
Chapter 2
Can Parallel Programming Revolutionize
EDA Tools?

Yi-Shan Lu and Keshav Pingali

1 Introduction

I think this is the beginning of a beautiful friendship. Humphrey Bogart in Casablanca.

Until a decade ago, research in parallel programming was driven largely by
the needs of computational science applications, which use techniques like the
finite-difference and finite-element methods to find approximate solutions to partial
differential equations. In finite differences, the key computational kernels are stencil
computations on regular grids, and the solution of linear systems with structured
sparsity such as banded systems. In finite-elements, the key computational kernel is
the solution of sparse linear systems in which matrices have unstructured sparsity;
these linear systems are usually solved using iterative methods like conjugate
gradient in which the main computation is sparse matrix–vector multiplication.

Parallel programming research therefore focused largely on language support,
compilation techniques, and runtime systems for matrix computations. Languages
like High Performance FORTRAN (HPF) [21] and Coarray FORTRAN [32] were
developed to make it easier to write matrix applications. Sophisticated compiler
technology based on polyhedral algebra was invented to optimize loop nests that
arise in matrix computations [6, 13, 14]. Runtime systems and communication
libraries like OpenMP and MPI provided support for communication and synchro-
nization patterns found in these applications.

While computational science applications and matrix computations continue to
be important, our group at the University of Texas at Austin and several others across
the world have shifted our focus to applications, such as the following ones, which
compute on unstructured graphs.
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• In social network analysis, the key data structures are extremely sparse graphs
in which nodes represent entities and edges represent relationships between
entities. Algorithms for breadth-first search, betweenness-centrality, page-rank,
max-flow, etc. are used to extract network properties, to make friend recommen-
dations, and to return results sorted by relevance for search queries [2, 20].

• Machine-learning algorithms like belief propagation and survey propagation are
based on message-passing in a factor graph, which is a sparse bipartite graph
[23].

• Data-mining algorithms like k-means and agglomerative clustering operate on
dynamically changing sets and multisets [37].

• Traffic and battlefield simulations often use event-driven (discrete-event) simula-
tion [27] in networks.

• Program analysis and instrumentation algorithms used within compilers are
usually based on graphical representations of program properties, such as points-
to graphs [3, 15, 25, 34].

Irregular graph applications such as these can have a lot of parallelism, but the
patterns of parallelism in these programs are very different from the parallelism
patterns one finds in computational science programs.

• Graphs in many of these applications are very dynamic data structures since their
structure can be morphed by the addition and removal of nodes and edges during
the computation. Matrices are not good abstractions for such graphs.

• Even if the graphs have fixed structure, many of the algorithms do not fit
the matrix–vector/matrix–matrix multiplication computational patterns that are
the norm in computational science. One example is delta-stepping, an efficient
parallel single-source shortest-path (SSSP) algorithm [20, 26]. This algorithm
maintains a work-list of nodes, partially sorted by their distance labels. Nodes
enter and leave the work-list in a data-dependent, statically unpredictable order.
This is a computational pattern one does not see in traditional computational
science applications.

• Parallelism in irregular graph applications like delta-stepping is dependent not
only on the input data but also on values computed at runtime. This parallelism
pattern, which we call amorphous data-parallelism [33], requires parallelism
to be found and exploited at runtime during the execution of the program. In
contrast, the conventional data-parallelism in computational science kernels is
independent of runtime values and can found by static analysis of the program.1

In spite of these difficulties, the parallel programming research community has
made a lot of progress in the past 10 years in designing abstractions, programming
models, compilers, and runtime systems for exploiting amorphous data-parallelism
in graph applications. These advances have not yet had a substantial impact on EDA
tools even though unstructured graphs underlie many EDA algorithms. The goal of

1Sparse direct methods are an exception, but even in these algorithms, a dependence graph, known
as the elimination tree, is built before the algorithm is executed in parallel [5].
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this paper is to summarize advances reported in previous papers [20, 33] and discuss
their relevance to the EDA tools area, with the goal of promoting more interaction
between the EDA tools and parallel programming communities.

The rest of this paper is organized as follows. Section 2 describes an abstraction
for graph algorithms, called the operator formulation of algorithms. Section 3
discusses the patterns of parallelism in graph algorithms, and describes the Galois
system, which exploits this parallelism while providing a sequential programming
model implemented in C++. Section 4 summarizes the results of several case studies
that use the Galois system, including scalability studies on large-scale shared-
memory machines [18], and implementations of graph analytics algorithms [31],
subgraph isomorphism algorithms, and FPGA maze routing [28]. We conclude in
Sect. 5.

