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Preface

This edited volume contains selected papers from the four workshops that were held on
May 23, 2017, in Jeju, South Korea. These workshops were run in conjunction with the
21st Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD
2017), a leading international conference in the areas of data mining and knowledge
discovery. The four workshops are: Workshop on Machine Learning for Sensory Data
Analysis (MLSDA), Workshop on Biologically Inspired Data-Mining Techniques
(BDM), Pacific Asia Workshop on Intelligence and Security Informatics (PAISI), and
Workshop on Data Mining in Business Process Management (DM-BPM). The aim
of these workshops was to provide forums for discussing research topics related to
emerging data mining theories and real-life applications, where knowledge discovery
was found to be necessary and/or useful.

In the PAKDD 2017 workshops, each submitted paper was rigorously reviewed by
at least two Program Committee members. Although many papers were worthy of
publication, only 26 regular papers could be accepted for presentation at the workshops
and publication in this volume. The general quality of submissions was high and the
competition was tough. We would like to thank all the authors who submitted their
papers on many exciting and important research topics to the PAKDD workshops. We
thank the workshop organizers for their tremendous effort and valuable time to make
the workshops possible. We also thank all the workshop participants and presenters for
attending these workshops. It is our hope that the workshops will provide a lasting
platform for disseminating the latest research results and practice of data-mining
approaches and applications.

These workshops would not have been possible without the help of many col-
leagues. We would like to thank the Program Committee members for their invaluable
review time and comments. Given the extremely tight review schedule, their effort to
complete the review reports before the deadline was greatly appreciated. In addition,
we found some reviewers’ comments were truly excellent, as good as what is usually
found in a survey paper – critical, constructive, and comprehensive. These comments
were very helpful for us in selecting the papers.

Thank you all and may the papers collected in the volume inspire your thoughts and
research.

July 2017 U Kang
Ee-Peng Lim
Jeffrey Xu Yu

Yang-Sae Moon



BDM 2017 Workshop PC Chairs’ Message

For the past few years, biologically inspired data-mining techniques have been inten-
sively used in different data-mining applications such as data clustering, classification,
association rule mining, sequential pattern mining, outlier detection, feature selection,
and bioinformatics. The techniques include neural networks, evolutionary computation,
fuzzy systems, genetic algorithms, ant colony optimization, particle swarm optimiza-
tion, artificial immune system, culture algorithms, social evolution, and artificial bee
colony optimization. A huge increase in the number of papers published in the area has
been observed in the past decade. Most of these techniques either hybridize opti-
mization with existing data-mining techniques to speed up the data-mining process or
use these techniques as independent data-mining methods to improve the quality of
patterns mined from the data.

The aim of the workshop is to highlight the current research related to biologically
inspired techniques in different data-mining domains and their implementation in
real-life data-mining problems. The workshop provides a platform to researchers from
computational intelligence and evolutionary computation and other biologically
inspired techniques to get feedback on their work from other data-mining perspectives
such as statistical data mining, AI, and machine learning-based data mining.

Following the call for papers, BDM 2017 attracted 17 submissions from seven
different countries, where seven of them were accepted after a double-blind review by
at least three reviewers. The overall acceptance rate for the workshop was 40%.

The selected papers highlight work in bees swarm optimization for association rules,
CFDP algorithms based on shared nearest neighbors, CNN-based sequence labeling,
genetic algorithm for interpretable model extraction from decision tree ensembles,
self-adaptive weighted extreme learning machine for imbalanced classification prob-
lems, estimating word probabilities with neural networks, genetic algorithms for
solving the frequent itemsets mining problem, and software vulnerability prediction
Web service based on artificial neural networks.

We are thankful to all the help from our colleagues in organizing this work-
shop. Thanks to the authors who made this workshop possible by submitting their work
and responding positively to the changes suggested by our reviewers. We are also
thankful to our Program Committee, who dedicated their time and provided us with
their valuable suggestions and timely reviews. We wish to express our gratitude to the
workshop chairs, who were always available to answer our queries and provided us
with everything we needed to put this workshop together.

July 2017 Shafiq Alam
Gillian Dobbie
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Early Classification of Multivariate Time Series
on Distributed and In-Memory Platforms

Vincent S. Tseng1(✉), Huai-Shuo Huang1, Chia-Wei Huang1, Ping-Feng Wang2,
and Chu-Feng Li2

1 National Chiao Tung University, Hsinchu, Taiwan, Republic of China
vtseng@cs.nctu.edu.tw

2 Institute for Information Industry, Taipei, Taiwan, Republic of China
{pfwang,chufengli}@iii.org.tw

Abstract. With the popularity of Internet of Things (IOT) applications, various
kinds of active sensors are deployed and multivariate time series datasets are
generated rapidly. Early classification of multivariate time series is an emerging
topic in data mining due to the wide applications in many domains. The unique
part of early classification lies in that it uses only earlier part of time series data
to reach classification results with the same accuracy as by methods using
complete time series information. Although a number of relevant studies have
been presented recently, most of them didn’t consider the issues of data scale and
execution efficiency simultaneously. The main research issue of this paper falls
in how to mine interpretable patterns from multivariate time series data, with
which effective classification models can be constructed to ensure the accuracy
as well as earliness. To take into account the issues of data scale and execution
efficiency simultaneously, we explore distributed in-memory computing techni‐
ques and multivariate shapelets-based approaches to construct a Spark-based in-
memory mining framework to parallelize the feature extraction process. We
implement a framework with Multivariate Shapelets Detection (MSD) method as
a based example. Through empirical evaluation on various kinds of sensory data‐
sets, the scalability of the framework is evaluated in terms of efficiency while
ensuring the same accuracy and reliability in early classification of multivariate
time series. This work is the first one to realize multivariate time series early
classification on Spark distributed in-memory computing platform, which can
serve as a good base for an extension to other time series classification methods
based on shapelet feature extraction.

Keywords: Early classification · Multivariate time series · Parallel and
distributed computing · Shapelets

1 Introduction

The concept and applications of Internet of Things are getting more and more popular
in real-life. Many information products are equipped with various kinds of sensors that
can collect data by M2M communications and it brings great convenience to everyone.
With the rapid development of IOT techniques, data collection, data storage and data

© Springer International Publishing AG 2017
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transformation are getting more powerful than before. For example, Smart Meter, Smart
Grid and other environmental monitoring equipment are more popular. The frequency
of data collection is denser and the variety of collected information is also increased.
The data that is collected by a great number of sensors has two major characteristics: (i)
They are long sequences of data points. (ii) The continuously measured data points are
typically having uniform time intervals. The collected data can be fully represented by
time series data format.

Time series analysis is an emerging topic in data mining fields, which has been used
in various domains covering medical information, financial market, production manage‐
ment, activity detection and disaster prediction. There are two common ways to analyze
time series data. The first one is classical time series classification and the second one
is early classification on time series (ECTS). The aim of early classification is naturally
different from classical time series classification which only focuses on accuracy without
taking earliness into consideration. The tradeoff between accuracy and earliness is an
interesting issue in ECTS problem. The goal of ECTS is to make predictions as early as
possible and also remains reasonable accuracy. ECTS is often used to detect heart
diseases. For example, if we have sample signals from patients who had heart attacks.
ECTS can detect and alert before a heart attack happens on new patients. Another
example, when an earthquake strikes, if we use time series signals to predict earthquakes,
people can prepare and react to it earlier. This may save so many lives. According to
the above, the importance of time series early classification cannot be neglected. Besides,
time series analysis takes a lot of time to find the patterns in the training phase. For many
applications, if the training and predicting can’t be done efficiently, it won’t be helpful.
Hence, efficient computing and mining in big data is a critical issue with new methods
requested.

To achieve the goal of real-time training, distributed computing is used in our system.
Distributed systems are a group of network computers. Each computer in the group can
transfer information and communicate with other computers in the group. There is a
coordinator in the group to assign tasks to the others in the group to achieve the goal.
The concept of distributed system has the following advantages. (i) If one machine
crashes, the system as a whole can still survive. (ii) A distributed system may have more
computing power in total than a single mainframe. (iii) It allows many users to access
a common database. (iv) It could take less money to increase computing power. In 2006,
Apache Hadoop was introduced. Apache Hadoop [20] is an open source platform comes
with a distributed file system and other modules like Hadoop YARN [1], Hadoop
MapReduce [6], HBase [2], Spark [27], Zookeeper [14], Hive [21], Pig Latin [8] and
more. Recently, Spark is more popular than Hadoop because of its in-memory computing
characteristics. Spark also supports many languages like Java, Python and Scala.
Besides, it is compatible to Hadoop. Based on the above reasons, Spark is used in this
research.

There are many existing methods on ECTS. In 2008, [23] uses the feature value to
do ECTS problem. The most commonly used method is nearest neighbors [4, 7, 22,
24]. However, the nearest neighbor method can’t extract the feature which is interpret‐
able. Recently Many ECTS methods are based on shapelets [5, 16, 25, 26]. Most of them
have been proposed to make early predictions on univariate time series. However, to

4 V.S. Tseng et al.



predict accurately, using univariate time series is not enough. Multivariate time series
also needs to be considered. Ghalwash and Obradovic [9, 12, 13] started to do research
on multivariate time series on ECTS and took multi-shapelets as candidate features
(MSD). It can calculate the distance threshold of feature to filter useless patterns. This
method is suitable for the homogeneous data and missing value is not allowed in data.
To break out the limit of [9], Ghalwash and Obradovic proposed new methods [10, 11]
which combined Hidden Markov Model (HMM) and Support Vector Machine (SVM).
When it comes to multivariate time series, it takes a lot of time to calculate the distance
of shapelets. Lin [15] proposed the method that uses GPU to speed up the computing
process. However, the GPU-based methods incur the problem that they can’t deal with
big data if the memory of GPU is not enough (which is usually the case).

In this paper, to resolve the insufficiency in existing methods as mentioned above,
we explore to apply distributed and in-memory computing techniques on a shapelet-
based method to enhance the scalability in dealing with large-scale time series data in
constructing early classification models for multivariate time series, which could be
composed of various kinds of sensory data. We implemented a Spark-based framework
to parallelize the feature extraction process of MSD method to explore the aim as
mentioned above. The framework was evaluated by using various kinds of sensory
datasets from different application domains. The result presents the performance of our
framework compared to the single-threaded version of the MSD method on multivariate
time series early classification in dimensions of scalability, accuracy and reliability. This
work is the first one to realize multivariate time series early classification on Spark
distributed in-memory computing platform. Our framework defined a new way to speed
up the training process of multivariate time series early classification and can serve as
a good base for an extension to other time series classification methods based on shapelet
feature extraction.

The remainder of this paper is organized as follow. Section 2 introduces some basic
concepts and related works of ECTS. We then explain our framework in Sect. 3.
Section 4 will explain how we did the experiment and show the results of our experi‐
ments. At last, we will have a conclusion for this paper and talk about the future works.

2 Preliminaries and Related Work

2.1 Preliminaries

In this section, we introduce the definitions and properties of multivariate time series,
shapelet and other objects.

Definition 1 (Time series). A time series T = {t1, t2,⋯ , tL} of length L, len(T) = L, is
defined as a sequence of L real values. A subsequence of a time series T is defined as
s = {ti, ti+1,⋯ , tL}, s ⊂ T, is a sampling of contiguous positions of T of length 𝓁 < L.

Definition 2 (Distance between subsequences). Given two subsequence s and s′ where
len(s) = len(s′) = L, the Euclidean distance between s and t is defined as:

Early Classification of Multivariate Time Series 5



dist
(
s, s′

)
=

√√√√ L∑
i=1

(s[i] − s′[i])2

Definition 3 (Distance between subsequence and time series). Given a subsequence
s of length 𝓁 and a time series t of length L, the distance between s and t is defined as
the minimum distance between s and all the subsequences of t with the same length. The
distance between s and t is computed as:

dist(s, t) = min
∀i∈{1,2,…,L−𝓁+1}

dist(s, ti)

where ti is a subsequence of t of length 𝓁 starting from position i.

Definition 4 (Multivariate time series). An N-dimensional multivariate time series
(MTS) of length L is defined as T = {T1, T2,⋯ , TN} where Tj is a time series that repre‐
sents the jth dimension of T. Each multivariate time series is associated with a class label
c ∈ C where C is a finite set of class labels. A dataset D is a collection of M pairs
{
(
T1, c1

)
,
(
T2, c2

)
,⋯ ,

(
Ti, ci

)
,⋯ ,

(
TM, cM

)
} where Ti is a multivariate time series and

ci is its class label.

Definition 5 (N-dimensional shapelet). An N-dimensional shapelet (N-shapelet) is
defined as f = (s,𝓁,Δ, cf ). The vector s = [s1, s2,⋯ , sN] where sj is a time series that
represents the jth dimension of the shapelet. 𝓁 is the length of the shapelet. The distance
threshold Δ =[δ1, δ2,⋯ , δN]. Finally cf  is a class label.

Definition 6 (Distance between N-shapelet and multivariate time series). Given an
N-shapelet f and an N-dimensional multivariate time series T. The distance between
them is defined as:

dist(s, T) =
[
dist

(
s1, T1), dist

(
s2, T2),… , dist

(
sN , TN

)]

where dist
(
sj, Tj

)
 is defined in Definition 3.

2.2 Related Works

The very first research on time series early classification is done by Rodriguez et al. [19].
This research uses the prefix of time series to predict, but it did not optimize the earliness
of predictions. In the year 2008, Xing et al. [23] applied a feature based method on
sequence early classification. Unfortunately, it can only be used on symbolic sequences,
instead of real value time series. Meanwhile, according to the characteristic of the algo‐
rithm, it is hard to be applied to multivariate time series. Many research works such as
[4, 7, 22, 24] were extended from the nearest neighbor approach. However, these
methods cannot extract features with interpretability. Recently, the concept of shapelet
emerged [16, 17, 26] and has been used as features in time series early classification.

6 V.S. Tseng et al.



All of the methods above can only be applied on univariate time series. When it comes
to multivariate time series, shapelet-based methods have to be modified. In 2012, Ghal‐
wash et al. [9] proposed a shapelet-based method for early classification on multivariate
time series (MSD). MSD was one of the first methods that applied N-dimensional
shapelet on early classification. Same as all the other shapelet-based methods, feature
extraction process in MSD consumes a tremendous amount of time. It’s very inefficient
and hard to be applied for real word datasets.

3 Methodology

3.1 Multivariate Shapelets Detection

The Multivariate Shapelets Detection method is proposed in [9]. Figure 1 shows the
whole algorithm of MSD in pseudocode. It contains three major parts: (I) Feature
extraction, (II) Shapelet pruning and (III) Classification. In this section, we will explain
these parts in details.

Input: A training dataset D of M multivariate time series; minL; maxL
Output: A list of multivariate shapelets

1. for each time series T D do // T is a time series of length L
2. for l ←minL to maxL do //for each shapelet length
3. for k ←1 to L – l + 1 do //for each starting position
4. RowDist = ShapeletDist(k,l,Dist)
5. ComputeThreshold ( ,RowDist)
6. ComputeUtilityScore ( ) 
7. Add( , ShapeletList )
8. PruneShapelets(ShapeletList )
9. return ShapeletList

Fig. 1. The algorithm of Multivariate Shapelets Detection (MSD) method [9] for multivariate
time series.

3.1.1 Feature Extraction
All the N-dimensional shapelets f = (s,𝓁,Δ, cf ) are extracted from training dataset D
by using sliding window techniques. The MSD method will extract a subsequence from
each dimension on every training data. In s =

[
s1, s2,⋯ , sN

]
, sj is the extracted subse‐

quence from the jth dimension of training time series. To calculate distance threshold of
a shapelet, the method order two multidimensional distance d1 = [d1

1 , d2
1 ,… , dN

1 ] and
d2 =

[
d1

2 , d2
2 ,… , dN

2

]
 according to the following rule:

d1 < d2 iff d
j

1 < d
j

2 ∀j = 1…N

Early Classification of Multivariate Time Series 7



In the above equation, all N dimensions of d1 need to be less than all corresponding
dimensions of d2, that might lead to over fitting. To prevent overfitting, the MSD method
relaxes and redefines the equation to the following criteria:

d1 < Percd2 iff d
qj

1 < d
qj

2 ∀j = 1…Perc × N

where Perc ∈ (0, 1] determines the percentage of dimensions used to compare.
The feature extraction algorithm for multivariate shapelets is similar to the algorithm

showed in Fig. 1. It takes 3 for-loops to extract all multivariate shapelets. For each
shapelet candidate, the algorithm computes the distance vector of length N. After
distance calculation, MSD method finds the distances matrix with dimensions N × M
between a multivariate shapelet and all time series where M is the number of time series.
The process of finding shapelet for each time series is independent. This is one reason
for us to parallel this part in the Distributed Feature Extraction section.

Then, it takes a multivariate shapelet f and the distance matrix as input and computes
the distance threshold of f based on information gain [9]. In the end, the method returns
the multivariate threshold Δ = [δ1, δ2,⋯ , δN] of multivariate shapelet f that maximize
its information gain.

After feature extraction, there are too many shapelets to make a precise and efficient
classification. In the MSD method, they also provide a feature selection method that
prunes the candidate shapelets.

3.1.2 Shapelet Pruning
The shapelet pruning step of MSD method is based on weighted information gain. First, they
define the earliness between a shapelet f = (s,𝓁,Δ, cf ) and a multivariate time series T as

EML(f, T) = min
i∈{1,2,…,L−l+1}

dist(s, hi) ≤ Δ

where hi is the subsequence of length 𝓁 of T starting from the ith time point. A better
shapelet can classify a time series with lower EML. The weighted information gain of the
shapelet is computed as follows [9]:

1. Compute the distance between the multivariate shapelet f = (s,𝓁,Δ, cf ) and every
time series Ti in the dataset.

2. Split the dataset D into two datasets DL and DR such that DL contains all time series
where dist(f , Ti) ≤ Δ and DR contains all time series where dist(f , Ti) ≥ Δ.

3. For each time series T in the dataset DL, if Class(T) = cf , then T is weighted by
EML(f, T). Otherwise, the time series is weighted by 1.

4. Compute ML as the weighted count of the number of time series in the dataset DL

and MR is the size of the dataset DR.
5. Compute the weighted information gain using the following equation

IG = Entropy −
ML

M
EL −

MR

M
ER
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Once the weighted information gains for all multivariate shapelets have been
computed, the method sorts the shapelets in descending order by their weighted infor‐
mation gain. The pruning algorithm takes the shapelet from the highest gain and removes
all training samples that are covered by this shapelet. The method then takes the next
highest ranked shapelet. If the shapelet covers some training samples, the samples are
removed and the shapelet is selected. If not, the shapelet is discarded and the algorithm
proceeds to the next one. It stops when all training samples are removed.

3.1.3 Classification
The classification process can start when the length of test time series is greater or equal
to the length of the shortest shapelet. From all shapelets that are shorter than the test
time series, the highest-ranked one is chosen to match the test time series. If matched,
the time series is predicted. Otherwise, the next highest-ranked is tried. If none of the
shapelets matches the test time series, the method reads the next time stamp into the test
time series. As the length of test time series growth, more shapelets can be tried when
matching. If the test time series reaches its max length and none of the shapelets covers
it, the method marks the time series as not-classified example.

3.2 Distributed Feature Extraction

In order to make the MSD method more efficient, we parallelize the distance calculation
process in the early phase of feature extraction since it is the most time-consuming part
in the whole method. Figure 2 shows the parallel version of the method in pseudocode.

Input: A training dataset D of M multivariate time series; minL; maxL
Output: A list of multivariate shapelets
1. parallel for each time series T D do //T is a time 

series of length L
2. for l ←minL to maxL do //for each shapelet length
3. for k ←1 to L – l + 1 do //for each starting po-

sition
4. RowDist = ShapeletDist(k,l,Dist)
5. for each time series T D do // T is a time series of 

length L
6. for l ←minL to maxL do //for each shapelet length
7. for k ←1 to L – l + 1 do //for each starting po-

sition
8. ComputeThreshold ( ,RowDist)
9. ComputeUtilityScore ( ) 
10. Add( , ShapeletList )
11.PruneShapelets(ShapeletList )
12.return ShapeletList

Fig. 2. The distributed feature extraction for Multivariate Shapelets Detection (MSD) method.
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We implement this parallel version of feature extraction on Spark distributed
computing platform. First, we create the resilient distributed dataset (RDD) of training
dataset T. After that, we can use a map function to parallelize line 2 to 4 of the algorithm.

4 Experimental Evaluation

4.1 Experiment Setup

We use several real datasets to evaluate the performance of our framework. All experi‐
ments were performed on a cluster of six computers and each computer has the same
Intel Pentium(R) CPU @ 3.2 GHz * 2 with 15.6 GB of memory. The algorithm is
implemented in JAVA. Our operating system is Ubuntu 14.04.

4.2 Data Set

The experiments were performed on several real datasets: robot execution failures
dataset [3], and ozone level detection dataset [3], ECG dataset [18]. Each multivariate
time series dataset is representing a different domain of sensory data.

There are five datasets in the robot execution failures, each of them defines a different
problem: failures in approach to grasping position (Rob1), failures in transfer of an
object (Rob2), position of an object after a transfer failure (Rob3), failures in approach
to ungrasping position (Rob4), failures in motion with an object (Rob5). All of these
datasets had no missing feature value and captured the information about 3-axis force
and torque from sensors. Each failure instance is characterized in term of 15 samples
collected at regular time intervals starting immediately after failure detection. In this
experiment, we choose Rob4 to do the experiment. It is a multiclass dataset with 21%
normal, 62% collision, 18% obstruction.

Each instance on the ozone level detects dataset recorded two time series of 24 time
points of temperature and wind speed. The time series represents one day from January
1, 1999 to December 31, 2004. The dataset contains 2361 instances including 2290
normal days and 71 ozone days after filtering the days without any information.

The ECG dataset used two electrodes to collect heartbeat. Each heartbeat is described
by a multivariate time series with a label of normal or abnormal. The abnormal heartbeats
are representative of a cardiac pathology known as a supraventricular premature beat
(SVPB). There are 200 instances in the dataset, 133 instances are normal and 67
instances are abnormal. The length of ECG is from 39 to 152. Table 1 shows the infor‐
mation of the dataset in the experiment.

Table 1. Information on different datasets

Number of
training data

Number of
testing data

Min length Max length Number of
variates

Rob4 80 37 15 15 1
OZONE 1651 710 24 24 2
ECG 139 61 39 152 2

10 V.S. Tseng et al.



4.3 Experiment Result

We randomly split the data into training data (70%) and testing data (30%). In this
experiment, we focus on execution time. As shown in Fig. 3, the x-axis represents the
number of Spark executors and the y-axis represents training time. The dashed line is
the training time without using Spark. As we can see, if we use only one executor, the
training time is longer than original algorithm due to communication overhead costs in
Spark. However, when we use more than two executors, the training time decrease and
eventually become less than the original algorithm. We can also see that when more
executors are used, the gradient of speed up slows down. It follows the Amdahl’s law.
It means that the ideal speedup is bounded by the ratio of parallelism. No matter how
we increase the number of processors, the acceleration is limited.
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Fig. 3. Training time (in second) of MSD on Rob4, Ozone, ECG with different numbers of Spark
executors. The dashed line is the training time without using Spark.
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Table 2 shows the match rate, accuracy and earliness of each dataset. The result
shows MSD with Spark could do the same as the result of MSD without using Spark.

Table 2. Result of different datasets

Match rate Accuracy Earliness
Rob4 0.864 0.687 6.2
OZONE 0.985 0.797 4
ECG 0.737 0.666 44

Match rate shows the percentage of instances matching to the shapelets. It is defined
as below.

Match Rate =
Number of instances which match to the shapelets

Number of instances

In earliness evaluations, we define the earliness of a prediction as below.

Earliness(%) =
1

Dtest

∑
mt∈Dtest

EMT(mt)

len(mt)

5 Conclusion and Future Work

In this paper, we have introduced a framework for early classification of multivariate
time series considering scalability, accuracy and reliability simultaneously by using
distributed and in-memory computing techniques. We use Spark distributed computing
platform to parallelize the feature extraction process and reduce parallel overheads and
implemented an extended version of the MSD method as a base example. By processing
numerous of multivariate time series simultaneously, the time cost of shapelet extraction
can be reduced significantly. The experimental results on various kinds of sensory data
present the effects and degree of execution scalability which can be achieved through
the proposed framework while ensuring the same accuracy and reliability in early clas‐
sification of multivariate time series.

This work is the first one which realizes multivariate time series early classification
on Spark distributed in-memory computing platform. The proposed framework defined
a new way to speed up the training process of multivariate time series early classification
and can serve as a good base for extending to other time series classification methods
based on shapelet feature extraction.

There leave some further directions to explore for future work. For example, instead
of parallelizing the mining process by the proposed distributed approach, GPU-based
approaches are also a powerful way on the other hand. How to deal with the challenge
in face of big data under constrained memory (which is usually the case) of GPU-based
methods will be an interesting research topic. The combination of distributed in-memory
approaches like the proposed framework with the GPU-based approach will be another
even more promising direction.

12 V.S. Tseng et al.
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Abstract. Precision management systems for livestock offer the poten-
tial to monitor and manage animals on an individual basis. A key com-
ponent of these sensor based systems are the analytical models that
automatically translate sensor data into different behavioral categories.

Here we consider the use of GPS data for modelling the behaviour of
dairy cows. The performance of this approach is validated across a study
involving 24 Holstein-Friesian dairy cows that were each fitted with a
GPS unit on a neck collar. The behavior of the cows are classified into
4 general classes: grazing; moving from paddock to paddock; milking;
and resting. Using simple rules derived from prior information about the
behavior of dairy cows, and information about the layout of the farm,
the classification was substantially improved.

The utility of a log of animal behaviour will increase when joined with
other data (milk yield, for example) and has the potential to provide use-
ful in animal management, obtained at little cost.

Keywords: Behavior classification · Machine learning · Livestock ·
Precision management · Geographical positioning system, GPS

1 Introduction

Precision management of livestock differs from traditional herd management
by tailoring decisions to the individual animal. The aim of precision strategies
is to maximize the potential of each animal and ensure resources are allocated
efficiently on the farm. An animals behavioral interactions with its physical envi-
ronment must be continuously monitored for precision management strategies to
be successfully implemented. The observed behaviors of each animal must then
be linked to management knowledge in areas such as breeding, welfare and nutri-
tion to enable the appropriate action to be taken. For instance, illness can be
predicted in cattle when there is a reduction in the level of social interaction or
rumination and feed intake [4,13]. Furthermore, other behavioral changes have
been shown to be indicative of when cattle are: lame [10]; in estrus [1,2]; in pain
[7]; or under heat stress [3].
c© Springer International Publishing AG 2017
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DOI: 10.1007/978-3-319-67274-8 2



16 R. Dunne et al.

Sensors and digital technologies are becoming an important enabler for preci-
sion livestock management. Sensor based monitoring systems offer the potential
for continuous and autonomous monitoring of cattle without the need for human
involvement. Such systems generally consist of a sensor or suite of sensors that
are fitted to each animal and a model that uses the sensor data to infer the ani-
mals behavior. Commercial monitoring systems classify the basic behaviors of a
cow, but most importantly, compare the classified behaviors to rules regarding
the animals expected or normal behavior in order to alert to potential manage-
ment issues [1,2,4].

Here we consider the use of GPS data for modelling the behaviour of dairy
cows. The performance of this approach is validated across a study involving 24
Holstein-Friesian dairy cows that were each fitted with a GPS unit on a collar
around their neck.

We have GPS data, collected every 10 s, on the 24 cows over a 14 day period
from 27/11/2012 to 10/12/2012. The cows are part of a single herd of 300 animals
on a farm located in the north-east of Tasmania.

In some instances (111 animal days) the GPS record is complete for an animal
over a 24 h period. In others (136 animal days) it is only a partial record that
may or may not contain usable information. We have behavioral data collected
by observers for brief periods during the 14 day period. However, the data was
found to cover too brief an interval, was often recorded at very short intervals
(2 s) and covered too many activities (chewing, resting with head up, etc.) to be
usefully matched to GPS records.

Instead we have explored several other options. We have investigated unsu-
pervised segmentation techniques that have been applied to GPS trajectories
collected from wild animals [6]. These are shown to have some utility in inter-
preting the trajectories.

We have also investigated classifying a limited number of trajectories by eye,
relying on domain knowledge of the behavior of diary cows. We can then use
these trajectories as data to train a classifier. Hence we are automating a process
of information extraction that could be done more laboriously by the farmer.

In addition we have used a number of heuristic rules to improve the classi-
fication. We find that, using a classifier and several simple heuristic rules, it is
possible to classify the animals behaviour into 4 broad classes, that is: milking
(at the milking sheds); moving from paddock to paddock; grazing; and resting.

2 Methods

2.1 Cattle Collar Instrumentation

The behavior monitoring collars [12] fitted to the dairy cows were comprised of
a 20-channel GPS receiver chip, an active GPS antennae, a microcontroller and
915 MHz transceiver, a 4 GB micro SD card for data storage and a Honeywell
HMC6343 compass module containing a 3-axis MEMS accelerometer and a 3-axis
magneto-resistive (magnetometer) sensor. The compass module of the behavior
monitoring collars acted as an Inertial Measurement Unit (IMU).
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The IMU was ignored as the focus of this particular study was upon classify-
ing cattle behavior using the GPS. The effective battery life was approximately
14 days. After retrieval of the collars at the end of the data collection period, the
memory storage cards were removed and the data downloaded and converted
from binary format.

2.2 Segmenting a Trajectory into Segments Characterized
by a Homogeneous Behaviour 1

Calenge (2006) describes an approach to the segmentation of movement data
into homogeneous segments. The method relies on a Bayesian partitioning of a
sequence and was originally developed for partitioning DNA sequences [8].

Suppose that the steps, the distances between successive locations, have been
independently generated by Gaussian distributions, with different means corre-
sponding to different behaviours. We generate d = 1, . . . , D models with different
means. Based on these a priori models we estimate both the number and the
extent of the segments building up the trajectory.

Given an optimal k-partition of the trajectory, if the ith step of the trajectory
belongs to the segment k predicted by the model d, then either the move i − 1
belongs to the same segment, in which case the segment containing i − 1 is
predicted by d, or the move i − 1 belongs to a different segment, and the other
(k−1) segments together constitute an optimal (k−1) partition of the trajectory
[1 : (i − 1)].

Calenge (2006) uses a range of equally spaced means across the observed
range of the steps, with a common variance. We suspect that the means of the
behaviors we are interested in are not equally spaced and have differing variances
so we fit a mixture of 4 Gaussians using the EM algorithm. For the trajectory
of animal 6 on day 2 (Fig. 1) we get the 4 distributions, plotted in Fig. 2.

Figure 3 shows the sequential step lengths. The mean of the Gaussian that
best models each segment is shown by a horizontal bar. Figure 4 shows the
segmented trajectory.

2.3 Segmenting a Trajectory into Segments Characterized
by a Homogeneous Behaviour 2

Calenge [6] also describes a method of

– calculating the residence time for each location on the trajectory;
– use the method of Lavielle [9] to partition the trajectory.

The method of Lavielle finds the best segmentation of a time series, given that
it is built by K segments. It searches the possible segmentations for one in which
the difference between the observed trajectory and the model is minimized. Let
Yti be the value of the variable (e.g. residence time, although other variables
are possible) at time ti. We suppose that the data have been generated by the
following model:

Yti = μti + σtiεti
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Fig. 1. The trajectory of animal 6 on
day 2.

Fig. 2. The mixture of Gaussians fitted
to the distances for Animal 6, day 2.

Fig. 3. The sequential step lengths.
The mean of the Gaussian that best
models each segment is shown by a hor-
izontal bar.

Fig. 4. The segmented path for animal 6
on day 2 using the method of Sect. 2.2.

where μti and σti are the mean and standard deviation of Yti . εti is a sequence
of zero mean random variables with unit variance, not necessarily independent.

We use the most general model, assuming that (writing ti as i) μi and σi

can both vary between segments, but are constant within a segment. For a given
partition of the series built by K segments with known limits, the following
function can be used to measure the discrepancy between the observed trajectory
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Fig. 5. A plot of J(K) versus K indi-
cates that 3 segments will minimize
J(K). Subsequent segments add little
to the reduction in the value of J(K).

Fig. 6. The segmented path using K = 4
with the method of Lavielle [9].

and the model:

Jk(Y ) =
K∑

k=1

Gk(Yi,i∈k),

where

Gk(Yi,i∈k) =
1

n(k)
log

⎛

⎝ 1
n(k)

tkn(k)∑

i=tk1

(Yi − Ȳk)2

⎞

⎠

where n(k) is the number of steps in segment k. The method of Lavielle uses a
dynamic programming algorithm to find the best segmentation of the trajectory,
i.e. the segmentation for which Jk(Y ) is minimized. The optimal number of
segments K is a parameter in the model and [9] suggest plotting J(K) versus
K to see if there is a clear “break” at an optimal value of K. Figure 5 shows
this plot for animal 6, day 2, and Fig. 6 shows the resulting segmentation into 3
classes.

2.4 Classification Based on Derived Variables from Fixed Time
Segments

We take the 10 s spaced location data and summarize it to longer segments. We
derive a number of variables from each segment:

– the distance between the staring point and the end point of the segment;
– the total distance travelled in the segment;
– the max movement in any 10 s segment; and
– the maximum difference in movements between 10 s segments.
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We selected 5 animals on single days as the training data set (animal 21 on
day 1, etc.) and 5 other animals/days as the test data set (animal 6 on day
1, etc.). The trajectories of these animals were manually segmented into the 4
classes milking; moving, grazing and resting, using knowledge of the layout of
the farm and animal behaviour.

Take, for example, the partial trajectory (from 07:00 to 17:00) of animal 21
on day 1, shown in Fig. 7. Figure 8 shows the same trajectory as distance from
an arbitrary origin at the milking sheds. We can segment it into the following
sequential behaviours;

– time at the milking shed.
– movement to a grazing paddock (paddock 1);
– grazing;
– movement to the milking sheds;
– time at the milking shed;
– movement to a grazing paddock (paddock 2);
– grazing.

This divides the animals behavior into 3 classes: milking; moving; and grazing,
as shown by the trajectory color in Figs. 7 and 8. For this trajectory there was
no resting class.

The derived variables were calculated and a linear discriminant analysis was
used to classify the segments. The classification was then tested on the 5 test
animals. Segment length of 2, 5 and 10 min were tried with overall classification
accuracies of 0.58, 0.58 and 0.61.

See Fig. 9 which shows the classified trajectory for one of the test animals
(animal 6 on day 1) using segments of 10 min duration.

Fig. 7. Animal 21, day 1. Segmented
into three classes: penned in (at the
milking shed); moving and grazing on
the basis of knowledge about the farms
practice.

Fig. 8. The trajectory for animal 21, day
1 (Fig. 7) as distance from an arbitrary
origin at the milking sheds.
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Fig. 9. A classified trajectory for Ani-
mal 6, day 1

Fig. 10. A classified trajectory (Fig. 9)
after the application of the two heuristic
rules.

2.5 Heuristic Rules

We have some prior information about the movement of dairy cows. It is sug-
gested in [5] that:

– grazing occupies about 8 (dairy cows) to 9 (beef cattle) hours a day;
– ruminating occupies about 6 h a day (see also [14]);
– cattle lie down to sleep, ruminate or drowse for nearly half of their day.

In addition we know the layout of the farm and can inspect the typical
movements of various animals. This leads us to 2 simple rules:

– the location of the milking shed is fixed and there appears to be no grazing
area around it (animals seem to be closely bunched together before milking).
We can geo-fence the milking sheds and any time spent in that area can be
classed as “milking” time;

– dairy cows do not graze at night. The time between 22:00 and 04:00 (a period
when the GPS record shows no more movement than can be attributed to GPS
inaccuracy) can be classified as “resting” which includes: resting; sleeping; and
ruminating.

Using these simple rules we can improve the behaviour classification. Figure 9
shows a classified trajectory (using the method of Sect. 2.4) and Fig. 10 shows
the same classified trajectory after the application of these heuristic rules.

3 Results

We have tried both segmentation and classification methods on this data. The
segmentation of GPS paths appears in the ecology literature where two features
are apparent:
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Fig. 11. A classified trajectory for Animal 6, day 2. This animal was not included in
either the test or the training data. The trajectory has been cleaned up with the two
heuristic rules.

– the location of the animal is interesting information in itself;
– it is likely that training data is unavailable as direct observation of the animal

over an extended period may not be possible.

We have a somewhat different situation. We have some prior knowledge about
the behaviour of the animals at different times and locations. We can use this
knowledge to both produce and evaluate the classified trajectories. Our problem
is to automate this process. Consider the following three segmentations of the
same trajectory (animal 6 on day 2):

– Figure 4, the Gueguen segmentation. This has separated moving and grazing.
There are occasional rest periods mixed with the grazing. However, the overall
segmentation is not unreasonable;

– Figure 6, the Lavielle segmentation into 4 classes. It has separated moving
from everything else but has not successfully segmented the other classes;

– Figure 11, an animal classified on 10 min segments, not included in either
test or training data. The classification combined with the heuristic rules has
made the trajectory quite interpretable.
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The classification method appears to perform better than the segmentation
methods. This may be due to the fact that is based on the 5 derived variables
which give more information than the successive positions.

4 Discussion

We anticipate that the GPS data will only be able to separate the behaviour into
a small number of distinct activities. Clearly, GPS information will not let us
distinguish between sleeping, drowsing or ruminating. In addition the continuous
small errors in GPS readings may make a stationary animal indistinguishable
from a slowly moving one. This will cause some confounding of resting (Fig. 12)
and grazing (Fig. 13). Both trajectories fail the Wald-Wolfowitz runs test [11]
for randomness, although we suspect that only the resting (Fig. 12) trajectory is
in fact random noise.

The segmentation achieved by the Gueguen method (Fig. 4) appears reason-
able. It appears that the class with the smallest mean does not cover the milking.
There are times in the grazing paddock when the animal is more consistently
stationary than in the milking shed. However, the segmentation is relatively easy
to align with our prior knowledge of the animals behavior.

The Lavielle method suggests 3 behavior classes (Fig. 5). We have selected
4 classes for an easier comparison with other methods. However the resulting
segmentation (Fig. 6) make little sense.

Using the ten minute segments (Sect. 2.4) gives us a reasonable classification,
shown in Fig. 9.

Table 1. Summary of the grazing behavior of Animal 6 and 29.

Animal 6 Animal 29

Time (minutes) Distance (meters) Time (minutes) Distance (meters)

27/11/12 676.83 4327.20 601.17 3925.46

28/11/12 892.67 4779.78 759.33 4345.09

29/11/12 908.33 4759.01 774.00 4102.31

30/11/12 796.00 4855.96 675.00 3918.92

01/12/12 820.17 4810.77 696.17 3199.86

02/12/12 857.00 3868.14 738.33 3392.88

03/12/12 836.17 5227.78 699.00 3853.94

04/12/12 839.67 5098.36 725.17 3990.13

05/12/12 847.00 5536.96 738.33 4155.51

06/12/12 857.33 5047.15 726.50 3507.63

07/12/12 885.00 4323.86 359.33 1952.70

08/12/12 242.67 783.91 250.17 1164.36

09/12/12 NA NA 466.17 2508.31
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Fig. 12. Animal 6, day 2 from mid-
night to 04:15. We assume that the ani-
mal is resting.

Fig. 13. Animal 6, day 2 from 9:30 to
11:15, the animal is grazing

Using the method of Sect. 2.4 and two simple heuristic rules we can produce
an acceptable classification of the GPS trajectory of a dairy cow into the 4
classes: milking, moving, grazing and resting. Using the classification we can
produce a summary of time spent grazing and distance covered for each animal
in the sample. This in given in Table 1 for animals 6 and 29.

The information derived from the classified trajectories has a number of
potential uses. By itself it may indicate individual animals that are not moving
well. It may also indicate some features of herd behaviour, including different
spatial behaviour in different paddocks.

Its utility will increase when joined with other data (milk yield, for example)
to produce a summary useful in animal management. These methods have the
potential to yield important and useful information for animal management at
quite a low cost.
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7. González, L., Schwartzkopf-Genswein, K., Caulkett, N., Janzen, E., McAllister,
T., Fierheller, E., Schaefer, A., Haley, D., Stookey, J., Hendrick, S.: Pain mitiga-
tion after band castration of beef calves and its effects on performance, behavior,
escherichia coli, and salivary cortisol. J. Animal Sci. 88(2), 802–810 (2010). Cited
by 38
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Abstract. Segmenting sensor events for activity recognition has many
key challenges due to its unsupervised nature, the real-time requirements
necessary for on-line event detection, and the possibility of having to
recognise overlapping activities. A further challenge is to achieve robust-
ness of classification due to sub-optimal choice of window size. In this
paper, we present a novel real-time recognition framework to address
these problems. The proposed framework is divided into two phases:
off-line modeling and on-line recognition. In the off-line phase a repre-
sentation called Activity Features (AFs) are built from statistical infor-
mation about the activities from annotated sensory data and a Näıve
Bayesian (NB) classifier is modeled accordingly. In the on-line phase, a
dynamic multi-feature windowing approach using AFs and the learnt NB
classifier is introduced to segment unlabeled sensor data as well as pre-
dicting the related activity. How this on-line segmentation occurs, even
in the presence of overlapping activities, diverges from many other stud-
ies. Experimental results demonstrate that our framework can outper-
form the state-of-the-art windowing-based approaches for activity recog-
nition involving datasets acquired from multiple residents in smart home
test-beds.

Keywords: Human activity recognition · On-line stream mining · Real-
time · Machine learning · Classification

1 Introduction

Sensor data segmentation for activity recognition is attracting increased atten-
tion at a time when greater importance is being attached to controlling, safety
(e.g. health) and security in a smart home environment. However, there are a
number of challenges, namely the streaming nature of the sensor data and the
real-time sensor data processing requirements. As a result, most existing win-
dowing approaches [13,14,20] that were applied in the training part or in batch
c© Springer International Publishing AG 2017
U Kang et al. (Eds.): PAKDD 2017 Workshops, LNAI 10526, pp. 26–38, 2017.
DOI: 10.1007/978-3-319-67274-8 3
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mode require the sensor data to have annotated labels. In the testing phase, most
researchers used a fixed time or sensor-based window for segmentation [2,7,17].
An important challenge with a fixed window size is identifying the optimal win-
dow size a priori and as a result, many of the classification and modeling errors
come from the selection of this window length [5]. Various heuristics such as
the mean length of the activities and sampling frequency of the sensors were
employed to determine this [9]. For example, the Sensor Window Mutual Infor-
mation approach [9] is computed off-line using the training sensor sequence which
then uses a fixed window size for calculating feature vectors. They also developed
a method called Dynamic Window which is a probabilistic method to derive the
window size automatically using a data-driven approach. However, this method
still uses a fixed window sizes which correspond to the mean window size of
an activity. Because of their assumption that there are no significant changes
to the routine of a resident in the smart home, the window sizes for sensory
data are computed using this probability in both the training and testing parts
[9]. Similarly, in [12], a dynamic segmentation model was proposed where the
window is shrunk and expanded based on using temporal activity information,
sensor data, and the current state of activity recognition. However, this research
on activity recognition did not accurately consider the segmentation of stream-
ing unlabeled sensory data beyond the training phase. Although [1] did consider
adaptation and evolution of sensory data beyond the training phase, they still
used a fixed window to segment the sensor data. Dealing with an on-line stream,
this model is learnt continuously, incrementally and the stream data is split into
equal sized chunks only of unlabeled data [1]. Although the above approaches
have achieved comparable recognition results, there is no robust solution to the
problem of segmenting unlabelled streamed data. Therefore, delivering appropri-
ately robust activity recognition systems that could be deployed with confidence
in an on-line setting remains an outstanding challenge.

