1 if customer i
is visited in period t by vehicle k from depot p. The binary variable zpktp is equal to

1 if vehicle k located in depot p starts its tour from depot p in period t. This problem

can be formulated as follows:

Min
∑

t∈T

∑

i∈V

∑

j∈V

∑

k∈K

∑

p∈P
cijxijktp (1)

s.to.

Invi,t+1 = Invit +
∑

k∈K

∑

p∈P
yiktp − dit t ∈ T , i ∈ I (2)

∑

p∈P

∑

k∈K
yiktp + Invit ≤ Ui t ∈ T , i ∈ I (3)

∑

i∈I
yiktp ≤ C zpktp t ∈ T , p ∈ P, k ∈ K (4)

yiktp ≤ C ziktp i ∈ I, t ∈ T , p ∈ P, k ∈ K (5)

∑

i∈I
yiktp ≥ zpktp t ∈ T , p ∈ P, k ∈ K (6)

zbktp = 0 ∀ t ∈ T , p ∈ P, k ∈ K, b ∈ P(p ≠ b) (7)

∑

p∈P
zpktp ≤ 1 t ∈ T , k ∈ K (8)

∑

p∈P
ziktp ≤ 1 t ∈ T , k ∈ K, i ∈ I (9)

∑

j∈I,j<i
xijktp +

∑

j∈I,j>i
xijktp = 2 ziktp i ∈ I, t ∈ T , p ∈ P, k ∈ K (10)
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∑

(i,j)∈E(S)
xijktp ≤

∑

i∈S
ziktp − zuktp S ⊆ I, |S| ≥ 2, t ∈ T ,

k ∈ K, p ∈ P, for a given u ∈ S
(11)

xijktp ∈ {0, 1} i, j ∈ V , t ∈ T , p ∈ P, k ∈ K (12)

Invit ≥ 0 i ∈ I, t ∈ T (13)

yiktp ≥ 0 i ∈ I, t ∈ T , p ∈ P, k ∈ K (14)

ziktp ∈ {0, 1} i ∈ I, t ∈ T , p ∈ P, k ∈ K. (15)

The objective function (1) states the minimization of the total routing cost. Con-

straints (2)–(3) are inventory constraints at the customers. Constraints (4)–(5) are

capacity constraints. Constraints (6)–(9) define the multi-depot case and split deliv-

ery. Constraints (10)–(11) are classical routing constraints. Constraints (12)–(15)

define integrality and non-negativity variables conditions.

3 A Branch-and-Cut Algorithm

In order to exactly solve the MDIRP described in the previous section, we design and

implement the following branch-and-cut algorithm. The subtour elimination con-
straints (11) were initially removed from the formulation (1)–(15) and added dynam-

ically using the separation procedure described in [16]. They were introduced consid-

ering a given u ∈ S, for which the following condition is valid: u = argmaxi{z̄iktp},

where z̄iktp is the value of variable ziktp in the current LP relaxation. At each tree node,

the violated (11) are found and added to the current sub-problem that is then opti-

mized. If no violations are identified, branching occurs at the current node. No prior-

ity variables are defined for the branching strategy. In order to improve the quality of

the root node lower bound of the branch-and cut tree, the following valid inequalities

are added to the initial LP.

1. Priority inequalities:

ziktp ≤ zpktp i ∈ I, t ∈ T , p ∈ P, k ∈ K. (16)

These valid inequalities are used by [2]. We consider an adapted version of them

for the MDIRP.
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2. Logical inequalities:

xipktp + xpiktp ≤ 2 ziktp i ∈ I, t ∈ T , p ∈ P, k ∈ K. (17)

xijktp ≤ ziktp i, j ∈ I, t ∈ T , p ∈ P, k ∈ K. (18)

These inequalities are inspired by the logical cuts by [12, 13].

3. Aggregate parity inequalities:
∑

p∈P

∑

(i,j)∈𝛿(S)
xijktp ≥

∑

p∈P

∑

(i,j)∈F
xijktp − |F| + 1, t ∈ T , k ∈ K,

F ⊆ 𝛿(S), |F| odd.
(19)

4. Disaggregate parity inequalities:
∑

(i,j)∈𝛿(S)
xijktp ≥

∑

(i,j)∈F
xijktp − |F| + 1, t ∈ T , p ∈ P, k ∈ K,

F ⊆ 𝛿(S), |F| odd.
(20)

Parity inequalities are initially defined in [4] as co-circuit inequalities. They are

really effective for problems with binary variables, in case the parity of vertices

is required. Inequalities (19)–(20) are separated heuristically following the pro-

cedure described by [3].

4 A Matheuristic for the MDIRP

As explained before, solving MDIRP with an exact method is really complex. The

branch-and-cut algorithm is very slow even in small instances. Therefore, we design

a matheuristic algorithm based on the following three steps:

1. Optimally solve the CCLP described below to generate clusters composed by a

depot and a subset of customers.

2. Import the clusters in the MDIRP model: for each customer i not associated with

depot p the corresponding ziktp variables are set to zero, in order to forbid routes

serving customers not associated to p.

3. Apply the branch-and-cut described in Sect. 3 to the model obtained in step 2.

Let us now describe theCCLPwe solve in the matheuristic. TheCCLPwas largely

investigated in the literature for the VRP. Different formulations and variants are

described by [14]. We present an adapted formulation of the classical CCLP in order

to match with the MDIRP case. We define the set P of depots as the set of potential

concentrators. Let 𝛾 be the number of concentrators to open, Rp be the fixed cost to

make p as a concentrator, Di be the demand of customer i used to build the clusters,
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𝛤pi be the cost to assign customer i to concentrator p, 𝛷p be capacity of each concen-

trator. The model involves two sets of binary variables: gpi equal to 1 if the customer

i is assigned to depot p and bp equal to 1 if p is selected to be a concentrator. The

mathematical formulation is described below:

Min
∑

p∈P

∑

i∈I
𝛤pigpi +

∑

p∈P
Rpbp (21)

s.t. ∑

p∈P
gpi = 1 i ∈ I (22)

∑

i∈I
Digpi ≤ 𝛷pbp p ∈ P (23)

∑

p∈P
bp = 𝛾 (24)

bp ∈ {0, 1} p ∈ P (25)

gpi ∈ {0, 1} p ∈ P, i ∈ I. (26)

The objective function (21) minimizes the total cost to build the clusters. Con-

straints (22) guarantee that each customer is assigned to exactly one cluster. Con-

straints (23) ensure that the capacity of each cluster is not violated. Constraint (24)

guarantee that 𝛾 clusters are built. Constraints (25)–(26) impose that the variables

are all binary.

5 Computational Results

The branch-and-cut and the matheuristic described in Sects. 3 and 4 were imple-

mented in C++ by using IBM Concert Technology and CPLEX 12.6, and run on

an Intel Core i7-6500U 2.50 GHz and 8 GB RAM personal computer. An adapted

version of two subsets of instances derived from the benchmark instances provided

in [2] for the single-depot IRP are used. Instances are labeled as nNdDhH, where N
is the number of customers, D is the number of the depots, H is the time horizon. A

time limit of 2 hours is set for both the branch-and-cut and the matheuristic.
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Table 1 CCLP

Instance Time

(ms)

N.

Clusters

Cardinality Instance Time

(ms)

N.

Clusters

Cardinality

n5d2h3 40 2 3–2 n5d2h3 30 2 3–2

n10d2h3 50 2 4–6 n10d2h3 40 2 4–6

n15d2h3 70 2 6–9 n15d2h3 35 2 8–7

n20d30h3 50 3 5–11–4 n2d30h3 70 3 4–12–4

n25d4h3 60 4 5–9–4–7 n25d4h3 50 4 9–5–4–7

n30d4h3 80 4 5–12–4–9 n30d4h3 70 4 5–11–5–9

n5d2h6 40 2 3–2 n5d2h6 30 2 3–2

n10d2h6 50 2 4–6 n10d2h6 55 2 3–7

n15d2h6 30 2 11–4 n15d2h6 30 2 11–4

n20d3h6 90 3 4–9–7 n20d3h6 80 3 12–4–4

Table 1 provides the results obtained by solving theCCLPwith the following data:

𝛾 = |P|, Rp = 0, Di equal to the average demand over the time horizon, 𝛤pi = cpi,
𝛷p = MC. For each instance, it gives the computational time (ms), the number of

clusters and their cardinality.

The results show that the clustering phase is no time consuming and the cardinal-

ity of the clusters is enough homogeneous in each instance.

Table 2 compares the results obtained by applying the branch-and-cut algorithm

introduced in Sect. 3 and the matheuristic described in Sect. 4. For each instance,

it shows, both for the matheuristic and the branch-and-cut, the computational time

(seconds) or t.l. when the time limit is reached, the total number of added inequalities

(subtour elimination constraints, disaggregated and aggregated parity inequalities),

the cost of the best feasible solution found in the time limit, the lower bound value

and the CPLEX GAP. In the last column the percentage GAP between the feasible

solutions of two approaches is shown.

The results show that the matheuristic is always able to find a feasible solution in

the time limit, while the branch-and-cut is not able to find it in 35% of the instances.

Moreover, the CPLEX GAP of the matheuristic is about 9% on average, while it

is about 26% in the solved instances. Note that the CPLEX GAP increases in the

instances with time horizon H = 6 with respect to the instances with H = 3. The

last column of Table 2 shows that the matheuristic is able to find better solutions

than the branch-and-cut in the same time limit, with a maximum reduction of about

23% of the cost. This underlines that the matheuristic is more efficient in terms of

solution quality and computational time.
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6 Conclusion

We studied the Multi-Depot Inventory Routing Problem (MDIRP). This problem is

very difficult to be solved to optimality. A branch-and-cut algorithm designed for

it was able to find a feasible solution in only 65% of the instances and provides

an average CPLEX GAP 26% of in the solved instances. Our results showed that

embedding the clusters obtained by optimally solving a variant of the Capacitated
Concentrator Location Problem in the branch-and-cut allowed us to always find a

feasible solution of the problem, to reduce the CPLEX GAP to 9% and to find better

solutions. Future research could be devoted to improve this matheuristic, trying to

strongly enhance the clustering approach.
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Optimal Paths for Dual Propulsion Vehicles
on Real Street Network Graphs

Giovanni Capobianco, Carmine Cerrone, Raffaele Cerulli
and Giovanni Felici

Abstract There are several examples of dual propulsion vehicles: hybrid cars,

bi-fuel vehicles, electric bikes. Compute a path from a starting point to a destina-

tion for these typologies of vehicles requires evaluation of many alternatives. In this

paper we develop a mathematical model, able to compute paths for dual propulsion

vehicles, that takes in account the power consumption of the two propulsors, the dif-

ferent types of charging, the exchange of energy and, last but not least, the total cost

of the path. We focus our attention on electric bikes and we perform several exper-

iments on real street network graph. In our tests we took into account the slope of

roads, the recharge in downhill streets and the effort of the cyclist. To validate the

model we performed computational tests on properly generated instances set. This

set of instances is composed of graphs representing real cities of all around the world.

The computational tests show the effectiveness of our approach and its applicability

on a real street network.

1 Introduction

Hybrid cars, bi-fuel vehicles, electric bikes, are examples of dual propulsion

vehicles. In some cases, one propulsor can recharge the other propulsion, or energy

could be recovered (downhill roads, braking). Sachenbacher et al. [11], proposed
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an A* framework to optimize the routing for electric vehicles. Baum et al. [1, 2]

proposed a routing algorithm that takes into accounts the energy recovery and the

battery capacity by minimizing energy consumption in order to maximize cruising

range. Zundorf [13] proposed a heuristic approach to design path for electric vehi-

cles considering the position of the charging stations. Salimifard and Raeesi [12]

proposed a variant of the vehicle routing problem, the green routing problem (GRP)

which deals with optimizing CO2 emissions and costs using a bi-fuel vehicle fleet.

In this paper, we propose a mathematical model based on a flow formulation, able

to compute a path taking into account: the energy consumption of the two propul-

sors, the refueling or recharging, the exchange of energy, the recuperation of energy

the battery capacity and the cost of the path. The main contribution of this paper

is to show the applicability of an exact approach on real street network graphs tak-

ing into accounts the complexity of dual propulsion vehicles. The remainder of the

paper is organized as follow. In Sect. 2, we introduce our MIP model, in Sect. 3 we

show our computational results, in Sect. 4 we summarize the results and give some

conclusions.

2 Mathematical Model

In this section, we focus on electric bikes. In this scenario we have to consider an

electric motor and the human propulsion. Let G(V ,A) be a graph in which V is the set

of vertices and A is the set of arcs. For each arc (i, j) ∈ A, ci,j is the cost of traversing

the arc (i, j), ti,j is the amount of energy used for traversing the arc. If ti,j < 0 the

vehicle is recharging when using arc (i, j). With the set of variables t is possible to

model the charge of the battery on the downhill roads and the charging stations with

different charging time depending on the amount of energy charged (Fig. 1).

The set of variables u is associated with the effort of the cyclist to give propul-

sion to the bike. The set of variables û, is associated with the effort of the cyclist to

recharge the battery the parameter k is used to convert the kinetic energy into elec-

tric energy. The set of boolean variables y, defined for each arc (i, j) ∈ A, is used

to indicate if an arc is used in the solution (yi,j = 1). Variables v, are associated to

the amount of energy used by the electric motor, while variables f are the arc’s flow

variables. The flow fi,j on the arc (i, j) indicates the residual charge of the battery

after crossing the arc. The vertices s and p are the starting and destination points of

the path. The constant SP is the length of the shortest path from s to p. The constant

max represents the maximum effort feasible for the cyclist. The constant px is a per-

centage that indicates the maximum allowed difference between the value SP and

the optimal solution of the model in terms of path length. M is the capacity of the

electric battery, ̂M ≤ M is level of charge of the battery at the starting vertex s.
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Fig. 1 The subgraph (on the left) composed of five vertices can be used to describe the charging

stations. It is possible to recharge different amount of energy, paying a cost depending on the charge.

On the right an example of charging station on the arc 1−2

We can now present our mathematical model.

MIN

∑

(i,j)∈E
ui,j + k

∑

(i,j)∈E
ûi,j (1)

subject to

vi,j + ui,j + ûi,j = ti,jyi,j ∀(i, j) ∈ E (2)

∑

(j,i)∈E
fj,i −

∑

(i,j)∈E
fi,j ≥

∑

(j,i)∈E
vj,i ∀i ∈ V ⧵ {s, p} (3)

∑

(s,j)∈E
fs,j ≤ ̂M (4)

∑

(j,s)∈E
fj,s = 0 (5)

∑

(p,j)∈E
fp,j = 0 (6)

∑

(j,i)∈E
yj,i ≤ 1 ∀i ∈ V ⧵ {s, p} (7)

(8)
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∑

(i,j)∈E
yi,j ≤ 1 ∀i ∈ V ⧵ {s, p} (9)

∑

(i,j)∈E
yi,j −

∑

(i,j)∈E
yi,j = 0 ∀i ∈ V ⧵ {s, p} (10)

∑

(s,j)∈E
ys,j = 1 (11)

∑

(j,p)∈E
yj,p = 1 (12)

fi,j ≤ Myi,j ∀(i, j) ∈ E (13)

∑

(i,j)∈E
ci,jyi,j ≤ SP × px (14)

ui,j
ci,j

+
kûi,j
ci,j

≤ max ∀(i, j) ∈ E (15)

0 ≤ fi,j ≤ M ∀(i, j) ∈ E (16)

yi,j ∈ {0, 1} ∀(i, j) ∈ E (17)

−M ≤ vi,j ≤ M ∀(i, j) ∈ E (18)

0 ≤ ui,j ≤ ti,j ∀(i, j) ∈ E ∶ ti,j ≥ 0 (19)

ui,j = 0 ∀(i, j) ∈ E ∶ ti,j < 0 (20)

0 ≤ ûi,j ≤ M ∀(i, j) ∈ E (21)

The objective function (1) minimizes the cyclist’s effort. The set of constraints (2)

is used to associate the energetic cost of traveling the arc (i, j) to the use of human

and electric energy. The sets of constraints (3–6) are the flow balance constraints.

The sets of constraints (7–12) are used to impose that the variables y define a path

from s to p. The set of constraints (13) are used to associate the flow on the generic

arc fi,j to the use of the arc yi,j The constraint (14) is used to limit the cost of the path

associated with the solution. The constraint (15) is used to limit the maximum effort

of the cyclist to the parameter max.

3 Computational Results

In this section we present our computational results. All the experiments were per-

formed on a OSX 10.9 operating system, 16 GB of RAM and a quad-core processor

Intel I7 running at 2.6 GHz. The mathematical model was coded in Java and solved

using IBM ILOG CPLEX 12.7.
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3.1 Graph Instances

Each graph instances used to run the tests is related to a real city of the world. To get

the graphs we used OpenStreetMap [10] data. We created directed graphs, taking in

account the direction of the roads. The maps are projected on a 2D plane. Each unit on

this 2D plane represents 1 Km. For each vertex, we have an x and y coordinate in this

2D plane. To each arc of the graph is associated its length on the real street network.

All the graphs are strongly connected. For each vertex of the graph, we report also

the altitude; all these data are provided by the Google Maps Elevation API. Each

graph contains a set of points, each point represents the position of a building on the

map. This additional set of information can be useful for several problems like the

Close Enough Traveling Salesman Problem (CETSP) [5, 6]. For each instance, we

indicate the index of the four vertices associated with the 4 corners of the map, and

the index of the central vertex. For each arc (i, j) ∈ A we define:

slopei,j =
altitude(j) − altitude(i)

ci,j

ti,j =
⎧
⎪
⎨
⎪⎩

slopei,j+0.02
2

slopei,j ≤ −0.02
slopei,j + 0.01 slopei,j ≥ −0.01
0 otherwise

For each arc (i, j) ∈ A we define the constant ti,j representing the energy

consumption associate to the arc in relation to its slope. Of course, this parameter

would depend on the vehicle.

3.2 Graph Reduction

In order to reduce the huge size of the input instances, we use the Dijkstra algorithm

[9]. We compute the shortest path SP from s to p, and we remove from the input graph

all the vertices v ∈ V such that the shortest path from s to v plus the shortest path from

v to p is greater than px ∗ SP. In such cases, going from v the path becomes the px%
more expensive than the shortest path. In Fig. 2 we show a graph with |V| = 18585
and |A| = 36894, in red the shortest pat from s to p. Using the reduction technique

(px = 20%), we obtain the graph in Fig. 3 with |V| = 4545 and |A| = 9119, reducing

the size of the graph of about 75%.
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Fig. 2 Map of Rome, in red the shortest path from the center to the north left corner

Fig. 3 Map of Rome after

the reduction technique, its

size is decreased by 75%
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Fig. 4 Map of Rome. The altitude is shown by the background color (highest is brighter). The map

shows eight paths starting from the center to the four corners. In red the shortest paths, in blue the

paths produced by our MIP model

Fig. 5 For each one of the four paths: Center—(Top Left, Top Right, Bottom left, Bottom Right),

this Figure shows the elevation graph along the path, in red the shortest path in blue our path. The

abscissa axis represents the elevation in meters, while the ordinate axis represents the path length
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Table 1 Computational results on the Rome’s graph considering different destination nodes

Path from Center Path from Center

Path to Top left Path to Top right

MIP MIP

Cost 9.27 km Cost 7.84 km

Value 197.46 Value 121.42

u 190.89 u 120.22

û 3.29 û 0.6

Max 0.06 Max 0.06

Running time 21 s Running time 39 s

Shortest path Shortest Path

Cost 8.07 km Cost 7.57 km

Value 204.31 Value 125.05

Max 0.22 Max 0.1

Path from Center Path from Center

Path to Bottom left Path to Bottom right

MIP MIP

Cost 8.4 km Cost 6.96 km

Value 160.02 Value 111.3

u 152.91 u 111.3

û 3.55 û 0

Max 0.06 Max 0.04

Running time 16 s Running time 6 s

Shortest path Shortest path

Cost 7.96 km Cost 6.68 km

Value 178.64 Value 118.01

Max 0.22 Max 0.06

3.3 Rome

We used the graph of Rome to perform the experiments reported in this section.

We made this choice because Rome was built on seven hills; moreover Rome is

crossed by a river, the Tiber. This morphology, rich of differences in altitude, makes

it particularly challenging for the optimization of the electric bike path. The graph

of Rome is characterized by |V| = 18585, |A| = 36894 and represents an area of

68 km
2
. In Fig. 4 we graphically show the results of four experiments. We compute

the paths starting from the center of the map to the four corners, in red we show the

shortest paths, in blue the paths produced by our MIP model. We use as parameters

configuration: M = 400 sufficient for 40 km on a flat road; ̂M = 1 equal to 1% of

charge; max = 0.06 is the maximum effort of the cyclist is sufficient to a slope of 5%;
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px = 20% we are looking for a path at most 20% longer than the shortest path; k = 2
we lost half of the energy in converting the kinetic energy into electrical energy.

Table 1 shows our computational results. The running time is less the one minute

for all the scenarios, the length of the shortest path is in the range (6.68–8.4) km.

For each shortest path, we compute “Value” that represents the effort of the cyclist

(in cases of an empty battery) and “max” that represents the maximum effort of

the cyclist. Figure 5 is very useful to understand the effectiveness of this model: it

shows for each one of the four paths, the elevation graph along the path, in red the

shortest path in blue our path. It is easy to see that our solution, with respect to the

shortest path avoids the ups and downs along the way. Table 2, which shows further

computational results, is useful to understand the effectiveness of our approach. For

all the graphs, except for (*), we used the same setting of parameters used in the

previous experiments, for graph (*) we set ̂M = 200 because with ̂M = 1 there is not

a feasible solution.

4 Conclusions

In this paper we propose a flow formulation mathematical model to identify paths

for bi-fuel vehicles. We focused our attention on electric bikes, designing paths able

to balance the use of the electric motor and the effort of the human propulsion. To

reduce the size of the input graph we develop an easy technique. The computational

results show the effectiveness of our approach, that in few seconds is able to produce

paths that reduce both the maximum and the total effort of the cyclist. Nevertheless,

to compute a solution suitable for a bi-fuel vehicle with an autonomy greater than an

electric bike, it is necessary to develop metaheuristics approaches able to elaborate

bigger graphs e.g. Carousel Greedy [8], Tabu Search [4], Genetic Algorithm [7]. In

future works, we are also interested in taking advantage of information on the traffic

[3], in order to design paths which take into account the air quality breathed by the

cyclist.
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On the Forward Shortest Path Tour Problem

Francesco Carrabs, Raffaele Cerulli, Paola Festa and Federica Laureana

Abstract This paper addresses the Forward Shortest Path Tour Problem (FSPTP).

Given a weighted directed graph, whose nodes are partitioned into clusters, the

FSPTP consists of finding a shortest path from a source node to a destination node

and which crosses all the clusters in a fixed order. We propose a polynomial time

algorithm to solve the problem and show that our algorithm can be easily adapted

to solve the shortest path tour problem, a slightly different variant of the FSPTP.

Moreover, we carried out some preliminary computational tests to verify how the

performance of the algorithm is affected by parameters of the instances.

Keywords Shortest path tour ⋅ Polynomial algorithm ⋅ Electric vehicles

1 Introduction

Given a directed graph G = (V ,A), where V is the set of nodes partitioned into

T1,… ,TN pairwise disjoint subsets, and A is the set of arcs, and given a cost function

c that associates a nonnegative cost c(i, j) to each arc (i, j) ∈ A, the FSPTP consists

of finding a shortest path from a source node s to a destination node d in G such that:
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(i) at least one node of each cluster is visited;

(ii) it is possible to visit a node in Tk if and only if at least a node of each previous

cluster, T1,… ,Tk−1, has been already visited.

The cost c(p) of a forward path tour p is given by the sum of the costs of the arcs

it crosses.

A small instance of the problem is depicted in Fig. 1, where N = 4, T1 = {s = 1},

T2 = {3}, T3 = {2}, and T4 = {d = 4}. The optimal forward path tour from 1 to 4 is

p∗ = {1, 3, 2, 3, 4}, and c(p∗) = 16.

This problem was introduced by Bertsekas in Dynamic Programming and Opti-

mal Control [1], stating that it could be solved in polynomial time.

