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Preface

For more than four decades, the complexity of circuits and systems has grown
according to Moore’s law resulting in chips of several billion components. While
already the synthesis on the different levels from the initial specification down to
the layout is a challenging task, the quality of initial logic synthesis steps is still
very determinant for the quality of the final circuit.

Logic synthesis has been evolving into new research directions, including the use
of large–scale computing power available through data centers. The availability of
warehouse computing opens the way to the use of big data analytics and cognitive
applications from recent advances in artificial intelligence and infrastructure for
parallel processing of graph data structures.

Besides these advances in computer science, the underlying fabrication tech-
nology evolution is also bringing emergent circuit technologies that require new
synthesis techniques. Advanced fabrication nodes also require a tighter integration
of logic synthesis and physical design, in order to bring physical awareness early in
the design flow to achieve design convergence.

Logic synthesis can also be expanded to exploit higher level of abstractions,
including the identification and manipulation of datapaths. This can be done by
identifying data paths at the gate level, as well as by performing architectural
transformations at higher levels of abstractions.

The field of SAT solvers and quantified Boolean formula (QBF) solvers has
had recent important advances. This way, it is natural that several logic synthesis
problems are being addressed, modeled, and solved with these tools.

Stochastic and statistical methods are also gaining importance in the field of logic
synthesis. These include stochastic circuits that may arise in novel technologies, as
well as methods of synthesis using probabilistic approaches.

This book celebrates the 25th edition of the International Workshop on Logic
and Synthesis, which happened in June 2016. In doing so, we present a selection
of chapters that originated as keynotes, special sessions, and regular papers from
IWLS 2015 and IWLS 2016. The selection of papers reflects relevant topics for the

v



vi Preface

advancement of logic synthesis. World–leading researchers contributed chapters,
where they describe the underlying problems, possible solutions, and important
directions for future work.

The chapters in the order as they appear in this book are:

• “EDA3.0: Implications to Logic Synthesis” by Leon Stok
• “Can Parallel Programming Revolutionize EDA Tools?” by Yi-Shan Lu and

Keshav Pingali
• “Emerging Circuit Technologies: An Overview on the Next Generation of

Circuits” by Robert Wille, Krishnendu Chakrabarty, Rolf Drechsler, and Priyank
Kalla

• “Physical Awareness Starting at Technology-Independent Logic Synthesis” by
André Reis and Jody Matos

• “Identifying Transparent Logic in Gate-Level Circuits” by Yu-Yun Dai and
Robert K. Brayton

• “Automated Pipeline Transformations with Fluid Pipelines” by Rafael T. Possig-
nolo, Elnaz Ebrahimi, Haven Skinner, and Jose Renau

• “Analysis of Incomplete Circuits Using Dependency Quantified Boolean Formu-
las” by Ralf Wimmer, Karina Wimmer, Christoph Scholl, and Bernd Becker

• “Progressive Generation of Canonical Irredundant Sums of Products Using
a SAT Solver” by Ana Petkovska, Alan Mishchenko, David Novo, Muhsen
Owaida, and Paolo Ienne

• “A Branch-and-Bound-Based Minterm Assignment Algorithm for Synthesizing
Stochastic Circuits” by Xuesong Peng and Weikang Qian

• “Decomposition of Index Generation Functions Using a Monte Carlo Method”
by Tsutomo Sasao and Jon T. Butler

On the different abstraction layers, it is shown in which way logic synthesis
can adapt to recent computer science and technological advances. The contributed
chapters cover latest results in academia but also descriptions of industrial tools and
users. Also, the chapters are very helpful in pointing out relevant novel topics for
future work.

Porto Alegre, Brazil André Inácio Reis
Bremen, Germany Rolf Drechsler
June 2017
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Chapter 1
EDA3.0: Implications to Logic Synthesis

Leon Stok

1 Introduction

Electronic Design Automation is ripe for a paradigm change. But is it ready?
The ubiquitous availability of ample compute power will allow for a different
way for designers to interact with their design data and will allow for new
optimization algorithms to be invented. In this chapter we will introduce the concept
of warehouse-scale computing [1], its software stack, and how it will apply to EDA
analysis and optimization.

In the early days of Electronic Design Automation, EDA1.0, separate applica-
tions were developed. Each ran on individual workstations. Verification, synthesis,
placement, and routing were separate tasks carried out by separate tools. The size
of the designs that could be handled was limited by the available compute power
and the scalability of the algorithms. But since Moore’s law had not really taken
off, these tools were sufficient for the design sizes at the time. The design flow was
carried out by moving design data from tool to tool, with little interaction between
the individual steps.

Due to Moore’s law and the scaling of the technology designs became larger
and larger. At the same time, it became more difficult to predict the result of
decisions made early in the design flow on the final result. Wire delay started to
play an increasingly larger role in the overall delay of a path because wire delays
do not scale as well as gate delays over the last several technology generations. In
addition, due to the larger design sizes a certain percentage of the wires became
longer and longer. Logic synthesis therefore needed to really understand the effects
of interconnect increasingly better to make sensible decisions. To make reasonable
accurate timing predictions, placement and routing need to be fairly complete. In the
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2 L. Stok

era of EDA2.0, this got handled by integrating the individual tools such as synthesis,
placement, and routing as well as the analysis tools (such as timing) together in
an integrated tool suite. These integrated tool suites would typically run on larger
servers. Scaling to even larger design sizes was obtained by multi-threading many
of the core algorithms such that they could take advantage of the many cores and
threats in these larger servers.

In the last few generations, technology progress has slowed down from a
power/performance perspective. Getting the utmost power and performance out of
the smallest possible design has become more crucial to make a design in a new
technology worth it. However, technology scaling has allowed for design sizes to
continue to grow. At the same time design rule complexity has continued to go up,
and people are advocating that handling complex rules needs to become an integral
part of the design flow by providing in-design checking tools. As a result, the design
work and possibilities for optimization have gone up tremendously. The amount of
data that needs to be dealt with in an end-to-end design flow has exploded.

Design teams have increased in size. Despite that, it is impossible to complete
a large design on an economically feasible schedule without lots of reuse. This has
helped fill up the chips with homogeneous structures. But how many homogeneous
cores do we want to continue to put on the same chip? The drive for better
power/performance on specific workloads advocates for a lot more heterogeneity on
a chip with functions that target a specific workload. To deliver this larger variety
of designs, an additional boost in designer productivity will be required. It is time
that we look beyond the individual, albeit integrated tools, and start to optimize the
iterative end-to-end design flows.

Many of challenges for the future of EDA were outlined in a report on the 2009
NSF Workshop that focused on EDA’s Past, Present, and Future. This report was
published by Brayton and Cong in two parts in IEEE D&T [2]. The second part
of that paper outlines the key EDA challenges. Interestingly, it has only a few
challenges printed in bold: intuitive design environments, simplified user interfaces,
standardized interfaces, and scalable design methodologies all leading to disciplined
and predictable design. These challenges do not really drive the need for new EDA
point tools. Instead they all point to problems that need to be solved in the end-
to-end design flows. They point to the improvement that is needed in the design
environment through which the designers interact with design tools and to the scale
of problems that need to be solved.

These challenges have substantial overlap with the areas Big Data and Analytics
applications have been focusing on and made tremendous progress in. One can
certainly argue that a Big Data application like Google maps has a simple and
intuitive user interface, has standard APIs to annotate data, and has been architected
to be very scalable. It is therefore very pertinent to look how these applications have
been architected and what that means for EDA3.0 applications.

It is time for the next era in EDA that attacks these problems. EDA3.0 will deliver
this next step up in productivity. In this era, EDA needs to provide designers with
analysis tools that do not just analyze the results and produce reports, but tools that
provide real insight. The size of the reports has already become overwhelming for
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most designers. Analysis tools need to provide data that will give designers insight
in how to make their design better. We need to move from the era of analysis tools
to analytics tools. These tools should take advantage of the compute power of large
warehouse-scale clusters instead of individual servers such that they can provide
near real-time insight in the state of a design. At the same time, we want to harness
the power of these large compute clusters to devise smarter optimization algorithms
that explore a larger part of the design space.

What will need to happen to make EDA3.0 reality? First we will have to
capitalize on the changing nature of IT. We need to learn from Big Data, Cognitive
and other data, and graph parallel systems. This will allow us to create an integrated
design flow on very large compute clusters. Next, we need to change the way
designers interact with design data and allow them to get much better insight in the
state of their design. They need to understand what needs to be done next to meet
their constraints. The analytics tools need to provide this insight. Finally, a new class
of optimization algorithms needs to be invented that deliver a faster convergence
and therefore designer turn around time (TAT) in meeting the design objectives on
increasingly larger designs.

2 Warehouse-Scale Computing

The term warehouse-scale computer was introduced in [1]. “The trend toward
server-side computing and the exploding popularity of Internet services has created
a new class of computing systems that we have named warehouse-scale computers,
or WSCs. The name is meant to call attention to the most distinguishing feature of
these machines: the massive scale of their software infrastructure, data repositories,
and hardware platform. This perspective is a departure from a view of the computing
problem that implicitly assumes a model where one program runs in a single
machine. In warehouse-scale computing, the program is an Internet service, which
may consist of tens or more individual programs that interact to implement complex
end-user services such as email, search, or maps.”

The authors point out many advantages of warehouse-scale computing. Many
of them applicable to Electronic Design Automation as well. Before discussing the
implications to EDA, let us look deeper into the Software Infrastructure needed for
warehouse-scale computing. The authors define three typical software layers in a
WSC deployment.

• Platform-level software: the common firmware, kernel, operating system distri-
bution, and libraries expected to be present in all individual servers to abstract
the hardware of a single machine and provide basic server-level services.

• Cluster-level infrastructure: the collection of distributed systems software that
manages resources and provides services at the cluster level; ultimately, we
consider these services as an operating system for a datacenter. Examples are
distributed file systems, schedulers and remote procedure call (RPC) libraries, as



4 L. Stok

well as programming models that simplify the usage of resources at the scale
of datacenters, such as MapReduce [3], Dryad [4], Hadoop [5], Sawzall [6],
BigTable [7], Dynamo [8], Dremel [9], Spanner [10], and Chubby [11].

• Application-level software: software that implements a specific service. It is
often useful to further divide application-level software into online services
and offline computations because those tend to have different requirements.
Examples of online services are Google search, Gmail, and Google Maps. Offline
computations are typically used in large-scale data analysis or as part of the
pipeline that generates the data used in online services; for example, building
an index of the Web or processing satellite images to create map tiles for the
online service.

How would this apply to a typical Electronic Design environment? Let us look at
each of the three layers and start with the Platform-level software. In the early days
of WSC, only large organizations like Google and Facebook were able to provide
uniform platform-level software in their public clouds. But recent developments
such as OpenStack [12] are making similar capabilities available to private clouds.
While many EDA users have private clouds that are quite heterogeneous and
different from enterprise to enterprise, technologies such as OpenStack drive to
homogenize these heterogeneous environments. OpenStack software allows one
to control large pools of compute, storage and networking resources throughout
a datacenter, managed through a dashboard or via the OpenStack API. OpenStack
works with popular enterprise and open source technologies making it ideal for
heterogeneous infrastructure. This platform-level software is applicable to the EDA
environment mostly as-is.

The cluster-level software provides the management of the resources and the
programming models that simplify the usage of these resources. The management
portion is in general applicable to EDA applications as well. For example, dis-
tributed file systems are key to store the huge amount of design data. Schedulers like
Platform LSF [13] have been commonplace in EDA environments and the counter
pieces in warehouse-scale computing are equally important.

Several of the programming models are relevant to EDA applications. For
simplicity, let us divide the data in an electronic design flow in two categories: core-
design data and derived data.

• Core design data is the data created by the designers such as their Verilog and
VHDL descriptions, their floorplan, the timing assertions, the base IP blocks and
libraries as well as the data added by construction tools like synthesis, placement
and routing to enable tape-out of OASIS.

• Derived data is the data produced by (mostly) analysis tools such as: verification
traces and coverage, timing, noise and power reports, placement and routing
density reports, audit and coverage reports.

Since our chips have grown in size and the capabilities and speed of the analysis
tools have drastically improved the amount of derived design data in a design
process has exploded. It has become a huge challenge for a design team to manage
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Fig. 1.1 The GraphX stack

this volume of data and more importantly make sense out of it. The insights needed
to drive the next iteration of the design process have been more and more difficult
to obtain. Many of the programming models described under the Cluster-level
infrastructure are very well suited for this type of derived data. A programming
paradigm like Bigtable [7] applies really well to most of the well-structured derived
data that gets generated in the design process. Similarly, other non-SQL, SQL, and
graph databases are very well suited for the volumes of derived data generated in a
typical design process.

Cluster-level infrastructure for the core design data is less readily available. EDA
research and development has spent many years optimizing core data-structures for
fast logic simulation, quick synthesis and place and route, or huge scale checking
for timing, LVS or DRC. However, time has come to relook at these now that we
enter the era of warehouse-scale computing.

A programming model like Spark has become the basis for many algorithms
that are very similar to core algorithms in EDA tools. For example, Fig. 1.1
shows the stack for the GraphX model built on top of Spark. It provides many
components for key graph algorithms, such as shortest path algorithms, singular
value decomposition, and connected component calculations.

What would be the key programming models that are needed in the EDA
space? A distributed version of a network database like OpenAcces(OA), if it
were to be designed to scale to very large sizes as Bigtable does, would be an
essential programming model in the EDA stack. A very scalable implementation of
a graph database would be a great foundation for analysis tools like Static Timing
Analysis. Other key programming models are: a model to handle matrices for circuit
simulators and a model for graphics data for layout applications. Fortunately, there
are only a handful of these core programming models that can cover most of the
EDA applications.
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Creating these cluster-level programming models for EDA specific usage should
be a very fertile ground for academic research. Many of the programming models
used widely in analytics, big data and cloud applications are Open Source and
came directly out of academic research. In addition to their availability under Open
Source licenses, they formed the basis for a new generation of companies. Take, for
example, Spark [15], which came out of UCB’s AMPlab and led to the foundation
of a company like DataBricks [16].

Once several of these cluster-level programming models are in place, EDA
research and development should focus on the application-level software. To under-
stand the application space, it is important to take a fresh look at how an end-to-end
design flow should be built from these applications and not look at a one-to-one
replacement of our current EDA tools. We need to look at the iterative design
process through the same lens as many of the big data applications and split
them in online services (e.g., interactive, fast response) and offline computations.
Take, for example, static timing analysis. Performing the timing analysis itself can
take a significant number of hours on a large chip (e.g., the offline computation).
However, the user wants to be able to traverse the resulting outcome quickly to find
specific problems and devise strategies to address them (e.g., the online service).
The insights from the online service are crucial for the designer to drive the next
iteration of the design process which can take place as the next offline computation
to provide data for the next iteration of analysis. If we can extend this model such
that we have a live database (like Google Maps) which reflects the latest state of the
entire design (and has versioning to roll-back to earlier versions of the design), this
model will be the basis for fast queries.

As soon as the offline computations are finished, they will be reflected back (and
versioned) into the live model. This will allow designers to get quick insight in the
current state of the entire design and its latest interactions between its partitions. In
the next section, we will compare the scale of some of these analytics and big data
applications with the scale of EDA applications, to understand if their programming
models are suitable for the design sizes we typically encounter in EDA applications.

3 Scale of Applications

In this section we will look at the question if the programming models in the cluster-
level infrastructure can scale to the level of EDA applications. We will look at
various applications and compare them to typical EDA applications.

Most EDA tools are deployed in complex design flows and used by a large
number of designers. Many tools communicate with each other through arcane file-
formats [30] and produce data in huge text based log and report files. Most tools
have a very large number of configuration parameters and require a very elaborate
setup for a particular technology or design style, usually reflected in elaborate and
complex control scripts.



1 EDA3.0: Implications to Logic Synthesis 7

0
2
4
6
8

10
12
14
16
18
20

Tb

1
22nm Micro

Scratch
User
Analysis
Phys Design
Verification
Logic

Fig. 1.2 Design data for a 10 C B transistor 22 nm chip

It is not uncommon for design teams to write 1–2 millions of lines of Skill
or Python scripts to create library cells and IP blocks. A complete design and
verification flow can quickly add up to 1–2 million lines of TCL to control the
tools and deal with the setup and environment in which IP and models are stored.
And once the design flow is up and running, a large number of Python and Perl
scripts are written to extract the key information from the terabytes of reports and
design data. It is often difficult to know how many of these scripts exist in a design
environment since they are often owned by individual designers. In addition to all
the configuration and control files a large amount of data gets generated and stored.

Let us look at the amount of data produced by a design team designing a 10BC
transistor processor in 22 nm technology as shown in Fig. 1.2. It takes about 12 Tb to
store the entire golden data (including incremental revisions). Logic and verification
setup takes about 2 Tb, the physical design data about 8–9 Tb and another 1–2 Tb
for analysis reports. In addition, individual users keep another 6 Tb of local copies in
user and scratch spaces. For functional verification, approximate 1.5 Tb of coverage
data is collected daily. This data is very transient and about 2 weeks worth of data
(21 Tb) is kept in a typical verification process.

After the design is finished, the physical data get compressed and streamed out
to about 3Gb of OASIS. The product engineering team blows this up to around 1 Tb
during mask preparation operations. Finally, another 5 Tb of test and diagnostics
data gets generated in the post-silicon process.

This looks like a significant amount of data but it tops out at 50 Tb for a multi-
year design and manufacturing project. Recently a study [17] was published that
produced the table in Fig. 1.3. It seems to project the 22 nm chip storage needs
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Fig. 1.3 Estimated storage capacity requirements by EDA tools for the entire RTL-to-GDSII flow
per chip design versus technology process node. (Source: Dell EMC)

at a 150 Tb or about 3x our estimate. It also projects a 2x increase in each of the
subsequent technology nodes.

While this was once a phenomenal amount of data that put EDA at the forefront
of storage and compute needs, it has been surpassed by many large cloud-based Big
Data applications. Let us look at some of them.

Let us try to compare the scale of some of the cloud applications with the problem
set we deal with in EDA. We will take a look at Google Maps [18] and some key
metrics that we can compare with the design data above.

1. How much data has Google Maps accumulated?
Combining satellite, aerial and street level imagery, Google Maps has over
20 petabytes of data, which is equal to approximately 21 million GB, or around
20,500 Tb

2. How often are the images updated?
Depending on data availability, aerial and satellite images are updated every
2 weeks. Street View images are updated as quickly as possible, though Google
wasn’t able to offer specific schedules, due to its dependence on factors such as
weather, driving conditions, etc.

3. In the history of Google Maps, how many Street View images have been taken?
The Street View team has taken tens of millions of images since the Street View
project began in 2007, and they’ve driven more than 5 million unique miles of
road.
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How does this compare to the design data? Comparing the 50 Tb/design versus
the 20 Pb of the fully annotated Google maps, the design data is only 1/400th the
size. A large chip has 5 km of wire compared to the 5 million miles of road to
accumulate street view images. Of course, the scale of intersections on the chips are
in nm’s and the road crossings are in kilometers. It would be interesting to compare
the number of road intersections in the world with the number of vias on a chip.
Typically, the street view data annotated with each street is significantly larger than
the physical design data needed to be associated with each stretch of wire.

One major difference is that the core EDA design data is certainly more dynamic
than the more static base map of roads in an application like Google maps. EDA
tools can much more quickly reroute wires than physical roads can be built. But let
us look at another data point to illustrate the velocity of data in a cloud application
like YouTube. Each minute 300 h of video is uploaded to YouTube [19]. This is
indexed, categorized, and made available. While we have no accurate data on how
much of the design data changes each day, since it tops out at 50 Tb after a multi-
year project, it is safe to assume that only a small fraction of it changes daily.

Based on these examples we conclude that many of the cluster-level program-
ming models will be able to handle the typical data sizes in EDA projects. Let
us look at the traversal speed of some of these models as well. Graph databases
have become one of the fastest growing segments in the database industry. Graph
databases not only perform well in a distributed environment but can also take
advantage of accelerators such as GPUs. Blazegraph set up an experiment to run a
Parallel Breadth First search on a cluster of GPUs. Using such a cluster, Blazegraph
demonstrated a throughput of 32 Billion Traversed Edges Per Second (32 GTEPS),
traversing a scale-free graph of 4.3 billion directed edges in 0.15 s [20]. This is a
few orders of magnitudes more than a static timing analysis tool which traverses
about 10 M edges per second on a single machine. An example of a matrix
programming model is shown in Quadratic Programming Solver for Non-negative
Matrix Factorization with Spark [21].

Despite the applicability of many of these programming models to EDA rela-
tively little attention has been paid to them. This is caused by the fact that most
of the public discussion has been overshadowed by other “cloud” aspects and
specifically the element of data security [22, 23]. Indeed, only when sufficient
security guarantees are given will designers put their entire IP portfolio on a public
cloud. However, EDA applications can run in private (or hybrid) clouds and take full
advantage of the massively distributed warehouse-scale computing infrastructure
without the security issues.

Unfortunately, this heavy focus on the security aspect has overshadowed the
discussion around the opportunities of warehouse-scale computing to the EDA
design flows and applications. This is also the reason I am using the term
“warehouse scale computing” instead of cloud to not distract from its underlying
potential. In the next section, we will describe how EDA tools can take advantage
of the warehouse-scale software infrastructure. We will describe how we can make
a design flow a lot more productive and designer-friendly.
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4 EDA Applications

What does a designer (the EDA tool client) really want? She wants to get to the
design DATA from anywhere and any place. She wants the DATA to be there without
her waiting for it. She wants to analyze the DATA with whatever tools she can lay
her hands on to learn how to improve her design. She wants to know how to get
from A to B through the design process and wants design data, design navigation,
and a design flow to act like Google maps. For example, wouldn’t it be great if
understanding timing and congestion problems in your design is no more difficult
than turning on traffic congestion information in Google maps? Wouldn’t it be great
if we could annotate key manufacturing data from inline inspection tools just as easy
as Street Views to our design data? This has certainly become easier to accomplish
using key elements from cluster level programming models.

This type of rapid analysis and optimization can only be accomplished if the
entire design data is in a (set of) live database(s) distributed among many machines
in the warehouse-scale compute center. When design changes are made, the live
data needs to be incrementally communicated and updated. We know how to do
this for timing analysis integrated within a place and route flow. However, this
incrementality needs to be extended to all analysis. Analysis engines can run on
many parts of the design simultaneously and can be folded together in the live
model. The analysis tools will produce the appropriate abstractions that are needed
by the higher levels of hierarchy in the design.

Instead of thinking about synthesis, place, route, and timing algorithms, this
DATA-centric EDA3.0 paradigm will start from the data, map it to the compute
infrastructure using the right cluster-level infrastructure, and put the applications
(e.g., placement, routing, timing analysis) on top of that using well-defined cluster-
level APIs as services.

Clearly there are some technical challenges here. EDA data is more connected
than many of the social networking applications. However, in many applications
we have seen that EDA data viewed the right way is inherently more parallel than
initially thought. The fact that tens or hundreds designers can work simultaneously
and productively on a design makes it clear that the parallelism exists in the design
process, albeit sometimes not in a single optimization run.

While EDA data is certainly more volatile during the optimization part of the
process, the increased re-use of IP and increased use of hierarchy with appropriate
abstractions has resulted in a much larger portion of the design data to be stable in
the iterations of modern hierarchical designs. Furthermore, only a small portion of
the chip and logic design gets (re-)done each day. With advanced version control
fully integrated in the data itself, the knowledge of what actually changed can lead
to a whole new class of optimization algorithms.

Large service providers such as Google and Facebook provide their own platform
and cluster-level infrastructure based on special versions of open source code. Many
smaller companies will build on standardized platforms such as CloudFoundry [24]
and Bluemix [25]. The EDA industry needs to ask itself the question: what can we
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do to customize several of the cluster-level programming models to allow EDA tools
to be written like services that interface with live design data through well-defined
APIs?

5 EDA Applications: Analysis

As described in Sect. 2 we can leverage many of the existing cluster-level infras-
tructure programming models for EDA applications. This is particularly true for
the EDA applications that perform analysis and reporting. DRC, LVS, and timing
analysis applications are well geared to the distributed infrastructure.

As an example, we deployed Neo4j [26] for timing analysis. Using Neo4j we now
have an unprecedented capability to store detailed timing information in a highly
efficient format, enabling very powerful query analysis. Our current benchmarking
efforts have established the feasibility of storing a complete top-level chip timing
graph from EinsTimer consisting of nearly 100 million nodes and associated timing
properties in Neo4j. Using an IBM Power8 Linux server, we are able to import data
within 11 minutes. The resulting graph database is indexed on several key query
parameters, such instance names and slack values, within a matter of a few minutes.
Once indexed, we have demonstrated the ability to perform lookups, for example
iterating through all timing end points in the top-level chip run, and returning the
worst N sorted by slack within 2 seconds. Given the underlying graph schema
consisting of both properties and labels, we have the ability to support multiple
levels of hierarchy within a single graph instance, which then enables efficient
cross-hierarchy analysis within a single instance of Neo4J. For example, we have
demonstrated the ability to compare in vs. out of context timing for approximately
1000 primary inputs on given macro within its top-level environment within 5
seconds. Previously, such cross-hierarchy analysis would require complex code to
parse timing reports and resolve the names throughout the hierarchy. Such powerful
analytics can often be achieved in a single line of Neo4J Cypher, illustrating the
power of graph databases in analyzing complex EDA data sets.

The other advantage of using a graph database as a timing data server is that it
can provide the data as an always on web service. We are fully leveraging Neo4j as
a web-server which subsequently allows for a rich variety of applications to be built
on top of the underlying graph database service, allowing us to package numerous
queries as REST end points - as well as visualize results using custom built web-
applications which allow for a clean visual representation of key timing metrics.
From the standpoint of a chip designer, the above framework provides “any time
anywhere” access to critical EDA timing results for use in triage, as well as trend
analysis over time.

We use a similar framework for noise analysis. In Fig. 1.4 we show an example
of a Noise inspection tool that we developed on top of an analytics framework. The
cause of noise problems is often not very easy to determine. Noise can be caused by
a combination of weak drivers, low tolerance for noise on sink gates, large aggressor
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Fig. 1.4 Noise inspection example

couplings, DC aggressor nets, and various other reasons. For a designer or synthesis
or routing tool to effectively combat noise problems it is important to get a good
profile of the likelihood of each of these causes to try out the best remedies. This
requires both a global analysis of the entire design to look for specific weaknesses in
certain IP blocks and a detailed drill-down capability to address specific problems
on specific instances in a design. We wrote the output of our EinsNoise tool in
MongoDB. Using the “R” analysis language we were able to quickly classify these
sources as shown in Fig. 1.4.

6 EDA Applications: Synthesis and Optimization

In Sect. 5 we described how several of the programming models apply to EDA
analysis applications. A key question is how we can use the massive parallelism
for optimization functions such as logic synthesis, placement, and routing. A lot of
research and development has gone into multi-threaded applications for optimiza-
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Fig. 1.5 Lack of predictability in the design flow

tion. However, effective strategies to leverage massive distributed infrastructure in
optimization have not been widely considered. One of the reasons is that most
research has focused on optimizing a single algorithm or application instead of
looking across the entire design process. Let us look closer at the synthesis, place,
and route flow.

In a design project, designers iterate numerous times across this flow. The main
reason for these iterations is the lack of prediction of the effect of early decisions
on the final outcome. This is best illustrated in the diagram in Fig. 1.5. When a
designer is writing her HDL it is still very difficult to predict the outcome on the final
placed and routed result. To improve the predictability, we include some prediction
of placement into the logic synthesis steps and some routing prediction into the
placement steps. But since these steps are fairly compute intensive only a very small
part of the design space is explored. This can be illustrated by the effects that tool
parameters have on the result. Designers affect the behavior of the tools by hints and
the numerous parameters that each of the optimization tools have. Changing a few
of these settings can lead to drastically different outcomes. The designers explore
this opportunity to get their designs to meet power or timing objectives or ensure
they are routable.

Let us look at an example in Fig. 1.6. This graph shows the results of the same
design after synthesis, placement, and routing. The difference between each of the
points on the graph is the different parameters that were used in the synthesis tools.
The horizontal access shows the results with respect to timing. The vertical access
shows the results with respect to power. Improved timing is toward the right on the
x-axis. Improved power is lower on the y-axis. The result of the run with default
parameters is the red diamond in the middle of the graph. The default result met
the timing constraints but significant optimization to improve power is still possible.
The blue diamonds show more than one hundred results after placement and routing.
The only difference is the parameters used in synthesis. Of particular interest are
points A, B, and C. Point A exactly meets timing, but uses 9% less power than the
default run. Point C is of particular interest. While not as fast as the default, timing
is still better than point A. Power is reduced by 30% versus the default run. This
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Fig. 1.6 Impact of synthesis parameters on final placed and routed designs

example is an illustration of the drastic effect that synthesis parameters can have on
the final outcome of the optimization process.

In a practical hierarchical design process, the requirements on the implementa-
tion of a block change frequently throughout the process. Floorplans might need to
be adjusted to accommodate other blocks. Many timing paths run across multiple
blocks and timing assertions for one block will depend on the quality of results of
other blocks that share these paths.

Running the tools end to end with just a few different parameters is quite
wasteful. Most of the steps are repeated in each of the runs, and only the steps
following the ones that are affected by the specific parameter changes will produce
different results. Can we change the paradigm in optimization to take advantage
of the cluster programming models that run very efficiently on warehouse-scale
computers?

Decisions made during synthesis have a major impact on the outcome of synthe-
sis itself and especially on the structure of the resulting netlist. While subsequent
optimizations during physical synthesis will make modifications to this structure,
these optimizations are mostly local and do not change the bias that was put in
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early in the process. Stok observed in the wavefront technology mapping paper [27]
that technology mapping is the stage in logic synthesis where a most of the netlist
structure gets locked in. By giving more alternatives to technology mapping, it is
able to make better choices. As shown in Fig. 1.7, the wavefront paper introduced
the concept of the multi-input (choice nets) which allows technology mapping to
choose one of the inputs when determining the actual technology implementation of
the gate. If timing optimization is the goal, technology mapping can choose the input
that produces the fastest timing for each cone of logic (covering step) independently.
This will potentially lead to an area increase since implicit cloning of gates is taking
place, but can certainly help a lot to get to the fastest timing results.

Chatterjee [28] expands on this idea and shows how to reduce the structural
bias in technology mapping by creating even more alternatives in the netlist before
technology mapping, so the covering step has more alternatives to choose from.
In Fig. 1.8 it is shown how the eliminate, simplify, factoring and re-substitution
transformations are changed to add many choices to the netlist before technology
mapping.

However, in both of these approaches the choices are locked in during technology
mapping. The wavefront algorithm has the advantage that it can see the impact of
all gates being mapped to a particular technology implementation before making
technology choices in the second pass. While this certainly improved the choices
that technology mapping makes, it still required these choices to be made with
very imperfect information. We are making these choices before any of the impact
of placement, routing or routing congestion is understood. In general, in the
overall optimization process we perform many optimizations in sequence, try many
alternatives, but quickly lock in a solution before we go into the next optimization
step. In many cases, we make the choices before having adequate information to do
so. As a result, synthesis algorithms make the major decisions on the structure of
the netlist, which in turn will have very significant impact on placement and routing,
without having adequate information on the consequences of its choices.

Instead, we would like to leave the “alternative” choices in the network until
placement and routing have been completed and only resolve the best choices that
make us meet our design constraints once we have sufficient reliable information
to do so. However, at the time of creation of the wavefront algorithm we were
limited by the available compute power and could not deal with the explosion in
data that needs to be handled in placement, timing and routing if all the choices are
left around. However, we are getting to a time where this is becoming practical.
If we look at applications that run really well on warehouse-scale computers,
they very effectively distribute the compute workload across many lighter weight
computations.

Let us look at Watson as an example. The DeepQA [29] architecture is underlying
the capability of Watson to understand and answer questions. Figure 1.9 shows a
high-level picture of the DeepQA architecture. “The DeepQA architecture views
the problem of Automatic Question Answering as a massively parallel hypothesis
generation and evaluation task. As a result, DeepQA is not just about question-
in/answer-out—rather it can be viewed as a system that performs differential
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Fig. 1.7 Wavefront technology mapping, L. Stok, M. Iyer, A.J. Sullivan, 1998 IWLS

diagnosis: it generates a wide range of possibilities and for each develops a level
of confidence by gathering, analyzing and assessing evidence based on available
data.”
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Fig. 1.8 Reducing Structural Bias in Technology Mapping, S. Chatterjee A. Mishchenko R.
Brayton, X. Wang T. Kam, 2005 TCAD

What if we looked at the synthesis, placement, and routing design flow through
a similar lens? Logic synthesis will be the candidate generator. It will generate
many different topologies of netlists that implement the same logic function. To
prevent that number of netlists from exploding, many of them can be embedded in
a singular netlist using choice nodes or multi-input nets. Placement and routing
can elaborate these candidates further such that one gets an understanding how
these topologies will be physically implemented. The elaborated alternatives will
be physically complete (placed and routed) and a much more reliable source for
the analysis tools. Timing, power, and noise analysis will be our scoring engines.
As soon as synthesis has generated the choices, the elaboration and scoring of
each of them can be done in a very distributed fashion. A final stage scores all the
partial alternatives and folds them together in one final result that meets the timing,
power, and noise targets. Except for the final folding stage, all other steps can be
implemented in a very parallel and distributed fashion. And even the final folding
stage can be very parallel as long as the merging steps are very carefully executed.
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Once we start to think about other optimization problems in EDA in this paradigm
of “generating many alternatives and scoring them in a very distributed fashion” a
larger part of the design space can be explored.

7 Summary

It is time for the design and EDA industry to embrace warehouse-scale computing.
We need to look past cloud as an IT cost saving and look at warehouse-scale
computing as an opportunity to bring a significant higher level of productivity to
the design community. EDA3.0 tools need to be constructed such that the DATA
is the central point in the EDA flow, not the optimization and analysis algorithms.
These will become the services build around the data. Depending on their runtime
they will need to be configured as online or offline services. Taking advantage of
analytics technologies will drive to more intuitive and simplified user interfaces that
provide better insight in the data. Using programming model Rest APIs will enforce
standardized interface development. The massive compute power of a warehouse-
scale computer will provide more scalable design solutions and better optimization.
Analytics engines will allow for a much better insight in the derived design data
than the numerous Perl and Python scripts currently provide.

EDA3.0 design flows will be significantly easier to manage and result in much
more robust and predictable design flows. This will be necessary to take on the
challenges to design large systems-on-chips built from future nano-scale devices.
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Chapter 2
Can Parallel Programming Revolutionize
EDA Tools?

Yi-Shan Lu and Keshav Pingali

1 Introduction

I think this is the beginning of a beautiful friendship. Humphrey Bogart in Casablanca.

Until a decade ago, research in parallel programming was driven largely by
the needs of computational science applications, which use techniques like the
finite-difference and finite-element methods to find approximate solutions to partial
differential equations. In finite differences, the key computational kernels are stencil
computations on regular grids, and the solution of linear systems with structured
sparsity such as banded systems. In finite-elements, the key computational kernel is
the solution of sparse linear systems in which matrices have unstructured sparsity;
these linear systems are usually solved using iterative methods like conjugate
gradient in which the main computation is sparse matrix–vector multiplication.

Parallel programming research therefore focused largely on language support,
compilation techniques, and runtime systems for matrix computations. Languages
like High Performance FORTRAN (HPF) [21] and Coarray FORTRAN [32] were
developed to make it easier to write matrix applications. Sophisticated compiler
technology based on polyhedral algebra was invented to optimize loop nests that
arise in matrix computations [6, 13, 14]. Runtime systems and communication
libraries like OpenMP and MPI provided support for communication and synchro-
nization patterns found in these applications.

While computational science applications and matrix computations continue to
be important, our group at the University of Texas at Austin and several others across
the world have shifted our focus to applications, such as the following ones, which
compute on unstructured graphs.
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• In social network analysis, the key data structures are extremely sparse graphs
in which nodes represent entities and edges represent relationships between
entities. Algorithms for breadth-first search, betweenness-centrality, page-rank,
max-flow, etc. are used to extract network properties, to make friend recommen-
dations, and to return results sorted by relevance for search queries [2, 20].

• Machine-learning algorithms like belief propagation and survey propagation are
based on message-passing in a factor graph, which is a sparse bipartite graph
[23].

• Data-mining algorithms like k-means and agglomerative clustering operate on
dynamically changing sets and multisets [37].

• Traffic and battlefield simulations often use event-driven (discrete-event) simula-
tion [27] in networks.

• Program analysis and instrumentation algorithms used within compilers are
usually based on graphical representations of program properties, such as points-
to graphs [3, 15, 25, 34].

Irregular graph applications such as these can have a lot of parallelism, but the
patterns of parallelism in these programs are very different from the parallelism
patterns one finds in computational science programs.

• Graphs in many of these applications are very dynamic data structures since their
structure can be morphed by the addition and removal of nodes and edges during
the computation. Matrices are not good abstractions for such graphs.

• Even if the graphs have fixed structure, many of the algorithms do not fit
the matrix–vector/matrix–matrix multiplication computational patterns that are
the norm in computational science. One example is delta-stepping, an efficient
parallel single-source shortest-path (SSSP) algorithm [20, 26]. This algorithm
maintains a work-list of nodes, partially sorted by their distance labels. Nodes
enter and leave the work-list in a data-dependent, statically unpredictable order.
This is a computational pattern one does not see in traditional computational
science applications.

• Parallelism in irregular graph applications like delta-stepping is dependent not
only on the input data but also on values computed at runtime. This parallelism
pattern, which we call amorphous data-parallelism [33], requires parallelism
to be found and exploited at runtime during the execution of the program. In
contrast, the conventional data-parallelism in computational science kernels is
independent of runtime values and can found by static analysis of the program.1

In spite of these difficulties, the parallel programming research community has
made a lot of progress in the past 10 years in designing abstractions, programming
models, compilers, and runtime systems for exploiting amorphous data-parallelism
in graph applications. These advances have not yet had a substantial impact on EDA
tools even though unstructured graphs underlie many EDA algorithms. The goal of

1Sparse direct methods are an exception, but even in these algorithms, a dependence graph, known
as the elimination tree, is built before the algorithm is executed in parallel [5].
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this paper is to summarize advances reported in previous papers [20, 33] and discuss
their relevance to the EDA tools area, with the goal of promoting more interaction
between the EDA tools and parallel programming communities.

The rest of this paper is organized as follows. Section 2 describes an abstraction
for graph algorithms, called the operator formulation of algorithms. Section 3
discusses the patterns of parallelism in graph algorithms, and describes the Galois
system, which exploits this parallelism while providing a sequential programming
model implemented in C++. Section 4 summarizes the results of several case studies
that use the Galois system, including scalability studies on large-scale shared-
memory machines [18], and implementations of graph analytics algorithms [31],
subgraph isomorphism algorithms, and FPGA maze routing [28]. We conclude in
Sect. 5.

2 Abstractions for Graph Algorithms

Parallelism in matrix programs is usually described using program-centric concepts
like parallel loops and parallel procedure calls. One lesson we have learned in
the past 10 years is that parallelism in graph algorithms is better described using
a data-centric abstraction called the operator formulation of algorithms in which
data structures, rather than program constructs, play the central role [33]. To
illustrate concepts, we use the single-source shortest-path (SSSP) problem. Given
an undirected graph G D .V;E;w/ in which V is the set of nodes, E the set of edges,
and w a map from edges to positive weights, the problem is to compute for each node
the shortest distance from a source node s. There are many algorithms for solving
this problem such as Dijkstra’s algorithm, Bellman-Ford algorithm, delta-stepping
and chaotic relaxation [20], but in the standard presentation, these algorithms appear
to be unrelated to each other. In contrast, using the operator formulation elucidates
their similarities and differences.

2.1 Operator Formulation

The operator formulation of an algorithm has a local view and a global view, shown
pictorially in Fig. 2.1. This formulation of algorithms leads to a useful classification
of algorithms, called TAO analysis, shown in Fig. 2.2.

2.1.1 Local View of Algorithms: Operators

The local view is described by an operator, which is a graph update rule applied
to an active node in the graph (some algorithms have active edges, but to avoid
verbosity, we refer only to active nodes in this paper). Each operator application,
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Fig. 2.1 Operator
formulation

Fig. 2.2 TAO analysis of graph algorithms

called an activity, reads and writes a small region of the graph around the active
node, called the neighborhood of that activity. In Dijkstra’s SSSP algorithm,
the operator, called the relaxation operator, uses the label of the active node to update
the labels of its immediate neighbors. Figure 2.1 shows active nodes as filled dots,
and neighborhoods as clouds surrounding active nodes, for a generic algorithm. An
active node becomes inactive once the activity is completed.

In general, operators can modify the graph structure of the neighborhood by
adding and removing nodes and edges (these are called morph operators). In most
graph analytics applications, operators only update labels on nodes and edges,
without changing the graph structure. These are called label computation operators;
a pull-style operator reads the labels of nodes in its neighborhood and writes to the
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label of its active node, while a push-style operator reads the label of the active node
and writes the labels of other nodes in its neighborhood. Dijkstra’s algorithm uses a
push-style operator. In algorithms that operate on several data structures, some data
structures may be read-only in which case the operator is a reader for those data
structures.

Neighborhoods can be distinct from the set of immediate neighbors of an active
node, and in principle, can encompass the entire graph, although usually they are
small regions of the graph surrounding the active node. Neighborhoods of different
activities can overlap; in Fig. 2.1, node n is contained in the neighborhoods of both
activities A and B. In a parallel implementation, the semantics of reads and writes to
such overlapping regions, known as the memory model, must be specified carefully.

2.1.2 Global View of Algorithms: Location of Active Nodes and Ordering

The global view of a graph algorithm is captured by the location of active nodes and
the order in which activities must appear to be performed.

Topology-driven algorithms make a number of sweeps over the graph until some
convergence criterion is met; in each sweep, all nodes are active initially. The
Bellman-Ford SSSP algorithm is an example. Data-driven algorithms, on the other
hand, begin with an initial set of active nodes, and other nodes may become active on
the fly when activities are executed. These algorithms do not make sweeps over the
graph, and terminate when there is no more active nodes. Dijskstra’s SSSP algorithm
is a data-driven algorithm: initially, only the source node is active, and other nodes
become active when their distance labels are lowered.

The second dimension of the global view of algorithms is ordering. In unordered
algorithms, any order of processing active nodes is semantically correct; each sweep
of the Bellman-Ford algorithm is an example. Some orders may be more efficient
than others, so unordered algorithms sometimes assign soft priorities to activities,
but these are only suggestions to the runtime system, and priority inversions are
permitted in the execution. In contrast, ordered algorithms require that active
nodes appear to have been processed in a specific order; Dijkstra’s algorithm and
algorithms for discrete-event simulation are examples. This order is specified by
assigning priorities to active nodes, and the implementation is required to process
active nodes so that they appear to have been scheduled for execution in strict
priority order from earliest to latest.

2.2 Trade-offs Between Topology-Driven and Data-Driven
Algorithms

Many graph problems, like SSSP, can be solved by both topology- and data-driven
algorithms. However, one should be aware of the tradeoffs involved when choosing
algorithms.
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Topology-driven algorithms are easier to implement because iteration over active
nodes can be implemented by traversing the nodes in the representation of the graph
(usually arrays). However, there may be wasted work in each sweep because there
may not be useful work done at many nodes.

In contrast, data-driven algorithms can be work-efficient since activities are
performed where there is useful work to be done. For many problems, data-driven
algorithms are asymptotically faster than topology-driven algorithms. For instance,
the complexity of the Bellman-Ford algorithm is O.jEjjVj/, whereas Dijkstra’s
algorithm is O.jEj log.jVj//.

On the other hand, data-driven algorithms can be complicated to implement
because they need a work-set to track active nodes. Sequential implementations
use lists and priority queues for unordered and ordered algorithms, respectively.
Concurrent work-lists for graph algorithms are difficult to implement efficiently:
since the amount of work in each activity is usually fairly small, adding and
removing active nodes from the work-list can become a bottleneck unless the work-
list is designed very carefully. Nguyen et al. [19, 31] describe a scalable work-set
called obim that supports soft priorities.

The best choice of algorithm for a given problem can also depend on the topology
of the graph, as we show in Sect. 4.2 [9, 29]. In many social networks such as
the web graph or the Facebook friends graph, the degree distribution of nodes
roughly follows a power law, so these are often referred to as power-law graphs.
In contrast, road networks and 2D/3D grids/meshes are known as uniform-degree
graphs because most nodes have roughly the same degree. Graphs for VLSI circuits
fall in this category. Random graphs, which are created by connecting randomly
chosen pairs of nodes, constitute another category of graphs. Different graph classes
have very different properties: for example, the diameter of a randomly generated
power-law graph grows only as the logarithm of the number of nodes in the graph
but for uniform-degree graphs, the diameter can grow linearly with the number of
nodes [20].

Figure 2.2 summarizes this discussion. We call it TAO analysis for its three
main dimensions: Topology of the input graph, Activity location and ordering,
and Operator. Note that TAO analysis does not distinguish between sequential and
parallel algorithms.

3 Exploiting Parallelism in Graph Algorithms

Parallelism can be exploited by processing active nodes in parallel, subject to neigh-
borhood and ordering constraints. Since neighborhoods can overlap, the memory
model, which defines the semantics of reads and writes in overlapped regions, may
prevent some activities with overlapping neighborhoods from executing in parallel.
In addition, ordering constraints between activities must be enforced. We call this
pattern of parallelism amorphous data-parallelism [33]; it is a generalization of data-
parallelism in which (1) there may be neighborhood and ordering constraints that
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prevent all activities from executing in parallel, and (2) the execution of an activity
may create new activities.

Figure 2.3 summarizes the important choices in implementing parallel graph
programs. There are two popular memory models: BSP-style (Bulk-Synchronous
Parallel) semantics [39] and transactional semantics.