In this paper, we propose a novel real-time recognition framework to both
segment and recognise activities using an adaptive windowing approach. Our
proposed framework consists of two phases. In the off-line phase, Activity Fea-
tures (AFs) are built from annotated sensory data and a Näıve Bayesian (NB)
classifier is learnt subsequently. The AFs maintain the statistical information
about the activities. In the on-line phase, a dynamic multi-feature windowing
method using AFs is introduced to segment the unlabeled sensory data in a
real-time setting. As a result, the recognition performance has been improved
by the proposed framework. This framework is easy to implement, attains better
results in comparison with the-state-of-the-art approaches, and recognizes over-
lapped activities in a real-time manner. The details of our proposed framework
are described in the following section.

2 Real-Time Recognition Framework

In this section, we introduce our novel real-time recognition framework for activ-
ities along with its phases and components in a smart home environment that
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Fig. 1. Framework of activity modeling and recognition.

is depicted in Fig. 1. In terms of the windowing paradigm, the framework is
divided into two phases: off-line modeling and on-line recognition. Preprocessing
and modeling components are conducted in the off-line phase. In this phase, we
applied an adaptive windowing model to read the sensor data based on annotated
labels. An adaptive windowing method for streaming sensor data uses three ele-
ments: window length adaptation (shrinking and/or expanding the window), a
time decay function, and a scheme for accommodating past sensor information.

Sensor data, S, at time, t, is read into a Sensor Window, SW , (SW ←
SW ∪ St). If the length of SW is less than or equal to an initial size then the
activity is recognized and SW is added to the window data matrix, W . Other-
wise, if Size(SW ) is exhausted, the initial size will be expanded by a predefined
extension value (ext), but this is expanded once only. Finally, if an activity is
not recognized during reading the sensors and Size(SW ) is exhausted after the
expansion, the sensor data is added to the Past Sensor Information pool, which
stores potentially useful information for the next window. The details of this
method are elaborated in [15]. This phase is where the NB classifier and AFs
are built from the annotated sensory data.

In this paper, however, our main focus and key challenge is addressing the
on-line recognition phase. A dynamic multi-feature windowing approach using
AFs in this phase is introduced to segment the unlabeled sensory data in a
real-time setting. The details of this method is elaborated in Sect. 2.2.

2.1 Activity Features

In this study, we address Interval (Int) time, Mutual Information (MI ), fre-
quency of triggered sensors of an activity (FreSen) and last two sensors (L2S )
as the features of an activity. The motivation for extracting the activity features
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is to carry out an activity in the recognition task. Int time is an effective feature
to segment activities with distinct durations. MI shows how sensors are depen-
dent on one another in the sequence to determine an activity. FreSen cares about
the occurrences of activated sensors for an activity rather than the sequence of
sensors. There is other information about the sensor that can aid in recognizing
an activity which is called L2S. In a smart home test-bed, numerous activities
have taken place, many sensors are triggered as the last sensor for the same
activity. In other words, an activity does not carry only one sensor as a last
sensor. Therefore, in this research we consider last two sensors of an activity.

Table 1. Notation of Activity Features (AFs)

Symbol Description

MI Mutual Information [9]

FreSen Frequency of activated sensors in an activity [20]

L2S Last two (2) sensors of an activity

Int Time interval of an activity

Most scholars used a fixed time or sensor-based window for segmentation of
sensor data in a real-time environment [9]. Moreover, they have not yet carefully
considered on-line recognition of overlapping activities with multiple-residents.
However, to tackle these aforementioned issues, we propose new approach which
is called a dynamic multi-feature windowing method using Activity Features
(AFs). The features and notations of AFs are described in Table 1. The AFs
approach maintains the statistical information about the activities in a smart
home test-bed. The information in AFs is extracted in the off-line phase which
are the features (Fs) of each activity in an entire stream of training data. These
features of activities are defined as temporal feature vectors. The properties of
AFs assist the sensors stream to be recognized in an on-line fashion. The details
of AFs are elaborated as follows.

Sensor Dependency Using Mutual Information. “Mutual Information”
(MI) [9] measures how much one random variable tells us about another. The
MI or dependence between two sensors is then defined as the chance that these
two sensors occur consecutively in the entire sensor stream. More formally, if Si

and Sj are two sensors, then the MI(i, j) between them is defined as

MI(i, j) =
1
N

N−1∑

K=1

δ(Sk, Si)δ(Sk+1, Sj) (1)

where δ(Sk, Si) takes value of 1 if Sk = Si and 0 otherwise. Sj is a subsequent
of Si, the summation term takes value 1 otherwise it takes the value of 0, and
N is the number of activated sensors in an activity.
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Frequency of Activated Sensors for an Activity. In MI, the sequence of
the sensors are considered within an entire stream while sometimes an activity
behaves with a different order of sensor events. In addition, some sensors do not
necessary happen in order, however are still part of an activity. The example
presents the idea clearly which is as follows. (1) A1:S1 → S2 → S3 → S1 →
S2 → S4, (2) A1:S1 → S3 → S2 → S1 → S4 → S2. Assuming that the first path
is statistically less used than the second path but both paths lead to the same
activity, we can clearly see that there is a dependency between sensors S1 and
S2 whichever path is used. If we adopt the previous way for computing the MI
between sensors S1 and S2, we will lose some dependency information between
them. Furthermore, there are activities that are often performed in parallel, and
sensor events of an activity can be descriptive for the other and MI cannot take
this situation into account.

Based on these assumptions, FreSen method was proposed in [20] to com-
pute the probability between two sensors Si and Sj by calculating their fre-
quency of occurrence in the space of N sensor events for an activity along the
entire training data stream, as defined by the following equations:

FreSeni(k, j) =
1
N

N∑

l=1

δf (Sk, Sj) (2)

δf (Sk, Sj) =

{
1 if {Sk, Sj} ∈ Ei

0 otherwise
(3)

where N is the number of activated sensors in an activity, δf (Sk, Sj) takes value
of 1 if Sk and Sj activated in Ei where Ei stands for sensor events in activity,
Ai, and 0 otherwise. FreSen as an activity feature vector in an entire stream,
is a list of activated sensors for each activity. Therefore, inspired by the FreSen
which is described in Definition 1, the acceptable sensors for an activity are
those having a high probability of occurring. This candidate selection is first
set of maximum probabilities such that their summation is less than and equal
to 95%. The definition below describes the histogram of frequency of activated
sensors for an activity.

Definition 1. For each Sij in an activity (Ai), Sij = {∀Sj ∈ Ai|j = 1, . . . , N,
i = 1, . . . ,M}, the sensors with the highest probabilities are considered as the
first set of candidates for selection that is shown in Eq. (4). Let Pij is a probability
of Sj in Ai (all sensors in Pi are sorted in descending order). Thus, the list of
activated sensors with high probability for activity Ai is:

P i
final(S) = {S|argmax

N∑

j=1

{Pij |P i
final(Sj) ≤ 0.95|}} (4)

In other words, the occurrences of sensors in a reading of them for an activity
Ai, should not exceed the error threshold, T , which is set at 0.05:

err = a +
(b − a)(wj − Pmin)

Pmax − Pmin

(5)
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wj = log
1

Pj + λ
(6)

where, [Pmin, Pmax] ← [0, log ( 1
λ ) + 1] and [a, b] ← [0, T ]. In Eq. (6) the weight,

w, of a sensor is computed based on the probability of a sensor that happened
for an activity. However, some sensors might not have occurred for an activity.
Therefore, the probability of the sensor would be zero which means w would
lead to infinity without adding some type of offset. To avoid infinity, we applied
a Laplace correction to the estimate of wj by adding a small value, λ > 0, to
the probability of the sensor as shown in Eq. (6). After computing the weight of
occurrences of sensor in an activity, we normalized the weights in a predefined
period [a, b] that is depicted in Eq. (5).

Last Two-State Sensor Method. For an activity, several sensor events might
be triggered and sometimes the last sensor event of an activity is more descrip-
tive than the previous sensors [9]. However, by an increment in the number
of activities or sensors the chance of overlap, synchronization or swapping in
triggering sensors grows. To overcome this drawback, i.e. last two sensors alter-
nation, we merge last two sensors and consider them as a whole. In another
word, in our research, we consider last two sensors as a “last sensor”. This is
because we believe that sometimes the last two sensors of an activity are much
more descriptive when they occasionally activate before or after each other. As
intimated earlier, a resident can take the path in both ways (1 and 2) for the
same activity A1. For path 1, the last and second last sensors are S4 and S2

respectively. While for the path 2 the last and second last sensors are S2 and
S4 respectively. The reason for considering the last two sensors of an activity is
that a resident may switch the activation of these last two sensors for the same
activity.

Therefore, in constructing AFs, one of the conditions for feature extraction
and segmentation is considering the last two sensors (Si−1, Si). Si and Si−1 are
assumed to be last and second last sensors respectively. During segmentation
when Si is checked as last sensor, Si−1 is taken as an extra feature for subsequent
on-line segmentation to be checked whether it is activated as its previous sensor
or not. If not, as mentioned earlier, the two sensors might be triggered before or
after the other. Therefore, (Si, Si−1) is considered either is the last two events
in an activity segmentation or not. The mathematical representation of last two
sensors (L2S) is depicted in Eqs. (7)–(9):

L2S(Sk, Si) = log2 (
f(Sk, Si) + g(Sk, Si)
f(Sk, Si)g(Sk, Si) + 1

+ 1) (7)

f(Sk, Si) = δ(Sk, Si)δ(Sk−1, Si−1) (8)

g(Sk, Si) = δ(Sk, Si−1)δ(Sk−1, Si) (9)

where δ(Sk, Si) takes value of 1 if Sk = Si and 0 otherwise. Si is assumed
to be the last sensor and Sk is a sensor which is read from the data stream.
Thus, Eq. (8) checks whether Sk is the last sensor or not. If so, it also checks
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its previous sensor (Sk−1) that should be the second last sensor (Sk−1 = Si−1).
As previously stated, the last two sensors sometimes appear before or after the
other. Thus, Eq. (9) checks Si as a last sensor that might appear as a second
last sensor (Sk−1 = Si). Besides, its previous sensor (Si−1) might behave as if
is the last sensor (Sk = Si−1) which is still valid for Si to be considered as the
last sensor. Equation (7) then returns 0 or 1 for checking the last two sensors. If
L2S = 0 means the sensor Sk and Si are not the last two sensors. On the other
hand, If L2S = 1 means the sensor Sk and Si are the last two sensors.

Activity Time Interval. As mentioned in AFs, one of the features for seg-
mentation is the time interval, Int, of an activity in an on-line stream. In a time
interval, the sum of the squares of the time stamp sensor, SST , and sum of a set
of time-stamp sensors (ST ) of an activity, Ai, are formulated in Eqs. (10) and
(11) respectively.

SSi
T =

N∑

j=1

(Tij)2 (10)

Si
T =

N∑

j=1

(Tij) (11)

where Tij is a time stamp of an activated sensor Sj for an activity Ai and N is
a number of activated sensors for activity Ai which is varied for each activity.
We note that the time stamp data allows us to calculate the mean and standard
deviation1 of the time interval of activities in a given AFs. The windowing of
reading sensors for an activity based on AFs should satisfy the mean interval
and should not exceed (μ + 2σ), where μ is the mean and σ is the standard
deviation.

2.2 Dynamic Multi-feature Windowing Approach

Each AF alone is capable of contributing to classifying sensor data. However, to
achieve more accurate segmentation as well as recognition, we proposed a multi-
feature windowing approach which is derived from AFs on-line to dynamically

Table 2. Notation of dynamic multi-feature windowing approaches for segmentation.

Notation Description

MI Int Combining AFs of MI and Int

MI FreSen Int Combining AFs of MI, FreSen, and Int

MI L2S Int Combining AFs of MI, L2S, and Int

FreSen L2S Int Combining AFs of FreSen, L2S, and Int

1 The mean is equal to ST /N . The standard deviation is equal to√
(SST /N) − (ST /N)2.
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segment unlabeled streamed data. For the windowing purposes, we considered
using multi-feature of AFs to segment sensor data precisely which is described
in Table 2. The Int feature is an essential and meaningful feature of AFs that
holds the time-stamp for an activity. The L2S feature is a flag that maintains
extra information to assist other features to segment unlabeled sensor data. Our
modified FreSen holds important information about a sensor of activities as well
as providing a threshold for segmentation. For instance, the FreSen L2S Int
approach is used to segment the streaming sensory data by meeting the condi-
tions of FreSen with high probability, L2S, and Int in a segment. Algorithm 1
details the multi-feature method using AFs.

Multi-feature windowing approaches combine more features to segment the
sensor data in an on-line fashion. Indeed, multi-feature methods are appealing
mainly because they are able to improve on a single feature which can make
more accurate recognition. On the other hand, in a smart home test-bed, differ-
ent activities trigger a similar set of sensors which causes overlapping activities.
Nevertheless, our proposed dynamic multi-feature method is able to distinguish
these overlapping activities. A clear example of overlapping is depicted in Fig. 2.
When sensors are triggered, our multi-feature method reads unlabeled sensor
data and segments them based on the generated AFs. These sensors are added
to all available activities windows until meeting the condition criteria (the con-
dition of features are checked using the CheckConditions() function as shown in

Algorithm 1. Multi-feature windowing approach
Require: MI ← Prior probability P i(Sj−1, Sj) of sequence sensors for activity
Ai; FreSen ← Sort the prior probability (P i

S) of sensors for activity Ai where
i = 1, . . . , m in descending order (list[P i

S ]);

L2Si ← list{Sj−1, Sj}i where j = 1, . . . , N ; Int ← [μ, σ] for each activity;
Wi ← S1 Initial window of activities with first activated sensor;
Define: Multi-feature functions {fc, c = 1, . . . , C}
while active do

Sj ← getNextSensor(); // Read arriving stream data.
for i ← 1 to m do

Wi ← Wi ∪ Sj ;
foreach c in C do

status = CheckConditions(f i
c , Sj);

// status = true means the conditions were satisfied.
if status == true then

extractFeatureVector(Wi); // Segment the window and pass for
extracting features vector.

Wi = Recreate(Wi); // Discard and create new window of Wi.
else

// status = false, then discard and create new window of Wi.
Wi = Recreate(Wi);
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Algorithm 1) and is elaborated in Subsect. 2.1 for each feature). If a window did
not satisfy the all conditions of the features for an activity, the window is dis-
carded and a new activity window is created for reading activated sensor events.
Figure 2 which is a graphical presentation of Algorithm1, shows how activities,
particularly overlapping activities, are segmented. In Fig. 2, sensors S1, S2 and
S3 are added to segment 1 of both Activity 1 and Activity 2. However, Activity 2
did not satisfy the conditions and has been discarded. Right after, a new window
of Activity 2 is created to read incoming activated sensors S2 and S4. The same
procedure is performed for Segment 2 of Activity 2 which is overlapping with
Segment 2 of Activity 1.

2.3 Our Machine Learning Technique for Activity Recognition

In this paper, we use a NB classifier as a learner with Bernoulli distribution [8] for
modeling streaming sensory data in real-time applications. Because the learning
algorithm is very simple, efficient, effective, and it is therefore suitable for learn-
ing from high-speed and massive data streams [11]. NB classifier whose posteriori
probability computed by P (yi|x) = P (x|yi)P (yi)

P (x) , where 0 < p < 1; x is one with
binary outcomes which ∈ {0, 1}; P (yi): prior; P (x|yi) =

∏
j p

xj

j (1−pj)1−xj : con-
ditional probability modeled based on Bernoulli probabilities of sensor values.
For each classifier, classification decision made based on Maximum Likelihood
Posteriori φk(x) = argmax

i
P (yi|x).

Handling Binary Attributes and Laplace Correction. To model the binary
Bernoulli distribution for sensor events, the amount of training data might not
be sufficient and the value vj of binary attribute xj may not be observed in class
yi. So, P (xj = vj |yi) = 0, causing P (yi|x) to become zero. Hence, it is necessary
to employ the Laplace correction to the estimate of P (xj = vjs|yi) by adding

Activity 1.

Activity 2.

Activity 1
Activity 2

Discarded Segment 

Input

a) Ground truth of activities

b) Segmentation of activities

 s1 s2 s3  s2 s4 s6 s7 s3 s2 s1  s4 s2  s8  s4 s1 s3 s8 s2  s1 s8 s9

1

1

2

2

3

3

Fig. 2. An example of segmenting overlapped activities using dynamic multi-feature
method using AFs.



Dynamic Real-Time Segmentation and Recognition of Activities 35

a small offset, λ > 0, to the frequency nij : P (xj = vjs|yi) = nijs+λ
ni+mjλ , where

mj = 2: the number of values for attribute xj and λ = 1 as referred to in [11].

3 Experimental Results

To evaluate our proposed approach, we used real-world datasets from the Wash-
ington State University (WSU) CASAS smart home project. We chose three
datasets: Tulum 2009 [4], Tulum 2009/2010 and Aruba [3].

3.1 Evaluation Metrics

To evaluate the performance of our proposed methods in a real-time setting, we
split the data into training (80% of the data) and testing (20% of the data) parts
[19] where the training data used off-line to build the learning model and AFs.
The remaining unlabeled stream data is applied for testing the methods and
labels are only revealed for the evaluation purposes. For the measurement, we
used accuracy, F-score and sequence alignment score metrics as detailed below:

A. Accuracy: Let NAi
be the total number of sensor windows associated with

a predefined activity Ai and the number of correctly classified windows for this
predefined activity be TPAi

. The activity classification accuracy can then be
defined as:

∑m
i=1

TPAi

NAi
, where m is the total number of predefined activities.

B. F-score: Let P and R represent the precision and recall for activity Ai,
then the F-score for this activity is computed as: 2× P×R

P+R . As an overall metric,
accuracy is not sufficient to evaluate the classifier performance [6,16], because
the minority classes will be dominated by majority classes. However, the F-score
is included as an appropriate metric; particularly for having imbalanced data.

C. Sequence Alignment Score: We use the Sequence Alignment-Needleman
Wunsch Algorithm [10] to evaluate methods in a sequential manner. In this
algorithm, the maximum match is a number dependent upon the similar-
ity of the sequences. The details are elaborated in [10]. As an example, let
us define two sequences, B and D, as follows: B: A4A2A2A1A1A4A2, D:
A4A3A3A1A2A4A1A2. Therefore, an alignment of B and D will be where
{∀b ∈ B,∀d ∈ D}, Match: +8 {F (b, d) = 8|b = d)}, Mismatch: −2 {F (b, d) =
−2|b <> d)}, and each gap symbol: −2 {F (b, d) = −2|b = ‘-’ ∨ d = ‘-’}. Thus,
the alignment score will be 20.

3.2 Results and Analyses

We have carried out experiments on three data sets (as illustrated in Sect. 3)
using the baseline and proposed multi-feature windowing methods. These meth-
ods and their notations are summarized for clarity in Table 2. The performance
of the state-of-the-art and multi-feature windowing methods for reading sensor
data stream in activities recognition in a real-time environment are shown in
Table 3.
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Table 3. Evaluation of multi-feature approaches using AFs.

Metrics/Methods MI FreSen MI Int MI FreSen Int MI L2S Int FreSen L2S Int

Tulum2009

Accuracy (%) 4.76 15.3 87.5 80 80 63.63

F-score 0.6909 0.7142 0.9538 0.9333 0.9387 0.8235

Alignment score –33884 –226 –4486 –82 –138 42

Tulum2010

Accuracy (%) 65.71 48 91.42 84 90.74 84.21

F-score 0.8051 0.6581 0.9241 0.9124 0.9435 0.8974

Alignment score –1952 14 –960 –4 12 20

Aruba

Accuracy (%) 75.30 65.79 94.28 100 80.74 100

F-score 0.8533 0.8758 0.9565 1 0.8069 1

Alignment score –2378 –1002 –960 14 –40 4

As shown in this table we evaluated the performance of baseline methods
namely MI and FreSen. [9] argued that MI outperforms the fixed time and
sensor-based windows. On the other hand, [18] proved the FreSen method gives
better presentation and precise results compared to MI. However, these meth-
ods did not segment the unlabeled sensor data in a real-time environment. Thus,
our multi-feature windowing methods could even segment this data with over-
lapping activities. Table 3 also demonstrates that MI FreSen Int features allows
the NB classifier to achieve 100% accuracy on Aruba dataset whereas the com-
bination MI Int features obtained much better performance on Tulum2009 and
Tulum2010 datasets. On the other hand, the accuracy of using only MI or Fre-
Sen features on Tulum2009 dataset is very low. This is because of the level of
imbalance between classes within these different datasets. Thus, the accuracy is
not a proper metric to evaluate the classier performance. Overall, our proposed
approaches against the MI and FreSen methods attained comparable or better
results with regard to accuracy, F-score, and alignment score metrics which are
shown in Table 3.

It is worth mentioning that the performance of fixed-time and sensor-based
windows is poor when the length of the window is static for reading sensor events
[9]. While, our proposed multi-feature windowing approach has the advantage
of giving more confidence as well as providing more information for the segmen-
tation. Thus, we suggest that performance in adopting multi-features is better
over the use of a single feature. The experiments showed that the performance of
our proposed methods is better than the baseline methods in a real-time setting.

3.3 Run-Time Analysis

The approaches are implemented using the C# .NET programming language
and run on a computer using Windows 7 Professional (64-bit operating system)
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Table 4. Average running-time of approaches on Tulum2009, Tulum2010 and Aruba
datasets in a real-time setting (milliseconds/segment).

Datasets/methods MI FreSen MI Int MI FreSen Int MI L2S Int FreSen L2S Int

Tulum2009 1.77 15.73 0.6251 1.34 1.22 2.64

Tulum2010 3.22 6.45 3.2 7.24 10.75 26.93

Aruba 1.75 15.54 1.83 20.17 4.23 151.41

with an Intel Quad Core i5 CPU @ 3.40 GHz and 8 GB of memory. Table 4
shows the average running-time of the methods in milliseconds (ms) per segment.
The running-time of some methods (e.g. FreSen L2S Int) are higher. The main
reason is that, some activities (e.g. Sleeping and Watching TV ) have a longer
duration. Therefore, segmenting such activities also takes longer. For instance,
when testing the Aruba dataset, most activities are Sleeping or Watching TV.

4 Conclusion

Segmenting unlabeled streaming sensor data from smart home test-beds is a
challenging task especially when there is a need to recognize overlapping events
due to multiple residents inhabiting the house. In this paper we presented a novel
recognition framework to address these problems by using the AFs to dynam-
ically segment this data in combination with a NB classifier to recognize such
activities even when they are overlapping. Experimental results demonstrated
that our approach achieved better results compared with state-of-the-art win-
dowing approaches. In the future, we intend to focus on modeling activities in
order to find abnormal behaviors using a probabilistic graphical model in a real-
time setting.
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Abstract. Brain-computer interface (BCI) is an input method that
helps users to control a computer system using their brain activity rather
than a physical activity that is required when using a keyboard or mouse.
BCI can be especially helpful for users with limb disabilities or limita-
tions as it does not require any muscle movement and instead relies on
user’s brain activity. These brain activities are recorded using electroen-
cephalogram (EEG). Classification of the EEG data will help to map the
relevant data to certain stimuli effect. The work in this paper is aiming to
find a feature extraction technique that can lead to improve the classifica-
tion accuracy of EEG based BCI systems that are specifically designed
for incapacitated subjects. Through the experiments, the implementa-
tion of Independent Component Analysis (ICA) and Common Spatial
Pattern (CSP) extracted features from P300 based BCI EEG data and
it was found that ICA and CSP produce more discriminative feature sets
as compared to raw EEG signals.

Keywords: Electroencephalogram · Brain-computer interface · P300 ·
Independent Component Analysis · Common Spatial Pattern · Feature
extraction

1 Introduction

The primary objective of BCI research is to create frameworks that enable inca-
pacitated subjects to control their surroundings, mechanical appendages, com-
municate with people or command electronic devices [1]. This can be particularly
helpful for incapacitated subjects in order to help them with their daily tasks.
Multiple aspects of BCI systems have been investigated in order to attain this
objective. Creation, assessment and validation of BCI systems that are partic-
ularly designed to be used by incapacitated subjects, creating new BCI ori-
ented products, assessment of different brain signal measurement technologies,
producing algorithms that extract computer commands from brain signals and
assessment of brain signal patterns that can potentially be helpful to achieve
communication (i.e. control signals) are some of these research areas [1–3].

P300 is the name of a particular human EEG positive deflection that is caused
by a sudden, unexpected or shocking stimulus. It occurs about 300 ms after the

c© Springer International Publishing AG 2017
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Fig. 1. Example of a P300 speller system

stimulus [4]. P300 was first used as a BCI control signal in the P300 speller
system [5]. This system enables users to spell words for the computer. The user
would need to choose letters sequentially from a provided table of alphabet and
symbols that is presented on a computer display (Fig. 1). While columns and
rows of the table are being flashed in a random and unpredictable sequence, the
user would need to count the number of flashes that occur for a particular desired
symbol. A P300 signal would be recorded in a user’s EEG only after either the
column or the row of that desired symbol is flashed. Hence it is expected that
a simple algorithm would be able to detect the targeted symbol by finding the
column and row that would evoke P300.

In this paper, the effect of two different feature extraction methods in a P300
based BCI system specifically designed for incapacitated subjects was investi-
gated. The main objective of this work is to improve the classification accuracy
of P300 based BCI systems. Our hypothesis is that the implementation of Inde-
pendent Component Analysis (ICA) and Common Spatial Pattern (CSP) would
result in a better feature set than those of raw EEG and hence an improvement
in final classification accuracy.

2 Related Work

While the P300 based BCI was designed to serve the needs of incapacitated
subjects, no subject who participated in the initial demonstration was disabled
[5]. However, in a later work a P300 based four-choice paradigm was tested
on a group of six subjects. Amongst which three subjects were suffering from
a neurological disease, namely Amyotrophic Lateral Sclerosis (ALS)1 [6]. This
particular research proved that subjects suffering from ALS would be able to
use P300 based BCI to ease their communication. Moreover, in a more recent

1 ALS is the name of a disease that cause a loss of control over voluntary muscles.
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work, using a group of nine subjects, five of which were disabled, a six-choice
P300 paradigm was evaluated. Six images were presented on a Laptop display
in front of each subject. Subjects were instructed to count the number of flashes
that occur for a prescribed targeted image. Every 400 ms, one of the images
was flashed in a random sequence and subject’s EEG was recorded from 32
electrodes. Next, single trials were extracted from the recorded data by applying
a preprocessing procedure. Then, classifiers were learned using Bayesian Linear
Discriminant Analysis (BLDA) and an average classification accuracy for each
subject was estimated using four-fold cross validation. It was demonstrated that
for both normal and incapacitated subjects, a P300 based BCI can achieve a
very high accuracy rate after only a few repetitions of stimuli [1].

However, none of the works mentioned above has applied feature extraction
method to the raw EEG; the data from each electrode was simply used as one
input feature for the learning algorithm. This inspired the present work to explore
different feature extraction methods that can potentially improve the accuracy
result of the algorithm introduced in [1].

There are several feature extraction methods that are prominent when it
comes to feature learning from EEG data. ICA and CSP are two of commonly
used feature extraction methods in the preprocessing of EEG data. However,
they do not seem to be used for P300 based BCI applications [7,8].

CSP is a mathematical method that has been used in signal processing in
order to split a multivariate signal into its additive components. CSP maximizes
the difference between the variances of two classes. One of the earliest suggestions
to use CSP as a feature extraction method for EEG was given in [9]. The primary
goal of CSP is to transform EEG data into a lower dimensional space and this
linear transformation is performed using a projection matrix.

ICA is another mathematical method that extracts additive signals from a
multivariate signal [10,11]. ICA’s primary assumption is that all components are
non-Gaussian (i.e. not normalized) signals and they are statistically independent
from one another. ICA can be considered a special type of a blind source sepa-
ration. The most commonly known example application of ICA is the “cocktail
party problem”. This problem is about the ability to concentrate on one par-
ticular stimulus while other stimuli are being filtered. Independent components
that are linearly mixed in several sensors could easily be separated using ICA.
Hence, assuming that the artefacts in EEG are commonly independent from one
another, it could be feasible for ICA to separate out artefacts from the data.

3 Methodology

The initial program and the entire dataset used in this work is based on the
work that was carried out by Hoffmann et al. at École Polytechnique Fédérale
de Lausanne (EPFL) [1].

After functionality verification, each feature extraction technique was sepa-
rately applied to the dataset used in [1]. This resulted in three different versions
of the program: the original work that uses raw EEG and two modified versions
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(a) Images presented to sub-
jects for the P300 test.

(b) Electrode allocation used for
recording EEG.

Fig. 2. Images and electrode allocation used in [1].

of it, one for each feature extraction method’s implementation. Each version was
then applied to the data separately. The result was three different sets of features
selected or extracted from the same EEG dataset.

The features resulting from all three different preprocessing approaches were
used to learn three separate sets of classifiers using BLDA. For each program
version, a four-fold cross validation technique was used in order to estimate
the classifier accuracy of that particular preprocessing approach. The accuracy
results of all program versions were then compared in order to discover the
preprocessing procedure that resulted in the best features among the three.

3.1 Experimental Data

Using a group of nine subjects, five of which were disabled, a six-choice of P300
paradigm was evaluated. Six images, as shown in Fig. 2, were presented on a
Laptop display in front of each subject. Subjects were instructed to count the
number of flashes that occur for a prescribed targeted image. Every 400 ms, one
of the images was flashed in a random sequence and subject’s EEG was recorded
from 32 electrodes. Each flash lasted for 100 ms and no flash occurred during the
300 ms following that, this results in 400 ms of inter-stimulus interval (ISI). The
data from 32 EEG electrodes was recorded with the sampling rate of 2048 Hz.
10–20 international system’s standard positions were used for the placement of
electrodes (Fig. 2(b)).

There were four recording sessions done by each subject. Each recording
session included six runs, one for each image on the screen. Before each run,
subjects were instructed to count the number of flashes that occur for a pre-
scribed targeted image. EEG was recorded while the images were flashing in a
block-randomized manner to ensure the total number of flashes for an image in
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each run would be equal across all images. Hence in every six consequent flashes,
each image would only flash once. The total number of blocks in each run was
randomly selected from the close interval of 20 to 25. This would result in an
average of 22.5, 135 and 540 P300 (target) trials for each run, session and subject
respectively. Moreover, for each subject a total of 3240 trials was recorded.

This resulted in a two dimensional matrix X ∈ IRn×m of raw EEG recordings
for each run, where n is the number of electrodes and m is the number of samples
in that run.

3.2 Data Processing

In this work, there were two major data processing steps, preprocessing and clas-
sification. First, single trials were extracted from the recorded data by applying
a preprocessing procedure, then classifiers were learned using BLDA and tested
through a four-fold cross validation.

3.2.1 Preprocessing
The first step in processing raw EEG data is preprocessing. It needs to take place
before any classification training, testing or validation is done. The detailed steps
of preprocessing done in the present work in chronological order comes below:

a. Referencing: Referenced using the average of two mastoid electrodes’ signals.
b. Filtering: Bandpass filter of 1.0 Hz to 12.0 Hz was applied using a sixth order

forward-backward Butterworth.
c. Down sampling: Down sampling to 32 Hz took place.
d. Single trial extraction: The single trial of each stimuli begins at its start time

and ends 1000 ms after that which leads to 600 ms of overlapping in every two
consequent single trials.

e. Winsorizing: The data from each electrode was separately winsorized in order
to decrease the influence of statistical outliers. A 10% winsorization was done
using the 5th and 95th percentiles as the minimum and maximum amplitude
values respectively. Any sample value greater than maximum or less than
minimum was replaced by the maximum or minimum value itself.

f. Normalization2: Statistical normalization was applied on the data from each
electrode.

g. Feature vector construction: At this step the program is divided into three
different versions, the original work and two modified versions of it, one for
each feature extraction method. In the original work, a group of electrodes
were simply selected and no further process of data was done prior to classifi-
cation. On the other hand, the present work has employed a couple of feature
extraction techniques, ICA and CSP in order to construct two different sets
of feature vectors.

2 This step is not performed for ICA algorithm as it eliminates non-Gaussian charac-
teristics of the data and ICA requires data to be non-Gaussian.
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Fig. 3. Average classification accuracy over all runs for one subject. The accuracy
would increase after every new block of data.

3.2.2 Classification
For each one of the three feature vectors constructed in the data preprocessing
step, separate classifiers were learned using BLDA algorithm. Average classifi-
cation accuracy for each subject was estimated using four-fold cross validation.
The data from three sessions was used to train the classifiers. The classifiers
were then validated using the data from the other session. During validation,
the first 120 trials (20 blocks) were extracted from each run that is included in
the validation session. 120 extracted single trials were than classified in order to
produce 120 classifier outputs which means 20 blocks of six output, one output
per image per block. The total classifier output for each image is calculated by
adding its output values across all blocks. The image with maximum total clas-
sifier output value across all blocks would be considered the one that the subject
is concentrating on. In order to simulate the time needed to achieve an average
classification accuracy, the classification was done progressively for each block.
This resulted in an average accuracy over all twenty-four runs for each subject
as shown in Fig. 3.

3.3 Feature Extraction

As mentioned earlier, we have constructed three different sets of features using
different preprocessing approaches: the original work’s, the ICA’s and the CSP’s
feature sets. By using any one of these, a different set of average accuracy results
was generated for each subject. This means three sets of average accuracy results
for each subject. Using all three results of all subjects, we can produce a com-
prehensive comparison between the three preprocessing methods and discover
the one that generates features that lead us to a more accurate classifier for the
present data. In this work, all results are graphed together in order to produce a
cleaner comparison and help us conclude the best preprocessing method amongst
the three purposed. CSP and ICA explanation follows.
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3.3.1 Common Spatial Pattern
As described in [12], details of CSP algorithm using the example of EEG with
target (P300) and non-target (non-P300) trials is explained as follow: X1 and X0

are the matrices of preprocessed EEG for target and non-target classes respec-
tively where Xj ∈ IRN×T×Mj , N is the number of channels (electrodes), T is the
number of samples per single trial (sampling rate × single trial time) and Mj

is the number of single trials in the class j. Hence Xi
j ∈ IRN×T denotes a two

dimensional matrix of ith single trial in Xj where 1 ≤ i ≤ Mj . The normalized
spatial covariance of EEG can be calculated as

R1 = ΣM
i=1

Xi
1(X

i
1)

T

trace(Xi
1(X

i
1)T )

(1)

and

R0 = ΣM
i=1
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0(X

i
0)

T

trace(Xi
0(X

i
0)T )
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where the normalized covariance, R1 and R0, are calculated by adding over
covariance of all single trials in each class, XT is the transpose of matrix X and
trace(X) is equal to the sum of the diagonal elements of matrix X. In order to
factories the composite spatial covariance we have

R = R1 + R0 = V DV T (3)

where R is the element wise sum of R1 and R0, D is the diagonal matrix of eigen-
values and V is the matrix of eigenvectors. In order to generate the whitening
transformation matrix P , we have

P =
V T

√
D

= D
−1
2 V T . (4)

P transforms the covariance matrices of the two classes as

S1 = PR1P
T (5)

and
S0 = PR0P

T (6)

where S1 and S0 have the same eigenvectors in U1 and U0 and the sum of their
respective eigenvalues in Σ1 and Σ0 would always be equal to I. So we would
have:

S1 = U1Σ1U
T
1 (7)

and
S0 = U0Σ0U

T
0 (8)

where U = U1 = U0 and Σ1 + Σ0 = I. The eigenvectors that are corresponding
to the greatest eigenvalues for S1 would correspond to the lowest eigenvalues
for S0 and vice versa. The optimal approach to split variance in the two signal
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Fig. 4. Comparison of CSP and the original work accuracy results

matrices would be to transform the whitened EEG into the eigenvectors that
correspond to the greatest eigenvalues in Σ1 and Σ0. The full projection matrix
Θ is obtained as

Θ = PTU (9)

where Θ ∈ IRN×N , so Θ = (θ1θ2 . . . θN−1θN ) where θ ∈ IRN . Here the first
column, θ1, provides the maximum and minimum variances for class one and two
respectively, on the other side, the last column, θN , does the opposite. Hence,
in order to extract top m ≤ N most important spatial filters, m

2 columns from
each side need to be selected. The projection matrix W is calculated as shown
below:

W−1 = (θ1 . . . θm
2
θN−m

2 +1 . . . θN ) (10)

Using the projection matrix W , the original raw EEG could be transformed into
its uncorrelated components Z by

Z = WX. (11)

Finally, the original raw EEG, X, could then be reconstructed by X = W−1Z.

3.3.2 Independent Component Analysis
The algorithm that was used for the purpose of this work is named FastICA. It is
an efficient version of ICA which was firstly introduce in [13]. FastICA algorithm
is explained below using the example of EEG data.

Let’s assume X denotes the matrix of preprocessed EEG where X ∈
IRN×T×M , N is the number of channels (electrodes), T is the number of samples
per channel per single trial (sampling rate × single trial time) and M is the num-
ber of single trials in the data. Hence Xi ∈ IRN×T denotes a two dimensional
matrix of ith single trial in X where 1 ≤ i ≤ M .

In order to apply ICA to this data, first we need to change its representation
a little bit. Consider each xj,z ∈ Xi for 1 ≤ j ≤ N and 1 ≤ z ≤ T as one
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Fig. 5. Comparison of ICA and the original work accuracy results

feature of the data in Xi. This gives us n = N × T features that each represent
one electrode recording at a given time in that single trial. It helps us to change
the representation of our preprocessed EEG matrix into a new two dimensional
matrix of X ∈ IRn×M , xi,j ∈ X, 1 ≤ i ≤ n and 1 ≤ j ≤ M . Here n rows and
M columns corresponding to the number of features (electrode-time) and single
trials (samples) respectively. Next, the input data in each row of matrix X must
be centered to make its mean equal to zero. It can be done as

xi,j ⇐ xi,j − ΣM
z=1xi,z

M
. (12)

Next, before applying the FastICA algorithm, the data needs to be whitened
in order to maximize its non-Gaussian characteristics. This is done by

X ⇐ V D
−1
2 V TX (13)

where V DV T = E{XXT }, that means V and D contain the eigenvectors and
eigenvalues for the expectation on XXT . In order to obtain m ≤ n independent
components, we need to calculate W ∈ IRm×n, the un-mixing matrix where each
row projects X onto an independent component. It can be done by following the
pseudocode that follows.
for p in 1 : m do

Initialize wp, a random vector of length n where ||wp|| = 1
while wp not converged do

g(y) = tanh(y) or g(y) = ye−y2/2

wp ← 1
M Xg(wT

p X)T − 1
M g′(wT

p X)wp

wp ← wp − Σp−1
j=1wT

p wjwj

wp ← wp/||wp||
end while

end for
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Fig. 6. Comparison of ICA and CSP accuracy results

Next, W can be obtained by

W−1 = (w1 . . . wm) (14)

and finally, independent components matrix, S ∈ IRm×M , can be calculated by

S = WX. (15)

4 Results and Discussion

As described earlier, four-fold cross validation was performed in order to estimate
the average classification accuracy achieved for each subject. For all Figures
in this chapter, the accuracy rate is plotted against the time taken from the
user to achieve that. This helps us to compare not only the maximum accuracy
achieved in each case but also the time required in order to achieve that. It is
also important to mention that the data for subject 5 was excluded from the
dataset published by Hoffmann et al.’s work. It leaves us with the eight remaining
subjects.

In Fig. 4 the accuracy results of CSP for each subject is plotted in comparison
to those of the original work. It is clear that CSP has led to better results for
all subjects except subject 2; specially for subject 9, CSP could achieve 100%
accuracy rate after only 6 blocks of flashes, while the original work could never
exceed 95%. On the other hand, CSP has 16.5% longer data processing time
as compared to the original work, which can be an acceptable trade-off for the
higher accuracy achieved.

In Fig. 5 the accuracy results of ICA for each subject is plotted in comparison
to those of the original work. It is clear that ICA has led to better results for all
subjects, even for subject 2. Similar to CSP, ICA could achieve 100% accuracy
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Fig. 7. Comparison of average accuracy results for all three methods across all subjects

rate for subject 9. It is especially interesting to see that using ICA, subject 8’s
accuracy rate reaches 100% from the first tested block. However, ICA has 43.3%
longer data processing time as compared to the original work, this can rise a
major concern for the choice of ICA.

In order to have a better comparison between CSP and ICA, Fig. 6 shows
their accuracy results in one plot. For most of the subjects, they produce a very
similar accuracy rate except that ICA outperforms CSP with regard to subject
2 and 8. Though, ICA’s processing time is 23% longer than CSP.

Finally, the average accuracy results for all three methods are plotted
together in Fig. 7. It is evident that ICA and CSP have resulted in very similar
average accuracies while they have outperformed the original work.

5 Conclusion

In this paper two feature extraction methods, CSP and ICA, were implemented
in a P300 based BCI system that was specifically designed for disabled users.
The presented data was processed using these two implementations and a com-
parative analysis took place. It was demonstrated that the implementation of
Independent Component Analysis (ICA) and Common Spatial Pattern (CSP)
would result in a better feature set than those of raw EEG and hence an improve-
ment in final classification accuracy. Thus, this could be helpful with regards to
disabled patients using a faster BCI system that is purposed by this work. It also
worth mentioning that despite its better accuracy result, ICA’s longer process-
ing time can potentially nullify its advantage over CSP if applied in a real time
scenario or processed using an average processor.

