
Chapter 9
Web System Development Using Polymorphic
Widgets and Generic Schemas

Scott Britell, Lois M. L. Delcambre and Paolo Atzeni

Abstract Current tools allow non-technical users to create systems to store, display,
and analyze their data on their own using whatever schema they choose. At the same
time, developers of these systems can create generic widgets that may work across
any number of domains. Unfortunately, to use a generic widget an end-user (the do-
main expert) must make their data conform to the schema of the widgets, possibly
losing meaningful schema names. This paper presents a solution to this problem
in the form of generic widget models (canonical structures), local schemas for do-
main experts, and an intermediate model (domain structures) that—through the use
of mappings between the different models—allows generic functionality while pre-
serving local schema. We present the three user roles in our system: widget develop-
ers, domain experts, and domain developers (people who develop and map domain
structures). We introduce the concept of canonical structures and show how they
are mapped to domain structures. We introduce a new relational query operator for
writing queries against canonical structures and show how those queries are rewrit-
ten against the domain structures. We also provide an evaluation of the overhead
of our system compared to custom code solutions and a modern web development
framework.

Scott Britell
Computer Science Department, Portland State University, PO Box 751, Portland, OR 97207 USA
e-mail: britell@cs.pdx.edu

Lois M. L. Delcambre
Computer Science Department, Portland State University, PO Box 751, Portland, OR 97207 USA
e-mail: lmd@pdx.edu

Paolo Atzeni
Dipartimento di Ingegneria, Università Roma Tre, Via della Vasca Navale 79, 00146 Roma, Italy
e-mail: atzeni@dia.uniroma3.it

121© Springer International Publishing AG 2017
J. Cabot et al. (eds.), Conceptual Modeling Perspectives,
https://doi.org/10.1007/978-3-319-67271-7_9

britell@cs.pdx.edu
lmd@pdx.edu
atzeni@dia.uniroma3.it

122 Scott Britell, Lois M. L. Delcambre and Paolo Atzeni

9.1 Introduction

Early on, if an end-user created a website using a word-processing tool like Mi-
crosoft Word® that website would be little more than just documents on the Internet.
To go beyond that, they would have needed to work hand-in-hand with a developer
who had the expertise to take the client’s conceptual model and realize it in an ap-
plication.

Today, technologies such as web development frameworks have democratized
the creation of complex systems by allowing non-technical (non-developer) users
to define their own content types and create complex data models (i.e., conceptual
models) while abstracting away the complexities of database and application cre-
ation. Thus, end-users who are experts in their own data, can choose schema names
that are meaningful. We call end-user-created schemas local schemas.

Modern web frameworks also allow developers to create widgets that can be
plugged into any site built upon that framework. These widgets use a conceptual
model of the developer’s choosing and are typically related to the functionality of
the widget.

Traditionally, in order for a widget to work there are two choices. Developers
may rewrite the same widget multiple times for the different conceptual models of
the end systems. For example, in the case of a calendar widget the developer could
modify the widget to work with each different event type. Or, the end systems must
conform to the model of the widget; in the case of the calendar widget, each end-
user would have to use the event type defined by the widget. This is the common
case in use today by most web development frameworks.

Here, we present a different way to solve this problem. We begin by introducing
intermediary conceptual models (that we call domain structures) between the end-
user models (local schemas) and the widget models (canonical structures). We then
define mappings (such as that used in traditional information integration and schema
mapping) between the different levels (local schema↔domain structures and do-
main structures↔canonical structures). We allow end-users to create local schemas
with meaningful names and allow widget developers to create generic widgets with
canonical structures. And, we allow those generic widgets to show the local schema
names using what we call local radiance.

Our system has three main roles. We call the end-user a domain expert since
we consider someone creating an application for their data to be an expert in their
data. The domain expert is responsible for deciding the local schema and data which
will be used in the system. This person will enable instantiated widgets by creating
mappings between the local schemas and the domain structures.

We call the developer responsible for creating generic widgets described above
the widget developer. This person writes widget code that interacts with generic
schemas, the canonical structures, that produce information that can be displayed
on a webpage or used elsewhere in a web framework.