It arises in several heterogeneous contexts, including travel planning of the elec-

tric cars, where the low autonomy of this kind of vehicles requires an appropriate

planning of the charging station stops along the travel (see [2]). In more detail, let

us consider the problem to go from a source point s to a destination point d by using

an electric vehicle, whose battery has a range of t kilometers. The aim is to find the

shortest path from s to d, organizing the stops at the charging stations placed along

the route. This problem can be modelled through a directed graph, whose nodes are

the starting point s, the destination point d, and all the available charging stations,

while the arcs represent the routes among the charging stations and their costs rep-

resent the distance in kilometers. Moreover, as shown in Fig. 2, the nodes are parti-

tioned in clusters according to their distance from s. W.l.o.g. we assume that the first

cluster T1 contains the only source node s and the last cluster TN contains the only

destination node d. Then, the second cluster T2 contains the charging stations whose

distance from s is at most equal to t kilometers; T3 contains those stations placed on

a distance from s variable from t to 2t kilometers, and so on.

Another possible application is related to planning routes for a flying drone in

which we need to cover, in a fixed order, a given set of targets to get a map of the

monitored territory (see [3, 4]).

A very similar problem, named Shortest Path Tour problem (SPTP), was intro-

duced in [5]. The aim of the SPTP is to obtain a shortest path from s to d in G, that

successively passes through T1,… ,TN . However, moving from the cluster Tk−1 to

the cluster Tk, a feasible path can cross any other node of the graph, even nodes in

clusters Th, with h > k.

If we consider again the graph in Fig. 1, the optimal solution of this problem is

the path p′ = {1, 2, 3, 2, 3, 4}, and its cost is c(p′) = 8.

Fig. 1 Graph G = (V ,A),
with T1 = {s = 1}, T2 = {3},

T3 = {2}, and T4 = {d = 4}
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Fig. 2 An electric car going from s to d, passing through the charging stations

In [5], Festa proved that the SPTP belongs to the class P, since it can be poly-

nomially reduced to a classical shortest path problem on a suitably built multi-stage

graph G′
. However, due to the size of G′

, the running times of the proposed solution

approaches are acceptable only for small instances. A more effective approach for

the SPTP was introduced in [6].

In this paper, we introduce a polynomial time algorithm to solve the FSPTP, based

on several calls of Dijkstra’s algorithm. Our proposal can be trivially adapted to solve

the SPTP by exhibiting the same computational complexity of the best known solu-

tion approach for the SPTP described in [6].

The remainder of this paper is organized as follows. Section 2 describes the

polynomial time algorithm for the FSPTP and reports the proof of its correctness.

Section 3 provides an example of how the algorithm works on a small instance. Com-

putational results are reported in Sect. 4, and finally Sect. 5 concludes with some final

remarks.

2 A Polynomial Time Algorithm for the FSPTP

Let Gk, k = 1,… ,N, be the subgraph of G induced by

k⋃

i=1
Ti. Let Pk, k = 2,… ,N, be

the set of the shortest paths from every node in Tk−1 to any node in Tk computed on

the graph Gk. Furthermore, let Ps
k, k = 2,… ,N be the set of the shortest path tours

from s to any node in Tk. Note that, Ps
2 is exactly the set of the shortest paths from s

to any node in T2 on the graph G2.

The following lemma holds:

Lemma 1 Let pk be the forward shortest path tour from s to a node y ∈ Tk. Then,
pk is obtained by concatenating a forward shortest path tour belonging to Ps

k−1, with
a path belonging to Pk ending in y.
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Proof Since pk is a forward shortest path tour, there exists at least a node in pk
belonging to Tk−1. W.l.o.g. let us suppose that x is the last node of Tk−1 belonging to

pk. It is possible to decompose pk in two subpaths: pk−1, from s to x, and pxy from x
to y. Therefore, by definition of forward shortest path tour, it results that pk−1 ∈ Ps

k−1
and pxy ∈ Pk. □

Based on the previous theoretical result, starting from s ∈ T1, algorithm A1

sequentially computes pk ∈ Ps
k, k = 2,… ,N as described in the following.

Initialization: Compute Ps
2 by applying any shortest path algorithm (Dijkstra [7],

Auction [8], [9], and so on)

For each k = 𝟑 to N: Let y be a node in Tk. For any x ∈ Tk−1, compute the cost of the

forward shortest path tour from s to x, plus the cost of the path from x to y belonging

to Pk. Among the |Tk−1| paths computed, the algorithm selects the shortest one as

the forward shortest path tour from s to y. The procedure is repeated for each y ∈ Tk,
by generating in this way Ps

k.

The following theorem establishes the correctness of the algorithm.

Theorem 1 Algorithm A1 finds the forward shortest path tour from s to any other
node in the graph G.

Proof Let y be any node in Tk, k = 2,… ,N. To compute the forward shortest path

tour p from s to y, the algorithm concatenates an element p1 in Ps
k−1 and an element

p2 in Pk, such that c(p1) + c(p2) is minimum. Suppose by contradiction that p is not

the optimum, so there exists a forward shortest path tour p′ for which c(p′) < c(p).
From Lemma 1, p′ can be written as the concatenation of a forward path tour p′1 in

Ps
k−1 and a path p′2 in Pk. Therefore, it results that c(p′1) + c(p′2) < c(p1) + c(p2), but

this is a contradiction because the algorithm chooses the pair (p1, p2) that minimizes

the sum of the costs. □

3 Example

The following example allows to clarify the behaviour of the algorithm.

Let us consider the graph in Fig. 3, with V = {s, 1, 2, 3, 4, d}, T1 = {s}, T2 =
{1, 2}, T3 = {3, 4}, and T4 = {d}.

The steps of the algorithm A1 are:

∙ Step 1: the algorithm computes Ps
2, i.e. the shortest paths from s to any other node

in T2 on the graph G2. Therefore, as it is shown in Fig. 4, Ps
2 = {{s, 1}, {s, 1, 2}}.

∙ Step 2: the algorithm computes P3. As it can be seen in Fig. 5a, the shortest path

from 1 to 3 on G3 is {1, 3}, and the shortest path from 2 to 3 on G3 is {2, 4, 3}
(Fig. 5b). So P3 = {{1, 3}, {2, 4, 3}, {2, 4}, {1, 2, 4}}. The forward shortest path

tour from s to 3 is the minimum between the two paths obtained through the

concatenation of an element of Ps
2 and an element of P3, so the possibilities
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Fig. 3 Graph G = (V ,A) with N = 4, T1 = {s}, T2 = {1, 2}, T3 = {3, 4}, T4 = {d}

Fig. 4 Shortest paths from s
to each node in T2 on the

graph G2

are: {s, 1, 3}, whose cost is 3, or {s, 1, 2, 4, 3}, whose cost is 5. Thus the for-

ward shortest path tour from s to 3 is {s, 1, 3}. In the same way we can see that

the forward shortest path tour from s to 4 is {s, 1, 2, 4}, whose cost is 3. Thus

Ps
3 = {{s, 1, 3}, {s, 1, 2, 4}}.

∙ Step 3: the algorithm computes P4 = {{3, 1, 2, d}, {4, 3, 1, 2, d}}, as it can be seen

in Fig. 6a, b. Proceeding in the same way as the previous step, i.e. through concate-

nation, we obtain that the forward shortest path tour from s to d is {s, 1, 3, 1, 2, d},

whose cost is 7, as it is shown in Fig. 7.

A nice property of algorithm A1 is that it can be trivially adapted for the resolution

of the SPTP proposed by Festa. Indeed it suffices to consider at each step the original

graph, without deleting the arcs between clusters not already visited. Therefore, when

we compute the shortest paths between the clusters Tk and Tk+1, we can eventually

pass through nodes belonging to Th, with h > k.

This version of the algorithm is equivalent, from a computational point of view,

to the one proposed in [6].
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Fig. 5 a Shortest paths from 1 to each node in T3 on G3. b Shortest paths from 2 to each node in

T3 on G3

Fig. 6 a Shortest path from 3 to d. b Shortest path from 4 to d

Fig. 7 The forward shortest path tour from s to d is the path {s, 1, 3, 1, 2, d}, whose cost is 7
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4 Computational Results

In this section, we evaluate the performance of A1 depending on the number of

nodes, the density of the graph, and the number of clusters. Our algorithm was coded

in C++ on an OSX platform, running on an Intel Core i7 3.4 GHz processor with 8

GB of RAM.

Since the computational time of A1 was lower than a second, and then negligible,

on instances up to 500 nodes, we randomly generated a set of instances containing at

least 1000 nodes. In more detail, our instances were generated as follows. Chosen the

number of nodes n, the number of arcs m, and the number of clusters N, the source

Table 1 Computational results on randomly generated instances with 1000, 1500 and 2000 nodes

n m N Time

1000 499500 50 10.51

1000 499500 150 3.23

1000 499500 250 2.10

1000 719280 50 15.02

1000 719280 150 4.82

1000 719280 250 2.93

1000 999000 50 18.26

1000 999000 150 6.38

1000 999000 250 3.70

1500 1124250 75 34.55

1500 1124250 225 11.16

1500 1124250 375 6.11

1500 1618920 75 47.27

1500 1618920 225 15.66

1500 1618920 375 9.73

1500 2248500 75 63.10

1500 2248500 225 21.36

1500 2248500 375 12.48

2000 1999000 100 77.65

2000 1999000 300 26.95

2000 1999000 500 15.34

2000 2878560 100 111.09

2000 2878560 300 36.99

2000 2878560 500 22.34

2000 3998000 100 141.21

2000 3998000 300 48.13

2000 3998000 500 29.31
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node s and the destination node d are randomly selected, as well as the partition of

V into N clusters. Obviously, in each cluster there must be at least one node. Finally,

the arcs are randomly added, ensuring that at least a feasible solution there exists.

The parameters used to generate the instances are: n ∈ {1000, 1500, 2000}, m ∈
{0.5n(n − 1), 0.75n(n − 1), n(n − 1)}, and finallyN ∈ {0.05n, 0.15n, 0.25n}. The arc

costs are randomly chosen in the range [25, 100].
These instances have a high arc density, because they better reflect the real appli-

cation of the problem. Moreover, our algorithm solves instances with low arc density

in a short time, less than a minute, while the instances with high arc density result

harder to solve, with a computational time that is even an order of magnitude greater

than the one of the low arc density.

Computational results are shown in Table 1, whose columns report the number of

nodes, the number of arcs, the number of clusters, and the CPU time (in seconds),

respectively.

It is evident from these results that the number of clusters N is the parameter that

mostly affects the performance of A1. In particular, as the value of N increases, the

CPU time decreases. For instance, by considering the last three lines of the table, we

observe that with N = 100 the CPU time is equal to 141.21, while for N = 500 the

CPU time is equal to 29.31, thus resulting in a reduction of 80% of the computational

time. The reason behind this behaviour is that the higher is the number of clusters,

the smaller is their cardinality, and the lower is the number of possible choices that

A1 can perform. Indeed, in the extreme case when n = N, we have exactly a single

path from s to d and, obviously, the algorithm finds it instantly.

5 Conclusions

We have proposed a polynomial algorithm for the FSPTP, a variant of the classical

shortest path problem. The algorithm is based on the resolution of a sequence of

shortest path problems. We also have exhibited a proof of its correctness and an

example of how it works on a small instance. The computational results show that

the number of clusters heavily affects the performance of the algorithm that, in any

case, is able to solve in less than a minute almost all the instances.

Moreover, our algorithm can be used to solve also a slightly different problem,

the SPTP, introduced by Festa in [5].

Possible future investigation could be done comparing the adaptation of our pro-

posal for solving the SPTP, with the best known algorithm for that similar problem,

and more deeply analyzing how the performance of the algorithm varies depending

on the number of nodes and arcs, the number of clusters and their size. We expect

that the relationship between the behavior of our algorithm and the number of clus-

ters, shown by the computational results, is not due to the specific instances used in

the tests, but is an intrinsic characteristic of the problem.
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Moreover, if the size of the instance we have to solve is too big, a possible

approach is to split the graph in smaller subgraphs, using a graph partitioning algo-

rithm (see [10]).
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A Flow Formulation for the Close-Enough
Arc Routing Problem

Carmine Cerrone, Raffaele Cerulli, Bruce Golden and Rosa Pentangelo

Abstract The close-enough arc routing problem is a generalization of the classic

arc routing problem and it has many interesting real-life applications. In this paper,

we propose some techniques to reduce the size of the input graph and a new effec-

tive mixed integer programming formulation for the problem. Our experiments on

directed graphs show the effectiveness of our reduction techniques. Computational

results obtained by comparing our MIP model with the existing exact methods show

that our algorithm is really effective in practice.

Keywords Close enough arc routing problem ⋅ MIP model ⋅ Vertex cover

1 Introduction

The Close-Enough Arc Routing Problem (CEARP) is a generalization of the Rural

Postman Problem (RPP). Let G = (V ,A,M) be a directed graph with a set of vertices

V , a set of arcs A, and a set of targets M located on arcs. An arc a ∈ A covers a

target m ∈ M iff the target is either on the arc or within a predetermined distance

(radius) from the arc. Let N = {(m, a)|m ∈ M, a ∈ A} be a set containing the couple

(target m, arc a) if and only if the arc a covers the target m, and let cij be the cost

associated with arc a = (i, j) ∈ A. Finally, let v0 ∈ V indicate the depot node. The
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CEARP consists of finding a minimum cost tour starting and ending at the depot

node v0, traversing a subset of arcs such that all the targets in M are covered. The

CEARP problem was introduced by Drexl [6, 7], he proved that the problem is NP-

hard, and he proposed a branch-and-cut algorithm. Shuttleworth et al. [11] proposed

four heuristics to solve instances with approximately 9000 arcs. A mixed integer

programming (MIP) formulation for the problem was introduced by Há et al. [8];

the same authors presented a new IP formulation in [9]. Ávila et al. [1] proposed

a branch-and-cut algorithm which they compared with the model presented in [9],

providing good computational results. In [10], Lum et al. propose some techniques

to partition a graph in order to simplify its structure.

There are several real-life applications for this problem. The meter reading prob-

lem is an important application of the CEARP: A vehicle with a receiver on board

travels over a street network. If it traverses a street and is closer than a certain dis-

tance to a RFID meter (e.g., in a home), the receiver is able to read the value of the

meter. An interesting variant of this real-life problem is when flying drones are used

to read the meters [3].

The remainder of this paper is organized as follows. In Sect. 2, we present our new

MIP formulation. In Sect. 3, we show the computational results of our approach,

comparing them with recent results proposed in [1, 9] and, finally, in Sect. 4, we

present our conclusions.

2 Flow Formulation

In this section, we propose a very effective mathematical programming formulation

for the CEARP based on an efficient graph reduction procedure. Moreover, we show

how, using any vertex cover computed on the input graph, we can take advantage of

its features to identify a set of important vertices for the routing problems.

2.1 Graph Reduction

In order to improve the resolution process, we prove some properties of the problem

and we provide some definitions that will help us to reduce the size of input instances.

Definition 1 For each m ∈ M, C(m) = {a ∈ A|(m, a) ∈ N} is the set of all the arcs

that cover the target m.

It is possible to reduce the number of targets, taking into consideration the following

property:

Property 1 Let m1,m2 ∈ M be a couple of targets, the target m2 is redundant if
C(m1) ⊆ C(m2).
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Fig. 1 Redundant target m2. Necessary vertex A. Necessary arc (E,F)

Proof Let G′ = (V ,A,M′) be the graph where M′ = M⧵{m2}. Each tour T ′
in G′

covering each target in M′
contains at last one arc a ∈ C(m1) and then the tour T ′

is

also a feasible tour for the graph G = (V ,A,M) (see Fig. 1).

In the following, we give two definitions to characterize the set of vertices and

the set of arcs that are necessary in every feasible solution.

Definition 2 The set ̂V = {v ∈ V | ∃m ∈ M such that v = i or v = j, ∀(i, j) ∈ C(m)}
is the set of necessary vertices.

Definition 3 The set ̂A = {a ∈ A | ∃m ∈ M ∶ C(m) = {a}} is the set of necessary

arcs.

Finally, by using the following two properties, we can try to reduce the size of the

input instances.

Property 2 The target m ∈ M is redundant if ∃ a ∈ ̂A such that a ∈ C(m).

Property 3 The target m ∈ M is redundant if ∃ (i, j) ∈ C(m) such that i ∈ ̂V or j ∈
̂V.

2.2 The Vertex Cover

In this section, to strengthen the MIP model, we will use some information obtained

from solving a vertex cover problem related to the directed graph G = (V ,A,M)
defining our problem. We consider the graph G′ = (V ,E,M) obtained from G by

transforming each directed arc into an undirected edge and leaving in E only edges

associated with arcs of G that cover at least one target in M. On G′
, we solve a ver-

tex cover problem getting a subset (VC) of its vertices such that each edge of G′
is

incident to at least one vertex of VC. In Fig. 2a, we show a portion of a real street

network. The red dots represent the targets that we need to cover and the edges are

those in which at least one target is located. In Fig. 2b are drawn all edges in which
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(a) (b)

(c)

Fig. 2 a Edges in which there is at least one target (red dot). b All edges in which it is possible to

read at least one target. c A feasible solution

it is possible to cover at least one target (we construct G’ considering only these

edges). By computing the set VC ⊆ V as a vertex cover obtained using the edges

of Fig. 2b, we get a set of vertices VC from which we can efficiently check if a set

of arcs on G, necessary to cover all the targets in M, is connected for each feasible

solution. Obviously the vertex cover with the minimum cardinality would be the best

possible set VC, but, in many cases, it is sufficient to compute just a feasible solution

using an heuristic procedure [5] or a metaheuristic approach like tabu search [2] or

a genetic algorithm [4]. Heuristically, we can compute VC using a simple two-step

procedure. In step 1, we insert in VC all the vertices in ̂V . In step 2, we add to VC
all the other vertices necessary to get a feasible solution. In Fig. 2c, we report, in

black, the vertices in the set ̂V and, in green, the vertices in the set VC⧵ ̂V . If we look
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at the edges as bi-directed arcs, the red edges represent a feasible solution T for the

CEARP. Indeed each edge in T is incident to at least a green or a black vertex.

2.3 MIP Model

In this section, we describe our MIP model based on a flow formulation. From now

on, the depot will be vertex 0. In order to proceed with the description of the model,

we define the variables that will be used. For each arc (i, j) ∈ A, we have:

∙ xij ∈ Z+
0 is the number of times the arc (i, j) is traversed.

∙ fij ∈ R+
0 are the flow variables associated with arc (i, j).

The model can be formulated as follows:

Minimize

∑

(i,j)∈A
cijxij (1)

∑

a=(i,j)∈A|(m,a)∈N
xij ≥ 1 ∀m ∈ M (2)

xij ≥ 1 ∀ (i, j) ∈ ̂A (3)

∑

j∈V|(i,j)∈A
xij −

∑

j∈V|(j,i)∈A
xji = 0 ∀ i ∈ V (4)

∑

(0,j)∈A
f0j ≥ 1 (5)

∑

j∈V|(i,j)∈A
fij −

∑

j∈V|(j,i)∈A
fji = 0 ∀ i ∈ V⧵(VC ∪ {0}) (6)

∑

j∈V|(i,j)∈A
fij −

∑

j∈V|(j,i)∈A
fji = 1 ∀ i ∈ ̂V⧵{0} (7)

∑

j∈V|(i,j)∈A
fij −

∑

j∈V|(j,i)∈A
fji =

∑

j∈V|(i,j)∈A
xij ∀ i ∈ VC⧵( ̂V ∪ {0}) (8)

fij ≤ Mxij ∀ (i, j) ∈ A (9)

xij ∈ Z+
0 ∀ (i, j) ∈ A (10)

fij ∈ R+
0 ∀ (i, j) ∈ A (11)

The set of constraints (2) ensure that each target is covered at least from one arc

of the solution and constraints (3) ensure that each necessary arc is in the solution.

The set of constraints (4) ensure that for each node, the number of selected arcs in

its forward star corresponds to the number of selected arcs in its backward star. The

constraint (5) ensures outcoming flow from the depot. The set of constraints (6) set to

0 the amount of in-flow for all the vertices not necessary to guarantee the connection
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of the final solution. Constraints (7) set to 1 the amount of in-flow for all the vertices

that we know will be traversed in any feasible solution. Constraints (8) defined for

each vertex that could be used to ensure the connection of the solution, set an in-flow

equal to the time that the vertex is traversed in the solution. Constraints (9) ensure

that we can have flow only on the arcs used in the solution.

3 Computational Results

In this section, we present computational results obtained by using the MIP model.

Our experiments were performed on a OSX 10.9 operating system, 16 GB of RAM

and a quad-core processor Intel I7 running at 2.6 GHz. The MIP model was coded

in Java and solved using IBM ILOG CPLEX 12.5.

The computational tests are performed on the set of benchmark instances pre-

sented in [8]. We compared our MIP model with the exact approaches proposed in

[1, 9]. In Table 1 there are two sets of instances. In the first set, we have |V| = 500
and |A| = 1500 while, in the second one, we have |V| = 500 and |A| = 1000. For

each set, we have four different numbers of targets ( 1
2
|A|, |A|, 5|A|, 10|A|).

Table 1 shows that our algorithm solves to optimality 39 instances. For these two

sets, our approach is competitive with the approach of Avilá et al. and outperforms

the results of Há et al. Table 2 shows that in terms of computational times our MIP

model outperforms the previous approaches. In terms of numbers of solved instances,

our approach is always better than Há et.al. [9]. For the sparse instances (|A| = 1000),
our model outperforms the results of Ávila et al. [1] with respect to computation

times. For the dense instances (|A| = 1500), Ávila et al. are able to find the optimal

solution in 20 instances. Our approach finds the optimal solution in 19 instances; we

Table 2 For the three models compared in this section, we show the running times (seconds) and

the number of certified optimal solutions. Each row of the table shows the average value on five

instances

Há et al. Avilá et al. Cerrone et al.

Opt found Time Opt found Time Opt found Time

1500_0.5 0 7202.9 5 830.5 1 874.0

1500_1 2 4499.9 5 1235.5 3 433.5

1500_5 5 154.5 5 49.2 5 14.6

1500_10 5 205.9 5 50.1 5 9.9

1000_0.5 3 4155.6 5 245.7 5 47.7

1000_1 4 2447.8 5 88.6 5 13.3

1000_5 5 315.1 5 28.3 5 6.0

1000_10 5 82.3 5 20.3 5 4.4
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can certify optimality for 14 instances and for the remaining 6 instances, our gap is

always less than the 1%.

4 Conclusions

We proposed a new MIP model for the CEARP based on a flow formulation and

introduced some properties useful to reduce the size of the graph instances. For the

benchmark instances, our graph reduction allowed to decrease the number of targets.

This decrease ranges from 20 to 90% of the total number of them. The computational

results show the effectiveness of our approach. For several instances, our approach

is substantially faster than competing solution techniques.
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A Mesoscopic Approach to Model Route
Choice in Emergency Conditions

Massimo Di Gangi and Antonio Polimeni

Abstract In this paper, a dynamic approach to simulate users’ behaviour when a
hazardous event occurs in a transport network is proposed. Particularly, a route
choice model within a mesoscopic dynamic traffic assignment framework is
described, assuming that users can acquire information on the network status in real
time. The effects of the event are taken into consideration by introducing a risk
factor in arc cost function in order to allow en-route changes in users’ path choice
decisions. The proposed approach is tested on a trial network, highlighting the
evolution of changes in path choice caused by a hazardous event that modifies
supply conditions.

Keywords Path choice ⋅ Evacuation ⋅ Dynamic traffic assignment

1 Introduction

A transport system involved in a hazardous event may suffer some modifications in
terms both of demand (a large amount of users all want to move together) and of
supply (the event can modify the transport system conditions, i.e. changes in
capacity, unusable roads, etc.). Focusing on these aspects, it is necessary to model
users’ behaviour in the presence of changes in supply. To assist the users in their
trips along the network, information must be provided either in real-time
(independently of the position of the user in the network) or in preset points in
the network. In both cases, information provided to the users may involve changes
in path choice [7–9, 14, 15]. In design field, the paths are designed to minimize the
evacuation time [12], to provide alternative paths [1], to optimize the movements of
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rescue vehicles [10]. A general architecture to simulate and design transportation
system under evacuation conditions is proposed in [2]. Concerning assignment
models to simulate evacuation, static approaches do not allow analysis of phe-
nomena connected to temporal variations in terms of both demand and supply, such
as rising and scattering of queues due to temporary peaks of demand and/or
capacity reductions of infrastructures. Moreover, considering the emergency con-
ditions, the transportation system cannot be studied considering an equilibrium
approach. The Dynamic Traffic Assignment (DTA) model considered here to
simulate evacuation is mesoscopic [5], where users may be assembled in packets
that move on the network discretising demand for each origin-destination pair. The
main contribution of the proposed model consists both in handling re-routing to
simulate users’ response to external sources of information (both on-board and
external) and in taking into account of the risk within the arc cost function. The
paper is structured as follows: Sect. 2 describes the formulation of the model; the
proposed model is applied to a trial network in Sect. 3 where some specifications
are itemised. In Sect. 4 major findings are recapped and some research perspectives
are outlined.