2 Abstractions for Graph Algorithms

Parallelism in matrix programs is usually described using program-centric concepts
like parallel loops and parallel procedure calls. One lesson we have learned in
the past 10 years is that parallelism in graph algorithms is better described using
a data-centric abstraction called the operator formulation of algorithms in which
data structures, rather than program constructs, play the central role [33]. To
illustrate concepts, we use the single-source shortest-path (SSSP) problem. Given
an undirected graph G D .V; E; w/ in which V is the set of nodes, E the set of edges,
and w a map from edges to positive weights, the problem is to compute for each node
the shortest distance from a source node s. There are many algorithms for solving
this problem such as Dijkstra’s algorithm, Bellman-Ford algorithm, delta-stepping
and chaotic relaxation [20], but in the standard presentation, these algorithms appear
to be unrelated to each other. In contrast, using the operator formulation elucidates
their similarities and differences.

2.1 Operator Formulation

The operator formulation of an algorithm has a local view and a global view, shown
pictorially in Fig. 2.1. This formulation of algorithms leads to a useful classification
of algorithms, called TAO analysis, shown in Fig. 2.2.

2.1.1 Local View of Algorithms: Operators

The local view is described by an operator, which is a graph update rule applied
to an active node in the graph (some algorithms have active edges, but to avoid
verbosity, we refer only to active nodes in this paper). Each operator application,
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Fig. 2.1 Operator
formulation

Fig. 2.2 TAO analysis of graph algorithms

called an activity, reads and writes a small region of the graph around the active
node, called the neighborhood of that activity. In Dijkstra’s SSSP algorithm,
the operator, called the relaxation operator, uses the label of the active node to update
the labels of its immediate neighbors. Figure 2.1 shows active nodes as filled dots,
and neighborhoods as clouds surrounding active nodes, for a generic algorithm. An
active node becomes inactive once the activity is completed.

In general, operators can modify the graph structure of the neighborhood by
adding and removing nodes and edges (these are called morph operators). In most
graph analytics applications, operators only update labels on nodes and edges,
without changing the graph structure. These are called label computation operators;
a pull-style operator reads the labels of nodes in its neighborhood and writes to the
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label of its active node, while a push-style operator reads the label of the active node
and writes the labels of other nodes in its neighborhood. Dijkstra’s algorithm uses a
push-style operator. In algorithms that operate on several data structures, some data
structures may be read-only in which case the operator is a reader for those data
structures.

Neighborhoods can be distinct from the set of immediate neighbors of an active
node, and in principle, can encompass the entire graph, although usually they are
small regions of the graph surrounding the active node. Neighborhoods of different
activities can overlap; in Fig. 2.1, node n is contained in the neighborhoods of both
activities A and B. In a parallel implementation, the semantics of reads and writes to
such overlapping regions, known as the memory model, must be specified carefully.

2.1.2 Global View of Algorithms: Location of Active Nodes and Ordering

The global view of a graph algorithm is captured by the location of active nodes and
the order in which activities must appear to be performed.

Topology-driven algorithms make a number of sweeps over the graph until some
convergence criterion is met; in each sweep, all nodes are active initially. The
Bellman-Ford SSSP algorithm is an example. Data-driven algorithms, on the other
hand, begin with an initial set of active nodes, and other nodes may become active on
the fly when activities are executed. These algorithms do not make sweeps over the
graph, and terminate when there is no more active nodes. Dijskstra’s SSSP algorithm
is a data-driven algorithm: initially, only the source node is active, and other nodes
become active when their distance labels are lowered.

The second dimension of the global view of algorithms is ordering. In unordered
algorithms, any order of processing active nodes is semantically correct; each sweep
of the Bellman-Ford algorithm is an example. Some orders may be more efficient
than others, so unordered algorithms sometimes assign soft priorities to activities,
but these are only suggestions to the runtime system, and priority inversions are
permitted in the execution. In contrast, ordered algorithms require that active
nodes appear to have been processed in a specific order; Dijkstra’s algorithm and
algorithms for discrete-event simulation are examples. This order is specified by
assigning priorities to active nodes, and the implementation is required to process
active nodes so that they appear to have been scheduled for execution in strict
priority order from earliest to latest.

2.2 Trade-offs Between Topology-Driven and Data-Driven
Algorithms

Many graph problems, like SSSP, can be solved by both topology- and data-driven
algorithms. However, one should be aware of the tradeoffs involved when choosing
algorithms.
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Topology-driven algorithms are easier to implement because iteration over active
nodes can be implemented by traversing the nodes in the representation of the graph
(usually arrays). However, there may be wasted work in each sweep because there
may not be useful work done at many nodes.