3.1 BSP-Style Semantics

The program is executed in rounds (also known as super-steps), with barrier
synchronization between rounds. Writes to the graph are considered to be commu-
nication from a round to the following round, so they are applied to the graph only
at the beginning of the following round. Multiple updates to a label are resolved as
in PRAM models such as by using a reduction operation to combine the updates
into a single update [11].

BSP-style parallelization may work well for graph applications in which the
number of activities in each round is large enough to keep the processors of the
parallel machine busy. One example is breadth-first search (BFS) on a power-law
graph. Each round handles nodes at a single BFS level and computes labels for nodes
at the next BFS level. Since the average diameter of power-law graphs is small,
there will be a lot of parallel activities in most rounds. On the other hand, BSP-style
parallelization may not perform well for graphs that have high average diameter,
such as road networks or VLSI circuits, as we show experimentally in Sect. 4.2.
This is because the number of super-steps required to execute the algorithm may be
large, and the number of activities in each super-step may be small.

3.2 Transactional Semantics

In this model, parallel execution of activities is required to produce the same answer
as executing activities one at a time in some order that respects priorities. Intuitively,
this means that activities should not “see” concurrently executing activities, and the
updates made by an activity should become visible to other activities only after
that activity completes execution. Formally, these two properties of transactional
execution are known as isolation and atomicity.
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Transactional semantics are implemented by preventing activities from executing
in parallel if they conflict. For unordered algorithms, a conservative definition
is that activities conflict if their neighborhoods overlap. In Fig. 2.1, activities A
and B conflict because node n is in both their neighborhoods. Activities C and
D do not conflict, and they can be executed in parallel with either A or B.
Exploiting properties of the operator such as commutativity can lead to more relaxed
definitions of conflicts, enhancing parallelism [16]. Given a definition of conflicts,
the implementation needs to ensure that conflicting activities do not update the graph
in parallel. This can be accomplished using autonomous scheduling or coordinated
scheduling.

In autonomous scheduling, activities are executed speculatively. If a conflict is
detected with other concurrently executing activities, some activities are aborted,
enabling others to make progress; otherwise, the activity commits, and its updates
become visible to other activities. Autonomous scheduling is good for exploiting
parallelism but for some unordered algorithms, the output of the program can
depend on the precise order in which activities are executed so the output may
be non-deterministic in the sense that different runs of the program for the
same input may produce different outputs. Delaunay mesh refinement and maze
routing, discussed in Sect. 4.4, are examples. It is important to notice that this non-
determinism, known as don’t-care non-determinism, arises from under-specification
of the order in which activities must be processed, and not from race conditions
in updating shared state: even in a sequential implementation, the output of the
program can depend on the order in which the work-list of active nodes is processed.

Coordinated scheduling strategies ensure that conflicting activities do not execute
simultaneously [33]. For some algorithms, such as those that can be expressed
using generalized sparse matrix–vector product, static analysis of the operator shows
that active nodes can be executed in parallel without any conflict-checking. This
is called static parallelization, and it is similar to auto-parallelization of dense
array programs. Just-in-time parallelization preprocesses the input graph to find
conflict-free schedules (e.g., by graph coloring); it can be used for topology-driven
algorithms like Bellman-Ford in which neighborhoods are independent of data
values. Runtime parallelization is general: the algorithm is executed in a series of
rounds, and in each round, a set of active nodes is chosen, their neighborhoods are
computed, and a set of non-conflicting activities are selected and executed. This
approach can be used for deterministic execution of unordered algorithms [31].

3.3 The Galois System

The Galois system is an implementation of these data-centric abstractions.2 Appli-
cation programmers write programs in sequential C++, using certain programming

2A more detailed description of the implementation of the Galois system can be found in our
previous papers such as [31].
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1 # inc l ude " Ga lo i s / Ga lo i s . h "
2
3 s t r u c t Data {i n t d i s t ; } ;
4 t ypede f Ga lo i s : : Graph : : LC_CSR_Graph<Data , void > Graph ;
5 t ypede f Graph : : GraphNode Node ;
6
7 s t r u c t BFS {
8 Graph& g ;
9 BFS ( Graph& g ) : g ( g ) {}

10 vo id operator ( ) ( Node n , Ga lo i s : : UserContext <Node>& c t x ) {
11 i n t newDist = g . g e tDa ta ( n ) . d i s t + 1 ;
12 f o r ( auto e : g . edges ( n ) ) {
13 Node d s t = g . ge tEdgeDst ( e ) ;
14 i n t& d s t D i s t = g . g e tDa ta ( d s t ) . d i s t ;
15 i f ( d s t D i s t > newDist ) {
16 d s t D i s t = newDist ;
17 c t x . push ( d s t ) ;
18 }
19 }
20 }
21 } ;
22
23 i n t main ( i n t argc , char ∗∗ argv ) {
24 Graph g ;
25 Ga lo i s : : r eadGraph ( g , a rgv [ 1 ] ) ;
26 Ga lo i s : : d o _ a l l _ l o c a l ( g , [&g ] ( Node n ) {g . g e tDa ta ( n ) . d i s t = DIST_INFINITY ; } ) ;
27 i n t s t a r t = a t o i ( a rgv [ 2 ] ) ;
28 Node s r c = ∗ ( s t d : : advance ( g . beg in ( ) , s t a r t ) ) ;
29 g . g e tDa ta ( s r c ) . d i s t = 0 ;
30 Ga lo i s : : f o r _ e a ch ( s r c , BFS{g } ) ;
31 re turn 0 ;
32 }

Fig. 2.4 Push-style BFS in Galois

patterns, described below, to highlight opportunities for exploiting amorphous data-
parallelism.

Key features of the system are described below, using the code for push-style
BFS shown in Fig. 2.4. This code begins by reading a graph from a file (line 25)
and constructing a compressed-sparse-row (CSR) representation in memory (line 4).
Line 26 initializes the dist fields of all nodes to1, and lines 27–29 read in the ID
of the source node and initialize its dist field to 0.

• Application programmers specify parallelism implicitly by using Galois set
iterators [33] which iterate over a work-list of active nodes. For data-driven
algorithms, the work-list is initialized with a set of active nodes before the iterator
begins execution. The execution of a iteration can create new active nodes,
and these are added to the work-list when that iteration completes execution.
Topology-driven algorithms are specified by iteration over graph nodes, and the
iterator is embedded in an ordinary (sequential) loop, which iterates until the
convergence criterion is met. In Fig. 2.4, data-driven execution is specified by
line 30, which uses a Galois set iterator to iterate over a work-list initialized to
contain the source node src.

• The body of the iterator is the implementation of the operator, and it is an
imperative action that reads and writes global data structures. In Fig. 2.4, the
operator is specified in lines 10–20. This operator iterates over all the neighbors
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of the active node, updating their distance labels as needed. Iterations are required
to be cautious: an iteration must read all elements in its neighborhood before it
writes to any of them [33]. In our experience, this is not a significant restriction
since the natural way of writing graph analytics applications results in cautious
iterations.

• For unordered algorithms, the relative order in which iterations are executed is
left unspecified in the application code. An optional application-specific priority
order for iterations can be specified with the iterator [30], and the implementation
tries to respect this order when it schedules iterations.

• The system exploits parallelism by executing iterations in parallel. To ensure
serializability of iterations, programmers must use a library of built-in concurrent
data structures for graphs, work-lists, etc. These library routines expose a
standard API to programmers, and they implement lightweight synchronization
to ensure serializability of iterations, as explained below.

Inside the data structure library, the implementation of a data structure operation
such as reading a graph node or adding an edge between two nodes acquires
logical locks on nodes and edges before performing the operation. If the lock is
already owned by another iteration, the iteration that invoked the operation releases
all of its acquired locks and is rolled back; it is retried again later. Intuitively,
the cautiousness of iterations reduces the synchronization problem to the dining
philosopher’s problem [4], obviating the need for more complex solutions like
transactional memory. The system also supports BSP-style execution of activities,
and this can be specified by the user using a directive for the iterator. This is useful
for deterministic execution of unordered algorithms.

4 Using Galois: Case Studies

This section discusses a number of case studies in which the Galois system is used
to parallelize algorithms from several domains. Section 4.1 shows the scalability of
Galois programs for HPC and graph analytics algorithms on a large-scale NUMA
shared-memory machine. Section 4.2 compares Galois program performance with
the performance of programs in Ligra [36] and PowerGraph [7], two popular shared-
memory graph analytics systems. We show that for road networks, which are high-
diameter graphs like circuit graphs, Galois programs run orders of magnitude faster
than Ligra and PowerGraph programs. Section 4.3 describes implementations of
subgraph matching algorithms in Galois. Finally, Sect. 4.4 describes how the Galois
system was used by Moctar and Brisk to perform parallel FPGA maze routing [28].
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4.1 Case Study: Large-Scale Shared-Memory Machines

In this section, we summarize the results of a study by Lenharth and Pingali
on the performance of Galois programs on a large-scale NUMA shared-memory
machine [18]. The machine used in this study is the Pittsburgh Supercomputing
Center’s Blacklight system, which is an SGI UltraViolet NUMA system with 4096
cores and 32 TiB of ram (our machine allocation was limited to 512 cores). Each
NUMA node contains 16 cores running at 2.27 GHz on two packages and 128 GiB
of memory. We compile using g++ 4.7 at -O3. The benchmarks used are Barnes-Hut
(bh), an n-body simulation code; Delaunay mesh generator (dt), a guaranteed-
quality 2D triangular mesh generator; Delaunay mesh refinement (dmr), a mesh
refinement algorithm for 2D meshes; betweenness centrality (bc), a centrality
computation in networks; and triangle counting (tri), which counts the number
of triangles in a graph. Table 2.1 summarizes the inputs and configurations used.
Although these results are on the SGI machine, similar results are seen on smaller
scale NUMA systems.

Figure 2.5 shows that dmr and bh achieve self-relative, strong scaling of
422� and 390�, respectively, at 512 threads. This equates to an 82% and 75%
parallel efficiency for programs written in a sequential programming style. Delaunay
triangulation scales only to 304� at 512 threads, due in part to memory contention
when inserting into the lookup-acceleration tree. Betweenness centrality requires
reading the entire graph in each iteration. Although the graph size is small enough
to fit in the L3 cache, the temporary data necessary for an “outer-loop” parallel bc
calculation is proportional to the size of the graph, so in actual parallel execution,
the graph could not remain in cache. Adding NUMA nodes increases the number
of cores but hurts the average latency of memory accesses for all threads, and this
causes bc to scale at only about 50% efficiency. Triangle finding scales at about
50% efficiency.

Scaling numbers can be deceptive because they do not take into account
the effect of single-thread overheads. Therefore, we also compare the single-
threaded performance of the Galois codes to third-party serial implementations of
these algorithms. Our goal is not necessarily to have the best performing serial
implementation, especially since some of the implementations use hand-crafted,

Table 2.1 Inputs used in evaluation on SGI Ultraviolet

App Input and configuration

bh 10 million bodies generated using a plummer model, tolerance = 0.05, timestep =
0.5, eps = 0.05

dmr 20 million triangles in a square, 50% bad

dt 10 million points randomly distributed in a square

bc Random graph with average degree 4 and 218 nodes

tri Random planar graph with average degree 4 and 228 nodes
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Fig. 2.5 Performance of Galois programs: SGI Ultraviolet

problem-specific data-structures, but to show that we are within an acceptable
margin of custom implementations even on one thread while using the generic data-
structures provided by our runtime.

Figure 2.5 shows that we compare favorably with third party implementations
for all our benchmarks. For Delaunay triangulation and Delaunay mesh refinement,
we compare to Triangle [35]. Our implementation of refinement on one thread
is slower than Triangle, but triangulation is much faster (due to a more efficient
algorithm). For Barnes-Hut, we compare to SPLASH-2 [40]. Although the SPLASH
implementation is an ancestor of our implementation, ours is slightly faster. For
betweenness centrality, we compare to the Scalable Synthetic Compact Applications
benchmark suite [1] and we are 20% faster. Finally, compared to the nearly identical
implementation in GraphLab [22], our implementation of triangles on 1 thread is
75� faster than Graphlab on 2 threads (the Graphlab code did not terminate when it
was run on 1 thread).

4.2 Case Study: Graph Analytics

Parallel graph analytics has become a popular area of research in the past few years.
In these applications, labels on nodes are repeatedly updated until some convergence
criterion is reached, but the graph structure is not modified (in the TAO classification
described in Fig. 2.2, these algorithms use label computation operators). Nguyen
et al. [31] compared the performance of graph analytics applications written
in Galois with the performance of the same applications written in two other
frameworks, PowerGraph [7] and Ligra [36]. We summarize their study in this
section.

PowerGraph [7] is a programming model for vertex programs, an abstraction
in which the neighborhood of an active node is limited to itself and the set of
its immediate neighbors [24]. It supports shared-memory parallelism in a single
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machine as well as distributed-memory execution on clusters. Ligra [36] is a
shared-memory programming model for vertex programs. Ligra is capable of
switching between pull- and push-style operators during execution time to improve
cache utilization. Both PowerGraph and Ligra support only bulk synchronous
parallelism (BSP).

Unlike most graph analytics studies, the study of Nguyen et al. used both
power-law graphs (twitter-50 with 51 million nodes and 2 billion edges) and road
networks (U.S. road network with 24 million nodes and 58 million edges). Graphs
of importance in the EDA tools area, such as circuit graphs, are likely to be high-
diameter graphs similar to road networks, so this study sheds some light on what
kinds of graph processing systems are likely to be useful for parallel EDA tools.

Nguyen et al. used the following applications in their study:
Single-source shortest-paths (SSSP) is the problem used in Sect. 2 to illustrate

the operator formulation of algorithms.
Breadth-first search (BFS) is a special case of SSSP in which all edge weights

are one.
Approximate diameter (DIA) computes an approximation to the graph diameter,

which is the maximum length of the shortest distance between all pairs of nodes.
Connected components (CC) divides the nodes of an undirected graph into

equivalence classes by reachability.
Pagerank (PR) computes a relative importance score for each node in a graph.
Figure 2.6 compares the performance of the three graph analytics frameworks

with different pairs of applications and input graphs. The experiments were run on a
machine with 40-core Intel E7-4860 and 128 GB of memory. Notice that the y-axis
is a log-scale.

Although the road network is roughly 40 times smaller than the Twitter graph,
Ligra and PowerGraph take far more time for BFS and SSSP on the road network
than on the Twitter graph. The U.S. road network has a large diameter and a uniform,
low degree distribution, so BSP-style implementation of algorithms requires a
large number of low-parallelism rounds. Galois avoids this problem by providing
asynchronous scheduling of activities, and is orders of magnitude faster than Ligra
and PowerGraph.
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Fig. 2.6 Comparison of graph analytics frameworks [31]
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The performance of CC highlights the value of Galois’s support of operators
with arbitrary neighborhoods. Since Ligra and PowerGraph support only vertex
programs, CC on these systems requires a label-propagation algorithm: all nodes
are given distinct component IDs, and the nodes with smallest IDs propagate their
IDs to all nodes in their components. On the other hand, the Galois program uses a
parallel union-find data structure. The union-find data structure is updated by pointer
jumping, which is similar to the find operation in disjoint-set union-find [11, 12].
However, pointer jumping cannot be expressed as a vertex program, so the program
cannot be written using Ligra and PowerGraph.

In summary, runtimes vary widely for different programming models even
for the same problem. Pagerank demonstrates the least variation since all three
frameworks use a topology-driven algorithm. For other problems, systems like Ligra
and PowerGraph that are based on BSP-style execution of vertex programs can be
several orders of magnitude slower than Galois, especially for road networks.

4.3 Case Study: Subgraph Isomorphism

Subgraph isomorphism is an important kernel for many applications; for example,
it can sometimes be used to locate and then replace a suboptimal circuit with
a functionally equivalent circuit with better delay, area, or power consumption.
Formally, subgraph isomorphism is defined as follows [38]: given a query graph
Gq D .Vq;Eq/ and a data graph Gd D .Vd;Ed/, a subgraph isomorphism exists
between Gq and Gd if and only if there exists a function I W Vq ! Vd such that

1. i ¤ j H) I.vq
i / ¤ I.vq

j /, and
2. .vq

i ; v
q
j / 2 Eq H) .I.vq

i /; I.v
q
j // 2 Ed.

Intuitively, the function I, which maps query graph nodes to data graph nodes, is (1)
injective, and (2) if two query nodes are connected by an edge, their images in the
data graph are also connected by an edge. This definition assumes unlabeled graphs;
it can be extended to deal with graphs with labeled nodes and edges. Subgraph
isomorphism can be solved trivially by a generate-and-test approach in which all
possible injective functions mapping query graph nodes to data graph nodes are
generated, and each one is tested to see if it satisfies condition (2). To make this
approach tractable, we must avoid generating, whenever possible, mappings that
fail the test. There are many heuristics for this, and they can be described abstractly
by the template shown in Algorithm 1 [17].

Procedure GenericGraphQuery preprocesses the graph by determining for
each query node, an initial set of candidate data nodes that it can be mapped to, based
on properties such as node labels, degrees, etc. If any query node has an empty set of
candidate data nodes, then no subgraph isomorphism can be found. Otherwise, we
call procedure SubgraphSearch to compute all subgraph isomorphisms, starting
from an empty matching M.
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Algorithm 1 Generic graph query algorithm for finding subgraph isomorphism

Input: Gq, query graph; Gd, data graph.
Output: All I W Vq ! Vd satisfying subgraph isomorphism.

1: procedure GENERICGRAPHQUERY(Gq;Gd)
2: for all vq

i 2 Gq do
3: Cvq

i
 FILTERCANDIDATES(vq

i ;G
q;Gd; : : :)

4: if Cvq
i
D ; then

5: return
6: end if
7: end for
8: M  ;
9: SUBGRAPHSEARCH(Gq;Gd;M; : : :)

10: end procedure
11: procedure SUBGRAPHSEARCH(Gq;Gd;M; : : :)
12: if jMj D jVqj then
13: report Vq ! M in matching order
14: return
15: end if
16: v

q
j  NEXTQUERYNODE(Gq;Gd;M : : :)

17: R REFINECANDIDATES(vq
j ;G

q;Cvq
j
;Gd;M : : :)

18: for all vd
k 2 R do

19: if ISJOINABLE(vq
j ;G

q; vd
k ;G

d;M : : :) then
20: update M
21: SUBGRAPHSEARCH(Gq;Gd;M : : :)
22: restore M
23: end if
24: end for
25: end procedure

In Procedure SubgraphSearch, the call to NextQueryNode heuris-
tically chooses v

q
j , the next query node to be matched. Next, procedure

RefineCandidates refines R, the set of candidate data nodes for vq
j , based on

current matching. Finally, for every data node vd
k in R, procedure IsJoinable

checks if vd
k can be joined to current matching M and can satisfy all edge constraints.

If so, we add vd
k to M, recurse on SubgraphSearch, and remove vd

k from M
when the recursive call terminates.

Algorithms for subgraph isomorphism differ in the design of procedures
FilterCandidates, NextQueryNode, and RefineCandidates.

• The Ullmann algorithm [17] constructs initial sets of candidate data nodes based
on node labels, follows input order for deciding next query node to be matched,
and does no refinement for sets of candidate data nodes in SubgraphSearch.
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• The VF2 algorithm [17] starts search from the first query node. It considers only
unmatched immediate neighbors of matched query/data nodes when choosing
next query node and refining sets of candidate data nodes. Also, a candidate
data node is discarded by RefineCandidates if its number of unmatched
neighbors is fewer than that of its query counterpart.

To parallelize these two algorithms, we view the search process as traversing
a search tree whose nodes are query nodes being matched and branches (edges)
are data nodes matched to the corresponding query nodes. Different subtrees share
no information with each other, and the search process does not modify the query
and data graphs. Therefore, we parallelize Ullmann and VF2 algorithms along the
first level of the underlying search tree. Each task is a pair consisting of the first
query node and one of its candidate data nodes. Threads claim tasks from a work
queue, which is populated with all tasks initially. Using this parallelization strategy,
Ullmann and VF2 algorithms are unordered, data-driven algorithms using reader
operators.

The Ullmann and VF2 algorithms are implemented using Galois 2.3.0 beta with
Boost library ver. 1.58.0. Experiments are run on a Linux server with 32 cores of
Intel Xeon E7520 running at 1.87 GHz and 64GB RAM. We use two data graphs to
run our experiments. RoadNY is the road network of New York City, and THEIA
is a graph extracted from operating system activity logs. Table 2.2 summarizes
the statistics for the data graphs. Figure 2.7 shows the query graph used in our
experiments. All data graphs and the query graph are directed and unlabeled.

Figure 2.8 shows performance numbers. For roadNY, the Ullmann algorithm
scales well but the VF2 algorithm outperforms it significantly. Since the sizes of
frontiers, i.e. the number of unmatched immediate neighbors of matched nodes,
grow slowly in road networks, filtering by frontiers works well. The scaling for VF2
is not as good as the scaling for Ullmann since the graphs are small. For THEIA,
VF2 still outperforms Ullmann but not as much as when the data graph is roadNY.

Table 2.2 Data graphs for
subgraph isomorphism

Graph jVj jEj Est. diameter

roadNY 264;346 730;100 720

THEIA 7;478 17;961 2

Fig. 2.7 The query graph for
subgraph isomorphism
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Fig. 2.8 Performance for finding 100 instances of the query graph in data graphs; (a) in roadNY
by ullmann, (b) in roadNY by vf2, (c) in THEIA by ullmann, (d) in THEIA by vf2

Since THEIA is more similar to a power-law graph, its frontier grows rapidly, a fact
which renders VF2’s filtering by frontiers less effective in reducing the number of
possible candidates to match.

4.4 Case Study: Maze Routing in FPGAs

Moctar and Brisk have used the Galois system to parallelize PathFinder, the routing
algorithm used in many commercial FPGA tool chains [28]. Previous studies [8]
have shown that roughly 70% of the execution time of PathFinder is spent in maze
expansion, which performs an A� search of a routing resource graph (RRG) to route
signals through the chip. This search procedure can be parallelized, but if different
nets end up sharing routing resources, the resulting solution is illegal. When this
happens, PathFinder needs to back up and reroute some nets to restore legality.
PathFinder fails if a legal solution is not discovered within a user-specified number
of iterations.
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Fig. 2.9 Performance of Maze Router in Galois [28]

This computation pattern maps well to the asynchronous optimistic execution
model described in Sect. 3. Moctar and Brisk evaluated their implementation on ten
of the largest IWLS benchmarks [10], using an 8-core Intel Xeon platform. As a
baseline, circuits were generated for these benchmarks using the publicly available
Versatile Placement and Routing (VPR) system. A rough idea of the size of these
circuits can be obtained from the fact that one of the largest circuits, generated for
the wb_conmax input, had 10,430 nets and 6,297 logic blocks. Key findings from
the study include the following.

• The Galois implementation was able to successfully route all of the nets in all
benchmarks.

• The average speed-up over the serial VPR implementation was roughly 3 for 4
threads, and 5.5 for 8 threads, as shown in Fig. 2.9.

• The implementation was roughly three times faster than the best previous
implementation of parallel multi-threaded FPGA routing.

• Because of the don’t-care non-determinism in autonomous scheduling, different
runs of the Galois program can produce different routing solutions, but the
variation in critical path delay was small.

To eliminate don’t-care non-determinism, the study also used the deterministic,
round-based execution of Galois programs described in Sect. 3. This reduced speed-
up to 4 on 8 threads, but ensured that each run of the program, even on different
numbers of cores, returned the same routing solution.

Moctar and Brisk summarized their results as follows: “we strongly believe that
Galois’ approach is the right solution for parallel CAD, due to the widespread use
of graph-based data structures (e.g. netlists) that exhibit irregular parallelism” [28].



2 Can Parallel Programming Revolutionize EDA Tools? 39

5 Conclusions

In the past decade, there has been a lot of progress in understanding the structure of
parallelism in graph computations, and there is now a rich literature on programming
notations, compilers, and runtime systems for large-scale graph computations.
Meanwhile, circuit designs have become sufficiently complex that the EDA tools
community has begun to look at parallel computation as a way of speeding up
the design process. Therefore the time has come for closer interaction between the
EDA tools and parallel programming communities. We hope this paper catalyzes
this interaction.
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Chapter 3
Emerging Circuit Technologies: An Overview
on the Next Generation of Circuits

Robert Wille, Krishnendu Chakrabarty, Rolf Drechsler, and Priyank Kalla

1 Introduction

In the last decades, great progress has been made in the development of computing
machines resulting in electronic systems which can be found in almost every
aspect of our daily life. All this has become possible due to the achievements
made in the domain of semiconductors which is usually associated with Moore’s
Law—the famous prediction by Gordon Moore that the number of transistors
in an electronic device doubles every 18 months. While this prediction is still
holding on, physical boundaries and cost restrictions of conventional CMOS-based
circuitry led to an increasing interest in alternative technologies (so-called More
than Moore technologies). Besides that, the advances according to Moore’s Law
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also lead to the consideration of application areas for electronic systems which go
beyond just performing computations and complement the digital part by non-digital
functionality (leading to so-called More than Moore technologies).

For both directions, various technologies are currently considered. Many of them
are still in a rather academic state; others already find practical and commercial
application. All of them however rely on significantly different paradigms than
established (CMOS-based) circuit technologies. In this chapter, we provide a brief
overview on selected emerging technologies, namely Digital Microfluidic Biochips,
Integrated Photonic Circuits, and Reversible Circuits. For each technology, we
review the respective background and outline corresponding application areas.
Afterwards, main challenges for the design of these circuits are discussed.

2 Digital Microfluidic Biochips

According to a recent announcement by Illumina, a market leader in DNA sequenc-
ing, digital microfluidics has been transitioned to the marketplace for sample
preparation [44]. This technology has also been deployed by Genmark for infectious
disease testing [26] and FDA approval is expected soon for an analyzer from Baebies
to detect lysosomal enzymes in newborns [23]. These milestones highlight the
emergence of Digital Microfluidic Biochip (DMFB) technology for commercial
exploitation and its potential for point-of-care diagnosis [82], sample process-
ing [78], and cell-based assays [11]. Using DMFBs, bioassay protocols are scaled
down to droplet size and executed by program-based control of nanoliter droplets on
a patterned array of electrodes. The integration of sensors and imaging techniques on
this platform led to the first generation of cyberphysical DMFBs [56], and software-
based dynamic adaptation in response to sensor feedback has been utilized for
error recovery [1, 47, 58]. Due to the fundamental importance of genomic analysis,
considerable effort has similarly been devoted to the design and implementation of
miniaturized platforms for gene-expression analysis [38, 54, 66, 73].

2.1 Technology Platform

A DMFB utilizes electrowetting-on-dielectric to manipulate and move microliter or
nanoliter or picoliter droplets containing biological samples on a two-dimensional
electrode array [82]. A unit cell in the array includes a pair of electrodes that acts
as two parallel plates. The bottom plate contains a patterned array of individually
controlled electrodes, and the top plate is coated with a continuous ground electrode.
A droplet rests on a hydrophobic surface over an electrode, as shown in Fig. 3.1.
It is moved by applying a control voltage to an electrode adjacent to the droplet and,
at the same time, deactivating the electrode just under the droplet. Using interfacial
tension gradients, droplets can be moved to any location on a two-dimensional array.
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Fig. 3.1 Schematic of a digital microfluidic biochip. (a) Basic unit cell. (b) Top view

A film of silicone oil is used as a filler medium to prevent cross contamination
and evaporation. This approach allows for rapid, massively parallel processing of
substances without the restriction of a flow path defined at fabrication time. In
addition to electrodes, optical detectors and capacitive sensors have been integrated
in digital microfluidic arrays. This platform consumes less than 1�W of power per
droplet operation, therefore a million operations with nanoliter/picoliter droplets can
be simultaneously carried out at less than 1 W power.

Videos of microfluidics in action are available at http://microfluidics.ee.duke.edu.
Digital microfluidics works much the same way as traditional benchtop protocols,
only with much smaller volumes and much higher automation. A wide range of
established chemistries and protocols can be seamlessly transferred to a droplet
format.

2.2 Design Methods for DMFBs: Today’s Solutions

Until recently, research on design automation for DMFBs focused exclusively
on scheduling, resource binding, droplet routing, and mapping of control pins
to electrodes [15, 29–31, 39, 46–48, 52, 59, 86–90, 108–114]. Droplet-routing
methods have also been developed to avoid cross-contamination [116, 117]. These
methods can reduce droplet transportation time by finding optimal routing plans.
Synthesis methods that combine defect-tolerant architectural synthesis with droplet-
routing-aware physical design have also been developed. Droplet routability, defined
as the ease with which pathways can be determined, has been estimated and
integrated in the synthesis flow. Figure 3.2 illustrates high-level synthesis for
DMFBs.

The first demonstrations of the interplay between hardware and software in the
biochip platform were presented in [36, 37]. Videos are available at:

• http://microfluidics.ee.duke.edu/Published_Videos/2013_DATE/
• http://microfluidics.ee.duke.edu/BioCAS2015_IntegratedErrorRecovery/

These demos highlight autonomous cyberphysical operation without human
intervention. The control of multiple droplets in a fabricated biochip by a pre-

http://microfluidics.ee.duke.edu
http://microfluidics.ee.duke.edu/Published_Videos/2013_DATE/
http://microfluidics.ee.duke.edu/BioCAS2015_IntegratedErrorRecovery/
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Fig. 3.2 Illustration of automated synthesis of DMFBs

programmed assay plan and dynamic adaptation has been accomplished based on
feedback from capacitance sensing. Algorithms for sample preparation [35, 64, 75],
hardware/software co-design for lab-on-chip [57], and optimization techniques for
protocols such as PCR [51, 58] have also been developed.

2.3 Design Methods for DMFBs: Looking Ahead

Quantification of the expression level for a gene is a widely used technique in
molecular biology [55]. An important application of this technique is in epigenetics,
which identifies changes in the regulation of gene expression that are not dependent
on gene sequence. Often, these changes occur in response to the way the gene
is packaged into chromatin in the nucleus. For example, a gene can be unfolded
(“expressed”), be completely condensed (“silenced”), or be somewhere in between.
Each distinct state is characterized by chromatin modifications that affect gene
behavior [9]. An improved understanding of the in vivo cellular and molecular
pathways that govern epigenetic changes is needed to define how this process alters
gene function and contributes to human diseases [107].

A key application of DMFBs lies in quantitative biomolecular analysis, with
applications to epigenetics. However, a significant rethinking in system design is
needed to ensure dynamic adaptation for quantitative analysis on-chip. Figure 3.3
illustrates a 5-layer C5 (based on the C for each level) architecture that has recently
been proposed [41]. Today’s design methods incorporate online biochemistry-on-
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Fig. 3.3 The 5-layer (C5) architecture for DMFBs [41]

chip synthesis, which provides reconfiguration capability to recover from opera-
tional errors (Level IV in Fig. 3.3) [1, 45, 56]. However, there is still a gap between
the physical space and online synthesis, which impedes the use of DMFBs for
quantitative analysis due to the lack of autonomous data analysis and intelligent
decision-making. We will explore algorithmic innovations that fill the gap between
the control and monitoring of the physical space on one side, and the cyber
space (i.e., online biochemistry-on-chip synthesis) on the other side. Coupling
the firmware with online synthesis will potentially open new opportunities for
dynamic synthesis. For example, the need for short time-to-result might require
the prioritization and selection of samples for detection. These ideas can also be
extended to prioritize bioassays for synthesis in a multi-assay setting. Such coupling
between the firmware and online synthesis is important in type-driven single-cell
analysis [34], where the selection of a quantitative protocol depends on the cell type.

Next-generation design methods must integrate these levels to enable the seam-
less on-chip execution of complex biochemical protocols. As shown in Fig. 3.3,
each level is expected to play a distinct role. With the integration of sensors at the
hardware level (Level I), there is a need to provide analog signal acquisition and
digital signal processing capabilities to transform the received signals into readable
data. This can be achieved via a signal conditioning level (Level II). Previous
designs of cyberphysical DMFBs have attempted to integrate this level with the
system infrastructure, but only for the limited purpose of error recovery [56]. The
uppermost level (Level V) serves as the system coordinator. It is responsible for
adapting the flow of protocol execution based on the decisions conveyed from
the firmware (Level III). Adaptation is supported by an application model, which
keeps track of application progress, and a performance model that keeps track of
resource utilization. Despite the large body of published work on design automation
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for DMFBs, integrated hardware/software solutions for DMFBs thus far have been
limited to on-chip droplet manipulation (either only Level IV of the proposed C5
architecture or the interplay between Level I and Level II). There is a need for more
relevant design-automation techniques that can be used for biology-on-a-chip.

To enable quantitative applications on a DFMB, researchers have carried out a
benchtop (“wet lab”) laboratory study on gene-expression analysis that required
reliable concurrent manipulation of independent samples, as well as sample-
dependent decision-making [42]. The goal was to study the transcriptional profile
of a Green Fluorescent Protein (GFP) reporter gene under epigenetic control [106,
107]. Control (GFP not under epigenetic control) and experimental strains were
analyzed by qPCR (following cell lysis, mRNA isolation and purification, and
cDNA synthesis). These studies allowed an assessment of the quality of the protocol,
define the influence of epigenetic chromatin structures on gene expression, and
provided guidance for the synthesis of the underlying protocol on to the chip.

With multiple samples and with several causative factors affecting chromatin
behavior, implementing epigenetic-regulation analysis using a benchtop setting is
tedious and error-prone; thus, this preliminary benchtop study motivates the need
to miniaturize epigenetic-regulation analysis. The benchtop study also provided
important guidance on the design of the miniaturized protocol for a DMFB.
Figure 3.4a depicts a flowchart of the benchtop study. Efforts have been made to
adapt this protocol for digital microfluidics, leading to the miniaturized protocol in
Fig. 3.4b. Intermediate decision points have been used to depict the control of the
protocol flow for every sample.

Based on the above experimental work, a design method for a DMFB that
performs quantitative gene-expression analysis based on multiple sample pathways
was recently presented [42, 43]. This design uses an experimentally validated
electrode-degradation model, spatial reconfiguration, and adaptive shared-resource
allocation in order to efficiently utilize on-chip modules. A time-wheel for run-time
coordination, shown in Fig. 3.5, was developed in this work.

3 Integrated Photonic Circuits

Silicon-based integrated optics, dubbed Si-photonics [85], offers the potential for
low-latency, low-power, and high-bandwidth interconnect solutions for on-chip
communications fabric [3, 4, 14]. In such a technology, optical signals are coupled
to silicon waveguides and routed across the chip by modulating on-chip or off-
chip lasers. Modulation can be performed by means of interferometry, using
Mach-Zehnder Interferometers (MZIs) [53], or by means of resonance, using Ring
Resonators (RRs) [10]. An electrical signal modulates the laser, essentially trans-
forming electrical data into optical signals. The various applications of Si-photonics
have been made viable due to a number of recent breakthroughs [12, 28, 53, 74],
that also exploit the already available silicon-based fabrication infrastructure [68]
and design technology [20].
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Fig. 3.4 Quantitative analysis of gene expression: (a) bench-top setup (b) DMFB-based

Advancements in Si-photonics are also enabling investigations into applications
beyond telecom: sensing, filtering, quantum technology [71]—and even optical
computing [13, 17]. By abstraction and modeling of MZI or RR based modulators as
switches that are interconnected with waveguides, it has become possible to realize
logic circuits in opto-electronics. In effect, we are now seeing a convergence of
communication and computation, which provides the opportunity to embed logic
and computation within the communications fabric. This can significantly extending
the realm of applications that can be served by integrated optics. In this section,
we review the design of optical logic circuits in Si-photonics based linear optical
technologies, and address the challenges of on-chip integration in the presence of
thermal-gradients across the optical substrate.
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Fig. 3.5 Shared-resource coordination framework [42]

3.1 Photonic Logic Circuit Model

To enable logic design and scalable synthesis methodologies, a key aspect is
to use conventional routing devices—specifically crossbar routing devices—as
the building-blocks for logic design. Integrated optical devices transmit and route
light using optical waveguides [67], which are created as guiding layers on the
substrate using lithographic and deposition methods. In contemporary systems,
light is coupled into the system from the outside using a laser, and sensed, at the
destination, by optical receivers using a light-detection material such as germanium.
We describe our basic optical logic element using the MZI (the model can be
analogously described using the RRs). The MZI is a conventional integrated optic
device found in many designs, used for modulation but also routing through the
use of coupling and controlled interference.

Consider the MZI depicted in Fig. 3.6a, with inputs P and Q, and outputs F
and G. Between P and F as well as Q and G are waveguides, with an index of
refraction n. Coupling occurs when two waveguides are brought within in close
proximity to each other such that the electromagnetic fields in one waveguide extend
over the other waveguide and vice versa, causing energy to cross over between
one waveguide to the other, as a function of coupling length. The couplers in this
device are 3dB couplers, tuned to divide and/or combine the signal from both inputs
equally between the two outputs. In Fig. 3.6a, the signal at (a) passes through the
3dB coupler and is divided between the outputs (b) and (c), inducing a �=2 phase
change in (c).
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(a) (b)

Fig. 3.6 Optical modulator devices. (a) Mach-Zehnder Interferometer. (b) Ring Resonator Mod-
ulator

(a) (b) (c) (d)

Fig. 3.7 Cross-bar switch model. (a) Gate. (b) Cross. (c) Bar. (d) Splitter

In the center region, S is an outside input used to affect the refractive index of the
upper waveguide by �n by using methods/devices such as microheaters, carrier
injection, advanced methods such as high-speed MOS-capacitors [53], or other
means. This change in refractive index causes a path-length difference, and therefore
a phase difference, between the signals in (b) and (d). This phase difference causes
constructive or destructive interference at the second coupler when the signals from
(c) and (d) are combined. A phase difference of 0 or � will route each input
completely to one output or the other, and the device acts as the controlled crossbar
depicted in Fig. 3.7a. Similar operation can also be achieved by using ring resonator
modulators shown in Fig. 3.6b.

The operation of the MZI allows us to model it as a crossbar gate that routes
light signal completely between two paths depending on the state of S, and depict
it symbolically in Fig. 3.7a, with its two states in Fig. 3.7b, c (bar and cross
respectively). The waveguides are sourced by light (logical “1”) or darkness (“0”),
and the output of a function is read using optical receivers at the end. In our model,
the switching input S is an electrical signal; it is an outside signal that controls the
cross/bar configuration and cannot be switched by optical inputs. Light is assumed
to move from the P and Q side to F and G. In our model, an optical signal cannot
directly switch a crossbar’s S input. More formally:

.S D 0/ H) .P D F/ ^ .Q D G/I .S D 1/ H) .Q D F/ ^ .P D G/:
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These constraints affect how functions may be composed, and imply that the
control inputs to a crossbar are the primary inputs for that network. In addition to
MZIs, we also utilize optical splitters, depicted symbolically in Fig. 3.7d. A splitter
divides the light from one waveguide into two output waveguides, each of which
contain the original signal, but at half the power (a 3 dB loss). In our model, splitters
are a signal degradation mechanism for a given topology, whereas we assume that
waveguide lengths are essentially lossless. Insertion losses for MZI devices can be
estimated to around 1 dB per device. Such losses can be factored into heuristics
once physical layout information is available; interested reader may refer to [18]
for more details on loss-constrained layout synthesis. All designs created using the
above model can be physically realized, including allowing waveguides to cross
each other without interference.

3.2 Design and Synthesis of Photonic Logic Circuits

We introduce the concept of Virtual Gates, a scalable methodology for imple-
menting Boolean functions as a network of nested templates constructed from
interconnected MZI gates. We explore how these may be used directly, and how their
limitations necessitate further research into techniques for logic sharing without
violating the opto-electrical barrier.

A Virtual Gate (VG) is a crossbar gate that is switched by a function, not
necessarily a primary input. The gate is “virtual” in the sense that it is a black
box for a function composed of “real” gates—those driven by primary inputs—
as well as other virtual gates. A novel form of nesting can be used to compose VG
function implementations, where Boolean operators are implemented by replacing
child gates with other gates that may be real or virtual.

A given VG implementation comprises two input waveguide ports p and q
connected by waveguides and crossbar gates to two output ports f and g. The
nesting operation comprises the Boolean operator forms depicted in Fig. 3.8, and is
illustrated in Fig. 3.9 where two AND virtual gates are nested within an OR virtual
gate, creating the final function abC cd. Evaluation of a VG, given a primary input

(a) (b) (c)

Fig. 3.8 Boolean operators in the virtual gate model. (a) AND .a; b/. (b) OR .a; b/. (c) XOR .a; b/
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Fig. 3.9 Composing more complex functions using virtual gates

assignment, involves assigning p and q inputs logical 0 and 1, respectively, and
applying cross or bar configurations to gates as defined in Fig. 3.7. The output of the
function is detected at f , with g D :f simultaneously providing its complement.

The major limitation of designing with virtual gates is that the nesting of gates
prevents the extraction/sharing of arbitrary Common Sub-Expressions (CSE). For
example, in Fig. 3.10 one cannot simply share the ab term from f D ab C cd
for use with another gate; assignments such as abcd D f1I 1I 1I 1g will cause all
crossbar gates to assume a cross-configuration, isolating the top input of the h-gate
from the optical inputs of the network. In effect, any operator employing feedback
for its inputs can produce an undefined state. Only the XOR operator does not
exhibit this behavior as it has no feedback (see Fig. 3.8c), but XOR-based CSE is
not well studied in contemporary logic synthesis. To address this issue particularly
for optical logic synthesis, we investigated a XOR-based functional decomposition
technique for CSE, and implemented it within our virtual-gate paradigm; interested
reader can refer to [17] for more details. Despite recent efforts [21, 103], the
minimal-loss multi-level optical logic synthesis problem remains to be satisfactorily
solved. As every MZI (or RR) device incurs insertion loss (approx. 1dB/device),
techniques to reduce the literal-count (or device-count) need to be employed. One
such approach is CSE extraction. However, this requires the use of splitters, which in
turn introduces losses due to signal sharing (approx. 3db/splitter). These seemingly
contradictory requirements of minimizing both the device and splitter count need to
be accounted for more effectively in optical logic synthesis techniques.
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Fig. 3.10 Limitations of
virtual gates in common
subexpression sharing

3.3 Challenges of Si-Photonic Integration: Thermal Issues

Si-photonics also finds applications in the design of Optical Networks-on-
Chip (ONoC) architectures [3, 4, 16, 72]. Figure 3.11a depicts a typical 3D-stacking
scenario where an ONoC is integrated with a multicore processor system. The
ONoC consists of wavelength-division multiplexed waveguides and modulators
comprising RRs or MZIs, that route packets of data across the chip in the optical
domain. On-chip integration of Opto-Electronic Integrated Circuits (OEICs) poses
the problem of thermal-aware design and synthesis. Si-photonic modulators such
as the MZIs and RRs lie at the core of photonic network systems. Such OEICs are
extremely sensitive to temperature-induced changes in refractive index.

For example, referring to Fig. 3.6a, the routing controlled by input S can be
described by the following equations:

�1 D
!

c
� n � L �2 D

!

c
� .nC�n/ � L (3.1)

�� D j�2 � �1j D � D
!

c
��n � L (3.2)

where ! is the angular frequency of the light (dependent on wavelength), �1 and �2
represents the phase of the light in the two center waveguides, and n is the index of
refraction for the waveguide. Due to silicon’s large thermo-optic coefficient of �n

�T D

1:86 � 10�4=ıK, a change in temperature (�T) will cause a change in ��, thus
interfering with modulator operation. Particularly with regards to the system shown
in Fig. 3.11a, the underlying electronic layer (computational units/cores) will act as
heat sources within the chip. These temperature hot-spots will generate a thermal
gradient across the optical routing substrate. This, in turn, will cause temperature-
induced changes to the refractive index of the photonic layer, making the system
error-prone and unworkable. Furthermore, the locality of heat sources means that
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Fig. 3.11 Optical network-on-chip and thermal issues. (a) Hybrid opto-electronic integration
for optical network-on-chip. Image credit: IBM [40]. (b) On-chip heat sources creating thermal
gradients across optical substrate

different modulators will be subjected to different temperature conditions such as
depicted in Fig. 3.11b. Such external thermal gradients pose significant operational
challenges in hybrid opto-electronic integration.

The photonic design and automation communities have begun to address reme-
dial measures for such thermal-sensitive systems. Such measures entail some form
of active or passive compensation (tuning) to mitigate the effect of refractive index
variations. Active tuning utilizes external effects to change the optical properties of
materials. Active tuning is usually implemented via microheaters [24] embedded
around the waveguides or overlaid on the oxide cladding, to effect a temperature-
induced compensation in the refractive index. Tuning is also achieved by using
carrier injection, by applying a DC-bias to the modulator [80]. Highly doped P and
N regions are used to form a P-i-N junction around the modulator waveguides, and
free-carriers are injected into (conversely, extracted from) the devices to cause car-
rier concentration induced refractive index changes. Operating system scheduling
techniques have also been proposed to control dynamic compensation [72].

Such techniques are costly in terms of power, area, and restrictive in terms
of tuning range. Microheater-based tuning is very slow, cumbersome to tune
precisely, consumes large amount of power, and it exacerbates the already strained
energy-density on chip. On the other hand, DC-bias based tuning has limited
range. To address these limitations, [19] proposes a template-based RR design that
enables process-compatible (re)synthesis to compensate for pre-computed average-
or worst-case thermal gradients. One can assume that an average-case or worst-case
workload characterization is known for the multiprocessor system, from which the
thermal characterization over the optical chip can be determined utilizing techniques
such as in [77]. Based on this data, device (re)synthesis techniques are proposed in
[19] that may enable combined static and active tuning approaches for thermal-
aware synthesis of photonic layers.

In the context of optical computing and hybrid opto-electronic integration,
thermal-awareness in design and automation is an imperative. The approaches
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discussed above are in their infancy and they have yet to be validated on large-scale
systems. Further research is needed to fully exploit the full potential of Si-photonics
in computing systems.