2 Mesoscopic Model

The simulation is conducted for discrete time intervals assumed, for the sake of
simplicity (but without prejudice to the generality of the procedure), to be of
constant amplitude. Outflow conditions are considered homogeneous on each arc
and constant for the entire duration of an interval. By adopting an opportunely short
amplitude of the time interval, results are independent of the order in which packets
are moved. Once the outflow characteristics on arcs for an interval are known, it is
possible to track the movements of vehicles on each arc depending on the
assumptions of the type of arc and movement rules defined below. The transport
network is represented by means of graph G (N, A), where N is the set of nodes and
A the set of arcs. La is the arc length and Xa

S the abscissa of a section S of arc
a identifying the change in movement rule within the arc. The part of the arc in the
range [0, Xa

S) is defined as the running segment and the remaining part (range [Xa
S,

La]) as the queuing segment. The position of section S depends on the outflow
characteristics of the arc and, in the dynamic assignment model considered, it is
evaluated at the beginning of each time interval. Moreover, ka

max is the maximum
density on the arc, Ca is the arc width and Qa is the capacity of the final section of
the arc.

A packet P ≡ {η, od, u}, is characterized by three elements: a departure time η,
an origin/destination pair od and a vehicle class u. The elements in the packet
belong to the same class u, depart at the same departure time η and move on the
same origin/destination pair od. For each class u some parameters depending on the
characteristics of the vehicles can be defined (speed, occupancy, equivalence, fill-
ing, grouping). During the movement, a packet is characterized by a time interval t,
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a position x on arc a belonging to path connecting pair od, and a speed va
t on the

running segment. The simulation is conducted for discrete time intervals t (assumed
at constant amplitude δ), indicating with τ the current time (τ ∈ [0, δ]). From these
considerations, the movement of a packet depends on its position on the section of
the arc (running or queuing) and on the fact that, during the movement, it may pass
from the running segment to the queuing segment [4]. Moreover, arc capacities,
queues, spillback phenomena and overtaking between vehicles of different class are
explicitly taken into consideration.

To simulate the movement of a packet P, for each pair od and for each departure
time η, a Directed Acyclic Graph (DAG) Γodη(N

od ⊂ N, Aod ⊂ A) is associated to
packet P [6]. The DAG consists of a set of arcs that belongs to the feasible paths
connecting the origin/destination pair od computed at time η. Note that (as dis-
cussed in the next sections) with the introduction of re-routing capabilities, the
DAG is generally time dependent. This because the origin to be considered is the
end node of the arc reached by the packet at the current time. The following
considerations concern the case when path choice occurs at departure time η and
can straightforwardly be generalized to consider re-routing.

Being wa the weight of the arc a ∈ Aod, two cases can be considered for the
evaluation of wa:

1. Γodη is generated by using an implicit algorithm (i.e. Dial’s STOCH) to compute
the path set: wa can be set equal to the Dial weight;

2. Γodη is generated by using an explicit algorithm to compute the path set: wa is
provided by the sum of the probabilities of paths crossing arc a (note that in this
case it is necessary to compute path choice probabilities, i.e. by means of a Logit
model).

In our experiment the path set is evaluated explicitly. The probability πa
Γ of

choosing arc a belonging to Γodη, given the travel origin o, the destination d and the
departure time η, can be then defined as:

PrðaÞ= πΓ
a
=

wa

∑
l∈Aod

a

wl
a∈Aod ð1Þ

where Aa
od is the set of the arc outgoing from a.

In order to better simulate path choice during an evacuation, the following
capabilities have been added to the mesoscopic model: an arc risk to consider the
impacts of the event on the transportation network and a re-routing procedure to
choose en-route the next arc of the DAG to be covered.
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2.1 Arc Risk Function

The risk that can be associated to each arc of the network is evaluated introducing it
in the formulation of the arc cost functions [3]. In general the risk probability rR

E(τ)
can be associated with the nature of the event (E), time (τ) and a geographic
position (R). In the example reported in this paper, the specific case of atmospheric
diffusion of a pollutant is considered, outlining some characteristics of the process.
In a urban area, for example, a vehicle transporting dangerous goods having an
accident can cause an emergency condition. The effects of the hazard [13] depend
on the type of the substance, on weather conditions (i.e. presence of wind, pres-
sure), and on the type of dispersion; they can be evaluated by taking into consid-
eration the concentration of the pollutant at a point in time. In the literature, two
main approaches are considered: Eulerian and Lagrangian. Focusing on the Eule-
rian approach, the propagation problem is solvable under some assumptions (i.e.
use of mean value for some variables), considering if the substance is released
instantly (puff-based solution) or continuously (plume-based solution). While in the
first case the time is considered explicitly, in the latter the solution is not
time-dependent. A smoke cloud, moving across an urban area under the influence
of the wind, covers an area Ω at a time τ, uncovering it at a time τ’ > τ. In this
situation, it is possible to evaluate the substance concentration at each point of the
area in time, deriving a measure of the risk associated to the area. Risk rR(τ) at a
point R is defined as the probability that the substance concentration at R exceeds a
threshold value. Being R (x, y, z) a point in the space, c(R, τ) the concentration at
point R at time τ, ccr a critical value for the concentration, then the risk probability
rR(τ) at point R is evaluable as:

rRðτÞ=Pr(c > ccrÞ=
Z ∞

cr
FðζÞ dζ, ð2Þ

where F(ζ) is the solution of the Eulerian function.
The risk definition can be extended from a point to an area, defining the risk

probability rΩ(τ) of an area Ω at time τ as:

rΩðτÞ=maxfrRðτÞ, R∈Ωg, ð2aÞ

Finally, the risk probability for an arc a at timeτ is linked with the area Ω
containing the arc:

raðτÞ= rΩðτÞ, ∀a∈Ω ð2bÞ

As defined above, the risk probability ra(τ) (∈ [0, 1]) of the arc a at time τ
depend on the vulnerability of the link respect to a hazardous phenomenon E.

Considering a path p between an origin o and a destination d and assuming the
independence among the arcs (that is, what happens on an arc does not depend on
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what happens on the others), the risk associated to the path can be expressed as the
product of arc risk:

rpðτÞ=Πi∈ priðτÞ, ð2cÞ

where ri is the risk probability on arc i belonging to the path p.
With these considerations, it is possible to modify, for each arc, travel time (cost)

computed at time τ, introducing a weight dependent on the level of risk associated
to the arc at time τ. At time τ, travel time of arc a can be evaluated as:

TTaðτÞ= xSaðτÞ ̸va + ððLa − xSaðτÞÞ ⋅ kamaxÞ ̸QaðτÞÞ, ð3Þ

where the first term refers to the running segment and the second to the queuing
one. Once travel time is known, the weighted travel time can be written as follows:

TWaðτÞ= TTaðτÞ ⋅ f1+ α½lnð1 ̸ð1− raðτÞÞÞ�βg, ð4Þ

where TWa(τ) is the weighted time associated to arc a at time τ; α, β are parameters.
The weighted travel time is used to compute the DAG associated to packet P as
defined above, for each origin-destination pair od and departure time η.

2.2 Re-routing

Path choice is a crucial aspect during an evacuation, in order to leave from the
affected area. The paths can be designed ex-ante [11], but if the event influence the
road network (i.e. some arcs are unavailable) the en-route choice provides alter-
native paths. The advantage of re-routing is the adaptability to the changed con-
ditions of the network: in fact, re-routing option deals with the possibility of
changing the path followed en-route. The set of feasible paths can be reconsidered
at each node, and the representation by means of a DAG allows considering all
those arcs, belonging to feasible paths, whose origin is the current node. Figure 1
summarizes the re-routing procedure implemented.

Once a packet P reaches the end node j of an arc a the next arc a+ to be covered
must be chosen in order to continue the travel. Arc a+ belongs to one of the paths
reaching the destination. Two cases arise: paths are those connecting the
origin-destination pair od established at departure time η or path set can be modified
en route (re-routing). In the first case, they are represented by the DAG Γodη

associated to packet P at departure time and the next arc a+ can be chosen
immediately. In the second one, the new paths have to be evaluated (path search)
starting from the end node j of the arc a to destination d at current time ζ (when
packet P moves from j). The resulting DAG is Γjdζ, and then the next arc a+ can be
chosen.
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3 Application

To give an example of the applicability of the proposed model, an application to a
test network was carried out in order to simulate the evolution of impacts on path
choice due to a hazardous event whose extents vary in time. In this application, the
main characteristics of the trial network (such as length, width, number of lanes,
free flow speed) are established randomly and the derived ones (such as capacity)
are evaluated consequently. Similarly, trial values for demand and risk probability
have been defined. Figure 2 shows the test network, made up of 66 nodes and 232
arcs.

Each arc is characterized by length, width, number of lanes, free flow speed and
capacity. In the test network, twelve areas (named from A to N) are selected as
involved in the hazardous event. A simulation was conducted with a time interval of
300 s. Demand was generated for the first 27 intervals. To better test the proposed
model, origin-destination pairs were chosen in order to generate paths crossing the
interested area. The scenario hypothesis consists of a hazardous event occurring at
interval h = 6 in the area labelled A (Fig. 2) whose effects (a smoke plume)
propagate in the neighbouring areas and make it unsafe to cross roads in the
surrounding areas impacted by the evolution of the event. Considering that the risk
can be evaluated point to point in the space following Eq. (2), it is possible to

Fig. 1 Procedure adopted to simulate re-routing option
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associate a risk value at each area. The propagation of the effects start from area A
at interval h = 6, risk probabilities are updated at time intervals 6, 9, 15 and 18. At
interval h = 24 the effects cease and risk probability is null for all the areas. The
values of risk probability are assigned considering Eq. (2b).

To streamline the discussion on obtained results, arc densities are reported
focusing on the screen-line highlighted by a dotted line in Fig. 2 and corresponding,
from top to bottom, to arcs 4–5, 13–14, 22, 23, 31, 32, 40, 41, 49, 50, 58, 59; the
evolution in time of densities for these arcs is shown in Fig. 3. During intervals
from 1 to 6, travellers move on the network following those paths defined at the
leaving interval. At the beginning of interval 6 the hazardous event happens in area
A and, starting from interval 9, a change in the arc densities can be observed since
users tend to choose paths that move alongside the affected area. Focusing on
destination 2036, it can be observed that some paths reaching it may use arcs 31–
40, 40, 41, 31, 32, 32–41 until interval 7. Starting from this interval, until interval
25, other arcs are used. As an example, considering the arcs 31, 32, there is a
density of about 20 user/km per lane until interval 6. At interval 7 paths do not pass
through this arc but use arc 22, 23. Density decreases on arc 31, 32 and increases on
arc 22, 23. Starting from interval 10 no one passes on arc 31, 32 (its density is equal
to zero) and density on arc 22, 23 is about 15 user/km per lane. As time passes,
density on arc 22, 23 increases up to about 34 user/km per lane (other paths use this
arc). At interval 24 the effects on the system expire and the same arcs considered at
the beginning of the simulation are used. At interval 33 all the users crossed the
screen-line.

Fig. 2 Test network and areas involved in hazardous event’s evolution
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4 Conclusions

In this paper, a mesoscopic dynamic network loading model able to simulate
travellers’ path choice during an evacuation was formulated and tested on a trial
network. To achieve the goal, some extensions were introduced to the mesoscopic
network loading approach. Path choice was implicitly modelled, to evaluate the
path/arc probability and assign the flow simultaneously. The possibility of mod-
elling en-route path choice was explored, introducing an explicit management of
re-routing capabilities. A risk factor was also introduced, within arc cost function,
to take into account variations in the network conditions. Concerning its applica-
tion, a scenario hypothesis, consisting of a major event occurred in a time interval
within a part of the network (area), was built. The event effects propagate in the
neighbouring areas and make it unsafe to cross roads surrounding the area impacted
by the evolution of the event. The capability of the proposed model to handle
re-routing can be exploited to simulate users’ response to external sources of
information both on-board and external. The proposed arc cost function can be used
to take risk into account even within consolidated simulation tools without making
major changes from the modelling point of view.

Fig. 3 Evolution of arc densities for each interval
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Last-Mile Deliveries by Using Drones and
Classical Vehicles

Luigi Di Puglia Pugliese and Francesca Guerriero

Abstract We address the problem of managing a drone-based delivery process.

We consider the specific situation of a delivery company, that uses a set of trucks

equipped with a given number of drones. In particular, items of a limited weight and

size could be delivered by using drones. A vehicle, during its trip, can launch a drone

when serving a customer, the drone performs a delivery for exactly one customer and

returns to the vehicle, possibly at a different customer location. Each drone can be

launched several times during the vehicle’s route. It is imposed a limit on the maxi-

mum distance that each drone can travel and synchronization requirements between

vehicle and drone should be ensured. In particular, it is assumed that a vehicle waits

for a drone for a maximum period of time. The aim is to serve all customers within

their time window. The problem is modeled as a variant of the vehicle routing prob-

lem with time windows. The aim of this work is to analyze the delivery process with

drones, by taking into account the total transportation cost and highlighting strategi-

cal issues, related to the use of drones. The numerical results, collected on instances

generated to be very close to reality, show that the use of drones is not economically

convenient in the classical terms. However, when considering negative externalities

related to the use of classical vehicles and quality of service requirements, the benefit

of using drones becomes relevant.

Keywords Vehicle routing problem ⋅ Time windows ⋅ Drone ⋅ Last-mile delivery

1 Introduction

The scientific literature gave great attention to the distribution problems, encoun-

tered in the last-mile delivery process. The distribution problem of items in an urban
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area is referred to as vehicle routing problem (VRP) when the trucks have a limited

capacity. On the other hand, the scientific literature refers to the travelling salesman

problem (TSP) when only a vehicle with an unlimited capacity is used. Depending

on the specific scenario under consideration, several operational constraints have to

be taken into account, such as, time windows, precedence, packing. For more detail

on the VRP and TSP and their variants, the reader is referred to [1, 2].

In the last two decades, we have seen a surge in direct-to-consumer deliveries, due

to the continued growth of e-commerce, the rapid urbanization and the heightened

customer expectations. These trends have introduced new optimization challenges

in last-mile delivery process that became more complex to manage.

On the other hand, in the last years, drone technology has seen important advance-

ments and several companies interested in package delivery, like Amazon [3, 4], Fed-

eral Express [5], DHL [6] have begun investigating the possibility of using drones

for their distribution service.

The scientific literature has started to study the last-mile drone-based delivery

process [7–9], by formulating and solving some variants of the TSP. In [10], the

authors consider a fleet of vehicles focusing their attention on the duration of the

process and analyzing the theoretical worst-case, under several scenarios.

In this paper, we formulate the truck-drone delivery problem as a variant of

the vehicle routing problem with time windows (VRPTW) where each vehicle is

equipped with drones (VDRPTW). The aim is to gain quantitative insights, in order to

show potential benefits and disadvantages in using drones in the distribution process.

We consider the minimization of the total transportation cost and we show numerical

results, that highlight the advantages/drawbacks in the use of drones in the last-mile

delivery service.

The reminder of the paper is organized as follows. In Sect. 2, we describe the

problem under study, providing the main assumptions on the way the drones are used.

Then, we present its mathematical formulation. Section 3 reports the computational

results collected on instances generated to be very close to real-life applications.

Section 4 concludes the paper.

2 Problem Definition

In order to describe the VDRPTW, it is useful to introduce the assumptions made

regarding the behavior of the drones and the cooperation between truck and drone.

∙ A drone-delivery can serve at most one customer at time.

∙ A drone is able to perform several drone-deliveries.

∙ The set-up time for preparing the drone for a new drone-delivery is negligible.

∙ The drone can wait in the ground of a customer for a given maximum time.

∙ After a delivery, the drone must return to the own truck located at some customer.

∙ During a drone-delivery, the truck performs its route.

∙ A truck cannot visit a customer served by a drone to pick-up the drone.
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We formulate the VDRPTW over a complete graph G = (V ,A), where V is the

set of nodes and A is the set of arcs. The set V contains n nodes associated with the

customers, named N, and two extra nodes 0 and n + 1 representing the depot. We

refer to VL = {0, 1,… , n} as the set containing all nodes from which the drones can

start their deliveries, and to VR = {1, 2,… , n + 1} as the subset of nodes V where

the drones return to the truck after performing their delivery. In addition, we denote

with ̄N ⊆ N the set containing the nodes associated with the customer that can be

served by a drone.

We define the parameters dij and ̄dij to indicate the distance to reach node j from

node i considering the truck and the drone, respectively. We assume ̄dij ≤ dij, because

the drone does not necessarily follow the road. The time spent to traverse the arc (i, j)
is defined for the truck and the drone as tij = dij∕v and t̄ij = ̄dij∕v̄, respectively, where

v and v̄ are the average speeds of the truck and the drone.

A demand qi is associated with each node i ∈ N. In addition, we assume a ser-

vice time for each customer served by the truck, named si, and a service time s̄i if

the customer i is served by the drone. A time window is associated with each cus-

tomer i ∈ N. We indicate with li and ui the opening and the closing time for serving

customer i.
We assume the availability of a limited number of trucks, belonging to the set K

and a limited number of preassigned drones to each truck, named D. Each drone has

a limited autonomy in term of maximum distance E that it can travel. In addition,

a drone is able to remain at a customer location for a maximum time T before and

after the delivery takes place.

A drone-delivery is characterized by the triple (i,w, j) where i ∈ VL is the node

where the drone starts its delivery, w ∈ ̄N is the node associated with the customer

served by the drone, and j ∈ VR is the node where the drone returns to the truck, with

i ≠ w ≠ j.
The aim is to analyze the last-mile delivery service with the aid of drones under an

economic point of view. Thus, the objective function (to be minimized) represents

the total cost deriving from the use of the trucks (C1
) and the drones (C2

). It is

worth observing that in the proposed model a function of the cost per unit of distance

travelled is used and thus several metrics can be adopted. In particular, it is possible

to consider not only monetary values but also pollution, noise, congestion and others

negative externalities.

The variables used to represent mathematically the VDRPTW are reported in the

following:

xkij,∀i, j ∈ V , k ∈ K Binary variables indicating whether arc (i, j) belongs

to the route of truck k.

ykiwj,∀i,w, j ∈ V , k ∈ K Binary variables indicating whether drone-delivery

(i,w, j) is performed by a drone associated with truck

k.

pkij,∀i, j ∈ V , k ∈ K Binary variables indicating whether node i is served

before but not necessarily consecutive to node j in the

route of truck k.
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uki ,∀i ∈ V , k ∈ K Integer variables indicating the position of node i in

the route of truck k.

zkaiwje,∀a, i,w, j, e ∈ V , k ∈ K Binary variables indicating whether the drone-

delivery (i,w, j) is performed by a drone associated

with vehicle k and node a precedes node i and node e
follows immediately node j.

aki ,∀i ∈ V , k ∈ K Continuous variables indicating the instant time in

which customer i is served by either the truck k or

a drone associated with truck k.

On the basis of the notation introduced above the VDRPTW can be mathemati-

cally represented as follows.

min C1
∑

i∈VL

∑

j∈VR

∑

k∈K
dijxkij + C2

∑

i∈VL

∑

j∈VR

∑

w∈ ̄N

∑

k∈K
( ̄diw + ̄dwj)ykiwj (1)

∑

j∈N
xk0j −

∑

i∈N
xki,n+1 = 0,∀k ∈ K (2)

∑

i∈VL

xkih −
∑

j∈VR

xkhj = 0,∀h ∈ N, k ∈ K (3)

∑

j∈N
xk0j ≤ 1,∀k ∈ K (4)

∑

i∈VL

∑

k∈K
xkij +

∑

l∈VL

∑

m∈VR

∑

k∈K
ykljm = 1,∀j ∈ N (5)

2ykiwj ≤
∑

h∈VL

xkhi +
∑

l∈N
xklj,∀k ∈ K, i ∈ N,w ∈ ̄N, j ∈ VR (6)

yk0wj ≤
∑

h∈VL

xkhj,∀w ∈ ̄N, j ∈ VR, k ∈ K (7)

uki − ukj ≤ (n + 1)(1 − xkij),∀k ∈ K, i ∈ N, j ∈ VR (8)

ukj − uki ≥ 1 − (n + 1)(1 − ykiwj),∀k ∈ K, i ∈ N,w ∈ barN, j ∈ VR (9)

uki − ukj ≥ 1 − (n + 1)pkij,∀k ∈ K, i ∈ N, j ∈ VR (10)

uki − ukj ≤ −1 + (n + 1)(1 − pkij),∀k ∈ K, i ∈ N, j ∈ VR (11)

3zkaiwje ≤ ykawe + pkai + pkje,∀k ∈ K, a ∈ VL, i ∈ N,w ∈ ̄N, j ∈ N, e ∈ VR (12)

2 + zkaiwje ≥ ykawe + pkai + pkje,∀k ∈ K, a ∈ VL, i ∈ N,w ∈ ̄Nj ∈ N, e ∈ VR (13)

Mij(xkij − 1) + aki + si + tij ≤ akj ,∀k ∈ K, i ∈ VL, j ∈ VR (14)

Miw(ykiwj − 1) + t̄iw + aki ≤ akw,∀k ∈ K, i ∈ VL,w ∈ ̄N, j ∈ VR (15)

Mwj(ykiwj − 1) + akw + s̄w + t̄wj ≤ akj ,∀k ∈ K, i ∈ VL,w ∈ ̄N, j ∈ VR (16)

Miw(ykiwj − 1) + akw − t̄iw − aki ≤ T ,∀k ∈ K, i ∈ VL,w ∈ ̄N, j ∈ VR (17)
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Mwj(ykiwj − 1) + akj − t̄wj − akw − s̄w ≤ T ,∀k ∈ K, i ∈ VL,w ∈ ̄N, j ∈ VR (18)

( ̄diw + ̄dwj)ykiwj ≤ E,∀k ∈ K, i ∈ VL, j ∈ VR,w ∈ ̄N (19)

∑

i∈VL

qi
∑

j∈VR

xkij +
∑

w∈ ̄N

qw
∑

i∈VL

∑

j∈VR

ykiwj ≤ C,∀k ∈ K (20)

Mij(xkij − 1) +
∑

l∈ ̄N

∑

m∈VR

ykilm +
∑

p∈VL

∑

q∈ ̄N

ykpqj +
∑

w∈ ̄N

ykiwj +
∑

a∈VL

∑

w∈ ̄N

∑

e∈VR

zkaiwje ≤ D,

∀k ∈ K, i ∈ VL, j ∈ VR (21)

lj ≤ akj ≤ uj,∀k ∈ K, j ∈ N (22)

The objective function (1) minimizes the total transportation cost. Constraints (2)–

(4) define the route for each truck k ∈ K. Constraints (5) impose that all customers

have to be served. Constraints (6) and (7) define the variables y. In particular, con-

straints (6) impose that a drone-delivery (i,w, j) for truck k ∈ K is performed only

if nodes i and j belong to the route of truck k ∈ K. Constraints (7) manage the sit-

uation where the drone starts its delivery from the depot. Constraints (8) and (9)

define the order in which the customers are served by the route performed by truck

k. Constraints (10) and (11) define the variables p. In particular, if ukj > uki , then con-

straints (10) ensure that pkij = 1. On the other hand, if ukj < uki , then both constraints

(10) and (11) are satisfied for pkij = 0. Constraints (12) and (13) specify variables z.
Constraints (14)–(18) assign the starting service time at each customer. In particular,

the constraints (14) and (15) define the starting service time at customer served by

the truck and the drone, respectively. Constraints (14) and (16) guarantee the syn-

chronization between the truck and the drone at customer j when the drone-delivery

(i,w, j) is performed. Constraints (17) and (18) impose a maximum waiting time of

T for the drone-delivery (i,w, j). Constraints (19) select feasible drone-delivery with

respect to the total distance travelled. Constraints (20) represent the capacity con-

straints for the truck. Constraints (21) guarantee that at most D drone-delivery are

performed simultaneously. Constraints (22) guarantee the satisfaction of the time

windows requirement.

3 Computational Results

Model (1)–(22) is implemented in Java language and solved by using the CPLEX

12.5.1 library. The aim of the computational phase is to assess the behavior of the

proposed model in terms of solution quality. In particular, a sensitivity analysis on the

solution obtained when some fundamental parameters are modified is carried out. To

this aim, several scenarios, very close to the real-life and satisfying the assumptions

reported in the previous section, are considered.
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The analysis is conducted from the efficiency point of view related to total trans-

portation cost. A comparison among the solutions obtained by solving the classical

VRPTW and those of the proposed VDRPTW is carried out.