In contrast, data-driven algorithms can be work-efficient since activities are
performed where there is useful work to be done. For many problems, data-driven
algorithms are asymptotically faster than topology-driven algorithms. For instance,
the complexity of the Bellman-Ford algorithm is O.jEjjVj/, whereas Dijkstra’s
algorithm is O.jEj log.jVj//.

On the other hand, data-driven algorithms can be complicated to implement
because they need a work-set to track active nodes. Sequential implementations
use lists and priority queues for unordered and ordered algorithms, respectively.
Concurrent work-lists for graph algorithms are difficult to implement efficiently:
since the amount of work in each activity is usually fairly small, adding and
removing active nodes from the work-list can become a bottleneck unless the work-
list is designed very carefully. Nguyen et al. [19, 31] describe a scalable work-set
called obim that supports soft priorities.

The best choice of algorithm for a given problem can also depend on the topology
of the graph, as we show in Sect. 4.2 [9, 29]. In many social networks such as
the web graph or the Facebook friends graph, the degree distribution of nodes
roughly follows a power law, so these are often referred to as power-law graphs.
In contrast, road networks and 2D/3D grids/meshes are known as uniform-degree
graphs because most nodes have roughly the same degree. Graphs for VLSI circuits
fall in this category. Random graphs, which are created by connecting randomly
chosen pairs of nodes, constitute another category of graphs. Different graph classes
have very different properties: for example, the diameter of a randomly generated
power-law graph grows only as the logarithm of the number of nodes in the graph
but for uniform-degree graphs, the diameter can grow linearly with the number of
nodes [20].

Figure 2.2 summarizes this discussion. We call it TAO analysis for its three
main dimensions: Topology of the input graph, Activity location and ordering,
and Operator. Note that TAO analysis does not distinguish between sequential and
parallel algorithms.

3 Exploiting Parallelism in Graph Algorithms

Parallelism can be exploited by processing active nodes in parallel, subject to neigh-
borhood and ordering constraints. Since neighborhoods can overlap, the memory
model, which defines the semantics of reads and writes in overlapped regions, may
prevent some activities with overlapping neighborhoods from executing in parallel.
In addition, ordering constraints between activities must be enforced. We call this
pattern of parallelism amorphous data-parallelism [33]; it is a generalization of data-
parallelism in which (1) there may be neighborhood and ordering constraints that
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Fig. 2.3 Parallelization strategies

prevent all activities from executing in parallel, and (2) the execution of an activity
may create new activities.

Figure 2.3 summarizes the important choices in implementing parallel graph
programs. There are two popular memory models: BSP-style (Bulk-Synchronous
Parallel) semantics [39] and transactional semantics.

3.1 BSP-Style Semantics

The program is executed in rounds (also known as super-steps), with barrier
synchronization between rounds. Writes to the graph are considered to be commu-
nication from a round to the following round, so they are applied to the graph only
at the beginning of the following round. Multiple updates to a label are resolved as
in PRAM models such as by using a reduction operation to combine the updates
into a single update [11].

BSP-style parallelization may work well for graph applications in which the
number of activities in each round is large enough to keep the processors of the
parallel machine busy. One example is breadth-first search (BFS) on a power-law
graph. Each round handles nodes at a single BFS level and computes labels for nodes
at the next BFS level. Since the average diameter of power-law graphs is small,
there will be a lot of parallel activities in most rounds. On the other hand, BSP-style
parallelization may not perform well for graphs that have high average diameter,
such as road networks or VLSI circuits, as we show experimentally in Sect. 4.2.
This is because the number of super-steps required to execute the algorithm may be
large, and the number of activities in each super-step may be small.

3.2 Transactional Semantics

In this model, parallel execution of activities is required to produce the same answer
as executing activities one at a time in some order that respects priorities. Intuitively,
this means that activities should not “see” concurrently executing activities, and the
updates made by an activity should become visible to other activities only after
that activity completes execution. Formally, these two properties of transactional
execution are known as isolation and atomicity.
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Transactional semantics are implemented by preventing activities from executing
in parallel if they conflict. For unordered algorithms, a conservative definition
is that activities conflict if their neighborhoods overlap. In Fig. 2.1, activities A
and B conflict because node n is in both their neighborhoods. Activities C and
D do not conflict, and they can be executed in parallel with either A or B.
Exploiting properties of the operator such as commutativity can lead to more relaxed
definitions of conflicts, enhancing parallelism [16]. Given a definition of conflicts,
the implementation needs to ensure that conflicting activities do not update the graph
in parallel. This can be accomplished using autonomous scheduling or coordinated
scheduling.