We add a third role to the two traditional roles: the domain developer whose
responsibility is to create mappings between the generic schemas of the widgets and
the schema of the domain expert. The domain developer usually has some (possibly

9 Web System Development Using Polymorphic Widgets and Generic Schemas 123

Fig. 9.1 An example use of a generic canonical structure (left), an educational domain structure
(middle), a local educational schema (right), and mappings between them.

in-depth) knowledge of the domain but their main responsibility is more likely IT-
based (database/web/application development) rather than domain analysis. Domain
structures will typically be defined by domain developers. Domain structures are
small schemas with names that are understandable to a domain expert. This person
may work with the domain expert to create the website or may work with widget
developers to allow the generic widgets to be used in specific application areas.

The rest of this paper is structured as follows. Section 9.2 describes the back-
ground of our previous work that contributed domain structures, local schemas, the
mappings between them, and our query language. In Section 9.3 we explore the
widget schemas that we call canonical structures, their mappings to the interme-
diary model (domain structures), and query rewriting. In Section 9.4 we evaluate
the cost of using our system compared to a generic web framework and hard-coded
widgets. We present related work in Section 9.5. Section 17.5 concludes the paper.

9.2 Background

In our earlier work we developed a system called information integration with lo-
cal radiance (IILR) [8] which consists of three main parts: (1) domain structures
(schema fragments with domain appropriate names), (2) mappings comprised of
simple correspondences from local schemas to domain structures, and (3) a query
algebra to allow queries against the domain structures to retrieve data from the local
schemas—including the ability to retrieve local schema names. IILR corresponds to
the middle and right parts of Figure 9.1.

Figure 9.1 shows the three levels of schema used in our system and mappings
between them. In this example we have an hierarchical canonical structure with a
domain structure and local schema from an educational domain. These three levels
correspond to the three roles described above.

124 Scott Britell, Lois M. L. Delcambre and Paolo Atzeni

Has

Part
title
part_id

Parent
title
parent_id

Item
Title
Item_id

Attribute
Item

Title
Item_id

Attribute1
Attribute2
AttributeN

Fig. 9.2 Three examples of canonical structures.

On the left side of the figure, there is a canonical structure for a “Parent” and
“Part” related by “Has” that will be used for a hierarchical navigation widget.

A domain developer then may create a domain structure (center of Figure 9.1)
to work with the canonical structure of the widget. Note that the domain structure
(or a subset of the domain structure) must be isomorphic to the canonical structure.
The main difference between the domain structure and the canonical structure is
the use of schema names that should be recognizable to a person working in the
educational domain, for this example. The domain developer then creates a set of
mappings between the canonical structure and the domain structure to instantiate
the widget in a domain. In this case, the domain structure represents a hierarchical
setting of an “Educational Module” that contains “Educational Resources”. This
domain structure is identical to the canonical structure albeit for the changing of
names.

The domain expert has a local schema (shown on the right of Figure 9.1) and is
able to use the instantiated widget in their website by creating mappings from the
local schema to the domain structure. Here we see that the local schema is mapped
multiple times to the domain structure allowing the widget to show “Units” inside a
“Course” (the blue-solid lines between local and domain), and “Lessons” in a “Unit”
(the green-dashed lines between local and domain).

A canonical structure is usually rather simple, essentially a “data pattern”, on top
of which widget code is implemented. A canonical structure often involves a single
entity (like those shown in the middle and right in Figure 9.2), to be used by widgets
that manage (search, analyze, update, . . .) objects of a given data type (phone books,
recent messages, calendars, . . .).

Figure 9.3 shows a small sample of domain structures across a number of do-
mains. On the left we see two domain structures for an educational domain. We use
these structures throughout the rest of this paper. The “Educational Module” struc-
ture shown previously is on top and on bottom there is a structure for an educational
resource.

In the middle of Figure 9.3 there are two domain structures from a financial do-
main. The top structure shows “Organizations” and their “Sub-organizations” which
may be used for company schemas with departments, divisions, or labs. Below
that there is a domain structure for a “Financial Instrument” which can be used
for grants, budgets, or other financial entities. Being isomorphic to the educational
structures, these structures will work with any widgets that the educational ones do
(once mappings are in place between the canonical and domain structure).