The main aim of this section is to provide some quantitative solutions that allow

to highlight strategical issues and provide insights between benefits and factor of

risk, in the use of drone in the last-mile delivery service. The tests are carried out

on an Intel Core i7-4720HQ 2.60 GHz 8.00 GB RAM, under Microsoft Windows 10

operating system.

3.1 Instances

We have generated instances very close to real-life by considering the parameters

listed below.

F Dimension of the field. It is assumed that the customers are located in an area

of F × F miles
2
. The computational experiments are carried out by considering

F = {10, 20}.

|N| Number of customer. In the experiments, two values for |N|, that is, 5 and 10
are used.

| ̄N| Number of customers with feasible demand for a drone-delivery. In our experi-

mental phase we set | ̄N| = 0.8|N|.
𝛼 Percentage of customers in ̄N that can be served by a drone. The parameter 𝛼 is

chosen from the set {0.50, 0.75, 1.00}. This parameter is used to model the situ-

ations in which, even though the customer has a demand feasible with the drone-

delivery, the visit of a drone is forbidden for others reasons, such as, ground of

the customer location, explicitly request of the customer.

v Average speed of the trucks (25mph).

v̄ Average speed of the drones (55mph).

C Capacity of the truck (C = 50).

E Maximum distance for a drone-delivery (15miles).

si Service time at customer i for the truck (2min).

s̄i Service time at customer i for the drone (1min).

T Maximum waiting time (4min).

The number of available vehicle, i.e. |K| is set equal to 2. The width of the time

windows ui − li is chosen equal to 4 h for each customer i. The location of the cus-

tomer i, (Xi,Yi), is imposed by considering values forXi and Yi belonging to [0,F] and

chosen by considering a uniform distribution. The demand qi is set to 1, for i ∈ ̄N,

whereas qi ∈ [2, 10], for all customers i ∈ N⧵ ̄N. The parameters dij ans ̄dij are set

equal to the Manhattan and Euclidean distance, respectively. In order to evaluate the

benefits and the disadvantages in using drones, we drop the constraint related to the

maximum number of drones available for each vehicle.
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3.2 Numerical Results

We present numerical results collected by solving to optimality the proposed model.

Table 1 reports average computational results over all instances with the same

number of nodes, parameters F and 𝛼, respectively. Column costs reports the objec-

tive function value, column 𝛽 shows the maximum arrival time at the depot, evalu-

ated among all vehicles, that is, 𝛽 = maxk∈K{akn+1}, column #drn reports the number

of drone-delivery, column #vehicles shows the number of vehicles activated, column

time reports the execution time, column var % shows the percentage cost increase if

the drone-delivery are forbidden (solution of the VRPTW).

The parameter c indicates the ratio between cost C1
and C2 (

c = C1∕C2)
. The

computational results of Table 1 are collected considering C2 = 1. Increasing the

value of c means that more attention is paid to externality costs.

The results indicate that the use of drones is not a viable alternative to the use

of classical vehicles under the assumption made and the instances considered in this

paper. Indeed, when the transportation cost is the same for the vehicles and the drones

(see rows with c = 1), the optimal solution of VDRPTW does not include drones.

The benefits of using drones increase when the ratio c increases. Indeed, the aver-

age number of drone-delivery is 1.50 and 1.75 for c equal to 9 and 25, respectively.

The results highlight a clear benefit when drones are included in the solution in

term of completion time. Indeed, column 𝛽 suggests that the duration of the longest

route for the VRPTW is greater than the longest route obtained when drones are

used. In particular, 𝛽 for the VRPTW is 1.10 times higher than the value of 𝛽 for the

VDRPTW, for both c equal to 9 and 25.

This result is coherent with the worst-case analysis made in [10]. However, it is

worth observing that the authors in [10] consider the minimization of the longest

route and relax several assumptions, made in this paper, such as the maximum dis-

tance and the maximum waiting time for the drone, and the time window constraints.

From the results collected we can drawn the following considerations: (1) the use

of drones in last-mile delivery is strongly affected by the cost; (2) to increase the

use of drones the transportation system should be viewed under a green perspective;

(3) the drones are necessary in the case a customer cannot be reached by a classical

vehicle; and (4) quality of service metrics could increase the benefits in using drones.

4 Conclusions

In this paper we investigate the problem of managing a fleet of vehicles equipped with

drones. We formulate a mathematical model taking into account several operational

constraints related to the technology of drones and to the cooperation between drone

and vehicle. In addition, we consider time windows associated with each customer

to be served. We analyze the problem investigating the potential of using drone in

last-mile delivery process highlighting benefits and drawbacks.
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A Scenario Planning Approach for Shelter
Location and Evacuation Routing

Annunziata Esposito Amideo and Maria Paola Scaparra

Abstract Emergency planning operations are one of the key aspects of Disaster
Operations Management (DOM) [1]. This work presents a scenario-based location-
allocation-routing model to optimize evacuation planning decisions, including
where to establish shelter sites and which routes to arrange to reach them, across
different network disruption scenarios. The model considers both supported-
evacuation and self-evacuation. The objective is to minimize the duration of the
supported-evacuation while guaranteeing that the routes of self-evacuees do not
exceed a given traveling time threshold. Both shelter location and routing decisions
are optimized so as to identify solutions which perform well across different dis-
ruption scenarios. A mathematical formulation of this model is provided, which can
be solved through a general-purpose solver optimization package for modest size
instances. Some computational results are reported.

Keywords Disaster management ⋅ Evacuation planning ⋅ Shelter location

1 Introduction

The fast-paced increase at which disastrous events, either natural or man-made [19],
have occurred in recent years [13], ranging from the World Trade Center terroristic
attack in NY (USA, 2001) to the most recent earthquakes in Amatrice (Italy, 2017),
claims for more attention to emergency evacuation planning.

Emergency planning operations are one of the key aspects of Disaster Opera-
tions Management (DOM) [1]. They include activities such as selecting potential
shelter sites and identifying evacuation routes.
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When planning for shelter location and vehicle-based evacuation, three main
issues should be tackled: (1) where and how many shelters should be opened;
(2) how should self-evacuation be addressed in the planning framework? (3) how
should supported-evacuation be organized, to assist people belonging to sensitive
categories (e.g., disabled, elderly)? It is clear that these three issues are highly
interconnected and must be addressed simultaneously. Self-evacuees and
supported-evacuees, in fact, must share the same resources (capacitated shelters,
evacuation routes, etc.).

In this paper, we present a scenario-based location-allocation-routing model to
optimize evacuation planning decisions, including where to open shelters and how
to route evacuees to them, across different network disruption scenarios. The sce-
narios are used to capture the uncertainty characterizing road conditions in the
aftermath of a disaster. Although both shelter location and evacuation routing
operations belong to the disaster response phase, shelters must often be set up and
equipped with personnel and relief supplies when the disaster is still evolving and
road conditions are uncertain or subject to changes. It is therefore paramount to
identify shelter locations which are easily accessible in different disruption sce-
narios and guarantee an efficient evacuation in every scenario.

The remainder of this paper is organized as follows. Section 2 provides a brief
literature review of shelter location and evacuation routing problems. The mathe-
matical formulation of the proposed model and some computational results are
reported in Sects. 3 and 4, respectively. Section 5 offers some conclusive remarks.

2 Literature Review

Shelter location problems aim at determining the optimal locations of shelter sites
while minimizing the travelling time (or distance) [7] between evacuation zones and
shelters. Briefly, a shelter is a facility where people belonging to a community
stricken by a disaster can seek different kinds of services (e.g., first-aid treatment,
food, etc.). Shelter location problems are usually modelled through a location
model, typically the p-median model or one of its variants [5, 7].

Evacuation routing problems aim at determining the set of optimal routes to be
travelled. The most common types of evacuation considered in the literature are:
(1) self-evacuation (or car-based evacuation), and (2) supported-evacuation (or
bus-based evacuation). As reported in [18], car-based evacuation is normally rep-
resented by minimum cost network flow models [6], while bus-based evacuation is
represented by vehicle routing models [3, 8, 10, 12].

In an efficient evacuation plan, shelter and evacuation routing decisions should
be tackled together. Studies on shelter location and car-based evacuation [2, 7, 14–
16] are more common than studies merging shelter location with bus-based evac-
uation [11]. To the best of our knowledge, the only paper that addresses shelter
location, car- and bus-based evacuation into an integrated model is [9].
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The aim of our study is to propose an alternative integrated model, which
combines the use of a system-optimal approach and a user-optimal approach.
Specifically, we assume that the evacuation planner has control over the bus routes.
However, car-based evacuees aim at reaching the shelters following the shortest
available path. The model in [9], instead, uses only a system-optimal approach,
where the planning authority controls the behavior of both self- and
supported-evacuees. In addition, our model accounts for road disruption by
including different scenarios (in each scenario only a subset of links is available)
and identifies solutions that are robust under different disaster conditions (as in
[16]).

In this initial integrated model, we do not consider road congestion. However,
we assume that the traffic on the roads directly leading to a shelter is eased by a
contraflow lane reversal. Contraflow lane reversal is commonly used in emergency
situations to increase the number of road lanes exiting the disaster zone [18].

Finally, we assume that bus-based demand is sparse and the number of people in
need of supported-evacuation is a small fraction of the total number of evacuees.
These imply that buses can collect people from different evacuation areas before
going to the shelters and that the number of available buses is sufficient to bring all
the evacuees outside the dangerous zone with a single trip for each bus (due to our
contraflow reversal assumption, buses cannot go back to the dangerous zone).

3 Model Formulation

In this section, we present a mathematical formulation for the Scenario-Indexed
Shelter Location and Evacuation Routing (SISLER) problem. The assumptions
underpinning the models are as follows.

1. Both self-evacuation and supported-evacuation are considered.
2. Self-evacuation involves people evacuating with their own vehicles towards a

shelter (people moving towards other destinations are not considered). We refer
to this type of evacuation as evacuation mode (a) or car-based evacuation.

3. Supported-evacuation is arranged by public authorities and relies on buses
which are stored and dispatched from a depot. We refer to this type of evac-
uation as evacuation mode (b) or bus-based evacuation.

4. The area affected by the disaster is divided in different evacuation zones. Both
self- and supported-evacuation start at the centroid of each zone.

5. For each zone, the number of self-evacuees and bus-evacuees (evacuation
demand) is known.

6. Both shelters and buses have a limited capacity.
7. Split delivery of supported-evacuees is possible (more than one bus may collect

people from the same area and bring them to different shelters). However, all
self-evacuees from the same zone go to the same shelter. From a practical point
of view, in fact, it would be difficult to direct self-evacuees to different shelters.
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8. The objective is to minimize the supported-evacuation completion time.
9. Self-evacuees use the shortest available path to reach their assigned shelters

and, to guarantee an egalitarian allocation, they must reach shelter sites within a
given travel time threshold.

10. Contraflow [4, 17] has been assumed on the network arcs whose destination
node is a shelter site, which means that those arcs can be travelled only in one
direction towards the shelter.

11. Each bus performs a single trip to collect evacuees from the demand points.
12. Several disruption scenarios are considered, which differ in terms of road link

availability.

The SISLER problem can be described as follows. Given a directed network
G N,Að Þ, where N is the set of nodes and A is the set of arcs, let Na (Na⊆NÞ and
Nb(Nb⊆NÞ, indexed by i, be the sets of zones where evacuation mode (a) and
evacuation mode (b) start, respectively; Ns (Ns⊆NÞ the set of potential shelter sites,
indexed by j; D, the set of network disruption scenarios, indexed by d; Ad (Ad⊆AÞ
the set of available arcs under disruption scenario d; and K the set of buses stored
and dispatched from a depot node o (o∈NÞ, indexed by k.

The model parameters are: qai (i∈NaÞ and qbi (i∈NbÞ are the expected number of
mode (a) and mode (b) evacuees in zone i, respectively; Cj and rj, the capacity of a
shelter and the amount of resources to set up a shelter at site j; R the total amount of
available resources; Bk the capacity of bus k; τdlm the travel time from node l to node
m in scenario d (for bus-based evacuation); tdij the shortest travel time from zone i

∈Na to site j in scenario d (for car-based evacuation); Td the travel time threshold
for self-evacuees in scenario d; α the tolerance parameter to analyze variations of
the threshold Td; pd the probability of occurrence of scenario d.

The model uses the following flow variables: for each bus k in scenario d, gkdlm,
vkdi , and wkd

j , are, respectively, the number of evacuees who travel from node l to
node m, start evacuation at node i∈Nb, and end evacuation at site j. In addition, it
uses the location variables yj, equal to 1 if a shelter is opened at site j, 0 otherwise;
the allocation variables xdij, equal to 1 if the evacuees in zone i ∈Na are assigned to
shelter j in scenario d, 0 otherwise; and the routing variables zkdlm, equal to 1 if bus k
travels from node l to node m in scenario d, 0 otherwise. Finally, the model uses the
variables γd to represent the bus-based evacuation completion time in scenario d.

The mathematical formulation is:

min∑d∈D pdγd
s.t.

ð1Þ

γd ≥ ∑ l,mð Þ∈Ad
τdlmz

kd
lm ∀k∈K, d∈D ð2Þ
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∑j∈Ns
xdij =1 ∀i∈Na, d∈D ð3Þ

xdij ≤ yj ∀i∈Na, j∈Ns, d∈D ð4Þ

∑j∈Ns
tdijx

d
ij ≤ 1+ αð ÞTd ∀i∈Na, d∈D ð5Þ

∑m: o,mð Þ∈Ad
zkdom ≤ 1 ∀k∈K, d∈D ð6Þ

vkdm + ∑l: l,mð Þ∈Ad
gkdlm =wkd

m + ∑l: m, lð Þ∈Ad
gkdml ∀m∈N, k∈K, d∈D ð7Þ

∑l: l,mð Þ∈Ad
zkdlm − ∑l: m, lð Þ∈Ad

zkdml =0 ∀m∈N\ o∪Nsð Þ, k∈K, d∈D ð8Þ

gkdlm ≤Bkzkdlm ∀ l,mð Þ∈Ad, k∈K, d∈D ð9Þ

∑k∈K vkdi = qbi ∀i∈Nb, k∈K, d∈D ð10Þ

vkdl =0 ∀l∈N\Nb, k∈K, d∈D ð11Þ

wkd
l =0 ∀l∈N\Ns, k∈K, d∈D ð12Þ

∑j∈Ns
rjyj ≤R ð13Þ

∑i∈Na
qai x

d
ij + ∑k∈K wkd

j ≤Cjyj ∀j∈Ns, d∈D ð14Þ

gkdlm ≥ 0 ∀ l,mð Þ∈Ad, k∈K, d∈D ð15Þ

vkdl ≥ 0 ∀l∈N, k∈K, d∈D ð16Þ

wkd
l ≥ 0 ∀l∈N, k∈K, d∈D ð17Þ

yj ∈ 0, 1f g ∀j∈Ns ð18Þ

xdij ∈ 0, 1f g ∀i∈Na, j∈Ns, d∈D ð19Þ

zkdlm ∈ 0, 1f g ∀ l,mð Þ∈Ad, k∈K, d∈D ð20Þ

γd ≥ 0 ∀d∈D ð21Þ

The objective function (1) minimizes the expected bus-based evacuation com-
pletion time over the different network scenarios. Constraints (2) guarantee that γd
is the completion time (i.e., the longest bus route) in scenario d. Constraints (3)–(5)
model the car-based evacuation. For each scenario d, constraints (3) ensure that
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every evacuation zone i∈Na is assigned to exactly one shelter; constraints (4) state
that evacuees can only be assigned to open shelters; constraints (5) ensure that the
evacuation time for cars does not exceed a given threshold. Constraints (6)–(12)
model the bus-based evacuation. For each bus k and scenario d, constraints (6)
ensure that each bus departs from the depot o (if it departs); constraints (7) and (8)
are flow conservation constraints; constraints (9) impose that people travel an arc
only if a bus, whose capacity cannot be exceeded, serves that arc; constraints (10)
guarantee that all the people of zone i∈Nb evacuate to some shelter; constraints
(11) and (12) state that evacuation starts only at nodes i∈Nb and ends at shelter
sites j∈Ns, respectively. Constraint (13) states that the total amount of resources
available to set up shelters cannot be exceeded while constraints (14) link together
the self- and supported-evacuation variables by imposing that the shelter capacity
cannot be exceeded. Constraints (15)–(21) are non-negativity and binary
constraints.

Note that the use of the parameter α in constraints (5) allows the model to
identify trade-off solutions which balance the bus-evacuation completion time
objective and the self-evacuee equity requirement. An example is shown in Fig. 1: a
tight threshold (Fig. 1a) favors self-evacuation by forcing the selection of shelters
close to car-based or mixed evacuation zones; if the threshold is relaxed (Fig. 1b),
the bus-evacuation completion time (longest bus route) improves at the expense of a
longer self-evacuee travel time.

Fig. 1 Car-based oriented solution (a) and bus-based oriented solution (b): Triangle, square and
round shapes represent, respectively, the depot, candidate shelter sites and evacuation zones.
Selected shelter sites are marked with a cross and different evacuation zones are identified with
capital letters (i.e., C = car-based demand, B = bus-based demand, and M = mixed demand, i.e.,
both car- and bus-based demands). Normal and dashed arrows represent, respectively,
car-evacuees assignment and bus routes

572 A. Esposito Amideo and M.P. Scaparra



4 Computational Results

The SISLER model is a mixed-integer linear programming (MILP) model which
can be solved by off-the-shelf optimization software for modest size instances. The
model was implemented using IBM ILOG OPL modeling language and solved with
the solver CPLEX 12.6.2 on a computer with an Intel® Core™ i5-5200U CPU @
2.20 GHz and 8.00 GB of RAM.

SISLER was tested on small random instances generated as follows. We con-
sidered a 100 × 100 square study area like the one displayed in Fig. 2, where the
black area represents the central zone of the disaster and the white area the safety
zone. The coordinates of evacuation zones, transshipment nodes, and shelter sites
were generated at random in the black, light grey, and white areas, respectively.

Arcs were also generated at random and Euclidean distances were used as a
proxy for travel times. In accordance with our contraflow model assumption, we
assumed that arcs from transshipment nodes to shelter nodes can be traveled only in
one direction. We considered three scenarios: (1) a base scenario, where all network
arcs are available, (2) an average scenario, where some network arcs connecting
evacuation nodes are not available, and (3) a worse-case scenario where some arcs
between evacuation and transshipment nodes (from black to grey area) are also
unavailable.

In terms of model parameters: (i) a homogeneous bus fleet was assumed and the
number of buses was computed as the rounded ratio [total bus-based demand/bus
capacity]; (ii) shelter capacities were computed as in [7]; (iii) for each scenario and
car-based evacuation zone, the shortest travel time and the time threshold were
computed in a pre-processing phase (the former through a shortest path algorithm,
the latter by solving a capacitated p-center model); (iv) a decreasing probability
distribution was used for the three scenarios (p1 = 0.5, p2 = 0.3, and p3 = 0.2).

Fig. 2 Study area
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The results for a network with 25 nodes and 56 arcs are displayed in Table 1. For
each individual scenario and for the combined scenarios, the table reports the
bus-evacuation completion time, the total self-evacuation time and the open shelters
for different values of α ranging from 0 to 1 (note that the potential shelter sites are
nodes 19, 20, 21, 22, 23, 24).

From the analysis of the table, it is possible to infer the trade-off between the
bus-based and the car-based evacuation time. For example, in the base scenario,
when α increases from 0.1 to 0.2, the bus-evacuation time drops by nearly 33%
(from 212 to 143), while the car evacuation time increases by around 7%. Another
change in both shelter locations and times can be observed for α = 0.5. Note that
SISLER’s objective can yield multiple optimal solutions, some of which are inef-
ficient from the car-evacuation perspective. To guarantee an efficient allocation of
car-evacuees to shelters, we employed a lexicographic objective function by adding
a second term (total car evacuation time) to the objective (1) (see for example [3]).

The results in the table also highlight the importance of considering multiple
scenarios. The solutions found when all three scenarios are taken into account can
differ quite significantly from the solutions obtained for a single scenario. For
example, the optimal set of shelters in the solution obtained with α=0.2 (20, 21,
23, 24) is different from the optimal set selected in each individual scenario for the
same value of α (and so are the bus routes and self-evacuee allocations).

5 Conclusions

This paper introduced a scenario-based location-allocation-routing model to opti-
mize evacuation planning decisions. The model integrates shelter location and
evacuation routing decisions, while considering both a user perspective
(self-evacuation) and a system perspective (supported-evacuation). It also addresses
the uncertainty of the infrastructure availability after a disaster by optimizing
evacuation plans across several disruption scenarios. We demonstrated how the
model can be used to identify user-system trade-off solutions on a small sample
network. The example also highlights the importance of considering different dis-
ruption scenarios.

In the future, we plan to test the model on larger networks and for different
probability distributions. The simple network used in this study as a proof of
concept was solved by a general-purpose optimization solver in a matter of seconds.
Undoubtedly, solving larger problems with many disruption scenarios will require
devising ad hoc solution methods. Specifically, advanced methods for generating
realistic scenarios and solving large-scale stochastic programs (e.g., Sample
Average Approximation) should be developed.

The proposed model is still far from being comprehensive and could be further
extended to include other complicating aspects, such as a time perspective,
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congestion issues, multiple objectives, demand uncertainties and evacuee behavior.
Decisions about the timing of evacuation orders and the distribution of relief
supplies to shelters could also be integrated into the model.
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The Vehicle Routing Problem with
Occasional Drivers and Time Windows

Giusy Macrina, Luigi Di Puglia Pugliese, Francesca Guerriero and
Demetrio Laganà

Abstract In this paper, we study a variant of the Vehicle Routing Problem with

Time Windows in which the crowd-shipping is considered. We suppose that the

transportation company can make the deliveries by using its own fleet composed

of capacitated vehicles and also some occasional drivers. The latter can use their

own vehicle to make either a single delivery or multiple deliveries, for a small com-

pensation. We introduce two innovative and realistic aspects: the first one is that we

consider the time windows for both the customers and the occasional drivers; the

second one is the possibility for the occasional driver to make multiple deliveries.

We consider two different scenarios, in particular, in the first one multiple deliveries

are allowed for each occasional driver, in the second one the split delivery policy is

introduced. We propose and validate two different mathematical models to describe

this interesting new setting, by considering several realistic scenarios. The results

show that the transportation company can achieve important advantages by employ-

ing the occasional drivers, which become more significant if the multiple delivery

and the split delivery policy are both considered.
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1 Introduction

In the last years the growing importance of shorter delivery lead times has led the

companies to create innovative solutions to organize the last-mile and same-day

delivery. In this context, the “sharing economy” has attracted a great deal of interest.

Sharing assets and capacities can enhance the use of resource and become a new

opportunity to pursue the efficiency in transportation issue. One of the innovative

solution is the crowd-shipping, i.e. ordinary people bring items for other people en-

route to their destination. The rapid growth in on-line retailing has encouraged the

retailers to develop innovative solutions of last-mile delivery. Walmart, DHL and

Amazon are among those big retailers who started to use the crowd-shipping and its

potential. Walmart, in 2013, announced it was working on a plan to outsource some

of its deliveries to its on-line customers.

“MayWays” is the pilot last-mile crowd-shipping service of DHL in Stockholm.

Thus, people in Stockholm, mostly students, can use a smartphone app in order to

see the uploaded requests. Whereupon, they can decide if they want to pick up the

package at a DHL facility and deliver it to the final destination. In 2015, Amazon

launched its new service of crowd-shipping, called Amazon Flex, and nowadays it

is already used in more than 30 cities in the world. People use the Amazon Flex app

to become a delivery partner and set their own schedule.

In this context, crowd-shipping seems to be a new transport solution that offers

several potential benefits. The crowd-shipping strategy exploits the personal vehi-

cles capacity that usually travel on roads. This can be useful to reduce the need for

separate freight deliveries and it allows to exploit the whole capacity of a vehicle,

that is not fully used. There is also a “green” aspect that can be taken into account,

in particular, the sharing of the vehicles can lead to the reduction of the pollutant

emissions, the energy consumption, the noise and the traffic. In Arslan et al. [3],

the authors analyze the potential benefits of crowd-sourced delivery. They present a

complete literature review of the recent contributions dealing with crowd-sourcing.

They consider a peer-to-peer platform, taking into account the possibility to use

both traditional vehicles and ad-hoc vehicles. They also present a rolling horizon

framework and an exact solution approach to solve the routing planning problem.