4 Reversible Circuits: A Basis for Quantum Computation,
Encoder Design, and More

In reversible circuits, functionality is specified and, eventually, realized in a bijective
fashion, i.e. a unique input/output mapping is enforced. Their main difference to
conventional circuits can already be illustrated by a simple standard operation such
as the logical AND gate. While it is possible to obtain the inputs of an AND gate if
the output signal is 1 (then, both inputs must be assigned the value 1 as well), it is
not possible to unambiguously determine the input values if the AND outputs 0. In
contrast, reversible circuits ought to allow computations in both directions, i.e. the
inputs can be obtained from the outputs and vice versa.

4.1 Circuit Model

A reversible circuit G is a cascade of reversible gates, where fanout and feedback
are not directly allowed [65]. Each variable of the function f is represented by a
circuit line, i.e. a signal through the whole cascade structure on which the respective
computation is performed. Computations are performed by reversible gates. In the
literature, reversible circuits composed of Toffoli gates are frequently used. A Toffoli
gate is composed of a (possibly empty) set of control lines C D fxi1 ; : : : ; xikg � X
and a single target line xj 2 X n C. The Toffoli gate inverts the value on the target
line if all values on the control lines are assigned to 1 or if C D ;, respectively. All
remaining values are passed through unaltered.

Figure 3.12a shows a Toffoli gate drawn in standard notation, i.e. control lines are
denoted by , while the target line is denoted by ˚. A circuit composed of several
Toffoli gates is depicted in Fig. 3.12b. This circuit maps, e.g., the input 111 to the
output 110 and vice versa.

Fig. 3.12 Reversible circuit.
(a) Toffoli gate. (b) Toffoli
circuit
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4.2 Application Areas

The characteristic of being reversible is perfectly in line with requirements for
many application areas, e.g. quantum computations or encoders inherently rely on
such one-to-one mappings. Besides that, certain characteristics exist which are also
interesting for low power design.

4.2.1 Quantum Computation

In a quantum computer [65], information is represented in terms of qubits instead of
bits. In contrast to Boolean logic, qubits do not only allow to represent Boolean 0’s
and Boolean 1’s, but also the superposition of both. In other words, using quantum
computation and qubits in superposition, functions can be evaluated with different
possible input assignments in parallel. Unfortunately, it is not possible to obtain the
current state of a qubit. Instead, if a qubit is measured, either 0 or 1 is returned
depending on a respective probability.

Nevertheless, using these quantum mechanical phenomena, quantum computa-
tion allows for breaching complexity bounds which are valid for computing devices
based on conventional mechanics. The Grover search [33] and the factorization
algorithm by Shor [81] rank among the most famous examples for quantum
algorithms that solve problems in time complexities which cannot be achieved using
conventional computing. The first algorithm addresses thereby the search of an item
in an unsorted database with k items in time O.

p
k/, whereas conventional methods

cannot be performed using less than linear time. Shor’s algorithm performs prime
factorization in polynomial time, i.e. the algorithm is exponentially faster than its
best known conventional counterpart. First physical realizations of quantum circuits
have been presented, e.g., in [92].

Reversible circuits are of interest in this domain since all quantum operations
inherently are reversible. Since most of the known quantum algorithms include a
large Boolean component (e.g., the database in Grover’s search algorithm and the
modulo exponentiation in Shor’s algorithm), the design of these components is often
conducted by a two-stage approach, i.e. (1) realizing the desired functionality as
a reversible circuit and (2) map the resulting circuit to a functionally equivalent
quantum circuit (using methods introduced, e.g., in [2, 63]).

4.2.2 Encoder Design

Encoding devices represent a vital part of numerous applications realized in today’s
electronic systems such as addressing memories and caches, data demultiplexing,
etc. (see [6, 70]). With the rise of System on Chip and Network on Chip architectures,
they gained further importance by the fact that those architectures usually rely on a
rather sophisticated interconnect solutions [5, 25, 50, 69].
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However, their design significantly suffers from the fact that, using conventional
design solutions, the respectively desired one-to-one mappings have to explicitly
be specified. In its most straight forward fashion, this can be conducted by a
complete specification of the mapping for each pattern—obviously leading to
an exponential complexity. Even if the desired input/output mapping is specified
for a (non-exponential) selection of the patterns only (e.g., the most important
ones), conventional solutions still require to explicitly guarantee a valid one-to-one
mapping for all remaining patterns.

Since reversible circuits inherently realize one-to-one mappings only, they
provide a promising alternative to that. In fact, using reversible circuits, it is
sufficient to only realize the mapping for the actually desired patterns. A valid
one-to-one mapping for the remaining patterns is then inherently guaranteed by
the reversibility of the circuit model. A solution where this concept is utilized
can be found in [119]. Besides that, this principle has successfully been applied
in the design of on-chip interconnects in [101, 104].

4.2.3 Low Power Design

Pioneering work by Landauer [49] showed that, regardless of the underlying
technology, losing information during computation causes power dissipation. More
precisely, for each “lost” bit of information, at least k � T � log.2/ Joules are
dissipated (where k is the Boltzmann constant and T is the temperature). Since
today’s computing devices are usually built of elementary gates like AND, OR,
NAND, etc., they are subject to this principle and, hence, dissipate this amount of
power in each computational step.

Although the theoretical lower bound on power dissipation still does not
constitute a significant fraction of the power consumption of current devices, it
nonetheless poses an obstacle for the future. Figure 3.13 illustrates the development
of the power consumption of an elementary computational step in recent and
expected future CMOS generations (based on values from [115]). The figure shows
that today’s technology is still a factor of 1000 away from the Landauer limit and
that the expected CMOS development will reduce this to a factor of 100 within
the next 10 years. However, a simple extrapolation also shows that the trend cannot
continue with the current family of static CMOS gates as no amount of technological
refinement can overcome the Landauer barrier. Moreover, the Landauer limit is only
a lower bound on the dissipation. Gershenfeld has shown that the actual power
dissipation corresponds to the amount of power used to represent a signal [27],
i.e. Landauer’s barrier is closer than immediately implied by the extrapolation from
Fig. 3.13.

Since reversible circuits bijectively transforms data at each computation step,
the above-mentioned information loss and its resulting power dissipation does
not occur. Because of this, reversible circuits manifest themselves as the only
way to break this fundamental limit. In fact, it has been proven that to enable
computations with no power consumption at all, the underlying realization must
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Fig. 3.13 Power consumption Q in different CMOS generations. The figure illustrates the
development of the power consumption of an elementary computational step in recent CMOS
generations (based on values from [115]). The power consumption is thereby determined by CV2

t ,
where Vt is the threshold voltage of the transistors and C is the total capacitance of the capacitors in
the logic gate. The capacitance C is directly proportional to LW

t , i.e. to the length L and the width W
of the transistors. Reducing these sizes of transistors enables significant reductions in the power
consumption as shown in the extrapolation. However, this development will reach a fundamental
limit when power consumption is reduced to k � T � log.2/ Joule

follow reversible computation principles [7]. These fundamental results motivate
researchers in investigating this direction further. First physical realizations have
been presented, e.g., in [8].

4.3 Design of Reversible Circuits

In order to exploit the potential of reversible computations in the application
areas sketched above, an efficient design flow must be available. For conventional
computation, an elaborated design flow emerged over the last 20–30 years. Here, a
hierarchical flow composed of several abstraction levels (e.g., specification level,
electronic system level, register transfer level, and gate level) supported by a
wide range of modeling languages, system description languages, and hardware
description languages has been developed and is in (industrial) use. In contrast,
the design of circuits and systems following the reversible computation paradigm is
still in its infancy (overviews can be found in [22, 76]). Although the basic tasks,
i.e. synthesis, verification, and debugging, have been considered by researchers,1

essential features and approaches of modern design flows are still missing. More
precisely:

1A variety of corresponding open source implementations are available in the tool RevKit [83].
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• Most of the existing approaches remain on the gate level. No real support of
reversible circuits and systems on higher levels of abstractions are available.

• Most of the existing approaches for synthesis usually only accept specifications
provided in terms of Boolean function descriptions like truth tables or Boolean
decision diagrams (see, e.g., [32, 61, 79, 94]). Recently, hardware description
languages for reversible circuits have been introduced, but support a very basic
set of operations only (see, e.g., [91, 98, 105]).

• For verification and validation simulation engines (e.g., [93]) and equivalence
checkers (e.g., [97]) are available so far. But the most efficient methods can
handle circuits composed of at most 20,000 gates only (while approaches for
conventional circuits are able to handle hundreds of thousands of gates).

• Debugging has hardly been considered [96, 99].

A main reason for these open issues surely is the different computation paradigm
itself which requires that even the simplest operation has to be reversible. As a
representative of a problem to overcome when discussing reversible rather than
conventional computation devices is illustrated in the following by means of the
adder function shown in Table 3.1a.

This adder has three inputs (the carry-bit cin as well as the two summands x
and y) and two outputs (the carry cout and the sum). It surely belongs to one of the
most important functions to be realized in terms of a circuit device. However, the
adder obviously is not reversible (irreversible), since (1) the number of inputs differs
from the number of outputs and (2) there is no unique input–output mapping. Even
adding an additional output to the function (leading to the same number of input
and outputs) would not make the function reversible. Then, the first four lines of the
truth table can be embedded with respect to reversibility as shown in the rightmost
column of Table 3.1a. However, since cout D 0 and sum D 1 already appeared two
times (marked bold), no unique embedding for the fifth truth table line is possible
any longer. The same also holds for the lines marked italic.

This already has been observed in [60] and was further discussed in [100]. There,
the authors showed that at least dlog.m/e free outputs are required to make an
irreversible function reversible, where m is the maximum number of times an output
pattern is repeated in the truth table. Since for the adder at most 3 output pattern are
repeated, dlog.3/e D 2 free outputs (and, hence, one additional circuit line) are
required to make the function reversible.

Adding new lines causes constant inputs and garbage outputs. The value of the
constant inputs can be chosen by the designer. Garbage outputs are by definition
don’t cares and thus can be left unspecified leading to an incompletely specified
function. However, many synthesis approaches require a completely specified
function so that all don’t cares must be assigned with a concrete value.

As a result, the adder is embedded in a reversible function including four
variables, one constant input, and two garbage outputs. A possible assignment to
the constant as well as the don’t care values is depicted in Table 3.1b. Note that the
precise embedding may influence the respective synthesis results. Corresponding
evaluations have been made, e.g., in [62, 95]. Moreover, determining an optimal
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Table 3.1 Adder function and a possible embedding

(a) Adder function (b) Embedding

cin x y cout sum 0 cin x y cout sum g1 g2

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 1 0 1 1 1

0 1 0 0 1 1 0 0 1 0 0 1 1 0

0 1 1 1 0 0 0 0 1 1 1 0 0 1

1 0 0 0 1 ? 0 1 0 0 0 1 0 0

1 0 1 1 0 1 0 1 0 1 1 0 1 1

1 1 0 1 0 ? 0 1 1 0 1 0 1 0

1 1 1 1 1 1 0 1 1 1 1 1 0 1

1 0 0 0 1 0 0 0

. . .

embedding is a rather complex task—in fact has been proven to be coNP-complete
in [84]. Recently, this complexity could have been tackled by an approach utilizing
dedicated decision diagram techniques [118].

Besides that, alternative approaches (e.g., [94]) address this embedding problem
not explicitly, but implicitly and lead to a significant amount of additional circuit
lines. As this may harm in turn the efficiency of the resulting circuit (last but not
least with respect to the power consumption in a possible application), how to trade-
off these issues remains a big design challenge in this domain (see, e.g., [102]).

5 Conclusions

In this work, we provided an overview on the design of circuits for emerging
technologies. Digital Microfluidic Biochips, Integrated Photonic Circuits, and
Reversible Circuits are promising extensions and/or alternatives to conventional
circuits and may revolutionize their respective application areas. At the same time,
they work significantly different than their conventional counterpart and, hence,
require dedicated design solutions. We reviewed the respective background and
application areas and discussed the main design challenges to be addressed for each
new generation of circuit technology.
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Chapter 4
Physical Awareness Starting
at Technology-Independent Logic Synthesis

André Inácio Reis and Jody M.A. Matos

1 Introduction

Designing digital circuits is an extremely complex task, specially for advanced
technology nodes. This way, electronic design automation [14, 38, 43] tools are
extensively used to complete the design. Even with this extensive use of computer-
aided design tools, the path from an initial description to a layout ready to tape-out
is a long and laborious process, involving several different steps performed by
specialized teams. The sequence of steps performed to produce the final circuit is
called design flow.

Different design flows are possible, in which nearly all of them present small
variations from each other. Most of these variations rely on the type of design being
synthesized and/or on changes from one company to another. However, there are
some steps that may be considered standard. Early steps include logic synthesis
[11, 15, 16, 20, 31], where an initial circuit description is implemented as a set of
interconnected logic gates, possibly from a cell library [30]. Later steps include
physical design [3, 18, 23, 34], where the set of interconnected logic gates is placed
and routed to form the final layout.

Historically, logic synthesis and physical design tools have been produced by
different teams, or even different companies. More than that, these teams come from
a different culture, having separate specialized training on either logic synthesis
or physical design. Even today, there are very few people that attend the leading
conferences in both areas: IWLS (International Workshop on Logic Synthesis) and
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ISPD (International Symposium on Physical Design). So, there is a gap between the
logic synthesis and physical design cultures.

Efficient design flows should provide a tight integration between logic synthesis
and physical design. However, due to the culture gap, this integration is not
satisfactory. Early steps of logic synthesis work as a technology-independent step,
meaning that no technology information is taken into account. Later steps of
logic synthesis, known as technology-dependent optimizations, take into account
information from a physical cell library. Yet, no information about placement and
routing is taken into account. When physical design places and routes the cells
chosen during logic synthesis, large capacitances may be introduced, fundamentally
changing the assumptions that were made in the previous steps. This way, the whole
process of logic synthesis and physical design must be reiterated, hoping for a
convergence that may not arise.

In this chapter we discuss how to bring technology information into early steps of
logic synthesis. For this, we rethink the design flow as a whole, redefining steps and
their interactions. We propose to achieve a better integration through a paradigm
shift, where the flow is divided into signal distribution and signal computation.
We discuss how to implement this paradigm shift with a set of enablers. As a
consequence, both signal distribution and signal computation can benefit from tasks
pertaining to logic synthesis and physical design. This way, the emphasis is shifted
from what is logic synthesis and what is physical design. The focus is shifted to
performing logic synthesis and physical design of signal distribution circuits before
performing logic synthesis and physical design of logic computation circuits. The
proposed paradigm shift allows the power of logic restructuring using Boolean
methods to be unleashed without the fear that long wires introduced later during
physical design would invalidate assumptions made during logic synthesis.

This chapter is organized as follows. Section 2 presents some preliminary
concepts related to the performance of digital integrated circuits. Section 3 describes
a typical design flow. Section 4 discusses common design tasks in a typical design
flow. Tasks are described to point out what information is needed to perform each
task, determining when they can be performed during the flow. Section 5 presents
some features that act as enablers to bring technology information into early steps
of the design flow. Section 6 proposes a new physically aware design flow focused
on designing signal distribution circuits prior to the design of logic computation
circuits. This way tasks which bring physical information important for circuit
performance can occur earlier in the design flow. Finally, Sect. 7 concludes the
chapter.

2 Basic Concepts in VLSI Design

In this section, we present some basic concepts related to VLSI design. The
emphasis is on the role played by these concepts in the design flow, specially
concerning circuit performance.
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2.1 Design Constraints

Design constraints are used by VLSI engineers to express design intent. Typically,
VLSI engineers use a design constraints file to express design goals, such as the
desired working frequency, maximum area, and maximum power consumption for
a specific design.

For instance, design constraints can be used to direct the tools that compose a
VLSI design flow to minimize power consumption while satisfying a specific target
frequency requirement. This way, design tools must be able to understand and cope
with design intent expressed through design constraints. Preferentially, the treatment
of design constraints should start at early steps in the design flow.

2.2 Sources of Delay

Target design performance is an extremely important constraint for VLSI circuits.
This aspect is mainly related with the delay on critical paths compared to the period
associated with the required frequency. This way, it is key to understand that delays
may come from different sources. This idea is illustrated in Fig. 4.1. Every path
in a circuit has a delay, and part of this delay come from three different sources:
(1) delay from late arrival (or early required) times; (2) cell (gate) delays; and (3)
wire delays due to signal distribution (wires and buffers). For instance, in Fig. 4.1,
the required time for the whole circuit is larger than the current circuit delay. In
this case, either the wire delay or the gate delay should be optimized (reduced) to
achieve the required time. Generally speaking, late arrivals are part of the problem
definition and cannot be optimized. We will discuss these types of delays in the next
subsections.

2.2.1 Delay from Late Arrival

Some signals may arrive late, or may be required to be delivered earlier with
respect to the required time. These conditions are typically described in the design
constraints file, that specifies the boundary conditions for the circuit. In fact, these

required time

late arrival wire delay gate delay

circuit delay

Fig. 4.1 Different sources of delay in a circuit
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delays are simply given in the constraints file and the designer must cope with them
by reducing gate and wire delay to accommodate non-negotiable late arrival times,
such that the final required time for the circuit is achieved. As we highlighted before,
late arrivals are part of the problem definition and cannot be optimized.

2.2.2 Cell Delay Estimation

A widely used and well-established approach to compute circuit delay is based on
the Non-Linear Delay Model (NLDM). In this section, we try to briefly describe the
characteristics of the NLDM delay model.

According to the NLDM delay model, the overall logic-stage delay is affected
by (1) the slope of the input signal transition and (2) the lumped capacitance at
the output. In practical use, the NLDM approach models the cell delay by pre-
characterizing it as a matrix of delays indexed by input slope and output capacitance.
The output slope is also pre-computed and stored in a similar matrix (indexed by
input slopes and output capacitances). For index values that are not directly available
in the matrix, approximations are obtained by linear interpolation or extrapolation.

2.2.3 Wire Delay Estimation

Once the cell delay and output transition time are efficiently evaluated, the wire
delay can be calculated by driving its RC circuit model with the voltage waveform
defined by a transition time. The overall stage delay is, then, the cell delay obtained
from the look-up tables added to interconnect delay obtained from its RC model.

It is important to remark that, in recent technologies, intra-cell resistances and
wire routing resistances can interact if they are of the same order of magnitude. As
a consequence, part of the lumped output capacitance may be hidden from the driver
cell, leading to the need of computing an effective capacitance. When a source drives
multiple sinks, the effective capacitance for each sink may be different. We refer the
reader to the work in [36] for details.

2.3 Timing Closure

VLSI designs must meet the required timing constraints, e.g. setup (long-path)
and hold (short-path) constraints. The optimization process that guarantees these
requirements is called timing closure. This process integrates locally performed
optimizations, including modifications of placement and routing, with methods
oriented to improve circuit performance.

However, meeting the required timing constraints for a design is not the only
goal when running for timing closure anymore. The naive usage of timing-driven
approaches could lead to undesired scenarios. For instance, consider a design that
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meets the timing constraints, but where a number of non-critical paths were over
optimized, resulting in unnecessary area and power payloads.

This way, clever timing closure procedures try to find the compromise of zero-
slack designs. In such designs, the circuit has fairly optimized critical paths with no
unnecessary payloads. At the same time, non-critical paths are cleverly relaxed, in
order to avoid undesired area and power overheads.

2.4 Timing Budget

In timing-driven physical design, both cell and wire delays must be optimized
to obtain a timing-correct layout. However, there is a cause-and-effect dilemma:
(1) timing optimization requires knowledge of capacitive loads and, hence, actual
wirelength, but (2) wirelengths are unknown until placement and routing are
completed. To help resolve this dilemma, timing budgets are used to establish
delay and wirelength constraints for each net, thereby guiding placement and
routing to a timing-correct result. A popular approach to timing budgeting is the
zero-slack algorithm (ZSA), and we refer the reader to [33] for details. From
our standpoint, timing budget can be viewed as a partitioning of the complete
circuit design constraints into sub-design constraints for sub-circuits and associated
interconnections.

2.5 Design Convergence and Delay Information Stability

Wire delay and cell delay must be optimized during the design cycle. In order to
achieve design convergence, these delays have to be estimated in a precise and stable
way. By stable, it is understood that assumptions will not be changed so that delay
information is changed. It is very difficult to estimate wire lengths early in the design
flow. This way, instability and lack of design convergence arise not because the sizes
of cells were not adequately chosen, but instead because routing capacitances from
long wires can invalidate assumptions made at the early steps of the design flow.

3 A Typical Flow

A typical design flow roughly follows the steps presented in Fig. 4.2. Notice that the
flow is separated into two distinct groups of tasks: Logic Synthesis (a.k.a. frontend)
and Physical Design (a.k.a. backend).
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RTL
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Logic Synthesis

Technology Independent

Boolean Minimizations

Circuit Structuring

Local Optimizations
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Trade-off Optimizations

Synthesized
Netlist
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Placement

Global Placement

Legalization

Detailed Placement

Routing

Global Routing

Detailed Routing

GDSII

Fig. 4.2 A typical VLSI design flow

3.1 Logic Synthesis Frontend

Given an input design described in register-transfer level (RTL), a usual design flow
relies on synthesis tasks commonly performed in sequence, typically seeking for
timing closure. Thus, the RTL description is initially transformed into a technology-
independent logic representation and a first level of logic synthesis and associated
optimizations are performed. Then, such a logic representation is mapped into
instances of a cell library and a second level of logic synthesis and optimizations
are performed, now under a technology-dependent perspective. This process is
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responsible for generating a mapped netlist. It also defines a sort of checkpoint on
the design closure pace, in the sense that both frontend and backend designers try to
agree that the design closure is achievable given the generated netlist.

3.2 Physical Design Backend

The mapped netlist is, then, taken as input for physical design. The first step is
mainly based on defining the die area and placing both the I/O pins and macro-
blocks. As soon as the design is floorplanned, steps so-called global placement,
legalization and detailed placement are responsible for placing the cells from the
netlist onto the chip’s surface while optimizing multiobjective cost functions. Then,
the interconnection net topologies are defined and their segments are assigned into
appropriate routing layers through global and detailed routing.

3.3 Drawbacks

Although the flow is somehow convergent, achieving such a convergence has been
even more challenging at each new technology node. Also, each of these synthesis
steps is based on incremental optimizations, which sometimes need to be repeatedly
iterated before moving to the following steps. Still, it is increasingly common that
the flow does not converge in the end and demand for multiple iterations over the
entire design flow before to achieve design closure. Thus, it is desirable to look for
techniques to achieve the desired timing constraints spending less design cycles, i.e.,
minimizing the number of iterations in the design flow.

We believe that considering physical information since the early steps of logic
synthesis can potentially minimize the number of design cycles. However, the way
current flows are organized limits how physical information can be incorporated in
the design flow. In the next sections, we describe common synthesis tasks and the
moment when they can be performed during a typical design flow.

4 Common Synthesis Tasks

In this section, we present some synthesis tasks commonly performed on VLSI
design flows. This list of tasks was originally presented by Alpert [1] as a small
part of his IWLS 2013 invited talk, entitled “When Logic Synthesis Met Physical
Synthesis.” The goal during the keynote was to discuss with the audience if these
tasks belonged into the domains of logic synthesis or physical design. Herein, we
discuss what type of information is needed to perform each of these tasks and how
this limits the points where they can be performed during a typical design flow.
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4.1 Gate Sizing or Repowering

The idea of gate sizing, or repowering, is that each logic cell in a library is provided
with several options of drive strengths. For instance, a certain library could have
several versions of a 2-input NAND cell. These versions would have different drive
strengths, such as NAND2_X1, NAND2_X2, NAND2_X4, and NAND2_X8. These
cells implement the same logic function, but internal transistors are sized differently
so that the cells will have different input capacitances, different physical sizes, and
different output drive strengths.

The goal of gate sizing is to reduce total circuit area or power while respecting
the maximum delays expressed through the user-defined design constraints. The
solution to the problem of gate sizing chooses a specific size for each cell with
the goal of minimizing the adopted cost function while still respecting the timing
constraints. Figure 4.3 illustrates a cell being gate-sized in a given circuit.

To be meaningful, the gate sizing procedure has to have a notion of the
capacitances to be driven by each cell. This is necessary because the solution to
the problem has to adjust the drive strength of each cell to the output capacitance
that the cell has to drive.

Gate sizing can be performed after technology mapping, during the technology-
dependent phase of logic synthesis. However, at this point of the design flow, output
wire capacitances are still estimated and can change after place and route. This
way, gate sizing may be performed again after place and route when extracted
wire capacitances are known. One problem with this flow is that the sizes of some
cells may increase in such a way that there is not sufficient room for them in the
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Fig. 4.3 An example of gate sizing or repowering: the instance g3 has a smaller cell size in option
(a), compared to instance g30 in option (b)
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current placement, and consequently the process has to be repeated until it hopefully
converges, which is not guaranteed. Several authors published works on gate sizing
[4, 9, 17, 19].

4.2 Vt Swapping

The same way a cell is provided with different drive strengths, each cell instance
can have different threshold voltages (Vt) assigned to its transistors. A high-Vt cell
is slower, but consumes less leakage power. In contrast, a low-Vt cell is faster, but
consumes more leakage power. Swapping the Vt of individual cells allows to trade
timing slacks for leakage-power reduction.

The goal of Vt swapping is to reduce leakage power while respecting the
target delays expressed through the user-defined design constraints. The solution
to the problem of Vt swapping chooses a specific Vt for each cell with the goal
of minimizing the leakage power while still respecting the timing constraints.
Figure 4.4 depicts a circuit before (option (a)) and after (option (b)) Vt swapping.

To be meaningful, the Vt swapping also needs to have a notion of both the
capacitances to be driven by each cell and the input transition slope, just like for
gate sizing. This is necessary because the solution to the problem has to adjust the
cell Vt while respecting timing constraints, and this is the information commonly
required for timing estimations.
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Fig. 4.4 An example of vt-swapping: in option (a) all instances have regular Vt, in option (b)
some cells have high Vt and others have low Vt
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Vt swapping can be performed after technology mapping, during the technology-
dependent phase of logic synthesis. However, at this point of the design flow, output
wire capacitances are still estimated and can change after place and route. Thus, this
task has also to be performed after place and route when extracted wire capacitances
are known. Works that address the task of Vt swapping include [24, 40].

4.3 Cell Movement

A major problem in the VLSI design flow relies on the challenge of finding good
locations for individual circuit components. The task is, then, arranging circuit
components on the die surface while optimizing multiobjective cost functions,
which are commonly timing-driven or routability-aware.

The intuition for the cell movement/placement task is based on modeling the
circuit as a graph, in which the cells are the nodes and the interconnections are the
edges. The problem is, therefore, defined by the assignment of .x; y/ locations for
each of those cells in such a way that the adopted cost functions are minimized and
the design constraints are met. Figure 4.5 provides an example of cell movement.

Placers usually need to have a notion of the die area, the I/O pin placement and
both the standard height and width step of the cells (a.k.a. placing sites). Along with
both a netlist description, the logic library and the physical library, this information
can be used to formally model the problem of placing cells into a discrete matrix.
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Fig. 4.5 An example of cell-movement: the position of instance g4 is different in options (a) and
(b), this changes wire lengths and associated parasitics, impacting the timing
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In a standard design flow, the first placement iteration is ran after logic synthesis,
as soon as the netlist is defined, and the floorplanning is performed. Further in the
flow, cells can change location in almost all of the subsequent steps, including local
optimization steps. Authors that use cell movement as part of their optimization
procedures include [21, 27].

4.4 Layer Assignment

Another important task in the VLSI design flow is the layer assignment for routing
the circuit interconnections. Considering that VLSI technologies allow for multiple
routing layers, with different electrical characteristics, layer assignment is the task
of properly selecting which routing layer should be used when defining the path
of each net segment. Higher routing layers are thicker and both less resistive and
less capacitive, but are less available as routing resources. In contrast, lower routing
layers offer a high number of routing resources, but they are thinner and both more
resistive and more capacitive.

Taking the current placement solution and a routing topology for a given net,
the problem relies on assigning a routing layer for each segment of this topology.
Figure 4.6 illustrates an example of this task. The assignment must consider:
(1) the routing congestion; (2) the available routing resources for the different
routing layers; and (3) the layers’ electrical characteristics. At the end, the proposed
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Fig. 4.6 An example of layer-assignment: the wire connecting instances g3 and g4 is assigned to
a different layer in options (a) and (b), this changes wire layer properties and associated parasitics,
impacting the timing
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solution needs to satisfy the fabrication process design rules, complete all the circuit
connections, and meet their required timing budgets while optimizing a variety of
cost functions, such as wirelength-related or lithography-aware optimizations.

Layer assignments are primarily performed as part of the routing stage, which,
in turn, occurs once the circuit is placed. Also, this task takes its place on almost
every post-routing optimization run. We refer the reader to the following works as
example of layer assignment methods [6, 10].

4.5 Buffering Long Nets

Since the interconnect delay is progressively playing an even more dominant role
for the systems performance, buffer planning became a critical step of the design
flow. Considering that long nets would have higher capacitance (and, consequently,
lower performance), buffering long nets is a task to pay attention.

The challenge is, then, to decide whether buffers should be inserted (or deleted)
in order to improve the overall design performance while tracking both placement
and routing congestion. Figure 4.7 depicts a buffering scenario.

Assuming that this task needs to evaluate wirelength to have a notion of long nets,
buffering for interconnect delay optimization is usually ran after placement. Thus,
along with the circuit representation and the cell positions, this buffering process
needs the standard cell library and at least a rough information about the wires’
electrical characteristics. Buffering of long nets is addressed in [2, 42].
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Fig. 4.7 An example of buffering long nets: the wire between instances g3 and g4 has no buffer
in option (a) and four buffers inserted in option (b)
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4.6 Buffer Deletion

The previous section discussed buffering of long nets. Part of this task may include
buffer deletion, as depicted in Fig. 4.8. Works that perform buffer deletion as part of
the optimization include [5, 32].

4.7 Buffering Nets to Reduce Fanout

Considering that the cell delay component is highly dependent on its output load
capacitance, reducing the cell fanout is an important optimization task. Since the
higher is a cell fanout, the higher tends to be its output load capacitance, buffers
and inverters can be used to reduce the cell fanout looking for delay optimizations.
Figure 4.9 illustrates a fanout optimization by buffer insertion. We refer the reader
to the works [5, 32], as examples of buffering nets to reduce fanout.

4.8 Pin Swapping

When two cell pins are functionally symmetric, the wires connected to them
can be swapped without changing the overall circuit functionality. This is the
simplest form of applying rewiring algorithms, a.k.a. pin swapping approaches.
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Fig. 4.8 An example of buffer deletion: the wire between instances g3 and g4 has four buffers in
option (a) and just two buffers in option (b)
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Fig. 4.9 An example of buffering to reduce fanout: option (a) was not yet buffered and has an
excessive fanout, with nonadjusted polarities; option (b) has three buffers inserted to reduce fanout
and also to adjust the polarity of sinks

Fig. 4.10 An example of pin
swapping: (a) before
swapping and (b) after
swapping, with input signals
interchanged between
symmetric inputs
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Rewiring techniques are commonly used to reduce circuit delay or power consump-
tion, since rewiring allows to reduce routing wirelength and it can also minimize
routing congestion. Figure 4.10 depicts a rewiring scenario.

Pin swapping techniques aim the detection of circuit symmetries, which could
yield delay or power optimizations, while keeping the design functionality. This is
usually achieved by symmetry techniques on top of either structural representations
of a given circuit (such as an AIG or a netlist) or Boolean representations (such as
a binary decision diagram). Beyond swapping symmetric inputs of a cell, state-of-
the-art algorithms allow for simultaneous permutations of multi-variable symmetric
inputs and outputs of subcircuits.

When targeting cell-oriented pin swapping, the symmetry for input pins can be
obtained from the physical library. Symmetry detection algorithms for subcircuits
typically extend this concept for inputs and outputs permutations. In both of the
cases, state-of-the-art approaches are ran after placement, in order to efficiently
evaluate wirelength reductions. Nevertheless, there exist rewiring algorithms with
different cost functions, which can be applied since the early steps of logic synthesis.
Works that perform pin swapping as part of the optimization strategy include [7, 8].
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4.9 Cloning

Gate duplication, cell replication, or simply cloning, is the process of duplicating
a gate in a given circuit in order to reduce fanout. Once the fanout is reduced,
both gates (the original and the cloned) tend to have better performance than before
replication.

State-of-the-art algorithms for gate cloning rely on traversing the circuit a few
times by looking for potentially “clonable” cells, choosing the ones to be cloned,
then performing the cloning itself. Figure 4.11 illustrates the cloning task.

Typical inputs for a cell replication algorithm are a graph representation of the
circuit and delay analysis for timing-driven approaches. Cloning is a task usually
ran during logic synthesis, but not rarely it is also applied for post-placement
optimizations. We refer the reader to the works in [22, 35, 41] as examples of
methods that perform cloning.

4.10 Balancing and Unbalancing of AND/OR/XOR Trees

Digital circuits may have large operator trees, which perform a large AND/OR/XOR
operation. These trees consist of several interconnected gates of the same type,
forming a large operator.

Large trees provide a low effort opportunity to optimize a circuit, specially
concerning timing optimizations [44], as the tree can be reordered to alter the depth
of the tree. This can be used to accommodate different arrival times as well as to
facilitate routing after placement.

Tree balancing can be performed during the logic synthesis steps to reduce logic
depth, as illustrated in Fig. 4.12. It can also be performed after physical design
considering placement and wire delay, as shown in Fig. 4.13.
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Fig. 4.11 An example of cloning: the instance g3 in option (a) has been cloned into two instances
g3 and g30 in option (b), allowing to recover negative slacks
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Fig. 4.12 Balancing a XOR
logic tree during logic
synthesis to reduce logic
depth. Option (a) has three
logic levels, but it can be
useful if input d is the only
signal in the circuit critical
path. Option (b) has two logic
levels and it is a balanced
structure, as all four inputs
have a logic level depth
of two xor
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Fig. 4.13 Balancing a XOR logic tree after place and route to reduce logic depth and improve
routing. Option (a) is logically equivalent to Fig. 4.12a. Option (b) is logically equivalent to
Fig. 4.12b. Notice that the rebalancing can have positive impact on circuit wiring if done after
place and route

4.11 Composition/Decomposition

A variety of trade-off optimizations also need to tackle the composition/decompo-
sition dilemma. While playing with the circuit granularity, different cost functions
are optimized according to where in the design flow the optimizations are taken.
Common cost functions range from literal counting to the usual area, power, and
timing (or levels). Figure 4.14 illustrates the process, in which the option (a) can be
thought as decomposed from option (b), or, conversely, option (b) can be viewed as
a composition from option (a).

Logic decomposition is the process of breaking down complex functions into
simpler components. On the other way around, logic composition is the process of
building up complex functions out of simpler components. Since that the quality
of results of a technology mapping depends significantly on the initial description
of the circuit, the final implementation varies reasonably according to the adopted
(de)composition strategy.
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Fig. 4.14 An example of composition: instances g0 and g2 in option (a) were composed into a
single instance g4 in option (b)

Both composition and decomposition approaches can be ran in almost any stage
of the design flow, since technology-independent logic synthesis to post-routing
optimizations. However, the later is the stage in the design flow, the lower is the
degree of freedom for (de)composition-based techniques.

Apart from that, whatever is the stage in the design flow, the typical inputs for
composition/decomposition algorithms are the same ones for technology mapping.
Thus, along with a circuit representation, it is also commonly needed a description
of the timing constraints and a standard cell library. This information would be used
for timing evaluations and help the decomposition process to take the necessary
decisions [39].

4.12 MUX Decomposition

The MUX decomposition is a special case of the general (de)composition. Typically,
decomposition schemes target two-input gates and inverters, which excludes in
the process certain important circuit elements, such as multiplexers. In the example
depicted in Fig. 4.15, the AOI solution (option (a)) has 10 C 10n literals and the
max fanout is n. The AND2 solution (not shown) has 10C 12n literals and the max
fanout is also n. The MUX solution (option (b)) has 9n literals and the max fanout
is 2n [39].

4.13 Inverter Absorption (Decomposition)

During technology mapping, the algorithms must also consider matching solutions
in both polarities, which may include decisions related to either making inverters
explicit or “absorbing” them into the mapped cell. Figure 4.16 illustrates an inverter
absorption possibility. In this case, the tool is able to choose between making the
inverter explicit (option (a)) or absorbing it into the XOR2 cell, turning it into a
XNOR2 cell. These decisions are commonly associated to area minimization and
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Fig. 4.15 An example of mux decomposition: complex gates in option (a) were decomposed into
2to1 MUXes in option (b)

Fig. 4.16 An example of
inverter absorption: the
inverter in option (a) was
absorbed by gate g3 in
option (b)
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fanout reduction. In order to increase the number of possible matches, seeking for
better quality of results, it is possible to decompose the circuit representation by
making inverters explicit even when the signal should not be inverted at all. This
would allow the mapper to decide whether the inverters should be absorbed or not.

Given a circuit representation, the decomposition for inverter absorption relies
on decomposing such a representation in order to allow for optimizations while
absorbing inverters into cells (or even making them explicit). A well-established
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algorithm for such a decomposition propose to (1) replace every wire in the circuit
by a pair of inverters and (2) adding a “wire” cell to the library (whose pattern
consists of a pair of inverters connected in series). A covering algorithm can be ran
in order to seek for covering solutions that minimizes the desired cost function.

Decompositions for inverter absorption usually take place during logic synthesis.
Nevertheless, inverters can also be absorbed (or turned explicit) in any post-
placement or post-routing optimization. To be meaningful, this task must also have
the same inputs of that for technology mapping [37].

4.14 Potential for Improvement

We believe that the availability of stable information about long wire delays since
early steps of logic synthesis could potentially allow the tasks described in this
section to become part of technology dependent logic synthesis, minimizing the
number of design cycles. The following section presents the enablers for the wire
physical awareness flow proposed in this work.

5 Enablers of Physical Awareness Flow

In this section, we discuss some features that are very important as enablers of phys-
ical awareness at early design steps. Four different enablers of physical awareness
and their roles in the design flow are discussed in the following subsections.

5.1 PAIGs

The first proposed feature to enable physical awareness are placed and-inverter
graphs (PAIGs). Early steps of logic synthesis, start by abstracting a subject
description that typically is an And-Inverter Graph (AIG) or a similar data structure.
Other examples of this type of data structure include majority inverter graphs
(MIGs) and xor-and-inverter graphs (XAIGs).

If we concentrate in the case of AIGs, they are very near to an implementation
with simple gates (and-nand-or-nor) netlist. In order to consider physical design
information during logic synthesis, it is possible to store an .x; y/ position for each
AIG node. Although this is an important enabler to consider physical design, it
has two weaknesses. The first one is that AIGs are too fine-grained for placement.
The second-one is that AIGs do not have explicit inverters, and inverters/buffers are
important for signal distribution, specially for long wires.
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5.2 KL-Cut PAIGs

In order to have a coarse-grained data structure for placement, it is possible to
use the concept of KL-cuts [25, 26, 28]. KL-cuts are a type of cuts with at most
K-inputs and L-outputs and that fanout to the neighborhood only through the L-
outputs. In this sense, the placement of AIG nodes can be performed based on the
KL-cut clusters, even disregarding the positions of individual nodes. The parasitics
of interconnections among nodes inside KL-cuts can also be disregarded, as they
are mainly local interconnections. In this sense, KL-cuts can be seen as a movable
container of AIG nodes. This new data structure is a KL-cut PAIG, where the
KL-cuts have an area that are proportional to the number of AIG nodes contained
inside it.

5.3 Explicit Inverters on KL-Cut PAIGs

Signal distribution is done through inverters and buffers. In this sense it is important
to have explicit inverters, specially for long connections. In the case of a KL-cut
PAIG data structure, the explicit inverters are used in between KL-cuts. This will be
explained in further detail in the next section.

5.4 Different Cuts for Signal Distribution and Logic
Computation

KL-cut PAIGs are, then, formed by two main distinct cut types. The first type
of cuts are the logic computation KL-cuts that act as AIG node containers, as
illustrated in Fig. 4.17. The second type of cuts are signal distribution 1L-cuts (i.e.,
a KL-cut with K=1), which are implemented as inverter/buffer trees that have the
function of distributing signals, as illustrated in Fig. 4.18. As these types of elements
perform different tasks in the final circuits, they are not treated as equals. KL-
cuts as node containers are local gates that compute logic, and they have to stay
together in the final layout. Signal distribution trees have the function to deliver
signals to distant consumer points from the local KL-cut that generates the signal.
The gates that compose these inverter trees do not have to be placed together to
minimize connections, but they have to be placed in order to maximize efficiency
in signal distribution. The number of inverters and the internal structure of the
distribution tree can vary according to the number of consumer KL-cuts, the position
of consumer KL-cuts, and the required arrival times.
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Fig. 4.17 A logic computation cut. (a) From a logic point of view, it is a 5-2-cut (i.e., K=5, L=2).
(b) From a physical point of view, it is local netlist that has to be placed and routed inside predefined
local boundaries
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Fig. 4.18 A global signal distribution cut. (a) From a logic point of view it is a 1-13-cut (i.e., K=1,
L=13). (b) From a physical point of view, it is a tree of inverters/buffers that has to be placed and
routed to distribute signals according to the slacks and positions of sinks

5.5 Local SDCs

The last enabler of our flow is the use of local design constraints. The global
design constraints are partitioned into partial design constraints for the two types
of cuts (local logic computation KL-cuts and global signal distribution 1L-cuts),
such that the global SDC is respected. During synthesis, the partial SDCs can be
refined according to the slacks after synthesis of each signal distribution and logic
computation cut.
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6 Rethinking Physically Aware Flows

This section discusses how to use the enablers from previous section to produce a
physically aware design flow. This flow is different from previous ones in the sense
that it incorporates physical information earlier in the flow.

6.1 Starting Point and Input

The starting point of a design flow is an RTL description. In order to be processed,
the initial description is abstracted to an internal data structure containing Flip-Flops
and the combinational logic in between. One possibility for this data structure is a
sequential AIG. In additionally to the circuit itself, the designer must specify the
desired frequency through design constraints and optionally provide a floorplanning
specifying position of I/O pins and available circuit area. This is illustrated in
Fig. 4.19.

6.2 Placement of Interface Pins

Placement of interface pins is important for performing physically aware design,
as this determines the physical position of the sources and sinks for signals. This
information can be made available from a user provided initial floorplanning, or it
can be computed by the tool if not specified. The point here is that the position of
interface pins as illustrated in Fig. 4.19b is an important information from the start
of a physically aware flow.

(a) (b)

required time

late arrival wire delay gate delay

circuit delay

(c)

Fig. 4.19 Input data for physically aware design flow: (a) circuit description, (b) floorplan, and
(c) design constraints
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6.3 KL-Cut Computation

As we discussed before, the initial abstraction of the circuit treated by the flow
is a sequential AIG, which is a description widely used in logic synthesis. As the
AIG nodes will not be placed individually, but clustered into KL-cuts, a KL-cut
computation is done in order to produce a KL-cut AIG to be placed. After the KL-
cut computation, the available information for the flow is as depicted in Fig. 4.20.
The circuit will be partitioned into KL-cuts, which can be seen as clusters of AIG
nodes. The connections among the clusters and among the I/O pins are also known.
However, the position of the KL-cuts is not yet final. This is represented in Fig. 4.20
as the bad quality routing with long wires. In fact, no position is taken into account
while performing the KL-cuts on the initial AIG. However, KL-cuts produce good
partitioning from a logic point of view, as the number of inputs K for each KL-cut
tends to be reduced. The fact that KL-cuts are computed on AIGs without explicit
inverters helps to preserve the Boolean relation among signals.

Fig. 4.20 A circuit partitioned into KL-cuts (clusters of AIG nodes): the connections among the
clusters and among the I/O pins are also known, but the KL-cuts have not yet been placed
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6.4 Placement of Logic Computation KL-Cuts

The placement of KL-cuts is done to produce a KL-cut PAIG. Notice that this
placement will assign positions to KL-cuts and to the FFs. This placement is
done in such a way to minimize the wirelengths of the connections among KL-
cuts, as shown in Fig. 4.21. Notice that the placement of KL-cuts is done to favor
interconnects among KL-cuts and I/O pins, the interconnects internal to KL-cuts are
ignored during to this step, as KL-cuts are viewed as AIG node containers.

6.5 Physical Design of Global Signal Distribution 1L-Cuts

A signal distribution 1L-cut has one input (from the KL-cut generating the signal)
and one or more outputs (to the consumer KL-cuts). For each signal distribution cut,
an inverter/buffers topology is generated, with inverter/buffers placed and routed to
adequately distribute signals. Notice that the placement and routing is very sparse,
using either back-end-of-line (BEOL) or middle-end-of-line (MEOL) long wires to
interconnect them. This idea was illustrated in Fig. 4.18, where it is shown that the
physical design of a global signal distribution cut is a sparse tree of inverters/buffers.

Fig. 4.21 Placement of KL-cuts considering interconnections among KL-cuts and I/O pins
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Fig. 4.22 The physical design of global signal distribution 1L-cuts involves the synthesis of
several signal distribution cuts (darker green)

Figure 4.22 illustrates that the physical design of global signal distribution cuts
involves the physical design of several simultaneous cuts (darker green in Fig. 4.22),
each of them being a sparse signal distribution tree, as illustrated in Fig. 4.18b.
Obviously, the routing of these simultaneous trees compete for routing resources.
Once the physical design of global signal distribution cuts is done, the detailed
routing among the clusters and among the I/O pins is fully determined, as shown
in Fig. 4.23.

6.6 Generate Partial SDCs for Logic Computation KL-Cuts

The physical design of global signal distribution 1L-cuts defines the BEOL/MEOL
wires, resulting in a unique feature of the proposed flow, as BEOL/MEOL long
wires are defined before FEOL short wires. After the synthesis of signal distribution
trees, the long BEOL/MEOL wires with large capacitance are known and accurately
characterized. These wires will not change further in the flow, leading to a highly
convergent flow.