On the right of Figure 9.3 there are two domain structures for the sports domain.
The top structure represents a “Team” that has people in both coaching and par-

9 Web System Development Using Polymorphic Widgets and Generic Schemas 125

Educational
Resource

Title
Resource_Id

Grade Level
Focus Subject

Author

Educational
Resource

Contains

Educational
Module

Title

Title

Module_id

Resource_Id Sub-
organization

Has

Organization Title

Title

Org_id

Sub-org_id
Leader

Financial
Instrument

Responsible_Party
Fin-instr_id

Accounting
Item

ItemValue Source

Position
Vital StatisticPlaysForCoaches

Team
Name

Person
GivenName

Team_id

Person_id

Contender

Competes

Competition
Location
Date

Title

Competition_id

Contender_id

Fig. 9.3 Examples of domain structures from the educational (left), financial (middle), and sports
(right) domains.

ticipant roles. The bottom structure represents “Competitions” and “Contenders”
which can be used for local schemas ranging from football games to tennis and
boxing matches.

Figure 9.4 then shows how the various domain structures from the financial and
sports domains can be mapped to the canonical structures. The mappings on the
right side of the figure are straightforward. The mapping in the upper left shows
how a subset of the domain structure can be isomorphic to a canonical structure. In
this case, both the coaches of the teams and the players are mapped to the canonical
structure separately so that they can both show up in the hierarchical widget, but
only an isomorphic part of the structure is mapped at a single time. The bottom
left of the figure shows a more complex mapping where multiple attributes of the
domain structure are mapped to a single attribute in the canonical structure. This
will perform an operation similar to an unpivot[19] of the local schema (when local
types are included in a query result, a feature supported by IILR).

Figure 9.5 shows an example of an educational local schema on the right and
a domain structure on the left. There are two mappings between the two schemas.
The blue-solid lines show the mapping between the Course/Unit-For/Unit structure
in the local schema and the domain structure while the green-dashed lines show the
mapping between the Unit/Lesson-For/Lesson structure and the domain structure. In
our previous work [9], we performed a user-study that showed that domain experts
with and without technical expertise could understand and create these mappings
using simple and complex schemas.

We defined a query language at the domain level to enable information inte-
gration and querying of multiple local schemas with a single domain query. This
enables both integration and data analysis and enables the widgets described later
in this paper. Our query language extends the nested relational algebra (σ , π , ./, ν ,
. . . , plus γ for grouping [11]) with two operators: apply (α) and type (τ). Our apply
operator (α(DS)) is the basis of every query in our system. The apply operator uses
correspondences that comprise the mappings between local schemas and a domain
structure to perform information extraction/integration/transformation. The result of
the apply operator is a set of relational tuples which can be passed to other relational

126 Scott Britell, Lois M. L. Delcambre and Paolo Atzeni

Fig. 9.4 Mappings of all domain and canonical structures in Figures 9.2 and 9.3

Fig. 9.5 A domain structure (left) and local schema (right) with two mappings between them
(the blue-solid mapping and the green-dashed mapping). Each mapping consists of a number of
correspondences (single lines).

algebra operators as part of more complex queries. For example, Figure 9.6 shows
sample data in the form of the local schema from Figure 9.5. Then the left and mid-
dle parts of Figure 9.7 show the use of the apply operator against the “Educational
Module” and “Contains” parts of the domain structure from Figure 9.5.

The local type operator (τn(χ)) takes a domain structure component (n) and a
query (χ) and introduces an attribute into the query result containing the local struc-
ture name to which the domain structure component (entity, attribute, or relation-
ship) was mapped. For example, the right part of Figure 9.7 shows the type oper-
ator being used after the apply on the “Instructional Resource” part of the domain
structure from Figure 9.5. The type operator allows the local names to come to the

9 Web System Development Using Polymorphic Widgets and Generic Schemas 127

Title Id

Intro	to	CS 324

Title Id Education	Level

Python 834 12th Grade

Java 982 12th Grade

Title Id Focus	Area

Intro	to	Python 835 CS

Advanced	Python 836 CS

Intro	to	Java 983 CS

Course_id Unit_id

324 834

324 982

Unit_id Lesson_id

834 835

834 836

982 983

Course Unit-For Unit

Lesson-For Lesson

Fig. 9.6 Sample local data using the local schema from Figure 9.5.