There are three possible directions for further improvement of this work.
First, to use a more data oriented or learning approach to choose the frequency
bandpass that the data is going to be filtered on. Second, to replace winsorizing
with a more state of the art outlier detection, and finally, by looking into the
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possibility of creating a more generalizable approach that does not require train-
ing and testing data to be from the same subject. This would lead to generalized
classifiers that works acceptably across all different subjects.
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Abstract. Thermal stratification refers to difference of temperature across water
column and can act as a proxy of algal bloom. Algal bloom is a problem in Lake
Trevallyn in Launceston, Tasmania. Administrators are interested in finding the
causes of algal bloom and in prediction of such events in Lake Trevallyn. The
results presented in this paper are the findings from a study to predict thermal
stratification in Lake Trevallyn using a machine learning based approach.

Keywords: Algal bloom prediction · Thermal stratification · Lake Trevallyn

1 Introduction

Lake Trevallyn (also known as Trevallyn Dam) is a concrete gravity dam that stores and
provides water for hydroelectricity [1]. The lake is located on the lower South Esk River
in Launceston, Tasmania (Fig. 1(a)) and is operated by Hydro Tasmania. The water from
the lake is mainly directed towards Trevallyn Power Station and the rest mainly pass
through Cataract Gorge (in the form of spills mainly). The storage is 6 km long, approx‐
imately 200 m wide and has an average depth of around 15 m [1].

Lake Trevallyn is an important source of drinking water for Launceston. It is also
extensively used for recreational activities including swimming, water skiing, fishing
and kayaking, and is supportive of a commercial eel fishery [1]. In recent years presence
of toxic algal bloom became apparent in Lake Trevallyn. The bloom persisted for a while
and impacted upon drinking water sourced from Lake Trevallyn by introducing taste
and odour compounds. It also posed health concerns for recreational users of the lake
and required the relocation of a major recreational event to another location.

In subsequent years, a comprehensive monitoring program was established by NRM
North to determine the major drivers of bloom establishment and provide up-to-date
information to stakeholders in relation to the bloom status. Following a comprehensive
study, the key driver of bloom formation in Lake Trevallyn was hypothesised as being
the formation of thermal stratification.

Thermal stratification refers to the change of temperature across the water column
and is an indication of stationary water body that is ideal for algal bloom. During summer
months, surface water is relatively warm and light. As a result the chance of natural
movement across the water body is low compared to winter months. This results in
stationary water body in absence of other influence. This creates an ideal environment
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for algal bloom. During winter months water remains stationary as well. However cold
weather is not suitable to algal growth.

(a) (b) 

Fig. 1. Lake Trevallyn: (a) Google Map view, (b) Remote Senor Buoy

Early indication of thermal stratification can thus act as a good proxy for algal bloom.
The monitoring program thus deployed remote sensor buoys (Fig. 1(b)) near the Lake
Trevallyn to continuously monitor water column temperature data that provided an
opportunity to assess in more detail the effect of environmental factors on thermal
stratification. The buoy was placed near the dam wall and used to monitor in situ water
temperature at 1 m intervals starting at the surface extending down to 10 m. The research
presented in this paper are some early results on predicting thermal stratification in Lake
Trevallyn.

In this preliminary analysis presented in the paper, we aimed at developing a machine
learning model that can predict temperature difference across the water column at Lake
Trevallyn. A number of weather and natural variables can influence the stationarity of
the water body [1–5] and the purpose of the machine learning model is to express
temperature difference as a function of these variables.

2 Variables Influencing Stratification

The variables that commonly influence stationarity of water body includes: air temper‐
ature, relative humidity, wind direction, wind speed, global radiation, net radiation, air
pressure, stream/river flow, and rainfall. Following is a map of Lake Trevallyn
(Fig. 1(a)). The nearest BoM station is at Ti Tree Bend. We were able to collect data on
air temperature, humidity, wind speed and direction from this BoM station. Data on solar
radiation, air pressure, and rainfall were collected from SILO [7]. It can be observed
from the map that water from South Esk River flows to Lake Trevallyn. We were unable
to collect any flow data on this part of the South Esk River. We thus utilised the flow
information from rivers that runs into South Esk River. We collated flow data on
Meander River, Liffey River, Back Creek, Macquaire River, and South Esk near Macqu‐
aire River.
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Data on temperature across the water body was collected from a remote sensor buoy
deployed near the Lake Trevallyn dam wall [1]. The buoy used to monitor in situ water
temperature at 1 m intervals starting at the surface extending down to 10 m.

3 Results and Analysis

Initially we planned to formulate a machine learning approach to predict the temperature
difference directly as a function of the abovementioned influence variables. However,
most of the natural and weather variables have little correlations with the temperature
difference. Figure 2 shows correlations between the influence variables and water
column temperature difference at between 0.5 m (surface) to 10 m depth. Note that the
correlation scores are very small and hence implies little relevance to the influence vari‐
ables directly. This will lead to poor prediction accuracy.

Fig. 2. Correlation between influence variables and water column temperature difference: surface
to 10 m depth. Up to 7 days lag is considered.

As an alternative approach we thus tried to develop machine learning models to
predict temperature across the water column. The difference between predicted water
column temperatures can be computed as proxy for thermal stratification. As first step,
we computed the correlations between the influence variables and water column temper‐
ature to identify relevant influence variables at Lake Trevallyn. Figure 3 shows the
correlation results for up to 7 days lag at water column depth 0.5 m and 10 m. Considering
a 0.5 minimum limit for good correlation, the following variables are selected: air
temperature, humidity, solar radiation, flow data on Meander River and Liffey River.
As the data collected on Macquaire River had significant percentage of missing values,
we did not use this variable in further analysis.
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Fig. 3. Correlation between influence variables and water column temperature difference: (a)
surface to 0.5 m depth, (b) surface to 10 m depth. Up to 7 days lag is considered.

Given the selected variables we next design the machine learning algorithm to predict
temperature a day ahead. Let x1, x2,… , xN be the independent (influence) variables and
y be the dependent variable. Considering a lag of L days for each independent variable,
the input vector will be like: x1(i),… , x1(i + L), x2(i),… , x2(i + L), xN(i)… , xN(i + L).
The purpose of the machine learning model is to develop a function f  such that

y(i + L + 1) ≈ f
𝜃

(
x1(i),… , x1(i + L), x2(i),… , x2(i + L), xN(i)… , xN(i + L)

)
(1)

Given historical data, the machine learning algorithm is trained to learn parameter
set �̂� such that

min

�̂�

∑
i
y(i + L + 1) − f

�̂�

(
x1(i),… , x1(i + L), x2(i),… , x2(i + L), xN(i),… , xN(i + L)

) (2)

We considered lag days of 4 days and trained a linear and non-linear regression
(SVR) algorithm. We predicted the temperature a day ahead. The SVR regression results
were poor and we concentrated on linear regression. We trained models on data from

@ 0.5m depth [MAE: 0.0169] @ 10m depth [MAE: 0.0083] 

Fig. 4. Day ahead temperature prediction
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2014 and 2015. We tested the predictions on 2016 data. Figure 4 presents the day ahead
temperature prediction results on test data at 0.5 m and 10 m depth. The temperature
difference between depth 0.5 m to 10 m depth from predicted temperature is presented
in Fig. 5.

Fig. 5. Temperature difference between predicted temperatures: 0.5 m and 10 m depth. [MAE:
0.0187]

4 Conclusion

In this paper we present some preliminary finding from our research on predicting
thermal stratification in Lake Trevallyn as a proxy of algal bloom. The one day ahead
prediction shows promising signs and in future we aim to extend this analysis to multiple
days/months ahead prediction.
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Abstract. Detecting vulnerable components of a web application is an
important activity to allocate verification resources effectively. Most of
the studies proposed several vulnerability prediction models based on
private and public datasets so far. In this study, we aimed to design
and implement a software vulnerability prediction web service which will
be hosted on Azure cloud computing platform. We investigated several
machine learning techniques which exist in Azure Machine Learning Stu-
dio environment and observed that the best overall performance on three
datasets is achieved when Multi-Layer Perceptron method is applied.
Software metrics values are received from a web form and sent to the
vulnerability prediction web service. Later, prediction result is computed
and shown on the web form to notify the testing expert. Training mod-
els were built on datasets which include vulnerability data from Drupal,
Moodle, and PHPMyAdmin projects. Experimental results showed that
Artificial Neural Networks is a good alternative to build a vulnerability
prediction model and building a web service for vulnerability prediction
purpose is a good approach for complex systems.

Keywords: Vulnerability prediction · Artificial neural networks ·
Machine learning · Web service · Prediction model · Vulnerabilities

1 Introduction

Software security is an important consideration that must be met during the
software development life cycle. Although there are many techniques and tools
for software security, software security vulnerabilities are still very common. On
May 13, 2015, the U.S. Food and Drug Administration (FDA) published an
alert about computerized infusion pumps, which can be programmed remotely
by malicious Internet users to modify the dosage of therapeutic drugs. The FDA
suggested several actions be taken by hospitals using these systems in order to
secure them. For example, it recommended that ports 20 (FTP) and 23 (TEL-
NET) be closed to avoid unauthorized access to the infusion pumps. As can be
c© Springer International Publishing AG 2017
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seen from this recent incident, software security vulnerabilities are quite dan-
gerous for software-intensive systems. Cyber-attacks use these unknown vul-
nerabilities, and sometimes those vulnerabilities are only detected many years
later. The Open Web Application Security Project (OWASP) describes the top
10 threats for web applications — namely, injection, broken authentication and
session management, cross-site scripting (XSS), insecure direct object references,
security misconfiguration, sensitive data exposure, missing function level access
control, cross-site request forgery, using components with known vulnerabilities,
and unvalidated redirects and forwards. In this study, our aim is to create a
web service for software vulnerability prediction that is based on machine learn-
ing algorithms and that will be published on the Azure cloud platform. Azure
Machine Learning Studio’s environment was used during experiments, and sev-
eral machine learning models based on Area Under ROC Curve (AUC) evalua-
tion parameter was investigated. After selecting the best model, this model was
deployed as a web service, and a web form was implemented to obtain software
metrics. The following metrics were used as features of the models: Cyclomatic
complexity, lines of code, lines of code (non-HTML), number of functions, maxi-
mum nesting complexity, Halstead’s volume, total external calls, fan-in, fan-out,
internal functions called, external functions called, external calls to functions. In
addition to these independent variables, a dependent variable called IsVulner-
able was used. This variable indicates whether the module had a vulnerability
report or not. Therefore, the problem is considered as a two-class classifica-
tion problem. Three datasets from three different projects were used during the
experiments. These datasets include 223 vulnerabilities in total. These vulnera-
bilities were divided into five categories namely, code injection, cross-site request
forgery (CSRF), cross-site scripting (XSS), path disclosure, and authorization
issues & other types. While PHPMyAdmin dataset has 75 vulnerabilities, Moo-
dle has 51 and Drupal dataset has 97 vulnerabilities. The following machine
learning algorithms in Azure ML Studio were investigated: The averaged per-
ceptron method, the Bayes point machine, boosted decision tree, decision forest,
decision jungle, locally deep support vector machine, logistic regression, support
vector machine, neural network model. We calculated the average AUC values
of these algorithms for three datasets and reported that neural network provides
the best performance. The next section shows the related work, Sect. 3 explains
methodology, Sect. 4 details the results, and Sect. 5 provides the conclusion and
future work.

2 Related Work

Taint analysis was used in conjunction with data mining [1]. Candidate vulnera-
bilities are detected with taint analysis and false positives are identified by using
data mining technique. An approach was developed to make static analysis tools
learn to detect vulnerabilities by applying machine learning [2]. It was shown that
SVM-based prediction model using code metrics is capable of detection of vul-
nerabilities for Android applications [3]. A model based on N-gram analysis and
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feature selection technique was developed to predict vulnerable components [4].
Static and dynamic code attributes were applied to detect vulnerabilities in web
applications [5]. They reported that semi-supervised learning is preferable when
vulnerability data is limited. A new prediction model was implemented by using
CERT-C Secure Coding Standard [6]. An approach was suggested using metrics
in conjunction with text mining [7]. Their model builds six classifiers and then,
a meta classifier processes the output of these six classifiers. Text mining based
models were reported to be better than metrics-based models without consider-
ing the component sizes [8]. It was concluded that software metrics-based models
are comparable to models using text mining. A Proactive Cybersecurity System
(PCS) which collects big data from several data sources, processes this data, and
identifies potential attacks before they occur was introduced [9]. It was shown
that machine learning approach is effective to detect vulnerabilities [10]. It was
explained that the number of misclassified bugs is very high and classification of
bugs as vulnerabilities is not effective [11]. A vulnerability dataset which has 223
vulnerabilities was prepared [12]. Researchers applied Random Forests algorithm
and reported that models using text mining is better than models using metrics
in terms of recall parameter. A model was presented based on machine learn-
ing to predict the vulnerabilities [13]. Terms in the source code are taken into
account and their associated frequencies are noted. It was reported that com-
plexity metrics have correlation with security vulnerabilities [14,15]. Researchers
applied logistic regression technique and analyzed the relationship of developer
activity, complexity, and code churn with software security vulnerabilities [15].
Decision trees were used to predict the vulnerabilities by using complexity, cohe-
sion, and coupling metrics [16]. It was reported that traditional metrics such as
complexity have a weak correlation between vulnerabilities for Windows Vista
[17]. Researchers also analyzed the SQL hotspots which are locations having
many SQL statements and showed that a file having more SQL hotspots has
higher probability to have vulnerability [18]. The correlation between include
statements and vulnerabilities was analyzed [19]. A technique based on depen-
dency graph was developed for vulnerability prediction [20]. Researchers built
models based on features related to the sanitization and data flow [21,22]. The
correlation between vulnerability density and code metrics was analyzed on PHP
applications [23]. Static analysis alerts were used to build vulnerability prediction
models [24]. It was investigated whether fault prediction models can be used for
vulnerability prediction or not [25]. It was concluded that fault prediction models
provide similar results as vulnerability prediction models. Researchers studied
vulnerability prediction models on Windows operating system and reported that
the model using source code level metrics is not accurate [26].

3 Methodology

Azure Machine Learning Studio was used during all experiments. Figure 1 shows
a graphical representation of the experiment we created for the Drupal dataset
is depicted.
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Fig. 1. Experimental design on Azure ML studio

We changed the dataset component for the other experiments. In this figure,
we see only two-class neural network algorithms, but we also investigated the
performance of the other available machine learning algorithms. The other algo-
rithms we analyzed are shown in Fig. 2.

During our experiments, we applied a 3-fold cross-validation evaluation app-
roach and then, we calculated the AUC parameter’s value to judge the perfor-
mance of each algorithm. Although acceptable AUC values might change based
on the investigated problem and domain, the general guideline can be shown as
follows:

– 0.90-1.00 Excellent
– 0.80-0.90 Good
– 0.70-0.80 Fair
– 0.60-0.70 Poor
– 0.50-0.60 Fail

However, most of the time, we are unable to reach to the values like 0.90 and
0.80. Therefore, generally values over 0.70 are acceptable for most of the problems
in software engineering discipline. In Fig. 3, we show our multi-layer perceptron-
based vulnerability prediction model. Our input layer has 13 neurons, hidden
layer has three neurons, and output layer has only one neuron. We investigated
the impact of the number of neurons in the hidden layer, but the best value was
calculated when three was preferred. Output layer indicates whether the module
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Fig. 2. Algorithms in Azure ML studio

will be vulnerable or not. Input layer includes several software metrics calculated
from the source code of the web application.

The following methods were analyzed in the experiments:

– Averaged perceptron: This is a very basic form of a neural network and very
useful for linearly detachable patterns.

– Bayes point machine: This method is a Bayesian approximation approach.
– Boosted decision tree: Ensemble of trees is created for the prediction.
– Decision forest: Random decision forest algorithm is applied.
– Decision jungle: This is a recent extension to decision forests. It includes an

ensemble of decision directed acyclic graphs.
– Locally deep support vector machine: This is a non-linear support vector

machine classifier.
– Logistic regression: This is a well-known statistical method used for super-

vised classification.
– Support vector machine: This is support vector machine algorithm.
– Neural network module: This is multi-layer perceptron implementation.
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Fig. 3. Our neural network based prediction model

4 Experimental Results

We applied several algorithms on Drupal, Moodle, and PHPMyAdmin datasets.
We applied 3-fold cross-validation validation approach. Result of the algorithms
are shown in Table 1. For all the datasets, Neural Network achieved a perfor-
mance larger than 0.70 and this indicates that neural network is a good approach
for vulnerability prediction studies. In addition to this algorithm, Bayes point
machine, and Logistic Regression provides good performance. We calculated the
average results of these algorithms on three datasets. According to these average
calculations, the best performance is achieved with Neural Network algorithm.
Figure 4 depicts these results. After this observation, we implemented our predic-
tion web service based on this algorithm. Web service was easily built in Azure
Machine Learning Studio environment and deployed in Azure cloud. After build-
ing the web service on the cloud platform, we designed a user interface form to
receive the inputs for the proposed model. These inputs are metrics calculated
with a software metrics calculation tool. Once these inputs are sent to the web
service, the prediction result is computed in the web service and the result is
again returned to the web form to inform the user. While Random Forest algo-
rithm was reported a good algorithm in previous studies [19], its performance
was not good according to Table 1. This might be related to the implementa-
tion of the algorithm on two platforms (Azure ML Studio and Weka) and the
configuration parameters. We did not optimize the parameters and decided to
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Table 1. Performance results

Algorithms Drupal Moodle PHPMyAdmin

Avg. Perceptron 0.794 0.632 0.702

Bayes Machine 0.768 0.730 0.742

Decision Tree 0.801 0.644 0.609

Decision Forest 0.786 0.488 0.573

Decision Jungle 0.799 0.631 0.630

Deep SVM 0.800 0.666 0.680

Logistic Regression 0.795 0.755 0.655

Neural Network 0.766 0.811 0.718

SVM 0.800 0.594 0.605

Fig. 4. Average results of algorithms on three datasets

use them as-is. In the deployed system, we used the published dataset in the
literature [19] and we will integrate the system with a metrics calculation tool.
After the source code is analyzed by this tool, the prediction web service will
predict the vulnerabilities in the software project which is analyzed.

5 Conclusion and Future Work

We investigated several machine learning algorithms for software vulnerability
prediction problem and implemented a web service to predict the vulnerabili-
ties. Azure Machine Learning Studio was used during all experiments and the
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web service was built on the Azure cloud platform. We investigated several clas-
sification algorithms for this problem on three datasets: Drupal, Moodle, and
PHPMyAdmin. These classification algorithms are averaged perceptron model,
Bayes point machine, boosted decision tree, decision forest, decision jungle,
locally deep support vector machine, logistic regression, support vector machine,
and neural network in Azure ML Studio. According to the performance results
on datasets, the best performance is achieved when a multi-layer perceptron
model is used. As part of future work, we want to investigate different artificial
neural network models (i.e., RBF network, Hopfield network, and Boltzmann
machine) in to improve the performance of the proposed model.
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Abstract. Association rules mining is becoming more challenging with
the large transactional databases typical of modern times. Conventional
exact algorithms for association rules mining struggle to cope with
very large databases, especially in terms of run-time performance. To
address this problem, several evolutionary and swarm intelligence-based
approaches have been proposed. One of these is HBSO-TS, which is a
hybrid approach combining Bees Swarm Optimization with Tabu Search
and has been shown to outperform other state-of-the art bio-inspired
approaches. The main drawback of HBSO-TS is that while the inten-
sification is improved using Tabu Search, the diversification remains
unchanged compared to BSO-ARM, i.e., the first approach proposed
in the literature using Bees Swarm Optimization for association rules
mining. To ensure a better balance between intensification and diversifi-
cation, this paper proposes two new heuristics for determining the search
area of the bees. We conducted experimental evaluation on well known
data instances to show that both heuristics improve the performance of
HBSO-TS. Moreover, we show the usefulness of our heuristics in the spe-
cial case of mining association rules from diversified data, as in the case
of Weblog mining.

Keywords: Association rules mining · Swarm intelligence ·
Diversification strategy · Weblog mining

1 Introduction

Association Rules Mining (ARM) is a well studied techniques in data mining.
It aims to extract frequent patterns, associations or causal structures among
sets of items from a given transactional database. Formally, the ARM problem
is stated as follows: let T be a set of m transactions {t1, t2, . . . , tm} represent-
ing a transactional database, and I be a set of n different items or attributes
{i1, i2, . . . , in}. An association rule is an implication of the form X → Y where
X ⊂ I, Y ⊂ I, and X ∩ Y = ∅. The itemset X is called antecedent, while the
itemset Y is called consequent and the rule means that X implies Y .
c© Springer International Publishing AG 2017
U Kang et al. (Eds.): PAKDD 2017 Workshops, LNAI 10526, pp. 68–78, 2017.
DOI: 10.1007/978-3-319-67274-8 7
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Two basic parameters are commonly used for measuring usefulness of asso-
ciation rules, namely the support and the confidence of a rule. The support of
an itemset I ′ ⊆ I is the number of transactions containing I ′ in a database. The
support of a rule X → Y is the support of X ∪ Y and the confidence of a rule
is support(X∪Y )

support(X) . ARM aims at extracting from a given database all interesting
rules, that is, rules with support ≥ MinSup and confidence ≥ MinConf , where
MinSup and MinConf are two thresholds predefined by users.

Many exact algorithms have been designed for solving the ARM problem,
e.g., Apriori [5], FPGrowth [4] and Eclat [6]. When these methods are applied
to extremely large data, such as the ones existing on the Web, the ARM process
becomes extremely time consuming. Hence, several bio-inspired methods have
been proposed to mainly reduce the run-time. Some algorithms are based on evo-
lutionary algorithms, such as genetic algorithms [8,9], while others are grounded
on swarm intelligence, such as PSOARM [10], which uses particle swarm opti-
mization.

In this paper we focus on the application of Bees Swarm Optimization, i.e., a
particular bio-inspired technique, to the ARM problem. Bees Swarm Optimiza-
tion for ARM has been introduced in [1], where an approach called BSO-ARM is
proposed. More recently, a hybrid approach called HBSO-TS has been proposed
in [2], which combines BSO with Tabu Search. In HBSO-TS, the bees are dis-
tributed among different search spaces by using a given determination strategy,
according to the BSO-ARM algorithm. However, the bees explore their regions
by using the tabu search strategy. The experiments reported in [2] confirm that
HBSO-TS outperforms other state-of-the-art ARM algorithms in terms of the
resulting rules quality.

The main drawback of BSO-ARM, however, is that the tabu search strategy
tends to increase considerably the intensification step, compared to the diver-
sification step. To ensure a better balance between intensification and diver-
sification, this paper proposes two new extended versions of HBSO-TS, called
HBSO-TS+D1 and HBSO-TS+D2, which consider two different diversification
heuristics DT1 and DT2, respectively. These new algorithms have been imple-
mented and tested on standard benchmarks to determine experimentally which
is the best one. The results show that the first heuristic HBSO-TS+D1 is bet-
ter than the second one and in all cases the two heuristics improve the results
yielded by HBSO-TS.

HBSO-TS+D1, that is, the best heuristic determined experimentally, is then
evaluated on Weblog data instances. The Weblog application is considered as an
example of extracting association rules from very large databases. The results
of our evaluation show that HBSO-TS+D1 outperform other ARM approaches
that have been applied in the past to Weblogs.

The remainder of the paper is organized as follows: Sect. 2 discusses related
work. Section 3 recalls the principle of BSO-ARM. Section 4 presents the two new
search area heuristics D1 and D2 which lead to the design of HBSO-TS+D1 and
HBSO-TS+D2. The performance evaluation is described in Sect. 5, and finally,
Sect. 6 concludes the paper.
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2 Related Work

In the literature, many exact algorithms for generating association rules have
been proposed. Exact approaches become inefficient with large databases, such
as the one resulting from fast development of the Web. In order to deal with
large data sets in a reasonable time, bio-inspired meta-heuristics have been
widely applied to the ARM problem. Particularly, the application of genetic
algorithms (GAs) to ARM problem is extensively studied in the literature. The
first genetic algorithm for ARM (GAR) is proposed in [9]. The main limit of
this algorithm is the inefficient representation of the individuals. Many genetic
algorithms using an improved representation of the solutions have been pro-
posed, such as ARMGA [7] and AGA [8]. The two major differences between the
ARMGA and AGA are the mutation and crossover operators. In [3], the authors
propose a comparative study between genetic and memetic algorithms for asso-
ciation rules mining. The experimental study reveals that the memetic algorithm
outperforms the genetic algorithm in terms of quality of the rules discovered.

Particle swarm optimization (PSO) is another meta-heuristic largely applied
to ARM. In [10], a new ARM algorithm based on PSO is proposed. The neighbor-
hood space is found by moving front and back points of each particle. Although
this algorithm outperforms AGA, the search based on front and back points
gives a large number of neighborhoods, which favors the intensification of the
search as compared to the diversification. To overcome this, in [1,2], two algo-
rithms based on BSO have been proposed that avoid the risk of generating false
rules and that solve the admissibility problem by improving the representation
of the solution and the fitness function. These algorithms, however, suffer from
the diversification issue due to the determination of search area strategy used.
In this present paper, an improvement of these two algorithms is proposed in the
form of two new intelligent heuristics to determine the search area strategies.

3 BSO-ARM Algorithm

Bees Swarm Optimization for solving ARM problem (BSO-ARM) has been first
proposed in [1]. Here, we present the main principle of this algorithm by referring
to Algorithm 1.

The initial bee BeeInit creates the reference solution named Sref and saves it
in a Tabu list (Lines 1–2). From Sref, a set of k regions R = {SR1, SR2, . . . , SRk}
is determined thanks to a procedure for the determination of regions (Line 4).
After that, each bee bi is assigned to SRi to explore this region using LocalSearch
(Lines 5–8). Finally, the communication between bees is performed via Table
Dance, to elect the best solution that becomes the reference solution for the
next iteration (Line 9).

The main principles of BSO-ARM can be synthesized as follows:

– Evaluation of the solution: A solution s of BSO-ARM is a vector of n
elements, where the ith element is set to 1 if the ith item belongs to the



Diversification Heuristics in Bees Swarm Optimization 71

Algorithm 1. BSO-ARM algorithm
Input: A transactional data base T
Begin

1: Sref ← Initial Solution;
2: while non stop do
3: TabuList ← Sref
4: FindSearchRegion (Sref , k, SR1,SR2, . . . , SRk)
5: for each bee i do
6: LocalSearch ( SRi , BestSoli)
7: TableDance ← BestSoli
8: end for
9: Sref ← BestSolution(Table Dance);

10: end while
11: End

antecedent part of a given rule. It is set to 2 if the item appears in the
consequent part of the rule. Finally, it is set to 0 if such item does not appear
in the rule. The evaluation of s is the sum of both the support and the
confidence of the rule associated to it.

– Determination of regions: The aim of the procedure FindSearchRegion
in Algorithm 1 is to divide the space of solutions into k disjoint regions where
k is the number of bees. Given the reference solution Sref, in order to ensure
the diversification characteristic of BSO, the parameter Flip is used. Indeed, k
disjoint solutions are generated where the ith solution is obtained by changing
successfully from Sref the bits {(1 × Flip) + i, (2 × Flip) + i, (3 × Flip) +
i, ...n − i}.

– Local Search Process: The aim of the local search is to explore one region
by identifying at each step the neighbors of the given solution. Given the
solution s, this operation ensures the intensification by changing only one bit
of s at a time.

4 Improved Heuristics for Search Space Exploration

In [2], we have proposed a new algorithm for association rules mining called
HBSO-TS. It is an adapted version of BSO-ARM described in the previous
section. In HBSO-TS, the exploration of the region of each bee is performed
efficiently by using a robust tabu search method, while the determination of the
search space is done using the basic strategy described above. Clearly, HBSO-
TS improves considerably the intensification step, however, the diversification
step remains the same. In order to ensure a better balancing between both
intensification and diversification, two new strategies, namely D1 and D2, are
proposed for the determination of search area process.
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4.1 HBSO-TS+D1

Principle. In this strategy, each bee k builds its own search area by changing
all bits of the solution Sref except one bit. The ith bee keeps the ith bit of Sref
and modifies the remaining bit in a random way. This strategy can be used if
and only if the number of bees is less than or equal to n, where n is the size of
a solution. If the distance between two solutions is the number of different bits,
then the distance between the bees and the solution reference is equal to n − 1.

Algorithm 2 describes more formally this strategy.

Algorithm 2. First strategy algorithm
1: Input Sref, K (Bees Number)
2: Ouput: Bees Space:Array [1...K][1...n]
3: i ← 1
4: while i < K do
5: Sref[i]=Bees Space[i][i]
6: for j = 1; j ≤ n; j=j+1 do
7: Sref[j]=change bit(Bees Space[i][j])
8: end for
9: i ← i + 1

10: end while
11: return Bees Space

Complexity

Proposition 1. The complexity of HBSO-TS+D1 is O(Max iter×K×n+n×
IMAX TS), where K is the number of bees, Max iter is the maximal number
of iterations, n is the number of items and IMAX TS the maximum number of
iterations of tabu search method.

Proof. First, from Sref , the search region of each bee is determined using D1
strategy. Thus, K iterations are performed, one for each bee. So, the cost of the
copy is O(n), where n is the number of all items in the transactional database.
After that, each bee modifies its solution (n−1) times. Therefore, the complexity
of the modification is O(n − 1). The complete cost of D1 strategy is O(K × n).
Then, each bee explores n × IMAX TS neighborhoods where IMAX TS is
the maximum number of iterations used on tabu search algorithm. In the worst
case, this process can be repeated until Max Iter iterations. Consequently, the
complexity is O(Max iter × K × n + n × IMAX TS).

4.2 HBSO-TS+D2

Principle. Unlike the strategy D1, the strategy D2 uses a syntactical, instead of
random, form to generate the solutions. For this purpose, we associate the notion
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of weight to each solution. Formally, the weight of a solution S = a0a1a2 . . . an−1

noted W (S), is defined as

W (s) =
n−1∑

i=0

ai,

where n is the size of the solution.
For instance, if we consider the solution S = 01 1 2 2 1 1 then W (S) = 0 +

1 + 1 + 2 + 2 + 1 + 1 = 6.
Thanks to this idea, each bit i can generate a solution that has a gap of a

given distance with Sref . First, the algorithm computes W (Sref). Then, each
bee k changes the successive bits of Sref starting from the bit k. Each bee k
stops this process when it obtains a solution s which satisfies the constraint:

W (s) = W (Sref) − Distance or W (s) = W (Sref) + Distance

Algorithm 3 describes more formally this strategy.

Algorithm 3. Second strategy algorithm
1: Input: Sref, K (Bees Number), Distance
2: output : Bees Space:Array [1...k][1...n]
3: Compute Weight(Sref)
4: i ← 0
5: while i < K do
6: copy(Sref, Bees Space[i])
7: for j = 1 ;j < n; j ← j + + do
8: Change Bit(Bees Space[i][j])
9: if W(Bees Space[i]) == W(Sref) - Distance or W(Bees Space[i]) ==

W(Sref)+Distance then
10: Accepted(Bees Space[i]
11: exit
12: end if
13: end for
14: i ← i + 1
15: end while
16: return Bees Space.

Complexity

Proposition 2. The complexity of HBSO-TS+D2 is O(Maxiter × K × n ×
Distance + n × IMAX TS) where K is the number of bees, Maxiter is the
maximal number of iterations, n is the number of items, IMAX TS the max-
imum number of iterations of tabu search method and Distance is the given
parameter of D2 strategy.
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Proof. First, from Sref , the search region of each bee is determined using
D2 strategy. Thus, K iterations are performed, one for each bee. This strategy
first calculates the weight of Sref, whose cost is O(n). Then, K iterations are
performed. At each iteration, Sref is copied on one bee, then each solution is
changed Distance times (in the worst case). The complexity of this strategy is
O(K × n × Distance). Then, each bee explores n × IMAX TS neighborhoods
where IMAX TS is the maximum number of iterations used in the tabu search
algorithm. In the worst case, this process can be repeated until Max Iter iter-
ations. Consequently, the complexity is O(Maxiter × K × n × Distance + n ×
IMAX TS).

5 Experimental Results

To validate the proposed approaches, several tests have been carried out. Exper-
iments have been conducted on a 4 GB Intel Core I3 machine running Windows
7 and all algorithms are scripted in C++. First, HBSO-TS+D1 and HBSO-
TS+D2 are compared in order to determine the best heuristic among them using
well-known ARM instances [12]. Then, we compare the best identified heuris-
tic HBSO-TS with the classical version of HBSO-TS proposed in [2]. Finally,
the best heuristic is applied on Weblog data instances using the data instance
described in [16].

5.1 Comparing the Two Proposed Heuristics

Table 1 presents the solution quality returned by the two algorithms HBSO-TS-
D1 and HBSO-TS-D2. The solution quality is computed using the evaluation
procedure defined in Sect. 3. The first heuristic outperforms the second one in
all cases. In fact, the first heuristic allows to divide efficiently the search space
among the bees. These experiments lead us to choose the first algorithm HBSO-
TS-D1 for the remaining experiments.

Table 1. HBSO-TS-D1 Vs HBSO-TS-D2 in terms of solution quality

Number of transactions HBSO-TS+D1 HBSO-TS+D2

10 0.50 0.04

100 0.53 0.28

1000 0.51 0.26

10000 0.49 0.25

100000 0.50 0.12
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5.2 HBSO-TS-D1 Algorithm Performance

In order to compare the improved HBSO-TS version, i.e., HBSO-TS-D1, with
the classical HBSO-TS reported in [2], we used the well-known ARM instances
described in [12]. Note that the obtained results are the average of 100 executions.
Table 2 summarizes the results that we obtained by executing HBSO-TS-D1 and
the HBSO-TS in terms of the fitness function described above. Note that n is
the number of items and m is the number of transactions in a database. HBSO-
TS-D1 outperforms the classical HBSO-TS using the large data sets. Indeed,
the average fitness does not exceed 0.70. These interesting results are reached
mainly thanks to the carefully chosen strategy in the determination search area.

Table 2. Fitness quality of the HBSO-TS-D1 compared to the classical HBSO-TS

Dataset Name (m, n) HBSO-TS+D1 HBSO-TS

Bolts (40, 8) 1.0 1.0

Sleep (56, 8) 1.0 1.0

Pollution (60, 16) 1.0 1.0

Basket ball (96, 5) 0.97 0.97

IBM Quest Standard (1000, 40) 0.94 0.94

Quake (2178, 4) 1.0 1.0

Chess (3196, 75) 0.90 0.90

Mushroom (8124, 119) 0.78 0.75

Pumbs star (40385, 7116) 0.83 0.72

BMS-WebView-1 (59602, 497) 0.75 0.55

BMS-WebView-2 (77512, 3340) 0.80 0.70

Korasak (80769, 7116) 0.79 0.65

retail (88162, 16469) 0.78 0.62

Connect (100000, 999) 0.80 0.50

BMP POS (515597, 1657) 0.82 0.47

5.3 Evaluation with Weblog Data

Weblogs are unstructured and heterogeneous data created to share information,
opinions, hobbies on the Web by different users. Extracting relevant knowledge
from Weblog is a challenging task. Recently, a considerable number of research
works have investigated the issue of extracting relevant association rules from
Weblogs, e.g., [14–16]. The main drawback of existing algorithms for association
rules mining when applied to Web log mining is the poor quality of the rules
returned. Poor rule quality is mainly determined because of diversified data
contained in Weblogs.
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Fig. 1. Runtime (Sec) of the proposed approaches and the state-of-the-art weblog
algorithm

Our proposed approach HBSO-TS-D1 should improve the ability to han-
dle diversified data. Therefore, in order to better validate our diversification
heuristic, several experiments have been carried out using Weblog data instances
described in [16]. Figure 1 shows the execution time in seconds of HBSO-TS+D1
compared to the recently proposed approaches RIMWD [16] and PeARM [13],
which also focus on applications to Weblog data. We remark that PeARM out-
performs HBSO-TS+D1 and RIMWD in terms of runtime no matter the number
of Weblog records used, while the runtime of HBSO-TS+D1 and RIMWD are
very similar. Figure 2 shows the number of generated satisfied rules of HBSO-
TS-D1 compared to RIMWD and Pe-ARM, when the number of Weblog records
is set to 10000. According to this figure, we remark that HBSO-TS+D1 outper-
forms both Pe-ARM and RIMWD in terms of the number of satisfied rules for
any minimum support threshold. Moreover, the number of generated satisfied
rules is reduced when the minimum support is increased.

By considering these experiments, we can conclude that our approach HBSO-
TS+D1 outperforms the recently developed approach RIMWD for Weblog data

Fig. 2. Number of satisfied rules generated by the proposed approaches and the state-
of-the-art weblog algorithm
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analysis in terms of both runtime and success rate. Moreover, it outperforms
PeARM in terms of success rate. These results appear to be very promising and
will drive our work in the future to further improve HBSO-TS-D1 to be able to
deal with very large and diversified data instances.

6 Conclusions

In this paper, we proposed HBSO-TS+D1 and HBSO-TS+D2, two extended
versions of the HBSO-TS algorithm for ARM. The two new versions consider
two new heuristics to determine the search area of each bee in order to ensure
a better balance between intensification and diversification compared to HBSO-
TS. To demonstrate the efficiency of the proposed approach, we carried out
several experiments on standard data sets. The experimental process is divided
into three main steps. First, the two strategies of determination of the search
area are compared in terms of solution quality. The results of this first step
revealed that the first strategy (each bee k randomly modifies all the bits of
the reference solution except the kth bit) outperforms the second one (using a
distance measure between each solution and the reference solution). The second
step of the experimental process consists of comparing the improved HBSO-
TS algorithm (based on the first strategy to determine the search area) to the
classical version of HBSO-TS algorithm. The obtained results show that the
improved HBSO-TS outperforms the classical version in terms of rules quality.
Finally, to better validate our claim, our approach is applied on diversified data
as the case of Weblog mining. The results reveal that HBSO-TS+D1 outperforms
the state of the art weblog mining approaches in terms of success rate and it
is very competitive with Pe-ARM compared to runtime. In perspective, we will
investigate to parallelize the proposed approaches for dealing with big Weblog
data instances.
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Abstract. A recently proposed clustering algorithm named Clustering by fast
search and Find of Density Peaks (CFDP) can automatically identify the cluster
centers without an iterative process. The key step in CFDP is searching for the
nearest neighbor with higher density for each point. However, the CFDP
algorithm may not be effective for cases in which there exist density fluctuations
within a cluster or between two nearby clusters. In this study, two improved
algorithms named CFDP-ED-TSNN1 and CFDP-ED-TSNN2 are presented,
which adopt different ways to utilize the dissimilarity. Here, the dissimilarity is
based on shared nearest neighbors and transitive closure. The experimental
results on both several artificial datasets and a real-world dataset show that the
improved algorithms are competitive.

Keywords: Clustering � Shared nearest neighbors � Transitive closure

1 Introduction

Clustering aims to divide data points into different clusters according to the similarity
between data points, ensuring that the data points in the same cluster have high sim-
ilarity whereas data points in different clusters have low similarity [1–4]. Clustering has
been extensively employed in various fields as an unsupervised machine learning
method, such as community discovery [5]. Each clustering approach has its own
advantages and disadvantages in different situations. It is generally known that k-Means
[2] is simple and effective, but it is unable to handle clusters with non-spherical shapes
and the number of clusters must be specified beforehand. DBSCAN [1], a represen-
tative density-based clustering algorithm, can find clusters with arbitrary shapes and
does not need to know the number of clusters in advance. However, proper parameters
should be determined. Moreover, it faces difficulties in handling clusters with signif-
icant differences in density.

Recently, in [6], Rodriguez and Laio proposed a novel clustering algorithm named
CFDP. CFDP can automatically identify the cluster centers without an iterative process.
However, the CFDP algorithm may not be effective for some cases, in which density
fluctuations exist within a cluster or between two nearby clusters, such as those listed
below.
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(1) When two local density maxima within a cluster are far away from each other, the
CFDP might cluster these points into two clusters.

(2) When two local density maxima in different clusters are at a relatively small
distance, the CFDP might cluster these points into one cluster.

(3) When a sparse cluster approaches a dense cluster, the sparse cluster may be
clustered into the dense cluster by CFDP, because, the Most Similar Neighbor
with Higher Density (MSNHD) in terms of Euclidean distance of a border point in
the sparse cluster approaching the dense cluster, could be a point in the dense
cluster.

In these cases, it seems that, if the dissimilarity based on Transitive closure and
Shared Nearest Neighbors (TSNN) is used to find the MSNHD, the clustering results
would be better. We call this method as CFDP-TSNN. However, experimental results
demonstrate that the CFDP-TSNN still has its disadvantages.

Thus two improved algorithms named CFDP-ED-TSNN1 and CFDP-ED-TSNN2
are presented. The basic idea of CFDP-ED-TSNN1 is to cluster the data using CFDP
first, and then adopts dissimilarity to identify and handle the clusters that were mis-
takenly clustered. The idea of CFDP-ED-TSNN2 is to reduce the cases mentioned
above by adopting a combination of dissimilarity and distance to find the MSNHD. The
comparisons between the improved algorithms and seven typical algorithms using both
artificial datasets and a real-world dataset show that our algorithms are competitive.

The rest of this paper is organized as follows. The CFDP and dissimilarity are
introduced in Sect. 2. The improved algorithms are described in Sect. 3. The experi-
mental results are presented in Sect. 4. Section 5 concludes this paper briefly.

2 Related Work

2.1 CFDP Algorithm

Two assumptions are made in the CFDP [6], which are given as follows: (1) A cluster
center is a local density maximum surrounded by their lower-density neighbors.
(2) The distance between a cluster center and its MSNHD is large.

Here, the density of point i is computed by a Gaussian kernel [3], which is given as
follows.

qi ¼
X

j
exp � d2ij

d2c

 !
ð1Þ

where dij is the distance between points i and j, and dc is the cutoff distance, which can
be calculated using Eq. 2 [3].

dc ¼ distance ceil
n � n� 1ð Þ

2
� dc percent

� �� �
ð2Þ
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where n is the size of the dataset; dc percent is in the range [0.009, 0.045], function
ceil(x) rounds x to the nearest integer greater than or equal to x, and distance is a vector
storing the distance between all pairwise points in ascending order.

The distance between a point i and its MSNHD (i.e., di) is the minimum distance
between the point i and any other point with higher density (Eq. 3) [6]. The di of point
i with the highest density is set to the maximum distance between all pairwise points
(i.e., Eq. 4), because the point does not have a MSNHD.

di ¼ min
j:qj [ qi

dij ð3Þ

di ¼ maxj dij
� � ð4Þ

It can be easily seen that the value of di of a local or global density maximum tends
to be greater. Thus, a cluster center i can be characterized by a high qi and a greater di.
According to this, the decision graph is adopted in [6] to identify the cluster centers.
The horizontal axis of the graph represents qi, and the vertical axis represents di: Thus,
the cluster centers are in the upper right region of the graph, and a gap is expected to
exist between cluster centers and other points. Therefore, a parameter threshold can be
manually set according to the decision graph to identify the cluster centers. Then, each
of the rest points is allocated to the cluster that its MSNHD belongs to. For more
details, please refer to reference [6].