Once the global signal distribution cuts are physically designed, it is possible to
compute local SDC files that express very accurately the delays associated with the
physical topology of each 1L-cut. From this, it is possible to compute SDCs for each
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Fig. 4.23 After the physical design of global signal distribution cuts, the detailed routing of global
signals is known, allowing to compute delay for long wires. Notice that for didactic purposes, the
wires were drawn in between the logic KL-cuts. However, in real designs the logic KL-cuts will
have no space in between and the signal distribution will ran on top of the logic KL-cuts

4-5-Cut 1-7-Cut 3-4-Cut

1-13-Cut

global SDC

partial SDC partial SDC partial SDC
partial SDC

Fig. 4.24 Timing budget: a global SDC is partitioned into a set of partial SDCs, such that global
design constraints are still met if partial constraints are met

KL-cut so that the combined local SDCs respect the global SDC constraints. This
idea is shown in Fig. 4.24.
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6.7 Logic Synthesis of Logic Computation KL-Cuts

As local SDCs are produced for each KL-cut, the logic synthesis of the individual
KL-cuts can be done locally according to the associated SDC files [12, 26]. Notice
that Boolean techniques [13, 29] can be applied in more demanding regions of
the circuit, in such a way to completely restructure the logic to adapt to global
requirements of the SDC. Figure 4.25 shows the circuit of Fig. 4.23 after logic
synthesis is performed. Notice that the routing of long wires is identical, in this sense
Figs. 4.23 and 4.25 are almost identical. The difference is that the structure of the
logic inside the KL-cuts has been changed. Notice that this is a local transformation
by nature, but it is made to comply with partial SDCs that contain very accurate
information about long wires, and that reflect global requirements.

6.8 Physical Design of Logic Computation KL-Cuts

After the logic in the KL-cuts has been restructured to better comply with local
SDCs, each KL-cut can be physically designed. As local SDCs are produced for
each KL-cut, the physical design of the individual KL-cuts can be done locally

Fig. 4.25 Logic synthesis of logic computation KL-cuts. Notice that the content of the logic KL-
cuts has changed with respect to Fig. 4.23
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Fig. 4.26 Physical design of logic computation KL-cuts. Notice that the KL-cuts were locally
placed and routed

according to the associated SDC files. This consists in placing and routing the cells
that compose the KL-cut, as shown in Fig. 4.26. This operation is local by nature,
as the KL-cuts are clusters of logic that are placed inside the physical boundaries of
the KL-cut, in a very compact way. The internal wires are, by consequence, routed
with short wires. These are either front-end-of-line (FEOL) or MEOL wires that do
not compete with global signal distribution routing resources. This way, long wires
(and large capacitances) are not introduced to modify assumption previously made,
resulting in a convergent flow.

6.9 Considerations on Timing Closure, Sinal Distribution,
and Logic Computation

During the logic and physical design process of the signal distribution cuts and the
logic KL-cuts, the local SDC specifications are produced and followed to guide the
synthesis, such that the global SDC constraints are respected, as previously shown
in Fig. 4.24. All signal distribution cuts are physically designed before logic cuts,
allowing to update the design constraints for signal distribution cuts to reflect the
final design instead of initial specification. This idea is illustrated in Fig. 4.27. Slack
can be recomputed and propagated to modify design constraints of neighbor logic
KL-cuts.
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4-5-Cut 1-7-Cut 1-13-Cut

global SDC

partial SDC partial SDC partial SDC partial SDC

3-4-Cut

Fig. 4.27 Timing budget: as signal distribution cuts are physically designed first, their associated
SDCs can be modified to accurately reflect the effect of long wires. At this moment the topology
of the long wires is known and frozen for the remainder of the flow

After the (global and partial) design constraints are updated, the synthesis of
logic KL-cuts is performed. Timing closure can be achieved by applying highly
Boolean methods [13, 29] to reorganize the local structure of logic KL-cuts. A
very positive aspect of the proposed methodology is that the logic inside KL-cuts
clusters have their nodes placed densely, using short MEOL/FEOL wires, as shown
in Fig. 4.28. This way, results will not be affected due to the insertion of long BEOL
wires, as these were defined and frozen during the synthesis of signal distribution
cuts (Fig. 4.27). This way, the power of logic restructuring using Boolean methods
can be unleashed without the fear that long wires introduced later will invalidate
assumptions made during logic synthesis.

The use of partial SDCs for different types of cuts is also very important and
helpful for design diagnosis. Problems with design constraints in logic KL-cuts will
be corrected with logic restructuring techniques. Problems with design constraints
in signal distribution KL-cuts will be corrected with signal distribution techniques.
This is a paradigm shift, allowing to achieve a better integration, as the flow is
divided into signal distribution and signal computation. As a consequence, both
signal distribution and signal computation can benefit from tasks pertaining to
logic synthesis and physical design. This way, the emphasis is shifted from what
is logic synthesis and what is physical design. The focus is shifted to performing
logic synthesis and physical design of signal distribution circuits before performing
logic synthesis and physical design of logic computation circuits. The question is
not what tasks of Sect. 4 belong to logic synthesis or to physical design. The new
question is how these tasks can help with the synthesis of signal distribution 1L-cuts
and with the synthesis of logic KL-cuts.

Signal distribution is done mainly through sparse trees of inverters and buffers
routed with BEOL/MEOL wires. Signal distribution tasks include inverter/buffer
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4-5-Cut 1-7-Cut 3-4-Cut 1-13-Cut

global SDC

partial SDC partial SDC partial SDC partial SDC

Fig. 4.28 Timing budget: the physical synthesis of KL-cuts is made only after the topology of
long wires was already computed

sizing (Sect. 4.1), inverter/buffer Vt swapping (Sect. 4.2), inverter/buffer movement
(Sect. 4.3), layer assignment (Sect. 4.4), buffering long nets (Sect. 4.5), buffer dele-
tion (Sect. 4.6), buffering nets to reduce fanout (Sect. 4.7), inverter/buffer cloning
(Sect. 4.9), and balancing inverter/buffer trees (similar to Sect. 4.10). Notice that
these tasks do not need to be performed individually, but they provide the type of
change that can impact positively the signal distribution circuitry.

Logic KL-cuts will be implemented as densely placed groups of interconnected
cells using mainly short MEOL/FEOL wires. The synthesis of logic KL-cuts
include gate sizing (Sect. 4.1), Vt swapping (Sect. 4.2), buffering nets to reduce
fanout (Sect. 4.7), pin swapping (Sect. 4.8), cloning (Sect. 4.9), balancing logic
trees (Sect. 4.10), compostion/decomposition (Sect. 4.11), MUX decomposition
(Sect. 4.12), and inverter absorption (Sect. 4.13). Notice that these tasks do not need
to be performed individually, but they provide the type of change that can impact
positively the logic KL-cut rewriting. Highly Boolean methods [13, 29] can also be
applied to reorganize the local structure of logic KL-cuts.

7 Conclusion

We proposed an innovative flow for designing digital integrated circuits. This flow
can bring technology information earlier in the design cycle. A unique feature of the
proposed flow is that long global wires are defined first and have the topology frozen
to respect global timing. With long wires defined, the local clusters of logic are
synthesized. During the process, partial design constraints are produced (updated)
and followed to guide the synthesis, such that the global design constraints are
respected. This is a paradigm shift to a VLSI design flow based on the concepts
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of signal distribution and logic computation. The proposed flow allows the power
of logic restructuring using Boolean methods to be unleashed without the fear that
long wires introduced later during physical design would invalidate assumptions
made during logic synthesis.
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Chapter 5
Identifying Transparent Logic in Gate-Level
Circuits

Yu-Yun Dai and Robert K. Brayton

1 Introduction

In hardware, control logic regulates the data flow and dictates circuit functionalities.
A logic that simply moves data from one part of a circuit to another without
modifying it can be referred to as transparent. Another category transforms data
by some word-level operator, e.g. a bit-vector operator defined in Verilog. A third
category, control, determines which data is moved and when, or which operation is
applied and when. Efficient recognition of such logic can benefit circuit verification,
e.g. [4] as a guide to abstraction. To identify word-level operators in a gate-level
circuit, it is crucial to find words and locate the boundaries (inputs/outputs) of
arithmetic operators [8].

The basic example of transparent logic is a multiplexer (MUX) structure, which
selects from several data signals and forwards it unaltered towards the outputs.
Identification of MUXes can be performed over gate-level circuits very quickly
using structural matching, but it can be unreliable, especially if logic synthesis has
been applied.

In this paper, we focus on functional approaches which do not depend on the
actual gate-level structure of the circuit. These can augment structure methods and
provide a much more reliable technique as we show in the experiments.

Functional methods, which rely only on functional dependencies, have been
generally used to augment structural approaches. Examples are:

– Li and Subramanyan et al. [6, 10] identified internal words based on bitslice
aggregation (functional approach) and shapehashing (structural approach). The
candidate words found were used as boundaries of operators for further recogni-
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tion. However, they did not recognize found boundaries as inputs or outputs of
operators before identifying functionality.

– Li et al. [6, 7] identified functional operators in gate-level circuits, based on
an existing library of blocks. Word-level information at the primary inputs was
assumed available, but in many applications this information is not known.

– Sterin et al. [8] extracted word-level operators functionally, given a library of
operators and a slice of logic containing inputs and outputs of such operators.
The possible location and ordering of the inputs and outputs of an operator and
word-level information were not required. However, the slice of logic cannot
include transparent logic, based on the algorithm.

We present methods to identify functional transparent logic. This is inherited
from functional isomorphism. Using this approach, an algorithm to identify words,
word-level operator boundaries, and control logic in gate-level circuits is proposed
and applied to a variety of test cases. Indeed, we can rewrite a gate-level circuits
hierarchically (i.e., hierarchical Verilog format) with the recognized logic as sub-
circuits. Once operator boundaries are (roughly) located, techniques like [8] can be
used to identify the precise location of the operators and their functionalities.

The chapter is organized as follows. Section 2 introduces functional isomor-
phism. In Sect. 3, we describe the definition and propagation of transparent
logic. Proposed algorithms for identifying transparent logic are given in Sect. 4.
Some practical challenges of identifying transparent logic are discussed in Sect. 5.
Experimental results are shown in Sect. 6, while Sect. 7 concludes this chapter.

2 Overview

Roughly, a transparent path in a circuit has width n and a set of controls fsig, which
when evaluated appropriately at a minterm si D msi , moves a data-word (width
n) from the beginning of the path to the end. Such paths can fork and join in the
circuit, and can begin and end at a set of inputs, outputs, or internal signals. A
path is maximal if there is no transparent path that can extend it. The terminals of
maximal transparent paths are of interest because they likely delineate the input or
output of an operator, e.g. an arithmetic function.

A sink terminal can have many source terminals. Each signal in a sink terminal
is a Boolean function of (a) data signals Dk D fd

j
kg in the source terminals and

(b) the set of associated controls fsig of transparent segments of any path from
source to sink. Such a set of functions at a sink forms an NPN equivalence class
(or equivalently an NPN isomorphism class). Each sink bit function typically (with
some exceptions) looks like fk D

P
j2Dk

.
Q

i2path msi/dj
k. The isomorphism between

the inputs of any two signals fp and fq (where p; q 2 Œ1; n�) in the sink terminal
is dj

p $ dj
q, i.e. different bit positions in the same data word are isomorphically

mapped to each other, while control signals si are isomorphically mapped into
themselves. Each coefficient .

Q
i2path msi/ is the predicate of the control signals
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under which a path from source dj
k to the sink fk becomes transparent. The predicates

are disjoint. It is possible that some bits of a terminal have been inverted, hence NPN
equivalence is considered in the subsequent discussions.

Thus, the outputs of a transparent path are a subset of an NPN isomorphism class.
The isomorphism helps distinguish between different data-words by factoring out
common predicates .

Q
i2path msi/ in the representative function of the equivalence

class.

2.1 NPN Isomorphism

Two graphs, G1.V1;E1/ and G2.V2;E2/, are isomorphic, if there exists a bijective
mapping, M12: V1 ! V2, such that any two vertices u and v are adjacent in G1, if
and only if M12.u/ and M12 .v/ are adjacent in G2 [1]. Two circuits, C1 and C2, are
isomorphic to each other if their logic gates and connections form two isomorphic
graphs, while any gate g of C1 and the mapped gate M12.g/ in C2 are the same type.
The relation between C1 and C2 is called structural isomorphism, which has been
applied to reverse engineering [5].

In contrast, functional isomorphism is a relation between two signals in a circuit.
A signal f in a circuit, supported by a set of other signals, Sf , is a Boolean function
of these inputs: f W BjSf j ! B, for B D f0; 1g.

In the following sections, for a Boolean variable xi with its polarity pi, .xi/
pi

represents the function: pi D 0! .xi/
pi � xi and pi D 1! .xi/

pi � inv.xi/.

Definition 1 A pair of Boolean functions f .x1; : : : xn/ and g.y1; : : : ; yn/ are NPN
isomorphic,1 if there exists a permutation � of size n and polarities pout and
fp1; : : : ; png 2 Bn such that

f .x1; : : : ; xn/ D gpout.xp1
�.1/; : : : ; x

pn
�.n// (5.1)

i.e., g can be made equivalent to f by selectively negating inputs, permuting inputs,
and negating the output. The implied isomorphic mapping between the supports of g
and f is fyi; x

pi
�.i/g and pi is said to be the relative polarity between inputs yi and x�.i/.

A set of signals in a circuit, in which every pair is functionally NPN isomorphic
is called an NPN isomorphism class.

1Or Negation-Permutation-Negation (NPN) equivalent.
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2.2 Composition of NPN Isomorphism

Although improved methods for computing NPN equivalence can be found in
Soekin et al. [9], this calculation can still be time-consuming. This effort can be
reduced immensely by proving NPN isomorphism on smaller logic blocks and
composing proved classes to obtain larger ones. Larger classes help extend paths of
transparency (discussed in Sect. 3) in a circuit and to more reliably find transparency
boundaries, and hence the input/output boundaries of word-level operators.

The following discussion details when compositions lead to larger NPN isomor-
phisms.

Definition 2 (Polar Consistency) Let .f .s/; g.t// be a pair of NPN isomorphic
functions with sets of supports s D fsig and t D ftjg, respectively. Suppose each
pair of mapped input supports si $ tj are NPN isomorphic functions, i.e. si.x/
is NPN isomorphic to tj.y/. Let pij

out be the relative output polarity between si.x/
and tj.y/, and pij be the relative input polarity between inputs si and tj in the NPN
isomorphism between f .s/ and g.t/. The compositions f .s.x// and g.t.y// are polar
consistent, if pi�.i/

out D pi�.i/, where � is the permutation in the isomorphism mapping
of .f .s/; g.t//.

Theorem 1 The compositions of (f .s.x//, g.t.y//) are polar consistent if and only
if f .s.x// and g.t.y// are NPN isomorphic.

3 Transparent Logic

As already stated, the identification of maximal transparent logic can be used to
identify input/output boundaries of arithmetic operators.

3.1 Transparent Words

Intuitively, a transparent word is a set of signals, fwkg, with supports, fSkg,
where under some evaluation of \kSk (common control), fwkg is equivalent to a
subset (data-word) of [kSk. In other words, the control evaluation makes the word
transparent from some input data-word.

Example An m-bit word from a set of 2-to-1 multiplexers (MUX) controlled by the
same selector signal s,

CŒm � 1 W 0� D s‹AŒm � 1 W 0� W BŒm � 1 W 0�; (5.2)
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comprises a transparent word C, where 8j 2 Œ0;m � 1�, .CŒj� D sAŒj�C s0BŒj�/. For
this case, word C is transparent from word A or word B, depending on the value
assigned to s.

Definition 3 Functions W D fwkjk 2 Œ1;m�g of an NPN isomorphism class
comprise an m-bit transparent word, if:

1. Each function wk W BSk
! B, has support Sk D .Control;Datak/, i.e. Control

is the set of common signals, and each bit of Control is isomorphically mapped
into itself.

2. The formula (3) is True, where mc is a minterm of Control,� denotes functional
equivalence, and wk

mc
denotes the co-factor of function wk.Control;Datak/ with

respect to mc.

.9mc8k9dk
i 2Datak9pk

i
.wk

mc
.Datak/ � .dk

i /
pk

i //: (5.3)

3. For any .wx;wy/ 2 W, the associated isomorphic support mapping Mxy, satisfies
Mxy.Datax/ D Datay.

Thus a transparent word W is conditionally (by mc) equivalent to an input data
word Œ.d1i /

p1i ; : : : ; .dm
i /

pm
i �. Based on the above definition, the vector of conditionally

equivalent data support bits that have a common condition mc, Di D fd1i ; : : : ; d
m
i g is

called an input word.
Given a transparent word, W D fwkg, with the corresponding support partitions

f.Control;Datak/g, the entire support set of W can be partitioned into Control and
DataW D

Si Di. The definition of transparent words can be restated as follows:

Definition 4 A transparent word W is a set of NPN isomorphism functions
supported by control Control and data DataW D

Si Di, such that the following
formula is True:

8Di2DataW9mc9Pi.Wmc.DataW/ � .Di/
Pi/; (5.4)

where Pi set of polarity bits for Di.
Although, for an input word Di, there could be multiple minterms of Control

satisfying Formula (4), the assignments of mc 2 Control for different Dis are
disjoint.

Example Consider Eq. (5.2): for each CŒj�, the support set fs;AŒj�;BŒj�g can be
partitioned into Dataj D fAŒj�;BŒj�g and Control D fsg, such that .s D 1/ )

.CŒj� D AŒj�/ and .s D 0/ ) .CŒj� D BŒj�/. Hence a common (control)
assignment applied to all bits of the transparent word makes them transparent from
the corresponding supports simultaneously. The supports of C can be partitioned
into DataC � fAŒm � 1 W 0�;BŒm � 1; 0�g, and Control � fsg.

Since negations of some bits of transparent words might occur during synthesis,
it seems reasonable to consider the logic still as “transparent.” Note that in the
example: CŒj� D sAŒj� C s0BŒj� the negation of bit CŒj� can be done by negating
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the data inputs, AŒj� and BŒj�:

inv.CŒj�/ D inv.sAŒj�C s0BŒj�/

D s inv.AŒj�/C s0inv.BŒj�/:
(5.5)

but C (with some phase changes) can still be considered transparent from A and B
because the assignments to the control bits are unchanged.

In Sects. 3.2 and 3.3, as we compose transparent sections to form a larger
transparent path, we will need to resolve cases where only some bits of a transparent
word are negated. However, for composing transparencies to find larger ones, it is
required that the polarities of the inputs and outputs are consistent. This can be
done by negating some of the inputs of the path (using NPN isomorphism) to get a
compatible polarity at the output that feeds into another transparent word.

Theorem 2 Given a transparent word W, the negation of any output bit wk can be
done by negating the corresponding input data support bits, without changing any
control assignment.

The upshot is that when finding another transparent section of logic and
composing it to extend a transparent path, this can always be done simply by
negating the inputs to get compatible polarities at the point of composition.

3.2 Composition of Transparency

Similar to the composition of NPN isomorphism, larger transparent functions are
frequently created by composing smaller transparent blocks.

Example In Fig. 5.1, word C is transparent from A and B under the control of s1,
while a second transparent block consists of word E, transparent from C and D under
the control of s2. Thus .s1 D 1; s2 D 1/! E � A, while .s1 D 0; s2 D 1/! E � B
i.e. transparency of E from A and B is obtained by composing of smaller transparent
blocks. If some bits of C are negated before feeding into the MUXes controlled by

Fig. 5.1 A transparent word
can be implemented by
composing smaller
transparent words

1

0

1

0

s1

s2
A

B
C

D

E
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s2, the composition can be done by pushing the negation to the corresponding bits
of A and B to maintain the polar consistency.

Definition 5 Let W = fWk.X/jk D Œ1; n�g be a set of n m-bit transparent words, and
let Y = fyjjj D Œ1;m�g be another transparent word with support DataY D W

S
V

and ControlY . Suppose each input word of Y is exactly one transparent word in W
or one word in V . The set of compositions,

Z D fzjg D fyj.W.X/;V;ControlY/g (5.6)

form a compound word, and are denoted as Z D Y ıW.

Theorem 3 Assume Y is a transparent word and W is a set of transparent words.
Let f˛k

i g be the set of minterms of Controlk, which enable Wk to be transparent from
an input word xk

i 2 Datak, and fˇkg be the set of minterms of ControlY for (Y � Wk).
Using the notation:

ControlZ D ControlY
[
Œ[kControlk�;

DataZ D V
[
Œ[kDatak�;

a compound word, Z � Y ıW is a transparent word controlled by ControlZ if

8k8i.f
Ǫk
i g \ f

Ǒkg ¤ ;/ (5.7)

is True, where f Ǫki g and f Ǒkg are f˛k
i g and fˇkg extended to cubes of the larger space

of ControlZ, respectively.

Proof

1. Based on Theorems 1 and 2, Z can be an NPN isomorphism class by flipping
the polarities of Wkwhenever its output polarity is not consistent with the input
polarities of yk.

2. Because Y is a transparent word, for each input word in V , there must exist an
assignment of ControlY to enable the transparency from V.

3. Conditions satisfying Formula (5.7) imply that for each input word xk
i of Wk,

there exists an assignment of ControlZ such that a) Wk is transparent from xk
i , b)

Y is transparent from Wk, and c) Y is transparent from xk
i . Therefore, Z � Y ıW

is a transparent word with (ControlZ ;DataZ) as control and data supports.

3.3 Propagation of Transparency

Example Figure 5.2 illustrates how a longer transparency can be composed from
nontransparent sections of logic. C is transparent from A when s1 D 1, and D is
transparent from B when s2 D 1, but the logic block from C and D to E is not
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Fig. 5.2 A longer transparent
word may be composed of
smaller transparent words and
an NPN isomorphism class

A

B

n{s  }

n{s  }

C

D

n

n

n

n

n

n

E1

2

n

transparent (there is no common control support for each bit of E). However, E
is transparent from A when .s1 D 1; s2 D 0/, while .s1 D 0; s2 D 1/ makes E
transparent from B.

When a transparent function block is composed of non-transparent sections, it is
called propagation of transparency. The conditions when this can happen are stated
in the following.

Definition 6 (Proceeding Word) Let W be a set of n m-bit transparent words, and
let Y.W/ D fyj.W/g be an NPN isomorphism class. Suppose each yj is supported
by exactly one bit of each Wk, and the isomorphically mapped supports of yj are
always from the same word of W.

Theorem 4 Assume Y and W are as in Definition 6 and the supports of Wk are
supp.Wk/ D .Controlk;Datak/. Let f˛k

i g be the set of minterms of Controlk which
cause .Wk � xk

i /, and fˇkg be minterms of [kControlk which cause .Y � Wk/.
Using ControlZ D [kControlk; and DataZ D [kDatak, a proceeding word, Z �
Y ıW, is a transparent word controlled by ControlZ if

8k8i.f Ǫ
k
i g \ fˇ

kg ¤ ;/; (5.8)

where f Ǫ ki g refers to f˛k
i g extended to cubes of ControlZ.

Proof

1. Similar to the proof of Theorem 3, Z can be an NPN isomorphism class by
flipping the polarities of Wk if needed.

2. For each input word xk
i in DataZ , Formula (5.8) implies that there exists an

assignment of ControlZ , such that Wk � xk
i , Y � Wk, and thus, Y � xk

i ,
implying Z � Y ıW is a transparent word with (ControlZ ;DataZ) as control
and data supports.

Example In Fig. 5.2, W D .C;D/ and f Ǫ k1g D s1s2Cs1s2 makes C transparent from
A, while f Ǫ k2g D s1s2 C s1s2 makes D transparent from B. fˇkg D s1s2 (s1s2) causes
E � C (E � D). Note that f Ǫ k1g \ fˇ

kg D s1s2 ¤ ; and f Ǫ k2g \ fˇ
kg D s1s2 ¤ ;.

Thus the conditions for propagation of transparency are met, and therefore E is
transparent from A and B.
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4 Transparency Identification

The functional approach proposed for transparency identification relies only on
dependencies among signals. It can be used to complement a structural approach,
leading to a method that is still efficient but with more reliable results.

In general, we want to identify transparent logic anywhere it occurs in the
circuit—from inputs to internal words (forward), from internal words to outputs
(backward), and between internal words. One general problem is formulated
and solved in this chapter: given a combinational circuit, find (1) all (disjoint)
transparent logic blocks, specified by corresponding support and output boundaries,
(2) transparent words on each output boundary, (3) input words on each support
boundary, and (4) assignments of Control for moving each input word to the output
transparent word.

The proposed algorithm can be decomposed into four parts: (1) collect candidate
controls, (2) find transparent words controlled by one signal, (3) find proceeding
words, and (4) rearrange proved words.

4.1 Find Transparency with Given Controls

A sub-process, findTransparency(. . . ), is developed to identify all transparent words
controlled by a set of signals. Figure 5.3 shows the proposed algorithm for this sub-
process.

In Line 1, the function enumerateControls(. . . ) enumerates all possible minterms
for the input control set. For each minterm, the function applyMinterm(. . . ) finds
the co-factor of the input circuit. It returns a set of conditionally transparent paths,
Candidates, where each sink signal is functionally equivalent to the corresponding
source. The output of each transparent path must be supported by all signals in

Algorithm: Find Transparency
Input:

Circuit,Controls
Output:

TransparentWords = (Inputs, Outputs, Minterms)

. Minterms = enumerateControls(Controls)
. For each minterm in Minterms
. Candidates = applyMinterm (minterm,Circuit)
. TransparentWords = analyzeWords(Candidates)
. splitWords(TransparentWords)
. Return TransparentWords

Fig. 5.3 The sub-process for identifying transparent words controlled by a set of signals
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Controls. Note that a sink signal can be driven by multiple transparent paths
controlled by different minterms of the same set of controls.

In Line 4, the function analyzeWords(. . . ) examines all candidate paths and
merges paths with the same sink signal. Then this function partitions those sink
signals into several transparent words. To match the requirement of NPN isomor-
phism, in each transparent word, all output signals are controlled by an identical set
of minterms, and the depths (number of signals along each path, excluding sources)
of all transparent paths are the same. Also, if some input bits are primary inputs,
while the other mapped bits (under the same set of minterms) are internal signals,
they are classified into separate words.

The function splitWords(. . . ) partitions a word if some output bits of it are
primary outputs, while others are internal signals.

4.2 Overall Algorithm Flow

Based on the function in Figs. 5.3 and 5.4 outlines the steps for finding all
transparent words and identifying words on support or output boundaries for an
input circuit.

Algorithm: Functional Approach
Input:

Circuit
Output:

TransparentBlocks = (Outputs, Supports, Words)

. ProvedWords= 0/ 
. CandidateControls = findHighFanoutSignals (Circuit)
. For each control in CandidateControls
. NewWords = findTransparency(Circuit,{control})
. ProvedWords    = NewWords

⊃

. For each word in ProvedWords

. If notFullyTransparent (word)

. ControlSets = findPossibleCombinations word)

. For each controlSet in ControlSets
. If newCombination(controlSet)
. NewWords = findTransparency(Circuit,controlSet)
. extend(ProvedWords, NewWords)
. cleanMultiplyDrivenWords(ProvedWords)
. partitionWords(ProvedWords)
. disposeWords(ProvedWords)
. TransparentBlocks = analyzeBlock (ProvedWords)
. Return TransparentBlocks

Fig. 5.4 The proposed algorithm for identifying all transparent words in a gate-level circuit
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To find control candidates, the function findHighFanoutSignals(. . . ) in Line 2
uses the fact that all bits of a transparent word must be controlled by the same
condition. It collects all signals with more than three immediate fanouts.

Lines 3–5 find all transparent words controlled by a single signal, including the
standard 2-to-1 MUXes and depth-one words.

To recognize proceeding words, Lines 8 to 12 work on words which so far are
not fully feeding into transparent paths. For each candidate word, the function find-
PossibleCombination(. . . ) collects its depth-one fanouts and finds other transparent
words which also support those fanouts. If the signal dependencies of supporting
words and fanouts satisfy Definition 6, they may result proceeding words. Note that
if the input circuit is an and-inverter graph (AIG), when only depth-one fanouts are
considered, each proceeding word can only come from two proved words.

Then the union of the control sets of the two words is a candidate control set.
The algorithm executes findTransparency(. . . ) if this control set has never been
considered before. The newly found words are appended at the end of ProvedWords
for being examined by the same flow later.

Lines 13 and 14 rearrange all proved transparent words to achieve a legal word
dependency graph, in which multiply-driven signals are absent, and all bits of one
word are driven by the same set of words. The function cleanMultiplyDriven-
Words(. . . ) examines every signal driven by more than one transparent path and
assigns it to the most preferred word. This process favors wider words first, and
then deeper ones. The function partitionWords(. . . ) partitions each word into smaller
words if some bits are supported by different input words. Also, outputs driving
different sets of words are grouped into different words.

The function disposeWords(. . . ) discards transparent words with bad properties;
it excludes all words with fewer than 4 bits after the above processes; it can also
discard some depth-one words if they are suspected as bad transparent words—
more details are discussed in Sect. 5.2.

Finally, the function analyzeBlocks(. . . ) finds (1) input words on support bound-
aries which are not directly supported by transparent signals, and (2) output
boundaries where words are not fully feeding into transparent signals.

4.3 Running Examples

The following three examples demonstrate how the proposed algorithm works on
various cases.

Example 1 Figure 5.5 shows a compound word composed of three depth-one
transparent words. First, high-fanout signals, s1, s2, and s3, are collected as control
candidates. Then depth-one transparent words, s1 ! .B � A/, s2 ! .C � B/
and s3 ! .D � C/ are proved by Lines 3–5 in Fig. 5.4. Lines 7–14 are skipped
because all words found above are either fully connected to another word or support
nothing. The function disposeWords(. . . ) might drop some depth-one words in this
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Fig. 5.5 A compound word
composed of four depth-one
words
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Fig. 5.6 An example with proceeding words

circuit when certain strategies are applied. See Sect. 5.2 for a further discussion. If
no word gets dropped, the whole circuit is reported as one transparent logic block,
where A and D are input and output boundaries, respectively.

Example 2 Figure 5.6 demonstrates how proceeding words can be found by the
proposed algorithm. Similarly, s1, s2, s3, and s4 are recognized as control candidates.
Then s1 ! .E � A/, s2 ! .F � B/, s3 ! .H � C/ and s4 ! .J � D/ are proved
as depth-one transparent words.

Starting from E, findPossibleCombinations(. . . ) finds that the combination of E,
F, and G satisfies the definition of a proceeding word, so fs1; s2g is a new combi-
nation of controls. According to this control set, the function findTransparency(. . . )
returns s1s0

2 ! .G � A/ and s0
1s2 ! .G � B/. Following the similar procedure,

I is proved as transparent from A (s1s0
2s

0
3), B (s0

1s2s
0
3) and C (s0

1s
0
2s3). Finally I and

J are associated together and K is transparent from A (s1s0
2s

0
3s

0
4), B (s0

1s2s
0
3s

0
4), C

(s0
1s

0
2s3s

0
4), and D (s0

1s
0
2s

0
3s4). The only word on the output boundary, K, is a depth-

four transparent word supported by A, B, C, and D.
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Fig. 5.7 An example with
disjoint transparent blocks
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Example 3 Consider Fig. 5.7 as the input circuit. First, s1 is recognized as a high-
fanout signal. Then applyMinterm(. . . ) in findTransparency(. . . ) (Fig. 5.3) finds
s1 ! .fE;Gg � fA;Fg/ and s0

1 ! .fE;Gg � fB;Dg/. Then analyzeWords(. . . )
in Fig. 5.7 merges the two sets of paths into one word, fE;Gg, and then partitions
the word into .E � s1AC s0

1B/ and .G � s1FC s0
1D/, because sources of E (bits of

A) are primary inputs, while those of G (bits of F) are internal signals. There is no
more transparent word in this circuit.

There are two disjoint transparent blocks, because all paths through the adder are
not transparent. For the block with output E, A and B are reported as support words,
while F and D are support words for the other block with G as the output.

5 Practical Challenges

Finding transparent words and performing perfect reverse engineering for real
circuits can be challenging, but the proposed algorithm provides more possibilities
to address issues that cannot be resolved by structural approaches.

5.1 Generalized Transparent Words

Often a word is transparent from words with different bitwidths—for example,

CŒm � 1 W 0� D s‹AŒm � 2 W 0� W BŒm � 1 W 0�: (5.9)

The most significant bit of C, CŒm � 1� D s0BŒm � 1�, is not NPN isomorphic to
other bits of C. Hence this word is partitioned into one word with m�1 bits and one
with 1 bit by the proposed algorithm.

Also, it is possible that control signals can be part of input data words, i.e.

CŒm � 1 W 0� D s‹AŒm � 1 W 0� W BŒm � 1 W 0�; (5.10)



116 Y.-Y. Dai and R.K. Brayton

where s � AŒm � 1�. That is, CŒm � 1� D sAŒm � 1� C s0BŒm � 1� D AŒm � 1� C
BŒm � 1�. Similarly, CŒm � 1� is different from other bits of C. These excluded bits
are discarded by disposeWords(. . . ) because of bit-width differences, and then the
transparent boundaries are imperfect.

The above cases can be handled by modifying analyzeWords(. . . ) in Fig. 5.3.
For both the above cases, when s is 1, CŒm � 1� is constant, which is excluded
from Candidates. When s is 0, CŒm � 1� is transparent from BŒm � 1�, through a
path with depth one, while other bits of C are through paths of depth two. Hence,
analyzeWords(. . . ) can merge all bits of C into one word even though some bits are
controlled by only one minterm, and their depths are different. In other words, we
can relax the requirement of NPN isomorphism to achieve generalized transparent
words.

However, it is possible that the bits with different depths are indeed different
words, so a practical reverse engineering process should consider both cases and
use other information to revise the word boundary.

5.2 Ambiguity of Transparency

Some data signals are recognized as control candidates because they drive more than
three fanouts. For example, a word-level multiplier can be synthesized as a set of
adders among internal words,

CŒ2m � 1 W 0� D AŒm � 1 W 0� � BŒm � 1 W 0�

D AŒm � 1 W 0�BŒ0�C AŒm � 1 W 0�BŒ1� << 1

C � � � C AŒm � 1 W 0�BŒm � 1� << .m � 1/:

(5.11)

These words are depth-one transparent words from one input word of the multiplier,
controlled by bits of the other input word. These depth-one transparent words can
be recognized and excluded by disposeWords(. . . ), considering they are directly
feeding into non-transparent paths.

However, it is excessive to discard all depth-one transparent words which do not
support other transparent words. Consider the example in Fig. 5.5, bits of D are sinks
of transparent paths, while they do not support other transparent words and can be
discarded.

Also, if a word (a set of MUXes) is switching between one constant word and
one variable, these MUXes can be synthesized as AND or OR gates, which comprise
depth-one transparent words.

Moreover, compared to the flow in Fig. 5.4, the resulting words and boundaries
are different when the function disposeWords(. . . ) (discarding some depth-one
words) executes before partitionWords(. . . ).
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Fig. 5.8 A transparent block
which is not resulted by
compositions of NPN
isomorphism classes

A[0]

s1 s2 s3

A[1]
s2

s1

s3

B[0]

B[1]
A[2]

s2 s1 s3

A[3]
s1

s3

B[2]

B[3]s2

To resolve this issue for reverse engineering, it is preferable to run the proposed
algorithm with different settings of disposeWords(. . . ), and combine the information
of recognized operators to decide suitable boundaries.

5.3 Limitations of Proposed Algorithms

The proposed algorithm only considers composition and propagation of trans-
parency, so it cannot recognize transparent blocks outside these categories.

Consider the circuit in Fig. 5.8. It is a transparent block because s1s2s3 ! .B �
A/, but it cannot be found by the proposed algorithm. The proposed algorithm will
find several depth-one transparent words controlled by s1, s2, and s3, but then signal
dependencies cannot satisfy the definition of proceeding words.

Note that this logic block still satisfies the definition of a transparent word, so it
can be recognized by finding NPN isomorphism functions and permuting supports.
However, searching for all NPN isomorphism classes can be time-consuming,
especially if finding and revising ideal support and output boundaries is done.

In real benchmarks, these types of cases do not seem to happen a lot, so it can be
omitted by the proposed algorithm without much loss.

6 Experimental Results

The proposed algorithms were implemented in ABC [2]. All experiments were
performed on a 16-core 2.60 GHz Intel(R) Xeon(R) CPU with no time limit. All
cases were processed as AIGs. Sequential circuits were converted into combina-
tional designs by replacing flip-flops inputs and outputs with primary outputs and
inputs, respectively.
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As a reference for the functional approach, we implemented a purely structural
approach: (1) structural matching is used to locate all 2-to-1 MUXes in the AIGs,
(2) signals with the same control are grouped into one word, and these connected
words are collected into larger transparent blocks, and (3) words are partitioned into
sub-words if they are supported by different input words or drive different output
words.

We wanted to compare the efficiency and effectiveness of the structural algo-
rithms versus our functional algorithms applied to highly transparent cases. To
select these, the proposed functional algorithm was applied to all 230 cases of the
single-output track in the Hardware Model Checking Competition 2014 [3] after
their conversion to combinational circuits. For each case, some POs were proved
conditionally equivalent to some primary inputs. We computed the proportion of
those POs to all POs and ran experiments on the top 10 cases with the highest
percentages of transparent POs. Among the 230 cases, there are 20 cases with more
than 50% transparent POs, while another 38 cases have more than 25% transparent
POs. Table 5.1 shows the statistics of the selected cases after they were converted
to combinational circuits. The last column of Table 5.1 indicates the percentages of
transparent POs over all POs. The 6sxxx cases are industrial problems from IBM and
the beem examples come from different applications areas like protocols, planning,
scheduling, communication, or puzzles.

Table 5.1 Statistics of the selected benchmarks from HWMCC’14 [3]

Case PI PO AND Trans. PO
name # # # %

6s195.aig 1344 1258 8046 87:1

beemfrogs1b1.aig 323 159 8493 86:0

6s171.aig 1357 1263 8074 84:6

beemloyd3b1.aig 237 118 3970 82:1

6s282b01.aig 1977 1934 10;264 81:2

6s384rb024.aig 22;367 14;953 47;933 79:0

6s206rb103.aig 37;847 28;644 103;375 71:4

6s302rb09.aig 36;962 27;777 100;571 70:3

6s348b53.aig 15;797 15;561 89;567 70:1

beemldelec4b1.aig 2559 1215 34;252 67:5
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6.1 Comparison Between Functional and Structural
Approaches

Table 5.2 shows the comparisons between the structural approach and the proposed
method. Column 2 indicates the total number of signals (AIG nodes or primary
inputs) that were classified as belonging to words. Columns 3–8 (labeled Structural
Approach) give the statistics of the transparencies found using the reference struc-
tural approach. Column 3 lists the total number of structural MUXes recognized.
Column 4 lists the number of AIG nodes plus inputs covered by all the transparent
logic blocks found; Column 5 gives the (minimum, maximum) widths (the number
of MUXes grouped together as a word) of found and partitioned words, and Column
6 shows the (minimum, maximum) depths of transparent words on boundaries. The
depth of each word is the total number of AIG nodes between itself and the primary
inputs, where one MUX is counted as depth 2. Column 7 (labeled Forward) lists the
total number of signals which are in the transparent block where all input words are
primary inputs. Column 8 shows the run-time of the overall structural approach.
Here we only identify 2-to-1 MUXes and MUXes with negation on outputs or
inputs. We omit counting words (after partitioning) with less than 4 bits. Columns 9–
13 (labeled Proposed Functional Approach) show similar statistics for the proposed
algorithm. Here we include all depth-one transparent words when counting signals
or depths of transparent blocks.

Observation of Structural Results Table 5.2 shows that most benchmarks contain
wide transparent words. The runtimes show that this approach is very efficient as
expected.

Although these cases have high percentages of transparent POs, for some cases
(beemldelec4b1.aig) the structural approach cannot find any transparent words
reachable from primary inputs. Many MUXes are recognized but there are several
reasons why the structural approach misses many transparent words:

1. Structural matching only considers standard 2-to-1 multiplexers, while there are
other types of transparent functions.

2. Many of the identified MUXes are controlled by different selection signals,
and thus lead to words of less than 4 bits, which are excluded in the analysis.
Moreover, some words are partitioned into small words because their output or
input dependencies are different.

3. Forward transparent words are required to be reachable from primary inputs
through fully transparent paths. If a transparent word originates from the output
word of an arithmetic operator (e.g., words G and F in Fig. 5.7) or a depth-one
transparent word, it would not be reported, yet many MUXes would be involved
in such a transparency.

Although quite fast, this approach itself is not enough for finding many of the whole
transparent blocks that exist in these benchmarks as shown in the columns which
show the forward and total signals found by the functional approaches.
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Comparing Functional and Structural Approaches Based on Table 5.2, we
observe the following:

1. According to the signals covered by transparent blocks, the proposed functional
approach can find more and larger transparent blocks. Note that for some cases
the differences are not huge, which leads to a conclusion that most transparent
logic in those cases are comprised by standard 2-to-1 MUXes.

2. The minimum and maximum widths of transparent words are different for the
structural and functional approaches.

3. For most cases, the proposed functional approach can find deeper transparent
paths, because the functional approach can find depth-one transparent words and
compose them into larger transparent blocks.

4. In general, the proposed algorithm can find many more transparent words
reachable from primary inputs. It might be that some transparent paths start
with MUXes between a constant integer and an input word, which cannot be
recognized by the structural approach. Therefore all transparent words supported
by that will not be reported as forward transparent words by the structural
approach.

5. Although the functional method takes more time than the structural approach, the
run times for the selected cases do not exceed 3 s. Hence the proposed algorithm
is efficient enough for many applications.

For real applications, the particular final usage of the found words will dictate a
suitable balance between performance and the number of proved words.

Even though some transparent words found by the functional approach may
be discarded when combined with other techniques for recognizing arithmetic
operators, it is better to have more candidates words for more refined reverse
engineering applications.

6.2 Experiments on Unrolled Circuits

Table 5.3 shows the experimental results of running the proposed algorithm on
circuits unrolled for two and three time frames. The columns are similar to those
in Table 5.2.

Observation of Unrolled Circuits Table 5.2 shows that, for each circuit, the
number of signals covered by transparent blocks grows as the number of time frames
increases. The changes of other statistics vary among the different circuits:

1. The maximal width of words remains the same for most of the cases, but
for some, the maximal width decreases after unrolling. The reason is, after
unrolling, more words are partitioned into smaller words because some bits
support different words in their fanout cones.

2. For many cases, the maximal depths of transparent blocks increase as the
numbers of time frames increases. These deeper paths indicate that some
transparent paths continue from the first time frame to the second, and some
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continue into the third time frame. If the maximal path is not connected to another
transparent path in the next time frame, the maximal depth remains the same.

3. The total number of signals in transparent blocks supported by primary inputs
(labeled Forward) increases for all circuits, but the growth rate is distinct for each
circuit. For some cases, many transparent POs are connected to other transparent
paths in the next time frame, so after unrolling, there are more internal transparent
words reachable from primary inputs.

The distinct statistics of transparent blocks found in different circuits show that
finding transparent logic may be important for understanding circuit properties, and
by finding as many as possible transparent blocks the proposed approach may be
very useful in providing useful information about a circuit.

7 Conclusions

This paper presented algorithms for finding transparent logic, which can be used to
highlight word-level information in gate-level circuits. A functional approach was
proposed to identify transparent logic in combinational circuits. Some challenges for
finding the most accurate boundaries for the transparencies were discussed. Exper-
imental results demonstrated that the proposed algorithms can be very effective in
extracting words as well as some control logic.

Future work will include integrating the proposed method with other reverse
engineering techniques that can identify word-level operators. Through iterations
between different approaches, word-level information and found boundaries can be
revised benefiting both finding more transparencies and identifying operators. A
final goal would be a framework for fully reverse engineering gate-level designs.
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Chapter 6
Automated Pipeline Transformations with Fluid
Pipelines

Rafael T. Possignolo, Elnaz Ebrahimi, Haven Skinner, and Jose Renau

1 Introduction

In digital design, cycle time and pipeline depth are set early due to their impact
on other design parameters. It takes numerous long iterations between design and
implementation, to meet a desired cycle time, making it challenging and costly to
meet the original specifications. Existing EDA tools allow automatic optimizations
such as gate sizing, retiming, and time borrowing, but for a synchronous system,
such transformations preserve cycle accuracy. Elastic Systems [8, 9, 21], an alter-
native to the fixed pipeline paradigm, are based on the assumption that system
correctness does not depend on latency (number of clock cycles) between two
events, but only on their order [4, 23]. Such paradigm allows for the insertion of new
stages later in the design time, when physical implications of micro-architectural
choices are known and the circuit timing characteristics are well understood, without
breaking the circuit correctness [4], thus improving the ability to meet timing
requirements.

Although inserting additional pipeline stages [2, 18] is possible in Elastic
Systems, this insertion is constrained by the presence of sequential loops,1 which
significantly reduces its applicability because complex circuits such as processors
include loops. Sequential loops are of interest because early approaches for Elastic
Systems always maintain the completion order of operation, due to the automated

1Cycles in the graph representing the connections between registers, not to be confused with
program loops.
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flow used to transform synchronous circuits into elastic. Thus, the addition of extra
pipeline stages inside sequential loops has been shown to degrade the overall system
throughput [4, 16]. Throughput losses can be mitigated [2] but the whole system
remains constrained by the throughput of the worst sequential loop, even when that
loop is not used.

In contrast, Out-of-Order (OoO) execution is omnipresent in modern digital
design and improves system throughput. Recently, Fluid Pipelines, a framework
that integrates OoO execution into Elastic Systems has been proposed [21, 22].
Fluid Pipelines enable unordered completion, by relying on designer annotations
in the code where ordering can be changed. Fluid Pipelines are a generalization of
Elastic Systems, since without user annotations, they behave like Elastic Systems.
User defined elasticity [3] is thought to improve design methodologies [23] since
it reduces the pressure on timing constraints and let logic designers focus on
functionality rather than physical implementation.