Title Module_id

Intro	to	CS 324

Python 834

Java 982

Module_id Resource_id

324 834

324 982

834 835

834 836

982 983

Title Resource_id Intructional_
Resource.type

Python 834 Unit

Java 982 Unit

Intro	to	Python 835 Lesson

Advanced	Python 836 Lesson

Intro	to	Java 983 Lesson

𝛼(Educational Module) 𝛼(Contains) 𝜏𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑎𝑙_𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒	𝛼(Instructional Resource)

Fig. 9.7 Use of the apply and type operators on the domain structure from Figure 9.5 using the
local data from Figure 9.6.

domain level in a generic fashion meaning that generic widgets can display local
schema names; in essence the local names radiate to the domain level hence the
name information integration with local radiance.

9.3 Canonical Structures

A canonical structure is a generically named schema fragment used by a widget
developer. As an example, the left side of Figure 9.1 shows the canonical structure
that is used to build the navigation widget described below.

Another basic canonical structure is a single entity with a small set of attributes
such as that shown in Figures 9.2 and 9.8. This simple schema allows a variety of
different generic widgets to be built. We say that the widget is polymorphic because
it can be used with multiple domain structures (and multiple local schemas in turn).

9.3.1 Widgets

We describe three polymorphic widgets that use canonical structures to give the
reader some idea of what widgets are and how they can represent different local
schemas.

128 Scott Britell, Lois M. L. Delcambre and Paolo Atzeni

Fig. 9.8 A set of mappings is shown for the data analysis widget. The mappings between local and
domain are straightforward. The mappings between the canonical and domain perform an unpivot
operation.

Fig. 9.9 The navigation widget

9.3.1.1 The Navigation Widget

is designed to provided a tree-based navigation browser across a site. As can be seen
in Figure 9.9, the widget works across various different schemas like the “Course”
on the left and the “Educational Standard” in the upper right. The widget exploits
the part-whole relationships in the system.

The widget is written against the “Parent-Part” canonical structure by the widget
developer. A domain developer creates a domain structure for “Educational Module-
Educational Resource”. A domain expert then creates mappings between their local
schema and the domain structure.

9 Web System Development Using Polymorphic Widgets and Generic Schemas 129

9.3.1.2 The Data Analysis Widget

shows aggregated information about attributes in a system. For example, the left
of Figure 9.10 shows the different focus area of resources within the “Robo Intro”
unit while the right side shows aggregated data for the authors of resources within a
course.

Standards-based Collaboration

Curricular materials are mapped to state standards to facilitate
course creation and collaboration.

Curriculum Collaboration, Customization, and Reuse:
Creating Communities in Digital Repositories

Our goal: facilitate the use of online materials by making
access, use, and reuse simpler and more efficient while
also forming communities to support the extended
maintenance and growth of these materials.

1Portland State University, Portland, OR
{britell,lmd}@cs.pdx.edu

2Virginia Tech, Blacksburg, VA
fox@vt.edu

3Olympia School District, Olympia, WA
rsteele@osd.wednet.edu

Scott Britell1, Lois M.L. Delcambre1, Edward A. Fox2, Randy Steele3

Based on the Drupal content management system, teachers may
create any course structure they desire. Wizards then allow
teachers to easily add materials to existing courses as
differentiated instructional materials and assessments.

Teachers may clone and reorganize any existing course. This
enables the reuse of materials while letting a teacher quickly tailor
materials to a local environment. We further increase the potential
for reuse by providing customized downloads that can be used
offline or as separate digital repositories..

Existing Drupal modules are leveraged for teacher collaboration
and community formation—such as Comment, Rating, and
Tagging and integration with tools like Piazza.

Content Creation

Customization and Reuse Community

Visualization

Metadata and structuring visualizations provide enhanced
information about resource usage and distribution.