2.2 TSNN Dissimilarity

2.2.1 Shared Nearest Neighbors
The similarity measure proposed by Jarvis and Patrick [7], is based on the shared
nearest neighbors. Let NkðiÞ be the k-nearest neighbors of the point i. If both i 2 NkðjÞ
and j 2 NkðiÞ are satisfied, the similarity between points i and j (denoted as simij) can be
calculated from Eq. 5, otherwise the value is 0.

simij ¼ Nk ið Þ \Nk jð Þ
k

ð5Þ

Most elements in the similarity matrix ðsimijÞn�n are zero, where n is the size of
dataset. Only the similarity between a point and its k-nearest neighbors could be greater
than 0. Besides, the similarity matrix is symmetrical.

This similarity measure can effectively distinguish the border points from different
clusters. In the example shown in Fig. 1, points 6 and 9 are border points from different
clusters. The two points can be clustered into one cluster by CFDP because they are
close to each other. However, the two points can be clustered into different clusters
correctly by adopting the above similarity measure. If k = 5, N5 6ð Þ are points 1, 2, 5, 6,
and 7, and N5 9ð Þ are points 5, 6, 8, 10, and 11. The similarity between point 6 and point
9 is 0 because point 9 does not belong to N5 6ð Þ. Thus, they are from different clusters.
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2.2.2 Transitive Closure
The transitive closure algorithm proposed by Lee in [8] is adopted in this study to
calculate the similarity between each pair of points. This algorithm is simple, and
pseudo-code is given in Algorithm 1.

Algorithm 1: An algorithm for computing the max-min transitive closure

Input: The similarity matrix: S =
Output: The max-min transitive closure of S: B =

Step 1 Elements in the B are set to -1
Step 2 Construct a max heap for non-zero value elements in S

Step 3 Set for 
Step 4: While there exists an element value of -1 in B and heap is not empty do

Take top element of heap 

If is not -1, then calculate the following sets and then

Specifically ,
Set where 

End If
Delete top element of heap

End While
Step 5 Set elements whose value is -1 to 0

The input matrix of Algorithm 1 is the similarity matrix ðsimijÞn�n introduced in
Sect. 2.2.1, which is based on the shared nearest neighbors. Therefore, the output
matrix B of Algorithm 1 could represent the similarity of two points. Although the
transitive closure based on shared neighbors in [9] is used for network data, whereas in
this study, it is adopted to improve the CFDP algorithm for cases in which the density
fluctuations exist within a cluster or between two nearby clusters.

The dissimilarity matrix can be calculated according to the matrix B. Specifically,
the dissimilarity between points i and j (i.e., Dissimiij) is calculated by formula (6). For
convenience, this dissimilarity is called as the TSNN dissimilarity in this study.

134 2

8
9

11

10

765

Fig. 1. Example of shared neighbors
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Dissimiij ¼ 1� bij ð6Þ

Similar to the definition of di, the TSNN dissimilarity between a point i and its
MSNHD, i.e., ci, is the minimum between the point i and the other points with higher
density. For the point with the highest density, its TSNN dissimilarity is set to the
maximum TSNN dissimilarity, i.e., 1.

ci ¼ min
j:qj [ qi

ðDissimiijÞ ð7Þ

Here, qj and qi represent the density of points i and j, respectively.

3 The Proposed Algorithms

3.1 Motivation

In Sect. 1, we have introduced some cases where the CFDP could be ineffective. Here,
we take an example to illustrate its shortcomings.

As shown in Fig. 2, point 1 would be falsely clustered into the cluster that point 0
belongs to. This is because point 0 is regarded as the MSNHD of point 1, rather than a
point from the same cluster. Although point 5 is a point with greater density from the
same cluster, the distance between point 5 and 1 is greater than the distance between
point 0 and 1.

The use of TSNN dissimilarity, however, can correctly cluster the example shown
in Fig. 2. The basic idea of adopting the TSNN dissimilarity is that points in the same
cluster have small TSNN dissimilarity and points in different clusters have large TSNN
dissimilarity. The TSNN dissimilarity between point 0 and 1 is 1 (no shared k-nearest
neighbors), which is larger than the TSNN dissimilarity between point 5 and 1; thus,
point 1 would be correctly assigned to the cluster that point 5 belongs to.

An intuition is to replace the Euclidean distance by the TSNN dissimilarity when we
calculate the MSNHD of each point. The corresponding algorithm is named as
CFDP-TSNN, and given in Algorithm 2, where the differences between CFDP-TSNN

1

2
3

4
5

0

Fig. 2. An example of density fluctuations.
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and CFDP are Steps 2, 7, and 8. However, the CFDP-TSNN also has some short-
comings, especially when two clusters are adjacent. The disadvantages of the
CFDP-TSNN will be demonstrated by experimental results (Sect. 4). That is to say, the
CFDP-TSNN, which directly uses the TSNN dissimilarity to replace the Euclidean
distance to calculate the MSNHD in the CFDP, is only used for experimental com-
parisons. Therefore in the rest of this Section, we present two algorithms, i.e., the
CFDP-ED-TSNN1 and the CFDP-ED-TSNN2, to improve the performance of the
CFDP.

Algorithm 2 CFDP-TSNN
Input: Data set: D, Parameter: 

Output: Clusters 
Step 1: Compute (Eq. 1) and k-nearest neighbors for each point in D
Step 2: Compute the TSNN dissimilarity matrix (see Section 2.2) 
Step 3: For each point i, compute (Eq. 7) and its MSNHD in terms of TSNN dissimilarity 
Step 4: Plot decision graph ( as function of ) and determine the threshold [6]
Step 5: Sort the data in descending order by density; recorded as D1
Step 6: For each point i in D1 do

If >=threshold then
Point i becomes a new cluster center

Else:
Assign point i to the cluster in which its MSNHD is contained

End If
End For

Step 7: For each cluster do
If size of c is less than 4 then

All points within cluster c are regarded as outliers
Remove c from 

End If
End For

Step 8: Sort outliers according to the density in descending order
For each outlier point i do

Assign point i to the cluster in which its MSNHD is contained
End For

3.2 CFDP-ED-TSNN1

The basic idea of CFDP-ED-TSNN1 is given as follows. First, run CFDP to divide the
points into several clusters. Then, adopt the TSNN dissimilarity to identify and handle
the clusters that have been mistakenly clustered. Namely, if there exists two points in
the same cluster, whose TSNN dissimilarity values are 1, it implies that at least two
different clusters have been clustered into one group falsely. Thus, run CFDP-TSNN to
divide these clusters correctly (see Step 4 in Algorithm 3). Moreover, for each two
clusters c1 and c2, if both the average TSNN dissimilarity values of c1 and c2 are higher
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than the average TSNN dissimilarity value of the merged cluster of c1 and c2 (i.e.,
c1 [ c2), it implies that c1 and c2 should be merged into one cluster (see Step 5 in
Algorithm 3). The average TSNN dissimilarity value of a cluster c, i.e., averageDis(c) is
calculated using Eq. 8. According to the analysis above, if both Eqs. 9 and 10 are
satisfied, c1 and c2 should be merged.

Algorithm3 CFDP-ED-TSNN1
Input: Data set: D, Parameter: 

Output: Clusters 
Step 1: Compute (Eq. 1) and k-nearest neighbors for each point in D
Step 2: Compute the TSNN dissimilarity matrix (Section 2.2)
Step 3: Divide the dataset into several clusters using CFDP; clustering results recorded as C
Step 4: For each cluster do

If there exists two points whose TSNN dissimilarity equals to 1 then
Remove c from 
Cluster c using CFDP-TSNN(Conduct Alg.2 except Step 8, threshold=1) 
Update the clustering results

End If
End For

Step 5: For any two clusters do
If inequalities (9) and (10) are satisfied then 

Merge  and 
End If

End For
Step 6 Sort outliers according to the density in descending order

For each outlier point i do
Assign point i to the cluster in which its MSNHD in terms of distance is contained

End For

averageDisðcÞ ¼
P

i2c
P

j2c;j6¼i Dissimiij
n � n� 1ð Þ=2 ð8Þ

averageDis c1ð Þ� averageDis c1 [ c2ð Þ ð9Þ

averageDisðc2Þ� averageDisðc1 [ c2Þ ð10Þ

3.3 CFDP-ED-TSNN2

The idea of CFDP-ED-TSNN2 is to combine the TSNN dissimilarity and distance to
determine an MSNHD. First, sort the points according to the density in descending
order. Second, for every point, find the MSNHD in terms of distance and the MSNHD
in terms of TSNN dissimilarity. Third, in addition to the cluster centers identified by the
decision graph (briefly introduced in Sect. 2.1 and see [6] for details), the points with
their ci values equal to 1 should also be regarded as the cluster centers. This is because
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for the case that the ci of point i is 1, it is very likely that point i and its MSNHD are not
in the same cluster. Finally, for other points, use Eq. 11 to determine which clusters
these points should be assigned to.

Algorithm 4: CFDP-ED-TSNN2
Input: Data set: D, Parameter: 

Output: Clusters
Step 1: Compute (Eq. 1) and k-nearest neighbors for each point in D
Step 2: Compute the TSNN dissimilarity matrix (Section 2.2)
Step 3: Compute (Eq. 3) and (Eq. 7) for each point 

and record MSNHD in terms of distance and MSNHD in terms of TSNN dissimilarity
Step 4: Plot decision graph (plot as function of ) and determine the threshold [3]
Step 5: Sort points in descending order by density; recorded as D1
Step 6: For each point i in D1 do

If or then
Point i becomes a new cluster center

Else:
Assign point i to the cluster of its MSNHD by Eq. 11

End If
End For

Step 7: For each cluster do
If size of c less than 4 then

All points within cluster c are regarded as outliers; Remove c from 
End If

End For
Step 8: Sort outliers according to the density in descending order

For each outlier point i do
Assign point i to the cluster of its MSNHD by Eq. 11

End For

For convenience, the MSNHD in terms of distance and the MSNHD in terms of
TSNN dissimilarity of point i are denoted as s and t, respectively. If point s and t belong
to the same cluster, then point i is also assigned to that cluster. Otherwise, the scores of
both point s and t, i.e., scorei(s) and scorei(t), are calculated using Eq. 11 to determine
which cluster point i should be assigned to. A higher score implies a higher similarity
with the point i. Thus, point i should be assigned to the point with a higher score.

scorei jð Þ ¼ 1� Dissimiij
� � � ð1� dij

dis þ dit
Þ � ð1� qj � qi

qs þ qt � qi
Þ ð11Þ

where j is s or t; dij is the distance between point i and j; qi is the density of point i; and
Dissimiij is the TSNN dissimilarity between point i and j. The basic idea of Eq. 11 is
that the point that has a smaller TSNN dissimilarity or less distance or less density
difference with point i is more similar to the point, and the two points are more likely to
be in the same cluster.
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4 Experiments

4.1 Experimental Setup

The improved algorithms are tested on both artificial datasets and the Olivetti face
dataset [10] by using the metric adjusted Rand index (ARI) [11]. The artificial datasets
include six well-known datasets [12]: Compound, Spiral, D31, R15, Aggregation, and
Flame. These artificial datasets have different shapes and densities. The Olivetti face
dataset has 400 images of 40 people: each individual has 10 images with different
expressions. However, for comparisons, only first 100 images are used to test the
algorithms, as in [12].

For the artificial datasets, the improved algorithms are compared with the original
CFDP [6], the variant of CFDP (i.e., CFDP-TSNN in Sect. 3.1), three classical algo-
rithms (k-Means [2], DBSCAN [1], and OPTICS [13]), and other two state-of-the-art
algorithms (CLASP [14] and CLUB [12]). For the Olivetti face dataset, the improved
algorithms are compared with the CFDP, CFDP-TSNN, and CLUB algorithms. The
experimental results of the compared algorithms (except CFDP-TSNN) are obtained
from reference [12]. For convenience, CFDP-ED-TSNN1, CFDP-ED-TSNN2, and
CFDP-TSNN are denoted as TSNN1, TSNN2, and TSNN respectively, in both
Tables 1 and 2.a>

Table 1 shows the parameters of the variants of CFDP. Parameter k of Eq. 5 is set
according to Eq. 12. The basic concept of this setup is as follows. First, select s points
from the dataset at n/2s, 3n/2s,…, n-n/2s. The parameter s is calculated according to
Eq. 13. Next, for the i-th point selected, count the number of points within distance dc,
that is, num(i, dc). The parameter dc is calculated using Eq. 2. Finally, the average
number is assigned to k.

k ¼ ceilð1
s
� ð
Xi¼s

i¼1
numði; dcÞÞÞ ð12Þ

s ¼ ceil dc percent � nð Þ ð13Þ

where ceil(x) rounds x to the nearest integer greater than or equal to x and n is the total
number of points in the dataset.

Table 1. Parameters of CFDP-ED-TSNN1, CFDP-ED-TSNN2, and CFDP-TSNN.

Input parameters: (dc_percent, threshold)

Aggregation Compound D31 Flame R15 Spiral Olivetti

TSNN1 (0.034, 1.8) (0.018, 6.0) (0.01, 1.3) (0.036, 6.2) (0.025, 0.57) (0.025, 3.2) (0.043, 0.12)

TSNN2 (0.019, 5.8) (0.018, 6.2) (0.0095, 1.4) (0.030, 6.2) (0.023, 0.7) (0.025, 3.2) (0.031, 0.12)

TSNN (0.024, 0.6) (0.018, 0.6) (0.023, 0.14) (0.029, 0.4) (0.037, 0,3) (0.025, 0.8) (0.033, 0.5)
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4.2 Artificial Datasets

Figure 3 and Table 2 show the comparisons over the artificial datasets. Figure 3 shows
the real clusters of these datasets in the left-most column, and the other three columns
show the clustering results of CFDP-ED-TSNN1, CFDP-ED-TSNN2, andCFDP-TSNN.
The points assigned to the same cluster are represented using the same color, except that
the cluster centers identified are in red.

For the compound dataset, Fig. 3(b)–(d) shows that CFDP-TSNN identifies the two
clusters on the upper-left corner as one cluster. However, the improved algorithms
identify these clusters correctly, except at one point. In addition, Table 2 shows that the
improved algorithms and CLUB show the best performance for the compound dataset.

For the Spiral dataset, Table 2 shows that CFDP-ED-TSNN1, CFDP-ED-TSNN2,
CFDP-TSNN, CLUB, CFDP, and DBSCAN are all able to correctly identify the
structure of the clusters. However, k-Means, CLASP, and OPTICS obtain poor results.

For dataset D31, k-Means achieves the best performance, followed by CLUB. The
improved algorithms outperform other algorithms.

For dataset R15, Table 2 shows that CFDP-ED-TSNN1, CFDP-ED-TSNN2,
CFDP, and k-Means obtain the best performances. Figures 3(m)–(p) show that almost
all the points are correctly assigned to the clusters.

For the Aggregation dataset, Table 2 shows that CFDP-ED-TSNN1, CLUB, and
CFDP identify the cluster structure exactly. Figure 3(s) shows that, for CFDP-ED-
TSNN2 only one point is wrongly assigned. However, as shown in Fig. 3(t), CFDP-
TSNN incorrectly divides adjacent clusters into the same clusters.

For the Flame dataset, Table 2 shows that only CFDP-ED-TSNN1, CFDP-ED-
TSNN2, and CLUB correctly identify the structure of the clusters.

The sum of all the ranks is shown in the right-most column of Table 2. The results
show that CFDP-ED-TSNN1 outperforms all the algorithms, followed by
CFDP-ED-TSNN2 and CLUB.

Table 2. Comparisons of the artificial datasets using the metric ARI. The rank of each algorithm
on each dataset is provided following its value of ARI.

Algorithms Compound Spiral D31 R15 Aggregation Flame Sum
of
ranks

TSNN1 0.9972/1 1.0000/1 0.9370/4 0.9928/1 1.0000/1 1.0000/1 9
TSNN2 0.9972/1 1.0000/1 0.9384/3 0.9928/1 0.9978/4 1.0000/1 11
TSNN 0.9438/4 1.0000/1 0.9227/6 0.9785/6 0.8089/8 0.9666/5 30

CLUB 0.9972/1 1.0000/1 0.9392/2 0.9910/5 1.0000/1 1.0000/1 11
CLASP 0.8173/7 0.0332/8 0.8781/7 0.6388/9 0.8580/6 0.0413/9 46

k-Means 0.5364/9 0.0058/9 0.9523/1 0.9928/1 0.7588/9 0.4112/8 37
DBSCAN 0.9078/6 1.0000/1 0.7406/9 0.9160/8 0.8539/7 0.8574/7 38
CFDP 0.5922/8 1.0000/1 0.9345/5 0.9928/1 1.0000/1 0.9881/4 20

OPTICS 0.9232/5 0.3075/7 0.8753/8 0.9600/7 0.9938/5 0.8962/6 38
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(a) Compound-ground-truth (b) CFDP-ED-TSNN1 (c) CFDP-ED-TSNN2 (d) CFDP-TSNN

(e) Spiral-ground-truth (f) CFDP-ED-TSNN1 (g) CFDP-ED-TSNN2 (h) CFDP-TSNN

(i) D31-ground-truth (j) CFDP-ED-TSNN1  (k) CFDP-ED-TSNN2 (l) CFDP-TSNN 

(m) R15-ground-truth (n) CFDP-ED-TSNN1 (o) CFDP-ED-TSNN2 (p) CFDP-TSNN

(q) Aggregation-ground-truth (r) CFDP-ED-TSNN1 (s) CFDP-ED-TSNN2 (t) CFDP-TSNN

(u) Flame -ground-truth (v) CFDP-ED-TSNN1 (w) CFDP-ED-TSNN2 (x) CFDP-TSNN

Fig. 3. Clustering results of improved algorithms and CFDP-TSNN on six datasets (Color figure
online)
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4.3 Olivetti Face Dataset

As the Euclidean distance is not suitable for calculating the similarity between two
images, the method proposed in [15] is adopted for this dataset.

Table 3 and Fig. 4 show the comparisons on the Olivetti face dataset. Table 3
shows that the improved algorithms outperform the compared algorithms. In Fig. 4, the
red squares in the upper left represent the cluster centers identified by the algorithms.
The pictures with the same color are identified as the same people. Figure 4 shows that
all three approaches identify nine persons. Specifically, the two improved algorithms
identify seven persons correctly, whereas CFDP-TSNN identifies only five persons
correctly.

4.4 Discussion

This subsection discusses the cases previously mentioned in the Sect. 1.
(1) When two local density maxima within one cluster are far away from each

other, Fig. 5(a) shows that CFDP falsely divides the bottom cluster. Figures 5(b)–(d)
show that the variants based on TSNN dissimilarity are able to identify these clusters
correctly. This is because the TSNN dissimilarity is small when points are in the same
cluster.

(2) The second case involves two local density maxima in different clusters at a
relatively small distance to each other, as explained by the results on the two nearby
clusters in the lower left corner of the Compound dataset. Figures 3(b) and (c) show
that the improved algorithms are able to identify the two nearby clusters. However, the
clustering result of CFDP (shown in Fig. 2(h) of [12]) shows that the inner cluster is

Table 3. Comparisons on the Olivetti face dataset

Algorithms CFDP-ED-TSNN1 CFDP-ED-TSNN2 CFDP-TSNN CFDP CLUB

ARI 0.8169 0.8263 0.6214 0.3244 0.7758

(a) CFDP-ED-TSNN1 (b) CFDP-ED-TSNN2 (c) CFDP-TSNN

Fig. 4. Clustering results of Olivetti face dataset (Color figure online)
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mistakenly clustered into the right-hand cluster. This is because the local density point
of the inner cluster is very close to the local density point of the right-hand cluster; thus,
the distance-based CFDP cannot distinguish the two clusters. However, the TSNN
dissimilarity between the two points from the two disconnected clusters is 1, regardless
of their proximity. Thus, the TSNN dissimilarity-based algorithms show good
performance.

(3) The upper right corner of the Compound dataset shows when a sparse cluster
nears a dense cluster. The clustering result of CFDP (shown in Fig. 2(h) of [12]) shows
that two clusters are incorrectly identified as one cluster. However, Figs. 3(b) and
(c) show that CFDP-ED-TSNN1 and CFDP-ED-TSNN2 successfully distinguish the
sparse and dense clusters. This is because the TSNN dissimilarity is calculated based
on the shared neighbors. As shown in Fig. 1 (analyzed in Sect. 2.2.1), the k-nearest
neighbors of the border points of the dense cluster typically do not contain the points
from the sparse cluster. Thus, the similarity between the border points of the dense and
sparse clusters is zero. Accordingly, their TSNN dissimilarity values are 1. As a result,
the two clusters can be distinguished.

(4) Table 2 shows that both CFDP-ED-TSNN1 and CFDP-ED-TSNN2 are better
than CFDP-TSNN in most case, except the Spiral dataset where they have the same
values of ARI. This demonstrates that CFDP-TSNN has poor clustering quality in some
cases when, however, CFDP-ED-TSNN1 and CFDP-ED-TSNN2 obtain good clus-
tering results.

5 Conclusions

In this study, we improved the CFDP algorithm for the cases in which the density
fluctuations exist within a cluster or between two nearby clusters. Specifically, we
presented two improved algorithms named CFDP-ED-TSNN1 and CFDP-ED-TSNN2.
The first one is to cluster the data using CFDP first, and then adopts TSNN dissimilarity
to identify and handle the clusters that were mistakenly clustered. The latter is to reduce
the cases mentioned above by adopting a combination of TSNN dissimilarity and
distance to find the MSNHD. Here, the TSNN dissimilarity is computed by shared

(a) CFDP (0.12, 6.6) (b) TSNN1 (0.023, 14) (c) TSNN2 (0.019, 14) (d)TSNN(0.02, 0.9)

Fig. 5. Clustering results on the dataset Jain [16]. The numbers in the parentheses are
dc_percent and threshold. The red points are the identified cluster centers. (Color figure online)
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nearest neighbors and transitive closure. The experiments on both artificial datasets and
the real-world dataset show that our algorithm outperforms the original CFDP and is
competitive with other state-of-the-art algorithms.

Acknowledgements. This work is partly supported by the Anhui Provincial Natural Science
Foundation (No. 1408085MKL07).
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Abstract. Opinion mining on microblogs is of significance because
microblogging websites have attracted many users to share their expe-
riences and express their opinions on a variety of topics. However, con-
ventional opinion mining methods focus mainly on sentiment of texts
and ignore opinion target. This paper focuses on a fine-grained opinion
mining task that jointly extract opinion target and corresponding senti-
ment by sequence labeling. We propose a convolutional neural network
(CNN)-based sequence labeling method and apply it to fine-grained opin-
ion mining of microblogs. We empirically evaluated neural networks with
different filter length and depth and analyzed the boundary of contextual
feature extraction for opinion mining of microblogs. The experimental
results demonstrate that the proposed CNN-based methods are better
than RNN-based methods in both effectiveness and efficiency.

Keywords: Opinion mining · Microblogs · Convolutional neural
network · Sequence labeling

1 Introduction

Microblog websites, such as Twitter and Sina Weibo, have attracted a number of
users to express their opinions on variety of topics, making it invaluable sources
of public opinions. Many researchers have investigated how to capture microblog
users’ opinion on products, services and public figures.

Conventional opinion mining methods mainly focus on sentiment classifica-
tion of microblogs [1–3], which assign a sentiment score or sentiment polarity to
represent the opinion expressed in a microblog. However, sentiment classification-
based opinion mining may not meet the demands of fine-grained opinion mining
because it ignores opinion targets. Besides, It may encounter some problems
when a message expresses different opinions to different targets or the sentiment
to a target is not the same with the sentiment of the message. Therefore, this
paper focus on a fine-grained opinion mining task, i.e., sentiment parsing, which
aims to jointly extract opinion target and corresponding sentiment [4].
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Sentiment parsing aims to extract all 〈T, S〉 tuples from microblogging mes-
sages, where T means a target and S is the sentiment to target T . Sentiment pars-
ing needs to find out all targets and sentiments as well as determine their rela-
tionships. It has been tackled as a sequence labeling problem in previous work [4].
This approach views a microblog sentence as a sequence of tokens labeled with
the “PNO” tagging scheme: P denotes that the token is inside an opinion target
and the sentiment to the target is positive; N indicates a token inside an opinion
target and the sentiment to the target is negative; and O is used for other tokens
in the sentence. An example sentence and the corresponding labels are shown in
Table 1, the labels denote that the sentence expresses positive sentiment to “Rus-
sell Westbrook” and negative sentiment to “Steph Curry”.

Table 1. An example sentence with labels.

Sentence I think Russell Westbrook plays better than Steph Curry

Label O O P P O O O N N O

Convolution neural network (CNN) is well known as its capability of cap-
turing contextual information and has been successfully applied to variety of
natural language processing tasks such as character-level word embedding [5–7],
text classification [8–10], sentiment analysis [11,12], machine translation [13] and
Web search [14]. However, because sequence length always decreases after CNN
layers, CNN is rarely used in word-level sequence labeling tasks. This motivate
us to propose a CNN-based sequence labeling method and explore an application
of CNN to the task of sentiment parsing. To evaluate the proposed method, we
compare it with RNN-based sequence labeling method and experimental results
show that the proposed method is better than RNN-based sequence labeling
method in both effectiveness and efficiency.

2 Related Works

Opinion mining of microblogs. Microblogging websites are invaluable sources
of public opinions and many studies have been launched on opinion mining
of microblogs. Early studies on opinion mining of microblogs usually build a
sentiment lexicon and calculate a sentiment score for each microblog message.
O’Connor et al. [15] calculate a sentiment score for each tweet and summarize the
scores of tweets containing the candidates to predict the approval ratings in elec-
tions. Bollen et al. [1] use a sentiment lexicon to determine the ratio of positive
versus negative tweets on a given day and apply it in the stock market predict-
ing. Some learning-based approach are applied to opinion mining of microblogs.
Kumaresan [2] propose a hybrid architecture for twitter sentiment classification
by combining random forest, SVM and naive Bayesian classifier. Hu [3] takes
social relation into consideration and determines sentiment of tweets with the
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text and social relations of the user. Bravo [16] combines strengths, emotions
and polarities for sentiment analysis of twitter. However, these studies focus
mainly on sentiment of microblogs and ignores opinion target. Therefore, we
defined a fine-grained opinion mining task, i.e., sentiment parsing, of microblogs
and applied RNN to the task in previous work [4]. This paper focuses on senti-
ment parsing task as well and attempts to improve the performance of sequence
labeling.

CNN in NLP. Owing to the capability of capturing local correlations of spatial
or temporal structures, CNNs have been successfully applied to many NLP tasks.
Some studies prove that CNN is an effective approach to grasp morphological
information and apply it to generate word embedding in character-level [5–7].
They combine conventional word-level embedding, character-level embedding
generated by CNN and additional word-level features to construct features of
each word and use these features as input of high level neural networks for
different NLP tasks. In word-level processing, a lot of researches employ CNN
for text modeling and further exploit the text features in document-level and
sentence-level NLP tasks, such as text classification [8–10], sentiment analysis
[11,12], machine translation [13] and Web search [14]. However, because the
dimension of features always decrease sharply through CNN layers, only a few
work utilizes CNNs for sequence labeling in NLP. Xu et al. [17] use a CNN layer
to learn word features in window context and employ a TriCRF layer for slot
filling and intent detection. The model achieves the stat-of-the-art in both tasks.
Therefore, this paper attempts to apply CNN to sequence labeling problem for
sentiment parsing of microblogs.

3 Methodology

This section introduces the neural network architecture and explains how to
extract opinion target and sentiment polarity jointly with CNN based sequence
labeling. As show in Fig. 1, the neural network architecture contains three kinds
of layers: embedding layer projects word into fixed-length vectors; convolution
layers extract features of each word in sentence; labeling layer predicts label of
each word with the features from convolution layers.

3.1 Word Embedding

Word embedding layer aims to represent each word with a vector and thus words
can be calculated in high-level layers. Bengio et al. [18] suggest that learning
jointly the representation (word embedding) and language model is very use-
ful. Collobert et al. [19] point out that pre-trained word embedding on large
unlabeled datasets are useful for different tasks, and they released their word
embedding trained on Wikipedia. Recent years, word embedding is commonly
used in most of neural network-based natural language processing tasks. Differ-
ent training models for word embedding, such as Word2Vec [20] and Glove [21],
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Fig. 1. An illustration of CNN-based sequence labeling for sentiment parsing task.

are proposed. Specifically, let D represents the token dictionary of a dataset,
word embedding E ∈ Rd×|D| represents each token t ∈ D with a fixed-length
vector et ∈ Rd. The embedding matrix E is usually pre-trained with a large
unsupervised dataset and taken as a group of parameters in task-specific training
process. Lai et al. [22] analyzed different corpus and different embedding models,
pointing out that corpus domain is more important than corpus size. Therefore,
this paper trains word embedding on a microblog corpus with Word2Vec [20].

3.2 Convolution

In sentiment parsing task, the label of a word in a sentence is determined by
the meaning of the word as well as its contextual information. Word embedding
layer expresses general meaning of each word with a vector, and convolution
layer aims to extract contextual information of each word.

Generally, CNN has two kinds of operations, i.e., convolution and pooling.
Convolution operation extracts steady contextual features by sliding some fixed-
length windows. Each window, usually called a filter, extract one type of con-
textual feature in different locations with the same weights. Pooling operation
aggregate features over a region by calculating the maximum or mean value
of the features in the region. Multi-layers of alternate convolution and pooling
operations can extract features in different scales. For sequence labeling tasks,
the length of output sequence usually needs to be same with input sequence.
However, both convolution and pooling will reduce the dimension of sequence,
making it rarely used in sequence labeling tasks. In order to keep the length
of sequence, this paper discard pooling operation, because it reduces sequence
length sharply, and add some paddings to the beginning and end of sentences
according to filter size and number of layers.

For a sentence S = {t1, t2, ..., ts}, each token ti has been projected to be a
vector eti . In a convolution layer, suppose m is the filter length, n is the number
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of filters, then the filter input of token ti is:

Xi = [eti−m/2+1/2 , ..., eti , ...eti+m/2−1/2 ], (1)

where m is set to be odd to void bias. In Xi, when k < 1 or k > s, etk = ep,
where ep is the embedding of padding. Let Wj ∈ Rm×d be the weight matrix of
the jth filter and bj be the bias vector of the jth filter, the feature of token tj
with the jth filter is:

cij = f(Wj ◦ Xi
T + bj), (2)

where ◦ denotes element-wise multiplication and f is nonlinear active function.
Then the feature of tj after the convolution layer is

Ci = [ci1, ci2, ..., cin]T . (3)

For multilayer of convolution, we use same filter length in one model for
different layers. We define CWS as the covered window size, which represents
the number of tokens covered by CNN layers when determine the label of a
token. For example, in one convolution layer with filter length m, the covered
window of token ti is [ti−m/2+1/2, ..., ti, ..., ti+m/2−1/2] and the covered window
size is m, which means that the label of ti is only determined by the m tokens
around it (including itself). When depth of convolution layer increase, each layer
will add (m−1) tokens into the covered window. Therefore, the covered window
size is determined by filter length m and depth dep of convolution layer:

CWS(m, dep) = m + (m − 1) ∗ (dep − 1) = (m − 1) ∗ dep + 1. (4)

Covered window size determines the boundary of contextual feature extraction
and thus is a significant indicator of the capability of a model.

3.3 Labeling

As mentioned before, we use the “PNO” tagging scheme to formulate sentiment
parsing to be a sequence labeling problem in this paper. Let L = {l1, l2, ..., ls}
denotes the label sequence of sentence S = {t1, t2, ..., ts}, where li ∈ {P,N,O}
is the label of ti. In labeling layer, We represent each label with a normalized
3-dimensional vector. For instance, the label vector is of token ti is

ŷi =

⎧
⎪⎨

⎪⎩

(1, 0, 0), where li = P

(0, 1, 0), where li = N

(0, 0, 1), where li = O

(5)

Labeling layer translates the output of convolution layer at each step into a
three-dimension vector and normalize it with a softmax function:

yi = softmax(WCi + b), (6)

where W is a weight matrix and b is a bias vector. The summation of elements in
yi is 1 and each element in yj can be seen as the probability of its related label.
For instance, vector (0.6, 0.3, 0.1) denotes that the label of the corresponding
token has the probability of 0.6 to be P , 0.3 to be N , and 0.1 to be O.
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3.4 Training and Prediction

In training process, θ = {E,W∗, b∗} is the set of model parameters. Neural
network predicts a label code yi for each token ti in each sentence, we take the
cross-entry error of yiand ŷi as the loss of token ti:

Lce(ŷi, yi; θ) = −
2∑

k=0

ŷiklogyik. (7)

The loss value of training dataset is the mean loss value of all tokens in training
dataset:

L(θ) =
1
N

N∑

i=1

1
sj

sj∑

i=1

Lce(ŷi, yi; θ). (8)

where N is the number of sentences in training dataset.
In predicting process, each token in a sentence get a label code through

the neural network. The largest element in the output vectors represents the
predicted label of this token in the sentence.

4 Experiment

4.1 Experiment Setting

We evaluate the proposed CNN-based method on a Chinese microblog dataset
[4], which is collected from Sina Weibo and contains messages and replies of 5
controversial hot topics. The dataset have 67,033 unlabeled messages and 5000
labeled sentences. Each labeled message have been annotated with the men-
tioned targets and corresponding sentiment. We train word embedding on the
67,033 unlabeled messages with Word2Vec [20] and take it as initial word embed-
ding. We use F-score of opinion tuples in labeled messages and training time to
evaluate the effectiveness and efficiency of different models, respectively.

RNN-based sequence labeling method is taken as the baseline. Specifically,
according to the experiment of previous work [4], we compare the proposed
method with bidirectional simple RNN(SRNN), long short term memory(LSTM)
and gated recurrent unit(GRU) at depth from 1 to 5. We explore four different
filter lengths (3, 5, 7 and 9) with seven different convolutions layers (from 1
to 7) and compare the F-score and training time with RNN-based methods.
All models are trained via the Adam optimizer [23]. We implement the neural
networks using the Keras library1, a highly modular neural networks library.
The models are running on a NVIDIA GeForce GTX1080 GPU.

1 https://github.com/fchollet/keras.

https://github.com/fchollet/keras


100 J. Cheng et al.

4.2 Result and Discussion

Effectiveness. The F-scores of different models are displayed in Fig. 2, different
lines represent different models and each line is the F-scores in different layers.
The solid lines are CNN-based methods and dashed lines are RNN-based meth-
ods. When the depth increase, F-scores of all models increase at first and tend to
decrease after a depth. However, CNN-based methods are steadier than RNN-
based methods because their F-score does not decrease sharply after reaching
the best depth. Most CNN-based models achieve better result than RNN-based
methods. CNN-based models with filter length 5 and 7 are better than models
with filter length 3 and 9. The best F-score is 0.631, achieved by CNN-based
method of two convolution layers with filer length 7. It is better than the best
F-score of RNN-based method—0.622.

Fig. 2. F-score of different neural networks.

Efficiency. The training time of different models are shown in Fig. 3 and the
setting of lines are same with Fig. 2. It can be seen that the time cost of CNN-
based methods are much less than that of RNN-based methods. When neural
network layers increase, the time cost of RNN-based methods increases linearly
and that of RNN-based methods increase exponentially. Besides, from the detail
figure of CNN-based methods in the upper-left corner, it can be seen that the
training time of CNN-based methods is mainly determined by number of CNN
layers. When filter length increase, the training time increases slightly.

Covered window size. In order to find the relationship of performance and cov-
ered window size, we calculate the covered window size of each neural network
and compare it with the length distribution of sentence and sub-sentence in the
dataset. As show in Fig. 4, the sub-figure at the top is F-scores of neural networks
in different covered window sizes. When covered window extends, performance
of neural networks become better at first and keep steady after that. When
covered window size is larger than 10, the performance tends to keep steady.
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Fig. 3. Training time of different neural networks. The sub-figure in the upper-left
corner is details of training time of CNN-based methods.

Fig. 4. Performance of CNN-based methods in different covered window size. The sub-
figure at the top is F-scores of neural networks in different covered window size. The
sub-figure at the bottom is the cumulative probability distribution of the length of
sentences and sub-sentences in the dataset.

When covered window size is near 20, neural networks get best performance and
begin to get worse. The sub-figure at the bottom is the cumulative probability
distribution of the length of sentences and sub-sentences in the dataset. 85%
of sub-sentences are short than 10 tokens and 98% of sub-sentences are short
than 20 tokens. Therefore, neural networks with covered window size 10 cover
most of sub-sentences when determine the label of a token; and neural networks
with covered window size 20 cover most of sub-sentences and their neighboring
sub-sentences when determine the label of a token. This indicates that most opin-
ions may not be expressed in a sub-sentences. When we wish to extract opinion
accurately, we should consider more than one sub-sentence for an opinion.
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5 Conclusion

In this paper, we focus on a fine-grained sentiment analysis task—sentiment
parsing—of microblogs. We propose a CNN-based sequence labeling method and
apply it to sentiment parsing task. We empirically evaluated neural networks
with different filter length and depth and analyzed the influence of covered win-
dow size of CNN neural networks to opinion mining of microblogs. Experiments
show that the proposed CNN-based methods perform better than RNN-based
sequence labeling in both effectiveness and efficiency.

Acknowledgments. The research is supported by National Natural Science Founda-
tion of China (No. 71331008).
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Abstract. Models obtained by decision tree induction techniques excel
in being interpretable. However, they can be prone to overfitting, which
results in a low predictive performance. Ensemble techniques provide a
solution to this problem, and are hence able to achieve higher accuracies.
However, this comes at a cost of losing the excellent interpretability of
the resulting model, making ensemble techniques impractical in applica-
tions where decision support, instead of decision making, is crucial.

To bridge this gap, we present the genesim algorithm that trans-
forms an ensemble of decision trees into a single decision tree with an
enhanced predictive performance while maintaining interpretability by
using a genetic algorithm. We compared genesim to prevalent decision
tree induction algorithms, ensemble techniques and a similar technique,
called ism, using twelve publicly available data sets. The results show that
genesim achieves better predictive performance on most of these data
sets compared to decision tree induction techniques & ism. The results
also show that genesim’s predictive performance is in the same order of
magnitude as the ensemble techniques. However, the resulting model of
genesim outperforms the ensemble techniques regarding interpretability
as it has a very low complexity.

Keywords: Decision support · Decision tree merging · Genetic algo-
rithms

1 Introduction

Decision tree induction is a white-box machine learning technique that obtains an
easily interpretable model after training. For each prediction from the model, an
accompanying explanation can be given. Moreover, as opposed to rule extraction
algorithms, the complete structure of the model is easy to analyze as it is encoded
in a decision tree.

In domains where the decisions that need to be made are critical, the empha-
sis of machine learning is on offering support and advice to the experts instead
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of making the decisions for them. As such, the interpretability and comprehensi-
bility of the obtained models are of primal importance for the experts that need
to base their decision on them. Therefore, a white-box approach is preferred.
Examples of critical domains include the medical domain (e.g. cardiology and
oncology), the financial domain (e.g. claim management and risk assessment)
and law enforcement.

One of the disadvantages of decision trees is that they are prone to overfit [1].
To overcome this shortcoming, ensemble techniques have been proposed. These
techniques combine the results of different classifiers, leading to an improve-
ment in the prediction performance because of three reasons [2]. First, when the
amount of training data is small compared to the size of the hypothesis space, a
learning algorithm can find many different hypotheses that correctly classify all
the training data, while not performing well on unseen data. By averaging the
results of the different hypotheses, the risk of choosing a wrong hypothesis can
be reduced. Second, many learning algorithms can get stuck in local optima. By
constructing different models from different starting points, the chance to find
the global optimum is increased. Third, because of the finite size of the train-
ing data set, the optimal hypothesis can be outside of the space searched by
the learning algorithm. By combining classifiers, the search space gets extended,
again increasing the chance to find the optimal classifier. Nevertheless, ensem-
ble techniques also have disadvantages. First, they take considerably longer to
train and make a prediction. Second, their resulting models require more stor-
age. The third and most important disadvantage is that the obtained model
consists either out of many decision trees or only one decision tree that con-
tains uninterpretable nodes (which is the case for stacking), making it infeasible
or impossible for experts to interpret and comprehend the obtained model. To
bridge the gap between decision tree induction algorithms and ensemble tech-
niques, post-processing methods are required that can convert the ensemble into
a single model. By first constructing an ensemble from the data and then apply-
ing this post-processing method, a better predictive performance can possibly
be achieved compared to constructing a decision tree from the data directly.

This post-processing technique is not only useful to increase the predictive
performance while maintaining excellent interpretability. It can also be used in
a big data setting where an interpretable model is required and the size of the
training data set is too large to construct a predictive model on a single node in
a feasible amount of time. To solve this, the data set can be partitioned and a
predictive model can be constructed for each of these partitions in a distributed
fashion. Finally, the different models can be combined together.

In this paper, we present a novel post-processing technique for ensembles,
called GENetic Extraction of a Single, Interpretable Model (genesim), which
is able to convert the different models from the ensemble into a single, inter-
pretable model. Since each of the models in the ensemble being merged will have
an impact on the predictive performance of the final combined model, a genetic
approach is applied which combines models from different subsets of an ensem-
ble. The outline of the rest of this paper is as follows. First, in Sect. 2, work
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related to genetic decision tree evolving and decision tree merging is discussed.
Then, in Sect. 3, the different steps of genesim are described. In Sect. 4, a com-
parison regarding predictive performance and model complexity is made between
genesim, a similar technique called ism and prevalent ensemble & decision tree
induction techniques. Finally, in Sect. 5, a conclusion and possible future work
are presented.

2 Related Work

In the work of Kargupta et al. [3], decision trees are merged by first converting
them to the spectral domain using a Fourier transformation. Next, the obtained
spectra of different trees are added together and the inverse Fourier transfor-
mation converts the spectrum back to a decision tree. Although promising, this
method has not yet been applied successfully in any real-life application.

Quinlan proposed MiniBoosting [4], wherein three boosting iterations are
applied and the small resulting decision trees are merged into one very large
tree, which can finally be pruned to enhance generalization. This technique has
a higher accuracy than a single decision tree for the largest part of twenty-
seven tested data sets, but a lower accuracy than the boosting implementation
AdaBoost.