Fluid Pipelines reclaim the throughput losses from the automated conversion [21]
that is typical in Elastic Systems. The automated flow of Elastic Systems transforms
a sequential circuit to an elastic one by inserting special control operators: Fork and
Join. In short, Fork is used when the output of one stage forks to multiple stages,
whereas Join is used when parallel data paths reunite, therefore, the inputs of a
stage come from separate stages. The Join operator requires all the inputs to be
valid in order to proceed, e.g., the inputs to an adder unit need to be ready at the
same time for the operation to take place. Fluid Pipelines rely on Branch and Merge
operators [11, 14] to implement the Out-of-Order behavior. They are dual to Fork
and Join, but differ in behavior from them. When there is no dependency between
the inputs of a block, a Merge operation is said to take place. Merge differs from
Join because it is triggered when at least one of the inputs is valid (i.e., it has “or-
causality”). In addition, only data from one of the inputs is consumed at each cycle.
Its dual, Branch, propagates data to only one of multiple output paths, as opposed
to sending data to all of them. This behavior is found in many digital designs, like a
Floating Point Unit (FPU) with independent operations; or a network router, where
packages come from different inputs and propagate to a single output.

To evaluate Fluid Pipelines performance, a designer or a tool needs to estimate
the throughput of a given pipeline configuration. A methodology based on Coloured
Petri Nets (CPN) [15] can be used to that end [22]. This methodology allows a
designer to quickly explore the design space without performing slow RTL or gate-
level simulation of every design point. In some cases it may be hard to accurately
model the system as a CPN, and thus it may be more suitable to perform cycle
accurate simulation to determine the system performance.

Experimental results show that for an OoO core, Fluid Pipelines improve the
optimal energy-delay (ED) point by increasing performance by 17% and reducing
energy by 13%, when compared to previous Elastic Systems. A simpler FPU bench-
mark shows even better results, with improvements of up to 176% in performance,
and 5% less power consumption. By using CPN models, it is possible to explore the
Pareto frontier and select different interesting design points, depending on a specific
application.
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The remainder of this chapter is organized as follows. In Sect. 2, we describe
other approaches that try to improve the ability of a designer to meet timing
specifications in digital design. Then, Sect. 3 describes Fluid Pipelines, with its
semantics, constraints, and possible pitfalls. In Sect. 4, we show how CPNs can
be used to model systems based on Fluid Pipelines. Finally, Sect. 5 provides an
experimental evaluation of Fluid Pipelines, comparing with previous Elastic System
approaches. We wrap up in Sect. 6, commenting on research challenges and future
directions for both system and EDA tool designers.

2 Related Work

Software Dataflow Networks [1] uses OoO and Speculation in parallel software
scheduling. By speculating whether dependencies in the code being executed
are true dependencies, the flow can improve execution speed. In case of mis-
speculation, execution is re-triggered, similarly to what occurs in the case of branch
mis-prediction. Some of the concepts used in Software Dataflow Networks are
similar to the ones used by Fluid Pipelines, but in this context, they are applied in
a higher abstraction level (macro-architecture) to improve parallel execution. Fluid
Pipelines also avoids speculation by giving control to the designer.

High Level Synthesis (HLS) [20] is a technique that uses high-level programming
languages to generate hardware. By avoiding describing hardware directly, HLS
allows designers to focus on functionality, while the HLS tools take care of timing
and pipelining during scheduling [6]. Traditionally, HLS generates synchronous
circuits (i.e., not elastic), and thus scheduling is limited by the presence of
dependency loops. HLS could leverage Fluid Pipelines to enable changing the
number of stages in such loops, and are orthogonal in that regard. In fact, this could
improve HLS design time by avoiding multiple iterations to meet timing (i.e., by
adding flops without going back to the RTL description).

Dimitrakopoulos et al. [11] explore the reduction of buffering to support
multi-threading in Elastic Systems. Their work presents a certain amount of Out-
of-Ordering on an inter-thread basis (i.e., no ordering enforced between different
threads). Fluid Pipelines allow full Out-of-Order execution. The analogy would be
that of a Simultaneous Multithread (SMT) in-order core versus an Out-of-Order
core. Also note that this work brings concepts of threads to circuit level decisions,
which is usually not performed in digital design.

Elastic Coarse Grain Reconfigurable Arrays (CGRAs) [14] are an approach for
coarse grain reconfigurable logic that relies on elastic interfaces for flow control.
Elastic CGRAs use Branch and Merge operators across basic blocks (connecting
inputs and outputs from different accelerator units), while Fork and Join are used
within basic blocks (in the calculation itself). This is conceptually similar to Fluid
Pipelines, but limits where each operator can be used. Elastic CGRAs are also based
on an automated flow that can differentiate to some extent between ordered and
unordered operators. Such a flow could be further extended to be used with Fluid
Pipelines, but would most likely require more information from the designer that
what is currently done in RTL code.
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To mitigate throughput loss in Elastic Systems, different approaches have been
proposed. The Eager Fork operator [8] lets one of the paths start executing even
when the parallel path is not ready, whereas FIFOs allow for more buffering [23].
Early Evaluation [2] determines which inputs in merging paths are actually needed
(such as in a mux), and only waits for those inputs. The next input from other paths
is ignored to maintain correctness. Nevertheless, those approaches do not change
system semantics. This becomes problematic when one of the paths takes multiple
cycles to complete. Then, back pressure propagates to the preceding stages. Fluid
Pipelines avoid this scenario by not waiting for parallel paths unless it is needed.

3 Fluid Pipelines

Elasticity is defined as functional correctness depending only on the order of
events and not the exact arrival time or clock cycle [5]. Events, also called tokens,
are meaningful data, from a designer perspective, flowing through a channel. A
typical execution example of a circuit implementing the elastic property is shown
in Fig. 6.1, where the arrival of a valid token is represented by a number in a given
cell. When a result is produced, the token is consumed and can no longer be used.
Empty cells in the table denote that no new data has arrived in that cycle. Note that
the latency between events is arbitrary.2

To implement this behavior, Elastic System approaches have traditionally relied
on a pair of handshake signals: Valid (V) and Stop (S),3 which determine three
states: transfer (V D 1, S D 0), idle (V D 0), and retry (V D 1, S D 1) [8]. Fluid
Pipelines keep this convention, but could be built using other equivalent approaches.
The name Fluid Channel is used to denote a data bus and its associated control

Clock Cycle 1 2 3 4 5 6 7 8

A 0 4 3

B 1 2 3

A+B 1 6 6

Fig. 6.1 The figure depicts the functionality of an elastic adder. Operands A and B may arrive
at different clock cycles and the latency may be arbitrary. Elastic Systems functionality does not
depend on the exact cycle events happen, but rather on their order

2In practice, a circuit implementing elasticity will most likely be deterministic depending on the
input set, but this is not a formal requirement of the Elastic Systems specification.
3Other equivalent naming conventions have been used, e.g., Elasticity has been expressed in terms
of FIFO operation [23].
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signals. Towards this chapter, a Fluid Channel will be often represented as a single
arrow for the sake of cleanness.

3.1 Communication and Flow Control

The inter-stage communication is performed through the help of Elastic Buffers
(EBs), storage units that replace registers, which include handshake signals both on
the input and output interface. Figure 6.2 shows the interface of an EB with input
and output control signals. Multiple implementations of EBs have been proposed
in the literature (see [10] for some). In this chapter, we do not discuss the trade-
offs involved in each implementation, and the experimental evaluation uses the
implementation presented in Fig. 6.3 that has buffering capacity of 2.

In general, each stage can have multiple input/output channels. To support this,
Fluid Pipelines rely on two pairs of control operators: one that maintains the
ordering (Fork and Join) and one that does not guarantee ordering (Branch and
Merge). The basic implementation of these operators is depicted in Fig. 6.4. In
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Fig. 6.2 An elastic buffer is shown with respective sender and receiver sides, thick lines denote
multi-bit buses. An elastic buffer contains a data bus (din and q) and the valid (Vin, Vout) and stop
(Sin, Sout) handshake signals. Elastic buffers are the basic construct blocks of Elastic Systems and
can be viewed as queues with a limited size
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Fig. 6.3 The elastic buffer implementation assumed in this chapter is shown here, thick lines
denote multi-bit buses. (a) Shows the datapath implementation with two registers, and (b) shows
the state diagram of the control block. This implementation works as a buffer of size 2 with variable
latency [8], but multiple implementations of elastic buffers have been proposed [10]
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Fig. 6.4 The four operators used by Fluid Pipelines are shown in the figure for the two input or
two output versions. (a) Shows the Branch operator which propagates data to one out of n possible
outputs, (b) shows the Merge operator that propagates data from any of the m inputs, (c) shows
the Fork operator that propagates data to all the n outputs, and (d) shows the Join operator that
propagates data when all the m inputs contain valid data. The operators translate the intended
functionality of a circuit and enable better design space exploration. Branch and Merge are used
when the relative order of operations can be broken, while Forks and Joins enforce ordering. Note
the difference in the handling of “valid” and “stop” signals

Fig. 6.4a, sel is a data-dependent selection signal that indicates to which output
the data will propagate. The operators can be easily extended to more than two
inputs/outputs.

Branch is used when the datapath forks into multiple paths, but data should
propagate to only one of them. This is controlled by the selection signal. For
instance, an operation in an FPU only needs to propagate to the appropriate
functional unit, and the selection signal is encoded by the operation bits. Merge
operates as an arbiter: multiple senders compete for a single channel. The sender that
wins the arbitration propagates its data. In our FPU example, a Merge would be used
at the end of the functional units when results from each unit are collected. Another
way to think of the Merge is that it fires when at least one of its inputs contains
valid data. This is known as disjoint or-causality and introduces the or-firing rule
to the context of Fluid Pipelines. For simplicity and without loss of generality, the
proposed implementation in Fig. 6.4b has simple fixed-priority, but can be replaced
with any of the existing elaborated arbitration schemes such as Round-Robin [21].

In general, Branch and Merge cannot be automatically inserted like Fork
and Join, because they alter the relative order between events. As a result, the
programmer is responsible for inserting them when needed. For example, in a
complex Floating Point Unit, just one Branch and Merge pair is needed after the
normalization and denormalization stages to indicate that the floating operations
can complete out of order. On the other hand, the Fork and Join operators can be
automatically inserted in a similar way as the insertions performed in traditional
Elastic Systems. Branch and Merge can be performed with direct Verilog/VHDL
instantiation or just code annotations. To present, user annotations have been used
to determine which operators can be unordered. More automated approaches, like
language support, are still open research questions that need to be addressed.
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Fig. 6.5 (a) Retiming is the operation of moving registers across combinational logic, it is used
to balance the pipeline, (b) ReCycling is the operation of changing, usually adding, registers to
the pipeline. Retiming and ReCycling are used to improve the circuit frequency, but ReCycling
decreases the throughput of Elastic Systems when applied to sequential loops

3.2 RePipelining: Optimizing Fluid Pipelines with ReCycling
and Retiming

As mentioned, Fluid Pipelines can be optimized by means of pipeline transforma-
tions. Modern EDA tools perform operation such as gate sizing, time borrowing,
and logic replication to help improve timing and, hopefully, meet design specifi-
cations. All those operations preserve cycle accuracy and can be applied to most
synchronous circuits, including Fluid Pipelines. The main advantage of Elastic
Systems and Fluid Pipelines is the ability to change the number of pipeline stages
without breaking the system behavior.4

To improve the frequency of Elastic Systems, it is possible to move EBs across
circuit blocks (Retiming) [2] (Fig. 6.5a) or to insert additional stages in slower
paths (ReCycling) [2] (Fig. 6.5), ReCycling can also remove pipeline stages from
non-critical paths for power/area optimization. Retiming preserves the sequential
behavior of the circuit [2] and thus it can be applied mostly without penalties.

Inserting pipeline stages can be applied to Fluid Pipelines and prior Elastic Sys-
tem approaches, but in prior approaches this comes with a reduction in throughput
in cases where pipeline stages are added to sequential loops. In fact, the throughput
of the whole system is limited by the loop with the lowest throughput, due to
backpressure, even when this loop is not used. The throughput of a cycle can
increase with Early Evaluation depending on how often each event occurs [16],
but due to back pressure, there is still a limit on such mitigation. Thus, in prior
Elastic System approaches, ReCycling is able to reduce cycle time [12] but may
decrease the overall system performance in the case of stage insertion in sequential
loops [2, 4, 16].

In Fluid Pipelines, on the other hand, unused paths are isolated from the
remainder of the circuit by the use of the unordered operators Branch and Merge.
Since only used paths are triggered when Branch and Merge are used, unused low-
throughput paths do not “contaminate” the overall system performance. This will
become clearer in the next sub-section with a simple execution example.

4We note that inserting pipeline stages was proposed in synchronous circuits [12], but breaks the
cycle accuracy of the circuit and should be used with care.
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Fig. 6.6 Toy case to illustrate the Elastic vs. Fluid approaches. (a) The test circuit, where grey
boxes indicate elastic buffers, circles represent combinational logic, and dots represent registers
with a valid token. (b) Shows the instructions executed in this example and which path they are
assumed to use

3.2.1 Execution Example

To clarify the practical differences in the formalization between Fluid Pipelines and
prior Elastic Systems, let us analyze the sample execution in the example in Fig. 6.6,
where circles represent combinational logic, boxes represent EBs, and the dots
inside boxes represent the presence of valid data (tokens). The paths are mutually
exclusive (each operation either takes the top or the bottom path), and the mux near
the output EB chooses the appropriate path. The instructions can take either the
bottom path or the top path in Fig. 6.6b. The execution traces for traditional Elastic
Systems and Fluid Pipelines are shown in Table 6.1.

The execution order of Fluid Pipelines is altered (Table 6.1), note how in cycle
3, it is possible to move I3 to the bottom path, while the top path is still executing.
This re-ordering is a result of the “or-firing” rule and it is done because it was
specified by the user, and not changed by the tool. In a processor core, the reordering
buffer performs this function, while in network-on-chips, the reordering is usually
not performed. Since this requirement is application specific, it is left out of this
manuscript. We assume that any reordering needed is performed in the design. In
the case where order should be maintained, regular Fork and Join operators must be
used, causing the design to behave similarly to a Elastic System.

3.3 Fluid Pipelines Deadlock Avoidance

One possible pitfall in Fluid Pipelines design is the possibility of deadlocks. Since
control is given to the designer, special care is needed when designing Fluid
Pipelines to avoid deadlock prone situations. Two properties are enough to guarantee
that Fluid Pipelines are deadlock free: No-Extraneous Dependencies (NED) and
Self-Cleaning (SC) [23]. Those properties can be summarized in the following
design directives:
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Table 6.1 Sample trace for the toy case in Fig. 6.6 considering both regular Elastic Systems and
Fluid Pipelines. Each line denotes a clock cycle and in which stage the instruction is at that cycle.
Fluid Pipelines improve throughput compared to Elastic Systems

Elastic Fluid

Cycle In T1 T2 T3 B Out In T1 T2 T3 B Out

0 I1 I1

1 I2 I1 I2 I1

2 I3 I2 I1 I3 I2 I1

3 I3 I2 I4 I2 I3

4 I3 I2 I5 I2 I4 I3

5 I4 I3 I2 I6 I5 I2

6 I5 I4 I3 I6 I5 I6 I4

7 I6 I5 I4 I7 I5 I7 I6

8 I6 I5 I5

9 I6 I5 I7

10 I7 I6 I5

11 I7 I6

12 I7

• No-extraneous dependencies: If an output o of a module does not depend on an
input i of that module, then o should be produced regardless of the existence of
valid data in i. Also, the dependency list of o should be a subset of the inputs of
the module.

• Self-cleaning: A circuit is self-cleaning if whenever it has produced n tokens in
its outputs, it has also consumed n tokens from its inputs.

These directives do not restrict which designs are possible, but rather how to
implement each design. To make it clearer why those properties are important
and how the directives work, let us take the example in Fig. 6.7. The synchronous
module described in the figure has a pair of inputs (a and b) and outputs (c and d),
c is a function of a and b, while the value of d depends only on the value of b. Now,
assume a designer wants to implement that module using Fluid Pipelines.

The most straightforward implementation of the block would follow the behavior
described in Fig. 6.8, where “xx_valid” and “xx_stop” denote, respectively, the valid
and stop bit for the “xx” bus. In this implementation, the circuit waits until all inputs
have valid data, and all outputs can accept new data to perform the operation. This is
a violation to the NED directive and can cause deadlocks depending on the context
in which the block is used. For instance, in cases where the output d is connected as
a feedback path to a, d will only produce output when both a and b are available.
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Fig. 6.7 Sample circuit to illustrate deadlock avoidance directives. The circuit contains two inputs
(a and b) and two outputs (c and d) and performs two operations (f and g), one of which (f ) depends
on both inputs and the other (g) depends only on input b. The handshake signals are omitted for
the sake of clarity. Fluid Pipelines design uses a few design practices to avoid deadlocks. Those
are restrictions on how to implement a given design and not on which designs can be implemented

Fig. 6.8 A pseudo-verilog
implementation that generates
a deadlock prone
implementation of the circuit
in Fig. 6.7. This
implementation waits until all
the inputs have valid data and
that all the outputs can
receive new data

always @ ( posedge c l k ) begin
i f ( a v a l i d && b v a l i d ) begin

i f ( ! c s t o p && ! d s t op ) begin
c <= f ( a , b ) ;
d <= g ( b ) ;
c v a l i d <= t r u e ;
d v a l i d <= t r u e ;
a s t o p <= f a l s e ;
b s t o p <= f a l s e ;

end
end

end

A simple solution to this case is the use of a Fork operator (Fig. 6.9). The Fork
operator isolates the handshake handling, and thus avoids the deadlock situation by
avoiding the unnecessary wait on a valid signal in a to propagate d.

The Self-Cleaning property is needed to avoid buffer overflow. Consider the case
where a circuit produces n inputs per token consumed. If there is a loop where the
output of the circuit is connected back to its input, there will be buffer overflow.
For a circuit with buffering capacity of m, the overflow will occur after m/n cycles,
causing a deadlock.

3.4 Fluid Pipelines Channel Grouping

In high performance design SoCs, it is common to have a guaranteed number of
cycles between events. For example, a cache hit in a processor may be known to take
three cycles. The issue logic in the processor may start to wake up instructions two
cycles ahead. If the design shrinks/increases by one cycle, the time dependence may
be broken. These scenarios need to be taken into account in Fluid Pipelines, when
adding extra pipeline stages. This information is known by processor architects at
design time and can be given to the Fluid Pipelines framework.
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module fork ( in , i n v a l i d , i n s t o p ,
out1 , o u t 1 v a l i d , ou t 1 s t op ,
out2 , o u t 2 v a l i d , o u t 2 s t o p ) ;

/ / da ta
i nput [N−1:0] i n ;
output [N−1:0] out1 , out2 ;

/ / handshake
i nput i n v a l i d , ou t 1 s t op , o u t 2 s t o p ;
output i n s t o p , o u t 1 v a l i d , o u t 2 v a l i d ;

i f ( i n v a l i d && ! ou t 1 s t o p && ! ou t 2 s t o p ) begin
out1 <= in ;
out2 <= in ;
i n s t o p <= f a l s e ;
o u t 1 v a l i d <= t r u e ;
o u t 2 v a l i d <= t r u e ;

end
endmodule

module f a nd g ( a , a v a l i d , a s t op ,
b , b v a l i d , b s top ,
c , c v a l i d , c s t op ,
d , d v a l i d , d s top ,
c l k ) ;

/ / da ta
i nput [N−1:0] a , b ;
output [N−1:0] c , d ;
wire [N−1:0] b1 , b2 ;

/ / handshake
i nput a v a l i d , b v a l i d , c s t op , d s t op ;
output a s top , b s top , c v a l i d , d v a l i d ;
wire b1 va l i d , b1 s top , b2 va l i d , b 2 s t op ;

i nput c l k ;

fork ( b , b v a l i d , b s top ,
b1 , b1 va l i d , b1 s top ,
b2 , b2 va l i d , b 2 s t op ) ;

always @ ( posedge c l k ) begin
i f ( a v a l i d && b1 v a l i d && ! c s t o p ) begin

c <= b1 ;
c v a l i d <= t r u e ;
b 1 s t op <= f a l s e ;

end

i f ( b 2 v a l i d && ! d s t op ) begin
d <= b2 ;
d v a l i d <= t r u e ;
b 2 s t op <= f a l s e ;

end
end

endmodule

Fig. 6.9 A pseudo-verilog implementation that solves the deadlock problem by using the fork
operator and thus avoiding the extraneous dependency of output d on input a
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Fig. 6.10 The issue logic of a processor core is shown, arrows represent a data/handshake bundle,
shaded boxes represent elastic buffers and boxes with names represents pipeline stages, the channel
IDs is denoted with the arrows. (a) Shows the original logic with two cycles between issue and
execute (Ex) units and one cycle between data cache (D$) and execute, (b) an extra stage (shaded
box) is added to both channels to create a valid pipeline configuration, (c) a different number of
stages is added to each path, yielding to an invalid pipeline configuration. By annotating channel
IDs, the designer can constrain what pipeline configurations are allowed to guarantee the functional
behavior of the circuit, this is specially useful when there is dependency in the latency between two
channels

To support this behavior, Fluid Pipelines allow the designer to assign group
IDs to a Fluid Channel. For simplicity, channels without user-defined group ID
are automatically assigned a unique ID (i.e., empty group). When additional stages
are inserted in a channel (or existing stages are removed), all other channels with
the same ID get the same amount of extra stages. This guarantees that the relative
number of cycles between the channels is kept. There is no requirement that
channels share wires or handshake signal and the number of buffers already present
in different channels does not need to match [21].

To illustrate this, let us analyze the example of an OoO core. Figure 6.10 shows
the instruction wake-up and data cache of an OoO core, the channels connecting
wake-up to execute and data cache to execute are assigned the same ID, and thus the
same number of stages need to be added/removed to them. A valid solution is shown
in Fig. 6.10b, where one extra stage is added (shaded). The circuit in Fig. 6.10c is
not a valid solution, since different number of stages is added in each channel.

An implication of channel grouping is that we can always add pipeline stages,
but we may not be able to remove pipeline stages in some cases. Figure 6.11 shows
two channel groups, out of a fully connected design graph (not represented for
cleanness). Group A has the same delay between producers and consumers. This
means that any number of stages can be inserted/removed in channels A1 and A2,
as long as the number is the same in both channels. Group B has similar constraint,
but channel B2 has a number of stages that is larger by one than channel B1. Strictly
speaking, this means that pipeline B2 has to have at least one pipeline stage. The
minimum number of stages in each case is shown in Fig. 6.11b.



6 Automated Pipeline Transformations with Fluid Pipelines 137

EB EB

EB

EB EB

EB EB

Ch: A1
Gr: A

Ch: A2
Gr: A

Ch: B2
Gr: B

Ch: B1
Gr: B

(a) Original Grouping

EB

Ch: A1
Gr: A

Ch: A2
Gr: A

Ch: B2
Gr: B

Ch: B1
Gr: B

(b) Minimum Stage Configuration

Fig. 6.11 (a) Shows two channel groups A and B. Each channel in A has two elastic buffers (EB)
between source and sink, whereas the channel B1 has one EB and B2 has two EBs between source
and sink; (b) shows the minimum pipeline configuration for both groups, for group B it is not
possible to remove all the EBs due to the uneven number of buffers in the original configuration.
It is not possible to remove all the stages in the design, but it is always possible to add more stages

3.5 Design Example

Using Fluid Pipelines in dataflow is in general a straightforward task as seen so far.
In this section we provide a different example of how memories or Register Files
(RF) could be integrated into Fluid Pipelines. When designing Fluid Pipelines it is
common to replace registers by EBs, but this is not desirable in the case of RFs,
since RFs are supposed to hold a value until a new value is written over it, and after
reading from an EB, the data is consumed. Instead, we show here how the memory
abstraction (regardless of actual implementation) can be used to model RFs, or any
block of memory, in the RTL level.

The idea is to create a wrapper over the memory block that implements the Fluid
Pipelines handshaking. We will represent the memory as an array of registers, but
a black-box memory, from a memory compiler could be equally used. The Verilog
code for the RF is shown in Fig. 6.12.

3.6 Design Overhead

One of the main disadvantages of Fluid Pipelines is the need for design intervention
in the RTL code. In this section, we look into how much of what is needed to
implement Fluid Pipelines already exists in digital design. In fact, finding points
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module r e g f i l e ( i n d a t a , i n add r , i n v a l i d , i n s t o p ,
ou t1 addr , o u t 1 v a l i d , ou t 1 s t op ,
ou t2 addr , o u t 2 v a l i d , ou t 2 s t op ,
ou t 1 da t a , o u t 1 d a t a v a l i d , o u t 1 d a t a s t o p ,
ou t 2 da t a , o u t 2 d a t a v a l i d , o u t 2 d a t a s t o p ,
c l k ) ;

/ / addr
i nput [M−1:0] i n add r , ou t1 addr , ou t 2 add r ;

/ / da ta
i nput [N−1:0] i n d a t a ;
output [N−1:0] ou t 1 da t a , o u t 2 d a t a ;

/ / handshake
i nput i n v a l i d ;
output i n s t o p ;

i nput ou t 1 a dd r v a l i d , o u t 2 a d d r v a l i d ;
output reg ou t 1 add r s t o p , o u t 2 a d d r s t o p ;
output reg o u t 1 d a t a v a l i d , o u t 2 d a t a v a l i d ;
i nput ou t 1 d a t a s t o p , o u t 2 d a t a s t o p ;

i nput c l k ;

/ / we a lways w r i t e
a s s i g n i n s t o p = 0 ;

/ / r e g i s t e r a r ray
reg [N−1:0] r e g i s t e r s [REG COUNT−1 :0 ] ;

always @ ( posedge c l k ) begin
i f ( o u t 1 a d d r v a l i i d && ! o u t 1 d a t a s t o p ) begin

ou t 1 d a t a <= r e g i s t e r s [ ou t 1 add r ] ;
o u t 1 a d d r s t o p <= 0 ;
o u t 1 d a t a v a l i d <= 1 ;

end e l s e i f ( o u t 1 d a t a s t o p ) begin
ou t 1 a d d r s t o p <= 1 ;
o u t 1 d a t a v a l i d <= 0 ;

end e l s e
ou t 1 a d d r s t o p <= 1 ;
o u t 1 d a t a v a l i d <= 0 ;

end

i f ( o u t 2 a d d r v a l i i d && ! o u t 2 d a t a s t o p ) begin
ou t 2 d a t a <= r e g i s t e r s [ ou t 2 add r ] ;
o u t 2 a d d r s t o p <= 0 ;
o u t 2 d a t a v a l i d <= 1 ;

end e l s e i f ( o u t 2 d a t a s t o p ) begin
ou t 2 a d d r s t o p <= 1 ;
o u t 2 d a t a v a l i d <= 0 ;

end e l s e
ou t 2 a d d r s t o p <= 1 ;
o u t 2 d a t a v a l i d <= 0 ;

end

i f ( i n v a l i d ) begin
r e g i s t e r [ i n a d d r ] <= i n d a t a ;

end
end

endmodule

Fig. 6.12 Sample Fluid Register File using register array in pseudo-Verilog. In this case, it is
simpler to keep registers as a memory block, instead of replacing them by EBs, so data is kept after
a read operation
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where Branch and Merge operators can be inserted is a simple task because most
existing designs are inherently elastic.

Elasticity is omnipresent in digital design. Most designs already include signals
such as “start,” “done,” “busy,” or “full,” which implement the logic used by Fluid
Pipelines. In some cases, like network routers, packages are well defined and
routing/contention schemes are already in place. That means that Fluid Pipelines
does not require any logic that may be unfamiliar to designers, but only standardizes
how to implement this behavior.

To estimate what proportion of existing designs do implement the type of logic
required by Fluid Pipelines, we take a look at various designs in OpenCores,5 an
opensource database of digital designs. Even though those designs may not be
an ideal representation of practical/commercial designs, it provides a rich estimate
from various domains. We counted the number of design implementations that are
equivalent (same or inverted signals), partially equivalent (only using one signal
or using signals with different meanings), or nonequivalent (not implementing any
handshaking) to our handshaking mechanism. We only considered projects marked
as “DONE,” in Verilog or VHDL and for which the code is publicly available.
Out of 270 projects, 35% are equivalent in most blocks, 10% are equivalent in
a few blocks, 20% are partially equivalent (in general, only “start” and “done”
signals). 25% implement no or an incompatible handshake. The remaining 10% are
IO operations (debouncer, LED control, etc.) or only combinational logic (lookup
tables, arithmetic operation, etc.).

These statistics show that the type of handshaking required by Fluid Pipelines
is already implemented in a significant number of designs, and therefore, Fluid
Pipelines will not introduce design overhead. The designer simply needs to annotate
the code. These statistics also show that the type of handshake used by Fluid
Pipelines is not new to designers, and implementing them will not be hard for most
experienced designers.

4 New Evaluation Methodology

To find the optimal pipeline depth, a designer or tool must estimate the throughput of
a pipeline configuration (i.e., number and position of pipeline stages). In theory, this
can be accomplished through RTL simulation, cycle-accurate simulators or others.
RTL simulations are often slow, especially if a large number of configurations need
to be tested. For CPU cores, architects usually rely on standard cycle-accurate
simulators, such as ESESC [17]. Still, for other designs it may be hard to write
custom simulators. Therefore, a more light-weight methodology can be used to
model simple designs faster and evaluate different pipeline configurations early

5http://www.opencores.org.

http://www.opencores.org
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in the design time for space exploration, or late when changes due to physical
constraints are included.

A methodology based on Coloured Petri Nets (CPN) [15], a formal framework
used to model systems in different areas of computer science, was proposed to
evaluate Fluid Pipelines and other Elastic Systems alike [21]. The use of the colored
version of Petri Nets is justified by the data-dependent Branch operations that cannot
be modeled on the non-colored versions.

CPNs are defined as a bipartite graph of places and transitions, connected by
arcs. Places can contain tokens that have data value attached to them (color). The
state of the net (the marking) is defined by the number and color of tokens in each
place. The initial marking is changed when transitions fire. When a transition fires,
tokens are subtracted from its input places and added to its output places according
to arc expressions. There is a capacity associated with each place representing the
maximum number of tokens in that place, and prevents input transitions from firing.

Definition 1 A Coloured-Petri Nets is a tuple CPND hP;T;A; †;C;G;E; I;Capi:

• P is a finite set of places.
• T is a finite set of transitions, such that P \ T D ¿.
• A � .T � P/ [ .P � T/ is a set of directed arcs. Let a:p and a:t denote the place

and transition connected by a, respectively.
• † is a finite set of non-empty color sets.
• C W P! † is a color set function which assigns a color set to each function.
• G is a guard function that assigns to each transition t 2 T a guard function

G.t/ W .¿ [†/j�tj ! f0; 1g, where �t D fpj.p; t/ 2 Ag.
• E is an arc expression function that assigns to each arc a 2 A an expression E.a/,

such that the type of E.a/ should match C.a:p/.
• I is an initialization function that assigns to each place p 2 P an initialization

expression I.p/, I.p/ must evaluate to C.p/.
• Cap W P ! I is a capacity function that attributes a maximum capacity to each

place.

Firing Semantics Let M, a marking function, map each place p 2 P into a set of
tokens M.p/ 2 C.p/. Let G.t/.M/ (resp. E.a/.M/) denote the evaluation of G.t/
(resp. E.a/) with the marking M. A transition t is enabled, and said to fire when
G.t/.M/ D true and 8a 2 fbjb D .p; t/; p 2 P; b 2 Ag;E.a/.M/ <D M.a:p/, and
8p 2 t�;M.p/ < Cap.p/, where t� D fpj.t; p/ 2 Ag. The firing updates the marking
function to M0.p/ D .M.p/ E.p; t/ [ E.t; p/8p 2 P.

Timing In order to evaluate digital circuits, one needs to account for timing, which
is not included in CPN models. In regular CPNs, only one transaction fires at a given
cycle. Without changing the underlying semantics of CPNs, it is possible to change
the model so that every transition that is enabled at the beginning of the cycle fires.
This is a more accurate description of digital circuits and will help determine the
number of clock cycles it takes to execute.
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Fig. 6.13 The CPN models of each of the four operators used in Fluid Pipelines. The models are
shown before and after firing. Branch is data dependent and thus the arrows are annotated with
the expected data. We use CPN models to estimate the overall throughput of Fluid Pipelines and
Elastic Systems. (a) Fork. (b) Branch. (c) Join. (d) Merge

There is one extra restriction to this formulation. The cardinality of each
expression must be 1; this means that for each arc, only one token can be
consumed/generated. Also, note that guard functions can only depend on the
incoming arcs to a transition. This complies with the constraints defined previously,
and thus, avoids deadlocks. The restriction on the cardinality of expressions changes
the formalism of CPNs, and a formal analysis of the impact of it needs to be further
explored in future work.

Figure 6.13 depicts how the Fluid Pipelines’ operators are modeled as CPN tran-
sitions. Circles represent places, bars represent transitions, and dots represent tokens
in transitions that are not color dependent while letters represent colored tokens.
Merge operators do not define priority, and thus, conceptually both transitions can
occur at the same time, which is compatible with the theoretical formulation of Fluid
Pipelines. While places correspond to elastic buffers, transitions do not have a direct
translation from the circuit model. However, they can be mapped from the logic.

5 Evaluation

In this section, we provide some experimental results that show how Fluid Pipelines
compare with prior Elastic System approaches, and what kind of trade-offs that
Fluid Pipelines enable. We first discuss the evaluation methodology and setup and
then show the experimental results.
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Fig. 6.14 The FPU block diagram (a) and the corresponding CPN model (b) used to evaluate
system performance

5.1 Setup

A fully compliant IEEE-754 in-house FP Unit and a 2-way Out-of-Order FabScalar
core [7] are used to evaluate Fluid Pipelines [21]. They were both designed
as synchronous (for previous approaches), and annotated with Fluid Pipelines’
operators.

A functional block diagram of the FPU unit is presented in Fig. 6.14a, and the
CPN model used for the performance evaluation considering Fluid Pipelines is
shown in Fig. 6.14b. In this case, the Branch and Merge operators are used. Note
how the division and square root modules use the Merge to choose between the loop
when the operation is computing or sending the result to the queue when done. Both
division and square root take 64 cycles to complete. For regular elastic, the Fork and
Join operators are used instead.

The FabScalar-2W OoO core (Fig. 6.15) contains nested loops and interactions
between blocks and allows us to explore the scalability of the different approaches.
Branch operators are used in the dispatch unit, Exec units, and issue logic. Merge
operators are used after the exec units, in the free register pool handling (ROB to
Rename path), and in the next program counter calculation (Fetch 1).

Fluid Pipelines are compared against SELF [2, 11] and LI-BDNs [23]. Elastic
Systems are implemented with EBs with storage capacity of 2. For LI-BDNs, queues
of size 8 were used. In the SELF implementation adding pipeline stages to all the
paths that are parallel to the critical path will yield best performance and that is the
performance considered in this evaluation.

5.1.1 Benchmarks

For the FPU design, we report maximum and average throughput. Maximum
throughput is calculated by using a synthetic workload that only considers the best
path (add, subtract, and multiply in this case). The average case is calculated as the
throughput over a million random instructions.
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Fig. 6.15 Block diagram of
the FabScalar core used to
evaluate Fluid Pipelines in
this chapter. An OoO core
contains a complex structure
of nested loops and
interactions between blocks.
It is used to show the
scalability of Fluid Pipelines
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For the OoO core, only the average case over the SPEC2006 benchmarks6 is
reported. Per benchmarks results did not add much information and were therefore
omitted.

5.1.2 ReCycling

The evaluation considers the addition of extra pipeline stages to each design.
Pipeline stages are added to the blocks with the worst delay. Perfect ReCycling/Re-
timing (perfect balancing of delays) is assumed. Although this is usually not
possible, this approximation is sufficient. It is only necessary to ensure that after
the insertion of a pipeline stage, the two resulting stages have a delay smaller than
the second most critical path before insertion. Also, to account for register overhead,
2FO4 (fan-out-of-4) delay was added per added stage.

To find the most critical pipeline stages, synthesis results for the FPU and
previously published data from FabScalar [7] that reports pipeline stage breakdowns
were used. The minimum pipeline configuration is the same as in the original non-
elastic baseline: 6 for FPU and 13 for the core.

Since ReCycling changes both throughput in instructions per cycle (IPC) and
timing, the performance metric used is throughput�frequency (equivalent to instruc-
tion per seconds, IPS). Also, it has been shown that unless power is considered, the
ideal pipeline for a design is extremely deep [13]. Therefore, ED is used. Power is
estimated from synthesis results for the FPU and ESESC [17] simulations (based on
McPAT [19]) for the core. Logic energy consumption (both dynamic and leakage)
is assumed to remain roughly constant independent of the number of pipeline
stages. However, the dynamic clock energy consumption increases linearly with
both frequency and number of registers, and the leakage clock energy increases
linearly with the number of registers. This evaluation does not consider the effects

6Only the benchmarks that do not require Fortran were used.
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of Retiming, that may increase the number of registers added, and assume that the
added stages have roughly the same number of flops as existing ones, which may
not always be true in the case a stage is added in the middle of an operation.

5.2 Results

We first show the design space exploration of the different approaches. In particular,
we show that Fluid Pipelines are able to push the Pareto frontier towards better
performance and energy efficiency (Sect. 5.3). Then, we report the more detailed
results, such as the maximum frequency, throughput, and ED for different pipeline
configurations for both the FPU (Sect. 5.4) and Out-of-Order core (Sect. 5.5).

5.3 Overall Results

Fluid Pipelines push the design space towards more energy efficiency and better
performance. This is accomplished by avoiding false dependencies between con-
current paths. For most of the design points in the design space, Fluid Pipelines
improve both better performance and energy. In comparison, LI-BDNs reach
better performance than SELF, but at the cost of more energy (and area, not
evaluated here).

The Pareto frontier (Fig. 6.16) shows that for OoO core, Fluid Pipelines (FP)
deliver both less energy and more performance than SELF. Also, Fluid Pipelines
improve the best performance (by 6%, but with 28% less energy) and the best energy
point (by 14%, but with 16% more performance). Each point represents a different
pipeline configuration, where deeper pipelines tend to improve performance while
consuming more energy. In this case, LI-BDN was not used, as it will be explained
in the detailed evaluation.
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Fig. 6.16 Energy-delay curve for Fluid Pipelines and SELF for the OoO core. Each point
represents a different number of pipeline stages. The results show that Fluid Pipelines push the
Pareto frontier for the OoO core by improving both performance and energy
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Fig. 6.17 Energy-delay curve for Fluid Pipelines, SELF and LI-BDN for the FPU design. Each
point represents a different number of pipeline stages. The results show that Fluid Pipelines push
the Pareto frontier for the FPU by improving both performance and energy

For the FPU (Fig. 6.17), LI-BDNs result in increased energy consumption due
to the increased storage, but improved the performance, when compared to SELF.
Fluid Pipelines present the best performance and energy out of the three schemes,
since they do not require extra storage. Compared to SELF, Fluid Pipelines improve
the best performance by 120%, with 21% less energy, or improve the best energy
by 12% with 230% improvement in performance. In comparison with LI-BDNs,
Fluid Pipelines improved the best performance by 33%, using 83% less energy, or
improved the best energy by 38% with 118% better performance.

5.4 Elastic FPU

The maximum throughput for each of the models is summarized in Table 6.2.
Fluid Pipelines deliver constant throughput regardless of the number of pipelines.
The throughput of SELF decreases when there is additional pipeline stages in the
sequential loops. In the case of LI-BDNs, the extra buffering helps maintaining the
throughput even after the insertion of a few stages in the loops, but after a certain
number of insertions, there is back pressure due to the dependencies.

The effective frequency, calculated for the average throughput, is reported in
Fig. 6.18. It does not necessarily increase with the number of pipeline stages. This
is due to the fact that despite the frequency gain with the new pipeline stage, the
reduced throughput reverts the gains and reduces the overall performance. Since
in the average case the loop path is used, there is a reduction in the gap between
Fluid Pipelines and the other models. The same fact also causes reduction in the
throughput of both SELF and LI-BDN. Despite the reduction in the gap, Fluid
Pipelines are still able to deliver a considerably improved performance compared
to SELF (120%), and slightly improved performance compared to LI-BDN (40%),
but using less resources.
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Table 6.2 The maximum expected throughput with respect to the number of pipeline stages is
shown for the FPU design when using Fluid Pipelines, SELF and LI-BDNs. The original design
contains six pipeline stages. Fluid Pipelines deliver constant maximum throughput, regardless of
the number of pipeline stages

Pipeline stages Fluid Pipelines SELF LI-BDN

6 1.00 1.00 1.00

7 1.00 1.00 1.00

8 1.00 1.00 1.00

9 1.00 0.67 1.00

10 1.00 0.50 1.00

11 1.00 0.40 0.83

12 1.00 0.37 0.74

13 1.00 0.33 0.67
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Fig. 6.18 The average throughput with respect to the number of pipeline stages is shown for the
FPU for Fluid Pipelines, SELF, and LI-BDN. The average was calculated over a random input
set. In Fluid Pipelines, circuits can be ReCycled with higher throughput than possible with Elastic
Systems, and thus for better system performance

ED is reported in Fig. 6.19. The energy overhead caused by the extra storage
in LI-BDNs reverses the advantages when compared to SELF. When comparing
Fluid Pipelines with SELF, Fluid Pipelines improve the best ED point by improving
performance by 176%, with 5% better energy. Alternatively, Fluid Pipelines deliver
120% better top performance (with 21% less energy). When comparing Fluid
Pipelines with LI-BDNs, Fluid Pipelines improve the best ED point by improving
both performance (by 163%) and energy (by 25%).

5.5 Elastic OoO Core

LI-BDNs were not considered, since their main improvement over SELF is the
addition of FIFOs between modules. This is an important overhead for both area and
power. In addition, we note from the previous experiment that for deep pipelining,
LI-BDN behavior approaches that of SELF.

As in the FPU case, the effective frequency fluctuates (Fig. 6.20) when the
frequency improvement is not enough to compensate for the throughput decrease.
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Fig. 6.19 Energy-delay product by frequency for the FPU design. The plot was made varying the
number of pipeline stages and calculating the ED product and expected frequency for each pipeline
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of the pipeline
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Fig. 6.20 The plot shows effective frequency, in million instruction per seconds (MIPS) for
the OoO core. Effective frequency considers both throughput and frequency for each pipeline
configuration. Nevertheless, effective frequency alone is not a fair metric since it does not consider
the extra registers added by SELF

Note that for some points, SELF yields better overall performance than Fluid
Pipelines. This is due to the insertion of extra pipeline stages into all the paths that
are parallel to the critical path, which in some cases ends up hitting the second most
critical path, and yields a better frequency increase, with a cost in power and area
(area is not reported).

When adding extra pipeline stages, there is a initial phase where the insertion
causes a considerable increase in frequency, with relatively small reduction on IPC
(throughput) and increase in energy. This leads to an overall improvement in the
ED (Fig. 6.21). As the pipeline depth increases, the addition of extra stages has
a smaller impact on frequency, but with higher reduction on IPC which results in
an overall degradation of ED. In other terms, a relatively high number of stages
(i.e., power overhead) is needed to improve the overall performance, and thus ED
gets worse. In SELF, when one stage is added to a path, the optimal solution for
throughput is to also add a stage in all parallel paths with extra power overhead.
Also in SELF, adding stages has a negative effect on throughput. Combining these
two effects results in a faster degradation of ED. Fluid Pipelines shift the optimal
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Fig. 6.21 The energy-delay product is shown for each pipeline configuration for the OoO core.
The frequency shown in the x-axis was estimated based on the frequency for the original design
and the number of added stages. The figure shows that Fluid Pipelines shift the optimal ED point
of the pipeline depth and improve performance with a smaller power overhead

number of pipeline stages, make a deeper pipeline configuration, while improving
energy by 13% and performance by 17%.

6 Conclusion

In this chapter, we present Fluid Pipelines, a new abstraction for Elastic Systems.
By using Fluid Pipelines, the designer has the opportunity to extract OoO execution
from the circuit whenever possible, and boost the design performance. Fluid
Pipelines push the design’s Pareto frontier, by improving performance and energy. In
our experiments, Fluid Pipelines improve the optimal ED configuration of an OoO
core by improving energy 13% and performance by 17%, over SELF. For a pure
high performance configuration, Fluid Pipelines deliver 6% better top performance
while using 28% less energy. In addition, Fluid Pipelines brings the advantages
already existing in prior Elastic System approaches, like the possibility of changing
the number of pipeline stages, without breaking the design functionality, and thus
improves the ability of a designer to meet the design targets.

Fluid Pipelines can be used as a design strategy to generate multiple end-
products. For instance, the same RTL can be used to generate a deep-pipelined
high performance design and a design with few pipeline stages for low power. It
is common for companies to keep multiple teams to create designs for each of those
points. This practice leads to replication of work and code, that could be easily
avoided with a Fluid Pipelines-oriented strategy.