In autonomous scheduling, activities are executed speculatively. If a conflict is
detected with other concurrently executing activities, some activities are aborted,
enabling others to make progress; otherwise, the activity commits, and its updates
become visible to other activities. Autonomous scheduling is good for exploiting
parallelism but for some unordered algorithms, the output of the program can
depend on the precise order in which activities are executed so the output may
be non-deterministic in the sense that different runs of the program for the
same input may produce different outputs. Delaunay mesh refinement and maze
routing, discussed in Sect. 4.4, are examples. It is important to notice that this non-
determinism, known as don’t-care non-determinism, arises from under-specification
of the order in which activities must be processed, and not from race conditions
in updating shared state: even in a sequential implementation, the output of the
program can depend on the order in which the work-list of active nodes is processed.

Coordinated scheduling strategies ensure that conflicting activities do not execute
simultaneously [33]. For some algorithms, such as those that can be expressed
using generalized sparse matrix–vector product, static analysis of the operator shows
that active nodes can be executed in parallel without any conflict-checking. This
is called static parallelization, and it is similar to auto-parallelization of dense
array programs. Just-in-time parallelization preprocesses the input graph to find
conflict-free schedules (e.g., by graph coloring); it can be used for topology-driven
algorithms like Bellman-Ford in which neighborhoods are independent of data
values. Runtime parallelization is general: the algorithm is executed in a series of
rounds, and in each round, a set of active nodes is chosen, their neighborhoods are
computed, and a set of non-conflicting activities are selected and executed. This
approach can be used for deterministic execution of unordered algorithms [31].

3.3 The Galois System

The Galois system is an implementation of these data-centric abstractions.2 Appli-
cation programmers write programs in sequential C++, using certain programming

2A more detailed description of the implementation of the Galois system can be found in our
previous papers such as [31].
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1 # inc l ude " Ga lo i s / Ga lo i s . h "
2
3 s t r u c t Data {i n t d i s t ; } ;
4 t ypede f Ga lo i s : : Graph : : LC_CSR_Graph<Data , void > Graph ;
5 t ypede f Graph : : GraphNode Node ;
6
7 s t r u c t BFS {
8 Graph& g ;
9 BFS ( Graph& g ) : g ( g ) {}
10 vo id operator ( ) ( Node n , Ga lo i s : : UserContext <Node>& c t x ) {
11 i n t newDist = g . g e tDa ta ( n ) . d i s t + 1 ;
12 f o r ( auto e : g . edges ( n ) ) {
13 Node d s t = g . ge tEdgeDst ( e ) ;
14 i n t& d s tD i s t = g . g e tDa ta ( d s t ) . d i s t ;
15 i f ( d s tD i s t > newDist ) {
16 d s tD i s t = newDist ;
17 c t x . push ( d s t ) ;
18 }
19 }
20 }
21 } ;
22
23 i n t main ( i n t argc , char ∗∗ argv ) {
24 Graph g ;
25 Ga lo i s : : r eadGraph ( g , a rgv [ 1 ] ) ;
26 Ga lo i s : : d o _ a l l _ l o c a l ( g , [&g ] ( Node n ) {g . g e tDa ta ( n ) . d i s t = DIST_INFINITY ; } ) ;
27 i n t s t a r t = a t o i ( a rgv [ 2 ] ) ;
28 Node s r c = ∗ ( s t d : : advance ( g . beg in ( ) , s t a r t ) ) ;
29 g . g e tDa ta ( s r c ) . d i s t = 0 ;
30 Ga lo i s : : f o r _ e a ch ( s r c , BFS{g } ) ;
31 re turn 0 ;
32 }

Fig. 2.4 Push-style BFS in Galois

patterns, described below, to highlight opportunities for exploiting amorphous data-
parallelism.

Key features of the system are described below, using the code for push-style
BFS shown in Fig. 2.4. This code begins by reading a graph from a file (line 25)
and constructing a compressed-sparse-row (CSR) representation in memory (line 4).
Line 26 initializes the dist fields of all nodes to1, and lines 27–29 read in the ID
of the source node and initialize its dist field to 0.

• Application programmers specify parallelism implicitly by using Galois set
iterators [33] which iterate over a work-list of active nodes. For data-driven
algorithms, the work-list is initialized with a set of active nodes before the iterator
begins execution. The execution of a iteration can create new active nodes,
and these are added to the work-list when that iteration completes execution.
Topology-driven algorithms are specified by iteration over graph nodes, and the
iterator is embedded in an ordinary (sequential) loop, which iterates until the
convergence criterion is met. In Fig. 2.4, data-driven execution is specified by
line 30, which uses a Galois set iterator to iterate over a work-list initialized to
contain the source node src.