In this work, we propose a variant of the Vehicle Routing Problem with Time Win-

dows (VRPTW), starting from the work presented in Archetti et al. [1], in which

the crowd-shipping is considered. In Archetti et al. [1], the authors propose a new

problem called VRPOD (Vehicle Routing Problem with Occasional Drivers). In the

VRPOD, the transportation company can make the deliveries not only by using its

own fleet composed by capacitated vehicles, but also by making use of the services of

some occasional drivers (ODs). The latter can use their own vehicle to make a single

delivery, for a small compensation calculated by evaluating the deviation from their

predefined route. They propose an integer programming formulation for the VRPOD

and develop a multi-start heuristic, which combines variable neighbourhood search

and tabu search. We introduce two innovative aspects to the problem proposed in

Archetti et al. [1]. The first one is that we consider time windows constraints for
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both the customers and the occasional drivers (VRPODTW); indeed, it is merely

improbable that an occasional driver is all the time available to make the delivery to

the customers. The second one is the possibility for the ODs to make not only a sin-

gle delivery. As a matter of fact, if on the occasional driver’s way there is more than

one customer to be served, and the constraints related to time and load are satisfied,

the multiple delivery is allowed. The proposed mathematical models are described

in Sect. 2. The computational experiments are presented in Sect. 3. Finally, Sect. 3.3

summarizes the conclusions.

2 The Vehicle Routing Problem with Occasional Drivers

We model the problem on a complete directed graph G = (N,A), with node set N =
C ∪ {s, t} ∪ V , where C is the set of customers while s is the origin node and t is

destination node for the classic vehicles. Let A be the set of arcs. K is the set of

available ODs while V is the set of vk destinations associated with the ODs. Each arc

(i, j) ∈ A has a cost cij and a time ti,j associated with it. Note that both cij and tij satisfy

the triangle inequality. Each node i ∈ C ∪ V has a time windows defined as [ei, li].
Each customer i ∈ C has a demand di. Q is the capacity of the classic vehicles, P is

the number of available classic vehicles, while Qk is the capacity of OD k ∈ K. Let

xij be a binary variable that is equal to 1 if a classical vehicle traverses the arc (i, j),
and 0 otherwise. For each node i ∈ N let yi be the available capacity of the vehicle

after visiting customer i, while si is the arrival time of the vehicle to the customer

i. Moreover rkij is a binary variable that is equal to 1 if the OD k traverses the arc

(i, j), 0 otherwise. Let f ki indicate the arrival time of OD k to the customer i and let

wk
i be the available capacity of OD k after visiting customer i. At first we consider

the scenario in which multiple deliveries for the OD are allowed and we called this

version: VRPODTWmd. The VRPODTWmd can be formulated as follows:

Min

∑

i∈C∪{s}

∑

j∈C∪{t}
cijxij +

∑

k∈K

∑

i∈C∪{s}

∑

j∈C
𝜌cijrkij −

∑

k∈K

∑

j∈C
csvk r

k
sj (1)

s.t.
∑

j∈C∪{t}
xij −

∑

j∈C∪{s}
xji = 0, ∀i ∈ C (2)

∑

j∈C
xsj −

∑

j∈C
xjt = 0 (3)

yj ≥ yi + djxij − Q(1 − xij), ∀j ∈ C ∪ {t}, i ∈ C ∪ {s} (4)

ys ≤ Q (5)

sj ≥ si + tijxij − 𝛼(1 − xij), ∀i ∈ C, j ∈ C (6)

ei ≤ si ≤ li, ∀i ∈ C (7)
∑

j∈C
xsj ≤ P (8)
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∑

j∈C∪{vk}
rkij −

∑

h∈C∪{s}
rkhi = 0, ∀i ∈ C, k ∈ K (9)

∑

j∈C∪{vk}
rksj −

∑

j∈C∪{s}
rkjvk = 0, ∀k ∈ K (10)

∑

k∈K

∑

j∈C∪{vk}
rksj ≤ |K| (11)

∑

j∈C
rksj ≤ 1, ∀k ∈ K (12)

wk
j ≥ wk

i + dirkij − Qk(1 − rkij), ∀j ∈ C ∪ {vk}, i ∈ C ∪ {s}, k ∈ K (13)

wk
s ≤ Qk, ∀k ∈ K (14)

f ki + tijrkij − 𝛼(1 − rkij) ≤ f kj , ∀i ∈ C, j ∈ C, k ∈ K (15)

f ki ≥ evk + tsi, ∀i ∈ C, k ∈ K (16)

f kvk ≤ lvk , ∀k ∈ K (17)

f ki + tivk r
k
ivk

− 𝛼(1 − rkivk ) ≤ f kvk , ∀i ∈ C, k ∈ K (18)

ei ≤ f ki ≤ li, ∀i ∈ C (19)
∑

j∈C∪{t}
xij +

∑

h∈C∪{vk}

∑

k∈K
rkih = 1, ∀i ∈ C (20)

xij ∈ {0, 1} , ∀(i, j) ∈ A (21)

rkij ∈ {0, 1} , ∀(i, j) ∈ A, k ∈ K (22)

0 ≤ yi ≤ Q, ∀i ∈ C ∪ {s, t} (23)

0 ≤ wk
i ≤ Qk, ∀i ∈ C ∪ {s, vk}, k ∈ K (24)

f ki ≥ 0, ∀i ∈ C ∪ {s, vk}, k ∈ K (25)

The objective function 1 aims to minimize the total costs. The first term is the

transportation cost associated with the vehicles. The second term is the cost of com-

pensation of the OD k for the delivery service with 𝜌 ≥ 0, the third one is the cost of

the OD k when it does not perform the delivery service. Constraints 2–8 are linked

to the classical vehicles. Constraint 2–3 are the flow constraints. Constraints 4 guar-

antee the fulfilment of demand at customer vertices. Constraints 5 restrict the ini-

tial cargo load level to the maximum capacity of a vehicle. Constraints 6 allow to

determine the arrival time at node j, while constraints 7 guarantee arrival within the

time window at each node. Constraints 8 impose a maximum number of available

vehicles. Constraints 9–19 are linked to the ODs. Constraint 9–10 are the flow con-

straints. Constraints 11–12 guarantee a limit on the number of available ODs and the

number of departs from the depot. Constraints 13–14 are the capacity constraints.

Constraints 15 allow to determine the arrival time at node j. Constraints 16–17 are

the time windows constraints and they also define the time in which the ODs are

available to make the deliveries, while constraints 18 allow to determine the arrival
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time at the destination node vk. Constraints 19 assure that each customer is served

within its time windows. Constraint 20 guarantees that each customer is visited at

most once, by either a classic vehicle or an OD. We also formulate a second VRPOD
variant, called VRPODTWsd in which we consider a split delivery policy for the

ODs. Thus, the assumption that each customer is visited only once by the ODs is

relaxed (constraint 20). We introduce a new variable oki that indicates the quantity of

demand di delivered by the OD k ∈ K to the customer i ∈ C. In order to define the

VRPODTWsd, starting from VRPODTWmd, constraints 13 and 20 are modified as

follows:

wk
j ≥ wk

i + oki − Qk(1 − rkij), ∀j ∈ C ∪ {vk}, i ∈ C ∪ {s}, k ∈ K (26)

∑

j∈C∪{t}
xij +

∑

h∈C∈{vk}

∑

k∈K
rkih ≥ 1, ∀i ∈ C (27)

It is also necessary to introduce new constraints for modelling the split delivery

policy for the ODs:

∑

k∈K
oki + di

∑

j∈C∪{s}
xji = di, ∀i ∈ C (28)

∑

i∈C
oki ≤ Qk, ∀k ∈ K (29)

oki ≥ 0, ∀i ∈ C, k ∈ K (30)

3 Computational Experiments

This section presents the results of computational experiments performed in order

to validate the proposed models. The main goal is to demonstrate the potential ben-

efits that can be obtained by using the crowd-shipping in a realistic scenario. With

this purpose we take into account the state-of-art mathematical model proposed in

Archetti et al. [1], we add to this problem the time windows (VRPODTW) and we

find the optimal solution by solving it with a commercial solver. Whereupon, we

solve our proposed models and compare the obtained results. We divided the com-

parative analysis into two phases, in the first one the results obtained solving the

VRPODTW is compared to those obtained by solving the VRPODTWmd. In the sec-

ond phase, we present a comparative analysis of the results obtained by solving the

VRPODTWmd and those obtained with the split delivery policy, the VRPODTWsd.

The models were implemented and solved with the commercial solver CPLEX 12.5

and run on a computer with an Intel Core i5 processor at 2.70 GHz and 4 GB of

RAM. We first describe the generated instances and after the results.
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3.1 Generation of VRPOD Instances

The instances, used to assess the behaviour of proposed models in terms of solu-

tions quality, are based on the classical Solomon VRPTW instances (see Solomon

[2]). As well known, these instances are divided into 3 classes C, R and RC that

differ for the geographical distribution of the customer locations: a clustered distrib-

ution (C), random distribution (R) and a mix of both (RC). Each class is divided into

two subclasses, the first one (C1, R1, RC1) has a short scheduling horizon, while

the second one (C2, R2, RC2) has a long scheduling horizon. We create a set of

36 small instances randomly choosing 5, 10 and 15 customers and 3 OD destina-

tions. To obtain the problem tests for the VRPOD, given a VRPTW instance with

the customers locations identified by the coordinates (xi, yi), we randomly generate

3 destinations for the ODs, in the square with lower left hand corner (minixi,miniyi)
and upper right hand corner (maxixi,maxiyi), (see Archetti et al. [1]). After we ran-

domly generate a reasonably time window.

3.2 Comparative Analysis

We now present a comparative analysis of the results, divided into two phases. At

first we take into account the results of the VRPODTW and those obtained by solv-

ing the VRPODTWmd, whereupon, we introduce the results obtained solving the

VRPODTWsd. We use the settings reported in the Tables 1 and 3 for the first part

of experiments and for the second one, respectively. Table 2 presents the compari-

son results for each VRPODTW instance against VRPODTWmd. Each table has 4

columns, for each version of the model. The first one shows the name of the instance,

the second one the cost of the solution, in the third one #CD is the number of the clas-

sical drivers, while #OD, in the fourth one, the number of the ODs. In the last column

the “GAP” on the cost is calculated as follows: Gap=
ObjVRPOD−ObjVRPODTWmd

ObjVRPOD
.

The computational results show the VRPODTWmd model outperforms

VRPODTW in terms of solution quality. The “Gap” is equal to 13% for the instances

with 5 and 15 node and 10% for the instances with 10 customers. The reduction of

the cost is due to the use of the ODs, that allowed to make multiple deliveries. The

Table 1 Parameters setting

# Cus-

tomers

Parameters

|C| P Q |K| Q1 Q2 Q3 𝜌

5 5 1 100.0 3 30.0 30.0 40.0 1.1

10 10 2 100.0 3 30.0 30.0 40.0 1.1

15 15 3 100.0 3 40.0 40.0 60.0 1.1
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Table 2 Results for the VRPODTW and VRPODTWmd

(a) Results for instances with 5 customers

Test VRPODTW VRPODTWmd

Cost # CD # OD Cost # CD # OD Gap%

C101C5 139.7 1 2 124.9 1 2 11

C103C5 110.3 1 3 106.6 1 2 3

C206C5 159.6 1 1 138.4 1 2 13

C208C5 113.3 1 2 91.1 0 3 20

R104C5 83 1 2 83 1 2 0

R105C5 91.5 1 3 77.5 1 3 15

R202C5 125.8 1 2 125.8 1 2 0

R203C5 125.3 1 3 93.4 1 3 25

RC105C5 134 1 2 126.6 1 2 6

RC108C5 210.5 1 2 164 1 2 22

RC204C5 107 1 2 107 1 2 0

RC208C5 122.6 1 3 76 1 3 38

Avg 126.8833 109.525 13
(b) Results for instances with 10 customers

Test VRPODTW VRPODTWmd

Cost # CD # OD Cost # CD # OD Gap%

C101C10 261.7 2 3 250.6 2 3 4

C104C10 223.7 2 3 196.9 1 3 12

C202C10 181.4 2 3 172.3 1 3 5

C205C10 184.7 2 2 172.9 1 3 6

R102C10 169.7 2 3 134.0 1 3 21

R103C10 150.0 2 0 122.7 1 2 18

R201C10 154.6 2 3 146.3 2 3 5

R203C10 149.7 1 3 132.9 1 3 11

RC102C10 294.2 2 3 276.0 1 3 6

RC108C10 276.2 2 3 235.2 2 2 15

RC201C10 242.8 2 2 226.3 1 2 7

RC205C10 270.1 2 2 260.3 2 2 4

Avg 213.2333 193.8667 10
(continued)
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Table 2 (continued)

(c) Results for instances with 15 customers

Test VRPODTW VRPODTWmd

Cost # CD # OD Cost # CD # OD Gap%

C103C15 296.6 2 2 264.8 2 1 11

C106C15 222.4 2 2 173.8 1 3 22

C202C15 322.0 3 2 285.2 2 2 11

C208C15 270.9 3 1 255.9 2 2 6

R102C15 305.4 3 2 279.9 2 2 8

R105C15 279.6 3 2 244.0 2 2 13

R202C15 345.4 3 1 320.9 2 2 7

R209C15 276.4 3 1 240.1 2 2 13

RC103C15 336.3 3 2 248.4 2 2 26

RC108C15 377.0 3 1 334.8 2 2 11

RC202C15 362.5 3 1 281.5 2 2 22

RC204C15 357.4 3 2 326.6 2 2 9

Avg 312.7 271.3 13

Table 3 Parameters setting

# cus-

tomers

Parameters

|C| P Q |K| Q1 Q2 Q3 𝜌

5 5 2 60.0 3 5.0 10.0 15.0 1.1

10 10 2 75.0 3 10.0 10.0 15.0 1.1

15 15 3 75.0 3 10.0 15.0 15.0 1.1

solutions of the VRPODTW model use a number of classical drivers greater than

the one used in the VRPODTWmd’s solutions (35% more) and the cost of the solu-

tion is higher. While, solving VRPODTWmd allows to involve the 9.52% of ODs

more than VRPODTW. However, it is possible to highlight that, even if the same

configuration of vehicles is obtained, the solutions obtained with VRPODTWms

are more competitive than those obtained with VRPODTW. E.g. in the solutions

of the instance “RC208C5” both the models consider one classical driver and two

occasional drivers, however, the cost for the VRPODTW solution is about the 60%

higher. Overall, the use of ODs allowed to make multiple deliveries optimizes the

total costs and reduces the use of classical vehicles.

The Table 4 present the comparison results for each VRPODTWmd instance

against VRPODTWsd. The results of Table 4 clearly underline that the use of the

split delivery strategy results competitive in terms of effectiveness. On average, a cost

reduction of about 10% is observed. The possibility to split the deliveries increases

the number of ODs used by the VRPODTWsd, with a consequent cost saving, i.e.
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Table 4 Results for the VRPODTWmd and VRPODTWsd

(a) Results for instances with 5 customers

Test VRPODTWmd VRPODTWsd

Cost # CD # OD Cost # CD # OD Gap%

C101C5 213.1 2 1 195.3 2 2 8

C103C5 159.0 2 0 153 2 2 4

C206C5 202.3 1 1 175.4 1 2 13

C208C5 154.2 1 2 141.4 1 2 8

R104C5 166.0 2 0 162.3 2 2 2

R105C5 155.1 2 1 149.3 2 3 4

R202C5 170.0 2 0 156.8 2 2 8

R203C5 179.0 2 1 174.2 1 3 3

RC105C5 228.0 2 0 177.1 2 2 22

RC108C5 203.5 1 1 202.5 1 2 0

RC204C5 173 2 1 118.3 1 3 32

RC208C5 189.8 2 1 174.2 2 3 8

Avg 182.8 164.9 9
(b) Results for instances with 10 customers

Test VRPODTWmd VRPODTWsd

Cost # CD # OD Cost # CD # OD Gap%

C101C10 353.3 2 3 324.7 2 3 8

C104C10 315.8 2 3 276 2 3 13

C202C10 295.9 2 3 227.8 2 3 23

C205C10 206.2 2 1 188 2 2 9

R102C10 208.9 2 1 198.6 2 3 5

R103C10 185.7 2 2 167 2 3 10

R201C10 263.8 2 2 209.6 2 3 21

R203C10 204.7 2 1 172.3 2 3 16

RC108C10 434.6 2 3 393.9 2 3 9

RC102C10 396.6 2 2 391 2 3 1

RC201C10 333.4 2 2 327.2 2 3 2

RC205C10 340.8 2 2 340.8 2 2 0

Avg 294.9 268.1 10
(continued)
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Table 4 (continued)

(c) Results for instances with 5 customers

Test VRPODTWmd VRPODTWsd

Cost # CD # OD Cost # CD # OD Gap%

C103C15 318.4 3 1 318.4 3 1 0

C106C15 253.3 3 2 247.8 3 2 2

C202C15 413.6 3 3 404.8 3 2 2

C208C15 154.2 1 2 141.4 1 2 8

R102C15 360.8 3 2 315.6 3 3 13

R105C15 309.6 3 2 299.6 3 3 3

R202C15 392.4 3 2 379.2 3 2 3

R209C15 345.5 3 2 328.6 3 2 5

RC103C15 360.9 3 2 356.9 3 2 1

RC108C15 488.2 3 3 465.5 3 3 5

RC202C15 479.9 3 3 444.5 3 3 7

RC204C15 346.0 3 0 345.7 3 2 0

Avg 351.9 337.3 4

the 62.50% more than those used by the VRPODTWmd. Also for these experiments,

when the same configuration of vehicles is used in the solutions, often VRPODTWsd

outperforms VRPODTWmd. E.g. for the instances “C208C5”, “C101C10” and

“C208C15” in which the same number of classical and occasional drivers are used

in the solutions, the “Gap” is equal to 8%. In summary, the presented models outper-

form the literature model in terms of effectiveness. The computational experiments

highlight the benefits reached when the ODs are used to make deliveries, which

become more interesting when the split delivery policy is considered.

3.3 Conclusions

We have proposed two innovative variants for the VRP. We take into account the

possibility that a company may use the service provided by some ODs. The ODs are

available to make some deliveries for a small compensation. The main goal has been

to investigate the achievable potential benefits by introducing the crowd-sourcing

in the VRP. The results of our computational experiments are very encouraging.

We demonstrated that the use of the ODs may improve the routing plan, generating

an interesting cost saving. The possibility to make multiple deliveries and the split

delivery policy allows to exploit the whole capacity of the ODs. This work can be

viewed as a base for several future works. There are more aspects that can be taken

into account. For example the “green” aspect of this strategy. In fact, the use of the

ODs reduces the pollutant emissions and the traffic congestion. The ODs perform
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travels that ordinarily already take place, thus, there is a reduction of routed vehicles

and distance travelled. There is also the possibility to deliver the goods by bicycles

or public transport. In conclusion, crowd-shipping allows the company to outsource

the “last mile” deliveries to ordinary citizens and this may be an opportunity but

also a risk. The company may provide a convenient and efficient delivery service.

However, misuse the crowd-shipping implies giving more responsibility to the ODs,

and it is intrinsically a risk.
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Preemptive Scheduling of a Single Machine
with Finite States to Minimize Energy Costs

Mohammad Mohsen Aghelinejad, Yassine Ouazene and Alice Yalaoui

Abstract This paper addresses a single machine scheduling problem in which the

system may switch among three different states, namely ON (needed for process-

ing the jobs), OFF or Idle. Each state, as well as switching among the different

states, consume energy. The objective is schedule n preemptive jobs to minimize

the total energy costs. Time varied electricity price are considered. The complex-

ity of this problem is investigated using a new dynamic programming approach. In

this approach, a finite graph is used to model the proposed problem. The dimension

(number of vertices and edges) of this graph is dependent on the total processing

times and the total number of periods. Then, the optimal solution of the problem is

provided by calculating the shortest path between the first node and last node repre-

senting respectively the first and the last periods. Based on the Dijkstra’s algorithm

complexity, we prove that the complexity of this problem, is polynomial of degree

3.

Keywords Preemption scheduling problem ⋅Time-dependent energy costs

Dynamic programming ⋅ Dijkstra’s algorithm

1 Introduction

Nowadays, the increase of the electricity prices in the most industrial countries

attracted the attention of many researchers all around the world. A comprehensive
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review of previous studies demonstrates that minimization of energy consumption

in a manufacturing system can be applied in three different sectors: machine-level,

product-level, and system-level. The study of machine-level or product-level needs

enormous financial investments to study the machine(s) or product(s) redesign pro-

cedures. But, in the system-level’s study, manufacturers may reduce the system’s

energy consumption by using the existing decision models and optimization tech-

niques in production planning and scheduling. So, in this paper, the system-level’s

study is considered with some decreasing energy consumption’s methods for a man-

ufacturing system with single machine.

The total energy consumptions of a production system can be divided into the non-

processing states (NPE) energy consumptions (the start-up, the transition between

different states, shut down and idle states), and the processing state (PE) energy con-

sumptions. Also, the amount of machine’s energy consumption depends on the type

of machine or jobs, the state of the machine, and processing speed of the machine

during each state. One of the easiest and most popular ways for total energy con-

sumption minimization is investigating the NPE consumption states and using a

scheduling method to change the processing job’s order and machine’s state during

a production shift.

In this section, we give few examples of the studies that investigated these types

of problems. The complexity of a classical deadline-based scheduling problem for

the non-preemptive and preemptive cases with variable speed processing are stud-

ied in [2, 4]. The multi-objective models that minimizes the energy consumption

and a traditional scheduling performance measure like total completion time and

total tardiness are presented in [12, 13, 15]. Different energy charging policies like

time-of-use (TOU) pricing, real-time pricing, and critical peak pricing, can be con-

sidered to investigate the total energy cost of a system. An energy-conscious single

machine scheduling problem, when each processing job has its power consumption,

and electricity prices may vary from hour to hour throughout a day, are assumed

in [3]. Energy constraint and different energy cost during the planning horizon of a

flow-shop system are considered in [9, 10]. The generic mixed-integer programming

models for a single machine scheduling that minimize total energy cost at volatile

energy prices are presented in [6, 7]. The minimization of total electricity consump-

tion costs and operations postponement penalty costs for a preemptive scheduling

problem with energy constraint, different power demand for each job, and the elec-

tricity time-varying prices is investigated in [11]. In [14], a mathematical model is

proposed to minimize total energy consumption costs for a single machine with dif-

ferent possible states and energy consumptions. The problem with the same assump-

tions is considered in [1] to improve the previous mathematical model. They also

presented a new mathematical model to obtain the optimal schedule for the machine

state and job’s sequence simultaneously. A novel production scheduling method for

minimizing the energy cost of a system with finite states machine, multiple process

idle modes and time varied electricity price are addressed in [8].

The rest of this paper is organized as follows. Section 2 introduces the problem

statement. Also, the different notations and assumptions are described. Section 3 pro-

poses a dynamic programming method to define the problem. Section 4 deals with
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the complexity analysis of the proposed scheduling problem. The numerical exper-

iments results are reported in Sect. 5. Finally, Sect. 6 summarizes the contributions

of this paper and some perspectives.

2 Problem Statement

This paper addresses the problem of scheduling n jobs on a single machine, which

may switch among three different states, namely ON (needed for processing the

jobs), OFF or Idle, within a given planning horizon T . When the machine is in state

OFF, a fixed number of periods (𝛽1) will elapse until the machine is ready to process

a job. Likewise, when the machine is in state ON, a different fixed number of periods

(𝛽2) will elapse until it arrives in OFF state.

Each state, as well as switching among the states, entails a certain energy con-

sumption. Energy consumption of each state is denoted by es; ∀s ∈ {1,… , 5}. These

numbers are related respectively to state OFF, Turn on, ON, Idle, and Turn off, and

their values are the problem’s input (Fig. 1). The machine processes the jobs in state

ON, and e1 (the energy consumption of machine in state OFF), is assumed to be

equal to zero in this study.

Each job j ∈ {1, ..., n} has a required process time pj. All the jobs are available

from the initial period and they can processed preemptively during the state ON of

the machine. The machine must be in state OFF for initial and final periods.

The objective of this study is to find an optimal schedule for the machine states

and jobs’ sequence to minimize the total energy costs of the system, when time varied

electricity prices are considered during the horizon time (ct).
The non-preemptive version of this problem with fixed sequence is presented in

[1]. So, the mathematical model of this study can be obtained by relaxing the related

constraints for non-preemption and fixed sequence of the model detailed in [1].