We also present a modeling framework using Coloured Petri Nets, which allows
designers to evaluate the system runtime behavior, and perform early design space
exploration. This framework is later used to evaluate Fluid Pipelines against other
Elastic System approaches, showing an improvement in the overall throughput of
the systems.
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Fluid Pipelines open many research opportunities in EDA and architecture alike.
From a circuit designer perspective, Fluid Pipelines enable a more logic-oriented
design methodology, less worried with physical design constraints. For architects,
Fluid Pipelines provide a framework for flow control, opposed to the current token-
credit approaches commonly used in CPU cores. Fluid Pipelines also allow for faster
exploration of the design space and energy-delay trade-offs. But it is in EDA that
Fluid Pipelines open the most interesting opportunities. A number of automated
transformations is possible in Fluid Pipelines. We have discussed RePipelining
(ReCycling + Retiming), but Fluid Pipelines transformations are not limited to it. It
is also possible to apply resource utilization techniques of port sizing optimization
and pipeline stage replication. For example, Fluid Pipelines allow to increase or
decrease the number of ports required by an SRAM without changing overall system
correctness. This is possible because when not enough ports are available at run-
time, it is legal to stall the inputs and wait until a free port becomes available. As
long as the stall operation is not frequent, the performance is not affected. Such
transformation leverages the handshake signals of Fluid Pipelines under the hood to
generate the proper control signals.
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Chapter 7
Analysis of Incomplete Circuits Using
Dependency Quantified Boolean Formulas

Ralf Wimmer, Karina Wimmer, Christoph Scholl, and Bernd Becker

1 Introduction

Solver-based techniques have proven to be successful in many areas in computer-
aided design, ranging from formal verification of digital circuits [1, 3, 9, 29] over
automatic test pattern generation [11, 13] to circuit synthesis [4, 5]. While research
on solving quantifier-free Boolean formulas (the famous SAT-problem [10]) has
reached a certain level of maturity, designing and improving algorithms for quan-
tified Boolean formulas (QBFs) is one focus of active research. However, there are
applications like the verification of partial circuits [18, 19, 29], the synthesis of
safe controllers [4], and the analysis of games with incomplete information [26] for
which QBF is not expressive enough to provide a compact and natural formulation.
The reason is that QBF requires linearly ordered dependencies of the existential
variables on the universal ones: Each existential variable implicitly depends on
all universal variables in whose scope it is. Relaxing this condition yields so-
called dependency quantified Boolean formulas (DQBFs). DQBFs are strictly more
expressive than QBFs in the sense that an equivalent QBF formulation can be
exponentially larger than a DQBF formulation. This comes at the price of a
higher complexity of the decision problem: DQBF is NEXPTIME-complete [26],
compared to QBF, which is “only” PSPACE-complete. Encouraged by the success
of SAT and QBF solvers and driven by the mentioned applications, research on
solving DQBFs has started during the last few years [16, 17, 20, 33], yielding first
prototypic solvers like IDQ [17] and HQS [20].
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In this paper, we focus on the application of DQBF for analyzing incomplete
combinational and sequential circuits. Such incomplete circuits appear in early
design stages, when only a subset of the system’s modules has already been
implemented and verification is applied in order to find errors in the available
parts as early as possible. Incomplete circuits also result if the complexity of the
verification task is too high and therefore some parts, which are supposed not to
influence the validity of some properties, e. g., multiplier or memory modules, have
been removed to make verification feasible. Analyzing incomplete circuits is also
useful if a designer wants to localize errors (then one can remove parts of the
design and if for all possible implementations of the removed parts the error does
not disappear, the remaining parts must be erroneous). Therefore this problem has
received considerable attention in the research community during the last 15 years,
see, e. g., [12, 14, 21, 25, 29–31]. All solver-based approaches are restricted in the
sense that they can either only handle a single black box or do not take the interfaces
of the black boxes into account, allowing the black boxes to read signals which are
not available to them in the actual design.

We show how the realizability problem for incomplete combinational and
sequential circuits with an arbitrary number of combinational or bounded-memory
black boxes can be expressed as a DQBF. Here we show for the first time a DQBF-
based solution for sequential circuits with several bounded-memory black boxes
where the exact interface of the black boxes, i.e., the signals entering and leaving the
black boxes, can be taken into account. We also show that solving a DQBF has the
same complexity as deciding realizability. We do not only sketch how DQBFs are
solved in our DQBF solver HQS [20, 33], but also how so-called Skolem functions
can be obtained from the solution process, provided that the formula is satisfied [34].
These Skolem functions can directly serve as an implementation of the black boxes.

This paper builds on different sources: [18, 19] applies DQBF-based methods to
incomplete combinational circuits with combinational black boxes. SAT- and QBF-
based techniques for controller synthesis are considered in [4]; there a footnote
gives hints how a DQBF formulation can be used for that purpose. Due to the
lack of efficient DQBF solvers at that time, this idea was not investigated further.
However the method described there considers only a single black box which can
read all primary inputs and the complete state information. The basic techniques
implemented in our DQBF solver HQS have been described in [20], and [33]
defines preprocessing techniques for DQBF, which speed up the solution process
considerably.

1.1 Structure of the Paper

In the next section, we introduce dependency quantified Boolean formulas
(DQBFs). In Sect. 3, we describe how realizability of incomplete combinational
and sequential circuits can be formulated as a DQBF. Section 4 presents a method
to solve DQBFs and to obtain Skolem functions for satisfied DQBFs. In Sect. 5
we give preliminary experimental results, and we conclude the paper in Sect. 6,
pointing out challenges which need to be solved.
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2 Foundations

Let ' and � be quantifier-free Boolean formulas over the set V of Boolean variables
and v 2 V . We denote by 'Œ�=v� the Boolean formula which results from ' by
replacing all occurrences of v (simultaneously) by �. For a set V 0 � V , we denote
by A.V 0/ the set of Boolean assignments for V 0, i.e., A.V 0/ D

˚
�
ˇ
ˇ � W V 0 ! f0; 1g

�
.

For each quantifier-free formula ' over V , a variable assignment � to the variables
in V induces a truth value 0 or 1 of ', which we call �.'/.

Definition 1 (Syntax of DQBF) Let V D fx1; : : : ; xn; y1; : : : ; ymg be a set of
Boolean variables. A dependency quantified Boolean formula (DQBF)  over V
has the form  WD 8x1 : : :8xn9y1.Dy1 / : : : 9ym.Dym/ W '; where Dyi � fx1; : : : ; xng

for i D 1; : : : ;m is the dependency set of yi, and ' is a quantifier-free Boolean
formula over V , called the matrix of  .

V8
 D fx1; : : : ; xng denotes the set of universal and V9

 D fy1; : : : ; ymg the set
of existential variables. We often write  D Q W ' with the quantifier prefix Q
and the matrix '. Q n fvg denotes the prefix that results from removing a variable
v 2 V from Q together with its quantifier. If v is existential, then its dependency
set is removed as well; if v is universal, then all occurrences of v in the dependency
sets of existential variables are removed. Similarly we use Q [

˚
9y.Dy/

�
to add

existential variables to the prefix. We sometimes assume that a DQBF  D Q W ' as
in Definition 1 with ' in conjunctive normal form (CNF) is given. A formula is in
CNF if it is a conjunction of (non-tautological) clauses; a clause is a disjunction of
literals, and a literal is either a variable v or its negation :v. As usual, we identify
a formula in CNF with its set of clauses and a clause with its set of literals. For a
formula ' (resp. clause C, literal `), var.'/ (resp. var.C/, var.`/) means the set of
variables occurring in ' (resp. C, `), lit.'/ (lit.C/) means the set of literals occurring
in ' (C).

A quantified Boolean formula (QBF) (in prenex normal form) is a DQBF such
that Dy � Dy0 or Dy0 � Dy holds for any two existential variables y; y0 2 V9

 . Then
the variables in V can be ordered resulting in a linear quantifier prefix, such that for
each y 2 V9

 , Dy equals the set of universal variables which are to the left of y.
The semantics of a DQBF is usually defined by so-called Skolem functions.

Definition 2 (Semantics of DQBF) Let  be a DQBF as above. It is satisfiable,
iff there are functions sy W A.Dy/! B for y 2 V9

 such that replacing each y 2 V9
 

by (a Boolean expression for) sy turns ' into a tautology. The functions .sy/y2V9

 
are

called Skolem functions for  .

Example 1 Consider the following DQBF:

8x18x29y1.x1/9y2.x2/ W .x1 _ :y1/ ^ .x2 _ y1 _ y2/

Here the variable y1 depends only on x1, but not on x2; y2 depends only on x2, but not
on x1. It is satisfied by using the Skolem functions sy1 .x1/ D x1 and sy2 .x2/ D :x2.
Replacing y1 and y2 by their Skolem functions yields .x1 _:x1/ ^ .x2 _ x1 _:x2/,
which is obviously a tautology.
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3 Analysis of Incomplete Circuits

In this section, we show how DQBFs can be used to analyze incomplete combi-
national and sequential circuits. In both cases we ask for realizability: Are there
implementations of the missing parts (“black boxes”) such that the complete circuit
satisfies its specification.

We assume that the missing parts are either combinational or contain only a
bounded amount of memory. In the latter case, we can put the flipflops of the black
boxes into the available circuit part such that the incoming and outgoing signals of
these flipflops are written and read only by the black boxes as sketched in Fig. 7.1.

Then the black boxes themselves are purely combinational. Note that the case of
several black boxes with an unbounded amount of memory is undecidable [28].

We use the notation for incomplete sequential circuits as sketched in Fig. 7.2.
The primary inputs are denoted by x, the current state by s, and the next state by
s 0. The missing parts are BB1; : : : ;BBn, whose interfaces, i.e., the signals entering
and leaving the black boxes, are known. The input signals of black box BBi are
denoted by Ii, its output signals by yi. The input cone of black box BBi ensures
the constraint Ii � Fi.s; x; y1; : : : ; yi�1/, the next state is described by trans WD

Fig. 7.1 Sequential circuits
with extracted memory

BB ⇒ BB

FF

FF

Fig. 7.2 Notation for
incomplete sequential circuits

BBi−1

BBi

yi

x

Fi(s,x,y yi−1)

Ii

•
•yi−1

Ii−1

•
...

...
...

...

R(s,x,y1 yn)

s

FF

s′

•
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�
s 0 � R.s; x; y1; : : : ; yn/

�
. We assume w. l. o. g. that no black box output is directly

connected to an input of another black box or a flipflop, i.e., yi \ Ij D ; for all
i; j and s 0 \ yj D ; for all j. Otherwise a buffer is inserted between the two black
boxes without changing the functionality of the circuit. Additionally we assume that
there are no cyclic dependencies between the combinational black boxes, i.e., that
BBi only depends on the outputs of BB1; : : : ;BBi�1. Otherwise, implementing the
black boxes with combinational circuits can lead to cycles in the combinational part
of the circuit which do not run through memory elements. This can cause undefined
behavior of the circuit.

We consider invariant properties inv.s; x; y1; : : : ; yn/, defined over the primary
inputs x, the current state s and the black box outputs y1; : : : ; yn, which are required
to hold at any time.

3.1 Combinational Circuits

The same notation as introduced above is also used for combinational circuits. Here,
the state and next state signals s and s 0 as well as the memory elements are omitted.

Definition 3 The partial equivalence checking problem (PEC) is defined as fol-
lows: Given an incomplete circuit Cimpl and a (complete) specification Cspec, are
there implementations of the black boxes in Cimpl such that Cimpl and Cspec become
equivalent?

In the following, we assume that (incomplete) implementation Cimpl and spec-
ification Cspec are combined into a single circuit using a miter construction:
Corresponding primary inputs are connected, corresponding outputs are connected
via XOR gates. The outputs of the XOR gates are combined via OR gates
into a single output signal. This output signal is constantly one iff, for some
implementation of the black boxes, the two circuits are equivalent. This can be
considered as a kind of invariant property, valid at the primary output of the
combined circuit.

We now show how a DQBF formulation can be used to decide PEC.
Consider a PEC problem with black boxes BB1; : : : ;BBn. We first construct

the quantifier prefix of the DQBF. The primary inputs x and the black box inputs
I1; : : : ; In are universally quantified, all other variables are existentially quantified.
The dependency set of black box outputs yi contains exactly the inputs Ii of BBi.
Hence the quantifier prefix is

8x8I1 : : :8In9y1.I1/ : : : 9ym.Im/ :

If the black boxes are not directly connected to the primary inputs but to internal
signals, we have to take into account that not all possible combinations of values
may arrive at the inputs of the black boxes. Since we use a universal quantification
for the black box inputs we have to ensure that our formula is satisfied if the
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value of the black box inputs Ii deviates from the values obtained as a function
Fi.x; I1; : : : ; Ii�1/.

'.x; I1; : : : ; In; y1; : : : ; yn/ WD

 
n̂

iD1

Ii � Fi

!

) inv.x; y1; : : : ; yn/ :

This formula is not necessarily given in CNF. By applying Tseitin transforma-
tion [32], which is essentially introducing auxiliary variables for the internal signals
of the circuit, one can obtain a CNF '0 that is equisatisfiable to ' and whose size
is linear in the size of '. Let a be the vector of these auxiliary variables, which are
existentially quantified in the quantifier prefix. As their values are implied by the
values of the variables in their input cone, we can use as their dependency sets either
the universal variables in their input cone or the set of all universal variables (or any
set in between). We prefer making the Tseitin variables depend on all universal
variables, because this typically leads to DQBFs that are easier to solve.

The resulting DQBF is:

 WD 8x8I1 : : :8In9y1.I1/ : : : 9yn.In/9a.x; I1; : : : ; In/ W

'0.x; I1; : : : ; In; y1; : : : ; yn; a/ :

This formula  is satisfied iff we can replace all yi.Ii/ with Skolem functions
si.Ii/ such that '0 becomes a tautology. The Skolem functions si exist if and only if
there are implementations for the black boxes BBi of the PEC, such that the PEC is
satisfied. Therefore any PEC can be translated with linear effort into a DQBF and
the PEC is satisfied iff the DQBF is satisfied.

It is easy to see that there is also the converse transformation [19]: Each DQBF
can be turned into a PEC, having one black box for each existential variable such
that the PEC is realizable iff the DQBF is satisfiable. This implies that PEC is
NEXPTIME-complete.

3.2 Sequential Circuits

For incomplete sequential circuits with multiple combinational or bounded-memory
black boxes, we investigate the following problem:

Definition 4 The realizability problem for incomplete sequential circuits (RISC)
is defined as follows: Given an incomplete sequential circuit with multiple com-
binational (or bounded-memory) black boxes and an invariant property, are there
implementations of the black boxes such that in the complete circuit the invariant
holds at all times?
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To decide RISC, one can apply a generalization of ideas described in [4] for the
synthesis of controllers (which are in fact single black boxes with access to all state
bits and all primary circuit inputs).

According to the notations introduced in the previous section, let s denote the
variables encoding the current state of the circuit, s 0 the next state, and x the
primary inputs. The formulas F1; : : : ;Fn describe the input cones of the black boxes,
I1; : : : ; In their inputs, y1; : : : ; yn their outputs, and R is the next state function of the
circuit. Additionally we assume that init represents the circuit’s initial state(s) and
inv its states that satisfy the invariant.

Definition 5 A subset W � S is a winning set if all states in W satisfy the invariant
and, for all values of the primary inputs, the black boxes can ensure (by computing
appropriate values) that the successor state is again in W.

A given RISC is realizable if there is a winning set that includes the initial state
of the circuit. This can be formulated as a DQBF. To encode the winning sets, we
introduce two existential variables w and w0; w depends on the current state and is
supposed to be true for a state s if s is in the winning set. The variable w0 depends on
the next state variables s 0 and has the same Skolem function as w (but defined over
s 0 instead of s). We ensure that w and w0 have the same semantics by the condition�
s � s 0 ) w � w0

�
.

Similar to the combinational case, we have to take into account that the black
boxes are typically not directly connected to the primary inputs, but to internal
signals. This is done by restricting the requirement that the successor state is again
a winning state to the case when the black box inputs are assigned consistently with
the values computed by their input cones.

Theorem 1 Given a RISC as defined above, the following DQBF is satisfied if and
only if the RISC is realizable:

8s8s 08x8I1 : : :8In 9y1.I1/ : : : 9yn.In/ 9w.s/ 9w0.s 0/ W
�
init) w

�
^
�
w) inv

�
^
�
s � s 0 ) w � w0

�

^
��

w ^
n̂

iD1

Ii � Fi ^ s 0 � R
�
) w0

�
:

Theorem 2 RISC is NEXPTIME-complete.

Proof The reduction to DQBF above shows that RISC is in NEXPTIME. To show
the hardness, we give a reduction from DQBF to RISC. First we transform the
DQBF into an incomplete combinational circuit as shown in [18] such that the
output of the circuit is constantly 1 iff the DQBF is satisfied. We now turn this
combinational circuit into a sequential circuit with two states by storing the output of
the combinational circuit in a 1-bit flipflop s. The initial state is s � 1, the invariant
is given by s � 1. The original DQBF is satisfied iff the unsafe state 0 can be made
unreachable by appropriate black box implementations. ut
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Fig. 7.3 Sequential circuit with two black boxes
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Fig. 7.4 The same sequential circuit as in Fig. 7.3, but with a single black box

Example 2 We illustrate the solution of RISC using two incomplete circuits in
Figs. 7.3 and 7.4. The circuits are simple, but still illustrate the basic idea. We first
start with the circuit in Fig. 7.3. The sequential circuit in Fig. 7.3 consists of two
parts. The first part on the left can be seen as the specification for a simple sequential
circuit: There are two bit streams applied to the inputs bit1 and bit2. The circuit
computes the parities of the bit streams applied to bit1 and bit2 and outputs 1 iff the
parity for bit stream bit1 is smaller or equal to the parity for bit stream bit2. The right-
hand side shows a given architecture for an implementation with two black boxes,
one reading bit stream bit1 and the other reading bit stream bit2. The outputs of the
black boxes are connected by an equivalence gate. Then the output of the overall
circuit is computed by an equivalence gate connecting the outputs of specification
and incomplete implementation. We require the invariant property that the output
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of the overall circuit is 1 at all times, i.e., that the black boxes are implemented in
a way such that the implementation part agrees with the specification part. For this
simple example it is easy to see that a corresponding implementation does not exist,
even for black boxes with unbounded memory. Here we use our method where the
number of flip flops for each black box is restricted to one. Figure 7.3 already shows
the transformed circuit where the memory is extracted from the black boxes.

Applying Theorem 1, we obtain the following formula parts:

• initial state:

init WD .:s1 ^ :s2 ^ :i1 ^ :i2/

• transition relation:

trans WD .s0
1 � s1 ˚ bit1/ ^ .s

0
2 � s2 ˚ bit1/

^ .i01 � y12/ ^ .i
0
2 � y22/

• invariant:

inv WD
�
:s1 _ s2/ � .y

1
1 � y12/

�

Putting these parts together yields the following DQBF:

8bit18bit28s18s0
18s28s0

28i18i018i28i02

9y11.i1; bit1/9y
1
2.i1; bit1/9y

2
1.i2; bit2/9y

2
2.i2; bit2/

9w.s1; s2; i1; i2/9w
0.s0

1; s
0
2; i

0
1; i

0
2/ W

.init) w/ ^ .w) inv/ ^
�
.w ^ trans/) w0

�

^
�
..s1 � s0

1/ ^ .s2 � s0
2/ ^ .i1 � i01/ ^ .i2 � i02//) .w � w0/

�

By applying a DQBF solver, one can verify that this formula is unsatisfiable,
meaning that the design in Fig. 7.3 is not realizable.

Now consider the circuit in Fig. 7.4. It differs from the design in Fig. 7.3 only in
the black boxes: Both black boxes can read both input signals bit1 and bit2. Thus, the
black boxes can equivalently be merged into one as shown in Fig. 7.4. It is easy to
see that this implementation, which does not pay attention to the exact architecture
by disregarding the interface of the black boxes, is now realizable. More precisely,
it is realizable if we assume that the black box with bounded memory has at least
2 memory cells at its disposal. In Fig. 7.4 we depict the incomplete circuit with
two memory cells extracted from the black box. Using our approach we can indeed
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prove realizability. The formula differs only in the dependency sets of the black
box outputs: Dy11

D Dy12
D Dy21

D Dy22
D fbit1; bit2; i1; i2g. Now the formula is

satisfiable. The following Skolem functions turn the matrix into a tautology:

Variable y11 y12 y21 y22 w w0

Skolem function 1 bit1 ˚ i1 :i1 _ i2 bit2 ˚ i2 1 1

Using these Skolem functions, the two flipflops in the right half store the same
values as the two flipflops in the left half, i.e., s1 D i1 and s2 D i2. The equivalence
y11 � y12 corresponds to 1 � .:i1 _ i2/, which is the same as i1 	 i2. Therefore the
design is realizable.

For both incomplete circuits, our solver HQS [20] solved the DQBF in at most
0.1 s.

We can conclude that it is necessary to take the precise interfaces of the black
boxes into account in order to obtain a valid answer whether the design is realizable.

4 Solving DQBFs

Elimination-based DQBF solvers like HQS [20, 33] apply a series of satisfiability-
preserving transformation steps to the formula until a SAT or QBF problem results,
which can be solved by an arbitrary SAT or QBF solver. As a pure yes/no answer
is not satisfactory when solving analysis problems as presented in the previous
section, we provide the main ideas how Skolem functions can be extracted from
the solution process. More details can be found in [34, 35]. This extraction proceeds
in the reverse order of transformation, starting with (constant) Skolem functions for
the final SAT problem, which correspond to a satisfying assignment.

4.1 Transformation Steps

The central operation of elimination-based solvers is the elimination of existential
and universal variables from the formula. QBF solvers can eliminate variables in
the order given by the quantifier prefix (starting with the inner-most variable block).
Because there is no linear order on the variables in a DQBF, this is typically no
longer possible.

Lemma 1 Let  D Q W � be a DQBF and y 2 V9
 an existential variable which

depends on all universal variables. Then is equisatisfiable to 0 WD Qnf9y.Dy/g W

�Œ0=y� _ �Œ1=y�.
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If s 
0

z for z 2 V9
 0 are Skolem functions for the formula  0, obtained by

eliminating y 2 V9
 , we set s y WD �Œ1=y�Œs 

0

z =z� and s z WD s 
0

z for z ¤ y. This
yields Skolem functions for  [34].

The elimination of universal variables in solvers like HQS [20] is done by
universal expansion [2, 7, 8, 19]. This is applicable even if some existential variables
depend on the expanded universal one.

Lemma 2 For a DQBF  D 8x1 : : :8xn9y1.Dy1 / : : : 9ym.Dym/ W ' with Exi D˚
yj 2 V9

 

ˇ
ˇ xi 2 Dyj/

�
, the universal expansion w. r. t. variable xi 2 V8

 , is defined by

�
Q n fxig

�
[
˚
9y0

j.Dyj n fxig/
ˇ
ˇ yj 2 Exi

�
W

'Œ1=xi� ^ 'Œ0=xi�Œy
0
j=yj for all yj 2 Exi � :

That means, when eliminating a universal variable x 2 V8
 , we have to copy all

existential variables y 2 V9
 that depend on x.

Assume that s 
0

z for z 2 V9
 0 are Skolem functions for  0. Then s y WD .x^ s 

0

y0 /_

.:x^ s 
0

y / for y 2 V9
 with x 2 Dy and s z WD s 

0

y for z 2 V9
 with x … Dz are Skolem

functions for  [34].
In principle, these two operations suffice to turn each DQBF into an (expo-

nentially larger) SAT problem. In order to reduce computation time and memory
consumption, pre- and inprocessing steps have turned out to be essential.

Standard operations are the detection of unit and pure literals. A literal ` is unit if
.`/ is a clause in the formula. A literal ` is pure if:` does not appear in the formula.
In both cases var.`/ can be replaced by a constant (which is also the Skolem function
for that variable). Further preprocessing techniques like blocked clause elimination,
the identification of equivalent variables, and structure extraction have been devised
for DQBF [33, 36]. All of them are supported when Skolem functions are to be
computed. We refer to [34] for more details.

4.2 Elimination Sets

Since the expansion of all universal variables leads to an exponentially larger SAT
instance, this is typically not feasible. Instead, the solver HQS eliminates variables
only until a QBF is obtained, which can be solved by an arbitrary QBF solver.
The central problem is to determine a minimum set of universal variables whose
elimination turns the DQBF into a QBF [20]. To solve this, we can use the following
dependency graph:
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Definition 6 Let  be a DQBF. Its dependency graph G D .V9
 ;E / is a directed

graph with the existential variables as its nodes and edges E D f.y; z/ 2 V9
 �

V9
 jDy 6� Dzg.

It can be used to recognize if a DQBF is actually a QBF:

Lemma 3 Let  be a DQBF. Its dependency graph G is acyclic iff  has an
equivalent QBF prefix.
That means we have to find a minimum set U � V8

 of universal variables whose
elimination makes G acyclic. One can show that for making the graph acyclic
by eliminating universal variables, it suffices to consider the cycles of length 2.
The selection of variables can be done using a MAXSAT solver: for each universal
variable x a variable mx is created in the MAXSAT solver such that mx D 1 means
that x needs to be eliminated. Soft clauses are used to get an assignment with a
minimum number of variables assigned to 1. Hard clauses enforce that for all y; z 2
V9
 , y ¤ z, either all variables in Dy n Dz or in Dz n Dy are eliminated.

The variables in U are then eliminated, ordered according to the number of
existential variables that depend upon them.

For more details, including formal correctness proofs, we refer the reader to [20].

4.3 Solver Overview

Figure 7.5 shows the structure of the general-purpose DQBF solver HQS. The input
is a DQBF in CNF. After preprocessing, which is done on the CNF, gate detection
is applied, essentially undoing Tseitin transformation and removing the existential
variables introduced by the CNF transformation. The result is a representation of the

Fig. 7.5 Structure of the solver (adapted from [20])
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formula as an And-Inverter graph (AIG), on which the further steps are performed.
Before the actual elimination loop starts, we determine a minimum elimination set
as described above.

Within the elimination loop, we check for unit and pure variables, which
can be replaced by constants. This is done on the AIG using syntactic checks.
Additionally, all existential variables are eliminated for which this is possible.
Otherwise they would double for each eliminated universal variable. Then we
check if the dependency graph has already become acyclic. If this is the case we
generate the corresponding QBF prefix and solve the formula using the QBF solver
AIGsolve [27], which operates directly on AIGs. Otherwise we select the next
universal variable to eliminate and expand it.

5 Experimental Results

In the following, we present preliminary experimental results for incomplete
combinational circuits. To solve the DQBFs, we use our elimination-based DQBF
solver HQS [20], which was described briefly in the previous section.

We have extended HQS by the possibility to compute Skolem functions for
satisfied DQBFs. The computation of Skolem functions works in two phases:
During the solution process we collect the necessary data and store it on a stack.
When the satisfiability of the formula has been determined, we free the other data
structures of the solver and extract the Skolem functions from the collected data.
We can apply don’t-care minimization to the Skolem functions, based on Craig
interpolants [24], and use the tool ABC [6] for further minimization of the Skolem
functions’ AIG representation.

All experiments were run on one Intel Xeon E5-2650v2 CPU core at 2.60 GHz
clock frequency and 64 GB of main memory under Ubuntu Linux as operating
system. We aborted all experiments which either took more than 1000 s CPU
time or more than 8 GB (D 230 bytes) of main memory. As benchmarks we used
4318 DQBF instances from different sources. Most of them are DQBFs resulting
from equivalence checking of incomplete combinational circuits [15, 17, 19]. The
remaining ones are controller synthesis problems [4]. The sizes of the circuits
range from a few hundred to a few thousand gates. The incomplete circuits contain
one to five randomly selected black boxes. The controller synthesis problems are
essentially sequential circuits with a single black box.

We first compare the efficiency of HQS with the only other available DQBF
solver iDQ [17], which solves the formula by iteratively solving SAT instances
generated from the DQBF. Both solvers were run after preprocessing the DQBFs.
Since iDQ relies on a formula in CNF, while HQS does not, different preprocessing
operations had to be applied: besides standard techniques like the detection of
unit and pure literals and equivalent variables, preprocessing for HQS applies gate
detection, which reverses Tseitin transformation in order to reconstruct the original
circuit. This is not possible in case of iDQ. Instead, for iDQ, we apply blocked clause
elimination and variable elimination by resolution, which are both not beneficial for
HQS. We refer the reader to [33, 36] for more details on DQBF preprocessing.
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Fig. 7.6 Computation times (in seconds) of HQS and iDQ (both with preprocessing) on PEC
instances [15, 17, 20] (left) and instances from controller synthesis [4] (right)

Figure 7.6 shows the results for incomplete combinational circuits (left,
3686 instances) and instances from controller synthesis (right, 89 instances)
for those instances that could be solved by at least one solver; the remaining
543 instances could not be solved. The controller synthesis instances are incomplete
sequential circuits with a single black box that can read all state bits and all primary
inputs. We can observe in both cases, that HQS (with few exceptions) is more
efficient and solves considerably more instances than iDQ. A closer look shows
that the computation time and memory consumption is strongly influenced by the
number of universal variables which have to be eliminated in order to obtain an
equisatisfiable QBF. This is caused by the copies of the existential variables that are
created when eliminating universal variables.

In spite of the improvements made during the last few years, the size of the
instances that can effectively be solved is smaller by roughly one to two orders
of magnitude than solvable QBF instances—strongly dependent on the number of
variable copies which are created to obtain an equisatisfiable QBF.

The second set of experiments concerns the computation of Skolem functions
for satisfiable DQBFs. We first measured the overhead of collecting the necessary
data for computing Skolem functions during the solution process, i.e., until the truth
value of the formula has been determined. The results are shown in Fig. 7.7. We
can observe that the overhead is in most cases negligible—in a very few cases, the
memory consumption is even reduced. The reason for this behavior is that within
the AIG package different optimizations like rewriting are triggered when certain
thresholds are exceeded. This can lead to smaller AIGs and thus save memory (and
computation time for the subsequent operations).

For all 720 satisfiable instances we were able to solve without Skolem functions,
we could also compute Skolem functions. For these instances we compare the sizes
of the Skolem functions with and without optimizations using interpolation and
ABC. Figure 7.8 displays the results. In many cases, we can reduce the sizes of
the Skolem functions considerably, sometimes by up to two orders of magnitude.
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Fig. 7.8 Size of the
computed Skolem functions
with and without
optimizations
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Because QBFs are a special case of DQBFs, we can use HQS to compute Skolem
functions for satisfied QBFs as well. In Fig. 7.9, we compare the sizes of the Skolem
functions generated by HQS with those generated by the state-of-the-art QBF solver
DEPQBF 5.0 [22, 23] for a set of satisfiable QBF instances from the QBF Gallery
20131 and from partial equivalence checking [29] (with a single black box). Since
HQS (and in particular its preprocessor) is not optimized for solving QBF instances,
we abstain from a detailed comparison of the running times of HQS and DEPQBF.
DEPQBF is often (but not always) faster than HQS. In a few cases, the generation
of Skolem functions with DEPQBF failed, because the necessary resolution proof
became too large (we aborted DEPQBF when the size of the dumped resolution
proof exceeded 20 GB).

1See http://www.kr.tuwien.ac.at/events/qbfgallery2013/.

http://www.kr.tuwien.ac.at/events/qbfgallery2013/
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Fig. 7.9 Comparison of the
sizes of Skolem functions
from HQS and from DEPQBF
on QBF instances. The
instances are ordered
according to the size of
DEPQBF’s Skolem functions
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Figure 7.9 shows the sizes of the Skolem functions computed by DEPQBF and
by HQS (with interpolation and ABC). To enable a fair comparison, we also applied
ABC with the same commands to the Skolem functions generated using DEPQBF.
We can observe that HQS’ Skolem functions are in most cases smaller (often
significantly) than those obtained from DEPQBF.

In summary, the experiments show that HQS is able to solve the DQBFs resulting
from small to medium-sized circuits effectively. We can not only obtain a pure
yes/no answer, but also Skolem functions for the satisfiable instances without
significant overhead. On satisfiable QBF instances, the size of the Skolem functions
computed by HQS is similar, in many cases smaller in comparison to Skolem
functions computed by DEPQBF.

As a side remark, the example provided in Sect. 3 can easily be solved with a
recent DQBF solver within fractions of a second. Benchmarks dealing with the
synthesis of multiple black boxes in sequential circuits currently do not exist, but
would be interesting to have.

6 Conclusion and Open Challenges

This paper has shown that DQBF formulations allow to express the realizability of
invariant properties for incomplete combinational and sequential circuits with an
arbitrary number of black boxes in a natural way. First prototypic solvers allow not
only to solve the resulting DQBFs for small to medium-sized circuits, but also to
extract Skolem functions, which can serve as implementations of the missing parts.
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Still, many challenges remain: The scalability of the solvers has to be improved
and might be tuned towards specific applications. More powerful preprocessing
techniques are necessary as well as improvements in the solver core. We hope
that with the availability of solvers more applications of these techniques become
feasible (distributed controller synthesis) or are newly discovered thereby inspiring
further improvements of the solvers—just as it was for propositional SAT solving
and is for QBF solving.
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Chapter 8
Progressive Generation of Canonical
Irredundant Sums of Products
Using a SAT Solver

Ana Petkovska, Alan Mishchenko, David Novo, Muhsen Owaida,
and Paolo Ienne

1 Introduction

Minimization of the two-level Sum Of Products (SOP) representation is well-studied
due to the wide use of SOPs. In the past, research in SOPs was motivated by
mapping into Programmable Logic Arrays (PLAs); now SOPs are supported in many
tools for logic optimization and are used for multi-level logic synthesis [3, 25],
delay optimization [20], test generation [9], but they are also used for fuzzy
modelling [10], data compression [1], photonic design automation [5], and in other
areas.

These publications show that, contrary to the popular belief, research in SOP
minimization and its applications is not outdated. As an example, a recent work uses
SOPs for delay optimization in technology independent synthesis and technology
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mapping [20]. In this work, improved quality is achieved by enumerating different
SOPs of the local functions of the nodes, factoring them, and finding circuit
structures balanced for delay.

Another important application of SOP minimization, which is targeted and used
as case-study in this paper, is global circuit restructuring. If a multi-level circuit
structure for a Boolean function is not available, or if the circuit structure is with
poor quality, then a new circuit structure with desirable properties, such as low
area, short delay, good testability, or improved implicativity (if the circuit represents
constraints in a SAT solver), should be derived. The best known and widely used
method for global circuit restructuring is computing SOPs of the output functions in
terms of inputs, factoring the multi-output SOPs and deriving a new circuit structure
from the shared factored form. The main drawback of this method is the lack of
scalability of the algorithm for SOP generation and minimization.

Starting with the Quine-McCluskey algorithm [16], many algorithms and heuris-
tics for SOP generation and minimization have been developed. Prior research falls
into two broad categories: BDD-based algorithms and ESPRESSO-style algorithms.

To generate an SOP for a given Boolean function, techniques based on
Binary Decision Diagrams (BDDs), such as those of Minato-Moreale [18] and
SCHERZO [6, 7], first build a BDD or a Zero-suppressed Decision Diagram (ZDD),
then minimize the BDD/ZDD size by using some heuristic approach to obtain a
smaller SOP, and finally convert the BDD/ZDD to an SOP. If building a BDD is
feasible, then an SOP, even a suboptimal one, can be generated. However, for some
circuits, the BDD construction suffers from the BDD memory explosion problem—
the BDD size is exponential in the number of input variables—and thus, using
BDDs is often impractical. Additional drawback is that BDDs are incompatible
with incremental applications since they require building a BDD for the complete
circuit before converting it to an SOP. Despite these issues, to our knowledge, the
BDD-based method for SOP generation and minimization is used in most of the
industrial tools, and therefore scalability improvements of it are highly desirable.

On the other hand, the ESPRESSO-style algorithms are inspired by the first
version of ESPRESSO [3]. For example, the logic minimizer ESPRESSO-MV [26]
is a faster and more efficient version of ESPRESSO. But, although these techniques
avoid the memory explosion problem inherent in the use of BDDs, they still incur
impractical runtimes for large Boolean functions and only minimize existing SOPs.

Alternatively, recent progress in the performance of Boolean satisfiability (SAT)
solvers enabled using SAT in various domains of logic synthesis and verification
despite their worst-case exponential runtime. Thus, it has become a trend to replace
BDD-based methods with SAT-based ones. For example, this was done for model
checking [17], functional dependency [11], functional decomposition [14, 15], and
logic don’t-care-based optimization [19]. Existing methods for SOP generation
using SAT solvers are based on enumeration of satisfying assignments [21]. On
the other hand, Sapra et al. [27] proposed using a SAT solver to implement part
of ESPRESSO’s procedures for SOP minimization in order to speed them up. But,
since they largely follow the traditional ESPRESSO style of SOP minimization,
they operate only on existing SOPs and do not consider generating a new SOP
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from a multi-level representation of the Boolean function. Moreover, its runtime
and end results significantly depend on the SOP received as input. To the best of our
knowledge, there is still no complete SAT-based method for SOP generation similar
to the Irredundant Sum-of-Product (ISOP) algorithm for incompletely-specified
functions using BDDs [18].

Accordingly, the main contribution of this paper is to propose a new engine for
SOP generation and minimization that is completely based on SAT solvers. Our
method generates the SOP progressively, building it cube by cube. We guarantee
that the generated SOPs are irredundant, meaning that no literal and no cube
can be deleted without changing the function. As we show in the result section,
our algorithm generates SOPs with the size similar to that of the BDD-based
method [18]. Interestingly, for some circuits, we generate smaller SOPs (up to
10%), which is useful in practical applications. For example, when a multi-level
description of the circuit is built using an SOP produced by the proposed SAT-based
method, the area-delay product of the resulting circuit, assuming unit-area and unit-
delay model, often decreases (up to 27%), compared to global restructuring using
BDDs.

Two main features characterize our SAT-based SOP generation and make it
desirable in various domains.

First, we generate an SOP progressively, unlike BDD-based methods that attempt
to construct a complete SOP at once. The progressive computation allows generation
of a partial SOP for circuits whose complete SOP cannot be computed given
the resource limits. The partial SOPs can be exploited by other applications that
do not require the complete circuit functionality, but work with partially defined
functions [4, 30]. Moreover, for circuits with large SOPs, the progressive generation
allows us to predict whether it is feasible to build an SOP for a circuit, and to check
if the SOP size is within the limits of the methods that are going to use it. For this,
at any moment, we can retrieve the number of outputs for which the SOP is already
computed, as well as the finished SOP portion of the currently processed output. We
can also easily compute an estimate or a lower-bound of the percentage of covered
minterms, considering uniform distribution of minterms in the space or considering
the size of the truth table, respectively. In contrast, the termination time and the
quality of results of the BDD-based methods are unpredictable since the complete
BDD has to be built before converting it to an SOP.

Second, counter-intuitive as it may sound, we show that the SAT-based com-
putation can generate canonical SOPs. To this end, we combine (1) an algorithm
that, under a given variable order, generates consecutive SAT assignments in
lexicographic order [24], considering each assignment as integer value, and (2) a
deterministic algorithm that expands the received assignments into cubes. For a
given function and a variable order, the assignments (i.e., the minterms) are always
generated in the same order, and each assignment always results in the same cube.
Thus, the resulting SOP is canonical—it is unique and independent of the input
implementation of the function. The canonical nature of the resulting SOPs can be
useful in those domains where previously only BDDs could be used. For example,
applications as constraint solving [31] and random assignment generation [22] can
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benefit from the canonicity if we iterate repeated generation of random valuation of
inputs and get the closest SAT assignment, as it is done in the proposed canonical
SOP generation method. Also, the canonicity brings regularity in the SOPs, and thus
the results after using algorithms for factoring [25] are in some cases better.

In the rest of the paper, we focus on completely-specified functions, but the
given SAT-based formulation works for incompletely-specified functions without
any changes. Indeed, after extracting the first cube and blocking it in the on-set of
the function, the rest of the computation is performed for the incompletely-specified
functions, even if the initial function was completely specified.

The rest of the paper is organized as follows. Section 2 gives background on
Boolean functions, the SOP representation, and the satisfiability problem. Next, we
describe our algorithm for SAT-based progressive generation of irredundant SOPs
in Sect. 3. Section 4 gives our experimental setup and discusses the experimental
results. Finally, we conclude and present ideas for future work in Sect. 5.

2 Background Information

In this section, we define the terminology associated with Boolean functions and the
SOP representation, as well as with the satisfiability problem.

2.1 Boolean Functions

For a variable v, a positive literal represents the variable v, while the negative literal
represents its negation Nv. A cube, or a product, c, is a Boolean product (AND, �) of
literals, c D l1 � � � � � lk. If a variable is not represented by a negative or a positive
literal in a cube, then it is represented by a don’t-care (�), meaning that it can take
both values 0 and 1. A cube with i don’t-cares covers 2i minterms. A minterm is
the smallest cube in which every variable is represented by either a negative or a
positive literal.

Let f .X/ W Bn ! f0; 1;�g, B 2 f0; 1g, be an incompletely-specified Boolean
function of n variables X D fx1; : : : ; xng. The terms function and circuit are used
interchangeably in this paper. The support set of f is the subset of variables that
determine the output value of the function f . The set of minterms for which f
evaluates to 1 defines the on-set of f . Similarly, the minterms for which f evaluates
to 0 and don’t-care define the off-set and the don’t-care-set, respectively. In a multi-
output function F D ff1; : : : fmg, each output fi, 1 	 i 	 m, has its own support set,
on-set, off-set, and don’t-care-set associated with it.

For simplicity, we define the following terms for single-output functions,
although our algorithm can handle multi-output functions. Any Boolean function
can be represented as a two-level sum of products (SOP), which is a Boolean
sum (OR, C) of cubes, S D c1 C � � � C ck. Assume that a Boolean function f is
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represented as an SOP. A cube is prime, if no literal can be removed from the cube
without changing the value that the cube implies for f . A cube that is not prime
can be expanded by substituting at least one literal with a don’t-care. The SOP is
irredundant if each cube is prime and no cube can be deleted without changing the
function.

A canonical representation is a unique representation for a function under certain
conditions. For example, given a Boolean function and a fixed input variable order, a
canonical SOP is an SOP independent of the original representation of the function
given to the SAT solver, of the CNF algorithm, and of the used SAT solver. In a
similar way, BDDs generate a canonical SOP that only depends on an input variable
order [18].

2.2 Boolean Satisfiability

A disjunction (OR, C) of literals forms a clause, t D l1 C � � � C lk. A propositional
formula is a logic expression defined over variables that take values in the set f0, 1g.
To solve a SAT problem, a propositional formula is converted into its Conjunctive
Normal Form (CNF) as a conjunction (AND, �) of clauses, F D t1 �� � ��tk. Algorithms
such as the Tseitin transformation [29] convert a Boolean function into a set of CNF
clauses.

A satisfiability (SAT) problem is a decision problem that takes a propositional
formula in CNF form and returns that the formula is satisfiable (SAT) if there
is an assignment of the variables from the formula for which the CNF evaluates
to 1. Otherwise, the propositional formula is unsatisfiable (UNSAT). A program
that solves SAT problems is called a SAT solver. SAT solvers provide a satisfying
assignment when the problem is satisfiable.

Modern SAT solvers can determine the satisfiability of a problem under given
assumptions. Assumptions are propositions that are given as input to the SAT solver
for a specific single invocation of the SAT solver and have to be satisfied for the
problem to be SAT.

Example 1 For the function f .x1; x2; x3/ D .x1 C x2/Nx3, which is satisfiable for
the following assignments of the inputs f.0; 1; 0/; .1; 0; 0/; .1; 1; 0/g, a SAT solver
without assumptions can return any of the given assignments. But, if we give as
input to the SAT solver the assumption x1 D 1, then it returns either .1; 0; 0/ or
.1; 1; 0/, because those two assignments satisfy the given assumption.

A lexicographic satisfiability (LEXSAT) problem is a SAT problem that takes a
propositional formula in CNF form and, given a variable order, returns a satisfying
variable assignment whose integer value under the given variable order is minimum
(maximum) among all satisfying assignments. The returned satisfying assignment is
called a LEXSAT assignment. If the formula has no satisfying assignments, LEXSAT
proves it unsatisfiable. There are several solutions for the LEXSAT problem [12, 23,
24]. For our work, we use an efficient algorithm for generating consecutive LEXSAT
assignments [24].
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Example 2 For the function f .x1; x2; x3/ from Example 1, LEXSAT returns either
the lexicographically smallest assignment .0; 1; 0/ or the lexicographically greatest
assignment .1; 1; 0/, depending on the user preference.

3 SAT-Based SOP Generation

In this section, we describe our SAT-based algorithm that progressively generates an
irredundant SOP for a single-output function. For multi-output circuits, each output
is treated separately. In this paper, we focus on completely-specified functions, but
the algorithm can be easily used for incompletely-specified functions by providing
both the on-set and off-set as input to the algorithm. In the case of a completely-
specified function one of them is derived by complementing the other.

The presented algorithm iteratively generates minterms, expands them into prime
cubes, and adds these cubes to the SOP. The SAT-based heuristics for minterm
generation and cube expansion are described in Sects. 3.1 and 3.2, respectively.
Finally, to guarantee that the resulting SOP is irredundant, it is post-processed to
remove redundant cubes, as described in Sect. 3.3. Additionally, Sect. 3.4 describes
several techniques that reduce the runtime.

The algorithm can be implemented with one SAT solver parameterized to store
both on-set and off-set. Alternatively, it can use two solvers, one for on-set and
one for off-set. In our implementation of the algorithm, we use four different SAT
solvers: for both on-set and off-set, one is used to generate satisfying assignments,
the other to expand assignments to cubes. By employing four solvers, we ensure
that assignment generation and expansion do not interact with each other during the
SOP computation.

The procedures described in the following subsections assume that we are
generating the on-set SOP. The same procedures are used to generate the off-set
SOP, by substituting the on-set SAT solver with an off-set SAT solver and vice
versa.