Part of the Ensemble project: PI: Boots Cassel (Villanova), Co-Pis: Peter Brusilovsky (Pitt),
Lois Delcambre (Portland State), Ed Fox (Va. Tech), Rick Furuta & Frank Shipman (Texas

A&M), Dan Garcia (UC Berkeley), Greg Hislop (Drexel), Haowei Hsieh (Iowa)

Standards-based Collaboration

Curricular materials are mapped to state standards to facilitate
course creation and collaboration.

Curriculum Collaboration, Customization, and Reuse:
Creating Communities in Digital Repositories

Our goal: facilitate the use of online materials by making
access, use, and reuse simpler and more efficient while
also forming communities to support the extended
maintenance and growth of these materials.

1Portland State University, Portland, OR
{britell,lmd}@cs.pdx.edu

2Virginia Tech, Blacksburg, VA
fox@vt.edu

3Olympia School District, Olympia, WA
rsteele@osd.wednet.edu

Scott Britell1, Lois M.L. Delcambre1, Edward A. Fox2, Randy Steele3

Based on the Drupal content management system, teachers may
create any course structure they desire. Wizards then allow
teachers to easily add materials to existing courses as
differentiated instructional materials and assessments.

Teachers may clone and reorganize any existing course. This
enables the reuse of materials while letting a teacher quickly tailor
materials to a local environment. We further increase the potential
for reuse by providing customized downloads that can be used
offline or as separate digital repositories..

Existing Drupal modules are leveraged for teacher collaboration
and community formation—such as Comment, Rating, and
Tagging and integration with tools like Piazza.

Content Creation

Customization and Reuse Community

Visualization

Metadata and structuring visualizations provide enhanced
information about resource usage and distribution.

Part of the Ensemble project: PI: Boots Cassel (Villanova), Co-Pis: Peter Brusilovsky (Pitt),
Lois Delcambre (Portland State), Ed Fox (Va. Tech), Rick Furuta & Frank Shipman (Texas

A&M), Dan Garcia (UC Berkeley), Greg Hislop (Drexel), Haowei Hsieh (Iowa)

Fig. 9.10 The data analysis widget.

This widget performs an unpivot operation where multiple attributes at the do-
main level are mapped to a single canonical attribute; this is seen in Figure 9.8 where
the different attributes of the domain structure (“Grade Level”,“Focus Subject”, and
“Author”) all all mapped to the single “Attribute” in the canonical structure. This
allows the widget to be written generically for all possible attributes that may ap-
pear in the local schemas. The widget builds off the Parent-Part structure used in the
navigation widget described above and adds the “Item” canonical structure shown
in Figures 9.2 and 9.8 and uses the type operator to bring the local type names into
the widget.

9.3.1.3 The Faceted Navigation Widget

uses the canonical structures of the navigation and data analysis widgets together
to create an hierarchical tree structure that is able to be restructured by the attribute
data used in the analysis widget. Figures 9.11 and 9.12 show the functionality of
this widget. The widget starts with a hierarchical view of a collection, in this case, it
is for a digital library of computing resources but it could also be a course like those
displayed above using the hierarchical widget. The widget allows a user to facet the
collection by any of the local schema attributes that have been mapped. Figure 9.12
shows the collection faceted by class week. Each of the subtrees below the values
of the class week facet may then be further faceted.

The faceted navigation widget uses the same canonical structures as the data anal-
ysis widget but performs a different task. Canonical structures and their mappings
to domain structures may be reused multiple times.

130 Scott Britell, Lois M. L. Delcambre and Paolo Atzeni

Fig. 9.11 The faceted navigation widget.
Attributes that the tree can be faceted by
are shown after clicking the diamond sym-
bol next to the tree.

Fig. 9.12 The tree has now been faceted
by “Class Week” and “Week 11” has been
faceted by “Computational Thinking Prac-
tice”.

9.3.2 Mappings

In order to instantiate the navigation widget, the domain developer creates a widget
specification which includes the mapping (such as those shown between the left and
center parts of Figure 9.1) between the canonical structure with which the widget is
associated and the domain structure.