Fig. 1 Machine states and possible transitions
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For the studied problem, a number of jobs must be schedule during a fixed horizon

time. The decision makers are facing two categories of periods: the required periods

and the surplus periods which is denoted by x. The surplus periods must be allocated

to non-processing states. In our study, the non-processing states for the system are

considered as the OFF state(s) at the beginning or end of the horizon, Idle state(s)

and/or OFF state(s) in the middle of the horizon between the processing states. The

minimum number of required periods for processing all the jobs completely, is equal

to sum of the total process times (P =
∑n

j=1 pj), plus the require periods for initial

turning on (𝛽1), final turning off (𝛽2) and 1 for the final period that machine must

be in state OFF. Therefore, the extra periods within the horizon time in which the

machine should be in non-processing states are equal to x = T − [P + (𝛽1 + 𝛽2 + 1)].
As a first contribution of this paper, a new dynamic programming method is pro-

posed as will be described in the next section.

3 Dynamic Programming Modelling Approach

In this section, a new dynamic programming approach is developed to model all

the possible solutions of this problem on a graph. This graph is composed of T + 1
decision levels that indicate each period of the horizon time. Due to the extra periods

at each decision level (t), there are a set of states (nodes) (Nt) that correspond to

cumulative possible number of production units (k) from period 0 to t. Therefore,

the possible values for the states are {0, ...,P + 1}, where 0 indicates the initial shut

down state when any job is not processed yet, and P + 1 indicates the final shut

down state when all the jobs (P) are processed. Each node may be identified by a

(k, t) notation, where, 0 ≤ k ≤ P + 1 and 0 ≤ t ≤ T . As an example, for the problem

illustrated at Fig. 2, N4 = {0, 1, 2};N10 = {2, 3, 4, 5, 6}.

As decision makers are facing x extra periods, or in the other words, x non-

processing states that should be located within all the time horizon, each machine’s

state k has a possible set {tmin(k),… , tmax(k)} in the time horizon.

For example, the latest period that machine can be in the initial shutdown state

tmax(0) is when enough periods remain for performing the necessary setups and

processing all the jobs. So, tmax(0) = T − 𝛽1 − P − 𝛽2 − 1 = x. The related set for

node k is:

{tmin(k−1) + 𝛽k−1,k + 1,… , tmax(k−1) + 𝛽k−1,k + 1} (1)

where, 𝛽k−1,k is the required number of periods for transition from k − 1 to k. In this

study, 𝛽k−1,k∀k ∈ {2,… ,P} is considered as 0. Therefore, the interval of possible

positions for node k can be simplified as:

t0 ∈ {0,… , x}; tP+1 ∈ {T − x,… ,T}; tk ∈ {𝛽1 + k,… , x + 𝛽1 + k}; ∀k ∈ {1,… ,P} (2)

The edges of the graph that connect two vertices, can be divided in three main sets,

and they are valued (V(k,t)−(k′,t′)) by the total energy cost for related transition (positive
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value). The first set (E1), is related to the connection between two nodes with the

same production level k in decision level t and t + 1. These edges can indicate the

initial and final shutdown with the edge value of 0, and the idle state with the edge

value of:

V(k,t)−(k,t+1) = ct+1 × e4 ; ∀k ∈ {1, 2,… ,P} (3)

where, ct is the cost of energy per unit in period t, and e4 is the machine’s energy

consumption in idle state. The cardinal of E1 is |E1| = (P + 2) × x.

The second set (E2), is related to the connection between a node of production

level k at period t with a node of production level k + 1 at period t′ > t. This set of

edges illustrates three transitions cases:

∙ initial turning on with the edge value of:

V(0,t)−(1,t′) =
t′−1∑

i=t+1
(ci × e2) + ct′ × e3 ; ∀t′ = t + 𝛽1 + 1 (4)

∙ processing the next job with the edge value of:

V(k,t)−(k+1,t′) = ct′ × e3 ; ∀t′ = t + 1 (5)

∙ final turning off with the edge value of:

V(P,t)−(P+1,t′) =
t′−1∑

i=t+1
(ci × e5) + ct′ × e2 ; ∀t′ = t + 𝛽2 + 1 (6)

The cardinal of this set of edges is equal to |E2| = (P + 1) × (x + 1).
The last set of the edges (E3), is related to middle shutdowns between two

processing parts, that connects nodes k in level t′, and node k + 1 in level t. Where,

t′ ∈ {tmin(k),… , x + k − 𝛽2 − 1} with the edge value of:

V(k,t′)−(k+1,t) =
t′+𝛽2∑

i=t′+1
(ci × e5) +

t−1∑

i=t−𝛽1

(ci × e2) + ct × e3 ; ∀k ∈ {1, 2,… ,P − 1}

(7)

The total number of the third set of edges is equal to:

|E3| =
x−(𝛽1+𝛽2)∑

i=1
i × (P − 1) =

(x − (𝛽1 + 𝛽2)) × (x − (𝛽1 + 𝛽1) + 1)
2

× (P − 1) (8)

Therefore, the total number of vertices and edges for the presented graph are:

|V| = (P + 2) × (x + 1) ≅ TP ; |E| = |E1| + |E2| + |E3| ≅ T2P (9)
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To illustrate this graph construction method, we consider an example with P =
5,T = 15, 𝛽1 = 2, 𝛽2 = 1, x = 6, and different energy prices in horizon. The corre-

sponding graph consists of 49 vertices and 108 edges (see Fig. 2), and the value of

each edge is presented on it.

4 Problem Complexity Analysis

Based on this graph modelling approach, each path from the initial level at period

0 to level P+1 at period T represents a feasible solution. As the objective of this

problem is the total energy costs minimization, the shortest path between these two

nodes, is the optimal solution of the problem. To illustrate that this may be achieve in

polynomial time, we consider Dijkstra’s algorithm. We define a recurrence equation

for the computation of the minimum cost for arriving to the node (k, t):

C(0,0) = 0
C(k,t) = min

(k′,t′)∈Ak,t
{C(k′,t′) + V(k′,t′)−(k,t)} (10)

Fig. 2 Graph representation for a instance with 5 process times and 15 periods
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where, Ak,t is set of the precedent nodes that are connected to node (k, t) directly.

For example, in Fig. 2, A4,11 = {(4, 10), (3, 10), (3, 6), (3, 5)}. Finally, the amount of

C(P+1,T) represents the value of objective function for our problem.

In the previous sections of this paper, at first the considered problem is modeled

by a dynamic programming method, then Dijkstra’s algorithm is used to find the

optimal solution. Therefore, the complexity of this problem is equal to complexity

of the Dijkstra’s algorithm for this problem.

According to [5], the implementation of Dijkstra’s algorithm based on a min-

priority queue, runs in O(|E| + |V| log |V|) (where |E| is the number of edges and |V|
is the number of vertices or nodes). Consequently, the complexity of this algorithm

for the presented problem is equal to:

O(T2P + TP log TP) = O(T2P + TP log T + TP logP) ≅ O(T2P) (11)

Since, the largest possible value of P is certainly less than T (worst case analysis), so,

the optimal solution of this problem may be obtained in polynomial time (O(T3)).

5 Numerical Experiments

Some numerical experiments are presented to show the effectiveness of the proposed

approach. Also, the results of this approach is compared with the linear programming

method which is implemented on ILOG CPLEX Software. During this study, a com-

puter with 2.6 GHz Intel Core i5 processor and 8 GB of RAM was used to perform

all the experiments. Table 1 represents a part of the obtained results for the prob-

lem with P process times and T periods. The results illustrate the effectiveness of

Dijkstra’s algorithm in all the cases with less time-consuming than CPLEX.

6 Conclusion

In this paper, the complexity of the preemption case of a single machine scheduling

problem with state-dependent and time-dependent energy cost is investigated when

the objective is the total energy consumption costs minimization. This problem is

modelled with a finite graph and then, the optimal schedule for the machine state

in each period is found by the Dijkstra’s algorithm during a polynomial time. The

complexity analysis of this algorithm proved that, the considered problem is a poly-

nomial problem of degree 3 (O(T3)). Finally, the presented method is applied for sev-

eral instances. The obtained results by CPLEX software (Branch and Cut method)

and Dijkstra’s algorithm (Dynamic programming method) for the same instances,

showed that in all the cases the proposed method finds the optimal solution in a few

seconds.
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As future study, an extension of the presented dynamic programming approach,

for the non-preemption case of this problem, as well as, scheduling problems of a

single machine with more assumptions and constraints are envisioned.
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An Optimization Model for the Outbound
Truck Scheduling Problem
at Cross-Docking Platforms

Antonio Diglio, Andrea Genovese and Carmela Piccolo

Abstract A cross-dock is a facility where arriving materials are sorted, grouped
and delivered to destinations, with very limited storage times, with the overall
objective of optimizing the total management costs. The operational efficiency of a
cross-docking system strongly depends on how the logistic activities are organized.
For this reason, optimization models and methods can be very useful to improve the
system performances. In this paper, we propose a mathematical model to describe
the so-called truck scheduling problem at a cross-docking platform. The model
considers most of the actual constraints occurring in real problems; therefore, it can
be viewed as an interesting basis to define a decision support system for this kind of
problems. Some preliminary results show that the model can be efficiently solved in
limited computational times.

Keywords Supply chain ⋅ Cross-docking ⋅ Truck scheduling

1 Introduction

A cross-dock is a facility that receives goods from suppliers and sorts them into
alternative groups, based on the downstream delivery points. This way, it is pos-
sible to reduce the total distribution costs taking advantage of the benefits of a
warehousing strategy in terms of consolidation (enabling economies of scale
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through the consolidation of multiple less-than-truckload shipments), but avoiding
storage costs and reducing handling operations.

In the literature, several models and methods have been proposed to address
different kinds of cross-docking optimization problems. In this paper, we propose a
mathematical model to describe the so-called truck scheduling problem at a
cross-dock. The model considers most of the actual constraints occurring in
real-world problems, striving to define a decision support system for the manage-
ment of cross-docking platforms.

The remainder of the paper is arranged as follows. In the next section, a review
of the extant literature dealing with cross-docking optimization highlights the main
research strands and potential gaps. Then, the description of the model is provided.
Computational results are then illustrated, showing that the model can be efficiently
solved in limited computational times.

2 Literature Review

In recent years, many attempts have been made in order to systematize the
cross-docking literature [1–5]. In particular, Buijs et al. [5] classified problems on
the basis of spatial and temporal aspects, distinguishing between single cross-dock
and cross-docking network management problems, and, according to the temporal
dimension, among strategic, medium term and operational problems. Most of the
literature concerns with operational decision-making problems at a local level; in
particular with:

• the inbound truck scheduling problem, consisting in the assignment of the
inbound trucks to the receiving doors and of their subsequent scheduling;

• the outbound truck scheduling problem, arising when, starting from the inbound
trucks’ arrival scheduling, the loading and the scheduling of outbound vehicles
should be determined, along with their assignment to shipping doors;

• the synchronization truck scheduling problem, arising when both the previous
problems have to be simultaneously solved.

Considering the interdependencies among the above problems, global opti-
mization approaches should include all the planning and management aspects.
However, the relevant complexity of the single sub-problems suggests the devel-
opment of separated models and methods.

Most of the papers in the literature consider very simplifying assumptions,
representing the cross-docking facility with one receiving door, one shipping door
and an infinite staging area capacity [6–10]. With a slight variation, Vahdani and
Zandieh [11] and Soltani and Saldjadi [12] considered a cross-dock that does not
allow storage. Chen and Lee [13] solved the one inbound—one outbound door
truck scheduling, modelling it as a detailed scheduling problem. Alpan et al. [14]
dealt with a multi-door cross docking problem, considering temporary and limited
storage. Boysen et al. [15, 16] determined the schedule sequences for inbound
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trailers in a multiple door cross-dock. Similar problems were also tackled by Liao
et al. [17], who also dealt with inbound truck assignment to dock doors and out-
bound trucks. Konur and Golias [18] introduced uncertainty in inbound truck
arrival times, assuming just arrival time windows are known.

Miao et al. [19] were the first to consider a synchronization problem in a multiple
doors cross-dock. Chen and Song [20] extended the work of Chen and Lee [13], to
solve the problem with multiple doors for inbound and outbound processes. The
integration of Vehicle Routing Problem into a cross-docking system was also
considered [21–23].

Most of the proposed cross-docking scheduling problems deal with fixed out-
bound schedules and just optimise inbound truck processing. Indeed, Boysen et al.
[16] mention that fixed outbound schedule represents an important real-world
aspect of cross docking. This is true especially in large hub-and-spoke networks.
However, in industries characterised by less-than-truckload logistics and specific
deadlines for goods (such as postal services or food supply chains), where firms
mainly transport comparatively small and low-valued shipments of multiple sen-
ders, things may change quite significantly. Indeed, in this kind of industry the need
for consolidation, load optimization and minimization of number of outbound
trucks, while respecting deadlines, is even more important, due to tight profit
margins. For this reason, this paper will propose a mathematical programming
framework to deal with outbound truck scheduling at cross-docking platforms. The
model assumes that inbound truck sequencing is known a priori, and seeks to
minimize the number of departures towards a set of destinations. The proposal may
be viewed as an extension of models introduced by Bruno et al. [24, 25] for the bus
scheduling at a transit terminal. In the next section, the model will be described
firstly considering the basic case of one inbound—one outbound door, and then
extended to the general case with multiple inbound and outbound doors.

3 A General Framework Model for Cross-Docking Truck
Scheduling

3.1 One Inbound—One Outbound Door Case

For sake of clarity, we initially describe the proposed model with reference to the
outbound truck scheduling problem for the one inbound—one outbound door case
(see also Bruno et al. [26]).

In particular, dividing the time horizon into n time periods, the time expansion of
the terminal over the horizon [0, T], is given by a graph of n nodes, in which each
node corresponds to a copy of the terminal in the time t, that is linked with the node
t + 1 by an holdover arc (Fig. 1a).

At a given time, an inbound truck delivers a certain number of lots at the door of
the cross-dock. Each lot is generally characterized by a destination o and a deadline
d, within which it needs to leave the dock. Sets of lots with the same destination can
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be grouped together and leave the cross-dock in t, if there is an outbound truck
toward that destination in t. Otherwise, they can be stored in the terminal,
flowing through the holdover arcs.

Assuming as parameters:

• O, set of the possible destinations o ∈ Oð Þ;
• D, set of the possible deadlines d ∈ Dð Þ;
• lotd. Lots with deadline d and destination o arrived at the cross-dock at time t;
• ft, cost associated with the vehicle leaving the cross-dock at time t;
• Qt, capacity of the outbound vehicles, i.e. the maximum number of lots which

can be loaded on an outbound truck in period t;
• C, capacity of the cross-dock, i.e. the maximum number of lots that can be

stored at the facility (assumed to be constant over the time);

and introducing as decision variables:

• xotd , number of lots with deadline d and destination o stored in t, t + 1½ �;
• qotd , number of lots with deadline d and destination o leaving at time t;
• yot , binary variable equal to 1 if a truck leaves the cross-dock at time t toward the

destination o, 0 otherwise;

the formulation of the model is given by:

min z= ∑
n

t=1
∑
o∈O

ftyot ð1Þ

xotd = xot− 1, d + lotd − qotd ∀t=1, .., n; ∀o∈O; ∀d ∈ D ð2Þ

(a) single door (b) multiple doors

Fig. 1 Cross docking dynamic network
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∑
d≥ t

qotd ≤ Qtyot ∀t=1, .., n; ∀o ∈ O ð3Þ

∑
o∈O

∑
d∈D

xotd ≤ C ∀t=1, .., n ð4Þ

∑
o∈O

yot ≤ 1 ∀t=1, .., n ð5Þ

xo0d = xodd =0 ∀o∈O; ∀d∈D ð6Þ

xotd, q
o
td ≥ 0 ∀t=1, .., n; ∀o∈O; ∀d∈D ð7Þ

yot ∈ 0; 1f g ∀t=1, .., n; ∀o ∈ O. ð8Þ

The objective function (1) is the sum of the costs associated with the activation
of outbound trucks across the planning horizon. Constraints (2) are the so-called
mass balance constraints, i.e. the conditions about the flow material balance at each
time t. Conditions (3) and (4) assure that capacity constraints of the cross-dock and
of the outbound trucks are satisfied in each time period. Constraints (5) indicate that
no more than one truck can leave the cross-dock in each time t, because of the
presence of a single shipping door; constraints (6) are related to the deadlines as
they assure that no lot stay inside the cross-dock after their own deadlines. Con-
straints (7–8) define the nature of the introduced variables.

3.2 The Multiple Doors Case

In this case, more than one truck can arrive at and depart from the terminal at each
time t from different doors. Then, two further indices have been introduced to
identify the receiving door i and the shipping door j respectively. The lots arriving
at a given receiving door i (loitdÞ can be temporary stored or directly moved towards
one of the shipping doors j for departure. Lots are stored at the related receiving
doors and picked up whenever they have to be loaded on a truck at a given door j.
The times to transfer lots from receiving to shipping doors cannot be neglected; in
particular, they have been assumed dependent on the specific pair i, jð Þ.

Considering the following further notation:

• I, set of the inbound doors i∈ Ið Þ;
• J, set of the outbound doors j∈ Jð Þ;
• mij, time to transfer lots from the receiving door i to the shipping door j;
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and introducing as decision variables (Fig. 1b):

• xoitd , number of lots coming from the receiving door i, with deadline d and
destination o stored during the time interval t, t+1½ �;

• qoijtd , number of lots coming from the receiving door i with deadline d and
destination o leaving at time t from the shipping doors j;

• yojt , binary variable equal to 1 if a truck leaves from the shipping door j at time t
to the destination o, 0 otherwise.

the model can be formulated as follows:

min z= ∑
j∈ J

∑
n

t=1
∑
o∈O

ftyojt ð9Þ

xoitd = xoit− 1ð Þd + loitd − ∑
j∈ J: t+mijð Þ≤ n

qoij
t+mijð Þd

∀t=1, . . . , n; ∀o ∈ O; ∀i ∈ I; ∀d ∈ D
ð10Þ

∑
o∈O

∑
i∈ I

∑
d∈D

xoitd ≤C ∀t=1, .., n ð11Þ

∑
d∈D

qojtd ≤Qtyojt ∀t=1, . . . , n; ∀o∈O; ∀j∈ J ð12Þ

∑
o∈O

yojt ≤ 1 ∀t=1, . . . , n; ∀j∈ J ð13Þ

xoi0d =0 ∀o∈O; ∀i∈ I; ∀d∈D ð14Þ

∑
j∈ J

∑
d−mij

t=1
qoijtd

" #
= ∑

d

t=1
loitd ∀o∈O; ∀i ∈ I; ∀d ∈ D ð15Þ

xoitd ≥ 0 ∀t=1, . . . , n; ∀o ∈ O; ∀i ∈ I; ∀d ∈ D ð16Þ

qoijtd ≥ 0 ∀t=1, . . . , n; ∀o ∈ O;∀i ∈ I; ∀d ∈ D ð17Þ

yojt ∈ 0; 1f g ∀t=1, . . . , n; o ∈ O; j ∈ J ð18Þ

The objective function (9) is defined as the sum of the costs associated with the
departure of outbound trucks during the planning horizon. Constraints (10) indicate
the flow material balance at each receiving door i at each t. Conditions (11) assure
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that, in each period t, the lots stored at all the receiving doors i do not exceed the
total capacity C of the dock. Conditions (12) guarantee that if in t a truck leaves
from a generic shipping door j toward the destination o (yojt = 1), only the lots with
the same destination can be loaded on the truck, without exceeding its capacity.
Constraints (13) indicate that no more than one truck can depart from the shipping
door j at each time t. Constraints (14) impose that the stock level at each receiving
door i is zero at the beginning of the planning horizon; while (15) assure that no lot
stays inside the cross-dock after its own deadline. Conditions (16–18) define the
nature of the introduced decision variables. It has to be noticed that conditions (15)
can be also alternatively formulated as follows:

qoijtd =0 ∀i ∈ I; ∀o ∈ O; ∀j ∈ J; ∀d ∈ D; ∀t = d + 1ð Þ, . . . , n ð19Þ

xoitd =0 ∀i ∈ I; ∀o ∈ O; ∀d ∈ D; ∀t= d− min
j∈ J

mij +1
� �

, . . . , n ð20Þ

Constraints (19) impose that lots with deadline d cannot be loaded on a truck
later than d, at any shipping door j. Conditions (20) indicate the last period in
which lots with deadline d may be stored at each receiving door i. In particular, for
each i, there exists a latest period in which lots with deadline d can be picked up and
moved toward the shipping door j (tdij = d−mij). After that, they may be transferred
only towards those doors j′ reachable from i in less than mij. Then, the latest period
in which lots with deadline d may be picked up from i is tdi = d− min

j∈ J
mij.

4 Computational Experiences

In order to test the suitability of the proposed model, a set of instances was pro-
duced using a random generator designed and implemented in C++ language.
ILOG CPLEX Optimization Tool was used to solve the randomly generated
instances for the case of unlimited dock capacity, by varying the number of time
periods T (from 12 to 36), the number of destinations O (from 2 to 6) and the
number of inbound and outbound doors |I| = |J| (from 2 to 6). Results, reported in
Table 1, show that computational times grow in a reasonable way in all cases. Even
in the case of 36 times periods, 6 destinations and 12 doors (6 inbound and 6
outbound doors,) the solver is capable of finding a solution to the problem within
four minutes.
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5 Conclusions

In this paper, we analyzed the cross-docking approach as a tool to improve the
performance of a delivery system within a supply chain context. Literature on this
topic has shown that efficiency and effectiveness of cross-docking strategies
strongly depend on the availability of optimization models and algorithms able to
support the decision maker about the choices on the operational aspects. However,
current literature on the truck scheduling just provides models in order to solve
specific versions of the problem. For this reason, a general framework has been
introduced, based on a mathematical model able to describe most of the scenarios,
which can occur in practical applications. The first provided results show that the
model produces interesting results both in term of computational efficiency and
from a managerial point of view. Further investigations will be aimed at improving
the computational efficiency of the model, through purpose-built solution
methodologies.

Table 1 Run Times (s)

T = 12

|I| = |J| |O| = 2 |O| = 4 |O| = 6
Avg Min Max Avg Min Max Avg Min Max

2 0.30 0.18 0.38 0.47 0.38 0.53 0.63 0.35 0.91
4 0.31 0.29 0.32 1.50 0.66 2.10 18.00 1.70 75.00
6 0.64 0.28 1.46 1.53 0.64 2.42 32.00 1.30 145.00
T = 18

|I| = |J| |O| = 2 |O| = 4 |O| = 6
Avg Min Max Avg Min Max Avg Min Max

2 0.34 0.25 0.45 0.64 0.39 0.98 0.71 0.39 0.98
4 0.61 0.37 0.84 9.10 0.70 24.00 28.00 21.00 40.00
6 1.80 0.62 3.26 10.30 3.90 27.00 146.00 68.00 214.00
T = 24

|I| = |J| |O| = 2 |O| = 4 |O| = 6
Avg Min Max Avg Min Max Avg Min Max

2 0.70 0.37 1.28 0.82 0.57 1.32 1.20 0.79 1.61
4 0.79 0.58 0.94 9.50 1.90 31.00 52.00 7.50 121.00
6 2.40 1.00 3.40 51.00 22.00 82.00 158.00 71.00 220.00
T = 36

|I| = |J| |O| = 2 |O| = 4 |O| = 6
Avg Min Max Avg Min Max Avg Min Max

2 1.70 0.64 3.09 2.60 1.20 3.60 3.40 1.30 5.70
4 1.90 1.00 3.10 16.40 4.30 18.70 56.00 13.00 58.00
6 11.30 6.50 15.30 66.00 18.70 73.00 241.00 93.00 265.00
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Min-Max Regret Scheduling to Minimize
the Total Weight of Late Jobs with Interval
Uncertainty

Maciej Drwal

Abstract We study the single machine scheduling problem with the objective to

minimize the total weight of late jobs. It is assumed that the processing times of jobs

are not exactly known at the time when a complete schedule must be dispatched.

Instead, only interval bounds for these parameters are given. In contrast to the sto-

chastic optimization approach, we consider the problem of finding a robust sched-

ule, which minimizes the maximum regret of a solution. Heuristic algorithm based

on mixed-integer linear programming is presented and examined through computa-

tional experiments.