3.1 Generation of Minterms

In order to generate minterms for the on-set of a function f by using a SAT solver, we
initialize a SAT solver with the CNF of f . Then, to discard the trivial case when the
function has a constant on-set, we solve the SAT problem by asserting that f D 0. If
the problem is UNSAT, then f is a constant, and we return an SOP with one constant
cube. Otherwise, if the problem is SAT, we continue with the following methods for
minterm generation. Figure 8.1 shows the flowchart of these methods, as well as
their connection with the other methods of the SOP generation algorithm.
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Fig. 8.1 Flowchart of the algorithm for minterm generation. Minterms are generated either as
SAT or LEXSAT assignments. If the problem is SAT, the generated minterm is passed to the cube
expansion algorithm to generate a cube that would cover the minterm. Once all minterms are
covered by the generated cubes, the SAT problem becomes UNSAT, and the SOP is returned after
removing the redundant cubes

Generation of a Non-canonical SOP When the problem is SAT, an assignment for
the inputs is returned for which the function evaluates to 1. From the assignment, we
can generate a minterm for the function f in which the variables assigned to 0 and
1 are represented with the negative and positive literal, respectively. For example,
for a function f .x; y; z/, the assignment .1; 1; 0/ implies the minterm xyNz. Once a
minterm is obtained, we expand it into a cube using the heuristic procedure from
Sect. 3.2. Next, we add the cube with its literals complemented to the SAT solver as
a blocking clause, which is an additional clause that blocks known solutions of the
SAT problem. This allows to generate a new minterm that is not covered by any of
the previously generated cubes. While the problem is SAT, we iteratively obtain a
minterm, expand it to a cube, and add the cube to both the SAT solver and the SOP.
The unsatisfiability of the problem indicates that the generated SOP is complete and
covers all on-set minterms.

Generation of a Canonical SOP Generating minterms from satisfying assign-
ments received from a SAT solver does not guarantee canonicity, since SAT solvers
return minterms in a non-deterministic order that depends on the design of the
solver and the CNF generated for the function. Thus, to ensure canonicity, we
iteratively use a binary search-based LEXSAT algorithm, called BINARY [24], that
generates minterms in a lexicographic order that is unique for a given variable
order. The algorithm BINARY receives as input a potential assignment, which is the
lexicographically smallest assignment that might be satisfying, that is either the last
generated minterm or, initially, an assignment with all 0s. Then, BINARY tries to
verify and fix the assignment of each variable defined with the potential assignment
starting from the leftmost variables and moving to right. We also use the proposed
methods for runtime improvement [24]: skip verifying the leading 1s, correcting the
initial potential assignment, and profiling the success of the first SAT call. Similarly
to the non-canonical SOPs, once we obtain a minterm, we expand it into a cube and
add it to the SAT solver as a blocking clause.

Example 3 For example, assume that for the function f .x1; : : : ; x8/, the last
generated minterm .1; 1; 0; 0; 0; 0; 0; 1/ is received as an initial potential assignment.
Since this minterm is covered by the last cube, this assignment is not satisfying,
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Fig. 8.2 Flowchart of the algorithm for expansion of minterms into cubes. The algorithm for
canonical expansion ensures that all generated cubes are prime. After a cube is generated, it is
added as a blocking clause to the SAT solver used for minterm generation, and another minterm is
generated

so we can increase its value for 1 to get the smallest assignment that might be
satisfying .1; 1; 0; 0; 0; 0; 1; 0/. Next, we can skip verifying the assignments x1 D 1
and x2 D 1, because the next lexicographically smallest assignment has to start
with the same leading 1s. Thus, we should only check the assignments for xi, for
3 	 i 	 8. Due to using binary search, with the first SAT call we assume half
of the unfixed assignments, and we give to the on-set SAT solver the assumptions
.x1; : : : ; x5/ D .1; 1; 0; 0; 0/. Assume that the problem was satisfiable and the SAT
solver returned the assignment .1; 1; 0; 0; 0; 0; 1; 1/. This assignment proves that an
on-set minterm with the assumed values exists, but moreover we can learn that the
assignments from the potential minterm x6 D 0 and x7 D 1 are correct. Next,
to check if the assignment for the last input x8 can be set to 0, we call the SAT
solver with the assumptions .x1; : : : ; x8/ D .1; 1; 0; 0; 0; 0; 1; 0/. If it returns SAT,
we return the potential assignment as a minterm since all assignments are verified
and fixed. Otherwise, we flip x8 to 1 to increase the potential assignment before
returning it.

3.2 Expansion of Minterms into Cubes

In this subsection, we describe our SAT-based procedure that receives a minterm
and transforms it into a prime cube by iteratively removing literals (i.e., substituting
them with don’t-cares). For the on-set SOP, a literal can be removed, if after its
removal all minterms covered by the cube do not overlap with the off-set. Figure 8.2
shows a flowchart of the algorithm.

Canonical Expansion to Prime Cubes The following deterministic algorithm
expands a minterm into a cube by ensuring that, after removing each literal, the
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Fig. 8.3 A Karnaugh map
for the Boolean function
f .x; y; z; t/ D Nxyt C xyz C xNyt
with its prime cubes ci, where
1 � i � 5. The cubes c1, c2,
and c3 are essential and they
compose the minimum SOP
of f

zt
00 01 11 10

00

01

11

10

1 1

1 1

1 1

xy

c 3

c 2

c 1

c 5

c 4

c1 = xyt 

c2 = xyz

c3 = xyt

c4 = yzt

c5 = xzt

cube is covering only on-set minterms. Since the literals are removed always in the
same order, which can be specified by the user, the algorithm is deterministic and
produces canonical cubes if the given minterms are canonical. Thus, to remove a
literal, first, we assume that the literal is removed from the cube, and an off-set SAT
solver is run with assumptions for the remaining literals of the cube. If the problem
is UNSAT, then no minterm covered by the cube belongs to the off-set, so we can
extend the cube by removing this literal. On the other hand, if the problem is SAT,
we cannot extend the cube, since the SAT solver found an off-set minterm that is
covered by the extended cube.

Example 4 Assume that for the function in Fig. 8.3, we received the minterm NxyNzt.
To remove the literal Nx, we would call the off-set SAT solver with the assumptions
.y; z; t/ D .1; 0; 1/. The SAT solver would return SAT, which means that Nx cannot
be removed, because the cube yNzt is covering the off-set minterm xyNzt. However,
if we try to remove the literal Nz by calling the SAT solver with the assumptions
.x; y; t/ D .0; 1; 1/, then we would receive UNSAT because there are no off-set
minterms that satisfy these assumptions, so Nz can be removed to obtain the on-set
cube c1.

Greedy Canonical Cube Expansion To minimize the overlapping of cubes, we
propose to remove literals in two rounds. In the first round, they are removed
greedily, after ensuring that multiple on-set minterms are covered by expanding
each literal.

Example 5 Assume that for the function in Fig. 8.3, the cube c1 was computed and
added to the on-set SAT solver as a blocking clause. Also, assume that as a second
minterm xyzt is generated, which can be extended by removing one of the literals
x, y or t. If we remove x, we will obtain the cube c4 that covers only one additional
minterm with respect to the existing cube c1, but if we remove y or t, we will obtain
c2 or c5, respectively, each of which covers two yet uncovered minterms.
In Example 5, our expansion procedure skips the opportunity to remove the literal x,
and tries to expand other literals if possible. This greedy selection of literals decides
to candidate a literal li for removal, if by removing it, the expanded cube covers
more than one new minterm. To check if this condition is satisfied, we flip li and
provide it, along with the remaining literals of the cube, as assumptions to an on-
set SAT solver in which the already generated cubes are added as blocking clauses.
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If the problem is UNSAT, then we skip removing it temporarily. Otherwise, if the
problem is SAT, then we consider this literal for removal since by removing it we
cover more than one uncovered minterm. Once a literal is a candidate for removal,
we run the algorithm for canonical expansion described above to ensure that it can
be removed.

However, in this first round, we might skip some opportunities for expansion.
Thus, in the second round, for each skipped literal, we execute the algorithm for
canonical expansion. This guarantees that, after the second round, no literal can be
further removed, which means that the cube is prime. Since, we always try to remove
the literals in the same user specified order, this method generates a canonical SOP.

Fast Non-canonical Expansion If generating a canonical SOP is not required,
we can substitute the first round of expansion with a faster method to improve
runtime: If in an off-set SAT solver we assume the values from the received on-
set minterm, the problem is UNSAT and the SAT solver returns the set of literals
used to prove unsatisfiability (procedure “analyse_final” in MiniSAT [8]). Since
the returned literals are sufficient to prove unsatisfiability in an off-set SAT solver,
they construct a cube that covers only on-set minterms, and we can remove literals
that are not returned by the SAT solver. However, the set of remaining literals is not
always minimal, and thus we run additionally the algorithm for canonical expansion
as a second round to obtain a prime cube.

3.3 Removing Redundant Cubes

The cubes expanded with the methods from Sect. 3.2 are prime by construction.
However, by progressively adding cubes to the SAT solver, as described in Sect. 3.1,
we ensure that each cube is irredundant with respect to the preceding cubes, but not
with respect to the whole set of cubes.

Example 6 For the function f from Fig. 8.3, assume that the cubes c1, c5, c2, and c3
are generated in the given order. The cube c5 is irredundant with respect to c1, since
it additionally covers the minterms xyzt and xNyzt, but it is contained in the union of
c2 and c3.

In order to produce an irredundant SOP, after generating all cubes, we iterate
through the cubes to detect and remove redundant ones. First, we initialize a new
SAT solver with clauses for all generated cubes and we assume that all cubes are
required. Then, by using the assumption mechanism, for each cube ci, we check if
there is an assignment for which ci evaluates to 1 while all the other irredundant
cubes evaluate to 0. If the problem is SAT, the cube is irredundant and the SAT
solver returns an assignment that corresponds to a minterm which is covered only
by ci. Otherwise, if the problem is UNSAT, then the cube is redundant, and thus
it is removed from the SOP and is excluded when checking the redundancy of
the following cubes. Since we always try to remove cubes in the order in which
they were generated, this method is deterministic and maintains canonicity when
canonical SOPs are generated.
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Example 7 Considering the cubes from Example 6, to check whether c3 is redun-
dant, we set c3 D 1 by assuming the values x D 1, y D 0 and t D 1. For the assumed
values, the other cubes evaluate to c1 D 0, c2 D 0 and c5 D z. Setting z D 0 leads
to c5 D 0. Thus, the problem is SAT and c3 is irredundant. The returned assignment
.x; y; z; t/ D .1; 0; 0; 1/ defines a minterm xNyNzt that is covered only by c3.

3.4 Improving the Runtime

In this subsection, we present four techniques that improve the runtime of the
algorithm by allowing early termination and by treating some special cases.

Simultaneous On-Set and Off-Set Generation Often, the SOP of the on-set and
off-set differ in size. For example, a three-input function implementing an AND
gate, f .x; y; z/ D xyz, has an on-set SOP, f D Son D xyz with size 1, and an off-
set SOP, Nf D Soff D Nx C Ny C Nz with size 3. Since we want to use the set with a
smaller SOP, we simultaneously generate two SOPs, for both the on-set and off-set,
by generating one cube at a time from each set, and we stop the generation when
one SOP is complete. This way, if one of set is much smaller than the other, we
can avoid the situation when the larger set of cubes has to be completely generated,
before the smaller set is discovered.

Prioritizing Outputs with Large SOPs Before generating SOPs for each output,
we propose to sort outputs by size of their input supports. The outputs with larger
supports are processed first since it is more likely that the SOP generation for these
outputs will exceed resource limits, so we can determine if we should terminate the
computation earlier.

Isomorphic Circuits To benefit from the structure sharing among the circuit out-
puts, we implemented a method that decreases the runtime by detecting isomorphic
outputs. For this, first, we divide the outputs into isomorphic classes. Two outputs
are isomorphic and belong to the same class, if they implement an identical function
using different inputs. Then, for each class, we generate an SOP only for one output,
which is the class representative, and duplicate it for the others. In Sect. 4.2, we show
that this allows effective generation of an SOP only for 16.5% of all combinatorial
outputs and has a big influence on scalability.

CNF Sharing Generating a CNF for each output is time consuming. Thus, to
benefit from the logic sharing among the outputs, we can optionally share one CNF,
which corresponds to the complete circuit. For this, we generate the CNF of the
circuit, and then, for each output, we initialize the SAT solver only with the part of
the CNF for the corresponding output. Besides improving the runtime, as Table 8.1
shows, this option sometimes leads to better results in terms of area-delay product
after global restructuring.
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Table 8.1 Number of benchmarks (out of the 71 used benchmarks) for which activating or
deactivating an option for SATCLP results in the smallest SOP in terms of number of cubes
(columns under “#Cubes”) or the best area-delay product (columns under “Area�Delay”). If
for one benchmark, an identical best result is obtained both when the option is activated and
deactivated, then we count it as a tie

#Cubes Area�Delay

No Yes Tie No Yes Tie

Canonical 7 34 30 28 26 17

Shared CNF 43 1 27 40 13 18

Order PI 45 8 18 57 11 3

Reverse PI 20 15 36 28 21 22

Exploiting Parallelism There are several opportunities where computations are
independent and can be parallelized. First, the computation of the on-set and off-set
SOPs can be executed in parallel. Since now we compute sequentially one cube for
each SOP interchangeably, it is expected that this would decrease the runtime by 2�.
Second, instead of computing the SOP of each output one after the other, we can also
compute each of them in parallel. Finally, for one SOP, we can compute cubes in
parallel by generating minterms from different parts of the Boolean space. However,
in this paper, all computations are done sequentially. Analyzing and exploiting the
effect of parallelism is left for future work.

4 Experimental Results

In this section, we describe our experimental setup and compare the proposed SAT-
based algorithm with a state-of-the-art BDD-based method.

4.1 Experimental Setup

We implemented the SAT-based algorithm described in Sect. 3 as a new command
satclp in ABC [2]. ABC is an open-source tool for logic synthesis, technology
mapping, and formal verification of logic circuits. ABC features an integrated
SAT solver based on an early version of MiniSAT [8] that supports incremental
SAT solving. Furthermore, ABC provides an implementation of the BDD-based
method for SOP generation, namely the BDD construction for a multi-level circuit
(command collapse) and the BDD-based ISOP computation [18] (command sop).
For convenience, in this section, we refer to the SAT-based and BDD-based methods
as SATCLP and BDDCLP, respectively. Finally, ABC allows us to analyze the
area-delay results when the generated SOPs are used to build a new multi-level



8 Progressive Generation of Canonical Irredundant Sums of Products 181

circuit structure. A multi-level network is generated using the fx command [25].
The network is next converted into an And-Inverter Graph (AIG) (command strash),
which is an internal representation of ABC, and optimized with the dc2 command.
The area and delay of the resulting AIGs are compared for different SOP generation
methods.

To evaluate our algorithm, we use the ISCAS’89 benchmarks, a set of large
MCNC benchmarks, a set of nine logic tables from the instruction decoder unit [28]
denoted as LT-DEC, and a set of proprietary industrial benchmarks. The LT-DEC
suite is well suited to demonstrate the factoring gains as circuit size increases [13].
The names of the LT-DEC benchmarks are given in the form “[NPI]/[NPO]”, where
NPI is the number of primary inputs and NPO is the number of primary outputs.
For the main experiments, we discard benchmarks for which the SOP size exceeds
the built-in resource limits of the used commands, and thus, we use 30 (out of 32)
benchmarks from the ISCAS’89 set, 15 (out of 20) benchmarks from the MCNC
set, and 17 (out of 18) industrial benchmarks. With the discarded benchmarks, we
demonstrate the generation of partial SOPs.

4.2 SAT-Based vs. BDD-Based SOP Generation

To analyze the performance of the algorithm presented in Sect. 3, we run both
SATCLP and BDDCLP available in ABC. In this section, we present the results of
these experiments.

Although the command collapse dynamically finds a good variable order for the
BDD, changing the initial order of the primary inputs results in a different BDD
structure, which leads to a different SOP. Thus, to obtain a good SOP, we generate
five SOPs for BDDCLP by using five different initial orders of the primary inputs.
Similarly, SATCLP generates different SOPs for different orders of the primary
inputs, which define the order of removing literals from the cubes. We either use the
pre-defined order from the benchmark file or order the inputs based on their number
of fanouts (option “Order PI”), which currently works only for the combinational
benchmarks. We can also, optionally, reverse the selected variable order (option
“Reverse PI”). Moreover, we can enable generation of canonical SOPs (option
“Canonical”), and for non-canonical SOPs we can enable generating one CNF for
all outputs as described in Sect. 3.4 (option “Shared CNF”). Thus, by changing these
four options, we generate 12 SOPs using SATCLP.

Generating multiple SOPs with each method results in SOPs that differ in
size, where the SOP size is equal to the number of cubes that constitute the
SOP. Figure 8.4 shows and compares the benchmarks for which the size of the
smallest SOP generated by each method is different. Although SATCLP most often
generates SOPs with almost the same size as those generated by BDDCLP, for some
benchmarks it generates smaller SOPs (up to 10%). Since the results for SATCLP
are obtained using several different options, Table 8.1 shows, under “#Cubes”, the
number of benchmarks for which the smallest SOP is generated when a given option
is deactivated or activated. We can notice that, for 34 benchmarks we get exclusively
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Fig. 8.4 Size of the smallest SOPs generated by SATCLP compared to the smallest SOP generated
by BDDCLP. Only the benchmarks for which the SOP size differs are shown. The gray line shows
that, on average, SATCLP decreases the SOP size by 2.1%

Table 8.2 Comparison of the number of combinational outputs, which are primary outputs and
latch inputs, in the used benchmarks and the number of isomorphic classes, which is equal to the
number of calls of the SAT-based algorithm for SOP generation

Set
Number of
benchmarks

Combinational
outputs

Isomorphic
classes Ratio(%)

LT-DEC 9 788 686 87.1

MCNC 15 3024 1435 47.5

ISCAS’89 30 5753 1709 29.7

Industrial 17 64,267 8356 13.0

Total 71 73,832 12,186 16.5

smaller SOP when generating canonical SOPs, and only for 7 benchmarks the non-
canonical SOPs are smaller. Similarly, the SOP size increases for about 60% of the
benchmarks if the CNF is shared or if the inputs are ordered by their number of
fanouts.

Next, we compare the algorithms’ runtime. The reported runtime is average over
three runs of the algorithm for SOP generation. For BDDCLP, we report the time
required to execute the commands collapse and sop. For SATCLP, we report the
time taken by our command satclp, which includes the time to generate isomorphic
outputs, derive CNF, and initialize SAT solver instances, as well as the time for all
SAT calls for minterm generation, cube expansion, and removing redundant cubes.

In terms of scalability, as Table 8.2 shows, the idea of filtering out structurally
isomorphic outputs presented in Sect. 3.4 allows computing an SOP only for 16.5%
of the combinational outputs, one for each isomorphic class, while for the other
outputs we duplicate the generated SOP of the class representative. This reduces
the runtime of our algorithm SATCLP, and for benchmarks rich in isomorphic
outputs, the proposed method is significantly faster than BDDCLP. For example,
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from the public benchmarks, the maximum speedup is achieved for the benchmark
s35932 from the ISCAS’89 set, for which we generate SOPs only for 10 out of
2048 combinational outputs and thus, on average, SATCLP requires 0.10 s, while
BDDCLP requires 1.57 s. However, on average, our SATCLP is 7.5� slower than
BDDCLP for the public benchmarks. We have observed that the functions for
expanding minterms into cubes are the bottleneck. For example, for the LT-DEC
benchmarks, on average, 85% of the runtime is spent in this operation, while 8% is
spent on minterm generation, 2% on removing redundant cubes, and 5% on other
operations, such as dividing the outputs into classes, generating CNF, initializing
SAT solver instances, etc.

On the other hand, Table 8.3 shows runtime results for a suite of proprietary
industrial benchmarks. We can see that SATCLP is often faster than BDDCLP,
especially for the benchmarks that have many isomorphic outputs, and is definitely
more scalable, that is, it completes on some test-cases, for which BDDCLP fails. For
example, for the non-canonical SOPs, on average, SATCLP decreases the runtime
of SOP generation by 45.9%. For canonical SOPs, although SATCLP is 5.2�
slower than its non-canonical version and 2.9� slower than BDDCLP, it successfully
generates SOPs for 5 benchmarks, for which BDDCLP fails.

We believe that the increased scalability of SATCLP is largely due to the fact
that most of the industrial testcases have hundreds of inputs and outputs, which
makes constructing global BDDs in the same manager problematic for all outputs
at once. The algorithm SATCLP does not suffer from this limitation, because it
computes the SOPs for one output at a time. It can be argued that the BDD-based
computation can also be performed on the per-output basis. However, in this case,
the BDD manager will inevitably find different variable orders for different outputs,
which will increase the size of the resulting multi-level circuits when these SOPs
are factored. In fact, factoring benefits from computing SOP with the same variable
order that facilitates creating similar combinations of literals in different cubes,
which in turn helps improve the quality of shared divisor extraction and factoring.

Finally, since we generate cubes progressively, unlike BDDCLP, we can build
partial SOPs even for large circuits, and these can be used for incremental
applications. Figure 8.5 shows the number of cubes composing the partial non-
canonical SOPs for which a time limit for the runtime is set to t seconds, where
t is an integer value such that 1 	 t 	 10. For functions with larger supports, we
usually generate less cubes because more time is required for cube expansion. Only
for the benchmark test14 we are not able to generate any cube in the first 6 s due to
the large support set of the first processed output, which depends on 6246 inputs.
For the other benchmarks, we generate thousands of cubes in just a few seconds. In
this experiment, we are still generating both the on-set and the off-set SOP at the
same time. However, in the incremental applications, we can generate just one of
them, which would increase the number of generated cubes for a given time limit.
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Table 8.3 Runtime results for the combinational industrial benchmarks when SOPs are generated
with BDDCLP and SATCLP

Runtime (s)
SATCLP

PIs POs
Isomorphic
classes BDDCLP Non-canonical Canonical

test01 2513 2377 2083 31:14 165:99 1658:92

test02 3236 3202 3146 – 32:46 112:15

test03 1542 514 113 10:64 12:74 70:79

test04 37;397 292 155 144:57 15:01 197:71

test05 1178 606 95 – 141:85 748:81

test06 1488 1446 580 4:24 31:50 137:74

test07 8087 335 270 152:42 17:91 68:31

test08 438 512 432 3:96 17:34 84:67

test09 870 1636 792 2:36 18:17 125:19

test10 2376 1233 314 100:83 10:55 46:88

test11 3875 3274 138 14:49 2:49 7:95

test12 4626 3708 112 10:29 1:59 3:17

test13 1110 1040 74 50:86 1:30 9:29

test14 8514 1323 890 – – –

test15 47;356 4136 21 – 0:21 0:26

test16 58;382 18;433 9 – 0:63 0:28

test17 68;620 17;411 19 – 0:64 0:33

test18 36;900 4112 3 603:86 277:08 42;292:50

Average 1:00 0:54 2:88

The columns “PIs” and “POs” give the number of primary inputs and outputs, respectively. A dash
(–) denotes that the method fails to compute an SOP. Highlighted are the cases when SATCLP
outperforms BDDCLP

4.3 Case-Study: SAT-Based SOPs for Generation of Multi-level
Implementation

As explained in Sect. 4.2, we generate several SOPs with each method. The different
SOPs result in multi-level networks with different area and delay. As Fig. 8.6 shows,
for most benchmarks, our algorithm obtains Pareto-optimal solutions, compared
to BDDCLP. To obtain these results, we isolate the best circuit implementations
in terms of area-delay product as derived by each method. Table 8.1, with the
columns “Area�Delay”, shows the number of benchmarks with the smallest area-
delay product generated when a given option was deactivated and activated. For 26
benchmarks we generate a circuit structure with smaller area-delay product when
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Fig. 8.5 The number of generated cubes for a partial SOP when the time limit is set between 1
and 10 s. The number of generated cubes depends on the size of the support set of the output with
largest support set, which is given in brackets. For all benchmarks, the generated cubes belong to
one output

Fig. 8.6 The best results for each benchmark after a multi-level description is built from
SOPs generated by our SAT-based algorithm, compared to using a BDD-based SOPs. For most
benchmarks, we obtain Pareto optimal solutions
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generating canonical SOPs, while for 28 benchmarks the non-canonical SOPs are a
better option. Also, for most benchmarks it is best to generate an SOP by using the
original ordering of primary inputs used in the benchmark file.

5 Conclusion

In this paper, we present a novel algorithm for progressive generation of irredundant
canonical SOPs using heuristics based solely on SAT solving. Besides generating
SOPs, the canonicity and the progressive generation make our heuristics desirable in
many other areas where minterms or cubes are required, and for which the existing
methods are either unscalable or impractical to use.

Regarding the quality of results, we show that for computing a complete SOP, on
average, the SAT-based computation is as good as the BDD-based one. Moreover,
the multi-level circuit structures derived using the SOPs generated by our approach
are often better or Pareto-optimal.

Regarding the runtime, the proposed method is somewhat slower than the BDD-
based method for most of the public benchmarks, but it is faster for circuits that
are rich in isomorphic outputs. Thus, for the industrial benchmarks, our method is
both faster and more scalable, and therefore it is a good candidate for global circuit
restructuring at least in that particular industrial setting.

Besides the described opportunities for parallelization, the proposed method
can also benefit from the ongoing improvement in modern SAT solvers. For
example, recently we explored a new push/pop interface for assumptions used in
the incremental SAT solving, which led to additional runtime improvements. As we
show, for some circuits the results can improve by changing the variable order in
which the cubes are expanded, but a careful study of this problem is required to
improve further the quality of results.

In addition to runtime improvements, future work will focus on developing a
dedicated SAT-based multi-output SOP computation, which computes cubes that
are shared between several outputs. A recent publication [13] indicates that a
significant improvement in quality (more than 10%) can be achieved by computing
and factoring multi-output SOPs. We are not aware of a practical method for BDD-
based multi-output SOP computation, so it is likely that SAT will be the only way to
work with multiple outputs. Other directions of future work will include exploring
the benefits of the progressive generation of canonical minterms and cubes in
different areas. One such area is multi-level logic synthesis where incremental SAT-
based decomposition methods can be developed based on partial SOPs computed
for the output functions.
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Chapter 9
A Branch-and-Bound-Based Minterm
Assignment Algorithm for Synthesizing
Stochastic Circuit

Xuesong Peng and Weikang Qian

1 Introduction

Stochastic computing (SC) is an alternative to the conventional computing paradigm
based on binary radix encoding. In SC, digital circuits are still used to perform
computation. However, their inputs are stochastic bit streams [1]. Each stochastic
bit stream encodes a value equal to the probability of a 1 in the stream. For example,
the stream A shown in Fig. 9.1 encodes the value 0:75.

One major advantage of SC is that it allows complex arithmetic computation to
be realized by a very simple circuit. Figure 9.1 shows that arithmetic multiplication
can be realized by an AND gate, since for an AND gate, the probability of obtaining
a 1 in the output bit stream is equal to the product of the probabilities of obtaining a
1 in the input bit streams.

Since all the bits in the stream have equal weight and a long bit stream is usually
used to encode a value, a single bit flip occurring anywhere in the bit stream only
causes very small change to the encoded value. Therefore, SC is highly tolerant to
bit flip errors [2].

Given its advantages of low hardware cost and strong error tolerance, SC has
been used in a number of applications, including image processing [3], decoding of
modern error-correcting codes [4], and artificial neural networks [5].

In early days, various elementary computing units in SC were proposed, such as
multiplier, scaled adder, divider, and squaring unit [6]. These units were designed
manually and can only perform a limited types of computations.

X. Peng • W. Qian (�)
University of Michigan–Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong
University, Shanghai, China
e-mail: sayson@sjtu.edu.cn; qianwk@sjtu.edu.cn

© Springer International Publishing AG 2018
A.I. Reis, R. Drechsler (eds.), Advanced Logic Synthesis,
https://doi.org/10.1007/978-3-319-67295-3_9

189

mailto:sayson@sjtu.edu.cn
mailto:qianwk@sjtu.edu.cn
https://doi.org/10.1007/978-3-319-67295-3_9


190 X. Peng and W. Qian

Fig. 9.1 An AND gate
performs multiplication on
real values encoded by
stochastic bit streams C

A 1,1,0,0,0,0,1,0
1,1,0,1,0,1,1,1

1,1,0,0,1,0,1,0
B

a = 6/8

b = 4/8

c = 3/8

AND

In order to apply SC to a broad range of target computations, several methods
to synthesize stochastic circuits have been proposed recently. The works [2, 7, 8]
focused on synthesizing reconfigurable stochastic circuits. In [2], the authors
proposed a method based on Bernstein polynomial [9] expansion to synthesize
combinational logic-based stochastic circuits. In [7] and [8], the authors studied
the form of the computation realized by SC using sequential circuits and proposed
methods to synthesize such designs. The works [10–12] focused on synthesizing
fixed stochastic circuits, which take less area than reconfigurable ones. In [10],
the authors demonstrated a fundamental relation between stochastic circuits and
spectral transform. Based on this, they proposed a general approach to synthesize
stochastic circuits. In [11], the authors found that different Boolean functions
could compute the same arithmetic function in SC and proposed the concept of
stochastic equivalence class. They proposed a method to search for the optimal
Boolean function within an equivalence class. However, their method can only be
applied to synthesize multi-linear polynomials. In [12], the authors introduced a
general combinational circuit for SC and analyzed its computation. They further
proposed a method to synthesize low-cost fixed stochastic circuit to realize a general
polynomial.

The study in [12] reveals that in SC, there are a large number of different Boolean
functions that realize the same target arithmetic function. Of course, the circuits for
different Boolean functions have different costs. In previous work [12], a greedy
method was used to find a circuit with low area cost. However, given the extremely
large search space, the greedy strategy, although very fast, may not give a minimal
solution. In this work, we address this problem by applying a branch-and-bound-
based algorithm to extensively search for a Boolean function that will lead to a
circuit with low cost. Our approach constructs a function by iteratively adding cubes
into the on-set of the Boolean function. The optimal set of cubes to be added is
determined through the search process. To improve the runtime, we also introduce
a few speed-up techniques.

In summary, the main contributions of our work are as follows.

• We introduce a new method that iteratively selects cubes to form a Boolean
function that realizes the target computation in SC.

• We develop a branch-and-bound algorithm to search for the optimal set of cubes
to be added.

• We propose several speed-up techniques which prune unpromising branches and
significantly improve the runtime of the algorithm.
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The rest of the chapter is organized as follows. In Sect. 2, we give the background
on the general design proposed in [12] and illustrate the previous synthesis method.
We also present the logic synthesis problem for stochastic computing. In Sect. 3,
we present the new algorithm. In Sect. 4, we discuss several speed-up techniques.
In Sect. 5, we show the experimental results. Finally, we conclude the chapter in
Sect. 6.

2 Background on Synthesizing Stochastic Circuits

In this section, we give the background on the general form of the stochastic circuit
proposed in [12] and discuss the previous method to synthesize a target function. In
what follows, when we say the probability of a signal, we mean the probability of
the signal to be a one.

2.1 The General Form and Its Computation

The general form of a stochastic circuit is shown in Fig. 9.2. The circuit is a
combinational circuit. It computes an arithmetic function f .x1; : : : ; xn/, which is
encoded by the output bit stream. It has n inputs X1, : : : , Xn, which are supplied
with variable probabilities x1, : : : , xn, respectively. In order to offer freedom for
realizing different functions, the circuit has m extra inputs Y1, : : : , Ym, each supplied
with a constant probability of 0:5. They can be easily obtained by a linear feedback
shift register (LFSR). The value of m affects the quantization error and is chosen
according to the accuracy requirement. The large the value m is, the smaller the
quantization error will be.

The study in [12] shows that the general design computes a type of function in
the form

f .x1; : : : ; xn/ D
X

.a1;:::;an/2f0;1gn

g.a1; : : : ; an/

2m

nY

jD1

x
aj

j

�
1 � xj

�1�aj
; (9.1)

Combinational
Logic

...

X1(prob=x1)

Xn(prob=xn)

...

Y1(prob=1/2)

Ym(prob=1/2)

F
(prob= f(x1,...,xn))

Fig. 9.2 General form of a stochastic circuit [12]
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where 0 	 g.a1; : : : ; an/ 	 2m is an integer. If the combinational cir-
cuit realizes a Boolean function B.X1; : : : ;Xn;Y1; : : : ;Ym/, then the value
g.a1; : : : ; an/ is equal to the number of vectors .b1; : : : ; bm/ 2 f0; 1g

m such that
B.a1; : : : ; an; b1; : : : ; bm/D 1.

Example 1 Suppose the Boolean function of the combinational circuit in Fig. 9.2 is
B.X1;X2;Y1;Y2/ D X1Y1 C X2Y2. Then B.1; 1;Y1;Y2/ D Y1 C Y2. Since there are
three vectors .b1; b2/ 2 f0; 1g2 making B.1; 1; b1; b2/ D 1, the value g.1; 1/ D 3.
Similarly, we can derive g.0; 0/ D 0, g.0; 1/ D 2, and g.1; 0/ D 2. Since m D 2,
according to Eq. (9.1), the output function is

f .x1; x2/ D
1

2
.1 � x1/x2 C

1

2
x1.1 � x2/C

3

4
x1x2: (9.2)

�
The function of the form shown in Eq. (9.1) is called a binary combination poly-

nomial (BCP) [12]. If we expand a BCP, we can obtain a multi-linear polynomial
(MLP) of the following form

f .x1; : : : ; xn/ D
X

.a1;:::;an/2f0;1gn

c.a1; : : : ; an/

2m

nY

jD1

x
aj

j ; (9.3)

where c.a1; : : : ; an/’s are integers. The degree of each variable in an MLP is at most
1. For example, expanding Eq. (9.2), we can obtain an MLP

f .x1; x2/ D
1

2
x1 C

1

2
x2 �

1

4
x1x2: (9.4)

2.2 Synthesis of General Function

Given a target function, a procedure was proposed in [12] to synthesize a stochastic
circuit of the general form to realize that function. We use an example to illustrate
the procedure. Since the computation realized by a general-form stochastic circuit
is a polynomial, the target function will be first approximated as a polynomial.

Now suppose the polynomial is f D 1
4
x21 C

1
2
x2. Next, it will be transformed into

an MLP. This is achieved by introducing two new variables x1;1 and x1;2 with their
values both set as x1. The MLP obtained is

f D
1

4
x1;1x1;2 C

1

2
x2: (9.5)
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The next step is to map the MLP into a BCP. By a procedure shown in [12], the
result is

f D
1

2
.1 � x1;1/.1 � x1;2/x2 C

1

2
.1 � x1;1/x1;2x2

C
1

2
x1;1.1 � x1;2/x2 C

1

4
x1;1x1;2.1 � x2/C

3

4
x1;1x1;2x2: (9.6)

Assume that the number of Y-variables is m D 2 and the Boolean function is
B.X1;1;X1;2;X2;Y1;Y2/. Comparing Eq. (9.6) with Eq. (9.1), we can obtain that the
Boolean function should satisfy that

g.0; 0; 0/ D 0; g.0; 0; 1/ D 2; g.0; 1; 0/ D 0; g.0; 1; 1/ D 2;

g.1; 0; 0/ D 0; g.1; 0; 1/ D 2; g.1; 1; 0/ D 1; g.1; 1; 1/ D 3: (9.7)

However, since x1;1 D x1;2 D x1, the terms .1�x1;1/x1;2x2 and x1;1.1�x1;2/x2 are
the same. Also, the terms .1�x1;1/x1;2.1�x2/ and x1;1.1�x1;2/.1�x2/ are the same.
Therefore, the requirement for the Boolean function can be relaxed as follows:

g.0; 0; 0/ D 0; g.0; 0; 1/ D 2; g.0; 1; 0/C g.1; 0; 0/ D 0;

g.0; 1; 1/C g.1; 0; 1/ D 4; g.1; 1; 0/ D 1; g.1; 1; 1/ D 3: (9.8)

In the general case, suppose the target polynomial has k variables x1, : : : , xk and
the degree of xi is di, for i D 1, : : : , k. Define n D

Pk
iD1 di. To transform the original

target into an MLP, we will introduce n new variables x1;1, : : : , x1;d1 , : : : , xi;1, : : : ,
xi;di , : : : , xk;1, : : : , xk;dk , with the values of xi;1, : : : , xi;di all set to xi. The BCP has
2n product terms of the form

kY

iD1

diY

jD1

x
ai;j

i;j .1 � xi;j/
1�ai;j ; (9.9)

where .a1;1; : : : ; a1;d1 ; : : : ; ak;1; : : : ; ak;dk/ 2 f0; 1g
n. Each product term has a one-

to-one correspondence to a vector .a1;1; : : : ; a1;d1 ; : : : ; ak;1; : : : ; ak;dk/ 2 f0; 1g
n. We

call the vector the characteristic vector of the product term. We partition the set
f0; 1gn into

Qk
iD1.1 C di/ equivalence classes I.s1; : : : ; sk/, 0 	 s1 	 d1; : : : ; 0 	

sk 	 dk, where

I.s1; : : : ; sk/ D

8
<

:
.a1;1; : : : ; ak;dk/ 2 f0; 1g

n W

diX

jD1

ai;j D si; for all i D 1; : : : ; k

9
=

;
:

(9.10)
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Under the condition that for all 1 	 i 	 k, xi;1 D � � � D xi;di D xi, two product
terms are the same if and only if their characteristic vectors belong to the same
equivalence class. Therefore, to realize the target polynomial, we only require that
the sum of the g values over all the vectors in an equivalence class is equal to a
specific constant. Mathematically, the requirement is that for all 0 	 s1 	 d1, : : : ,
0 	 sk 	 dk

X

.a1;1;:::;ak;dk /2I.s1;:::;sk/

g.a1;1; : : : ; ak;dk/ D G.s1; : : : ; sk/; (9.11)

where 0 	 G.s1; : : : ; sk/ 	 2
m
Qk

iD1

�di
si

�
is a constant that can be derived by adding

up the corresponding g values of an initial BCP transformed from the original target
function.

The example shown before corresponds to a situation in which k D 2, d1 D 2,
and d2 D 1. Then we have six equivalence classes

I.0; 0/ D f.0; 0; 0/g; I.0; 1/ D f.0; 0; 1/g; I.1; 0/ D f.0; 1; 0/; .1; 0; 0/g;

I.1; 1/ D f.0; 1; 1/; .1; 0; 1/g; I.2; 0/ D f.1; 1; 0/g; I.2; 1/ D f.1; 1; 1/g:
(9.12)

Given the above equivalence classes, the requirement on the g values specified
by Eq. (9.11) is same as Eq. (9.8) we derived before.

2.3 The Circuit Synthesis Problem

Equation (9.11) shows a requirement on the Boolean function to realize the target
polynomial. However, there are a large number of Boolean functions that can satisfy
the requirement. In order to synthesize an optimal circuit, we need to find an optimal
Boolean function that satisfies the requirement. For simplicity, we focus on two-
level circuit in this work and we use the literal number of the sum-of-product (SOP)
form as the cost measure. The optimization problem is stated as follows.

Given an integer m and
kY

iD1

.1C di/ integers G.0; : : : ; 0/, : : : , G.d1; : : : ; dk/

such that 0 	 G.s1; : : : ; sk/ 	 2m
kY

iD1

 
di

si

!

for any 0 	 s1 	 d1, : : : ,

0 	 sk 	 dk, determine an optimal Boolean function such that its g values

satisfy Eq. (9.11).
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Fig. 9.3 The matrix
representation of the Boolean
function
B.X1;X2;X3;Y1;Y2/ D
X1 Y1 C X2Y1 C X1X3

Y\X 000 001 011 010 110 111 101 100

00 1 1 1 1 1 1

01 1 1 1 1 1 1

11 1 1

10 1 1

The above problem has flexibility in determining the final Boolean function.
However, it is different from the traditional logic minimization with don’t cares
or Boolean relation minimization problem [13]. The problem we consider here has
a constraint on the number of input vectors belonging to a subset that make the
function evaluate to 1. Thus, the determination of the output for an input vector will
reduce the output choices of the other input vectors belonging to the same subset. In
contrast, logic minimization with don’t cares or Boolean relation minimization does
not have that constraint. The determination of the output of an input vector does not
reduce the output choices for the other input vectors. Therefore, solving the above
problem requires a new method.

Suppose the Boolean function is B.X1;1; : : : ;X1;d1 ; : : : ;Xk;1; : : : ;Xk;dk ;Y1; : : : ;Ym/.
We represent it using a matrix, where the columns represent the X-variables and the
rows represent the Y-variables. Both the columns and the rows are arranged in Gray
code order. An example is shown in Fig. 9.3 for a case where k D 1, d1 D 3, and
m D 2.

Using that matrix representation, the number g.a1;1; : : : ; ak;dk/ is equal to the
number of ones in the column a1;1 : : : ak;dk . Then the optimization problem is to
distribute G.s1; : : : ; sn/ ones to columns corresponding to the vectors in the class
I.s1; : : : ; sn/ to achieve an optimal Boolean function. A method was proposed in the
previous work [12] to find a good solution. It applies a greedy strategy to distribute
the ones. Assume l D bG.s1; : : : ; sn/=2

mc. Then the method sets the g values of the
first l vectors in the class I.s1; : : : ; sn/ as 2m, the g value of the .lC 1/-th vector as
.G.s1; : : : ; sn/� 2

ml/, and the g values of the remaining vectors as 0. The following
example illustrates how the previous method works.

Example 2 Consider a case where k D 1, d1 D 3, and m D 2. There are four
equivalence classes for this case:

I.0/ D f.0; 0; 0/g; I.1/ D f.0; 0; 1/; .0; 1; 0/; .1; 0; 0/g;

I.2/ D f.0; 1; 1/; .1; 0; 1/; .1; 1; 0/g; I.3/ D f.1; 1; 1/g: (9.13)

Assume the sums of g values over all the vectors in each equivalence class are
G.0/ D 2, G.1/ D 6, G.2/ D 6, and G.3/ D 2. For equivalence classes I.0/ and
I.3/, each of them covers one column. We set g.0; 0; 0/ D 2 and g.1; 1; 1/ D 2.
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Fig. 9.4 The matrix
representation of the Boolean
function
B.X1;X2;X3;Y1;Y2/ D Y1

Y\X 000 001 011 010 110 111 101 100

00 1 1 1 1 1 1 1 1

01 1 1 1 1 1 1 1 1

11

10

For equivalence classes I.1/ and I.2/, each of them covers three columns. Since
bG.1/=2mc D 1, we assign g.0; 0; 1/ D 4, g.0; 1; 0/ D 2, and g.1; 0; 0/ D 0.
Similarly, for class I.2/, we assign g.0; 1; 1/ D 4, g.1; 1; 0/ D 2, and g.1; 0; 1/ D
0. The final assignment of the ones is shown in Fig. 9.3. The Boolean function is
B D X1 Y1 C X2Y1 C X1X3, which has six literals. �

However, the previous method may not give an optimal solution. For the case
shown in Example 2, a better assignment is shown in Fig. 9.4, which gives a function
B D Y1. In this work, we explore a better solution to the optimization problem.

3 The Proposed Algorithm

In this section, we present the new algorithm. For simplicity, we focus on univariate
polynomials, i.e., k D 1. Our work can be extended to handle multivariate
polynomials. The only difference is that there are more equivalence classes for
multivariate cases. For univariate case, we have n D d1 and we assume the n X
inputs are X1;X2; : : : ;Xn.

The basic approach we use to construct an optimal solution is to add cubes one
by one into the on-set of the Boolean function. Although the previous work also
uses this strategy, it only adds cubes which cover minterms in the same equivalence
class. In contrast, our method also adds cubes across different equivalence classes.

3.1 Preliminaries

Before presenting the details, we first introduce a few notations and definitions.
We use M.a1; : : : ; an; b1; : : : ; bm/ to denote the minterm corresponding to
an input vector .a1; : : : ; an; b1; : : : ; bm/ 2 f0; 1gnCm. We say a minterm
M.a1; : : : ; an; b1; : : : ; bm/ is in an equivalence class I.i/ .0 	 i 	 n/ if
.a1; : : : ; an/ 2 I.i/.

We use a vector .v0; : : : ; vn/ to represent numbers of unassigned minterms for
.n C 1/ equivalent classes. We call such a vector problem vector. Initially, the
problem vector is equal to .G.0/; : : : ;G.n//, given by the problem specification.
With cubes added into the on-set, the entries in the problem vector will be reduced.
Eventually, when all the minterms have been decided, the problem vector will
become a zero vector.
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Fig. 9.5 Two different cubes
of the same cube vector
Œ0; 2; 2�. (a) Cube X1. (b)
Cube X2

Y1 X1X2 00 01 11 10
0 1 1
1 1 1

(a)

Y1 X1X2 00 01 11 10
0 1 1
1 1 1

(b)

/ /

We can also represent a cube by a vector of length .n C 1/. It is formed by
the numbers of minterms of the cube in each equivalence class. We call such a
vector cube vector. In order to distinguish it from the problem vector, we represent
the cube vector using square brackets. For example, assume that n D 2 and
m D 1. The cube X1 contains four minterms X1X2Y1, X1X2 Y1, X1X2Y1, and X1X2Y1,
as shown in Fig. 9.5a. The minterms X1X2 Y1 and X1X2Y1 are in the equivalence
class I.1/ and the minterms X1X2Y1 and X1X2Y1 are in the equivalence class I.2/.
There are no minterms of the cube X1 in the equivalence class I.0/. Therefore,
the vector of the cube X1 is Œ0; 2; 2�. Note that although each cube has a unique
cube vector, a cube vector may correspond to a number of different cubes. For
example, the cube X2 has the same cube vector as the cube X1, as shown in
Fig. 9.5b.

Our approach splits the problem vector into a set of cube vectors. In order to
manipulate on the vector, it is important to know the valid form of a cube vector. We
have the following claim on this.

Theorem 1 A cube vector is of the form Œ0 , : : : , 0, 2l
�r
0

�
, 2l
�r
1

�
, : : : , 2l

�r
r

�
, 0, : : : ,

0�, where 0 	 r 	 n and 0 	 l 	 m are the numbers of the missing X-variables
and missing Y-variables in the cube, respectively. The cube vector has t zeros at the
beginning and .n � t � r/ zeros at the end, where 0 	 t 	 n � r is equal to the
number of uncomplemented X-variables in the cube and .n � t � r/ is equal to the
number of complemented X-variables in the cube.