A more straight-forward technique is proposed by Quinlan [5] which trans-
lates the decision trees in production rules that are much easier to simplify
than the trees themselves. Next, the production rules are either represented as a
decision table, or transformed in a set of k-dimensional hyperplanes, and subse-
quently merged using algorithms such as the MIL algorithm [6] or respectively
by calculating the intersection of the hyperplanes [7].

In the work of Van Assche et al. [8], a technique called Interpretable Single
Model (ism) is proposed. This technique is very similar to an induction algorithm,
as it constructs a decision tree recursively top-down, by first extracting a fixed
set of possible candidate tests from the trees in the ensemble. For each of these
candidate tests, a split criterion is calculated by estimating the parameters using
information from the ensemble instead of the training data. Then, the test with
the optimal split criterion is chosen and the algorithm continues recursively
until a pre-prune condition is met. Two shortcomings of this approach can be
identified. First, information from all models, including the ones that will have
a negative impact, are used to construct a final model. Second, because of the
similarity with induction algorithms, it is possible to get stuck in the same local
optimum as these algorithms.

Deng [9] introduced stel, which converts an ensemble into an ordered rule list
using the following steps. First, for each tree in the ensemble, each path from the
root to a leaf is converted into a classification rule. After all rules are extracted,
they are pruned and ranked to create an ordered rule list. This sorted rule set can
then be used for classification by iterating over each rule and returning the target
when a matching rule is found. While a good predictive performance is reported
for this technique, it is much harder to grasp an ordered rule list completely
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Fig. 1. Comparison of the resulting models of stel and genesim regarding model
complexity

than a decision tree, as can be seen in Fig. 1. Therefore, when interpretability is
of primal importance, the post-processing technique, that converts the ensemble
of models into a single model, should result in a decision tree.

It is impossible to know a priori which subset of decision trees should be
merged to obtain the most accurate model. A brute-force approach that tries
every possible combination would require an infeasible amount of computation
time. Therefore, a genetic approach is applied that merges different decision trees
for several iterations. Genetic (or evolutionary) algorithms are meta-heuristics
most often used in optimization problems [10]. A recent and thorough survey of
evolutionary algorithms for decision tree evolving can be found in [11].

3 GENESIM: GENetic Extraction of a Single,
Interpretable Model

While in Barros et al. [11], genetic algorithms are discussed to construct decision
trees from the data directly, in this paper, a genetic algorithm is applied on an
ensemble of decision trees, created by using well-known induction algorithms
combined with techniques such as bagging and boosting. Applying a genetic
approach allows to efficiently traverse the very large search space of possible
model combinations. This results in an innovative approach for merging decision
trees which takes advantage of the positive properties of creating an ensemble.
By exploiting multi-objective optimization, the resulting algorithm increases the
accuracy ánd decreases the decision tree size at the same time, while most of the
state-of-the-art succeeds in only one of the two.

A genetic algorithm generally consists of 6 phases, which are repeated iter-
atively. First, in an initialization phase, the population of candidate solutions
is generated. It is important that the initial population is diverse enough, to
allow for an extensive search space and reduce the chance of being stuck at local
optima. Second, in each iteration, the individuals are evaluated using a fitness
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function. Then, in a selection phase, pairs of individuals are selected based on
their fitness in order to combine them. In a fourth phase, the selected individuals
are recombined, resulting in new offsprings. Furthermore, in each iteration, an
individual has a certain probability to be mutated. Finally, in the end of each
iteration, new offsprings are added to the population and the least fit individu-
als are discarded. In the subsequent subsections, each of the genetic algorithm
phases are elaborated, and discussed in context of genesim1.

3.1 Initialization Phase

First, the training data is divided into a new training set and a validation set.
Then, different induction algorithms, including c4.5, cart, quest and guide
are applied on the training data in combination with bagging. Moreover, an
AdaBoost classifier is trained and each of the decision trees of its resulting
model is added to the population.

3.2 Evaluation Phase

The fitness function in genesim is defined to be the classification rate on the
validation set:

accuracy =
1
N

∗
N∑

1

1g(xi)=yi

with N the length of the validation data set and g() the hypothesis of the
individual. When two individuals have the same accuracy, the one with the
lowest model complexity (expressed as number of nodes in the tree) is preferred.

3.3 Selection Phase

In each iteration, deterministic tournament selection is applied to select the
individuals which will get recombined in the next phase. Tournament selection
has two hyper-parameters: k and p. It chooses k individuals from the popula-
tion at random and sorts them by their fitness. Then, the best individual from
the tournament is returned with probability p, the second best individual with
probability p ∗ (1 − p), the third best with probability p ∗ (1 − p)2, and so on. In
deterministic tournament selection, p is equal to 1 and thus the best individual
from the tournament is always returned.

3.4 Recombination Phase

To merge decision trees together, they are first converted to sets of k-dimensional
hyperplanes (called the decision space), k being the number of features, by defin-
ing a unidirectional one-to-one mapping. Each node in a decision tree corre-
sponds to a hyperplane in the decision space. Consequently, each leaf of the
decision tree corresponds to a hyperrectangle in the decision space. An example
of such a conversion can be seen in Fig. 2.
1 https://github.com/IBCNServices/GENESIM.

https://github.com/IBCNServices/GENESIM
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Fig. 2. Converting a decision tree to its set of k-dimensional hyperplanes. The decision
tree is generated using C4.5, on the heart disease data set with two features: maximum
heart rate and resting blood pressure. The color red in the decision space corresponds
to class 1, the color blue corresponds to class 2. The purple tint, which consists out of
a certain percentage of blue and red color, corresponds to the distribution of the two
classes in a leaf. (Color figure online)

When all the nodes from all the trees are converted to their corresponding
hyperplane, the different decision spaces can be merged together by calculating
their intersection using a sweep line approach discussed in [7]. In this approach,
each hyperplane is projected on a line segment in each dimension. These line seg-
ments are then sorted, making it easy to find the intersecting line segments in one
specific dimension. In the end, if the projected line segments of two hyperplanes
intersect in each dimension, the hyperplanes intersect as well. Subsequently, their
intersection can be calculated and added to the resulting decision space. This
method requires O(k ∗n∗ log(n)) computational time, with k the dimensionality
of the data and n the number of planes in the sets, opposed to the quadratic
complexity of a naive approach which calculates the intersection of each possible
pair of planes.

The resulting decision spaces can contain many different regions as the num-
ber of regions in a merged space can increase quadratically in worst-case with
the amount of regions in the original spaces. In order to reduce the amount of
regions in the resulting space, and thus the amount of nodes in the merged deci-
sion tree (possibly leading to better generalization), the decision space should
be pruned. Pruning can be achieved by combining two regions with similar class
distributions (i.e. color in Fig. 2) that are next to each other. Similarity of class
distributions can be measured by using a distance metric such as the Euclidean
distance and subsequently comparing it with a threshold or by applying similar-
ity metrics. It is important to note that all regions are hyperrectangles, thus the
combined region should be a hyperrectangle as well. In other words, the lower
and upper bound for all dimensions should be equal for both regions, except for
one dimension where the lower bound in that dimension of one region is equal
to the upper bound in the same dimension of the other region. For example, two
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candidate regions in Fig. 2 are the regions 2 and 3 (but they differ too much in
their class distribution to be merged).

Finally, we need to convert our merged decision space back to a decision tree.
Unfortunately, the one-to-one mapping from tree to space is not bidirectional,
as it is not possible to convert the set of k-dimensional hyperplanes, after the
merge operation, to a uniquely defined decision tree. To solve this shortcoming,
a heuristic approach is taken which identifies candidate splitting planes to create
a node from, and then picks one from these candidates. To select a candidate, a
metric (such as information gain) could be used, but this would introduce a bias.
Therefore, a candidate is selected randomly. The candidate hyperplanes need to
fulfill the constraint that they have no boundaries in all dimensions (or bounds
equal to the lower and upper bound of the range of each dimension) except for
one. To illustrate this, only one line can be identified as candidate line for the
root node in the decision space in Fig. 2. This line is unbounded in the dimension
of resting blood pressure but with a value of 147 as maximum heart rate (the
line left of region 4).

3.5 Mutation Phase

In each iteration, an individual has a certain probability to be mutated. This
can be seen as an ‘exploration’ parameter to escape local minima. Two mutation
operations are defined in genesim: either the threshold value of a random node
in the decision tree is replaced with another value or two random subtrees are
swapped.

3.6 Replacement Phase

The population for the next iteration is created by sorting the individuals by
their fitness and only selecting the first population size individuals.

4 Evaluation and Results

The proposed algorithm genesim is compared, regarding the predictive
performance and model complexity, to two ensemble methods (Random
Forests (rf) [12] & eXtreme Gradient Boosting (xgb) [13]) and four decision
tree induction algorithms (c4.5 [14], cart [15], guide [16] and quest [17]).
Moreover, genesim is compared to ism, which we extended with cost-complexity
pruning [15]. For this, twelve data sets, having very distinct properties, from the
UCI Machine Learning Repository [18] were used. An overview of the character-
istics of each data set can be found in Table 1.

When the number of possible combinations was not too high, the hyper-
parameters of the decision tree induction and ensemble techniques were tuned
using a Grid Search technique, else Bayesian optimization was used. Unfor-
tunately, because of a rather high complexity of genesim and ism, hyper-
parameter optimization could not be applied to these techniques, giving a per-
formance advantage to the other techniques. The ensemble that was transformed
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Table 1. Table with the characteristics for each data set. (#cont = number of contin-
uous features, #disc = number of discrete features)

Name #samples #cont #disc Class distribution

iris 150 4 0 33.3 - 33.3 - 33.3

austra 690 5 9 55.5 - 44.5

cars 1727 0 6 70.0 - 22.2 - 4.0 - 3.8

ecoli 326 5 2 43.6 - 23.6 - 16.0 - 10.7 - 6.1

glass 213 9 0 32.4 - 35.7 - 8.0 - 6.1 - 4.2 - 13.6

heart 269 5 8 55.8 - 44.2

led7 2563 0 7 12.7 - 13.0 - 12.4 - 10.5 - 13.1 - 13.1 - 13.3 - 11.9

lymph 142 0 18 57.0 - 43.0

pima 768 7 1 65.1 - 34.9

vehicle 846 14 4 25.1 - 25.7 - 25.8 - 23.5

wine 177 13 0 32.8 - 40.1 - 27.1

wisconsinBreast 698 0 9 65.5 - 34.5

into a single model by genesim was constructed using different induction algo-
rithms (c4.5, cart, quest and guide) combined with bagging and boosting.
We applied 3-fold cross validation 10 times on each of the data sets and stored
the mean accuracy and model complexity for the 3 folds. The mean accuracy
and mean model complexity (and their corresponding standard deviations) over
these 10 measurements can be found in Tables 2 and 3. In the latter table, the
average number of nodes (including the leaves) for the produced decision trees
is depicted for each of the decision tree induction algorithms. For the ensemble
techniques, the average number of decision trees in the constructed ensemble
is depicted. Bootstrap statistical significance testing was applied to construct a
Win-Tie-Loss matrix, which can be seen in Fig. 3. Algorithm A wins over B for
a certain data set when the mean accuracy is higher than B on that data set
and the ρ-value for the bootstrap test is lower than 0.05. When an algorithm has
more wins than losses compared to another algorithm, the cell is colored green
(and shaded using stripes). Else, the cell is colored red (and shaded using dots).
The darker the green, the more wins the algorithm has over the other. Similarly,
the darker the red, the more losses an algorithm has over the other.

A few things can be deduced from these matrices and tables. First, we can
clearly see that the ensemble techniques rf and xgb have a superior accuracy
compared to all other algorithms on these data sets, and that xgb outperforms
rf. While the accuracy is indeed better, the increase can be of a rather moder-
ate size (as can be seen in Table 2). However, the resulting model is completely
uninterpretable. Second, in terms of accuracy, the proposed genesim outper-
forms all decision tree induction algorithms, except c4.5. Although, genesim is
very competitive to it. It wins on two data sets while losing on three and has
no optimized hyper-parameters, in contrast to c4.5. For each data set, genesim
used the same hyper-parameters. (such as a limited, fixed amount of iterations
and using 50% of the training data as validation data). As can be seen in Fig. 4,
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Table 2. Mean accuracies for the different data sets and algorithms using 10 measure-
ments

xgb cart quest genesim rf ism c4.5 guide

heart 0.8257

± 0.01σ

0.7441

± 0.02σ

0.7585

± 0.02σ

0.7982

± 0.02σ

0.8129

± 0.01σ

0.8024

± 0.02σ

0.7877

± 0.03σ

0.7829

± 0.02σ

led7 0.8018

± 0.0σ

0.7997

± 0.0σ

0.7986

± 0.0σ

0.7926

± 0.0σ

0.8027

± 0.0σ

0.7996

± 0.0σ

0.8012

± 0.0σ

0.761 ±
0.01σ

iris 0.9505

± 0.01σ

0.9504

± 0.01σ

0.9562

± 0.0σ

0.9463

± 0.01σ

0.95 ±
0.01σ

0.9519

± 0.01σ

0.9395

± 0.01σ

0.9467

± 0.01σ

cars 0.9842

± 0.0σ

0.9749

± 0.0σ

0.9411

± 0.01σ

0.9543

± 0.01σ

0.9701

± 0.01σ

0.9685

± 0.0σ

0.966 ±
0.0σ

0.9426

± 0.01σ

ecoli 0.8651

± 0.01σ

0.8196

± 0.02σ

0.8195

± 0.01σ

0.8325

± 0.02σ

0.8486

± 0.01σ

0.7507

± 0.04σ

0.817 ±
0.03σ

0.8319

± 0.01σ

glass 0.7494

± 0.02σ

0.6667

± 0.03σ

0.649 ±
0.03σ

0.6696

± 0.03σ

0.7526

± 0.03σ

0.6489

± 0.03σ

0.6763

± 0.03σ

0.6557

± 0.02σ

austra 0.8686

± 0.01σ

0.8506

± 0.01σ

0.8547

± 0.01σ

0.8553

± 0.01σ

0.8663

± 0.01σ

0.8557

± 0.01σ

0.8528

± 0.01σ

0.8582

± 0.01σ

vehicle 0.7606

± 0.01σ

0.6988

± 0.01σ

0.6986

± 0.01σ

0.6834

± 0.01σ

0.7383

± 0.01σ

0.6672

± 0.01σ

0.7115

± 0.01σ

0.6821

± 0.01σ

breast 0.9591

± 0.0σ

0.94 ±
0.01σ

0.947 ±
0.01σ

0.9496

± 0.01σ

0.958 ±
0.01σ

0.9466

± 0.0σ

0.9443

± 0.0σ

0.937 ±
0.01σ

lymph 0.8354

± 0.02σ

0.7686

± 0.02σ

0.7907

± 0.03σ

0.7866

± 0.02σ

0.817 ±
0.02σ

0.7822

± 0.03σ

0.7839

± 0.03σ

0.7659

± 0.04σ

pima 0.7543

± 0.01σ

0.7174

± 0.02σ

0.7385

± 0.01σ

0.7266

± 0.01σ

0.7626

± 0.01σ

0.7346

± 0.01σ

0.7348

± 0.01σ

0.7285

± 0.02σ

wine 0.9709

± 0.01σ

0.9072

± 0.01σ

0.9055

± 0.03σ

0.9128

± 0.03σ

0.9603

± 0.01σ

0.8838

± 0.01σ

0.9217

± 0.01σ

0.8828

± 0.03σ

Fig. 3. Win-Tie-Loss matrices for the different algorithms for accuracies and model
complexities (Color figure online)
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Table 3. Mean model complexities, expressed as either number of nodes in the resulting
decision tree or number of decision trees in the ensemble (*), for the different data sets
and algorithms using 10 measurements

xgb(*) cart quest genesim rf(*) ism c4.5 guide

heart 408.4815 ±
188.19σ

35.8148 ±
12.54σ

9.1852 ±
2.97σ

17.4444 ±
4.84σ

448.6113 ±
154.6σ

35.8889 ±
10.71σ

23.5556 ±
6.62σ

9.1481 ±
2.28σ

led7 459.9792 ±
152.17σ

201.9583 ±
1.2σ

57.625 ±
4.91σ

92.0417 ±
17.08σ

516.25 ±
155.4σ

111.2917 ±
15.45σ

58.9583 ±
2.09σ

32.9167 ±
2.55σ

iris 544.5238 ±
144.62σ

12.2857 ±
1.34σ

5.8571 ±
0.59σ

5.9048 ±
0.65σ

453.2381 ±
204.4σ

10.5714 ±
1.91σ

7.3809 ±
1.06σ

5.3333 ±
0.55σ

cars 631.2821 ±
123.71σ

140.1282 ±
2.66σ

45.6667 ±
4.7σ

103.1539 ±
14.42σ

438.4615 ±
178.3σ

131.4102 ±
9.62σ

98.4359 ±
4.6σ

43.6154 ±
5.07σ

ecoli 487.5625 ±
202.89σ

35.6667 ±
11.77σ

14.5833 ±
3.48σ

19.0833 ±
4.27σ

447.0623 ±
147.7σ

60.125 ±
16.06σ

19.25 ±
2.84σ

10.0833 ±
1.43σ

glass 530.7017 ±
179.2σ

57.8421 ±
11.27σ

22.4035 ±
5.66σ

29.6667 ±
5.75σ

486.9825 ±
160σ

80.3684 ±
24.1σ

36.2982 ±
3.09σ

16.1579 ±
2.47σ

austra 433.0392 ±
72.65σ

7.7451 ±
6.19σ

7.902 ±
3.23σ

23.7843 ±
7.37σ

396.3333 ±
181.5σ

38.8824 ±
15.73σ

26.7255 ±
6.82σ

8.2941 ±
3.12σ

vehicle 465.6667 ±
119.44σ

177.1111 ±
22.26σ

81.7778 ±
14.85σ

83.2222 ±
9.68σ

485.2778 ±
146.8σ

345.5556 ±
45.92σ

92.4444 ±
12.43σ

33.2222 ±
8.71σ

breast 563.3333 ±
170.63σ

30.619 ±
7.89σ

12.619 ±
3.73σ

18.5238 ±
3.49σ

395.5714 ±
161.4σ

43.7619 ±
13.31σ

19.4762 ±
2.38σ

10.4286 ±
1.65σ

lymph 608.4375 ±
140.47σ

32.0417 ±
5.75σ

13.5417 ±
3.14σ

14.8333 ±
4.0σ

497.9375 ±
162.3σ

30.9583 ±
6.6σ

16.9583 ±
2.44σ

8.875 ±
2.81σ

pima 180.0556 ±
85.5σ

52.4445 ±
19.8σ

12.0 ±
4.32σ

45.2222 ±
8.53σ

434.8334 ±
68.04σ

101.6667 ±
18.5σ

26.0 ±
5.12σ

8.1111 ±
2.36σ

wine 487.0948 ±
176.94σ

13.4762 ±
1.58σ

9.1905 ±
1.66σ

8.0476 ±
0.93σ

409.2381 ±
116.1σ

33.3809 ±
3.04σ

9.381 ±
0.33σ

6.8095 ±
0.77σ

Fig. 4. The fitness (classification rate on a validation set) of the fittest population in
function of the number of iterations of genesim

running genesim for a higher number of iterations could result in a better model.
Third, the performance of ism, which we extended with a post-pruning phase, is
rather disappointing. Only guide has a worse classification performance. More-
over, the complexity of the resulting model is higher than the other algorithms
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as well. Finally, genesim produces very interpretable models with a very low
model complexity (expressed here as the number of nodes in the tree). The
average number of nodes in the resulting tree is lower than in cart and c4.5,
but higher than quest and guide. But the predictive performance of the two
last-mentioned algorithms is much lower than genesim.

5 Conclusion

In this paper, genesim is proposed, a genetic approach for exploiting the positive
properties of ensembles while keeping the result a single, interpretable model.
genesim is ideally suited to support the decision-making process of experts in
critical domains. Results show that in most cases, an increased predictive per-
formance compared to naive induction algorithms can be achieved, while keep-
ing a very similar model complexity. Results of genesim can still be improved
by reducing the computational complexity of our algorithm, allowing hyper-
parameter optimization and enabling our technique to run for more iterations
in a feasible amount of time.
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Abstract. A self-adaptive weighted extreme learning machine
(SawELM) is proposed in this paper to deal with the imbalanced
binary-class classification problems. SawELM calculates the output-
layer weights based on a newly-designed self-adaptive mechanism which
includes the following two modules: one is to gradually reduce the
weights of wrongly-classified training instances and the other is to
dynamically update the outputs of these wrongly-classified instances.
On 50 imbalanced binary-class data sets selected from KEEL reposi-
tory, we compare the accuracy, G-mean, and F-measure of SawELM with
unweighted ELM (UnWELM) and weighted ELM (WELM). The exper-
imental results show that the newly-designed self-adaptive mechanism is
effective and SawELM obviously improves the imbalanced classification
performance of WELM. SawWLM obtains the significantly higher G-
mean and F-measure than UnWELM and WELM. Meanwhile, the accu-
racy of SawELM is better than WELM and comparable to UnWELM.

Keywords: Imbalanced classification · Weighted extreme learning
machine · Unweighted extreme learning machine · G-mean · F-measure

1 Introduction

The imbalanced classification is an important and attractive research topic in
the field of machine learning, because the unequal distribution between data set
classes is a very common phenomenon in the real world and can significantly
compromise the performance of most standard classification algorithms [7]. The
imbalanced data sets can be easily found in many practical applications, e.g.,
click-through rate prediction of search engine, commodity recommendation in
the area of e-commerce, credit card fraud detection, and network attack detec-
tion, etc. The standard classification algorithms assume that the class distrib-
ution is balanced and thus most of them make the unfavorable prediction for
minority class. In reality, the cost of misclassifying the minority class instances as
the majority class instances is always higher than the cost of contrary case [20].
For example, it is very dangerous to diagnose the “cancerous” patients (minor-
ity class) as “noncancerous” persons (majority class). Therefore, we require a
c© Springer International Publishing AG 2017
U Kang et al. (Eds.): PAKDD 2017 Workshops, LNAI 10526, pp. 116–128, 2017.
DOI: 10.1007/978-3-319-67274-8 11
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learning method which will train a classifier having the high predictive accuracy
for minority class without severely degrading the predictive accuracy of majority
class.

Two representative learning methods focusing on imbalanced classification
are the sampling and cost-sensitive learning. The sampling methods firstly bal-
ance the imbalanced data set by removing the majority instances (random under-
sampling) [13] or adding the minority instances (random over-sampling) [6] and
then train a classifier based on the balanced data set. The problems of sampling
methods are that the under-sampling easily results in the over-fitting of classifier
and the over-sampling may cause the classifier to miss the important information
of majority class [7]. The objective of cost-sensitive methods is to train a classifier
that minimizes the overall “classification cost” on the imbalanced training data
set [14]. A cost matrix should be defined in the cost-sensitive method to repre-
sent the cost of classifying instances from one class to another. Usually, the cost
of misclassifying the minority class instances is higher than the cost of misclas-
sifying the majority class instances. The representative cost-sensitive learning
paradigms include the cost-sensitive ensemble learning [18], cost-sensitive neural
network [20], and cost-sensitive decision tree [19], etc. Though we only briefly
introduce two typical strategies to deal with the imbalanced classification, many
other techniques also exist for solving this problem, e.g., ensemble learning-based
[5,11] and active learning-based [3,4] imbalanced classification methods. More
detailed concepts and algorithms on imbalanced classification can be found from
the literatures [7,8].

Recently, the extreme learning machine (ELM)-based imbalanced classifica-
tion methods have drawn a lot of attention from academia and industry due to
the fast training speed and good predictive performance of ELM. ELM [9,10] is
a special single hidden-layer feed-forward neural networks of which the input-
layer weights are randomly selected from a given interval (e.g., [0, 1]) and the
output-layer weights are analytically calculated by calculating Moore-Penrose
generalized inverse of hidden-layer output matrix. Due to avoiding the iterative
training of weights and complex tuning of learning parameters, ELM has the
extremely fast training speed and obtains the good predictive performances in
many fields [12,16,17,21] including the imbalanced classification discussed in
this study. In 2013, Zong et al. [21] gave the first ELM-based imbalance classifi-
cation model named weighted ELM (WELM), where a diagonal weight matrix
associated with each training instance was introduced into the constrained opti-
mization problem of unweighted ELM (UnWELM) [9]. The objective of weight-
ing instances is to “strengthen the impact of minority class while weaken the
impact of majority class. [21]” on the classification performance of trained ELM
model. In 2014, Li et al. [12] proposed a boosting weighted ELM which tried
to improve the weighting scheme of WELM by embedding it into an modified
AdaBoost framework. Yang et al. in 2015 [16] designed an imbalanced ELM
algorithm for imbalanced binary-class classification problem by modifying the
probability density functions of predictive outputs and retraining the classifier
with the modified training data set. Xiao et al. in 2016 [15] also presented an
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imbalanced ELM algorithm which employed two different regularization terms
in the constrained optimization problem of unweighted ELM (UnWELM) [9].
These two regularization terms were associated with the predictive errors of
majority and minority classes, respectively. The ELM-based imbalance classifi-
cation models mentioned above demonstrate the feasibility of using ELM to deal
with the imbalanced classification problems.

In this paper, we focus on improving the classical WELM [21] by analyzing
the impact of weight factors on the predictive performance of WELM. Moti-
vated by further improving the predictive performance of WELM, a self-adaptive
weighted extreme learning machine (SawELM) algorithm is proposed to deal
with the imbalanced binary-class classification problems. SawELM is a single
hidden-layer feed-forward neural network of which the input-layer weights are
randomly selected from interval [0, 1] and the output-layer weights are deter-
mined based on a newly-designed self-adaptive mechanism. The self-adaptive
mechanism of SawELM mainly includes two parts: one is to gradually reduce
the weights of wrongly-classified training instances and the other is to dynami-
cally adjust the real outputs of these wrongly-classified instances. We compare
the accuracy, G-mean, and F-measure of SawELM with UnWELM and WELM
on 50 imbalanced binary-class data sets selected from KEEL repository [1,2].
The experimental results show that SawELM obviously improves the imbalanced
classification performance of WELM. SawELM obtains the significantly higher
G-mean and F-measure than UnWELM and WELM. In addition, the accuracy
of SawELM is better than WELM and comparable to UnWELM.

The remainder of this paper is organized as follows. In Sect. 2, we briefly
introduce the weighted extreme learning machine (WELM). The self-adaptive
weighted extreme learning machine (SawELM) is presented in Sect. 3. In Sect. 4,
we report the experimental comparisons that demonstrate the feasibility and
effectiveness of SawELM. Finally, we give our conclusions and suggestions for
further research in Sect. 5.

2 Weighted Extreme Learning Machine (WELM)

For an ELM algorithm, the main task is to determine its output-layer weights.
Before the basic concepts of WELM [21] are introduced, we firstly describe the
unweighted ELM (UnWELM) [9]. For an given imbalanced binary-class data set

D =

⎧
⎨

⎩
(x̄n, ȳn)

∣
∣
∣
∣
∣
∣

x̄n = (xn1, xn2, · · · , xnD) ,

ȳn = (yn1, yn2) =

{
(1, 0) , if x̄n belongs to the majority class
(0, 1) , if x̄n belongs to the minority class

⎫
⎬

⎭
,

where, n = 1, 2, · · · , N , N is the number of instances, D is the number of
attributes, and the numbers of instances belonging to the majority and minority
classes are NMaj and NMin (NMaj + NMin = N), respectively. UnWELM [9]
randomly selects the input-layer weights and hidden-layer biases from [0, 1] and
analytically determines the output-layer weights as

βUnWELM =

{
HT

(
I
C + HHT

)−1
Y, if N < L(

I
C + HTH

)−1
HTY, if N ≥ L

(1)
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by solving the following constrained optimization problem

Minimize : LUnWELM = 1
2‖β‖2 + C

2

N∑
n=1

∥∥ξ̄n
∥∥2

Subject to : ξ̄n = ȳn − h (x̄n) β, n = 1, 2, · · · , N
, (2)

where,

H =

⎡
⎢⎢⎢⎣

h (x̄1)
h (x̄2)

...
h (x̄N )

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

h1 (x̄1) h2 (x̄1) · · · hL (x̄1)
h1 (x̄2) h2 (x̄2) · · · hL (x̄2)

...
...

. . .
...

h1 (x̄N ) h2 (x̄N ) · · · hL (x̄N )

⎤
⎥⎥⎥⎦

is the hidden-layer output matrix, hl (x̄n) = g (ᾱlx̄n + bl) is the output of the l-th
(l = 1, 2, · · · , L) hidden-layer node corresponding to the n-th training instance
x̄n, g (v) = 1

1+exp(−v) , v ∈ (−∞,+∞) is the sigmoid activation function,

α =
[
ᾱ1 ᾱ2 · · · ᾱL

]
=

⎡
⎢⎢⎢⎣

α11 α21 · · · αL1

α12 α22 · · · αL2

...
...

. . .
...

α1D α2D · · · αLD

⎤
⎥⎥⎥⎦

are the input-layer weights, b̄ =
[
b1 b2 · · · bL

]T are the hidden-layer biases, L is
the number of hidden-layer nodes, and C > 0 is the regularization factor.

UnWELM doesn’t consider the class distribution of imbalanced data set
when determining the output-layer weights β. In order to improve the predictive
capability of UnWELM on the minority class instances, Zong et al. proposed a
weighted ELM (WELM) algorithm [21] by modifying the constrained optimiza-
tion problem Eq. (2) of UnWELM as

Minimize : LUnWELM = 1
2‖β‖2 + C

2

N∑
n=1

wnn

∥∥ξ̄n
∥∥2

Subjectto : ξ̄n = ȳn − h (x̄n) β, n = 1, 2, · · · , N
, (3)

where,

wnn =

{
1

NMaj
, if x̄n belongs to the majority class

1
NMin

, if x̄n belongs to the minority class
(4)

is the weight factor corresponding to the n-th training instance x̄n. By solving the
optimization problem Eq. (3), the output-layer weights of WELM are calculated
as

βWELM =

{
HT

(
I
C + WHHT

)−1
WY, if N < L(

I
C + HTWH

)−1
HTWY, if N ≥ L

, (5)

where, W = diag (w11, w22, · · · , wNN ) is a N × N diagonal weight matrix. The
experimental results [21] demonstrate that WELM indeed obtains the better
predictive performance on the minority class instances than UnWELM by weak-
ening the impact of majority class instances and meanwhile strengthening the
impact of minority class instances.
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3 Self-adaptive Weighted Extreme Learning Machine
(SawELM)

Before our imbalanced classification model is provided, we briefly analyze the
main reason why WELM improve the predictive performance of UnWELM. For
βWELM as shown in Eq. (5), we further extend it and then derive the following
formula as

βWELM =
(

I
C

+ HTWH
)−1

HTWY =
(

I
C

+ HT
√

W
√

WH
)−1

HT
√

W
√

WY

=
[

I
C

+
(√

WH
)T (√

WH
)]−1(√

WH
)T (√

WY
)

(6)
for N ≥ L, where

√
W = diag

(√
w11,

√
w22, · · · ,

√
wNN

)
. By comparing βWELM

in Eq. (6) with βUnWELM in Eq. (1), we can find that the main difference between
WELM and UnWELM is that WELM uses the weight matrix

√
W to weight the

hidden-layer output matrix H and the data output matrix Y, i.e.,

√
WH =

⎡
⎢⎢⎢⎣

√
w11h1 (x̄1)

√
w11h2 (x̄1) · · · √

w11hL (x̄1)√
w22h1 (x̄2)

√
w22h2 (x̄2) · · · √

w22hL (x̄2)
...

...
. . .

...√
wNNh1 (x̄N )

√
wNNh2 (x̄N ) · · · √

wNNhL (x̄N )

⎤
⎥⎥⎥⎦ (7)

and

√
WY =

⎡
⎢⎢⎢⎣

√
w11y11

√
w11y12√

w22y21
√

w22y22
...

...√
wNNyN1

√
wNNyN2

⎤
⎥⎥⎥⎦ . (8)

By weighting the hidden-layer output matrix H and the data output matrix
Y, WELM moves the classification boundary towards the majority class [21]
and thus increases the probability of correctly classifying the minority class
instances. WELM improves the predictive performance of UnWELM on the
imbalanced data set by assigning the smaller weights for majority class instances
and the larger weights for minority class instances. However, there is still room
to improve the imbalanced classification capability of WELM. The instances
belonging to the same class are treated equally in WELM, i.e., the same weights
are assigned to the different instances in the same class. This weighting scheme
can’t effectively deal with the imbalanced class distribution as shown in Fig. 1(a).
Although WELM makes the classification boundary move towards the majority
class, WELM can’t correctly classify the minority class instance x̄min (Fig. 1(b)).
This section gives an improved version of WELM to further enhance the imbal-
anced classification capability of WELM. The improved WELM as summarized
in Algorithm 1 is called the self-adaptive weighted extreme learning machine
(SawELM).
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Fig. 1. The classification boundaries of UnWELM and WELM. For simplicity we use
the straight lines to represent the classification boundaries which may be curves for
the true data sets.

Algorithm 1. SawWLM
1: Input: The imbalanced binary-class data set D(0); the random input-layer weights

α and hidden-layer biases b̄ selected from [0, 1]; the number L of hidden-layer nodes;
the regularization factor C.

2: Output: The output-layer weights βSawELM of SawELM.
3: Use the original training data set D(0) and weight matrix W(0) as shown in Eq. (4)

to train the initial WELM model WELM(0);
4: Calculate the output-layer weight matrix β

(0)
WELM according to Eq. (5);

5: Use the training data set D(0) to evaluate the G-mean value G(0) of WELM(0);
6: k = 0;
7: repeat
8: Find the instances x̄

(k)
1 , x̄

(k)
2 , · · · , x̄

(k)

N(k) which are wrongly classified by WELM(k);

9: for i = 1 to N (k) do
10: Adjust the weight of wrongly-classified instance x̄

(k)
i :

w
(
x̄
(k)
i

)
=

{
1

NMaj+(k+1)
, if x̄

(k)
i belongs to the majority class

1
NMin+(k+1)

, if x̄
(k)
i belongs to the minority class

; (9)

11: Update the output of wrongly-classified instance x̄
(k)
i :

ȳ
(k)
i =

{
(1 + (k + 1) , 0) , if x̄

(k)
i belongs to the majority class

(0, 1 + (k + 1)) , if x̄
(k)
i belongs to the minority class

; (10)

12: end for
13: k = k + 1;
14: Use the updated training data set D(k) and the adjusted weight matrix W(k) to

train the WELM model WELM(k);
15: Calculate the output-layer weight matrix β

(k)
WELM according to Eq. (5);

16: Use the training data set D(k) to evaluate the G-mean value G(k) of WELM(k);

17: until
{

G(k) < G(k−1)
}

18: WELM(k−1) with the output-layer weight matrix β
(k−1)
WELM is the trained SawELM

of which the output-layer weights βSawELM =β
(k−1)
WELM.
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From Algorithm 1 we can find that there are two key modules in SawELM: one
is to gradually adjust the weights of wrongly-classified instances and the other
is to dynamically update the outputs of these wrongly-classified instances. The
first module of SawELM as shown in Eq. (9) weakens the impact of wrongly-
classified instances on the calculation of the output-layer weights. The second
module as shown in Eq. (10) instructs SaWELM to adjust the output-layer weights
in order that the appropriate predictions for the wrongly-classified instances can
be obtained. We provide an example to show the feasibility of SawELM, i.e., the
predictive output of WELM can be changed when WELM is improved accord-
ing to Algorithm 1. Assume that there is an imbalanced data set which includes 2
minority class instances and 6 majority class instances. Let C = 210 and L = 10
for WELM and SawELM which have the same hidden-layer output matrix, i.e.,

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h1

h2

h3

h4

h5

h6

h7

h8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0174 0.0170 0.0158 0.0158 0.0169 0.0165 0.0168 0.0160 0.0178 0.0178

0.0168 0.0173 0.0157 0.0172 0.0163 0.0173 0.0155 0.0175 0.0150 0.0164

0.0180 0.0186 0.0182 0.0170 0.0182 0.0185 0.0195 0.0182 0.0181 0.0176

0.0197 0.0196 0.0180 0.0190 0.0187 0.0182 0.0183 0.0183 0.0185 0.0173

0.0179 0.0189 0.0191 0.0193 0.0187 0.0195 0.0199 0.0193 0.0198 0.0193

0.0193 0.0194 0.0171 0.0170 0.0190 0.0173 0.0194 0.0174 0.0171 0.0197

0.0197 0.0191 0.0190 0.0179 0.0190 0.0171 0.0190 0.0191 0.0195 0.0177

0.0198 0.0191 0.0196 0.0181 0.0196 0.0199 0.0190 0.0171 0.0188 0.0190

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The data output matrices of WELM and SawELM after five-times iterations are

YWELM =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1
0 1
1 0
1 0
1 0
1 0
1 0
1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and YSawELM =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 + 5
0 1
1 0
1 0
1 0
1 0
1 0
1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The weight matrices of WELM and SawELM are

WWELM = diag

(
1

2
,
1

2
,
1

6
,
1

6
,
1

6
,
1

6
,
1

6
,
1

6

)
and WSawELM = diag

(
1

2 + 5
,
1

2
,
1

6
,
1

6
,
1

6
,
1

6
,
1

6
,
1

6

)
.

Then, the predictive outputs of the firstminority class instance can be calculated as

yWELM = (0.4331, 0.3867) and ySawELM = (0.5038, 0.6133).

We can see that SawELM (0.5038 < 0.6133) predicts the correct class for the first
minority class instance which is wrongly classified by WELM (0.4331 > 0.3867).

4 Experimental Validation

In this section we select 50 KEEL [1,2] imbalanced binary-class data sets as
shown in Table 1 to demonstrate the feasibility and effectiveness of SawELM. In
Table 1 IR means the imbalanced ratio (IR) of data set, i.e., IR = NMaj

NMin
. We

compare the testing G-mean, testing F-measure, testing accuracy, and training
time of SawELM with UnWELM [9] and WELM [21]. Each data set is randomly
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Table 1. 50 KEEL [1,2] imbalanced binary-class data sets

No Data set Attributes

(D)

Instances

(N)

Majority class

(NMaj)

Minority class

(NMin)

IR (
NMaj
NMin

)

1 Ecoli-0-1-3-7-vs-2-6 7 281 274 7 39.14

2 Ecoli-0-1-4-6-vs-5 6 280 260 20 13

3 Ecoli-0-1-4-7-vs-2-3-5-6 7 336 307 29 10.59

4 Ecoli-0-1-4-7-vs-5-6 6 332 307 25 12.28

5 Ecoli-0-2-3-4-vs-5 7 202 182 20 9.1

6 Ecoli-0-2-6-7-vs-3-5 7 224 202 22 9.18

7 Ecoli-0-3-4-6-vs-5 7 205 185 20 9.25

8 Ecoli-0-3-4-7-vs-5-6 7 257 232 25 9.28

9 Ecoli-0-3-4-vs-5 7 200 180 20 9

10 Ecoli-0-4-6-vs-5 6 203 183 20 9.15

11 Ecoli-0-6-7-vs-5 6 220 200 20 10

12 Ecoli3 7 336 301 35 8.6

13 Glass-0-1-2-3-vs-4-5-6 9 214 163 51 3.2

14 Glass-0-1-4-6-vs-2 9 205 188 17 11.06

15 Glass-0-1-5-vs-2 9 172 155 17 9.12

16 Glass-0-1-6-vs-2 9 192 175 17 10.29

17 Glass0 9 214 144 70 2.06

18 Glass1 9 214 138 76 1.82

19 Glass2 9 214 197 17 11.59

20 Glass4 9 214 201 13 15.46

21 Glass5 9 214 205 9 22.78

22 Glass6 9 214 185 29 6.38

23 New-thyroid1 5 215 180 35 5.14

24 Page-blocks-1-3-vs-4 10 472 444 28 15.86

25 Page-blocks0 10 5472 4913 559 8.79

26 Pima 8 768 500 268 1.87

27 Poker-8-vs-6 10 1477 1460 17 85.88

28 Segment0 19 2308 1979 329 6.02

29 Shuttle-2-vs-5 9 3316 3267 49 66.67

30 Vehicle0 18 846 647 199 3.25

31 Vehicle1 18 846 629 217 2.9

32 Vehicle3 18 846 634 212 2.99

33 Winequality-red-3-vs-5 11 691 681 10 68.1

34 Winequality-red-4 11 1599 1546 53 29.17

35 Winequality-red-8-vs-6-7 11 855 837 18 46.5

36 Winequality-red-8-vs-6 11 656 638 18 35.44

37 Winequality-white-3-9-vs-5 11 1482 1457 25 58.28

38 Winequality-white-3-vs-7 11 900 880 20 44

39 Yeast-0-2-5-6-vs-3-7-8-9 8 1004 905 99 9.14

40 Yeast-0-2-5-7-9-vs-3-6-8 8 1004 905 99 9.14

41 Yeast-0-3-5-9-vs-7-8 8 506 456 50 9.12

42 Yeast-0-5-6-7-9-vs-4 8 528 477 51 9.35

43 Yeast-1-2-8-9-vs-7 8 947 917 30 30.57

44 Yeast-1-4-5-8-vs-7 8 693 663 30 22.1

45 Yeast-1-vs-7 7 459 429 30 14.3

46 Yeast-2-vs-4 8 514 463 51 9.08

47 Yeast-2-vs-8 8 482 462 20 23.1

48 Yeast4 8 1484 1433 51 28.1

49 Yeast5 8 1484 1440 44 32.73

50 Yeast6 8 1484 1449 35 41.4
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divided into two parts: 70% of instances are used as training data and the other
30% are testing data. The whole data, training data, and testing data have
the approximately equal class distribution. We use the training data to train
the different ELM models and use the testing data to test their G-means, F-
measures, and accuracies. This procedure is repeated 10 times and the means of
10-times runs are used as the final experimental results.