• The body of the iterator is the implementation of the operator, and it is an
imperative action that reads and writes global data structures. In Fig. 2.4, the
operator is specified in lines 10–20. This operator iterates over all the neighbors
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of the active node, updating their distance labels as needed. Iterations are required
to be cautious: an iteration must read all elements in its neighborhood before it
writes to any of them [33]. In our experience, this is not a significant restriction
since the natural way of writing graph analytics applications results in cautious
iterations.

• For unordered algorithms, the relative order in which iterations are executed is
left unspecified in the application code. An optional application-specific priority
order for iterations can be specified with the iterator [30], and the implementation
tries to respect this order when it schedules iterations.

• The system exploits parallelism by executing iterations in parallel. To ensure
serializability of iterations, programmers must use a library of built-in concurrent
data structures for graphs, work-lists, etc. These library routines expose a
standard API to programmers, and they implement lightweight synchronization
to ensure serializability of iterations, as explained below.

Inside the data structure library, the implementation of a data structure operation
such as reading a graph node or adding an edge between two nodes acquires
logical locks on nodes and edges before performing the operation. If the lock is
already owned by another iteration, the iteration that invoked the operation releases
all of its acquired locks and is rolled back; it is retried again later. Intuitively,
the cautiousness of iterations reduces the synchronization problem to the dining
philosopher’s problem [4], obviating the need for more complex solutions like
transactional memory. The system also supports BSP-style execution of activities,
and this can be specified by the user using a directive for the iterator. This is useful
for deterministic execution of unordered algorithms.

4 Using Galois: Case Studies

This section discusses a number of case studies in which the Galois system is used
to parallelize algorithms from several domains. Section 4.1 shows the scalability of
Galois programs for HPC and graph analytics algorithms on a large-scale NUMA
shared-memory machine. Section 4.2 compares Galois program performance with
the performance of programs in Ligra [36] and PowerGraph [7], two popular shared-
memory graph analytics systems. We show that for road networks, which are high-
diameter graphs like circuit graphs, Galois programs run orders of magnitude faster
than Ligra and PowerGraph programs. Section 4.3 describes implementations of
subgraph matching algorithms in Galois. Finally, Sect. 4.4 describes how the Galois
system was used by Moctar and Brisk to perform parallel FPGA maze routing [28].
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4.1 Case Study: Large-Scale Shared-Memory Machines

In this section, we summarize the results of a study by Lenharth and Pingali
on the performance of Galois programs on a large-scale NUMA shared-memory
machine [18]. The machine used in this study is the Pittsburgh Supercomputing
Center’s Blacklight system, which is an SGI UltraViolet NUMA system with 4096
cores and 32 TiB of ram (our machine allocation was limited to 512 cores). Each
NUMA node contains 16 cores running at 2.27 GHz on two packages and 128 GiB
of memory. We compile using g++ 4.7 at -O3. The benchmarks used are Barnes-Hut
(bh), an n-body simulation code; Delaunay mesh generator (dt), a guaranteed-
quality 2D triangular mesh generator; Delaunay mesh refinement (dmr), a mesh
refinement algorithm for 2D meshes; betweenness centrality (bc), a centrality
computation in networks; and triangle counting (tri), which counts the number
of triangles in a graph. Table 2.1 summarizes the inputs and configurations used.
Although these results are on the SGI machine, similar results are seen on smaller
scale NUMA systems.

Figure 2.5 shows that dmr and bh achieve self-relative, strong scaling of
422� and 390�, respectively, at 512 threads. This equates to an 82% and 75%
parallel efficiency for programs written in a sequential programming style. Delaunay
triangulation scales only to 304� at 512 threads, due in part to memory contention
when inserting into the lookup-acceleration tree. Betweenness centrality requires
reading the entire graph in each iteration. Although the graph size is small enough
to fit in the L3 cache, the temporary data necessary for an “outer-loop” parallel bc
calculation is proportional to the size of the graph, so in actual parallel execution,
the graph could not remain in cache. Adding NUMA nodes increases the number
of cores but hurts the average latency of memory accesses for all threads, and this
causes bc to scale at only about 50% efficiency. Triangle finding scales at about
50% efficiency.

Scaling numbers can be deceptive because they do not take into account
the effect of single-thread overheads. Therefore, we also compare the single-
threaded performance of the Galois codes to third-party serial implementations of
these algorithms. Our goal is not necessarily to have the best performing serial
implementation, especially since some of the implementations use hand-crafted,

Table 2.1 Inputs used in evaluation on SGI Ultraviolet

App Input and configuration

bh 10 million bodies generated using a plummer model, tolerance = 0.05, timestep =
0.5, eps = 0.05

dmr 20 million triangles in a square, 50% bad

dt 10 million points randomly distributed in a square

bc Random graph with average degree 4 and 218 nodes

tri Random planar graph with average degree 4 and 228 nodes
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Fig. 2.5 Performance of Galois programs: SGI Ultraviolet

problem-specific data-structures, but to show that we are within an acceptable
margin of custom implementations even on one thread while using the generic data-
structures provided by our runtime.