Keywords Robust optimization ⋅ Mixed integer programming ⋅ Uncertainty

1 Introduction

We consider the following fundamental scheduling problem. A set of jobs is given

to be processed on a single machine. Each job requires possibly different processing

time to complete and cannot be interrupted or preempted. There is a fixed due-date

until which the work should be finished. However, it is uncertain how much process-

ing each of the task would exactly take. Before the schedule is dispatched on the

machine, the only available data is the set of interval bounds, to which the actual

processing requirements belong. The goal is to sequence the jobs, so that the num-

ber of the jobs that complete before the due-date is maximal (or, equivalently, the

number of late jobs is minimal). In a more general problem variant, each job is asso-

ciated with a weight (or cost), and the objective is to minimize the sum of weights

of late jobs.

This problem arises in many diverse application areas. For instance, this situation

is experienced by a client who leases a fixed machine time (e.g., in a computing
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center) to carry out a number of tasks, but each of them requires unknown processing

time; on the other hand, upper bounds on the processing times are set. This problem

may also occur in a manufacturing process, when a fixed due-date is set for a batch

of finished items to be delivered, but production time of each item may vary within

known bounds.

The processing times uncertainty can be handled in a several different ways. One

common approach is to use stochastic framework, and model the quantities of interest

as random variables. This has its advantages in specific situations; however, it often

brings the need for collecting data in order to estimate parameters. Moreover, in cer-

tain critical applications, the probabilistic guarantees, offered by such an approach,

may not be sufficient. In this paper, we consider a robust optimization approach [3,

7]. Each realization of uncertain parameters is treated as equally possible. Our aim

is to come up with such a solution that degrades the least as compared to the best

solution in every possible scenario. This measure of solution quality is reflected in

the notion of maximum regret [9].

Most of the basic scheduling problems have been already considered within the

robust optimization framework [1, 6, 8]. The majority of these works concerns the

more restrictive case of discrete uncertainty (finitely many possible realizations of

parameters). If the processing times were known precisely, the unweighted variant of

the problem considered in this paper could be solved in polynomial time [4]. How-

ever, even for 2 processing times scenarios, it becomes NP-hard [2]. The case of

interval processing times, described in the next section, appears to occur more nat-

urally in practice. Although the number of processing times scenarios in such case

is potentially infinite, solution algorithms may take the advantage of the structural

information of uncertainty sets. Unfortunately, the problem with interval data is also

NP-hard [5], even if all weights are equal. Moreover, deterministic variant with arbi-

trary weights is already NP-hard. A viable solution approach is the application of

mathematical programming techniques, presented in this paper.

2 Problem Formulation

The deterministic version of the considered scheduling problem is denoted 1|di =
d|

∑
wiUi. Given is the set of jobs J = {1, 2,… , n}. Each job j ∈ J is described by

the processing time pj and weight wj. Let d > 0 denote the due-date. A solution

(schedule) is a permutation 𝜋 = (𝜋(1), 𝜋(2),… , 𝜋(n)), where 𝜋(k) is the index of job

scheduled to be executed as kth from the start. Equivalently, we encode the solution

as a binary matrix 𝐱, where xkj = 1, iff jth job is scheduled on position k from the

start, and xkj = 0 otherwise. The completion time of job scheduled on position k is

defined as:

C(𝐱, k) =
k∑

i=1

∑

j∈J
xijpj.
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We define U(𝐱, k) = 0, iff C(𝐱, k) ≤ d; we say that the job on position k is on-time.

Otherwise, U(𝐱, k) = ∑
j∈J xkjwj, and we say that the job on position k is late. An

optimal schedule is one that minimizes the weighted number of late jobs, F(𝐱) =
∑n

k=1 U(𝐱, k). An important special case, when wj = 1 for all j ∈ J, is the problem

of minimizing only the number of late jobs.

In an uncertain problem, for each j ∈ J, instead of exact processing times pj, we

are given interval bounds p−j , p
+
j , so that the actual processing time can be any real

number between them. A vector of processing times will be called a scenario. The

set of all possible scenarios is defined as:

U = {𝐩 = (p1,… , pn) ∶ ∀j∈J p−j ≤ pj ≤ p+j }.

The value of objective function in a scenario 𝐩 ∈ U will be denoted by F(𝐱,𝐩).
Let P be the set of all n-by-n permutation matrices. Given a solution 𝐱 ∈ P ,

and a scenario 𝐩 ∈ U , we define the regret as:

R(𝐱,𝐩) = F(𝐱,𝐩) − min
𝐲∈P

F(𝐲,𝐩).

A schedule represented by matrix 𝐲 in this context will be called an adversarial
schedule. Then the maximum regret is denoted as:

Z(𝐱) = max
𝐩∈U

R(𝐱,𝐩). (1)

We will also use the notation Z(𝜋) to denote the maximum regret Z(𝐱) of a matrix 𝐱
equivalent to permutation 𝜋.

A scenario that maximizes the regret will be called a worst-case scenario. A

robust optimal solution 𝐱∗ is one that minimizes the maximum regret:

Z∗ = Z(𝐱∗) = min
𝐱∈P

Z(𝐱). (2)

3 Computation of Maximum Regret

An essential prerequisite for solving the robust problem (2) is the solution for the

subproblem of regret maximization (1). Let us fix a schedule 𝜋. Since a due-date d
is common for all jobs, there exists a job on such a position l in 𝜋, so that all jobs

𝜋(1), 𝜋(2),… , 𝜋(l − 1), are on-time, while all jobs 𝜋(l), 𝜋(l + 1),… , 𝜋(n), are late.

Observe that worst-case scenario for 𝜋 is one for which the difference between the

total weight of late jobs in 𝜋, and the total weight of late jobs in adversarial schedule

is maximal. In the special case of equal weights, each late job contributes equally to

the value of objective function, thus for any fixed scenario, an adversarial schedule is

constructed by sorting all jobs with respect to nondecreasing processing times. This
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is not true for the case of general weights, where computing adversarial schedule for

a fixed scenario is equivalent to solving an instance of knapsack problem.

Intuitively, in the worst-case schedules, the jobs that complete before the due-date

d would have the processing time closer to their respective upper bounds of uncer-

tainty intervals. On the other hand, late jobs would generally have shorter worst-case

processing times, closer to their lower bounds of uncertainty intervals. Such process-

ing times allow for the late jobs to be early in the adversarial schedule, maximizing

the number of on-time jobs.

Let us consider the following example problem instance with n = 3 identical jobs.

Each has the same processing time interval [p−j , p
+
j ] = [1, 3], for j ∈ {1, 2, 3}. Let the

due-date be equal to 5. Since the jobs are identical, the maximum regret is the same

for each schedule, thus let 𝜋 = (1, 2, 3). It can be seen that the following processing

times constitute a worst-case scenario: p1 = 3, p2 = 2 + a, for a ∈ (0, 1], and p3 = 1.

Only the first job completes on-time in schedule 𝜋. However, in an adversarial sched-

ule 𝜋
′ = (2, 3, 1), jobs 2 and 3 complete on-time, while only job 1 is late, giving the

regret value 1. As shown in the example, for a given solution there may be infinitely

many worst-case scenarios.

For any fixed schedule 𝜋 we can write a mixed-integer linear program (MIP),

which allows to compute the worst-case processing times, as well as the value of

maximum regret. The program is the following:

maximize

∑

j∈J
wj

(
zj − qj

)
, (3)

subject to:

∑

j∈J
vj ≤ d, (4)

∀k=1,…,n

k∑

i=1
p
𝜋(i) + d

𝜀

q
𝜋(k) ≥ d

𝜀

, (5)

∀j∈J vj − p+j zj ≤ 0, (6)

∀j∈J pj + p+j zj − vj ≤ p+j , (7)

∀j∈J vj − pj ≤ 0, (8)

∀j∈J p−j ≤ pj ≤ p+j , (9)

∀j∈J zj ∈ {0, 1}, qj ∈ {0, 1}. (10)

Binary decision variable zj assumes value 1 if and only if job j is on-time in

an adversarial schedule is the worst-case scenario, and binary decision variable qj
assumes value 1 if and only if job j is on-time in 𝜋 in the worst-case scenario. Deci-

sion variable pj represents the worst-case processing time of jth job. Values of these

variables are determined through the set of constraints (5). These constraints are sat-

isfied when q
𝜋(k) = 0, for such jobs k that are on-time in 𝜋 in the worst-case scenario,
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and for q
𝜋(k) = 1 for such jobs k that are late. Constant d

𝜀

= d + 𝜀 in (5), where 𝜀 is

a small positive value. Continuous variables vj are introduced to linearize the mixed

terms vj = pjzj, through the set of constraints (6)–(8), as required for the constraint

(4) to be linear.

Note that although standard solution algorithms for this program may require

time increasing exponentially in n, in practice it can be solved very quickly. Com-

putational experiments indicate, for example, that for n = 100 optimal solutions can

be computed in about one second on a modern computer, while even for thousands

of jobs optimal solutions can be found within few minutes.

4 Finding Robust Solutions

We present a heuristic method that allows to determine solutions with low maximum

regret for the problem (2). The method consists of two phases. In the first phase we

try to determine a good initial solution, and in the second phase we use randomized

local search in order to improve the initial solution.

The first phase is accomplished by solving a mixed-integer linear program that

approximates the value of optimal robust solution. Let us consider a fixed schedule

given by a permutation matrix 𝐱. Since the optimization direction for robust schedule

is the minimization, as opposed to the subproblem of maximization of regret (1), w

form a dual program of the linear programming relaxation of (3)–(10). After relaxing

(10) to 0 ≤ zj ≤ 1 and 0 ≤ qj ≤ 1, for all j ∈ J, we can write:

minimize

∑

j∈J

(

−d
𝜀

𝜆

a
j + p+j 𝜆

b
j − p−j 𝜆

c
j + 𝜆

d
j + 𝜆

e
j + p+j 𝜆

h
j

)

+ d𝜆0 (11)

subject to:

∀j∈J −
n∑

k=1

k∑

i=1
xij𝜆ak + 𝜆

b
j − 𝜆

c
j − 𝜆

g
j + 𝜆

h
j ≥ 0, (12)

∀j∈J − d
𝜀

n∑

k=1
xkj𝜆ak + 𝜆

d
j ≥ −wj, (13)

∀j∈J 𝜆

e
j − p+j 𝜆

f
j + p+j 𝜆

h
j ≥ wj, (14)

∀j∈J 𝜆

f
j + 𝜆

g
j − 𝜆

h
j + 𝜆0 ≥ 0. (15)

Dual variable 𝜆0 corresponds to the constraint (4), while the subsequent sets of dual

variables 𝝀
a

through 𝝀
h

correspond to the constraints (5)–(10).
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Since this is minimization program, we can also treat the matrix 𝐱 as a deci-

sion variable, and solve this program for unknown 𝐱, along with 𝝀, after adding the

matching constraints:

∀j∈J
n∑

i=1
xij = 1, (16)

∀i=1,…,n
∑

j∈J
xij = 1, (17)

xij ∈ {0, 1}. (18)

Observe that in this case constraints (12) and (13) contain products of decision vari-

ables xij and 𝜆

a
k . However, since xij are binary, and 𝜆

a
k are nonnegative continuous,

we can linearize these products in a standard way, by substituting new variables

ukij = 𝜆

a
kxij, and adding three sets of constraints, similar to (6)–(8).

An optimal solution 𝐱 of (11)–(18) corresponds to an adversarial solution with

fractional values of zj and qj (these are dual variables corresponding to (13)–(14)).

In result, we get an upper bound on the optimal solution. This solution can be some-

times easily improved by rounding zj and qj to 0-1 values, and determining the cor-

responding 𝐱 that satisfies (4)–(10). We use the resulting binary matrix 𝐱 as an initial

solution passed to the second phase of the method.

In the second phase, we apply a randomized local search heuristic. Given a per-

mutation 𝜋, represented by a binary matrix 𝐱, we compute the maximum regret Z(𝐱)
using program (3)–(10). In consecutive iterations, we swap two randomly selected

jobs in 𝜋, obtaining a permutation 𝜋

′
, and compute the corresponding maximum

regret Z(𝜋′). Keeping track of the lowest value of maximum regret encountered so

far, we either repeat the procedure by swapping the next pair of randomly selected

jobs, if the new value is no higher than the current one, or otherwise we retract to the

previous permutation 𝜋, by returning the previously swapped jobs to their previous

positions.

The two-phase procedure can be summarized as follows:

1. (phase 1) Solve the mixed-integer program (11)–(18), obtaining fractional �̃� and

�̃�, and binary 𝐱0.

2. Repeat for M iterations:

a. Round zj = 1 with probability z̃j, and qj = 1 with probability q̃j.
b. For binary 𝐳 and 𝐪 determine 𝐱 feasible for the set of constraints (4)–(10).

c. If Z(𝐱) < Z(𝐱0) then put 𝐱0 ← 𝐱.

3. (phase 2) Let 𝜋 be a permutation corresponding to 𝐱0. Let S = {𝜋} and 𝜋

∗ ← 𝜋.

4. Repeat for N iterations:

a. Create a schedule 𝜋

′
by swapping two randomly selected jobs i, j in 𝜋:

𝜋

′(i) = 𝜋(j), 𝜋′(j) = 𝜋(i), and 𝜋

′(k) = 𝜋(k) for all k ≠ i, j.
b. If 𝜋

′ ∈ S then discard 𝜋

′
and repeat the above step by taking another pair of

random i, j. Otherwise, S ← S ∪ {𝜋′}.
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c. If Z(𝜋′) < Z(𝜋) then 𝜋

∗ ← 𝜋

′
.

d. If Z(𝜋′) ≤ Z(𝜋) then 𝜋 ← 𝜋

′
. Otherwise, generate a random real number

r ∈ [0, 1]. If r > 𝛼, then 𝜋 ← 𝜋

′
.

5. Return the schedule 𝜋

∗
.

The set S is maintained in order to prevent cycling during the search. The parameter

𝛼 ∈ [0, 1] controls the likelihood of proceeding from a worse than previous solution

on the search path, and is intended to help avoiding local minima. This procedure can

be run for prespecified number of iterations N, depending on the available computer

resources, and can be easily parallelized. Note, however that for large number of jobs,

as N ≪ n!, this methods examines only a very small fraction of the search space.

5 Experimental Results

We have examined the solution technique presented in the previous section by com-

paring it with a simple mid-point heuristic, which is a standard method for tackling

min-max regret problems with interval uncertainty [7]. This heuristic outputs a solu-

tion of the deterministic counterpart problem with a scenario fixed to interval mid-

dle points, p̃i = p−i + 1
2
(p+i − p−i ). Note that for the problem variant with arbitrary

weights, this requires solving a knapsack problem.

In each experiment we have generated 10 problem instances for each value of

the number of jobs n. Each such instance consisted of jobs with processing time

intervals generated by taking the lower bound p−j as an uniformly random integer

between 5 and 10, and the upper bound p+j by adding to p−j and uniformly random

integer between 0 and 20. Due-dates were uniformly random integers between 5n
and 10n. We have considered both unweighted (wj = 1 for all j ∈ J) and weighted

cases. In the latter, weights are uniformly random integers between 1 and 100.

The MIPs used by the solution method were implemented in CPLEX 12.6 soft-

ware. For larger problem instances the program (11)–(18) in the phase 1 was usually

not solved to optimality; instead, the best feasible solution was returned after run-

ning the solver for 60 s. However, for all the considered problem instances, program

(3)–(10) was solved to optimality for every fixed permutation.

For each experiment we report the mean value and the standard deviation of the

objective function, estimated from 10 problem instances. Values for both the mid-

point scenario heuristic and the proposed method are given. We also report the com-

putation time statistics for our method. Note that these depend on parameters that

we have set: M = 100 in step 2, N = 1000 and 𝛼 = 0.1 in step 4.

The results are presented in Tables 1 and 2. We conclude that the proposed method

is consistently better than the mid-point scenario heuristic, especially for the variant

of the problem with arbitrary weights.
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Table 1 Scheduling with the objective to minimize the (unweighted) number of late jobs

Mid-point heuristic Proposed method

n Mean Z Std Z Mean Z Std Z Min time Mean time Max time

10 2.90 0.30 2.90 0.30 73.73 108.95 164.79

15 3.70 1.00 3.40 1.11 200.48 418.10 618.06

20 4.70 1.10 4.50 1.57 296.33 408.98 539.51

25 5.80 1.24 5.20 2.04 509.21 574.94 632.99

30 5.70 0.90 5.60 1.11 533.80 644.97 679.01

Table 2 Scheduling with the objective to minimize the total weight of late jobs

Mid-point heuristic Proposed method

n Mean Z Std Z Mean Z Std Z Min time Mean time Max time

10 140.90 34.65 94.00 33.74 66.46 77.06 101.70

15 195.00 47.04 111.80 50.24 187.39 419.93 886.15

20 243.20 67.79 142.56 72.19 281.25 564.59 637.19

25 464.50 118.42 155.50 80.31 668.37 728.07 850.91

30 444.80 113.36 149.67 58.38 695.58 914.52 1132.68

6 Conclusions

Single machine scheduling to minimize the total weight of late jobs with arbitrary

processing times and a common due-date is an example of combinatorial problem

which is easy to solve if exact values of parameters are known. In practice, this

assumption is rarely valid. It turns out that interval data min-max regret variant of

this problem is much more difficult to solve to optimality. We have examined a MIP-

based heuristic solution method that successfully handles medium-sized problem

instances, and appears to significantly improve on the standard mid-point heuristic.

One of the future research directions is the design of efficient approximation methods

for the class of problems in question.
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Practical Solution to Parallel Machine
Scheduling Problems

E. Parra

Abstract Parallel machine scheduling problems, even medium-sized ones, are
very time consuming. The time taken to find a solution is very often more important
than the exact solution itself. Different objective optimization functions depend on
the specific situation. This paper presents a mathematical model and the software to
implement it. The model allows users to switch between different objective func-
tions and select the accuracy of the solution: from the fastest solution to the most
exact one. It can be used with equal or different processing times for each job in
different machines.

Keywords Scheduling ⋅ Parallel machines ⋅ Optimization models

1 Introduction

Parallel machine scheduling has been studied extensively over the last 50 years and
is summarized in different surveys [6]. In general terms, the problem can be
described as follows. A set of n jobs J = {J1, J2, …, Jn} must be scheduled on m
parallel machines M = {M1, M2, …, Mm}. Job Ji has a processing requirement pi,
and machine Mj operates at a speed vi,j when processing job Ji. The time it takes for
job Ji to be processed by machine Mj is pi/vi,j. If vi,j = 1 for all i and j, then the
machines are referred to as identical machines. If vi,j = vj for all i, then the
machines are referred to as uniform machines. Finally, if vi,j is totally arbitrary, then
the machines are referred to as unrelated machines. According to the 3-field
notation introduced by Graham et al. [4], P, Q and R are used to denote identical,
uniform and unrelated machines respectively. The goal is to schedule these n jobs
on the m machines so as to optimize a given objective function.
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Numerous objective functions have been proposed and studied in the literature.
The most common include the makespan (the time it takes to complete all jobs), the
total weighted completion time, number of tardy jobs, maximum weighted tardiness
and total weighted tardiness, among others.

Recently, parallel machine scheduling has been studied under machine eligibility
constraints. In this type of model, job Ji cannot be processed on just one of the m
machines, but only on a machine belonging to a specific subset of the m machines,
namely subset Mi ⊆ M, which is designated the processing set of job Ji. This
problem is known as parallel machine scheduling subject to machine eligibility
constraints.

A wide variety of potential situations may arise depending on the industry.
Although equal processing time is justified in many scheduling situations, this is not
always the case. Kravchenko and Werner [5] examined scheduling with equal
processing times, and Brucker and Kravchenko [1] studied due date assignments
with equal processing times. The paper by Lee et al. [6] reviewed makespan
minimization scheduling optimization with machine eligibility. Shabtay et al. [8]
studied offline scheduling with rejection. Other recent results in the field are Correa
and Wagner [2] and Mohabbati-Kalejahi and Yoon [7] and Tavares et al. [9].

This paper introduces a software to solve the unrelated parallel machine
scheduling problem in a general form (including P, Q or R types), with the pos-
sibility of mixing several objective functions, as occurs in practical situations:
minimising makespan, minimising the total cost of processing the jobs, assuming it
is not the same in every machine, minimising the total cost of processing the jobs
assuming it is not the same in every machine plus the waiting cost (if any), and
other variations.

To summarize its characteristics, it features a combination of different objective
functions, different processing times and some types of constraints: machine eli-
gibility constraints, jobs not arriving at the same time, jobs needing to be processed
at a predefined fixed time. All of these characteristics may be present in the real
world and often occur with limited decision time (online versus offline). The model
and the procedure presented here allow a feasible solution to be obtained very
quickly, and this solution can be refined later if necessary. The most useful way to
use this model is by connecting it to the organization’s internal data so it can rapidly
adapt to the new circumstances.

2 Model Formulation

Before looking at the mathematical formulation in detail, we describe the model
fundamentals.
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2.1 Model Description

A set of n jobs (Ji) with integer processing times pij must be processed in one of the
m machines Mj available. It is possible than a specific job cannot be processed in a
specific machine (machine eligibility constraints). The goal is to determine the
starting time of each job and which machine to process it in order to minimize a
particular objective function based on costs or processing times. Situations some-
times arise in real life that involve a waiting cost, or an additional cost for finishing
the job after a predefined time. The processing cost and processing time is different
for each machine depending on the particular job.

The proposed model has built-in adjustable accuracy; i.e. the model is able to
obtain exact solutions, but if the resolution time is the priority, the model can be set
to prioritize time over absolute accuracy. A parameter controls the accuracy: less
accuracy generates a simpler model that can be solved faster, while the exact
solution requires a larger model and more processing time to obtain the absolute
optimal solution. This approach is valid for a wide range of objectives in the
machine scheduling world. Minimising a cost function may entail several terms:
sum of processing time of all the jobs, sum of processing costs, sum of cost
proportional to due date or sum of delay costs from a time at which the costs
become accountable (different from the arrival time or process start time).

The known data are: job arrival date, cost starting date (the time at which cost
must be considered), job operating time in each machine, available machines,
machine ready time. We will assume that each job is processed until its completion
once it has been started.

The model is based on discrete variable time: a job i needs a processing time p′ij
(say minutes) to be completed at machine j. We will define h (minutes) as the length
of a “period”. So, p′ij time is converted to a pij number of periods; these numbers
have been calculated as the next integer obtained by rounding up the p′ij/h ratio.
This procedure creates a new time scale in such a way that the time horizon is
converted to a number of T periods depending on the h value. If h increases, T
decreases. The problem is therefore to determine in which period k (k = 1,2,…,T)
and in which machine j to begin to process job i. The job will leave the machine (no
interruptions are allowed) at the end of period k + pij.

As mentioned before, both types of parameters (pij and T) can be modified by
either increasing or decreasing a single parameter h: higher values reduce the
number of periods. If all pij are integer numbers and the value h = 1 has been
selected, the solution will be optimal, so the above procedure is exact. This also
occurs when there is a maximum common divisor for all pij.
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2.2 Mathematical Model

Once parameter h has been selected, the model is built with Xijk binary variables: if
the value is 1, job i is processed at machine j in time period k.

The following types of constraint are created: (1) Each job is processed exactly
once; (2) Each job is processed at one only machine; (3) Each job begins processing
in one period precisely; (4) A maximum of one job can be processed in each
machine in each period; each machine is occupied from the start time of job i until
pij—operating periods needed for job i at machine j—periods later; and (5). In
certain circumstances a job can be processed in a predetermined time period (this is
a real-world specification).

The objective function can be changed, but the main features of the model will
remain the same. In this case, we propose minimising a weighted sum of total
processing time, delay costs, operational costs of each job, and arrival time waiting
costs.

Delay costs are counted from a different date from the arrival date, and opera-
tional costs are different for each job/machine pair, so the objective function
includes many options. Depending on the relative costs of the four components
there is scope to minimize operational costs, delay costs and others.