G-mean, F-measure, and accuracy are three commonly-used evaluation met-
rics to check the predictive performance of an imbalanced classification algorithm
A. Assume that there are N instances in the testing data set which includes
NMaj majority class instances and NMin minority class instances. For the algo-
rithm A, the numbers of correctly-classified majority class instances, correctly-
classified minority class instances, wrongly-classified majority class instances,
and wrongly-classified minority class instances are TP , TN , FN , and FP ,
respectively. Then, G-mean, F-measure, and accuracy of A are calculated as

G-mean =

√
TP

TP + FN
× TN

TN + FP
; (11)

F-measure =
2TP

2TP + FN + FP
; (12)

and
Accuracy =

TP + TN

N
. (13)

We select 2 different parameter pairs (C,L) =
(
220, 200

)
and (C,L) =(

220, 500
)

to compare the testing G-mean, testing F-measure, testing accuracy,
and training time of SawELM with UnWELM [9] and WELM [21]. The com-
parative results are summarized in Tables 2 and 3. From these tables we can
clearly find that (1) the testing G-means and F-measures of SawELM are better
than UnWELM and WELM and (2) the testing accuracy of SawELM is better
than WELM. For example, when (C,L) =

(
220, 200

)
, the testing G-means of

SawELM on Ecoli-0-3-4-7-vs-5-6 and Glass-0-1-4-6-vs-2 data sets are 0.989 and
0.945, while the testing G-means of WELM on these two data sets are 0.931 and
0.914 which are obviously smaller than SawELM; when (C,L) =

(
220, 500

)
, the

testing F-measures of SawELM on Ecoli-0-6-7-vs-5 and Yeast-1-2-8-9-vs-7 data
sets are 0.986 and 0.865, while the testing F-measures of WELM on these two
data sets are 0.926 and 0.807. The main reason that SawELM obtains the higher
testing G-mean and testing F-measure is that SawELM increases the number of
minority class instances which are correctly classified or reduces the number of
minority class instances which are wrongly classified. Assume that G-meanWELM

and G-meanSawELM are the testing G-means of WELM and SawELM on a given
data set, where

G-meanWELM =
√

TP

TP + FN
× TNWELM

TNWELM + FPWELM

and

G-meanSawELM =
√

TP

TP + FN
× TNSawELM

TNSawELM + FPSawELM
.
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If TNWELM < TNSawELM, we can get G-meanWELM < G-meanSawELMs. Let
G-meanWELM and F-measureSawELM denote the testing F-measures of WELM
and SawELM, where

F-measureWELM =
2TP

2TP + FN + FPWELM

and
F-measureSawELM =

2TP

2TP + FN + FPSawELM
.

If FPWELM > FPSawELM, we can derive F-measureWELM < F-measureSawELM.
In addition, Tables 2 and 3 show that the training time of SawELM is higher
than UnWELM and WELM. This is because SawELM requires the necessary
iterations to adjust the instance weights and update the instance outputs.

5 Conclusions and Further Works

In this paper, we proposed an improved version of weighted extreme learning
machine (WELM), i.e., self-adaptive WELM (SawELM) which further enhanced
the imbalanced classification capability of WELM by gradually reducing the
weights of wrongly-classified training instances and dynamically updating the
outputs of wrongly-classified instances. The final experiments demonstrated that
SawELM obtained the obviously better testing G-mean, testing F-measure, and
testing accuracy than WELM. Our future works include the following two topics.
Firstly, we will try to improve the stability of SawELM with Gaussian process
regression. Secondly, we will extend SawELM into the scenario of imbalanced
multi-class classification problems.
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Abstract. This paper proposes a new method for estimating the word
probabilities in latent Dirichlet allocation (LDA). LDA uses a Dirichlet
distribution as the prior for the per-document topic discrete distribu-
tions. While another Dirichlet prior can be introduced for the per-topic
word discrete distributions, point estimations may lead to a better eval-
uation result, e.g. in terms of test perplexity. This paper proposes a
method for the point estimation of the per-topic word probabilities in
LDA by using multilayer perceptron (MLP). Our point estimation is
performed in an online manner by mini-batch gradient ascent. We com-
pared our method to the baseline method using a perceptron with no
hidden layers and also to the collapsed Gibbs sampling (CGS). The eval-
uation experiment showed that the test perplexity of CGS could not be
improved in almost all cases. However, there certainly were situations
where our method achieved a better perplexity than the baseline. We
also discuss a usage of our method as word embedding.

1 Introduction

Topic modeling [3,6] is widely used for obtaining a lower-dimensional represen-
tation of documents and has many interdisciplinary applications [4,7,9]. Intu-
itively, topic models are proposed based on the observation that we use different
sets of vocabulary for talking about different things. The bag-of-words model
represents documents as vectors of dimension V , where V is the number of dif-
ferent words appearing in the corpus. By using latent Dirichlet allocation (LDA)
[3], the best known topic model, we can reduce the dimension of the document
representation space from V to K, where K is the number of latent topics. This
reduction is achieved by representing each document as a mixture of K latent
topics, where the mixture proportions give a lower-dimensional representation
of each document. Each of the K latent topics is, in turn, modeled as a discrete
distribution defined over words. Therefore, we can make a word list by picking
up the words having large probabilities in each of the K word probability dis-
tributions. Such word lists may give useful and intuitive hints on what kind of
things are talked about in the given corpus (cf. Fig. 1).

This paper proposes a new method for estimating the parameters of the per-
topic word discrete distributions in LDA. LDA uses a Dirichlet distribution as
the prior distribution for the per-document topic discrete distributions. This is
c© Springer International Publishing AG 2017
U Kang et al. (Eds.): PAKDD 2017 Workshops, LNAI 10526, pp. 129–137, 2017.
DOI: 10.1007/978-3-319-67274-8 12
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Fig. 1. Word lists obtained by our method from the MEDLINE data set (top) and
from the Stack Overflow data set (bottom). Each list corresponds to a different topic.

the reason why the method is called “latent Dirichlet” allocation. We can also
introduce another Dirichlet prior for the per-topic word discrete distributions.
However, point estimations may lead to a better evaluation result, e.g. in terms
of test perplexity. In fact, the original paper [3] performs a point estimation for
the per-topic word probabilities. Our method also performs a point estimation
of the per-topic word probabilities. The estimation is implemented as an online
one by mini-batch gradient ascent. The main contribution of this paper is to
modify the online inference for LDA [8] by using multilayer perceptron (MLP)
toward a better point estimation of the per-topic word probabilities.

The input layer of MLP used by our method consists of K nodes. The input
vector is a K-dimensional one-hot vector representing one among the K topics.
The output layer consists of V nodes. The output vector is converted into a
word probability distribution with the softmax function. We only consider MLP
with a single hidden layer of size M . The input and the hidden layers are fully
connected, and the hidden and the output layers are also fully connected. The
baseline method for the comparison experiment uses the perceptron having no
hidden layers. The experimental results showed that there certainly were situ-
ations where the proposed method achieved a better test perplexity than the
baseline. We also compared our method to the collapsed Gibbs sampling (CGS)
for LDA [6]. Our method could not improve CGS for almost all cases. However,
the online inference has an advantage in memory consumption when compared
to CGS.

Additionally, it will be discussed that our method may work as a word
embedding, which is what the vanilla LDA cannot achieve. The network weights
between the hidden and the output layers can be regarded as the coordinates
of the M -dimensional word embedding. This embedding is corpus-wide, where
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M can be chosen regardless of K. We will show an example of the similar word
pairs obtained by computing the Euclidean distance in the embedding space.

2 Related Work

Miao et al. [11] have proposed a document model called neural variational doc-
ument model (NVDM). NVDM uses a neural network to encode each document
as a lower-dimensional latent vector, whose entries are the parameters of the
diagonal multivariate normal distribution. Then the decoder network converts
samples from the normal distribution into word probability distributions. NVDM
greatly improves LDA in terms of test perplexity. However, the per-document
latent vectors have no intuitive interpretation. In contrast, the per-document
topic probabilities in LDA can be interpreted as the relevance of the topics in
each document. Further, NVDM gives as many word probability distributions
as documents. In contrast, LDA provides a fixed number of word probability
distributions, each of which corresponds to a distinct latent topic. Therefore,
those word probability distributions can be regarded as an intuitive summary of
the corpus (cf. Fig. 1). We only modify the estimation method of the per-topic
word probabilities in LDA. Therefore, the results given by our method are as
easy to interpret as those given by LDA.

Srivastava et al. [14] have proposed a method to use neural networks in the
inference for topic models. Their method, named ProdLDA, follows the proposal
of Kingma et al. [10] and adopts the reparameterization trick for the variational
posterior distribution, whose parameters are the outputs of a feedforward neural
network. The expectation appearing in the lower bound of the log evidence is
estimated by using the samples from the approximate posterior. On the other
hand, our method performs the original variational Bayesian inference described
in [3] and only modifies the way the per-topic word probabilities are estimated.
Therefore, an additional complication for the estimation of the word probabilities
introduced by ProdLDA is not required for our method.

3 Method

3.1 Latent Dirichlet Allocation

Let D denote the number of documents and Nd the length, i.e., the number
of word tokens, of the dth document. Let V be the vocabulary size, i.e., the
number of different words. We write the event that the ith word token of the
dth document is the vth word as xd,i = v. The xd,is are observable variables. Let
K be the number of topics. For each word token xd,i, we have a latent variable
zd,i giving its topic assignment. We write the event that the ith word token
of the dth document is assigned to the kth topic as zd,i = k. Latent Dirichlet
allocation (LDA) [3] generates a corpus as below.
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1. For d = 1, . . . , D, draw a per-document topic probability distribution θd =
(θd,1, . . . , θd,K) from the Dirichlet prior distribution Dirichlet(α). θd,k is the
probability that the word tokens of the dth document are assigned to the kth
topic. In this paper, we only consider the symmetric Dirichlet prior.
(a) For i = 1, . . . , Nd, draw a topic from the per-document topic discrete

distribution Discrete(θd) and set the value of zd,i to the drawn topic.
(b) For i = 1, . . . , Nd, draw a word from the word discrete distribution

Discrete(φzd,i
) corresponding to the drawn topic zd,i and set the value

of xd,i to the drawn word. Here, φk = (φk,1, . . . , φk,V ) denotes the para-
meter of the word discrete distribution for the kth topic. That is, φk,v

denotes the probability of the vth word in the kth topic.

It can be said that LDA gives a clustering of the word tokens based on their topic
assignments. The latent variable zd,i tells to which topic the ith word token of
the dth document is assigned. The word tokens assigned to the same topic are
expected to express a similar topic in the ordinary sense of this word.

In this paper, we adopt the variational Bayesian inference for the estimation
of the posterior parameters of LDA. We obtain a lower bound of the log evidence
of the dth document as below [3].

log p(xd;α,Φ) ≥
Nd∑

i=1

K∑

k=1

γd,i,k log φk,xd,i

+
K∑

k=1

(
α +

Nd∑

i=1

γd,i,k − ηd,k

){
Ψ(ηd,k) − Ψ

( K∑

k′=1

ηd,k′
)}

−
Nd∑

i=1

K∑

k=1

γd,i,k log γd,i,k + log Γ (Kα) − K log Γ (α) (1)

The parameters are estimated by maximizing the lower bound in Eq. (1).
γd,i,k is the variational approximate probability that the ith word token of the
dth document is assigned to the kth topic, satisfying

∑K
k=1 γd,i,k = 1. The ηd,ks

are the parameters of the variational Dirichlet posterior for the per-document
topic discrete distributions. By differentiating the lower bound in Eq. (1) with
respect to ηd,k and γd,i,k, we obtain the formulas ηd,k ← α +

∑Nd

i=1 γd,i,k and
γd,i,k ←∝ φk,xd,i

× exp{Ψ(ηd,k)}
exp{Ψ(

∑
k ηd,k)} for the coordinate ascent update.

3.2 Online Estimation of Word Probabilities with MLP

We propose a new method for updating the per-topic word probabilities φk

for k = 1, . . . ,K in Eq. (1). Our method obtains each φk by using multilayer
perceptron (MLP). The input layer consists of K nodes, where the one-hot input
vector whose kth entry is 1 corresponds to the kth latent topic. Therefore, we
only have K different inputs and thus only have K different outputs, which are
in turn converted into the per-topic word probability distributions. We denote
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the V -dimensional output vector for the kth topic as yk = (yk,1, . . . , yk,V ). The
parameter φk,v is obtained by applying the softmax function to the output, i.e.,
φk,v = exp(yk,v)∑

v′ exp(yk,v′ ) . Only the first term of the lower bound in Eq. (1) contains
the φk,vs. Therefore, we can point-estimate them by maximizing the term.

In this paper, we only consider MLP with a single hidden layer. Let M be
the number of hidden layer nodes. The input and the hidden layers are fully
connected. We denote the bias of the mth hidden node and the weight between
the mth hidden node and the kth input node as um,0 and um,k, respectively.
The hidden and the output layers are also fully connected. We denote the bias
of the vth output node and the weight between the vth output node and the mth
hidden node as wv,0 and wv,m, respectively. The ReLU [13] activation function
σ(·) is applied to the hidden layer. Since we use the one-hot input vectors,
yk,v =

∑M
m=1 wv,mσ(um,k + um,0) + wv,0 holds. Let σ(um,k + um,0) be denoted

as tm,k. Then yk,v =
∑M

m=0 wv,mtm,k = wv · tk, where we assume that t0,k ≡ 1.
We can take the equation yk,v = wv · tk as a factorization under the non-

negativity constraint for one among the two factors, because the ReLU is non-
negative. This factorization is performed not for the dimensionality reduction
but for the embedding. The vector wv can be regarded as an embedding of the
vth word in the (M + 1)-dimensional space, where M can be chosen regardless
of K. As will be discussed later, wv can be used for finding similar words.

We compare our method to the baseline, which is the point estimation using
the perceptron with no hidden layers. The baseline method also applies the
softmax function for obtaining the word probabilities, i.e., φk,v = exp(yk,v)∑

v′ exp(yk,v′ ) .
Since the input vector is a K-dimensional one-hot vector, the baseline method
is equivalent to the direct estimation of the φk,vs by maximizing the first term
of the lower bound in Eq. (1). This estimation by the baseline is also performed
in an online manner by mini-batch gradient ascent.

We further compare our method to the collapsed Gibbs sampling (CGS) for
LDA [6]. Since CGS is a sampling from the posterior, it is likely to achieve a
better evaluation result when compared to the variational Bayesian inference,
where an approximation is introduced. However, the variational inference for
LDA can easily be performed in an online manner by mini-batch gradient ascent.
In contrast, CGS is difficult to operate with a small amount of memory.

4 Experiment

We prepared two corpora for the comparison experiment. The one is a subset of
the MEDLINE/PubMed data set1. We used the paper abstracts of length less
than or equal to 512 contained in the XML files from medline14n0770.xml to
medline14n0774.xml of the annual baseline in 2015. The other is a subset of
the questions in the Stack Overflow data set2 We used the questions of length
less than or equal to 256. For both data sets, we reduced the vocabulary size
1 https://www.nlm.nih.gov/databases/download/pubmed medline.html.
2 https://www.kaggle.com/stackoverflow/rquestions.

https://www.nlm.nih.gov/databases/download/pubmed_medline.html
https://www.kaggle.com/stackoverflow/rquestions
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Table 1. Specifications of the two document sets used in our evaluation.

# documents # different words # training (test) word tokens

MEDLINE 64,731 9,166 6,405,672 (637,878)

Stack Overflow 142,850 7,958 9,522,510 (956,410)

by discarding highly-frequent and rare words after converting all words to lower
case. The specifications of the two data sets are given in Table 1.

The online parameter estimation by the baseline and our proposed method
was performed on mini-batches of size 200. Smaller mini-batches could not
improve the results. Adagrad [5] was adopted for the gradient-based optimiza-
tion, where the learning rate ρ was grid-searched. The dropout [15] was applied to
the hidden layer of our method with a probability of 0.5. Further, the layer nor-
malization [2] was applied to the hidden layer. Randomly chosen 90% documents
were used for training, and the rest 10% documents were used for computing the
test perplexity. We compared the methods in terms of test perplexity, because
this is an evaluation measure often used for comparing topic models [1,3].

The results are summarized in Table 2. The following three settings were
applied for the number of topics: K = 64, 128, and 192. The test perplexities of
CGS in Table 2 were obtained by iterating through the training set 3,000 times.
We used a grid search with respect to the symmetric Dirichlet hyperparameters
α and β [1] for CGS. The test perplexities of the baseline and our method in
Table 2 were obtained by looping over the training set 100 times. We set the
symmetric Dirichlet parameter α to 0.01 for the baseline and our method.

We implemented the baseline and our method in C/CUDA and ran both
methods on NVIDIA GTX970 or GTX1060. Due to a computational resource
limitation, we could only test a limited number of settings for the learning rate
ρ. The hidden layer size M was set to 512 for all cases. The walk-clock time
measured on the MEDLINE data set was around 11 h for CGS when K = 128,
around 21 h for the baseline when K = 128, and around 75 h for our method
when K = 128 and M = 512. However, the running time of the baseline and our
method heavily depends on the performance of GPU.

Table 2. Evaluation results in terms of test perplexity

Data set (K) CGS Baseline (ρ) Our method (M , ρ)

MEDLINE (64) 1314.457 1518.995 (0.3) 1500.525 (512, 0.03)

MEDLINE (128) 1077.015 1220.686 (1.0) 1224.791 (512, 0.02)

MEDLINE (192) 944.458 1059.218 (1.1) 1086.717 (512, 0.015)

Stack Overflow (64) 747.367 841.072 (0.7) 833.437 (512, 0.02)

Stack Overflow (128) 600.194 617.725 (0.8) 622.930 (512, 0.02)

Stack Overflow (192) 523.030 508.241 (0.9) 502.985 (512, 0.02)
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Fig. 2. The above two charts show how the test perplexity decreased as learning pro-
ceeded when K = 128 for the MEDLINE data. The same evaluation data are depicted
in both panels. But a different unit is used for the horizontal axis. The vertical axis
gives the test perplexity in both panels. The horizontal axis in the left panel gives the
number of seen mini-batches, and that of the right panel gives the wall clock time. Our
method could decrease the test perplexity more rapidly at earlier iterations.

Table 2 shows that the perplexity of CGS was improved only in a single case,
i.e., K = 192 for the Stack Overflow data set. The online variational Bayesian
inference seems to work better for a larger number of topics. The underline
in Table 2 shows which was the better between the baseline and our method.
Our method improved the baseline for three cases among six. Therefore, there
certainly were situations where our method achieved a better test perplexity
than the baseline. If a better estimation of the word probabilities, even if only
slightly better, is required, our method can be adopted as an alternative. The
words of large probability obtained by our method are presented as word clouds3

in Fig. 1, where an intuitive display of each topic as a word list can be found.
Figure 2 presents how the test perplexity decreased as learning proceeded

when K = 128 for the MEDLINE data set. The same evaluation data in terms
of test perplexity are depicted in both of the left and the right panels. However,
a different unit is used for the horizontal axis. The horizontal axis of the chart
on the left panel gives the number of seen mini-batches, and that of the chart on
the right gives the wall clock time. Large drops observable in both charts were
brought about by a scheduled modification of the learning rate ρ. The chart on
the left shows that our method could achieve the same test perplexity with a
smaller number of mini-batches at earlier iterations. Further, the chart on the
right shows that our method gave a smaller perplexity before the first large
drop occurred for the baseline even when the methods were compared in the
real time scale. While the final test perplexity given by our method showed no
large discrepancy from that of the baseline, Fig. 2 provides an advantage of our
method, i.e., a rapid decrease of the test perplexity at earlier iterations.

Our method provides a vector wv for each word, which can be regarded as
an embedding of the vth word in the (M + 1)-dimensional space. As long as M
is chosen so that the test perplexity is not severely degraded from that of the

3 https://github.com/amueller/word cloud.

https://github.com/amueller/word_cloud
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Table 3. The most similar word found by the baseline and our method.

target word the most similar word
baseline our method

amount total total
axis labels labels

batch rscript rscript
click button button
daily monthly monthly
height width width
predict models models
white black black
x-axis y-axis y-axis

target word the most similar word
baseline our method

advice appreciate suggestion
bottom position top
bytes kb mb

converting convert converted
datetime posixct timestamp

environment calls global
female gender male
integers integer non-numeric

json location xml
negative operator positive
python array print
slow speed faster

standard statistics means

baseline, our method can offer this word embedding as a bonus. Also for the
baseline, the vector y·,v = (y1,v, . . . , yK,v) can be regarded as an embedding of
the vth word. However, its dimension is equal to K, i.e., the number of latent
topics. We checked if the vectors obtained in this manner could be used for
finding similar words. In Table 3, the most similar word found by the baseline
and our method in terms of Euclidean distance in the embedding space is put
on the right hand side of each target word. This result was obtained from the
Stack Overflow data set when K = 128 and M = 512. The baseline and our
method sometimes give the same most similar word as shown in the left panel.
However, in many cases, the two methods provide different words as shown in the
right panel. It should be noted that the dimension M of the embedding achieved
by our method can be chosen regardless of K. In contrast, the dimension of the
embedding achieved by the baseline is K, i.e., the number of latent topics in LDA.
Therefore, it can be said that our method provides an alternative representation
of the words away from the latent topics of LDA. Both methods were not so
much effective to realize the word-vector arithmetic [12]. It may be required to
introduce a mechanism to learn from the word sequence context, which is beyond
the scope of this paper.

5 Conclusion

We proposed a new method for estimating the parameters of the per-topic word
discrete distributions in LDA by using MLP. The estimation is performed in an
online manner by mini-batch gradient ascent. The experimental results showed
that there certainly were situations where the proposed method achieved a better
test perplexity than the baseline. While the perplexity of CGS could not be
improved for many cases, it is an important feature of the baseline and our
method to perform the estimation in an online manner. This feature leads to the
reduction of the memory consumption.
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The improvement when compared to the baseline may be achieved by the
factorization yk,v = wv · tk. This factorization also gives an (M +1)-dimensional
non-negative vector tk for each topic in addition to the vector wv. It may also
be interesting as a future work to investigate whether this non-negative feature
vector obtained for each topic can be used in some text mining applications.
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Abstract. Finding frequent itemsets is a popular data mining problem,
aiming to extract hidden patterns from a transactional database. Sev-
eral bio-inspired approaches to solve this problem have been proposed
to overcome the poor performance of exact algorithms, such as Apriori
and FPGrowth. Approaches based on genetic algorithms are among the
most efficient ones from the point of view of runtime performance, but
they are still inefficient in terms of solution’s quality, i.e., the number
of frequent itemsets discovered. To deal with this issue, we propose in
this paper a new genetic algorithm for finding frequent itemsets called
GA-Apriori, in which the crossover and mutation operators are defined
by taking into account the Apriori heuristic principle. The results of our
evaluation show that GA-Apriori outperforms other approaches to fre-
quent itemset mining based on genetic algorithms, especially when deal-
ing with large instances. The experiments also show that GA-Apriori is
competitive with exact approaches in terms of the number of frequent
itemsets discovered.

Keywords: Frequent Itemsets Mining · Apriori heuristic · Genetic
algorithm

1 Introduction

Frequent Itemsets Mining (FIM) aims to extract frequent itemsets highly corre-
lated from a transactional database. The FIM problem is defined as follows: let
T be a set of transactions, {T1, T2, . . . , Tm}, representing a transactional data-
base, and I be a set of n different items or attributes {I1, I2, . . . , In}. An itemset
X is set of items, i.e., X ⊆ I. The support of an itemset X ⊆ I is the number
of transactions that contain X divided by the number of transactions in T . The
itemsets X is called frequent if its support is no less than a user’s predefined
threshold MinSup [1].

Several FIM algorithms have been proposed. Some of them, such as Apri-
ori [1] and FPGrowth [2], are exact, i.e., they generate all frequent itemsets in
a database. These algorithms are usually highly time consuming when dealing
c© Springer International Publishing AG 2017
U Kang et al. (Eds.): PAKDD 2017 Workshops, LNAI 10526, pp. 138–148, 2017.
DOI: 10.1007/978-3-319-67274-8 13
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with large database instances. To overcome this limitation, bio-inspired com-
putational techniques have been applied to FIM, such as genetic and memetic
algorithms [3], genetic programming [4,5], or swarm intelligence approaches, e.g.,
penguin swarm optimization [8], and bee swarm optimization [6,7]. These algo-
rithms perform in reasonable time, but they do not guarantee to find all possible
frequent itemsets in a database.

In this paper, we propose a new FIM approach based on genetic algorithms
called GA-Apriori. The development of GA-Apriori starts from GA-FIM, that is,
a FIM algorithm based on genetic algorithms adapted from Djenouri’s et al. [3]
genetic algorithm for association rule mining. GA-Apriori extends GA-FIM by
taking into account the Apriori heuristic for the definition of the mutation and
crossover operators.

GA-Apriori combines the Apriori heuristic with genetic algorithms devising
a mining process performed in k steps. For each step i, the crossover operator
allows to generate the itemsets of size i from the frequent itemsets of size (i−1),
while the mutation operator allows to find frequent itemsets from the itemsets
generated by the crossover operator.

To validate the performance and the quality of the suggested approach, inten-
sive experiments have been run on real data instances. The results show that
GA-Apriori outperforms GA-FIM in terms of the number of frequent itemsets
discovered. Moreover, it outperforms Apriori and FPGrowth algorithms in terms
of computational time. The results also reveal that GA-Apriori is competitive
compared to exact approaches, such as Apriori and FPGrowth, in respect of the
quality of solution, i.e., the number of frequent itemsets discovered.

The remainder of the paper is organized as follows: Sect. 2 reviews the existing
genetic approaches for solving the FIM problem. Sections 3 and 4 describe respec-
tively GA-FIM and the Apriori heuristic. GA-Apriori is presented in Sect. 5.
The performance evaluation is provided in Sect. 6, and finally, Sect. 7 draws the
conclusions.

2 Related Work

Solutions to the FIM problem can be divided into two categories, i.e., exact and
bio-inspired. Exact approaches aim to extract all frequent itemsets in a database.
Example of exact approaches are Apriori [1] and FPgrowth [2]. These algorithms
are highly time and memory consuming.

Bio-inspired approaches utilize computational techniques inspired by nature,
such as swarm intelligence (BSO [6], HBSO-TS [7], PeSOA [8]) or evolutionary
approaches (GAR [9] and GENAR [10]) to solve the FIM problem. Since this
paper focuses on applications of genetic algorithms to the FIM problem, in the
remainder of this section we concentrate on existing genetic algorithm-based
approaches to FIM.

The first two genetic algorithms for FIM proposed in the literature are
GENAR [10] and GAR [9]. Their main limit is the inefficient representation
of the individual solution. In [11], the authors propose an algorithm based on
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genetic algorithm called ARMGA. In [12], AGA, also based on genetic algo-
rithms, is developed for computing FIM. The two major differences between
classical ARMGA and AGA are the mutation and crossover operators. The algo-
rithm PQGMA is proposed by Liu for FIM in [13]. Mainly, the mining process
is performed by applying classical GA, while the mutation and the crossover
operations use simulated annealing and computing strategy principals, respec-
tively. However, the use of quantum computing in the mutation suffers from
diversification and therefore leads to premature convergence.

The approach proposed by [16] uses an adaptive mutation rate, which pro-
vides an important population variation. Nevertheless, the mutation probability
is computed at each iteration, thus increasing the computational time.

Romero et al. developed G3PARM based on genetic programming [15]. They
use the G3P (Grammar Guided Genetic Programming) to avoid generating
invalid individuals. Also G3PARM permits multiple variants of data by using a
context free grammar.

An interesting work providing a performance analysis of generic algorithm-
based approaches to FIM is [14]. The results reveal that GA-based algorithms
outperform the exact methods in terms of computational time. Nevertheless, GA-
based algorithms return only a limited number of frequent itemsets. This can
be explained by the fact that these algorithms explore the solutions space of the
itemsets using randomness and often ignoring the intrinsic properties of the FIM
problem. To deal with this issue, we propose in this paper, an improved genetic
algorithm for FIM problem that uses the Apriori heuristic in the generation
process. Before presenting our contribution, in the next two sections, we briefly
present the preliminaries of our work, that is, GA-FIM and the Apriori heuristic.

3 GA-FIM: Genetic Algorithm for FIM

In [3], the authors have proposed IARMGA, that is, a genetic algorithm-based
approach to solve the association rule mining problem. GA-FIM, which we
extend in this paper, is a straightforward adaptation of IARMGA to the FIM
problem. The remainder of this section briefly describes the GA-FIM algorithm.

The aim of GA-FIM is to find in a reasonable time one part of the fre-
quent itemsets in a database respecting the minimum support constraint. The
initial population of PopSize itemsets is first randomly generated considering
each itemset as a vector of n elements. The ith element is set to 1 if the ith item
belongs to an itemset, and to 0 otherwise. The crossover and the mutation oper-
ators are then applied. The crossover combines two itemsets in order to produce
two other itemsets (intensification), while the mutation operator flips one bit of
each generated itemset (diversification).

More in detail, the main operators of GA-FIM are defined as follows:

1. Crossover: The classical crossover is applied for each two itemsets selected
from the population. For instance if the parent itemsets are t1 = {0, 1, 0, 1, 1}
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and t2 = {1, 0, 0, 0, 1}, and the crossover point is 3, then two other itemsets
are generated, which are t3 = {0, 1, 0, 0, 1} and t4 = {1, 0, 0, 1, 1}.

2. Mutation: Similar to the crossover, the mutation is applied on each gener-
ated itemsets, as in the classical genetic algorithm. For instance, if we have the
two itemsets generated previously by the crossover operator, and the muta-
tion point is also 3, then, two new itemsets are produced: t5 = {0, 1, 1, 0, 1}
and t6 = {1, 0, 1, 1, 1}.

At the end of each iteration, the selection operation is performed to keep
only PopSize itemsets for the next iteration. The selection is executed using
the support of the given itemset as fitness function. This process (crossover,
mutation, selection) is repeated for a fixed maximum number of iterations. The
set of all frequent itemsets is the union of all frequents itemsets found.

4 Apriori Heuristic

The Apriori algorithm [1] is a well known exact FIM approach that finds all
frequent itemsets in a transactional database that satisfy a minimum support
user’s threshold MinSup. The goal of the Apriori heuristic is to reduce the search
space to find frequent itemsets by exploring recursively the candidate itemsets.
The principle is that an itemset of size k is frequent if and only if all its subsets
are frequents. Thus, at each iteration k, the candidates itemsets of size k are
generated by joining two frequent itemsets of size k − 1. This process should be
repeated until the candidate itemsets of length k is empty.

Let us consider the following example containing 5 transactions {T1:{a, b},
T2:{b, c, d}, T3:{a, b, c}, T4:{e}, T5:{c, d, e}}.

Figure 1 illustrates the results of Apriori using the set of transactions
described above and with minimum support equal to 40%. The transactional
database is first scanned to calculate the support of each candidate itemset of

Fig. 1. Apriori heuristic illustration
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size 1 (candidate itemset containing only one item). The frequent itemsets of
size 1 are then extracted. In this example, all candidates itemsets are frequent
because their supports are greater than 0.4. In the second iteration, the candi-
date itemsets of size 2 are extracted by joining the frequent itemsets of size 1.
The support of each candidates itemsets of size 2 is computed and then extract
the frequent itemsets of size 2, these two frequent itemsets are {ab, bc, cd}. We
join these two frequent itemsets obtaining the candidate itemsets {abc, abd, bcd}.
The support of these itemsets is less than 0.4, i.e., no new itemset is frequent,
so the process is stopped. The set of all frequent itemsets is the union of the
frequent itemsets of size 1 and size 2, that is, {a, b, c, d, e, ab, bc, cd}.

5 GA-Apriori: A Genetic FIM Approach Using the
Apriori Heuristic

The proposed GA-Apriori approach uses the Apriori heuristic to improve the
itemsets space exploration in GA-FIM. The aim is to use the Apriori heuristic
in designing the genetic algorithm operators for exploring only the frequent item-
sets. GA-Apriori adopts the overall process typical of FIM approaches inspired
by genetic algorithms. However, GA-Apriori’s operator differs from the classical
genetic algorithm in the way that the initialization, fitness computing, crossover,
mutation, and selection operators are defined. These are described in detail in
the following.

1. Population Initialization. The initial population is determined by choos-
ing PopSize frequent items. To do so, the frequent itemsets of size 1 are
computed and sorted according to the support constraint. Then, the first
PopSize frequent items are kept, the other frequent items are removed. For
instance, let us consider 5 items {a, b, c, d, e} with the following supports
{sup(a) = 0.5, sup(b) = 0.3, sup(c) = 0.6, sup(d) = 0.8, sup(e) = 0.2}. With
MinSup = 0.4, the following frequent items are determined: {a, c, d}, now if
the PopSize = 2 then, the initial population is constituted by (0, 0, 0, 1, 0)
to represent the item d and (0, 0, 1, 0, 0) to represent the item c.

2. Fitness Computing. The fitness of a given itemset t is equal to its support
if it reaches the minimum support constraint, otherwise it is equal to −1.
More formally, we have:

Fitness(t) =
{
support(t) if support(t) ≥ MinSup;
−1 Otherwise.

3. Crossover. The aim of crossover is to generate two candidate itemsets of size
k from two frequent itemsets of size (k− 1). Two parents are first selected from
a given population, then, to create new children, the following two crossover
constraints inspired by the Apriori heuristic are applied:

– All items of the first parent are copied to the first children, and all items
of the second parent are copied to the second children.
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– Choose one item e1 equal to 1 in the second parent which evaluates to
0 in the first parent and modify the value of e1 in the first child to 1.
Similarly, choose one item e2 equal to 1 in the first parent and to 0 in the
second parent and modify the value of e2 in the second child by one.

For instance, let us consider 5 items {a, b, c, d, e} and the two parents
Parent1 = {0, 0, 0, 1, 0}, representing the itemset (ab), and Parent2 =
{0, 0, 1, 0, 0}, representing the itemset (cd). If we choose e1 = c and e2 =
b then, the two children child1 and child2 are generated as child1 =
{1, 1, 1, 0, 0}, representing the itemset (abc), and child2 = {0, 1, 1, 1, 0}, rep-
resenting the itemset (bcd).

4. Mutation. The aim of mutation is to generate frequent itemsets of size k
from infrequent itemsets of the same size. For each generated itemset obtained
applying the crossover operator, if an infrequent itemset indiv of size k is found,
then, two items e1 equal to 1 and e2 equal to 0 in indiv are chosen. The values
of the chosen items is flipped, that is, item e1 is set to 0 and e2 is set to 1 in
indiv. This operation is repeated until an itemset of size k is found.
For instance, let us consider 5 items {a, b, c, d, e} and the itemset indiv =
{0, 0, 1, 1, 1}, representing the itemset (cde). If we choose e1 = c and e2 = a
then, indiv = {1, 0, 0, 1, 1}, which represents the itemset (ade). If this itemset
is frequent, then the process is stopped. Otherwise, the process is repeated
until a frequent itemset of size 3 is found.

5. Selection. The selection operator aims to select the best frequent itemsets gen-
erated by the crossover and the mutation operators. Indeed, the best PopSize
frequent itemsets are kept to be the new population of the next iteration.

The GA-Apriori algorithm is shown in Algorithm 1.
GA-Apriori requires as input a transactional database T for comput-

ing the support of the generated itemsets, and the minimum support value
MinSup to determine the frequent itemsets. It also requires two internal vectors
CurrentPopulation and NewPopulation to store the current population and
new population with their cost (i.e., their support). The algorithm returns the
set of all frequent itemsets F .

First, the frequent items of size 1 are determined using the function FindFre-
quentOneItemset(), which enumerates all items and then computes the support
of each item, extracting the frequent items. It then sorts the frequent items
according to their support. The first PopSize frequent items are assigned to the
CuurentPopulation. The latter is added to the set of frequent itemsets F .

Afterwards, the crossover operation is applied on each pair of parents in the
current population. The result of the crossover is added to the new population
NewPopulation.

The next step is to refine the new population using the mutation operator by
transforming the infrequent itemsets into frequent itemsets. The new population
NewPopulation modified by the mutation operator is added to the set of fre-
quent itemsets F . NewPopulation becomes the current population for the next
iteration using the selection procedure. The overall process is repeated until the
CurrentPopulation vector is empty.



144 Y. Djenouri and M. Comuzzi

Algorithm 1. GA-Apriori Algorithm
1: Input: T: Transactional database. MinSup: Minimum Support user’s threshold.
2: Output :F: The set of frequent Itemsets.
3: F ← ∅.
4: CurrentPopulation ← FindFrequentOneItemset().
5: while CurrentPopulation � ∈ ∅ do
6: F ← F ∪ CurrentPopulation.
7: NewPopulation ← ∅.
8: for each two individual (parent1, parent2)∈ CurrentPopulation do
9: NewPopulation ← NewPopulation ∪ Crossover(Parent1, Parent2).

10: end for
11: for each infrequent indiv ∈ NewPopulation do
12: while infrequent indiv do
13: Mutation(indiv)
14: end while
15: end for
16: F ← F ∪ NewPopulation.
17: CurrentPopulation ← Selection(NewPopulation).
18: end while
19: return F

6 Experimental Results

To validate GA-Apriori, intensive experiments have been carried out. Algorithms
have been implemented in C++ and experiments run on a desktop machine
equipped with Intel I3 processor and 4 GB memory. First, some experiments have
been run to tune the population’s size of GA-Apriori. Then, the performance of
GA-Apriori is compared to GAFIM and other exact approaches, i.e., Apriori
and FPGrowth, using real scientific databases frequently used for benchmarking
FIM research [17].

6.1 Parameter Setting for GA-Apriori

To set the population’s size, we have run a benchmark experiment using the
IBM-Quest database. Specifically, the population’s size is chosen by considering
the average support of the frequent itemsets discovered in respect of the runtime
required to discover frequent itemsets.

Figures 2 and 3 present, respectively, the average support of the frequent
itemsets and the runtime in seconds of the GA-Apriori approach using the IBM-
Quest instance containing 1000 transactions and 40 different items. By vary-
ing the population’s size from 10 to 100, the average support saturates at 40
individuals, whereas the runtime increases by enhancing the population’s size.
Consequently, the population’s size of GA-Apriori is set to 40 for the remainder
of the experimental evaluation.
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Fig. 2. The average supports of frequent itemsets found by GA-Apriori for different
number of iterations using IBM-Quest instance
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Fig. 3. Runtime (Sec) of GA-Apriori approach for different number of iterations using
IBM-Quest instance

6.2 Performance Analysis: GA-Apriori vs GA-FIM

Figures 4 shows the number of frequent itemsets found by GA-Apriori and GA-
FIM approaches for different instances. The population size of both approaches
is set to 40, and the minimum support is set to 10%. According to this figure,
we remark that GA-Apriori outperforms GA-FIM in terms of frequent itemsets
found for all instances used. Indeed, the number of frequent itemsets of GA-
Apriori exceeds 22000 when using the instance IBM-Artificial containing 100000
transactions and 999 items. However, the number of frequent itemsets of GA-
FIM does not reach 15000. These results are obtained thanks to the Apriori
heuristic used in the searching of frequent itemsets by the genetic algorithm in
GA-Apriori.
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Fig. 4. The number of frequent itemsets found by GA-Apriori and GAFIM approaches
for different used instances

6.3 GA-Apriori VS Exact-Based Approaches

Figures 5 and 6 present, respectively, the number of frequent itemsets and the
runtime in seconds of GA-Apriori compared to Apriori and FPGrowth using
different instances. The minimum support is set to 40% in all experiments. The
results show that GA-Apriori converges to the optimal solution found by Apriori
and FPGrowth in terms of the number of frequent itemsets found. Indeed, the
difference between our approach and the exact approaches does not exceed 100
frequent itemsets in all data instances used, except the IBM-Artificial, for which
the difference is 116 frequent itemsets. The results also reveal that, as expected,
GA-Apriori outperforms the exact approaches in terms of computational time.
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For the BMS-POS instance (which includes more than 500000 transactions and
more than 1600 items), the runtime of FPGrowth is twice more than GA-Apriori.
These results are reached thanks again to the efficient heuristic applied in the
search process combined with the use of genetic algorithm to find frequent
itemsets.

7 Conclusions

In this paper, a new genetic algorithm approach called GA-Apriori for the
frequent itemset mining problem is proposed. The solutions space is explored
intelligently by combining Apriori heuristic and genetic algorithms. The mining
process is performed in k steps; for each step i the crossover operator allows to
generate the itemsets of size i from the frequent itemsets of size (i−1), while the
mutation operator allows to find frequent itemsets from the itemsets generated
by the crossover operator.

To analyze the behavior of the proposed approach, several experiments have
been carried out on real data instances. The results show that GA-Apriori out-
performs GA-FIM in terms of the number of frequent itemsets. Moreover, it
outperforms the exact approaches Apriori and FPGrowth in terms of computa-
tional time. The results also reveal that GA-Apriori is competitive compared to
the exact approaches for the quality of the solutions found.

As future work, we plan to employ the Apriori heuristic in other bio-inspired
approaches, such as swarm intelligence algorithms and test our approach for
solving big domain-specific complex problems, such as those related to business
intelligence and mining of information systems event logs for process mining.
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Abstract. Shelf time (idle time that exceeds acceptable duration) can
contribute (significantly) to overall process execution time. In this paper
we describe a process mining-based approach to shelf time analysis. The
technique takes as input an event log extracted from historical executions
of a business process and requires each event have timestamp attributes
representing both the start and completion times of each event. The
essence of our shelf time identification technique is finding events which
do not temporally overlap other events in the same case in the log. The
major contributions of this paper include (i) an approach for identify-
ing and quantifying periods of shelf time in an event log triggered by
an event activity, (ii) an analysis of a portfolio of claims of commercial
CTP insurer to identify shelf time periods and triggering activities and
(iii) a discussion of an extension of the approach to include identifica-
tion of shelf time periods associated with other event attributes, e.g. the
resource. The technique was applied to a real life log extracted from a
Queensland CTP insurer and was able to identify activities that trig-
gered shelf time periods and to quantify the pervasiveness of shelf time
across activities and cases in the log.

Keywords: Process mining · Shelf time analysis

1 Introduction

A business process is an inter-related set of steps designed to transform inputs
into outputs (goods or services). Understanding how a processes works (process
analysis) is a key step in determining how the process can be improved (i.e. be
changed so that it works somehow ‘better’). Process analysis then involves iden-
tifying performance metrics that allow point-in-time monitoring and tracking
over time to assess how well a business process is meetings its proposed objec-
tives. Such metrics may include various times associated with process execution,
e.g. throughput time or idle time.

Shelf time is any idle-time period i.e. no activity is recorded on a case,
where the duration of the idle-time exceeds some process-specific threshold and
becomes somehow unacceptable (to process stakeholders). Clearly, periods of
shelf time will (usually negatively) impact on individual case durations. While
potentially significant at an individual case level, it is also important to be able
c© Springer International Publishing AG 2017
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to determine the prevalence and impact of shelf time across the entire corpus of
process cases. Our shelf time analysis method focuses on identifying delays fol-
lowing the completion of activities and thus is useful in revealing activities that
are responsible for causing process instance delays. We argue that the identifi-
cation of such activities is important as they represent break points in a process
instance beyond which it is not possible or practical to continue until some
‘blocking factor’ is resolved. We note that the existence of shelf time periods
may be an indicator that a process is resource bound i.e. not enough capacity to
deal with an accumulation of cases completing to the point where a shelf time
period is observed, or that there is some external or un-recorded (in the event
log) activity which is occurring, and on which the process depends. Consider,
for instance, an insurance claims officer requesting a report from an independent
medical examiner regarding the extent of the claimant’s injuries before determin-
ing a compensation offer. From the claims officer’s point of view, the (external)
procedure at the medical examiner’s practice is opaque and the claims officer
cannot proceed with the claim until the report is received. There is then shelf
time, i.e. a break in the process, associated with the activity of requesting a
report from the medical examiner.