A domain expert can then enable a widget for use in their website by creating
mappings between a local schema and a domain structure such as those shown be-
tween the center and right of Figure 9.1. Here we see one mapping between the
“Course-Unit” part of the local schema to the domain structure and a second map-
ping between the “Unit-Lesson” part of the local schema. Similar mappings are cre-
ated for the various different local schemas that may exist in the educational domain.
For the sake of brevity we do not show those mappings but intuitively it follows that
each relationship and its entities in the local schemas can be mapped to the domain
structure to enable the different widgets shown in Figure 9.9. As mentioned above,
we impose one constraint on the mappings between canonical and domain structures
which is that the mapped portion of the domain structure must be isomorphic to the
canonical structure.

Since our implemented systems use relational databases, we have built our in-
formation integration with local radiance system on top of that and use the nested
relational model and algebra to store our mappings and perform our queries. We
use a straightforward translation between the Entity-Relationship model shown in
the figures in this paper and relational tables in our implemented system. Mappings
between canonical structures and domain structures are stored in the nested relation

CSDSmap(ID,CR,DR,CScorr(ID,CA,DA))

where each mapping has an id, the canonical relation and domain relation in
the mapping, and a nested relation of the correspondences between the canonical
attributes and the domain attributes. An example tuple for the mapping between
the “Has” canonical relationship and the “Contains” domain relationship shown in

9 Web System Development Using Polymorphic Widgets and Generic Schemas 131

Figure 9.1 would be

(1, ′Has′, ′Contains′,((1.1, ′Parent_title′, ′EducationalModule_Title′),

(1.2, ′Parent_parent_id′, ′EducationalModule_Module_id′),

. . .))

9.3.3 Query Rewriting

In order for our widgets to work we must perform query rewriting from queries
addressing the canonical structure to queries addressing the local schemas at the
time of execution. As described above, in our previous work we defined the apply
operator to translate queries against domain structures into queries against local
schemas. We use our mappings and introduce a new operator perform the next step
in rewriting a query against a canonical structure into a domain structure-level query.
The rewrite operator (θ) is defined as follows, given a canonical relation cr,

θ (cr) =
⋃

∀id∈πCSDSMap.ID(
σCSDSmap.CR=crCSDSmap))

ρ
CSDSmap.CScorr.DA→
CSDSmap.CScorr.CA,

τ(CSDSmap.CScorr.DA)→
CSDSmap.CScorr.CA_type

α(CSDSmap.DR)

The rewrite operator works by using all the mappings between the given canoni-
cal relation and all mapped domain relations. For each mapping it performs the ap-
ply operation on the domain relation and then renames the domain attribute names
to the canonical attribute names such that they will work in the widget using the
canonical names. It also bring the type information from the apply operator so that
generic widgets can show local type information as desired.

9.4 Evaluation

In our previous work [9] we have shown that people with and without technical
expertise can perform the mappings between domain structures and local schemas
required in our system. Here, we evaluate the overhead imposed by our system from
our extra layers of modeling and mappings.

We compare our system against a hard-coded custom widget which performs
queries directly against its own schema and stores all data in a single table requiring
no joins in the resultant query. For the results in Table 9.4, this system is referred
to as HC (hard-coded). Since the hard-coded system does not perform any of the
overhead associated with our system we consider this to be a good target for fast

132 Scott Britell, Lois M. L. Delcambre and Paolo Atzeni

performance that we would hope to achieve in our best-case. Our best-case scenario
(USb) only has simple mappings that require no extra joins to perform.

We also compare ourselves to the default Drupal rendering system (labelled D
in Table 9.4). As mentioned above, Drupal stores each attribute of an entity in a
separate database table, so in order to render a page it must create a join query
joining all the tables of all of the attributes. This is similar to our worst-case (USw)
performance because if a user has composed complex mappings that involve the
unpivot operation, our system must perform a similar join query. Note also that like
Drupal (and most other web systems) these costs are usually one-time costs, since
the output of these queries can be cached.

Table 9.4 shows the results of the performance test. Our system is shown in both
the best-case (USb) and worst-case (USw) scenarios. All systems were tested with 2,
10, and 20 attributes and on a database with 100, 1000, and 10000 entries. Times are
shown in milliseconds and are the average of 10 runs each. All tests were performed
on a server with an Intel I7 processor and 8GB of RAM.