This offers a wide range of flexible options for the practical use of the model.
In summary, the model is as follows:

(I) Indexes

i ∈ J (Jobs)
j ∈ M (Machines)
k, k′ ∈ T (Periods)

(II) Data

ai Period when job i is ready to be processed
ti Period when job i delay costs are counted
rj Period when machine j is available
di Delay costs of job i (um/period) from ti
wi Delay costs of job i (um/period) from ai
cij Cost index of job i operations at machine j
pij No. of periods required by job i to complete operations at machine j

(pij = 0 indicates that job i cannot use machine j)
fi Compulsory period for beginning processing of job i
Wt Weight for processing times
Wd Weight for delay times
Wc Weight for processing costs
Wa Weight for delay costs

624 E. Parra



(III) Binary variables: Xijk ∈ {0,1}; (Xijk = 1 if Ji is processed at Mj in period k)
The model is built using a model-generating software and will only create the
variables compatible with: k ≥ ai; k ≥ rj and pij > 0

(IV) Constraints:

∑
j
∑
k
xijk =1 ∀i ð1Þ

∑
k
xijk ≤ 1 ∀i, j ̸ pij >0 ð2Þ

∑
i
∑
j
xijk ≤ 1 ∀j, k′ ̸ k′ > fj, k′ > k, k≥ ½k′ − pij +1� ð3Þ

∑
j
xijk =1 ∀i, k ̸ k= fi ð4aÞ

∑
j
xijk ≤ 1 ∀i, k ̸ k≠ fi ð4bÞ

Constraints (1) ensure job i must be processed exactly once. Constraints (2)
oblige each job/machine pair to be used in exactly one period or in none.
Constraints (3) limit a job to be processed in one period and at one machine
when this machine is occupied. Once job i begins processing in machine j (in
period k), it will occupy that machine during the next pij periods. It is
therefore necessary to guarantee that no other job will begin during that time
in that machine. This is done by creating an equation for each machine
(j) and period (k′) pair. Each equation considers the sum of all the variables
which, if their value were 1, would occupy the machine in the period k′. The
sum is extended to all the jobs and periods between k′ and the previous
(k′ − pij). Constraints (4a) and (4b) are mutually exclusive: the first allows
the process start time period to be chosen for job i; the second requires the
job to be processed beginning in period fi. Both versions allow any machine
to be selected (if it is compatible with the job) and requires that exactly one
of them must be used.

(V) Objective function:

∑
i
∑
j
∑
k
½WtA+WcB+WdC+WaD� ⋅ xijk

Where A= ðk− 1+ pijÞ; B= cij; C= di ⋅ [k− pij − ti] if ti < k+ pij;
D=wi [k− ai] if ti ≥ k+ pij, ai < k, ai < ti

The objective function is the weighted sum of four terms: the first computes the
sum of the processing times; the second, the sum of the machines’ operating costs;
the third assigns delay costs if job i is finished after date ti; and the last takes into
account the delay cost from the arrival time (ai). More terms can be included, or
some terms could be eliminated in a particular case. This is a flexible method for
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practical management purposes: the model could then minimize the sum of pro-
cessing times, processing costs, delay from different dates, delay from arrival or any
combination of the four terms of the objective function.

If the cardinals of sets J, M and T are n, m and s respectively, the model
described is made up comprises (in the worst case): n⋅(s + m + 1) + s equations
and (n)⋅(m)⋅(s) binary variables.

It should be noted that the most important result of the binary model solution is
the assignment of each job to a machine and the optimal sequence in which each job
will be processed in each machine. A post-optimization algorithm then establishes
the exact times the jobs must be processed.

As stated before, the computer program (model builder) must generate exactly
the variables and constraints needed. In practical situations this program is key to
the success of the whole system. Once the binary problem has been resolved, the
final practical solution is established with another computer program
(post-optimizer procedure) based on the binary solution.

2.3 Complete Solution Procedure

The complete solution procedure implemented with the software modules is:

1. Select h parameter (i.e. h = 2)
2. Model builder program:

• Convert each processing time (original numbers p′ij to periods by rounding
up. For example if p′12 (time of job 1 in machine 2) is 2, then p12 = 1 if
h = 2; if p′23 (time of job 2 in machine 3) is 5, then p23 = 3. The exact
solution is obtained if h = 1 and all processing times are integers (that is, not
restrictive for practical purposes).

• Formulate the binary problem and solve it. Solution is in “periods”. If job 1
can be optimally processed in machine 2, beginning in period 3, then if
h = 2 has been selected, the due date will be the end of period 3.

3. Optimization-solver. The binary problem can be solved with any of the com-
mercial software available (see [3]).

4. Post-optimizer procedure. This computer program calculates the exact time
required to process the jobs using the optimal value of the binary variables, i.e.
the job/machine assignments and the sequencing of jobs in each machine. For
example, if p12 is 3 h and h = 2, this job will occupy 2 periods (so, 4 h instead
of the 3 really necessary, which is a waste) so the following job would begin at
t = 4 (period 3 with h = 2). This waste/inaccuracy is solved by the post-optimal
computer software that adjusts to real times taking into account the processing
order in each machine, respecting the sequencing and assignment of jobs (and
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all the other constraints), but using real processing times. In the example, job 2
in the machine will begin at t = 3 rather than at t = 4, and so on.

The data can be input with any system such as spreadsheet files (must include
step 1). Computer programs for steps 2 and 4 can be coded with any programming
language.

2.4 Experiment

Table 1 shows the different combinations of size, speed and accuracy as an
example.

In the experiment with random processing times, n = 50, m = 2. Different
options were selected for the key parameter h. The exact solution was found with
h = 1 (case H1). With h = 2, 3, 4 or 6 the solution is an approximation, but as
shown in Table 1, it is very good for practical purposes. The maximum size of the
binary problem is around 12,000 equations and 24,000 binary variables; but only
2000 and 4000 respectively if h = 6 is chosen. H1 requires 15 times more com-
puting time to solve than h = 6, which is only 3.6% worse; and 6 times more than
h = 3, which has an error of less than 1%. Of course, the results depend on the
particular problem.

3 Conclusions

The proposed method (mathematical model and solution procedure) allows flexi-
bility in the accuracy of the solution depending on the requirements of a particular
problem. The exact solution can be achieved with this method of solving unrelated
parallel machine scheduling with different constraints and objective functions. The
method is capable of obtaining solutions very quickly when speed is the top priority
in the search for a highly accurate solution. It can be adapted to a wide range of
objective function combinations, and offers a flexible way of solving these types of

Table 1 Computing time and accuracy

Trade-off time/accuracy H1 H2 H3 H4 H6

Jobs 50 50 50 50 50
Machines 2 2 2 2 2
Horizon (days) 10 10 10 10 10
Hours per period 1 2 3 4 6
Number of periods 240 120 80 60 40
Solution time scale 15.1 3.8 2.5 1.6 1.0
Error from exact solution (H1) (%) 0.0 0.5 0.9 2.0 3.6

Practical Solution to Parallel Machine … 627



problems by selecting varying degrees of accuracy versus computing time,
depending on the particular needs.

Acknowledgements I would like to thank the anonymous reviewers for their valuable recom-
mendations, which that have been considered in the final version and to Ms. Prudence
Brooke-Turner for her revision of the English manuscript.
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Decomposition and Feasibility Restoration
for Cascaded Reservoir Management

Wim van Ackooij, Claudia D’Ambrosio and Raouia Taktak

Abstract We consider the Unit Commitment subproblem dedicated to hydro valley

management, also known as Hydro Unit Commitment Problem (HUCP). The prob-

lem consists in finding an optimal hydro schedule for hydro valleys composed of

head-dependent reservoirs for a short term period in which the electricity prices and

the inflows are forecasted. We propose a Mixed Integer Linear Programming (MILP)

formulation for the problem. Then, we solve it using a Lagrangian relaxation based

decomposition combined with local branching used to restore feasibility. Preliminary

computations show promising results.

Keywords Hydro unit commitment ⋅ Decomposition ⋅ Local branching

1 Introduction

A hydro valley consists of several interconnected reservoirs and each reservoir is

associated with a hydro plant composed of hydro units. A unit can work as a turbine

or a pump. The goal of the HUCP is to determine the start-up and shut-down slots for

turbines and pumps and the operational level of each unit, in order to minimize the

operational cost, under several technical and strategic constraints. This problem is

very complex because of its mixed-integer nonlinear structure, uncertainties related

to water inflows and electricity prices, as well as the size and shape of real valleys.
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Moreover, there are computational limits because the HUCP has to be solved quickly.

The reader is referred to [10] for a deeper description of the problem, its variants and

main challenges. Note that the HUCP is a subproblem of the so-called unit commit-

ment problem. For more information about the unit commitment problem see [6,

9]. We consider a deterministic context, that is when water inflows and electricity

prices are supposed to be determined and forecasted with high accuracy in advance.

Our contribution consists of two main phases. First, using Lagrangian relaxation,

the HUCP is split into a sequence of smaller and easy-to-solve subproblems that

are coordinated by a dual master program. Then, a local branching heuristic is used

within a feasibility recovery phase. Our objective is to investigate to what extent this

decomposition and the use of primal restoration through local branching constraints

can be an effective tool for finding quickly good feasible solutions for the HUCP.

The paper is organized as follows. In the next section we describe a MILP formu-

lation for the problem. In Sect. 3, we propose our decomposition method as well as

the techniques and heuristic used to find a feasible solution. Section 4 will be devoted

to presenting preliminary computational results. Finally, concluding remarks as well

as future lines work are given in Sect. 5.

2 Mathematical Model

2.1 Notations

Our MILP is inspired from the one developed at EDF, a large utility company in

France (see [11]). We consider a discretized time horizon. Let T = {1,… ,T} be the

set of time periods. The time step is constant and denoted by 𝛥t (in hours). Consider

a hydro valley composed of a set of reservoirs interconnected by units (turbines or

pumps). A valley can be seen as a directed graph G = (N,A), where N represents the

set of vertices corresponding to reservoirs, and A is the set of arcs corresponding to

the possible paths of water between reservoirs. An element of A is a pair (origin, des-

tination) in N × N. For each a ∈ A, Da is the duration (in number of time periods) of

the transport of water for path (arc) a. Given a reservoir n, A (n) = {m ∶ (m, n) ∈ A}
is the set of upstream reservoirs and F (n) = {m ∶ (n,m) ∈ A} is the set of down-

stream reservoirs. Turbines are numbered from 1 to NT and pumps from 1 to NP. Let

𝜎T ∶ {1,… ,NT} → A (resp. 𝜎P ∶ {1,… ,NP} → A) be the function that associates

with a turbine (resp. pump) the corresponding arc (path) between the reservoirs sit-

uated upstream and downstream the turbine/pump.

2.2 Decision Variables

We define two families of decision variables. We associate with each reservoir n ∈ N
and each time period t ∈ T a variable vnt corresponding to the volume of reser-

voir n at t (expressed in m3
). We also define variables xit (resp. yit) correspond-
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ing to the water flow turbined by (resp. going through) unit i ∈ {1,… ,NT} (resp.

i ∈ {1,… ,NP}) at time period t ∈ T . Water flows are expressed in m3∕h.

For a generic hydro generator unit, the power output is generally expressed as a

nonlinear function of the water flow and the water volume in the reservoir. In order

to avoid dealing with nonlinearities and reduce the HUCP to a MILP, we assume no

head effect and that each unit can be divided in a set of fictive groups. These groups,

also known as discrete operational points, can be activated ones after the others

respecting a predefined order in order to produce (or consume) electric energy. For

each turbine i ∈ {1,… ,NT} (resp. pump i ∈ {1,… ,NP}), the corresponding set of

operational points are denoted by Xit (resp. ̂Xit). With each turbine i ∈ {1,… ,NT}
(resp. pump i ∈ {1,… ,NP}), each operational point j ∈ Xit (resp. j ∈ ̂Xit) and each

period t ∈ T we associate a binary variable eijt (resp. êijt) satisfying the follow-

ing constraint ei1t ≥ ei2t ≥ · · · ≥ ei|Xit|t (resp. êi1t ≥ êi2t ≥ · · · ≥ êi| ̂Xit|t
). Using these

binary variables, the flow of a turbine i ∈ {1,… ,NT} (resp. pump i ∈ {1,… ,NP})

at period t can be written as the sum of the different flows of the operational points,

i.e.

xit =
∑

j∈Xit

eijt𝛥Xijt, resp. yit =
∑

j∈ ̂Xit

êijt̂𝛥Xijt, (1)

and the generated (resp. consumed) power is given by

Pit =
∑

j∈Xit

eijt𝛥Pijt, resp. Pit =
∑

j∈ ̂Xit

êijt̂𝛥Pijt, (2)

where 𝛥Xijt,
̂
𝛥Xijt, 𝛥Pijt, and ̂

𝛥Pijt are known and assumed to be given.

2.3 Constraints

The HUCP is difficult to solve since several constraints with continuous and discrete

variables exist, including hydraulic coupling and storage limits of the reservoirs.

These constraints, as well as others, are described in the sequel.

Operational level’s order constraint
We propose to model the discretization of the nonlinear efficiency curve using the

incremental method (see [1]). The corresponding constraints are given by the fol-

lowing inequalities.

ei(j+1)t ≤ eijt ∀ i = 1,… ,NT , t ∈ T , j ∈ Xit. (3)

Similarly the constraints for a pump are as follows.

êi(j+1)t ≤ êijt ∀ i = 1,… ,NP, t ∈ T , j ∈ ̂Xit. (4)

In (3) and (4), we assume ei(|Xit|+1)t = êi(| ̂Xit|+1)t
= 0 ∀ i = 1,… ,NT , t ∈ T .
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Flow stability constraint
By these constraints, we forbid a sudden change of the flow between two steps of

time. This ensures a flow stability when going through the different time steps. The

flows should in fact be constant for at least one step time before increasing or decreas-

ing. These constraints are respectively expressed for turbines and pumps by the fol-

lowing inequalities.

− 1 ≤ −eij(t−1) + eij(t) − eij(t+1) ≤ 0 ∀ t = 2,… ,T − 1,
∀ i = 1,… ,NT , j ∈ Xit.

(5)

− 1 ≤ −êij(t−1) + êij(t) − êij(t+1) ≤ 0
∀ t = 2,… ,T − 1,
∀ i = 1,… ,NP, j ∈ ̂Xit.

(6)

Forbidding simultaneously turbining and pumping
Some turbines are reversible and can be used as pumps. In our mathematical model,

this implies that it exists a function 𝐟 ∶ {1,… ,NT} × {1,… ,NP} → {0, 1} that iden-

tifies couples (turbine i, pump k), i = 1,… ,NT and k = 1,… ,NP corresponding to

the same reversible unit, i.e., 𝐟 (i, k) = 1. For such units, turbining and pumping can-

not be done simultaneously. A slot of time (typically half an hour) is in fact required

before switching from a turbine to a pump and viceversa. This is given by the fol-

lowing inequalities. For all t = 1,… ,T − 1, for all i = 1,… ,NT and k = 1,… ,NP
such that 𝐟 (i, k) = 1

0 ≤ ei1(t) + êk1(t) ≤ 1, 0 ≤ ei1(t) + êk1(t+1) ≤ 1, and 0 ≤ ei1(t+1) + êk1(t) ≤ 1. (7)

Ramp up/down constraints
These constraints express the fact that the absolute value of the water flows difference

from one time step to the next has a bound. These constraints for a turbine and a pump

respectively are given by the following inequalities.

For all t ∈ T and i = 1,… ,NT (resp. i = 1,… ,NP)

− g
i
𝛥t ≤

∑

j∈Xit

(

eijt𝛥Xijt − eij(t−1)𝛥Xij(t−1)

)

≤ gi𝛥t, (8)

− g
i
𝛥t ≤

∑

j∈ ̂Xit

(

êijt̂𝛥Xijt − êij(t−1)̂𝛥Xij(t−1)

)

≤ gi𝛥t, (9)

where g
i
, gi are the downward and upward gradient in m3∕h2, and

∑

j∈Xit

eij0𝛥Xij0 = xi0

(resp.
∑

j∈ ̂Xit

eij0̂𝛥Xij0 = yi0) is known.
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Bounds on volumes
Each reservoir has an upper and lower bound for the stored water volume (water

volume bounds). This is given by the following simple bounds. For all n ∈ N and

t ∈ T , Vnt ≤ vnt ≤ Vnt.

Water flow constraints
The volume in a reservoir at the current time step is equal to the volume in the

reservoir at the previous time step plus the inflows (external, due to turbining of

uphill plants, or to pumping of downhill plants in the previous time steps) minus the

outflows (external, due to turbining, or to pumping). This can be written as follows.

vnt = vn(t−1) + snt𝛥t + 𝛥t
∑

m∈A (n)

∑

i∈𝜎−1
T [(m,n)]

∑

j∈Xi(t−D(m,n) )

eij(t−D(m,n))𝛥Xij(t−D(m,n))

− 𝛥t
∑

m∈F (n)

∑

i∈𝜎−1
T [(n,m)]

∑

j∈Xit

eijt𝛥Xijt

+ 𝛥t
∑

m∈F (n)

∑

i∈𝜎−1
P [(m,n)]

∑

j∈ ̂Xi(t−D(m,n))

êij(t−D(m,n))
̂
𝛥Xij(t−D(m,n))

− 𝛥t
∑

m∈A (n)

∑

i∈𝜎−1
P [(n,m)]

∑

j∈ ̂Xit

êijt̂𝛥Xijt,

(10)

where snt refers to the external inflows (e.g. from rain, rivers) for reservoir n ∈ N at

time period t ∈ T . As previously mentioned, these are supposed to be deterministic

and forecasted for the next 2 days.

2.4 Objective Function

The objective is to minimize the following

−
∑

n∈N
WnvnT − 𝛥t

∑

t∈T
𝜆t

NT∑

i=1

∑

j∈Xit

eijt𝛥Pijt + 𝛥t
∑

t∈T
𝜆t

NP∑

i=1

∑

j∈̂Xit

êijt̂𝛥Pijt, (11)

where Wn is the value of water savings for reservoir n ∈ N, 𝜆t is the price signal (in

e/MWh). The first term corresponds to the profit of water savings, the second part

is the profit of the power generated by turbining, and the last term gives the cost of

power consumption during pumping.

As it has been explained before, the HUCP presents many difficulties, namely

related to its combinatorial structure and the flow constraints that link the different

reservoirs. Therefore, we propose to solve this MILP using a Lagrangian relaxation

(LR) technique combined with a local branching heuristic. The method is described

in the following.
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3 Proposed Method of Resolution

LR decomposition technique is based on three majors phases: dualization, dual prob-

lem solving, and primary recovery phase. The most common method is to dualize

the linking constraints that constitute hard constraints expressing the physical rela-

tionship between upstream and downstream reservoirs. Another possible approach

of dualization is the use of variables duplication, a strategy basically used for non-

linear mixed integer programs [4]. After dualization, an important phase is to solve

the dual subproblems and update the Lagrange multipliers. This can generally be

handled by the use of nonsmooth algorithms like subgradient method [8]. Another

interesting method to solve large-scale dual problems with high precisions is the

bundle method [2], which helps giving good starting points for recovering primal

solutions. The last step, after solving the dual problems, is to find a primal feasible

solution.

In what follows, we will describe the methods and techniques that we have used

in our algorithm for these three steps.

Dualization phase
An important feature of the LR approach is that it allows neglecting the complicat-

ing linking constraints for the HUCP which is consequently split into a sequence of

smaller subproblems coordinated by a dual master program. To this end, we choose

one (or many) reservoir(s) to cut the valley into zones. In the sequel, we assume,

without loss of generality, that we will decompose the valley according to one reser-

voir, say r. The approach can be easily generalized in case of decomposition along

many reservoirs. We write the dual problem with respect to flow conservation con-

straint (10) written for reservoir r. Let us denote by 𝜇 the Lagrange multiplier asso-

ciated with this constraint. Note that 𝜇 is an element of ℝT
and the Lagrangian is

expressed as follows :

L ([primal variables], 𝜇) =

−
∑

n∈N
WnvnT −

∑

t∈T
𝜆t𝛥t

NT∑

i=1

∑

j∈Xit

eijt𝛥Pijt +
∑

t∈T
𝜆t𝛥t

NP∑

i=1

∑

j∈ ̂Xit

êijt ̂𝛥Pijt

+
∑

t∈T
𝜇tQ(r, t),

(12)

where Q(r, t) is the flow constraint (10) written for reservoir r ∈ N at period t ∈ T .

The dual problem can be hence written

max
𝜇∈ℝT

𝛩(𝜇) where 𝛩(𝜇) = min
[p.v.]

L ([p.v.], 𝜇). (13)

Note here that 𝛩 is concave as it is the minimum of concave functions. Remark also

that if 𝜇
∗

is a solution of (12), then 𝛩(𝜇∗) is a lower bound for the value of the primal

problem.
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Dual problem solving
Note that the Lagrangian (12) can be decomposed into independent parts each involv-

ing variables that are specific to the different zones obtained from the original valley

after decomposition. In other words, L ([p.v.], 𝜇) can be seen as the sum of several

independent subproblems. Consequently, using the simple fact that

min
x∈X,y∈Y

(f (x) + f (y)) = min
x∈X

f (x) + min
y∈Y

f (y),

computing 𝛩 reduces to solving separately the different independent subproblems

obtained after decomposition. Moreover, as we know that 𝛩 is concave and we do

not have an explicit expression of it, we can build a cutting plane model of it, see

[7]. This idea is also exploited in bundle methods. After this cutting plane phase, one

can compute an optimal pseudo-schedule for the HUCP. However, in the majority

of cases, it is unfortunately not feasible. A recovery phase is then needed to restore

feasibility, see, for example, [3].

Primal feasibility and local branching
We make use of the local branching heuristic [5] in order to restore feasibility of

a given infeasible but integer solution. While the original local branching heuristic

was designed to improve an integer feasible solution, here we use the local branch-

ing constraint to explore a limited neighborhood of an integer infeasible solution and

restore feasibility. The infeasible starting solution is in general obtained by a round-

ing procedure applied on the optimal pseudo-schedule previously computed. This

phase is based on the use of the following local branching constraint applied on a

solution x∗. ∑

j∈S
xj +

∑

j∈̄J⧵S

(1 − xj) ≤ k, (14)

where S = {j ∈ ̄J ∶ x∗j = 0}, k is a given parameter, and ̄J is the set of binary vari-

ables.

4 Preliminary Computational Results

Our approach is developed in python, solved by Cplex v. 12.6.3, and tested on real-

world instances provided by EDF. We test our approach in two phases. Starting from

the integer infeasible solution x∗, we find the minimum value of k subject to (3)–(10)

and (14) so as to find an integer feasible solution. After fixing the value of k to the

value found in phase 1, we minimize (11) subject to (3)–(10) and (14).

Results are reported in Table 1. The first two columns give the instance number

as well as the corresponding number of binary variables. The third column gives

the minimum value of k to find a solution feasible for (3)–(10) and (14). The fourth

and the last columns report the optimal solution value of the MILP (3)–(10) with



636 W. van Ackooij et al.

Table 1 Results of the feasibility restoration algorithm on instances of increasing difficulty

Instance # bin var k min Sol (3)–(10) +

(14)

Gap % Sol (3)–(10)

1 121 0 7,892,201.81 0.00000000 7,892,201.81

2 242 0 7,897,761.96 0.00000000 7,897,761.96

3 363 0 7,903,420.33 0.00000000 7,903,420.33

4 484 0 7,908,672.93 0.00013340 7,908,683.48

5 605 0 7,913,848.94 0.00000000 7,913,848.94

6 726 0 7,918,722.82 0.00000000 7,918,722.82

7 847 0 7,923,505.37 0.00000000 7,923,505.37

8 968 2 7,927,457.86 0.00205610 7,927,620.86

9 1,089 8 7,930,990.53 0.01155535 7,931,907.09

10 1,210 2 7,935,081.02 0.00469765 7,935,453.80

11 1,331 3 7,938,807.36 0.00418673 7,939,139.75

12 1,452 1 7,942,466.53 0.01023444 7,943,279.48

24 2,904 3 7,995,659.39 0.00090173 7,995,731.49

48 5,808 6 8,099,578.24 0.01414516 8,100,724.10

and without the local branching constraint (14), respectively. And the second to last

column reports the percentage GAP between the two solutions.

The results show that, for the smallest instances, i.e. 1–7, there is no need to

change binary variables to find a feasible solution. Moreover, for all these instances

but one, the feasible solutions found is also optimal. For the larger instances, the

number of flips of the binary variable values needed to find a feasible solution is

always less than 1% of the total number of binary variables. Moreover, the percent-

age GAP with respect to the optimal solution is always very limited, namely, less

than 0.02%. Thus, the preliminary results show that the proposed method for finding

effectively a high quality feasible solution for the HUCP is promising.

5 Conclusion

In this paper we presented a Lagrangian relaxation based decomposition method to

solve the HUCP. The solution obtained after solving the dual problem is rounded

to guarantee integrality, and feasibility is then ensured using a local branching con-

straint. Applied on real-world instances, our approach provides promising results.

However, several improvements may be added in the future. We mainly aim at using

bundle methods instead of the current cutting plane algorithm in order to ensure an

efficient resolution of the dual problem. We also would like to include local branch-

ing not as a constraint but rather as a branching framework within a branch-and-

bound algorithm. Moreover, extensive tests on real-world instances problems should

be considered.
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