An understanding of the root causes of shelf time periods provides insights
useful to process stakeholders and analysts as input to process improvement/re-
design. Questions that may be of interest in attempting to derive the root causes
of shelf time periods include (i) are there activities frequently associated with
shelf time periods? (ii) are cases with significant shelf time periods associated
with particular resources? (iii) are interactions with particular third parties asso-
ciated with shelf time periods?

In this paper we take a process-mining based approach to identifying and
quantifying the effects of shelf time on case duration. The major contributions
of this paper include (i) an approach for identifying and quantifying periods
of shelf time in an event log triggered by an event activity, (ii) an analysis of
a portfolio of claims of commercial CTP insurer to identify shelf time periods
and triggering activities and (iii) a discussion of an extension of the approach to
include identification of shelf time periods associated with other event attributes,
e.g. the resource.

The remainder of this paper is organised as follows. In Sect. 2 we discuss some
previous work related to idle-time analysis. In Sect. 3 we define the elements of
our approach including events, event log, activities and resources and outline our
algorithm for detecting shelf time periods (and associated triggering activities)
in any case. In Sect. 4 we provide results from the application of our approach
to real-life logs provided by a commercial CTP insurer and in Sect. 5 we reflect
on the case study and provide some direction for future work in this area.

2 Related Work

Operations management is primarily concerned with efficiently controlling busi-
ness processes in the production of goods or the delivery of services (the focus of



Shelf Time Analysis in CTP Insurance Claims Processing 153

the particular process). Its goal is the efficient use of resources in meeting cus-
tomer requirements. In Operations Management, idle time is defined as (cycle
time - processing time) where cycle time is the time between output of two flow
units (outputs of the process, e.g. products or delivered services) and processing
time is the actual time spent in each of the activities making up the process.

Idle time has long been of interest in process analysis in a variety of indus-
tries. In [2], the authors used simulation models to derive a set of variables useful
in reducing doctor’s idle time in an outpatient setting. In [11] the authors use
image processing-based methodology to automatically quantify the idle time of
hydraulic excavators and in [5] the authors anlayse cycle time and idle time
of draglines with a view to increasing efficient use of such capital intensive
equipment.

Process mining, a branch of data science, aims at utilising historical, process-
related information captured in so-called event logs to discover, monitor and
improve processes [1]. Process mining is becoming more popular as evidenced by
the growing number of case studies detailing successful application of analysis
techniques [3,4,9,10]. Process mining however, in common with other forms of
data analysis, as is pointed out in [7,8], is hampered by the overall data quality
of the event log and the limited information frequently found in event logs,
particularly those not generated by process-aware information systems. In [8]
the authors refer to the common problem of not having exhaustive timestamp
information recorded for events (i.e. having only a completed timestamp rather
than scheduled, started and completed times).

In [6] the authors investigate the applicability of process mining approach to
the semi-structured test processes of ASML (the leading manufacturer of wafer
scanners in the world) with the aim of analysing idle time. Here the authors
modify the original event log by applying an ‘inversion filter’ to the activities in
the log such that revised activities represent the transition from one activity in
a case to the next activity allowing the analysis of idle times instead of activity
durations.

3 Formalisations

Definition 1 (Attribute, Event, Event Log). Let E be the event universe,
i.e. the set of all possible event identifiers. Events may be characterised by vari-
ous attributes, e.g. an event may belong to a particular case, have a timestamp,
correspond to an activity, and can be executed by a particular person.

Let AN = {a1, a2, ..., an} be a set of all possible attribute names. For each
attribute ai ∈ AN (1 ≤ i ≤ n), Dai

is its domain, i.e. the set of all possible
values for the attribute ai.

For any event e ∈ E and an attribute name a ∈ AN : #a(e) ∈ Da is the value
of attribute named a for event e. If an event e does not have an attribute named
a, then #a(e) = ⊥ (null value).

Let Did be the set of event identifiers, Dcase be the set of case identifiers,
Dact be the set of activity names, and Dtime be the set of possible timestamps,
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Dres be the set of resource identifiers. For each event e ∈ E , we define a number
of standard attributes:

– #id(e) ∈ Did is the event identifier of e;
– #case(e) ∈ Dcase is the case identifier of e;
– #act(e) ∈ Dact is the activity name of e;
– #start(e) ∈ Dtime is the starting time of e;
– #complete(e) ∈ Dtime is the completion time of e; and
– #res(e) ∈ Dres is the resource who triggered the occurrence of e.

An event log L ⊆ E is a set of events. This definition of an event log allows
the log to be viewed as a table, thus allowing the application of relational algebra
to the log.

Definition 2 (Shelf Time Period). Let L ⊆ E be an event log, ANL be a
set of attribute names found in L and Da be the set of all possible values of
a ∈ ANL. Let Dcase be the set of all case values in L and Dtime be the set of
possible event timestamps in log L. Let θ be the duration of a time window and
δ(t1, t2) give the difference between two times, t1 and t2, where t1 ≤ t2.

A shelf time period is present in log L if:

– ∃ei, ej ∈ L|¬∃en ∈ L, (#id(ei) �= #id(ej) �= #id(en)) ∧ (#case(ei) =
#case(ej) = #case(en)) ∧ (#complete(en) > #complete(ei)) ∧ (#start(en)
< #start(ej)) ∧ δ(#complete(ei),#start(ej)) > θ

That is, a shelf time period is present in a log, if there exists events ei and
ej such that there does not exist any other event en where ei, ej and en are
in the same case, and that en is never concurrent with either ei or ej and the
time difference between the completion of ei and the start of ej exceeds some
process-dependent value, θ. Note that if θ is very small, then shelf time is the
same as idle time.

Shelf time periods in the log may occur in a number of scenarios as shown
in Fig. 1. In the illustration, the solid bars represent activities in a single case
with (i) the length of the bar representing the duration of the activity, (ii) the
horizontal alignment of the bars representing the relative timing of each activity
in the case. This means that bars that align vertically on their left edges have
a simultaneous start time, while bars that align vertically on their right edges
have a simultaneous complete time. Shelf time periods may be bounded by the
completion of a single event (marking the beginning of a shelf time period) and
the start of a single event (marking the end of the shelf time period) as illustrated
in scenario 1. Alternate scenarios allow for shelf time periods to begin with
multiple events completing simultaneously or end with multiple events beginning
simultaneously as shown in scenarios 2, 3 and 4.

Definition 3 (Shelf Time Period Associated With a Given Activity).
It is possible to filter shelf time periods to those that are triggered by the com-
pletion of a given activity.
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Fig. 1. Shelf time scenarios

Let L ⊆ E be an event log, ANL be a set of attribute names found in L and
Da be the set of all possible values of a ∈ ANL. Let Dcase be the set of all case
values in L, Dact be the set of all activities in L and Dtime be the set of possible
event timestamps in log L.

A shelf time period, triggered by a particular activity actx ∈ Dact is present
in log L if:

– ∃ei, ej ∈ L,#act(ei) = actx|¬∃en ∈ L, (#id(ei) �= #id(ej) �= #id(en)) ∧
(#case(ei) = #case(ej) = #case(en)) ∧ (#complete(en) > #complete(ei)) ∧
(#start(en) < #start(ej)) ∧ δ(#complete(ei),#start(ej)) > θ

Definition 4 (Shelf Time Period Associated With A Given Resource).
It is possible to identify shelf time periods associated with a given resource. Here
we consider that a resource may be assigned to a portfolio of concurrently active
cases.

Let L ⊆ E be an event log, ANL be a set of attribute names found in L
and Da be the set of all possible values of a ∈ ANL. Let Dres be the set of all
resource identifiers in L and Dtime be the set of possible event start timestamps
in log L.

A shelf time period, associated with a particular resource resi ∈ Dres is
present in log L if:

– ∃ei, ej ∈ L,#res(ei) = #res(ej) = resx|¬∃en ∈ L, (#id(ei) �= #id(ej) �=
#id(en)) ∧ (#complete(en) > #complete(ei)) ∧ (#start(en) < #start(ej)) ∧
δ(#complete(ei),#start(ej)) > θ

3.1 Approach

Periods of shelf time associated with activities may be identified and the per-
vasiveness of shelf time in the event log may be determined using the following
three step approach:

1. Populate a table, ST , containing events that are shelf time ‘triggers’, i.e.
events that do not temporally overlap other events in the same case
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– ST ≡ L − Πa.∗(σa.case=b.case∧a.id �=b.id∧b.start≤a.complete

∧b.complete>a.complete(ρa(L) × ρb(L)))
2. For each event in ST , determine the temporally ‘next’ event in the case and

determine the duration of the shelf time.
(a) For each event ei ∈ ST , build a table of all events ej , in the same case, that

start after ei completes, i.e. #complete(ei) < #start(ej), and the calculate
the difference δ(#complete(ei),#start(ej))

– BA ≡ ΠST.id,ST.case,ST.act,L.id,L.act,δ(ST.complete,L.start)

(σST.case=L.case∧L.start>ST.complete(ST × L))
– ρST.id/startid,ST.case/case,ST.act/startact,L.id/nextid,L.act/nextact,

δ(ST.complete,L.start)/shelftime(BA)
(b) For each startid in BA, find the nextid with the minimum shelftime,

i.e. the temporally next event. Populate a table, ActivityShelf , with only
these events.

– ActivityShelf ≡ Πcase,startact,nextact,shelftime(BA)−
Πx.case,x.startact,x.nextact,x.shelftime

(σx.case=y.case∧x.startact=y.startact∧x.shelftime>y.shelftime

(ρx(BA) × ρy(BA)))
3. Aggregate ActivityShelf as required.

4 Case Study

The Compulsory Third Party (CTP) scheme operating in Queensland
(Australia) provides motor vehicle owners and drivers an unlimited liability pol-
icy for personal injury caused through the use of the insured vehicle in incidents
to which the governing legislation, the Motor Accident Insurance Act 1994 (the
Act) applies. The Queensland CTP scheme is managed by the Motor Accident
Insurance Commission (MAIC) and is underwritten by (currently four) licensed,
commercial insurers. CTP premiums, collected as a component of vehicle regis-
tration, contribute to the respective insurers premium pool and are used to pay
compensation to accident victims.

The Act lays out in detail the rights and obligations of the parties involved
(claimant and insurer) in lodging and settling a compensation claim for injuries
received as a result of a motor vehicle accident. The claimant must first notify
the relevant insurer of their intention seek compensation (by lodging a standard
Notification of Accident Claim form). The insurer will assess the claim to deter-
mine that it complies with the provisions of the Act. The insurer will then
make determination as to whether it is liable for the claim, i.e. the insurer has
accepted the application for insurance from the claimant. Following the liability
decision, the claimant and the insurer will negotiate the agreed compensation
(usually at a conference but negotiation may include litigation if the parties
cannot come to agreement). Once agreed, formal settlement of the claim takes
place and, after all monies are disbursed, the claim is finalised . A claim may
exit the process at each of the Notification, Compliance and Liability phases.
Reasons for exiting the claim process include the claim failing to comply with
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the provisions of the Act (through not containing all information relevant to the
claim or not being submitted within prescribed timeframes) or the nominated
insurer determining it is not liable for the claim (through the ‘at fault’ driver
not holding a valid, current CTP insurance policy with the nominated insurer).

Once the insurer has accepted liability, the claim will progress to completion.
Figure 2 shows the phased nature of the CTP claims management process.

Fig. 2. CTP claims management - value chain

For any of the scheme insurers, the injury-compensation claims process is
complex involving negotiations between multiple parties (e.g. claimants, other
insurers, law firms, health services providers, Centrelink, Workers Compensa-
tion, hospitals, police). While the Act prescribes maximum allowed periods for
claims to reach certain milestones, CTP insurers nevertheless experience signifi-
cant behavioural and performance variations in CTP claims processing affecting,
in particular, claim durations. For instance, of the 2,535 settled claims in the
dataset used for this study where the maximum injury severity was rated min-
imal, the duration from notification to settlement ranged from a minimum of
0 months to a maximum of 131 months (median duration = 19 months, mean
duration = 21 months).

The CTP injury compensation claims process may be considered as a phased
process marked by distinct reporting milestones. Each insurer is required to
report to the MAIC when key milestone events (Notification, Compliance, Lia-
bility, Settlement, Finalisation) have occurred. A high-level process map is show
in Fig. 3. The Act lays down maximum periods for determining whether the claim
is compliant with the Act and the insurer(s) that is/are liable for the claim. (NB
where more than one insurer is deemed liable for the claim, one insurer will be
designated responsible for managing the claim.) Following the establishment of
liability, the managing insurer will process the claim till finalisation. Following
the liability stage, the progress of the claim is determined by factors such as (i)
all parties agreeing that the injured person has reached a stage of maximum med-
ical stability beyond which further recovery will not occur, (ii) the insurer and
claimant agreeing a settlement offer, or (iii) mediation or litigation determining
a settlement. In our case study, we considered 4,959 claims managed by one of
the commercial CTP insurers comprising cases that were ‘open’ at some stage
in the period 1-Jan-2012 to 17-Oct-2015 (3,446 ‘closed’ claims and 1,513 ‘open’
claims at time of data extract). The event log itself comprises 1,982,009 event
records extracted from various components of the insurer’s claims management
system including documents, notes, automated/system generated tasks, user ini-
tiated activities, records of changes to a claim’s compliance status and records of
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damages estimates generated at various points in a claims history. The event log
also contained events representing CTP scheme milestone dates. Overall, there
were 180 different activity codes.

Fig. 3. Reporting milestones in the CTP claims management process

An initial analysis of the event log revealed a pattern of ‘batch completion’ of
assigned tasks by system users. That is, the insurer’s claims management system
presents a user with a set of tasks ordered by due date. The user may select and
mark as ‘completed’ one or more tasks at a time. Further, the insurer’s claims
management system is a workflow management system which will generate tasks
for users based on the current state of claims processing. More than one task may
be generated at the same time. The batch completion and multi-task generation
pose some problems in quantifying shelf time in any given claim.

Here we note that in the event log, the start time of an activity was the
date/time on which the task was assigned to a user. The complete time for an
activity was the date/time when the user marked the task as ‘completed’. NB.
It was not possible to determine, from the data available, when the user first
started working on the task. That is, it was not possible to determine the period
between the date/time the task was assigned to the user and the date/time the
user first started working on the task. Nor was it possible to determine whether
the user worked continuously on the task or completed the task in installments.

Table 1. Shelf time instances and distribution by claim status. Periods of shelf time
were deemed to be significant if they exceeded 340 h (approx 2 weeks).

Claim status Total shelf time
periods

# Claims Significant shelf
time periods

# Claims

Closed 14, 336 3,014 2,832 1,178

Open 8, 280 1,481 2,385 1,279

Totals 22, 617 4,495 5,217 3,057

Our initial analysis revealed that periods of shelf time were common in the
claims under consideration. Table 1 shows the numbers of shelf time periods by
claim status. It can be seen that across the entire corpus of claims, more than
60% of claims (3,057 of 4,959 claims) were affected by at least one significant
shelf time period (θ = 340 h). Figure 4 shows, for the 2,939 claims where total
shelf time exceeded 680 h (1 month), the fraction of the claim comprising of shelf
time.
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Fig. 4. Shelf time as a fraction of claim duration

Table 2 shows the top 10 activities that most heavily impact on shelf time
hours.

Table 2. Activities triggering shelf time periods

Code Label Total shelf

hrs

Instances Avg hrs

per

instance

Distinct

cases

Avg case

frequency

Avg shelf

hrs per

case

CTP 10 011 General follow up

activity

2, 310, 990 5, 480 422 2, 947 1.9 784

rm ap review

assigndoc

category

Review and assign

category to new

document

774, 919 3, 049 254 1, 653 1.8 469

CTP 10 008 Interim coding 702, 130 1, 278 549 1, 047 1.2 671

CTP 02 011 Review and update

claim estimates

and quantum

563, 813 808 698 734 1.1 768

CTP 90 011 Review and action

new statutory

bodies document

522, 741 862 606 700 1.2 747

CTP 01 019 Review claim for

fraud potential

374, 056 901 415 692 1.3 541

CTP 90 002 Review and action

new

correspondence

document

357, 539 1, 647 217 1, 046 1.6 342

CTP 10 005 Action

invoice/cheque

314, 912 1, 430 220 1, 050 1.4 300

CTP 03 007 Rehab follow up 243, 248 256 950 236 1.1 1, 031

Uncoded Assorted follow ups 228, 331 604 378 503 1.2 454
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Perhaps unsurprisingly, the ‘General Follow Up Activity’ accounts for the
largest block of shelf time in the log. Here the user would create this activity
as reminder/alert to follow up (generally with some third party organisation
such as medical services or Centrelink or Work Cover) a request for information.
Other follow up type activities include ‘Rehab Follow Up’ and the ‘Uncoded’
activity code which is a collection of diary notes and general reminders to the
user.

Table 3 shows where shelf time occurred in relation to the claim reporting
milestone periods. It is apparent that most hours of shelf time occurred in the
case-dependent phases of processing, i.e. post-Liability. (See Fig. 3.)

Table 3. Shelf time hours across claim reporting milestone phases

Code Label Post-

notification

Post-

compliance

Post-

liability

Post-

settlement

Post-

finalisation

Code total

shelf hrs

CTP 10 011 General follow

up activity

68, 871 119, 397 1, 629, 414 461, 731 31, 577 2, 310, 990

rm ap revi-

ewassigndoc

category

Review and

assign

category to

new document

17, 138 43, 138 336, 429 135, 885 242, 329 774, 919

CTP 10 008 Interim coding 8, 638 23, 668 308, 676 325, 481 35, 667 702, 130

CTP 02 011 Review and

update claim

estimates and

quantum

20, 768 4, 373 389, 374 142, 668 6, 630 563, 813

CTP 90 011 Review and

action new

statutory

bodies

document

6, 628 10, 162 63, 912 53, 593 388, 446 522, 741

CTP 01 019 Review claim

for fraud

potential

15, 061 19, 562 276, 287 63, 131 15 374, 056

CTP 90 002 Review and

action new

correspon-

dence

document

12, 348 34, 414 211, 259 33, 966 65, 552 357, 539

CTP 10 005 Action

Invoice/Cheque

5, 513 8, 583 74, 256 106, 828 119, 732 314, 912

CTP 03 007 Rehab follow

up

793 11, 387 217, 962 8, 284 4, 822 243, 248

Uncoded Assorted

follow ups

2, 039 3, 989 139, 385 82, 916 2 228, 331

The case study findings showed that individual instances of shelf time (period
greater than 2 weeks) occurred in 62% of all claims and that 59% of all claims
experienced total shelf time of greater than 1 month. The technique was able
to identify activities that triggered a period of shelf time and to quantify the
total shelf time frequency and durations associated with each activity/trigger.
The technique was also able to identify shelf time periods across the different
phases (sub-processes) of the CTP insurance claim process which showed that,
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in general, the phase associated with most shelf time is the Post-Liability phase.
We do note, however, some interesting observations including the large num-
ber of shelf time hours associated with the rm ap reviewassigndoccategory and
CTP 90 011 activity codes in the Post-Finalisation phase. These will form the
basis for further investigation in conjunction with the process stakeholder.

5 Conclusion

An understanding of shelf time (idle time that exceeds some process-dependent
threshold) provide insights to process behaviour and acts as input to process
improvement strategies. In this paper we have described a process mining-based
technique suitable for identifying and quantifying shelf time in an event log. The
technique takes an event log extracted from historical executions of a business
process and requires each event in the log to have timestamps that can be used
to represent the start and completion of the event. The essence of the shelf
time identification technique is finding events which do not temporally ‘overlap’
other events in the same case in the log. The approach has been applied to a
real-life event log extracted from a major, commercial, Queensland CTP insurer.
Finally, the technique is robust enough to use event attributes other than the
activity label that trigger shelf time periods. For instance, it would be possible to
determine shelf time periods associated with the resource assigned to an event.
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Abstract. Aggregate analysis, such as comparing country-wise sales
versus global market share across product categories, is often compli-
cated by the unavailability of common join attributes, e.g., category,
across diverse datasets from different geographies or retail chains. Some-
times this is a missing data issue, while in other cases it may be inher-
ent, e.g., the records in different geographical databases may actually
describe different product ‘SKUs’, or follow different norms for catego-
rization. Often a tedious manual mapping process is often employed in
practice. We focus on improving such a process using machine-learning
driven automation. Record linkage techniques, such as [5] can be used
to automatically map products in different data sources to a common
set of global attributes, thereby enabling federated aggregation joins to
be performed. Traditional record-linkage techniques are typically unsu-
pervised, relying textual similarity features across attributes to estimate
matches. In this paper, we present an ensemble model combining min-
imal supervision using Bayesian network models together with unsu-
pervised textual matching for automating such ‘attribute fusion’. We
present results of our approach on a large volume of real-life data from a
market-research scenario and compare with a standard record matching
algorithm. Our approach is especially suited for practical implementation
since we also provide confidence values for matches, enabling routing of
items for human intervention where required.

1 Introduction

In most large enterprises the process of generation of business reports that fuse
and aggregate data from multiple sources leads to a number of challenges; for
example, dealing with incongruous join keys between different datasets. Even if a
machine-learning based data fusion method is adopted for partially automating
such matchings, there remains another challenge of how to imbibe the new app-
roach in the main-stream business process so as to enable human intervention
when accurate automation is not possible.

We focus on one such process that is widely applicable to many enterprises,
and propose business process improvement utilizing the machine-learning and
data-mining based methods which follows ‘human-in-the-loop’ paradigm with
enhanced efficiency. Manufacturers as well as retailers often need to analyze
product performance reports based on the data received from multiple geogra-
phies (see Fig. 3), about measures such as sales volume and revenue along dimen-
sions such as brand-name and product segment. Unfortunately, the terms used
c© Springer International Publishing AG 2017
U Kang et al. (Eds.): PAKDD 2017 Workshops, LNAI 10526, pp. 163–175, 2017.
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to describe the same attribute of a product are different in every geography,
necessitating some matching procedure, which is often manually done in prac-
tice. Further, due to introduction of new retail chains, and new products in the
retail market, this is a never ending continuous process.

The goal of such a process is to fuse information about consumer products,
such as sales, market share, etc., which is spread across disparate databases
belonging to different organizations, in which each product is not identifiable
via a common key. For example, a Global database (DB) might track overall
market-share of global product categories. On the other hand, each Local DB
might track sales data within geographies using local-product-ids along with
other characteristics, but not the global category-id. As a result, an analytical
task such as comparing the sales of product categories within each geography
against their global market share becomes difficult due to the lack of a natural
join attribute between the databases.

Process Overview: Local DB contains attributes that can help to iden-
tify/classify the product that a particular record measures. For example, in case
of carbonated drinks, each record usually contains attributes such as brand, fla-
vor, material used etc. However, these attributes are inconsistent across geogra-
phies: The same product could be defined using different values of attributes
across different countries and different retailers. Figure 1, shows an example in
which values of four attributes (shown in first column) are different for the
same product across four different countries. Additionally, Local DB may also
contain textual description of products entered manually by retailers. Figure 2
shows such descriptions for the same product from different retailers. Number
of descriptions of a single product in one geography may go upto the order of
hundreds.

Fig. 1. Local DB showing local attributes of the same product across four geographies
and their corresponding global attributes

One way to perform analysis across disparate databases is by mapping records
in each Local DB to their corresponding global attributes (e.g., right most col-
umn of Fig. 2). However, preparing such mappings is a huge manual and com-
plicated task because: (a) The cardinality (number of possible values) of local
and global characteristics varies from tens to thousands, and (b) Uncertainty in
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Fig. 2. Five different retailer descriptions of the same product. Actual brand name is
hidden to maintain client confidentiality.

the semantics of local characteristics of the same product from different geogra-
phies, leading to confusion in identifying the product category, even by human
annotators.

Our aim is to help reduce cost of the operational process of creating and
maintaining such global references by reducing manual workload via automation
via modern data-lake architecture that include automated fusion of federated
databases. Our goal is to either make high confidence predictions, or abstain from
making any prediction so that such records can be sent to human annotators. We
want to minimize the number of such abstentions while maximizing the precision
of the predictions.

Fig. 3. Current and Modified/Proposed Product attribute matching process

Attribute Fusion using Record Matching: Consider two databases (see
Fig. 4): (a) Local DB(L) of a single geography with each product l having local
characteristics L1, L2, ..., LM , e.g., flavor, brand, etc., and retailer descriptions
(Dl), and (b) a Global DB(G) having K global characteristics. The problem at
hand is thus a record matching problem where products in local database are
to be mapped to global characteristic values (e.g. ‘category’, or ‘global brand’
etc.).

Note that our objective is only to reconcile performance metrics (such as
volume sales and market-share) across databases for each global characteristic
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independently, e.g., sales vs market-share for each category, or alternatively each
global brand, etc. We can achieve this by solving K different record matching
problems, as shown in Fig. 4: For each product, we shall predict each of the K
global characteristics given local characteristics and retailer descriptions sepa-
rately, as arg maxj P (Gj |L1, ..., LM ,Dl).

In this paper: (a) We address the problem of automating attribute fusion
across diverse data sources that do not share a common join key. (b) We augment
traditional, fundamentally unsupervised text-similarly techniques with super-
vised, Bayesian network models in a confidence-based ensemble for automating
the mapping process. (c) Our approach additionally delivers confidence bounds
on its predictions, so that human annotation can be employed when needed
and business process could be improved. (d) We test our approach in a real-life
market research scenario. We also compare it with available techniques [5] and
demonstrate that our approach outperforms FEBRL [5]. (e) We illustrate how
our approach has been integrated into a data-fusion platform [17] specifically
designed to manage data-lakes containing disparate databases.

Fig. 4. Local and global database

2 Approach

The business process being followed in practice, as well as the modified process
is shown in Fig. 3. In the current process all local products from local database
need to be mapped to global product list. We propose to predict the global char-
acteristics of local product list using machine-learning and data-mining based
approach, along with a prediction confidence measure. Based on this confidence
measure a choice is made about which of the automatically performed char-
acteristic mappings should be discarded, and mapped manually. This leads to
reduction in manual effort and increased efficiency of business process.

Further from the data-mining point of view, each product l in L has two
kind of information (1) M Local characteristics and (2) Textual descriptions by
retailers. In this section, we present our approach to predict the value of global
characteristic Gj for each product in L. We use two different models for two dif-
ferent datasets (1) Supervised Bayesian Model (SBM) using local characteristics,
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and (2) Unsupervised Textual Similarity (UTS) using descriptions to compute
probability of every possible state gj,t, t = 1, 2, ...,mj of Gj . Finally, we use an
weighted ensemble based approach to combine the probabilities of both models
to predict the value of Gj .

2.1 Supervised Bayesian Model

Approach to build SBM comprises of: (1) Network Structure Learning, (2) Para-
meter Learning, & (3) Bayesian Inference. For structure learning, we propose a
novel technique of learning Tree based Bayesian Networks (TBN), whereas for
parameter learning and Bayesian inference, we use the idea of [21] that performs
probabilistic queries using SQL queries on the database of conditional probabil-
ity tables.

TBN Structure Learning: Bayesian networks are associated with para-
meters known as conditional probability tables (CPT), where a CPT of a node
indicates the probability that each value of a node can take given all combinations
of values of its parent nodes. In CPTs, the number of bins grows exponentially
as the number of parents increases leaving fewer data instances in each bin for
estimating the parameters. Thus, sparser structures often provide better estima-
tion of the underlying distribution [10]. Also, if the number of states of each node
becomes high and the learned model is complex, Bayesian inferencing becomes
conceptually and computationally intractable [12]. Hence, tree-based structures
can be useful for density estimation from limited data and in the presence of
higher number of states for facilitating faster inferencing. We employ a greedy
search, and score based approach for learning TBN structure.

Given the global characteristic Gj and M local characteristics, we find set
of top η most relevant local characteristics w.r.t. Gj using mutual information.
We denote these η local characteristics by the set Y j(L). Further, we learn
a Tree based Bayesian Network (TBN) on random variables X = {Xr : r =
1, 2, ..., η + 1}, where each Xr ∈ X is either local characteristic Li ∈ Y j(L) or
global characteristic Gj

Chow et al. in [4] state that cross-entropy between the tree structures distri-
butions and the actual underlying distribution is minimized when the structure
is a maximum weight spanning tree (MST). So, in order to learn TBN struc-
ture, we first learn MST for the characteristics in the set X. We find the mutual
information between each pair characteristics, denoted by W (Xr,Xs). Further,
we use the mutual information as the weight between each pair of characteristics
and learn MST using Kruskal’s algorithm.

TotalWeight(TW ) =

η+1∑

r=1,P a(Xr)�=0

W (Xr, Pa(Xr)) (1)

By learning MST, order of search space of possible graphs is reduced to
2O(η), from 2O((η)2). Using this MST, we search for the directed graph with least
cross-entropy, by flipping each edge directions sequentially to obtain 2η directed
graphs along with their corresponding Totel weight (TW) calculated using Eq. 1.
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Graph with maximum TW (minimum cross-entropy) [12] is chosen as the best
graphical structure representative of underlying distribution.

Parameter Learning and Inference: To learn the parameters (CPTs)
of Bayesian Network, for every product l in L we compute the probabilities
pl

j,1, p
l
j,2, ..., p

l
j,mj

, for every state of Gj , given the observed values of local char-
acteristics in the Bayesian network, using an approach described in [21]. Here,
CPTs are learned from the data stored in RDBMS and all queries are also
answered using SQL.

2.2 Unsupervised Text Similarity

In this section, we present UTS approach to compute the probability ql
j,1, q

l
j,2, ...,

ql
j,mj

of each possible state of the global characteristic Gj using retailer descrip-
tions. Consider each product l in L has rl descriptions and for each description
dl,r, where r = 1, 2, ..., rl, we find n-grams of adjacent words. Let Nl = {nl

v, v =
1, 2, ...} be the set of n-grams of all descriptions, where f l

v be the frequency of
each nl

v defined as a ratio of the number of descriptions in which nl
v exists to

the rl.
For every state gj,t of Gj , we find the best matching n-gram from the set

Nl by calculating Jaro-Wrinkler distance between gj,t and every nl
v ∈ Nl and

choose the n-gram, say nl
v,t, with the maximum score sl

j,t. Further, multiply the
scores sl

j,t with the frequency of nl
v,t to get the new score i.e., Sl

j,t = sl
j,t × fs

l,t.
Finally, we convert each score Sl

j,t into the probability ql
j,t by using softmax

scaling function.

2.3 Ensemble of Models

In ensemble approach, we first find confidence of each prediction in both the cases
(SBM and UTS) and then use these confidence values as weights for weighted
ensemble. Given the probability distribution {pl

j,t : t = 1, 2, ...,mj} for the values
of Gj using SBM model, we find the confidence corresponds to each probability as

C(p
l
j,t) = 1 −

√√√√√
mj∑

t
′=1

(pl

j,t
′ − hl

t
′ (t))2, t = 1, 2..., mj (2)

where hl
t′ (t) is the ideal distribution, which is 1 when t = t

′
and 0 otherwise.

Similarly, we can find the confidence C(ql
j,t) of each probability ql

j,t.
With the given probability distribution and the confidence values from both

models, we take weighted linear sum of two probabilities to get the new proba-
bility distribution over the states of Gj : P l

j,t = C(pl
j,t)×pl

j,t+C(ql
j,t)×ql

j,t, t = 1, 2, ..., mj

and we choose the value of Gj for maximum P l
j,t.

CoP: For every prediction, we assign the confidence value called confi-
dence of prediction (CoP). CoP is a measure that helps to decide whether
the predicted value is trustworthy or not. Given the probability distribution
{P l

j,t : l = 1, 2, ...,mj} for the values of gj , we calculate the CoP of the predicted
value gl

j,t of Gj by using Eq. 2.
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3 Experiments and Results

We present the accuracy of our predictions on a real-life dataset from a global
market research organization. We set a threshold τ on CoP, and predictions with
a CoP < τ are routed for human annotation. We also measure the accuracies of
our predictions for different values of τ .

Fig. 5. Structure learned of G1 using two different approaches

Data Description: We have data for carbonated drinks of 26K unique
products from a single geography, contained in two datasets: (a) Local DB: It
contains 26 K products with each product having 49 local characteristics, where
cardinality of local characteristics varies from tens to thousands. It also con-
tains descriptions of products given by retailers of that product, where number
of descriptions of a single product varies from tens to hundreds. (b) Global
DB: It contains four global characteristics with cardinality varying from tens to
thousands.

Data Preparation: We predict four global characteristics G1, G2, G3, and
G4 for two cases, with varying ratio of split between training, validation and test
datasets. Case-1 (60:20:20) has 60% training, 20% validation and 20% test and
Case-2 has this ratio as 20:20:60. NOTE: While Case-1 uses a traditional split
of training vs testing data, Case-2 is more realistic, since in practice preparing
a training data by manual data labeling is costly: For example, we would like to
‘onboard’ a data from a particular dataset by manually annotating only a small
fraction (e.g. 20%) of records and automate the remainder or we might like
to board data from one organization (e.g. retailer or distributor) in a particular
geography in the hope that data from remaining sources in that geography share
similar local characteristics, eliminating manual annotation for a large volume
of data. To simulate this practical scenario, we used the first few records from
the local dataset, which happened to contain only 10% or so of the total possible
values of each global attribute.

For SBM, η relevant local characteristics was chosen for every Gj . Figure 5,
compares the TBN structure learned using our approach and another learned
using an open source python library Pebl [16], for the global characteristic G1.
Clearly, network obtained using Pebl (Fig. 5(b)) is more complex as compared
to ours 5(a), as the size of CPTs of these are of the order of (a) 1200× 1400 and
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Fig. 6. Tree based Bayesian network structures learned for G2, G3, G4 global attributes.

Fig. 7. x-axis: global characteristics, y-axis: (A) Predictive accuracy for Case-1,
(B) Predictive accuracy for Case-2

(b) 1200 × 1400 × 700 × 643 respectively. Figure 6 shows the Bayesian network
structure learned for the remaining three global attributes (G2, G3, G4).

Figure 7, shows the prediction accuracy of four global characteristic for
Case-1 and Case-2 respectively. Here, the accuracy is a ratio of correctly pre-
dicted products to the total number of products. In Case-1, accuracy of Ensemble
model is in the range of 85 to 99% and it outperforms both SBM and UTS for
all four global characteristics. Case-2 (Fig. 7-B), naturally renders the SBM less
accurate, since the training data contains only 10% of possible states of each
global characteristic. However, it is compensated by the performance of UTS,
which searches the target set of global attribute values from the retailer descrip-
tions. Combining these models using our Ensemble model the accuracy of four
global characteristics reaches 78 to 93%.

Baseline Comparison: We also compared our approach with record match-
ing method implemented in a framework called FEBRL [5]. In FEBRL, we con-
sider two databases (1) Local DB with the products having local characteristics
and corresponding retailer descriptions, (2) Global DB having all possible values
of a single global characteristic. The problem statement is to match products in
local DB to the Global DB. For attribute matching, we tried three similarity mea-
sures winkler, tokenset, trigam and show the results with winkler which outper-
forms the rest. We tested this approach for the Case-1 on the smaller dataset (5K
products) for all four global characteristics separately. Table 1, shows the com-
parison of the prediction accuracy of four global attributes using our Ensemble
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approach and FEBRL. In case of FEBRL, prediction accuracy is the number of
correctly matched products out of all products in local DB. This suggests that
our approach outperforms and also shows that accuracy of FEBRL decreases for
high cardinality global attributes. FEBRL did not work on, 26k products, on a
machine with 16 GB RAM, Intel Core i7-3520M CPU 2.90 GHz* 4, 64 bit. We did
not try the blocking method as main motive of our problem is to improve accuracy
of prediction, and not the time complexity.

Table 1. Comparison of our approach with FEBRL

Global att Num of states FEBRL(winkler) Ensemble

G1 107 86% 93%

G2 154 57% 95.2%

G3 3 99.3% 99.2%

G4 13 95.4% 99.4%

CoP Threshold for human annotation: We define three categories:
(a) P-C: Number of products predicted correctly by our approach for which
CoP > τ . (b) P-I: Number of products predicted incorrectly, for which CoP
> τ . (c) NP: Products which we choose not to predict, i.e., products with CoP
≤ τ . We select τ in order to maximize P-C and minimize P-I category, while
not increasing NP so much that exercise becomes almost entirely manual. Since
products in the P-I category are more costly for a company as compared to
NP category, we give more weight to P-I while learning τ . Table 2, shows the
percentage of products in each category (P-C, P-I, NP) on validation set along
with the threshold τ values for both cases. It shows that for given τ , percentage
of products in P-C category is in the range of 81–96% for Case-1, whereas, it
ranges from 70 to 96% for Case-2. Also, the average percentage of products in
P-I category is only around 5%. These numbers establish that CoP is a good
measure for reliability of predictions. Figure 8, shows the variation in the per-
centage of products in test set of each category with respect to threshold value
τ for both Case-1 and Case-2, for the global characteristic G1. It validates the
optimal values of τ learned using validation set, 0.5 for Case-1 and 0.6 for Case-2.

Table 2. Percentage of products in each category on validation set

Global Case-1 Case-2

τ P-C P-I NP τ P-C P-I NP

G1 0.5 92% 4% 4% 0.6 82% 7% 11%

G2 0.6 81% 7% 12% 0.65 74% 10% 16%

G3 0.7 96% 1% 3% 0.7 96% 1% 3%

G4 0.8 86% 3% 11% 0.8 85% 4% 11%
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Fig. 8. % of Products in each category for different values of τ on test data for G1 in
(A) Case-1 and (B) Case-2

The process of aggregate analysis, comparing global market share and sales of
product categories is carried out in our platform iFuse [17] (Fig. 9). Figure 9(a)
and (b) shows the data tile and cart view of iFuse representing the attributes of
the local DB and global DB to be linked together. Figure 9(c) shows the tile view
of the attributes obtained after mapping of local DB to global attribute, here
GLO BRAND via ensemble approach, thereby enabling the join of local sales
and global market share via common global attribute, GLO BRAND (Fig. 9(d)).
Figure 9(e) shows aggregate analysis of different products via motionchart.

Fig. 9. Figure showing aggregate analysis of global market share and local sales done
using our platform.

4 Related Work

Record linkage of entities across disparate datasets is a widely explored [3], which
has been applied in wide variety of domains like environmental hazards [1], drug
safety [14], and to different types of data, including text [13] and images [9].
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While record linkage addresses the problem of extracting, matching and resolving
entities in structured and unstructured data [8] across disparate datasets, with
or without join keys, our problem address different aspect of record linkage where
disparate databases need to be fused in the absence of natural join key.

Record linkage problem has been addressed generally via two category
of approaches, learning based and non-learning based [11]. Learning based
approaches include FEBRL [5] which uses support vector machine (SVM)
for learning suitable matcher combinations, and MARLIN (Multiply Adaptive
Record Linkage with Induction) [2] which uses two string similarity measures
(Edit Distance and Cosine) and several learners, specifically SVM and decision
trees. In non-learning based approaches, PPJoin+ [20] is a single-attribute match
approach (similarity join) using sophisticated filtering techniques for improved
efficiency, and FellegiSunter [6] evaluates three of the similarity measures pro-
vided by FEBRL (Winkler, Tokenset, Trigram) and has an lower and upper
similarity threshold that can be adjusted. In [15], an ensemble approach of two
non-learning algorithms Fellegi-Sunter (FS) and Jaro-Wrinkler (JW) has been
presented for record-linkage. In contrast, we use confidence based ensemble app-
roach that combines learning based Bayesian model and a non-learning based
textual model. Our approach also produces confidence bound on the predictions
that help to decide reliability of prediction.

Bayesian Networks are used for modeling beliefs in various domains like
bioinformatics [7], medicine [19], manufacturing [18]. While traditional approxi-
mate inference techniques for Bayesian graphical modeling are able to deal with
larger networks, they are usually restricted to models with low cardinalities of
attributes. In our approach of BGM, we handle high cardinality attributes by
introducing a novel approach of learning restricted Tree based Bayesian network,
which facilitates faster (exact) inferencing. Our work in BGM is closest to [21],
which presents an approach to compute distributional queries by approximating
the underlying joint distribution via a Bayesian network. In [21], SQL database
has been used for Bayesian inferencing under the assumption of simple net-
works, which are learned entirely using domain knowledge. In our work of BGM,
we present end to end approach of Bayesian graphical modeling which learns
simple tree based structure followed by exact Bayesian inferencing accelerated
by an SQL engine to predict global characteristics.

5 Conclusion

We have addressed a particular class of record-linkage problems where disparate
databases need to be fused in the absence of matching keys for the limited pur-
pose of aggregate analysis. Our ensemble approach combines supervised Bayesian
models with unsupervised textual similarity, and also returns confidence along
with each prediction. We submit that our approach is likely to be applicable for
similar instances of record-linkage in a wide variety of applications, even while
attempting to fuse data from external sources, such as social media, sensor data
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etc. Such scenarios are becoming increasingly common as the data lake para-
digm is gradually replacing the traditional data-warehouse model, driven by the
availability and accessibility of external ‘big data’ sources.
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Abstract. Traditional classification algorithms are widely used on
determinate data. However, uncertain data is ubiquitous in many real
applications, which poses a great challenge to traditional classification
algorithms. Extreme learning machine (ELM) is a traditional and power-
ful classification algorithm. However, existing ELM-based uncertain data
classification algorithms can not deal with data uncertainty well. In this
paper, we propose a novel ELM-based uncertain data classification algo-
rithm, called UELM. UELM firstly employs exact probability density
function (PDF) instead of expected values or sample points to model
uncertain data, thus avoiding the loss of uncertain information (proba-
bility distribution information of uncertain data). Furthermore, UELM
redesigns the traditional ELM algorithm by modifying the received con-
tent of input layer and the activation function of hidden layer, thus mak-
ing the ELM algorithm more applicable to uncertain data. Extensive
experimental results on different datasets show that our proposed UELM
algorithm outperforms the baselines in accuracy and efficiency.