Figure 2.5 shows that we compare favorably with third party implementations
for all our benchmarks. For Delaunay triangulation and Delaunay mesh refinement,
we compare to Triangle [35]. Our implementation of refinement on one thread
is slower than Triangle, but triangulation is much faster (due to a more efficient
algorithm). For Barnes-Hut, we compare to SPLASH-2 [40]. Although the SPLASH
implementation is an ancestor of our implementation, ours is slightly faster. For
betweenness centrality, we compare to the Scalable Synthetic Compact Applications
benchmark suite [1] and we are 20% faster. Finally, compared to the nearly identical
implementation in GraphLab [22], our implementation of triangles on 1 thread is
75� faster than Graphlab on 2 threads (the Graphlab code did not terminate when it
was run on 1 thread).

4.2 Case Study: Graph Analytics

Parallel graph analytics has become a popular area of research in the past few years.
In these applications, labels on nodes are repeatedly updated until some convergence
criterion is reached, but the graph structure is not modified (in the TAO classification
described in Fig. 2.2, these algorithms use label computation operators). Nguyen
et al. [31] compared the performance of graph analytics applications written
in Galois with the performance of the same applications written in two other
frameworks, PowerGraph [7] and Ligra [36]. We summarize their study in this
section.

PowerGraph [7] is a programming model for vertex programs, an abstraction
in which the neighborhood of an active node is limited to itself and the set of
its immediate neighbors [24]. It supports shared-memory parallelism in a single
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machine as well as distributed-memory execution on clusters. Ligra [36] is a
shared-memory programming model for vertex programs. Ligra is capable of
switching between pull- and push-style operators during execution time to improve
cache utilization. Both PowerGraph and Ligra support only bulk synchronous
parallelism (BSP).

Unlike most graph analytics studies, the study of Nguyen et al. used both
power-law graphs (twitter-50 with 51 million nodes and 2 billion edges) and road
networks (U.S. road network with 24 million nodes and 58 million edges). Graphs
of importance in the EDA tools area, such as circuit graphs, are likely to be high-
diameter graphs similar to road networks, so this study sheds some light on what
kinds of graph processing systems are likely to be useful for parallel EDA tools.

Nguyen et al. used the following applications in their study:
Single-source shortest-paths (SSSP) is the problem used in Sect. 2 to illustrate

the operator formulation of algorithms.
Breadth-first search (BFS) is a special case of SSSP in which all edge weights

are one.
Approximate diameter (DIA) computes an approximation to the graph diameter,

which is the maximum length of the shortest distance between all pairs of nodes.
Connected components (CC) divides the nodes of an undirected graph into

equivalence classes by reachability.
Pagerank (PR) computes a relative importance score for each node in a graph.
Figure 2.6 compares the performance of the three graph analytics frameworks

with different pairs of applications and input graphs. The experiments were run on a
machine with 40-core Intel E7-4860 and 128 GB of memory. Notice that the y-axis
is a log-scale.

Although the road network is roughly 40 times smaller than the Twitter graph,
Ligra and PowerGraph take far more time for BFS and SSSP on the road network
than on the Twitter graph. The U.S. road network has a large diameter and a uniform,
low degree distribution, so BSP-style implementation of algorithms requires a
large number of low-parallelism rounds. Galois avoids this problem by providing
asynchronous scheduling of activities, and is orders of magnitude faster than Ligra
and PowerGraph.

0.1
1

10
100

1000
10000

Twitter Road Twitter Road Twitter Road Twitter Road Twitter Road
Input

Ti
m

e 
(s

)

Ligra PowerGraph Galois

BFS
Connected
Components

Approximate
Diamater PageRank SSSP

Fig. 2.6 Comparison of graph analytics frameworks [31]
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The performance of CC highlights the value of Galois’s support of operators
with arbitrary neighborhoods. Since Ligra and PowerGraph support only vertex
programs, CC on these systems requires a label-propagation algorithm: all nodes
are given distinct component IDs, and the nodes with smallest IDs propagate their
IDs to all nodes in their components. On the other hand, the Galois program uses a
parallel union-find data structure. The union-find data structure is updated by pointer
jumping, which is similar to the find operation in disjoint-set union-find [11, 12].
However, pointer jumping cannot be expressed as a vertex program, so the program
cannot be written using Ligra and PowerGraph.