Proof Consider the matrix representation of the cube. Since there are l missing Y-
variables in the cube, the cube covers 2l rows and all the covered rows have the
same pattern. Note that each covered row is also a cube, which contains all the m
Y-variables. Therefore, we only need to show that for such a cube, its cube vector is
of the form Œ0 , : : : , 0, 2l

�r
0

�
, 2l
�r
1

�
, : : : , 2l

�r
r

�
, 0, : : : , 0�.

We consider the X-variables of the cube. Suppose that there are t uncomple-
mented X-variables and r missing X-variables in the cube. Then, the cube has
.n � t � r/ complemented X-variables. The cube covers 2r minterms, among which�r

i

�
minterms are in the equivalence class I.tC i/, for i D 0; : : : ; r. For any 0 	 j < t

or t C r < j 	 n, there are no minterms of the cube in the equivalence class I.j/.
Therefore, the cube vector is of the form Œ0 , : : : , 0,

�r
0

�
,
�r
1

�
, : : : ,

�r
r

�
, 0, : : : , 0�, in

which there are t zeros at the beginning and .n � t � r/ zeros at the end. �

Example 3 Assume that n D 3 and m D 2. Then, the cube X1Y1 contains 8
minterms X1X2 X3Y1Y2, X1X2 X3Y1Y2, X1X2X3Y1Y2, X1X2X3Y1Y2, X1X2X3Y1Y2,
X1X2X3Y1Y2, and X1X2X3Y1Y2, X1X2X3Y1Y2. Its cube vector is Œ0; 2; 4; 2� Dh
0; 2

�
2
0

�
; 2
�
2
1

�
; 2
�
2
2

�i
. For this cube vector, l D 1 is equal to the number of missing

Y-variables and r D 2 is equal to the number of missing X-variables. The number
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of zeros at the beginning is 1, which is equal to the number of uncomplemented
X-variables in the cube. The number of zeros at the end is 0, which is equal to the
number of complemented X-variables in the cube. �

3.2 The Basic Idea

As mentioned at the beginning of this section, our approach iteratively adds cubes
into the on-set of the Boolean function. Each time a cube is added, some entries
in the problem vector will be reduced. When the problem vector becomes zero, the
Boolean function is constructed.

Generally, a cube added later may intersect with a cube added previously.
However, in our approach, we restrict that a cube added later should be disjoint
to any cubes added before. For simplicity, we call this restriction disjointness
constraint. Although this restriction may cause some quality loss, it has two benefits.
First, it makes the counting of minterms easy, because we do not need to consider
the overlapped minterms. With a cube satisfying the disjointness constraint added,
the problem vector can be easily updated by subtracting the cube vector from the
original problem vector. Second, the constraint eliminates many redundant cases.
For example, adding two non-disjoint cubes X1 and X2 is equivalent to adding two
disjoint cubes X1 and X1X2. Note that although the Boolean function is constructed
by adding disjoint cubes, the final Boolean function will be further simplified by the
two-level logic optimization tool ESPRESSO [14]. Thus, the final result is a set of
non-disjoint cubes corresponding to a minimum SOP expression.

In each iteration, when picking a cube, we also require that each entry in the cube
vector of the cube is no larger than the corresponding entry in the current problem
vector. For simplicity, we call this constraint capacity constraint. If a cube satisfies
both the disjointness constraint and the capacity constraint, we say the cube is valid.

In each iteration, we apply a greedy strategy in choosing the cube to be added:
we choose the largest cube among all valid cubes. The reasons for this are (1) in
two-level logic synthesis, larger cubes have fewer literals and (2) with the largest
cubes added, the problem vector is reduced most. The details of how we choose
the largest valid cube will be discussed in Sect. 3.3. The procedure of choosing the
largest valid cube involves obtaining a cube corresponding to the cube vector, which
will be discussed in Sect. 3.4. Since at each iteration, there may exist more than one
largest valid cube for the current problem setup, we actually apply a branch-and-
bound algorithm to find the optimal solution, which will be discussed in Sect. 3.5.

3.3 Selecting the Largest Valid Cube

Suppose that at the beginning of one iteration, the problem vector is .v0; : : : ; vn/.
Let s be the sum of all the entries in the problem vector, i.e., s D

Pn
iD0 vi. Assume
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q D blog2 sc. Since the largest valid cube satisfies the capacity constraint, it contains
at most 2q minterms. Our method to find the largest valid cube first checks whether
there exists a valid cube with 2q minterm.

According to Theorem 1, the cube vector should be in the form of Œ0 , : : : , 0, 2l
�r
0

�
,

2l
�r
1

�
, : : : , 2l

�r
r

�
, 0, : : : , 0�, where 0 	 r 	 n and 0 	 l 	 m. Furthermore, since

the cube contains 2q minterms, we require that lC r D q. We will examine all cube
vectors that satisfy the above two requirements and keep those which also satisfy the
capacity constraint. Then, for each kept cube vector, we will check whether it has
a corresponding cube that satisfies the disjointness constraint. The details of how
to check the existence of such a cube will be discussed in Sect. 3.4. If such a cube
exists, it is a largest valid cube.

Example 4 Suppose n D 2, m D 2, and we are given an initial problem vector of
.2; 5; 2/. The sum of all the entries in the problem vector is nine. Thus, the largest
valid cube has at most eight minterms. We first check whether there exists any valid
cube with 8 minterms. This type of cubes should be in the form of Œ0 , : : : , 0, 2l

�r
0

�
,

2l
�r
1

�
, : : : , 2l

�r
r

�
, 0, : : : , 0� with 0 	 r 	 2, 0 	 l 	 2, and l C r D 3. Given the

constraint, we have either l D 2 and r D 1 or l D 1 and r D 2. Thus, the possible
cube vectors are Œ0; 4; 4�, Œ4; 4; 0�, and Œ2; 4; 2�. Among these three cube vectors,
only the cube vector Œ2; 4; 2� satisfies the capacity constraint. Then, we will further
check whether it has a corresponding cube satisfying the disjointness constraint.
Since no cubes have been added yet, we can find a valid cube for the cube vector
Œ2; 4; 2�, for example, the cube Y1. This cube is one largest valid cube. �

In some situations, there may not exist a valid cube with 2q minterms because
either the capacity constraint or the disjointness constraint is violated. The following
is an example.

Example 5 Suppose n D 2, m D 3, and we are given an initial problem vector of
.1; 3; 7/. The sum of all the entries in the problem vector is 11. Thus, the largest
valid cube has at most eight minterms. The possible cube vectors of eight minterms
are Œ0; 0; 8�, Œ0; 8; 0�, Œ8; 0; 0�, Œ0; 4; 4�, Œ4; 4; 0�, and Œ2; 4; 2�. However, none of these
cube vectors satisfy the capacity constraint. Therefore, we cannot find a valid cube
with eight minterms. �

If there exists no valid cube with 2q minterms, then we will reduce the minterm
number by half and check whether there exists a valid cube with 2q�1 minterms. This
procedure will be repeated until we are able to find a valid cube with 2i minterms for
some 0 	 i 	 q. Then, that cube is the largest valid cube. Since in the worst case,
we can always find a minterm that is valid, the procedure guarantees to terminate at
some point.

However, in general cases, the largest valid cube is not unique. This is due to the
existence of more than one largest cube vector that satisfies the capacity constraint
and the existence of more than one cube for a cube vector.

Example 6 Suppose n D 2, m D 3, and we are given an initial problem vector of
.4; 8; 3/. The largest possible cube has eight minterms. Among all cube vectors
of eight minterms, three satisfy the capacity constraint: Œ0; 8; 0�, Œ4; 4; 0�, and
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Œ2; 4; 2�. Furthermore, there exists more than one cube that satisfies the disjointness
constraint for each of the three cube vectors. For example, for the cube vector
Œ0; 8; 0�, it corresponds to cubes X1X2 and X1X2, which satisfy the disjoint constraint.
Therefore, there exist more than one largest valid cubes for this case. �

When there are multiple choices of the largest valid cubes, we want to evaluate
all of them and choose the best one. For this purpose, we apply a branch-and-bound
algorithm to find an optimal Boolean function. The details of it will be discussed in
Sect. 3.5.

3.4 Obtaining Cubes for a Cube Vector

In this section, we discuss one important procedure in selecting the largest valid
cube: obtaining cubes for a given cube vector that satisfies the disjointness con-
straint. Since a cube is composed of X-variables and Y-variables, the procedure is
divided into two parts: determining the X-variables and determining the Y-variables.

The X-variables are determined based on the form of the cube vector. As shown
in Theorem 1, if the vector is of the form Œ0 , : : : , 0, 2l

�r
0

�
, 2l
�r
1

�
, : : : , 2l

�r
r

�
, 0, : : : ,

0� where there are t zeros at the beginning and .n � t � r/ zeros at the end, then
the set of X-variables is composed of t uncomplemented X-variables and .n� t� r/
complemented X-variables. For example, if n D 3 and the cube vector is of the form
Œ0; 4; 4; 0�, then the possible X-variable cubes are X1X2, X1X3, X2X1, X2X3, X3X1,
and X3X2.

Next, for each set of possible X-variables, we will further determine all sets of
Y-variables so that the cube formed by these X-variables and Y-variables satisfies
the disjointness constraint. According to Theorem 1, the set of Y-variables we need
to pick consists of .m � l/ Y-variables. To obtain all valid sets of Y-variables, we
can simply enumerate all cubes consisting of .m � l/ Y-variables and keep those
when combined with the X-variable cube do not overlap with the current Boolean
function. However, we could find a large number of valid Y-variable cubes, which
increases the number of largest valid cubes. In order to reduce the choices, in our
implementation, we enumerate all cubes with .m � l/ Y-variables in the Gray code
order and keep the first valid Y-variable cube for each set of possible X-variables.

3.5 Branch-and-Bound Algorithm

As we mentioned before, in each iteration, there may exist more than one largest
valid cube. If this happens, it is hard to decide which one will minimize the literal
number of the final Boolean function. Therefore, we apply a branch-and-bound
algorithm to evaluate all possible cube choices. An example of the search tree
is shown in Fig. 9.6. Each leaf of the search tree corresponds to a final solution,
represented by a set of cubes. Each internal node stores a partial solution composed
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Fig. 9.6 An illustration of
the solution tree for the
problem with the initial
problem vector .4; 8; 2/ and
m D 2. Note that for
simplicity, we use a cube
vector to represent a cube and
we only show a partial tree

(4,8,2)

[4,4,0]+ (4,8,2)

[4,4,0]
+[0,4,0]
+[0,0,2]

[4,4,0]
+[0,2,2]
+[0,2,0]

[2,4,2]+ (2,4,0)

[2,4,2]
+[2,2,0]
+[0,2,0]

[2,4,2]
+[0,4,0]
+[2,0,0]

Algorithm 1 Branch-and-bound algorithm to find optimal function
Input: problem vector v D .G0; : : : ;Gn/ and an integer m
Output: the set of cubes of the final Boolean function B

1: initialize a node N: N:vector v; N:cubeset ;;
2: initialize the optimal literal number no  1;
3: initialize the optimal cube set So  ;;
4: push the node N into an empty stack Stk;
5: while Stk is not empty do
6: pop a node N out of Stk;
7: find a list L of largest valid cubes for N:vector, N:cubeset, and m;
8: for each cube C in L do
9: if litcount.N:cubeset [ C/ < no then

10: Nnew:vector N:vector � vector.C/;
11: Nnew:cubeset N:cubeset [ C;
12: if Nnew:vector D 0 then
13: no  litcount.Nnew:cubeset/;

// reach a leaf

14: So  Nnew:cubeset;
15: else
16: push the node Nnew into Stk;
17: end if
18: end if
19: end for
20: end while
21: return So;

of a set of cubes added and the remaining problem vector. The root is the initial
problem vector. At each internal node, the multiple choices of the largest valid cubes
for the current problem vector lead to multiple branches from the node.

In order to apply a brand-and-bound algorithm, we need a lower bound on the
candidate solutions from a branch. We choose the lower bound as the minimum
literal number for the set of cubes that forms a partial solution at a branch. For
example, for the branch Œ2; 4; 2� C .2; 4; 0/ shown in Fig. 9.6, its lower bound is
the minimum literal number for the cube with the cube vector Œ2; 4; 2�. Strictly
speaking, the minimum literal number for the set of chosen cubes at a branch may
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not be the lower bound for that branch, because with more cubes determined later,
it is possible to reduce the literal count due to cube expansion and redundant cube
removal. However, since the cubes selected later are no larger than any of the cubes
already chosen, it is more likely that with more cubes selected, the literal count will
increase. Thus, we use the proposed method to obtain the lower bound. A branch
will be pruned if the lower bound for the branch is larger than or equal to the
minimum literal count for the best solution obtained so far. In practice, the exact
minimum literal number for a set of cubes is computationally expensive to obtain.
Instead, we call the powerful two-level logic optimization tool ESPRESSO [14] to
estimate the minimum value. Algorithm 1 summarizes the proposed branch-and-
bound algorithm to find an optimal solution. Note that we explore the solution tree
using the depth-first traversal.

4 Speed-Up Techniques

Although the branch-and-bound algorithm deletes some unpromising branches,
there are still too many branches to process as the degree of the polynomial
increases, which increases the runtime considerably. However, there are numerous
branches unnecessary to process, either because they are unpromising or because
they produce the same results. In this section, we present several techniques to speed
up the algorithm with only small quality loss.

4.1 Removing Branches with Duplicated Cube Sets

For a node in the search tree, even though the sum of all entries in its problem
vector is in the interval Œ2q; 2qC1 � 1�, the size of the largest valid cube may not be
2q. Example 5 shows such a case. If this happens, we may add in sequence multiple
cubes of the same size of 2u, where u < q is an integer. In the original branch-
and-bound algorithm, the order that these cubes are added can produce different
branches. Nevertheless, in most cases, different orders will finally lead to the same
results.

Example 7 Suppose n D 2, m D 3, and the initial problem vector is .1; 6; 2/. We
cannot extract a valid cube of size 8 from the initial problem vector. As a result, the
largest valid cube is of size 4. Its cube vector is either Œ1; 2; 1� or Œ0; 4; 0�. With the
original algorithm, if the first cube selected is of the cube vector Œ1; 2; 1�, then the
second cube selected will be of the cube vector Œ0; 4; 0�. On the other hand, if the
first cube selected is of the cube vector Œ0; 4; 0�, then the second cube selected will
be of the cube vector Œ1; 2; 1�. These two branches from the root node will produce
the same results. �
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Those branches with the same set of cubes as a branch explored before are
unnecessary to be explored again. To remove them, we keep track of the sets of
cube vectors we have already examined. If the set of the cube vectors at the current
branch has been examined before, the branch will be pruned.

4.2 Bounding by the Optimal Cost at Each Level

In the original algorithm, a branch is pruned only when its lower bound exceeds
the value of the optimal full solution known so far. In practice, given that each
time we always add a largest valid cube, it is very likely that for any level i in the
search tree, the cost of the partial solution at level i in a branch that will be pruned
later is larger than the cost of the optimal partial solution at level i. In other words,
only those branches with costs close to the optimal partial solution at each level
are promising in leading to the optimal full solution. Therefore, we propose another
speed-up technique which prunes branches based on the cost of the optimal partial
solution at each level. With this technique, we can find and prune many unpromising
branches earlier. However, the proposed method is just a heuristic. In order to reduce
the quality loss caused by applying this heuristic, we choose the bound at each level
as the cost of the optimal partial solution at the current level multiplied by a constant
ml > 1. We will only delete those branches whose costs exceed the bound. In real
implementation, since we traverse the solution tree in a depth-first way, the optimal
partial solution is obtained among all the explored nodes at the current level.

4.3 Limiting Update Count and Explored Node Number

The previous two speed-up techniques focus on eliminating unpromising branches.
However, for some extreme cases, the numbers of nodes explored could still be very
large. In order to further reduce the runtime for these extreme cases, we impose
limits on the update count and the number of explored nodes.

Our algorithm will update the optimal solution if the current solution is no worse
than the optimal one recorded. As a result, each update will either improve the result
or leave it unchanged. Our experimental results showed that with more updates,
the improvement will gradually reduce. Therefore, we consider the solution to be
optimal enough after a specific number of updates. Thus, we set a limit on the
update number and terminate the algorithm once the limit is reached. From our
experimental results, we set this limit as three. The quality loss is negligible.

Even though limiting the updating number can further improve the runtime for
some extreme cases, there are still some cases for which a large number of nodes are
explored between two consecutive updates. In our experiment, there is a recorded
case for which after the second update, the algorithm processed 16,463 other nodes
to reach the third update. It took about 57min to explore these nodes, but no



204 X. Peng and W. Qian

improvement was made for the third update. Therefore, we also set a limit on the
number of explored nodes. The algorithm records the number of nodes explored.
Once the initial solution has been found, the number of nodes explored will be
compared against the limit and the algorithm will terminate once the limit is reached.
In our experiment, the limit is often set from 15 to 30 for 3 	 n 	 7 and 3 	 m 	 7,
or larger if needed. With a larger limit, we can achieve a better solution.

5 Experiment Results

In this section, we show the experimental results of the proposed algorithm. All
the experiments were conducted on a desktop with 3.20 GHz Intel® Core™ i5-4570
CPU and 16.0 GB RAM. ESPRESSO is used to evaluate the literal count [14].

We applied the proposed branch-and-bound algorithm with the speed-up tech-
nique to univariate polynomials with 3 	 n 	 7 and 3 	 m 	 7. For each pair of
n and m, we generated 50 random cases and obtained the average result. Table 9.1
shows for each pair of n and m, the average percentage of literal count reduction

Table 9.1 The average percentage of literal count reduction by the proposed algorithm over the
previous method [12] (in the first row of each cell), the percentage of improved and unchanged
cases (in the second row of each cell), and the average runtime of the proposed algorithm (in the
third row of each cell) for different pairs of n and m

mnn 3 4 5 6 7

3 6% 12% 19% 18% 26%

100% 90% 94% 88% 100%

0:44 s 0:60 s 1:60 s 2:56 s 5:20 s

4 3% 13% 16% 22% 29%

98% 100% 88% 92% 94%

0:60 s 1:42 s 2:46 s 4:20 s 7:48 s

5 2% 13% 18% 18% 26%

92% 100% 92% 84% 88%

0:88 s 1:14 s 2:92 s 8:74 s 17:1 s

6 2% 12% 15% 18% 23%

92% 96% 86% 88% 90%

1:34 s 3:90 s 7:04 s 16:6 s 42:6 s

7 2% 10% 14% 17% 22%

88% 94% 86% 90% 90%

2:46 s 8:54 s 16:6 s 39:2 s 116 s
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Fig. 9.7 Comparison
between the
branch-and-bound algorithm
without acceleration and the
accelerated algorithm for
n D 3 and 3 � m � 8
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by the proposed algorithm over the method in [12], the percentage of improved or
unchanged cases among all 50 cases, and the average runtime in seconds of the
proposed algorithm. The literal reduction percentage, the percentage of improved
and unchanged cases, and the runtime are shown in the first row, the second row,
and the third row of each cell, respectively. For example, for n D 4 and m D 4, the
proposed algorithm saves 13% literal count on average. 100% of the 50 cases have
their literal counts reduced or unchanged. The average runtime is 1:42 s.

It can be seen that in the average sense, the proposed algorithm reduces the literal
count compared to the previous method. When n is small, the literal count reduction
is small because the previous greedy method is able to find a good solution among
limited choices. However, as n increases, more percentage of literals is saved. For
n D 7, the literal saving reaches up to 29%. For each pair of n and m, at least 84% of
cases have their literal counts improved or unchanged. For some pairs of n and m, all
50 cases have their literal counts improved or unchanged. With the increase of n and
m, the runtime also increases, which is due to the growth of the search space. Notice
that the runtime of the previous method is negligible compared to ours, due to its
greedy nature. However, since the values n and m for a typical stochastic circuit tend
to be small, the runtime of our algorithm is still affordable for a normal stochastic
circuit. In summary, in situations where better circuit quality is pursued, our method
gives a better solution under a reasonable amount of runtime.

We also compared the proposed accelerated algorithm to the branch-and-bound
algorithm without using the speed-up techniques. Due to the inefficiency of the
algorithm without acceleration, the comparison was only done for polynomials of
degree n D 3 and 3 	 m 	 8. Figure 9.7 plots the speed-up ratio (shown in solid
line, y-axis on the left) and the quality loss (shown in dashed line, y-axis on the
right) of the accelerated algorithm for different m values. For the quality loss, the
more negative the value is, the more loss the accelerated algorithm has. We can see
from Fig. 9.7 that as the problem instance grows, more runtime can be saved through
the speed-up techniques. However, the quality loss also increases. Nevertheless, the
quality loss is small. Indeed, in terms of the absolute value, the average quality loss
is smaller than one literal. Thus, the speed-up techniques have a negligible impact
on the quality.
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6 Conclusion

In this work, we proposed a search-based method for synthesizing stochastic
circuits. The synthesis problem we considered here is different from the traditional
logic synthesis problem in that there exist many different Boolean functions to
realize a target computation. We proposed a branch-and-bound algorithm to system-
atically explore the solution space. A final solution is obtained by adding a series
of cubes to the on-set of the Boolean function. We also provided several speed-up
techniques. The experimental results showed that our algorithm produced smaller
circuits than a previous greedy approach, especially when the target polynomial had
a high degree.
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Chapter 10
Decomposition of Index Generation Functions
Using a Monte Carlo Method

Tsutomu Sasao and Jon T. Butler

1 Introduction

One of the important tasks in logic synthesis is to find a circuit structure that is
suitable for implementation. Functional decomposition [1, 4] is a technique to
decompose a circuit into two subcircuits each with a lower cost than the original
circuit. Various techniques to find functional decompositions have been presented
[2, 6, 8, 10]. They are routinely used in logic synthesis. Many circuits that are
used in computers have some structure, and they are not random [3]. On the
other hand, almost all randomly generated switching functions have no effective
decompositions [12].

Recently, we are working on index generation functions [13, 14]: f W f0; 1gn !
f0; 1; 2; : : : ; kg, where k 
 2n. Here, n is the number of bits in each registered
vector, and k is the total number of registered vectors.

They are used for access control lists, routers, and virus scanning for the internet,
etc. Index generation functions found in practical applications have properties
similar to those of randomly generated index generation functions.

In this chapter, we show that index generation functions often have effective
decompositions. To show this, we use a Monte Carlo method to predict the column
multiplicity of the decomposition charts for random index generation functions.

An index generation function can be efficiently implemented by an LUT or an
IGU (Index Generation Unit, Fig. 10.1), which are programmable [13]. We omit the
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explanation of the operation of an IGU, which appeared in [14].1 Currently, an IGU
is implemented by a combination of field programmable gate arrays (FPGAs) and
memories [9]. However, a single-chip custom LSI can also be used to implement an
index generation function. Suppose that LSIs for IGUs with n inputs and weight k
are available. For a function with larger k, we can partition the set of vectors into
several sets, and implement each by an independent IGU. The outputs of the IGUs
can be combined by an OR gate to produce the final output [15]. This is a parallel
decomposition (Fig. 10.2). On the other hand, for a function with larger n, we can
partition the set of input variables into two sets X1 and X2 to produce the function.
This is a serial decomposition (Fig. 10.3).

In our applications, when we prepare the programmable IGU chip, we only know
the values of n and k, but do not know the detail of the functions. Functions to be

1For simplicity, readers can assume that LUTs are used to implement the functions.
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implemented are different for different users. This situation is similar to the case of
FPGAs: FPGA companies do not know all the functions to implement in advance.
In this chapter, we try to predict the complexity of random functions.

The rest of the chapter is organized as follows: Section 2 introduces functional
decomposition. Section 3 introduces the properties of index generation functions.
Section 4 shows a Monte Carlo method to derive column multiplicity of decompo-
sition charts for random index generation functions. Section 5 shows a procedure
for computing the column multiplicity of decompositions. Section 6 shows the
experimental results. Section 7 shows a method to assess the programmable
architecture for index generation functions. Section 8 concludes the chapter.

2 Decomposition

In this part, we introduce basic concepts of functional decomposition.

Definition 2.1 ([1, 11]) Let f .X/ be a function, and .X1;X2/ be a partition of
the input variables, where X1 D .x1; x2; : : : ; xs/ and X2 D .xsC1; xsC2; : : : ; xn/.
The decomposition chart for f is a two-dimensional matrix with 2s columns and
2n�s rows, where each column and row is labeled by a unique binary assignment
of values to the variables. Each assignment maps under f to f0; 1; : : : ; kg. The
function represented by a column is a column function and is dependent on X2.
Variables in X1 are bound variables, while variables in X2 are free variables. In
the decomposition chart, the column multiplicity, denoted by 	, is the number of
different column functions.

Example 2.1 Figure 10.4 shows a decomposition chart of a 4-variable switching
function. X1 D .x1; x2/ denotes the bound variables, and X2 D .x3; x4/ denotes the
free variables. Since all the column patterns are different and there are four of them,
the column multiplicity is 	 D 4. �

Theorem 2.1 ([4]) For a given function f , let X1 be the bound variables, let X2 be
the free variables, and let 	 be the column multiplicity of the decomposition chart.
Then, the function f can be represented as f .X1;X2/ D g.h.X1/;X2/, and is realized
with the network shown in Fig. 10.3. The number of signal lines connecting blocks
H and G is r D dlog2 	e, where H and G realize h and g, respectively.

Fig. 10.4 Decomposition
chart of an logic function



212 T. Sasao and J.T. Butler

The logic functions for H and G can be realized by memories, and the
complexities for G and H can be measured by the number of bits in the memories.
The signal lines connecting H and G are called rails. When the number of rails r is
smaller than the number of input variables in X1, it is support-reducing [5], and we
can often reduce the total amount of memory to realize the logic in Fig. 10.3.

3 Index Generation Functions and Their Properties

Definition 3.1 Consider a set of k different binary vectors of n bits. These vectors
are registered vectors. For each registered vector, assign a unique integer from 1

to k, called an index. A registered vector table shows, for each registered vector,
its index. An index generation function f produces the corresponding index if the
input matches a registered vector, and produces 0 otherwise. k is the weight of
the index generation function. An index generation function represents a mapping:
f W Bn ! f0; 1; 2; : : : ; kg, where B D f0; 1g.

Example 3.1 Table 10.1 shows a registered vector table with k D 4 vectors. The
corresponding index generation function is shown in Table 10.2. In this case, the
output is represented by 3 bits. So, it shows a mapping B4 ! f0; 1; 2; 3; 4g. Note
that the index values from Table 10.2 are shown in binary in bold. Also, note that
registered vectors missing in Table 10.1 are shown in Table 10.2 mapped to 000. �

Typically, k is much smaller than 2n, the total number of input combinations.

Example 3.2 Consider the decomposition chart in Fig. 10.5. It shows an index
generation function f .X/ with weight 7. X1 D .x1; x2; x3; x4/ denotes the bound
variables, and X2 D .x5/ denotes the free variable. Note that the column multiplicity
of this decomposition chart is 7. �

Lemma 3.1 Let 	.f .X1;X2// be the column multiplicity of a decomposition chart
of an index generation function f , let k be the weight of f , and let s be the number of
variables in X1. Then,

	.f .X1;X2// 	 minfkC 1; 2sg:

Table 10.1 Registered
vector table

Vector

x1 x2 x3 x4 Index

1 0 0 1 1

1 1 1 1 2

0 1 0 1 3

1 1 0 0 4
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Table 10.2 Index generation
function

Input Output

x1 x2 x3 x4 y1 y2 y3
0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 1 0 0 0 0

0 0 1 1 0 0 0

0 1 0 0 0 0 0

0 1 0 1 0 1 1
0 1 1 0 0 0 0

0 1 1 1 0 0 0

1 0 0 0 0 0 0

1 0 0 1 0 0 1
1 0 1 0 0 0 0

1 0 1 1 0 0 0

1 1 0 0 1 0 0
1 1 0 1 0 0 0

1 1 1 0 0 0 0

1 1 1 1 0 1 0

Fig. 10.5 Decomposition chart for f

Proof Since the number of non-zero outputs is k, the column multiplicity never
exceeds k C 1. Further, the column multiplicity never exceeds the total number of
columns, 2s. ut

Lemma 3.2 Let f be an index generation function with weight k. Then, there exists
a functional decomposition f .X1;X2/ D g.h.X1/;X2/; where g and h are index
generation functions, such that the weight of g is k, and the weight of h is at most k.

Proof Consider a decomposition chart, in which X1 denotes the bound variables,
and X2 denotes the free variables. Let X1 D .x1; x2; : : : ; xs/, where s � dlog2.kC1/e.
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Let h be a function where the variables are X1, and the output values are defined as
follows: Consider the decomposition chart, where assignments of values to X1 label
columns (i.e., bound variables). For the assignments to X1 corresponding to columns
with only zero elements, h D 0. For other assignments, the outputs of h are distinct
integers from 1 to wh, where wh denotes the number of columns that have non-zero
element(s). Since wh 	 k, the weight of h is at most k, and the number of output
values of h is at most kC 1. On the other hand, the function g is obtained from f by
reducing some columns that have all zero output in the decomposition chart. Thus,
the number of non-zero outputs in g is equal to the number of non-zero outputs in f .
Thus, g is also an index generation function with weight k. ut

Example 3.3 Consider the decomposition chart in Fig. 10.5. Let the function f .X/
be decomposed as f .X1;X2/ D g.h.X1/;X2/, where X1 D .x1; x2; x3; x4/, and
X2 D .x5/. Table 10.3 shows the function h. It is a 4-variable 3-output logic function
with weight 6. The decomposition chart for the function g is shown in Fig. 10.6. As
shown in this example, the functions obtained by decomposing the index generation
function f are also index generation functions, and the weights of f and g are 6 and
7, respectively. �

Table 10.3 Truth table for h x1 x2 x3 x4 y1 y2 y3
0 0 0 0 0 0 0

0 0 0 1 0 0 1

0 0 1 0 0 1 0

0 0 1 1 0 0 0

0 1 0 0 0 1 1

0 1 0 1 0 0 0

0 1 1 0 1 0 0

0 1 1 1 1 0 1

1 0 0 0 0 0 0

1 0 0 1 0 0 0

1 0 1 0 0 0 0

1 0 1 1 0 0 0

1 1 0 0 1 1 0

1 1 0 1 0 0 0

1 1 1 0 0 0 0

1 1 1 1 0 0 0
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Fig. 10.6 Decomposition
chart for g

4 Balls into Bins Model

In this part, we show a method to predict the column multiplicity of a functional
decomposition using a balls into bins model.

In Definition 2.1, we specified that the first s variables x1; x2; : : : ; xs are in X1,
and the remaining n � s variables are in X2. However, in many cases, we can select
any s variables for X1. In this case, the problem of functional decomposition is to
partition the variables into two sets, so that the number of rails r between two blocks
is minimized. To do this, we want to reduce 	. Note that, in order to reduce the rails
between H and G (see Fig. 10.5), we must reduce 	 so that it is equal to or less than
the smallest power of two.

Given a function table, we have to search
�n

s

�
combinations, where n is the total

number of variables, and s is the number of the bound variables. From Lemma 3.1,
we have an upper bound on 	:

	.f .X1;X2// 	 minf2s; kC 1g:

First, we show an exhaustive approach to find a decomposition.

Example 4.1 Consider the registered vector table shown in Table 10.4. It is a 20-
variable random index generation function with weight k D 20. We need to find
an effective decomposition that reduces the implementation cost. The number of
decompositions is equal to the number of ways to partition the set of variables into
two non-empty sets, that is 2n � 2. If we know the expected column multiplicity,
then we can predict how likely exhaustive search can find a good decomposition.
Suppose that the number of bound variables is s D 8. In this case, the decomposition
chart has 28 D 256 columns and 220�8 D 212 D 4096 rows. Then, the number
of decompositions to check is

�
20
8

�
D 125;970. By exhaustive search, we find

the minimum column multiplicity to be 	 D 15 C 1 D 16. One decomposition
was found with this column multiplicity; it has for the bound variables X1 D
.x1; x2; x5; x7; x10; x13; x14; x17/. In this case, the number of rails is reduced to four
(from five). �

An approach in which we generate a random index generation function, cast
it into a decomposition chart with one of many choices for the bound variables,
compute the column multiplicity, and choose the minimum is computationally too
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expensive. To estimate the distribution of column multiplicities, we need a more
efficient method.

The column multiplicity 	 of an index generation function with weight k can be
predicted by the balls into bins model as follows: In the decomposition chart of an
index generation function, all care values occur in exactly one of the columns. Since
all care values are distinct, any column with a care value is distinct from all other
columns. The only columns that are identical are those that contain no care values.
Therefore, the column multiplicity of a decomposition chart is just the number of
columns with at least one care values plus 1 if there is at least one column with no
care values.

Consider another random process in which there are as many bins as there are
columns in the decomposition chart. We can distribute k distinct balls into bins with
0,1,. . . , balls allows in each bin. The random distribution of balls in this way is equal
to choosing a bin number with repetition, one for each ball. If repetition occurs,
then multiple balls fall into the same bin. Assume that there are 2s distinct bins,
and k distinct balls are randomly thrown into these bins. If all the balls fall into
the same bin,2 then 	 D 1 C 1 D 2. If all the balls fall into k different bins, then
	 D minfk C 1; 2sg. However, in most cases, 2 < 	 	 k C 1. The number of
non-empty bins plus one is equal to the column multiplicity 	.

An efficient method to simulate the balls and bin model is the integer set model
as follows: Assume that a set of k integers represented as standard binary numbers
on s bits are randomly generated .

Example 4.2 Let us predict the column multiplicity for random index generation
functions of n D 20 variables and weight k D 20 by Monte Carlo simulation using
the integer set model. The number of different n variable index generation functions
with weight k is P.2n; k/ D 2nŠ

.2n�k/Š . For n D 20 and k D 20, this is about 2:6�10120,
which is too large to search exhaustively.

We can efficiently approximate this approach as follows. Generate uniformly
distributed k D 20 binary numbers each with s D 8 bits. The eight bits represent a
value from 0 through 255, and correspond to a bin number. The first 8-bit number is
the bin number associated with an index 1, the second is the bin number associated
with an index of 2, etc. Table 10.5 shows the result of this Monte Carlo simulation
using the integer set model. In this case, we generated 106 samples. �

Table 10.5 shows that, in most cases, the number of distinct integers is either 21
or 20. However, this value can be reduced to 	 D 14 for one case, 	 D 15 for
20 cases, and 	 D 16 for 297 cases. This implies that the functions have non-zero
probabilities with decompositions where 	 	 16. However, the probability of a
decomposition with 	 	 13 is quite low, since a sample set of size 106 failed to
produce a single decomposition with 	 	 13. �

We assume that the functions that appear in the search of the decompositions,
and the random set of integers used in a Monte Carlo simulation have similar

2This assumes that k � 2n�s.
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Table 10.5 Number of
distinct .s D 8/-bit integers

Rails Number of distinct integers

(r) (�) Occurrence

4 13C 1 1

4 14C 1 20

4 15C 1 297

5 16C 1 3229

5 17C 1 25,749

5 18C 1 129,422

5 19C 1 374,505

5 20C 1 466,777

statistical properties. That is, the probability distribution functions for the functional
decompositions are similar to that of random integer sets. The validity of this
assumption will be checked in the experiments in Sect. 6.

5 Procedure to Compute the Column Multiplicity

To validate the use of a Monte Carlo technique in estimating the column multiplicity,
we compare the results obtained by a Monte Carlo technique with an exact
enumeration in which we enumerate all binary arrays according to the column
multiplicity. Every binary array is enumerated exactly once, and, as such, it can
be considered a proxy for a “perfect” Monte Carlo simulation. We use the balls into
bins model.

Lemma 5.1 Assume that there are t non-distinct bins and k distinct balls. The
number of different ways to put k distinct balls into t non-distinct bins is

S.k; t/ D

�
1; if (t D 1 or t D k)
S.k � 1; t � 1/C tS.k � 1; t/; otherwise.

Proof The proof is done by a mathematical induction. S.k; t/ can be calculated for
three cases:

When t D 1: All the balls are in one bin. So, there is only one way.
When t D k: All the balls are in k bins. So, there is only one way.

Otherwise: Assume that k � 1 balls are already in the bins, and the k-th ball is put
into one of the bins. In this case, there exist two cases:
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Table 10.6 Values for S.k; t/

t

k 1 2 3 4 5 6 7 8 9

1 1

2 1 1

3 1 3 1

4 1 7 6 1

5 1 15 25 10 1

6 1 31 90 65 15 1

7 1 63 301 350 140 21 1

8 1 127 966 1701 1050 266 28 1

9 1 255 3025 7770 6951 2646 462 36 1

10 1 511 9330 34,105 42,525 22,827 5880 750 45

1. The k� 1 balls are in t� 1 bins, but one bin is empty. In this case, the number of
ways to put the first k�1 balls into t�1 bins is S.k�1; t�1/, by the hypothesis.
The k-th ball is put into the empty bin.

2. The k � 1 balls are in t bins. No bin is empty. In this case, the number of ways
to put the first k � 1 balls into t bins is S.k � 1; t/, by the hypothesis. Also, there
are t ways to put the k-th ball into one of t bins. So, the total number of ways is
tS.k � 1; t/. From these, we have the lemma.

ut

Note that S.k; t/ is the Stirling number of the second kind [7].

Example 5.1 Table 10.6 shows the values of S.k; t/ for k 	 10 and t 	 9.

Theorem 5.1 Consider the binary arrays that have 2s columns and k rows. The
number of arrays with t distinct columns is

ck;t D P.2s; t/S.k; t/;

where S.k; t/ is the Stirling number of the second kind, and P.n; r/ D nŠ
.n�r/Š .

Proof The number of ways to permute t distinct patterns out of 2s distinct patterns
is P.2s; t/. ut

To validate the Monte Carlo technique, we ran the simulation for s D 3 and
k D 8 for a total of .2s/k D 224 D 16;777;216 samples, which is the number of 3�8
binary arrays. We also used the exact enumeration using Theorem 5.1. Table 10.7
compares the results. This shows that there is a close correlation between the Monte
Carlo simulation and exact enumeration.
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Table 10.7 Comparison of
the Monte Carlo technique
with exact enumeration
.s D 3; k D 8/

# of distinct Monte
columns Carlo Theorem 5.1

1 4 8

2 7162 7112

3 326,013 324,576

4 2,857,425 2,857,680

5 7,053,129 7,056,000

6 5,362,312 5,362,560

7 1,130,883 1,128,960

8 40,288 40,320

Total 16,777,216 16,777,216

For small k, we can pre-compute the table of the Stirling numbers, and store it
in the hard disk to compute ck;t. However, for large k, the table becomes too large.
Thus, we use the Monte Carlo approach for large k.

6 Experimental Results

6.1 Decompositions of 20-Variable Functions

We assume that the distribution of the column multiplicities during decompositions
is similar to the random integer sets used in the Monte Carlo simulation.

To confirm this, we generated ten sample index generation functions of n D 20

and k D 20. Then, for each function, we counted the column multiplicities for all
the decompositions, where the number of bound variables is s D 8. Note that the
number of ways to select 8 variables out of 20 variables is

�
20
8

�
D 125;970.

Table 10.8 summarizes the distributions of column multiplicities. The first
column shows the number of rails r D dlog2 	e. The second column shows the
column multiplicity 	. The third to 12th columns show the distributions for f1 to
f10. For example, in f1, the minimum column multiplicity is 	 D 15 C 1, and 20
decompositions produce this 	. For f5, the minimum multiplicity is 	 D 13C1, and
10 decompositions produce this 	. For f9, the minimum multiplicity is 	 D 14C 1,
and 18 decompositions produce this 	. For the other 8 functions, the minimum
multiplicities are 	 D 15C 1. The column headed with SUM denotes the sum of 10
sample functions. The rightmost column, headed with Monte denotes the result of
the Monte Carlo simulation using the integer set model. The number of sample sets
generated for the simulation is 10 �

�
20
8

�
D 1;259;700, which is equal to the total

number of decompositions for 10 sample functions.
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Table 10.8 shows that, for all 10 sample functions, the column multiplicities can
be reduced to 	 D 15 C 1 or less. This means that the number of rails r can be
reduced from five to four. The Monte Carlo simulation shows that, for 374C 25C
2 D 401 combinations out of 1,259,700, the column multiplicities are reduced to
	 D 15 C 1 or less. This shows that there is an incentive to find a decomposition
with small column multiplicity, but it may be hard to find.

6.2 Decomposition of a 64-Variable Function

In the previous experiment, the number of variables was only 20, and the number of
the decompositions was

�
20
8

�
D 125;970.

In this part, we used a sample function with n D 64 and k D 20. As before, the
number of bound variables is s D 8. Note that, the number of decompositions is
now

�
64
8

�
D 4;426;165;368. Table 10.9 shows the results. The first column shows

the number of rails r; the second column shows the column multiplicities 	; the
third column shows the number of decompositions that produced the corresponding
	. The rightmost column headed by Monte shows the number of occurrences in
the Monte Carlo simulation. In the Monte Carlo simulation, the number of possible
ways to generate sets of 20 integers of 8 bits is .28/20 D 2160 ' 1:46 � 1048. In this
experiment, we generated

�
64
8

�
D 4;426;165;368 sample sets.

In this example, the Monte Carlo method provides a good approximation when
	 is large, but not so good when 	 is small. Note that the CPU time for the Monte
Carlo simulation was about 10 min, while that for the exhaustive decomposition
search was 22 min.

Table 10.9 Decomposition
of a 64-variable index
generation function with
k D 20 .s D 8/

r 	 Occurrence Monte

4 11C 1 0 1

4 12C 1 20 73

4 13C 1 971 2768

4 14C 1 33,301 69,099

4 15C 1 759,722 1,196,778

5 16C 1 11,265,390 14,274,472

5 17C 1 103,232,971 113,605,327

5 18C 1 562,995,509 574,201,989

5 19C 1 1,675,277,777 1,656,555,761

5 20C 1 2,072,599,707 2,066,259,100

Total 4,426,165,368 4,426,165,368
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With the Monte Carlo simulation, we can see that the probability of finding a
decomposition with 	 D 16 (i.e., r D 4 rails) is quite high if the good solutions are
distributed uniformly, and if we try more than 104 samples randomly. However, the
probability that with 	 	 8 (i.e., r D 3 rails) is almost zero. Thus, once we find a
decomposition with 	 	 16, we can stop the search; it is not likely that we will find
a decomposition with a smaller r.

7 A Method to Assess Programmable Architecture

Problem 1 Design a programmable architecture for an index generation function
with n D 500 and k D 100 using a pair IGUs.

(Solution) In a decomposition, the number of rails is at most q D dlog2.kC1/e D
7. A Monte Carlo simulation with s D 11 and k D 100 shows that the minimum
column multiplicity of the decompositions among 106 samples is 	 D 87. Since the
number of rails is r D dlog2 	e D 7, the function can be realized by a cascade as
shown in Fig. 10.7. IGU1 has 255 inputs and 7 outputs, while IGU2 has 7C 245 D
252 inputs and 7 outputs.

Problem 2 Design a programmable architecture for an index generation function
with n D 20 and k D 68 using a pair of LUTs.

(Solution) In a decomposition, the number of rails is at most q D dlog2.kC1/e D
7, by Lemma 3.1. Let the number of bound variables be s D 10. The Monte Carlo
simulation with s D 10 and k D 68 shows that the minimum column multiplicity
of the decompositions among 106 samples is 	 D 57. Thus, the number of rails is
reduced to dlog2 	e D 6. The function can be realized by a cascade as shown in
Fig. 10.8. LUT1 has 10 inputs and 6 outputs, while LUT2 has 6C 10 D 16 inputs
and 7 outputs. Since LUT2 has 16 inputs, and is much larger than LUT1, the circuit
is not so efficient.

So, we increase the number of inputs to LUT1 to s D 12. A Monte Carlo
simulation with s D 12 and k D 68 shows that the minimum column multiplicity
of the decompositions among 106 samples is 	 D 62. Thus, the number of rails is

Fig. 10.7 Architecture using
two IGUs (n D 50 and
k D 100)

IGU2IGU1
255

245

7 7

Fig. 10.8 Architecture using
two LUTs (n D 20, s D 10

and k D 68)

LUT2LUT1
10

10

6 7
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Fig. 10.9 Architecture using
two LUTs (n D 20, s D 12

and k D 68)

LUT2LUT1
12

8

6 7

Fig. 10.10 Architecture
using two LUTs (n D 20,
s D 14 and k D 68)

LUT2LUT1
14

6

7 7

still dlog2 	e D 6. The function can be realized by a cascade as shown in Fig. 10.9,
which is more efficient than Fig. 10.8.

Next, we further increase the number of inputs to LUT1 to s D 14. A Monte
Carlo simulation with s D 14 and k D 68 shows that the minimum column
multiplicity of the decompositions among 106 samples is 	 D 65. Thus, the number
of rails is increased to dlog2 	e D 7, as shown in Fig. 10.10, which is less efficient
than Fig. 10.9.

8 Conclusion and Comments

In this chapter, we present a Monte Carlo method to predict the column multiplicity
of the decomposition charts for random index generation functions. We also show a
procedure to compute the multiplicities of decomposition charts. Comparison with
the exact enumerations shows that the Monte Carlo method using integer model
produces good approximations to exact enumeration.

When we design a programmable architecture for index generation functions, in
many cases, we know only the numbers of inputs and registered vectors, but not
the detail of the functions. In such cases, the method to assess the programmable
architecture presented in this chapter is quite useful.

A different, but related problem is to find decompositions for specific index
generation functions. We developed a heuristic [16] and exact [17] algorithms to
find decompositions of index generation functions. In a functional decomposition
algorithm, when a decomposition with a column multiplicity 	1 is found, the next
step is to find a decomposition with a column multiplicity 	2, where dlog2 	2e <
dlog2 	1e. If there is no solution, we can stop the search. Analysis of column
multiplicities for index generation functions was useful to find these algorithms.
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