Keywords: Extreme learning machine · Uncertain data · Classification

1 Introduction

Classification is one of the important problems in machine learning and data
mining [12]. Traditional classification algorithms are based on the assumption
that the input data are determinate. However, data uncertainty is ubiquitous in
many real scenarios. For example, in the data mining applications of Business
Process Management (BPM), customers evaluate a commodity by scoring on
various aspects, such as quality, performance and user friendliness. Each com-
modity may be scored by many customers. Thus, the customer satisfaction to a
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commodity can be modeled as an uncertain object on the customer score space.
The market manager can make decisions according to customer satisfaction data.
If data uncertainty is not carefully considered, wrong decisions will probably be
made. Although many algorithms are used to classify determinate data, few
classification algorithms have been proposed for uncertain data [4].

Extreme learning machine (ELM) is a simple and efficient learning algorithm
for single-hidden layer feedforward neural networks (SLFNs) [13]. ELM-based
uncertain data classification algorithms, such as AVG [5,19] based on expected
values and SELM [8,18] based on sample points, have been proposed. However,
three problems have not been addressed well in such ELM-based algorithms. (1)
They model the data uncertainty with expected values or sample points, thus
causing the loss of uncertain information. (2) They do not integrate the uncertain
information into the ELM algorithm framework and thus can not deal with
data uncertainty well. (3) Sample points need a large amount of computation,
therefore the sample-based ELM methods are inefficient.

To solve the above problems, in this paper we propose a novel ELM-based
uncertain data classification algorithm (UELM) to improve the existing ELM-
based classification algorithms for uncertain data. Our main contributions are
summarized as follows.

1. We model the data uncertainty by attribute intervals and probability density
functions (PDFs), thus solving the problem of losing uncertain information
in AVG and SELM.

2. We integrate the uncertain information into the ELM algorithm framework by
modifying the received content in input layer and the hidden layer activation
functions, which can deal with data uncertainty well.

3. Extensive experimental results show the superiority of our proposed algorithm
UELM in terms of accuracy and efficiency.

2 Related Work

There has been a growing interest in uncertain data mining [4]. Uncertain data
classification is an important component of uncertain data mining. In [1], density-
based method is used for uncertain data classification. [7] studies how to classify
uncertain data with support vector machine. In [19], an uncertain data classi-
fication algorithm UDT is proposed. UDT models the probability distribution
information (uncertain information) with PDF and builds the tree with entropy.
Naive Bayes classifiers [17], rule-based classifiers [14], nearest neighbour classi-
fiers [5], artificial neural networks [11] and associative classification [15] are all
extended to handle uncertain data. Except classification, uncertain data also
have been extended into various traditional mining problems such as clustering
[9,20], frequent pattern mining [10], outlier detection [3] and streams mining [2],
etc.

Extreme learning machine (ELM) provides good generalization performance
at extremely fast learning speed for learning the parameters of single-hidden
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layer feedforward neural networks (SLFNs) [13]. In [8,18], ELM-based uncertain
data classification algorithm has been proposed. It models the data uncertainty
with expected values and sample points, and modifies the prediction strategy.
However, the loss of uncertain information and the inefficient problem exist in
this solution. Thus, it can not deal with data uncertainty well. In this paper, our
UELM algorithm takes full advantage of the uncertain information by modeling
the data uncertainty with attribute intervals and probability density functions.
Furthermore, we revise the input content and the hidden layer activation func-
tion of the ELM algorithm. And we greatly reduce the cost of the training and
predicting time.

3 Preliminaries

In this section, we firstly introduce the way of modeling data uncertainty in
UELM. Then, we give an overview of how ELM algorithm works.

3.1 Data Uncertainty Model

Generally, uncertain numerical attribute and uncertain categorical attribute are
the most common attribute types encountered in uncertain data mining appli-
cations. In this paper, we focus on uncertain numerical attribute. Suppose that
a training dataset contains n uncertain objects, O = {o1, o2, . . . , on} with d
attributes, A = {A1, A2, . . . , Ad} and m class labels, C = {C1, C2, . . . , Cm}.
The i-th uncertain object oi ∈ O is represented by Vi = {vi,1, vi,2, . . . , vi,d} with
a class label ci ∈ C. The j-th uncertain attribute value vi,j is a scalar random
variable, thus vi,j is described not by a single value, but an attribute interval
and a probability density function (PDF). And PDF is an useful tool to model
the probability distribution information of uncertain objects. Suppose the value
of random variable vi,j , x ∈ [l, r] and its PDF is denoted by vi,j .f(x), then,

∫ r

l

vi,j .f(x) dx =
{

1, x ∈ [l, r]
0, x /∈ [l, r] . (1)

Since most real applications involve random noise which follows Gaussian
distribution [17,19], in this paper we assume that all the uncertain data obey
Gaussian distribution.

3.2 Extreme Learning Machine

Extreme learning machine is a single-hidden layer feedforward network (SLFN)
with an optimized learning algorithm [13]. All the hidden layer parameters are
generated randomly without tuning. The output function of ELM is:

fL(x) =
L∑

i=1

βihi(x) = βT h(x), (2)
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Fig. 1. ELM structure.

where x = [x1, x2, . . . , xd]T is the input data, β = [β1, β2, . . . , βL]T is the hidden-
output layer weight vector and the h(x) is the output vector of the L hidden
nodes. h(x) can be obtained by:

h(x) = G(w, b,x) = G(wT x + b), (3)

where G(w, b,x) is a nonlinear function such as sigmoid function. w is the
d × L weight matrix connecting the hidden nodes and the input nodes, and
b is the bias vector of the hidden nodes, b = [b1, b2, . . . , bL]T . Figure 1 shows
the ELM structure for binary classification and we can increase the number of
output nodes for multi-classification. During the training process, w and b are
generated randomly. The objective function of ELM is:

min
β

‖ Hβ − T ‖, (4)

where H = [h1(x1)T ,h2(x2)T , . . . ,hn(xn)T ]Tn×L is the hidden layer output
matrix and T = [tT

1 , tT
2 , . . . , tT

n]Tn×m are the class labels. m is the number of
classes. With the least square method, the solution is:

β = H†T , (5)

where H† is called Moore-Penrose generalized inverse of matrix H [16]. And
Formula (5) has the smallest norm of β among all the least square solutions. To
handle uncertain data, we need to modify the activation function G(w, b,x).

4 The Proposed Algorithm

In this section, we present our ELM-based uncertain data classification algo-
rithm (UELM). We firstly analyse the insufficient of expected values and sample
points. Then we model the data uncertainty with attribute intervals and PDFs.
Furthermore, we modify the activation function of the hidden layer and the
received content of input layer. Finally, we present the details of the UELM
algorithm framework.
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4.1 Motivation

Intuitively, a straightforward way to deal with the data uncertainty is to replace
each uncertain attribute probability distribute with its expected value. Thus,
the uncertain data classification problem is reduced back to the classification
problem for determinate point-valued data. We call this approach AVG.

Another approach is the sample-based method, which is used in SELM. Sam-
ple points model the distribution of uncertain objects. Each sample point is clas-
sified to a class by ELM algorithm. According the voting method, each uncertain
object predicts its class.

However, AVG and SELM lead to the loss of uncertain information more
or less and may make a misclassification. Obviously, AVG adopts an expected
point to represent an uncertain object, thus it may cause the loss of the distrib-
ute information of the uncertain object. In SELM, an uncertain object adopts
many sample points to model the uncertain data. Although SELM takes more
uncertain information into consideration than AVG, it is just an approximate
representation of the uncertain object. Thus, SELM also loses a portion of uncer-
tain information.

In UELM, attribute intervals and probability density functions (PDFs) are
used to take full advantage of the uncertain information. The reason is that
uncertain information represents the probability distribution information of
uncertain data and PDF can deal with probability distribution information well.
The class of an uncertain object will be assigned to the class which has the high-
est appearance probability calculated by attribute intervals and PDFs. Figure 2
shows the superiority of our proposed UELM algorithm against AVG and SELM
in terms of uncertain data modeling.

Fig. 2. Superiority of UELM

Figure 2 gives two examples of 2-dimensional uncertain data binary classifi-
cation problem. Two linear classifiers L1 and L2 divide the whole data space into
four pieces. Two small spaces stand for class −1 and the other two spaces repre-
sent class +1. The true class labels of the elliptical uncertain objects (dot line)
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are −1 and the circular uncertain objects (solid line) are +1. P1 is the expected
point of the uncertain object O1. P2, P3 and P4 are three sample points in the
uncertain object O2.

AVG vs UELM: As shown in Fig. 2(a), uncertain object O1 lays in two
different spaces of class +1 and class −1. P1 represents its expected point. If we
use AVG algorithm, O1 will be assigned to class −1 because the expected point
P1 locates in the space of class −1. However, in UELM it is obvious that O1 has
a larger probability to be in the space of class +1 than in class −1. So the class
of O1 is +1.

SELM vs UELM: In Fig. 2(b), uncertain object O2 has three sample points
P2, P3 and P4. Two sample points P2 and P4 locate in the space of class +1
and only P3 locates in the space of class –1. Therefore, if we use the SELM
algorithm, according to the voting method, the class of uncertain object O2

is class +1. Actually, O2 belongs to class –1. Since UELM considers the full
probability distribution information and predicts the class which has the highest
appearance probability, UELM will perform the classification correctly.

According to the above analysis, AVG and SELM both lose the uncertain
information more or less, and even worse, they may lead to a misclassification.
So we choose attribute intervals and PDFs to model uncertain objects in UELM.

4.2 Modification of Activation Function

For ELM, it is hard to do anything different about the computing process of
input layer and output layer. If we want to bring the uncertain information into
ELM, the hidden layer is a good choice. Actually, each hidden layer node is a
perceptron. Perceptron algorithm is as follows:

y = F (
d∑

i=1

wixi + b), F (x) =
{

1, x � 0
−1, x < 0 . (6)

F (x) is the activation function and y is the output of the perceptron. In order
to deal with uncertain data, we need to modify the activation function. Taking
uncertain object O3 in Fig. 2(b) for an example, if L2 is the perceptron, the
criterion of O3 belonging to class +1 is that more than half part of O3 locates
above L2. As we can see, for classifier L2 if the appearance probability of an
uncertain object above L2 is more than 0.5, its class label is +1, otherwise −1. We
assume that Prob(x � 0) denotes the probability of x � 0 and z =

∑d
i=1 wixi+b.

So we modify the F (x) in Formula (6) to fit uncertain data as follows:

F (z) =
{

1, P rob(z � 0) � 0.5
−1, P rob(z � 0) < 0.5 . (7)

According to the above discussion about the perceptron for uncertain data,
the ELM algorithm can be changed with the modification of the activation func-
tion G(w, b,x) as follows:

G(w, b,x) = [g1(w1, b1,x), . . . , gi(wi, bi,x), . . . , gL(wL, bL,x)]T ,

gi(wi, bi,x) = Prob(wT
i x + bi � 0),

(8)
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where wi = [w1i, . . . , wdi]T and b = [b1, b2, . . . , bL]T . So the key point is how to
compute gi(wi, bi,x).

We assume that the distribution of uncertain data obeys Gaussian distribu-
tion and xi ∼ N(μi, σ

2
i ). As mentioned earlier, zi = wT

i x+bi. Suppose that each
attribute is independent of the others, so zi will have a Gaussian distribution as:

zi ∼ N(wT
i μ + bi, (diag(wi)wi)T (diag(σ)σ)), (9)

where diag(wi) represents a square diagonal matrix with the elements of vector
wi on the main diagonal and μ = [μ1, μ2, . . . , μd]T , σ = [σ1, σ2, . . . , σd]T . In
our UELM algorithm, uncertain data can be expressed by probability density
function. Therefore, based on Formula (8), we get:

gi(zi) = Prob(zi � 0) =
∫ +∞

0

f(zi) dzi, (10)

where f(zi) denotes the PDF of zi and gi(zi) = gi(wi, bi,x). zi obeys Gaussian
distribution, so we can get gi(zi) as:

gi(zi) =
∫ +∞

0

1√
2πσzi

exp(− (zi − μzi
)2

2σ2
zi

) dzi, (11)

where μzi
represents the expected value of zi and σzi

represents the standard
deviation of zi as defined in Formula (9). Formula (11) shows the comput-
ing method of the probability over [0,+∞) of uncertain object x. However,
the premise of Formula (11) is that the area coverage of uncertain object x is
(−∞,+∞). Actually, each attribute of the uncertain object x has an interval
and zi = wT

i x + bi. Thus, the interval of zi can be calculated by the attribute
intervals of uncertain object x and parameters (wi, bi). Suppose the interval of
zi is [azi

, bzi
] and [czi

, dzi
] is the intersection of [azi

, bzi
] and [0,+∞), so the

probability of zi over [0,+∞) is:

gi(zi) =

∫ dzi

czi

1√
2πσzi

exp(− (zi−μzi
)2

2σ2
zi

) dzi

∫ bzi
azi

1√
2πσzi

exp(− (zi−μzi
)2

2σ2
zi

) dzi

. (12)

And then, G(w, b,x) can be obtained based on Formula (12). In Sect. 3.2,
h(x) = G(w, b,x) and H = [h1(x1)T ,h2(x2)T , . . . ,hn(xn)T ]Tn×L, thus we
get H. During the computation process, UELM needs the expected values and
standard deviations of uncertain data, so the input layer in Fig. 1 is revised to
receive (μ,σ) rather than x.

4.3 Algorithm Framework

The algorithm framework of UELM consists of three parts: initialization process,
training process and predicting process, which are shown in Algorithm1.
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Algorithm 1. UELM Algorithm
Input:

Dtrain: training dataset; Dtest: testing dataset; L: the number of hidden nodes;
Output:

Ctest: prediction of class labels;
1: // Initialization process
2: Generate parameters w and b randomly;
3: // Training process
4: Calculate the interval of zi based on zi = wT

i x + bi;
5: Calculate the intersection of [0, +∞) and the interval of zi which is obtained by

step 4;
6: Calculate the distribution parameters (μzi , σzi) based on Formula (9);
7: Calculate Htrain based on H = [h1(x1)T , h2(x2)T , . . . , hn(xn)T ]Tn×L, h(x) =

G(w, b, x) and Formula (12);
8: Calculate the weight β based on Formula (5);
9: // Predicting process

10: Calculate Htest with Dtest, w and b, according to step 4, 5, 6 and 7;
11: Calculate the class label for each uncertain object in Dtest with β and Htest based

on Formula (2).
12: Return Ctest;

Initialization Process: Firstly, we mine the uncertain information from uncer-
tain dataset such as attribute intervals and the distribution parameters (μ and
σ if it is Gaussian distribution). And then, we generate parameters w and b
randomly and assign the number of hidden nodes with L.

Training Process: With the uncertain information of training dataset, the
interval of zi and the distribution parameters (μzi

, σzi
) can be obtained based

on Formula (9). And then, we calculate gi(zi) based on Formula (12). According
to Formula (8), we can obtain G(w, b,x). In Sect. 3.2, we know that h(x) =
G(w, b,x) and H = [h1(x1)T ,h2(x2)T , . . . ,hn(xn)T ]Tn×L. Thus, we will get
Htrain. Finally, the weight matrix β will be obtained based on Formula (5).

Predicting Process: As well as the training process, we get the Htest with the
testing dataset Dtest. With Htest and β which is obtained in training process,
each test uncertain object will get m values based on Formula (2). m is the num-
ber of classes. Finally, the class which has the maximum value will be assigned
to the class of the test uncertain object.

5 Experiments

In this section, we present the experimental results of expected value-based algo-
rithm (AVG), sample-based ELM algorithm (SELM) and our proposed algorithm
UELM on six real datasets (see Table 1) taken from the UCI Machine Learn-
ing Repository [6]. All the experiments are implemented with Matlab R2015a
and executed on a computer with an Intel Core i5 3.2 GHz processor and 16GB
RAM.



184 X. Zhang et al.

Table 1. Datasets

Datasets Training tuples No. of features No. of classes Test tuples

Blood transfusion 748 4 2 5-fold

Breast cancer 569 30 2 5-fold

Glass 214 9 6 5-fold

Page blocks 5473 10 5 5-fold

Satellite 4435 36 6 2000

Japanese vowel 270 12 9 370

5.1 Datasets and Settings

For the purpose of our experiments, these six datasets contain mostly numerical
attributes. There are two kinds of datasets: the dataset without data uncertainty
(expect “Japanese Vowel”) and the dataset with data uncertainty (“Japanese
Vowel”). Among the six datasets, “Satellite” and “Japanese Vowel” are already
divided into training and testing tuples. For the other four datasets, we use 5-
fold cross validation to measure the accuracy and time efficiency. Table 1 shows
the details of the datasets.

Due to a lack of real uncertain datasets, except “Japanese Vowel”, we have
inserted the uncertain information into the selected datasets, following [5,19].
The modeling process of uncertain information is determined as follows: Suppose
Amin

j and Amax
j are the minimum and maximum values of attribute Aj respec-

tively. For each object oi and for each attribute Aj , the uncertain attribute value
vi,j has the uncertain interval [vi,j − (vi,j − Amin

j ) ∗ U ∗ rand1, vi,j + (Amax
j −

vi,j) ∗ U ∗ rand2], where U controls the uncertainty degree of uncertain data.
rand1 and rand2 denote the random numbers in the interval of [0, 1].

For AVG and SELM, we need to generate sample points. Suppose [ai,j , bi,j ]
is the uncertain attribute interval which is generated above. And then, ai,j +
(bi,j − ai,j) ∗ rand3 is a sample point, where rand3 is a normally distributed
random number in the interval of [0, 1]. For the AVG algorithm, the input data
for the ELM algorithm use the expected values of the generated sample points
above. For the SELM algorithm, the input data are the generated sample points
above.

For our UELM algorithm, each uncertain object oi use the original value vi,j

as the mean value μi,j for each uncertain attribute Aj . And σi,j = 0.25∗ (vj
max −

vj
min) ∗ U .

Each value in w of ELM randomly generates in the interval of [−1, 1] and
each value in b of ELM randomly generates in the interval of [0, 1]. We vary the
uncertainty degree U to be 0.01, 0.05, 0.1, 0.2. For AVG and SELM algorithm,
the number of sample points is 100 [5,17,19]. Another user-specified parameter
is the number of the hidden nodes L. In our experiments, L has six candidate
values 50, 100, 300, 500, 800, 1000. Each dataset has a fixed L, and with the
fixed L three algorithms all achieve the best accuracy over different L settings.
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5.2 Accuracy

Table 2 shows the accuracy results of applying AVG, SELM and UELM to the
six datasets. To better show the best potential improvement, for each dataset the
results in bold represent the highest accuracy among the three algorithms with
the same uncertainty degree. From the table, we see that our proposed UELM
algorithm always achieves higher accuracy than AVG and SELM. For example,
UELM improves the classification accuracy by about 10% for the “Satellite”
dataset. The reason is that the computation of expected values or sample points
may cause the loss of uncertain information and without uncertain information
the ELM algorithm framework can not deal with uncertain data well. This con-
firms our hypothesis that more accurate classifier can be learnt by considering
the uncertain information with attribute intervals and PDFs rather than the
expected values or sample points and integrating the uncertain information into
the ELM algorithm framework. All in all, UELM always gives better accuracies
for different algorithms over a wide range of uncertainty degree.

Table 2. Accuracy results

Datasets Methods Uncertainty degree

1% 5% 10% 20%

Blood transfusion AVG 75.98% 76.25% 77.95% 75.98%

SELM 76.21% 76.21% 75.95% 77.02%

UELM 81.15% 79.16% 80.08% 81.67%

Breast Cancer AVG 91.41% 88.21% 91.92% 93.16%

SELM 96.67% 97.20% 97.72% 98.08%

UELM 97.56% 98.24% 98.59% 99.65%

Glass AVG 61.30% 61.30% 61.61% 67.20%

SELM 67.29% 65.86% 66.94% 73.83%

UELM 72.73% 77.64% 72.05% 78.94%

Page blocks AVG 96.07% 95.63% 94.79% 93.62%

SELM 95.93% 94.65% 94.30% 93.20%

UELM 96.40% 96.46% 96.47% 96.51%

Satellite AVG 78.50% 79.15% 78.70% 77.90%

SELM 78.75% 79.70% 78.85% 80.95%

UELM 88.85% 88.95% 89.35% 90.20%

Japanese vowel AVG 94.86%

SELM 96.76%

UELM 97.57%



186 X. Zhang et al.

5.3 Efficiency

Figure 3 shows the training and test time comparison on different datasets. The
horizontal axis represents the uncertainty degree U . The vertical axis, which is
in log scale, represents the execution time in seconds. For dataset “Japanese
Vowel”, since its data uncertainty is taken from raw data, the horizontal axis of
Fig. 3(f) doesn’t represent uncertainty degree.
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Fig. 3. Efficiency results

As the efficiency results shown, UELM performs better than SELM in both
the training time and the test time, but not better than AVG due to the integral
computation in UELM. For example, “Satellite” dataset takes 153 s during the
training process with SELM, however, UELM only takes 3 s. In the sample-based
ELM algorithm SELM, the computation of large number of sample points leads
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to a sharp drop in time efficiency. Our UELM algorithm is more effective than
SELM by modeling the data uncertainty with attribute intervals and PDFs, and
redesigning the ELM algorithm framework. All in all, our UELM algorithm is
competitive compared to other algorithms in terms of efficiency.

6 Conclusions and Future Work

In this paper, we proposed a novel ELM-based uncertain data classification algo-
rithm UELM. The proposed algorithm can efficiently solve the remaining prob-
lems of the existing ELM-based methods by modeling uncertain data with exact
probability density function (PDF) and redesigning the traditional ELM algo-
rithm framework. Experimental results showed the superiority of our UELM
algorithm in terms of accuracy and efficiency. For future work, we will extend
the method to multi-layer neural networks with connecting many ELMs together
and we will integrate the statistic feature extraction methods into ELM such as
PCA, GMM, restricted Boltzmann machines.
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Abstract. Crowdsourcing platforms like Amazon’s Mechanical Turk
provide fast and effective solutions of collecting massive datasets for
performing tasks in domains such as image classification, information
retrieval, etc. Crowdsourcing quality control plays an essential role in
such systems. However, existing algorithms are prone to get stuck in
a bad local optimum because of ill-defined datasets. To overcome the
above drawbacks, we propose a novel self-paced quality control model
integrating a priority-based sample-picking strategy. The proposed model
ensures the evident samples do better efforts during iterations. We also
empirically demonstrate that the proposed self-paced learning strategy
promotes common quality control methods.

Keywords: Crowdsourcing · Self-paced learning · Quality control

1 Introduction

Crowdsourcing becomes increasingly popular in recent years, with the belief that
the wisdom of the crowd is superior to the judgements of individuals. Crowd-
sourcing platforms, such as Amazon Mechanical Turk1 and CrowdFlower2, dis-
tribute tasks to workers that are paid for their answers. Achieving domain knowl-
edge by crowdsourcing is more convenient and cheaper than engaging experts.

It is an important problem of crowdsourcing to extract the truth from multi-
ple workers’ answers. Crowdsourcing quality control methods aggregate answers
provided by conflictual data sources. Particularly, crowdsourcing quality control
methods are applied in classification tasks, in which workers are requested to
classify objects to corresponding categories. There are several classical classifi-
cation tasks in crowdsourcing such as indicating whether a photo contains people

This work was supported by 863 project of China (No. 2015AA015403) and NSFC
(No. 61632019).

1 http://www.mturk.com.
2 http://crowdflower.com.
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or not, judging whether URLs and queries are relevant or not and ranking web
pages. Majority voting (MV) is a direct solution to this problem in a heuristic
way. However, MV fails to take into account the reliabilities of different workers
and difficulties of objects. To overcome this problem, Whitehill et al. [11] pro-
poses the Generative model of Labels Abilities and Difficulties (GLAD) model
which emphasizes the differences of workers and objects.

However, crowdsourcing data in real-world is often sparse and imbalanced
with different workers and objects. The reliabilities of workers who contribute
lots of data samples are easy to learn. Nevertheless, it’s difficult for models to
evaluate workers providing fewer samples. Evaluating the difficulty of objects
also has the same problem. Most of probabilistic models treat samples with the
same priority during optimization, which carry negative impacts to following
iterations. Self-paced learning [6] formulates the learning problem as a concise
biconvex problem and guides the learning process according to the easiness of
samples. In self-paced learning, data samples with different difficulties are learnt
in different paces, which avoids the drawbacks in traditional crowdsourcing mod-
els and achieves better classification results.

In this paper, we propose a novel self-paced probabilistic model named
Self-Paced GLAD (SPGLAD). The proposed model integrates a priority-based
sample-picking strategy with GLAD model to determine easy samples that are
learnt firstly. SPGLAD also provide a method to get proper a priori for self-
paced parameters. Consequently, SPGLAD smoothly guides the learning process
to emphasize the patterns of reliable samples rather than those of noisy and con-
fusing ones and obtains the learning robustness.

We formulate the proposed model as a fully corrective optimization in crowd-
sourcing. The contributions of this paper are summarized as follows:

1. We propose a self-paced crowdsourcing algorithm (SPGLAD) which dynam-
ically incorporates samples into learning from easy ones to difficult ones. We
also define the conception easiness of crowdsourcing data samples and propose
a method to get proper prior distributions of parameters.

2. We explain SPGLAD as a probabilistic graph model and illustrate that our
model is an effective approximation of generative models.

3. We empirically show that SPGLAD outperforms other models without a self-
paced process on both synthetic and real-world datasets.

The paper is structured as follows. Section 2 reviews related work. Section 3
introduces the preliminary notation and the GLAD model. Section 4 details
SPGLAD models and its probabilistic inference. Section 5 presents our exper-
imental settings and the empirical evaluation of our method on real-world
datasets. Section 6 concludes the paper and presents directions for future work.

2 Related Work

2.1 Crowdsourcing

Aggregating crowdsourcing data attracts a lot of research efforts, and yields
many insightful discoveries. An advanced approach for label aggregation is
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suggested by Dawid and Skene [2]. They assume that each worker has a latent
confusion matrix for labeling and performs equally well across all items in a
common class. To solve the difference of objects in the same class, Zhou [14,15]
proposes a minimax entropy principle for crowdsourcing. Yin [13] proposes an
iterative truth finder algorithm by simultaneously accessing the trustworthiness
of each source. Venanzi [9] gave a community-based Bayesian models, which
assume workers in the same group share the similar confuse matrix.

Recently, some researchers introduced active or adaptive learning methods
[3,5] into crowdsourcing to improve accuracy with less labels. They focus on
selecting workers or objects during task distributions, and reducing budget with
better results. But those methods assumed a long-term labeling process for work-
ers which is hard to guarantee for general crowdsourcing platform. Other meth-
ods [7,10] are also proposed by taking full advantage of text and multi-media
data to use more information in special crowdsourcing data.

2.2 Self-paced Learning

The self-paced learning is inspired by the learning process of human that grad-
ually incorporates the training samples into learning samples from easy ones to
complex ones. Different from curriculum learning [1] which learns the data in a
predefined order based on prior knowledge, self-paced learning choose samples
dynamically. Self-paced learning is applied in many different domains, such as
image classification [6] and matrix factorization [12].

In this paper, we propose the definition of easiness in crowdsourcing and
introduces self-paced learning into GLAD model. Besides, we also give a priori
like curriculum learning based on domain knowledge in crowdsourcing which
helps the self-paced learning process during cold start.

3 Preliminaries

3.1 Notations

Considering that W ≥ 1 workers label N ≥ 1 objects. Each of objects has C ≥ 2
categories to choose from. While, exactly one of the C categories is correct.
Let lij be the category which i-th worker chooses for j-th object.zj is the correct
category of j-th object. The ability of i-th worker is modeled by αi ∈ (−∞,+∞),
workers with higher abilities will give more correct labels. Workers with negative
αi are considered as spammer. For objects, we use the parameter 1/βj ∈ (0,+∞)
to model the difficulty of labeling j-th object. Objects with βj → +∞ means
this label task is easy, hence most of workers can do it correctly.

Since we assume labeling task is assigned to workers randomly, both the
number of data samples each worker given and the times of each object been
labeled is different. ci is the number of times that j-th object has been labeled.
ti is the number of labels that i-th worker has given. In general, for a given
dataset D = {l1,1, l1,2, ..., lW,N}, crowdsourcing quality control algorithm should
estimate the ability of workers {αi}, the difficulty of objects {1/βj} and give the
correct categories {zj}.
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3.2 GLAD

Whitehill et al. [11] proposed a generative probabilistic model named GLAD
which has been successfully applied to crowdsourcing problems in previous
works. They make an assumption that labels given by the i-th worker to the
j-th object are generated by Eq. (1).

p(lij = zj |αi, βj) =
1

1 + e−αiβj
. (1)

Under this assumption, parameters of the GLAD model can be estimated
through Expectation-Maximization (EM) approach to get a maximum likelihood
estimator, where margined likelihood is shown in Eq. (2).

p(L|α, β,θ, ν, μ, σ, π) =
W∏

i=1

p(αi|θi, νi)
N∏

j

p(βj |μj , σj)
∏

lij∈L

(
∑

z∈C

p(lij |zj , αi, βj)p(zj))
. (2)

The GLAD model can also be used with an explicit prior over each αi, βj

and zj . For example, the workers with bad behaviors before may get a prior with
low mean and high variance and the objects which workers often get confused
with tend to be generated from a norm with higher mean.

3.3 Limitation of GLAD

Two problems need to be solved when we use the GLAD model in real world
datasets. First, because of non-convexity of object functions, the GLAD model
often get stuck into bad local minima.

Second, the GLAD model treats all data samples with the same priority.
Table 1 shows a toy dataset from AdultContent dataset. There are also other
labels given by worker1, but worker2 only give 2 labels. Since worker2 is one
of few workers who gives labels for url3 and give the correct answer for url1,
worker2 is tend to be considered with higher ability than worker1 who give lots
of examples. In fact, worker2 is a common worker or even a spammer. It is hard
for models to estimate the ability with a small number of samples contributed
by worker2 at the beginning of optimization.

Some methods [8,11] are proposed to solve this problem, such as adding
prior distributions or asking users to provide other information from workers.
Those methods need more prior knowledge and hard to implement since we can’t
assume workers always give objective and truthful information.

4 Self-paced GLAD

The basic idea of the proposed model is to introduce self-paced learning to the
crowdsourcing algorithm. Our self-paced learning model relieves itself from lack
of a readily computable easiness measure for samples. In the context of labeling
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Table 1. AdultContent DataSet and ground truth

Worker Website Category

worker1 url1 1
worker2 url1 1
worker1 url2 1
worker1 url3 1

... ... ...

Website Truth

url1 1
url2 0
url3 0
... ...

process with a latent variable z, we introduce a parameter w to representing the
easiness of samples.

We define the easiness in two ways:

– Assumption I. A sample is easy if the label can be generated with a high
probability by the proposed model.

– Assumption II. A sample is easy if we have enough data to predict workers’
ability and the true labels of objects.

These two assumptions are somewhat related: If we get enough data to pre-
dict workers’ ability or objects’ categories, those are more likely to be gener-
ated by the model with higher probability. Assumption II is the precondition
for estimating easiness in Assumption I, which should be handled with prior
knowledge acquired from the dataset. Moreover, easiness in Assumption I is
dynamic and should be estimated in each iteration.

In order to handle those two assumptions, we build up a novel iterative self-
paced quality control algorithm. The algorithm guide the learning from difficult
samples to easy ones in a self-paced way.

4.1 Model Overview

In the above argument, we assumed a given w for each sample. However, in
order to operationalize self-paced learning, we need a strategy for simultaneously
choosing the easy samples and learning the parameter w during each iteration.
To this end, we add w to the generate model and give a prior to it. For each
label, we use a wij to handle Assumption I and optimize Eq. (3).

wt+1 = argmax
w∈Rd

(
r(w) + L(α, β, l, w)

)
, (3)

where r(.) is a regularization function which we is discussed later and L(.) is
log-likelihood for EM. We now modify the above optimization problem by intro-
ducing binary variables vij ∈ {0, 1} that indicate whether the i-th sample is
easy or not according to Eq. (4). Only easy samples contribute to the objective
function.

(wt+1,vt+1) = argmax
w∈Rd

(
r(w) + L(α, β, l, v)

)
. (4)
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For the prior distribution part, we hope prior can handle Assumption II. This
means prior distribution should use cj and ti for parameters. Moreover, vij can
be seen as a binary variable following binomial distribution with parameter wij .
Thus, we naturally chose beta distribution as priori. Considering these two parts,
we use Eq. (5) to generate the prior distribution of wij

wij ∼ Beta(cj ∗ ti, λ(W ∗ N)). (5)

In real datasets, we find that W ∗ N � cj ∗ ti. Hence, we use λ as a super
parameter to control the strength of prior by letting cj∗ti

λ(W∗N) be proper value for
datasets.

4.2 Parameter Estimation

Since our model involves unobserved latent variables and the object function is
difficult to optimize, we use the Expectation Maximization (EM) algorithm to
estimate them. Parameters is updated separately in three steps as followings.

In the E-Step, zjc stands for that the true category of j-th object is c. Then,
we compute the posterior probabilities of all zjc ∈ C as

p(zjc|l, α, β, v) =
p(zjc)

∏
i vijp(lij |zjc, αi, βj)∑

c′∈C p(zjc′
∏

i vijp(lij |zjc′ , αi, βj))
, (6)

Since not each worker give labels for each object, we use vij = 0 for the i-th
workers who don’t labeled the j-th object.

In the M-Step, the goal is to maximize Q(α, β) as

Q(α, β) =E[ln p(l, z|α, β, v)]

E
[
ln

∏

j

∏

c

(
p(zjc)

∏

i

vijp(lij |αi, βj , zjc)
)]

(7)

This Q is maximized by gradient ascending respect to the parameters α and
β. We define pc as

pc = p(lij |zjc, αi, βj) =

⎧
⎨

⎩

1

1+e−αiβj
lij = zjc

1
C−1

(
e−αiβj

1+e−αiβj

)
lij 	= zjc

(8)

Then, we update α and β as following

∂Q

∂α
=

∑

j

∑

c

pc[vijδ(lij , zjc)βj ], (9)

∂Q

∂β
=

∑

i

∑

c

pc[vijδ(lij , zjc)αi], (10)

where δ(a, b) is the Kronecker delta function. δ(a, b) is 1 if the variables are
equal, and 0 otherwise.
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Algorithm 1. Self-paced GLAD
1: Random initialize the parameters α = (αi)

W
i=1 and β = (βj)

N
j=1 respectively.

2: n ← 0
3: repeat
4: E-step:
5: Compute p(zjc|l, α, β, v) as in Eq. (6)
6: M-step:
7: Update α as in Eq. (9) with vn

8: Update βn+1 as in Eq. (10) with vn

9: Update V:
10: repeat
11: Compute wn+1 as in Eq. (11).
12: Compute vn+1 as in Eq. (12).
13: until convergence or maxiter
14: decrease ξ
15: n ← n + 1
16: until convergence or maxiter

Updating W and V is described in Sect. 4.1, wij is calculated following
Eq. (11).

wij =
∑

c

p(zjc)p(lij |zjc, αi, βj) + p(wij). (11)

The first part of Eq. (11) measures the easiness of lij by probability of gen-
erating lij with parameters during iterations. p(wij) is the prior distribution of
wij from Eq. (5).

Then, vij is

vij =

{
1 if wij ≥ ξ

0 if wij < ξ
. (12)

Taking ξ as the threshold to control the pace at which the model learns new
examples, and it is usually iteratively decreased during optimization.

At the beginning of iterations, the first part of Eq. (11) tends to be small.
The p(wij) helps model to choose samples from a prior view. After the model
have learned data well, the first part of Eq. (11) is large enough and the model
uses it to choose easy samples. With ξ decreasing, almost all samples is chosen.
The pseudo-code of the Self-Paced GLAD algorithm is shown in Algorithm (1).

4.3 Relation with Graph Model

It’s easy to find the relation between the self-paced model and the traditional
generative graph model. The easiness of samples which plays an important role
in self-paced learning can been considered as a kind of regularizer. But w is
calculated with the whole model instead of some parameters. Here, for w and
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Fig. 1. GLAD Fig. 2. Self-paced GLAD

v in self-paced GLAD model, it is considered as latent variables generated from
domain specific attributes.

The graphs of GLAD and SPGLAD model are shown in Figs. 1 and 2 respec-
tively. Log likelihood of posterior distribution is shown in Eq. 13.

Θ = lnP (L|θ, π, σ, λ) =
∑

i

p(αi) +
∑

j

p(βj) +
∑

ij

vij ln
( ∑

c

p(lij |zjc, αi, βj)
)

+
∑

ij

(
p(vij |wij) + p(wij |σ, λ)).

(13)

To update vij we need to calculate Eq. (14).

∂Θ

∂vij
= ln

( ∑

c

p(lij |zjc, αi, βj)
)

+ r(wij). (14)

Comparing Eqs. 11 and 14, we find our method is approximate solution for
this generative model. But our way in getting wij and vij is more efficient since
we calculate wij with ξ directly instead of using optimization methods.

4.4 Complexity Analysis

In each E-step of our model, it takes O(WNC) operations to compute for each
p(zjc|l, α, β, v) since we need to go through every sample and category for object
j. In each M-step, we compute α with O(WCT ) operations and β with O(NCT )
operations which T is the number of maximal iterations in the gradient ascending
method. At last, we need O(WN) operations to get wij and vij . Thus, our model
has a time complexity of O(M(WNC + WCT + WN)), where M is the number
of iterations.
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5 Experiments

In this section, we compare the proposed Self-Paced GLAD model with other
crowdsourcing quality control algorithms in both synthetic dataset and real-
world datasets. The baseline algorithms are as follows.

– Majority Voting (MV): The MV method estimates the aggregated label
as the one with the most votes, where each vote is considered with equal
weight.

– Dawid & Skene (D&S) [2]: The D&S model allows the joint estimation of
the items’ true labels and the workers’ confusion matrices.

– 3-Estimates [4]: Galland proposed a probabilistic model to estimate source
reliability.

– GLAD [11]: The GLAD model takes difference of workers and objects into
account, and take truth label as latent variables.

We further compare two variants of our model to show the benefit of adding
prior for w. SPGLAD-a is a variant of our SPGLAD model without setting
prior for easiness of samples. Comparison with these two baselines can show
that objects with few labels and workers given few labels cause our model get
stuck in local optimum at the beginning of iterations.

5.1 Performance Metric

To evaluate the performance of each method, Error Rate is used as evaluation
metric, which is defined as the number of incorrectly labeled objects divided
by the total number of objects N. A lower error rate means that the method’s
estimations is closer the ground truth, and the method is better than those with
higher error rates.

5.2 Synthetic Datasets

Following Whitehill et al. [11], we explore the performance of our model using
dataset generated by ourselves in two-category problem. We simulated 450 label-
ers, the number of labels workers labeled follow normal distribution with mean
20 and variance 10. We also generate 50 spammers who given wrong labels for
objects with few labels on purpose to see the performance of our models. Finally,
we get a dataset with 500 workers, 200 objects and about 10000 samples.

Table 2 presents the comparison results on the synthetic datasets. Overall,
baseline methods are all better than MV. Figure 3 show the sample choosing
process of SPGLAD-a and SPGLAD model. At the beginning of iterations, the
number of samples chosen by SPGLAD is smaller than SPGLAD-a. Some sam-
ples which SPGLAD-a chose get low priori. After several iterations, SPGLAD
chooses the same samples as SPGLAD-a and both of algorithms choose all sam-
ples at last.
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Table 2. Error rate on the synthetic dataset

Method Error rate

MV 0.276

D& S 0.264

3-Estimates 0.275

GLAD 0.258

SPGLAD-a 0.253

SPGLAD 0.251
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Table 3. Description of datasets

Dataset Type Workers Objects Samples

SRJ 3 choose 1 802 108 9352

Twitter-1k 2 choose 1 83 1000 5000

Sentiment 2 choose 1 143 500 10000

AdultContent 5 choose 1 825 11040 92721

We also compare GLAD, SPGLAD-a and SPGLAD by changing the number
of spammers from 10 to 50. Figure 4 shows the error rate values of our models
and GLAD model.

As we analyzed before, with the number of spammers grows, the difference
between our models and the GLAD model becomes larger. Moreover, SPGLAD
also behaves better than SPGLAD-a which proves the effectiveness of our prior
distribution for w. Those differences prove that our model can learning datasets
by choosing samples with easiness in a self-paced way.

5.3 Real-World Datasets

We further analyze our models on several real-world crowdsourcing datasets3

including two-category and multi-categories. For multi-label models such as 3-
3 Data are download from http://i.cs.hku.hk/∼ydzheng2/crowd survey/datasets.

html.

http://i.cs.hku.hk/~ydzheng2/crowd_survey/datasets.html
http://i.cs.hku.hk/~ydzheng2/crowd_survey/datasets.html
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Estimates and TruthFinder, we choose the label with highest probability as the
category. Table 3 shows the description of each dataset.

For AdultContent dataset, we train our model with full dataset and use a
subset with given ground truth to evaluate those models. This subset contains
333 objects with ground truth.

Table 4. Error rate on real-world datasets

Dataset MV D&S 3-Estimates GLAD SPGLAD-a SPGLAD

SRJ 0.354 0.330 0.421 0.318 0.314 0.312

twitter-1k 0.324 0.262 0.377 0.282 0.274 0.274

Sentiment 0.060 0.082 0.092 0.056 0.047 0.046

AdultContent 0.205 0.219 0.208 0.197 0.188 0.186

The results are given in Table 4. SPGLAD get the best results in most
datasets. For the Twitter-1k dataset, although our models perform worse than
the D&S method, they still outperform GLAD. Due to Twitter-1k is pre-
processed manually, there are few outliers in it. Since GLAD model does not
get a high score, our model can not break through its upper bound. Table 4 also
shows the comparison among GLAD, SPGLAD-a and SPGLAD. Our model
behaves better than GLAD in all datasets. Particularly in AdultContent, our
methods outperforms GLAD significantly.
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Figures 5 and 6 show the sample selection process in Twitter-1k and adult-
Content datasets. For the Twitter-1k dataset, The sample selection process in
SPGLAD behave similar to SPGLAD-a. However, the process behaves strikingly
different in the AdultContent dataset. The reason is that there are many objects
with few labels and workers given few labels in the AdultContent dataset. Thus,
SPGLAD selects less samples than SPGLAD-a and increases slowly.
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6 Conclusions

In this paper, we propose a self-paced GLAD model, which incorporates a self-
paced learning process into traditional crowdsourcing quality control model. To
avoid getting stuck on local optimum, the self-paced GLAD model defines the
easiness of samples and optimize model with them. Moreover, we also provide
priori which work as regularization to help model skip difficult samples at the
beginning of iterations. Experiment results show SPGLAD model improves the
performance compared with existing algorithms and the effectiveness of easiness
w when choosing samples. It is easy to find models for rank or multi-label can
also learning in a self-paced way. Combining our method with those algorithms
is one promising direction for future research.
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