In summary, runtimes vary widely for different programming models even
for the same problem. Pagerank demonstrates the least variation since all three
frameworks use a topology-driven algorithm. For other problems, systems like Ligra
and PowerGraph that are based on BSP-style execution of vertex programs can be
several orders of magnitude slower than Galois, especially for road networks.

4.3 Case Study: Subgraph Isomorphism

Subgraph isomorphism is an important kernel for many applications; for example,
it can sometimes be used to locate and then replace a suboptimal circuit with
a functionally equivalent circuit with better delay, area, or power consumption.
Formally, subgraph isomorphism is defined as follows [38]: given a query graph
Gq D .Vq; Eq/ and a data graph Gd D .Vd; Ed/, a subgraph isomorphism exists
between Gq and Gd if and only if there exists a function I W Vq ! Vd such that

1. i ¤ j H) I.vq
i / ¤ I.vq

j /, and
2. .v

q
i ; v

q
j / 2 Eq H) .I.vq

i /; I.vq
j // 2 Ed.

Intuitively, the function I, which maps query graph nodes to data graph nodes, is (1)
injective, and (2) if two query nodes are connected by an edge, their images in the
data graph are also connected by an edge. This definition assumes unlabeled graphs;
it can be extended to deal with graphs with labeled nodes and edges. Subgraph
isomorphism can be solved trivially by a generate-and-test approach in which all
possible injective functions mapping query graph nodes to data graph nodes are
generated, and each one is tested to see if it satisfies condition (2). To make this
approach tractable, we must avoid generating, whenever possible, mappings that
fail the test. There are many heuristics for this, and they can be described abstractly
by the template shown in Algorithm 1 [17].

Procedure GenericGraphQuery preprocesses the graph by determining for
each query node, an initial set of candidate data nodes that it can be mapped to, based
on properties such as node labels, degrees, etc. If any query node has an empty set of
candidate data nodes, then no subgraph isomorphism can be found. Otherwise, we
call procedure SubgraphSearch to compute all subgraph isomorphisms, starting
from an empty matching M.
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Algorithm 1 Generic graph query algorithm for finding subgraph isomorphism

Input: Gq, query graph; Gd, data graph.
Output: All I W Vq ! Vd satisfying subgraph isomorphism.

1: procedure GENERICGRAPHQUERY(Gq; Gd)
2: for all v

q
i 2 Gq do

3: Cv
q
i
 FILTERCANDIDATES(vq

i ; Gq; Gd; : : :)
4: if Cv

q
i
D ; then

5: return
6: end if
7: end for
8: M  ;
9: SUBGRAPHSEARCH(Gq; Gd; M; : : :)

10: end procedure
11: procedure SUBGRAPHSEARCH(Gq; Gd; M; : : :)
12: if jMj D jVqj then
13: report Vq ! M in matching order
14: return
15: end if
16: v

q
j  NEXTQUERYNODE(Gq; Gd; M : : :)

17: R REFINECANDIDATES(vq
j ; Gq; Cv

q
j
; Gd; M : : :)

18: for all vd
k 2 R do

19: if ISJOINABLE(vq
j ; Gq; vd

k ; Gd; M : : :) then
20: update M
21: SUBGRAPHSEARCH(Gq; Gd; M : : :)
22: restore M
23: end if
24: end for
25: end procedure

In Procedure SubgraphSearch, the call to NextQueryNode heuris-
tically chooses v

q
j , the next query node to be matched. Next, procedure

RefineCandidates refines R, the set of candidate data nodes for v
q
j , based on

current matching. Finally, for every data node vd
k in R, procedure IsJoinable

checks if vd
k can be joined to current matching M and can satisfy all edge constraints.

If so, we add vd
k to M, recurse on SubgraphSearch, and remove vd

k from M
when the recursive call terminates.

Algorithms for subgraph isomorphism differ in the design of procedures
FilterCandidates, NextQueryNode, and RefineCandidates.

• The Ullmann algorithm [17] constructs initial sets of candidate data nodes based
on node labels, follows input order for deciding next query node to be matched,
and does no refinement for sets of candidate data nodes in SubgraphSearch.
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• The VF2 algorithm [17] starts search from the first query node. It considers only
unmatched immediate neighbors of matched query/data nodes when choosing
next query node and refining sets of candidate data nodes. Also, a candidate
data node is discarded by RefineCandidates if its number of unmatched
neighbors is fewer than that of its query counterpart.

To parallelize these two algorithms, we view the search process as traversing
a search tree whose nodes are query nodes being matched and branches (edges)
are data nodes matched to the corresponding query nodes. Different subtrees share
no information with each other, and the search process does not modify the query
and data graphs. Therefore, we parallelize Ullmann and VF2 algorithms along the
first level of the underlying search tree. Each task is a pair consisting of the first
query node and one of its candidate data nodes. Threads claim tasks from a work
queue, which is populated with all tasks initially. Using this parallelization strategy,
Ullmann and VF2 algorithms are unordered, data-driven algorithms using reader
operators.

The Ullmann and VF2 algorithms are implemented using Galois 2.3.0 beta with
Boost library ver. 1.58.0. Experiments are run on a Linux server with 32 cores of
Intel Xeon E7520 running at 1.87 GHz and 64GB RAM. We use two data graphs to
run our experiments. RoadNY is the road network of New York City, and THEIA
is a graph extracted from operating system activity logs. Table 2.2 summarizes
the statistics for the data graphs. Figure 2.7 shows the query graph used in our
experiments. All data graphs and the query graph are directed and unlabeled.

Figure 2.8 shows performance numbers. For roadNY, the Ullmann algorithm
scales well but the VF2 algorithm outperforms it significantly. Since the sizes of
frontiers, i.e. the number of unmatched immediate neighbors of matched nodes,
grow slowly in road networks, filtering by frontiers works well. The scaling for VF2
is not as good as the scaling for Ullmann since the graphs are small. For THEIA,
VF2 still outperforms Ullmann but not as much as when the data graph is roadNY.

Table 2.2 Data graphs for
subgraph isomorphism

Graph jVj jEj Est. diameter

roadNY 264;346 730;100 720

THEIA 7;478 17;961 2

Fig. 2.7 The query graph
for subgraph isomorphism
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Fig. 2.8 Performance for finding 100 instances of the query graph in data graphs; (a) in roadNY
by ullmann, (b) in roadNY by vf2, (c) in THEIA by ullmann, (d) in THEIA by vf2

Since THEIA is more similar to a power-law graph, its frontier grows rapidly, a fact
which renders VF2’s filtering by frontiers less effective in reducing the number of
possible candidates to match.

4.4 Case Study: Maze Routing in FPGAs

Moctar and Brisk have used the Galois system to parallelize PathFinder, the routing
algorithm used in many commercial FPGA tool chains [28]. Previous studies [8]
have shown that roughly 70% of the execution time of PathFinder is spent in maze
expansion, which performs an A� search of a routing resource graph (RRG) to route
signals through the chip. This search procedure can be parallelized, but if different
nets end up sharing routing resources, the resulting solution is illegal. When this
happens, PathFinder needs to back up and reroute some nets to restore legality.
PathFinder fails if a legal solution is not discovered within a user-specified number
of iterations.
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Fig. 2.9 Performance of Maze Router in Galois [28]

This computation pattern maps well to the asynchronous optimistic execution
model described in Sect. 3. Moctar and Brisk evaluated their implementation on ten
of the largest IWLS benchmarks [10], using an 8-core Intel Xeon platform. As a
baseline, circuits were generated for these benchmarks using the publicly available
Versatile Placement and Routing (VPR) system. A rough idea of the size of these
circuits can be obtained from the fact that one of the largest circuits, generated for
the wb_conmax input, had 10,430 nets and 6,297 logic blocks. Key findings from
the study include the following.

• The Galois implementation was able to successfully route all of the nets in all
benchmarks.

• The average speed-up over the serial VPR implementation was roughly 3 for 4
threads, and 5.5 for 8 threads, as shown in Fig. 2.9.

• The implementation was roughly three times faster than the best previous
implementation of parallel multi-threaded FPGA routing.

• Because of the don’t-care non-determinism in autonomous scheduling, different
runs of the Galois program can produce different routing solutions, but the
variation in critical path delay was small.

To eliminate don’t-care non-determinism, the study also used the deterministic,
round-based execution of Galois programs described in Sect. 3. This reduced speed-
up to 4 on 8 threads, but ensured that each run of the program, even on different
numbers of cores, returned the same routing solution.

Moctar and Brisk summarized their results as follows: “we strongly believe that
Galois’ approach is the right solution for parallel CAD, due to the widespread use
of graph-based data structures (e.g. netlists) that exhibit irregular parallelism” [28].
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5 Conclusions

In the past decade, there has been a lot of progress in understanding the structure of
parallelism in graph computations, and there is now a rich literature on programming
notations, compilers, and runtime systems for large-scale graph computations.
Meanwhile, circuit designs have become sufficiently complex that the EDA tools
community has begun to look at parallel computation as a way of speeding up
the design process. Therefore the time has come for closer interaction between the
EDA tools and parallel programming communities. We hope this paper catalyzes
this interaction.
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