Table 9.1 Performance comparison of our system in a best-case scenario (USb) and worst-case
scenario (USw) to a hard-coded (HC) single query widget (an optimal but most labor intensive
solution) and to the Drupal (D) page rendering system (a generic widget that can render arbitrarily
complex types). All three systems tested with 2, 10, and 20 attributes. All times in milliseconds.

Rows HC2 HC10 HC20 D2 D10 D20 USb2 USb10 USb20 USw2 USw10 USw20
100 6.2 7.2 8 6.6 29.6 47 6.5 9.9 12.6 7.3 33.5 52.6
1000 8.8 16.9 19.9 7.5 40.3 72.9 9.4 27.4 39.5 9.9 53.3 93.7
10000 31.5 79.1 129.6 40 145.7 326.5 46.9 174.5 322.9 67.9 245.3 524.8

From Table 9.4 we see that, in our best-case scenario, we are competitive to a
hard-coded solution for a smaller number of rows which is a great result for our
naive implementation directly written against the IILR formalism. This naive im-
plementation introduces constants for mapping and type information for every at-
tribute in every row which, unsurprisingly, leads to the slower performance at larger
row and attribute sizes. Even with this overhead we are comparable to Drupal in
our worst-case scenario and the same or better in our best-case, even at larger row
sizes. Our performance can be improved by storing the constant data in the database
and optimizing queries using standard relational algebra equivalences. Note that our
system is performing local radiance which cannot be done by either the hard-coded
or Drupal system.

9.5 Related Work

Generic schemas and functionality have been explored extensively in programming
and data management and bring with them many benefits. Generic schemas aid in
development by allowing functions, code, and constraints to be defined generically.
It also allows reuse and aids in the definition and creation of new (more complex)

9 Web System Development Using Polymorphic Widgets and Generic Schemas 133

schemas and systems and allow for a greater reuse of schema [17]. Using generic
schemas can provide faster development even with complex models while mini-
mizing development complexity [17]. Generic types in programming language like
Java [4] or C# [1] can provide common functionality to many different heterogenous
types. We take this approach and add the ease of use of schema mapping systems
like CLIO [14] to enable non-technical users to make use of generic functionality.

Web development frameworks [2] also often provide a generic relational map-
ping to convert complex user defined schemas into generic formats in their database
backends. Often an instance of a content type created by a user in the web front-end
is stored in the database with a table for each field of the object plus an instantiation
of some base class. This is in contrast to Object-Relational Mappers (ORMs) [12]
that provide an algorithmic mapping between objects and relational tables that con-
tain attributes for each of the fields in an object. Web development frameworks can
provide some basic generic functionality for building pages and websites, but more
complex widgets are limited to predefined models.

Work has been done to create reusable semantic web widgets [13, 16]. While
these widgets are reusable in a number of sites and can leverage the genericity of
self-describing models like big data document stores and triple stores [10] and web
models like XML [3] or RDF [6]; they are still limited to predefined models stored
in the model or application.

A hybrid approach is often used in electronic medical records (EMR) [15] where
there is a predefined schema for many of the entities in the system such as doctors,
patients, or vital signs and generic (triple-store-like) tables that allow an EMR to
be customized; and, a similar approach in SAP [5] which has transparent, pooled,
and clustered tables. While this allows the data storage to be predefined while al-
lowing heterogeneity of end-systems, the conceptual model is usually built into the
application logic of the systems.

Our canonical structures are similar to data model patterns [7]. These patterns
often are used for common reoccurring schema elements. Our canonical structures
are also very similar to generic relationship types in information systems [17, 18].
Generic relationship types like the part-whole relationship or is-a relationship are
often instantiated repeatedly in an information system, for example, a book entity
has chapters which have sections which have paragraphs. If we know that the re-
lationships between books, chapters, sections, and paragraphs are all instantiations
of the part-whole relationship, we can then pre-define constraints and functional-
ity on the part-whole relationship that will apply to all of its instantiations. If IILR
was used in a system with such known relationship types we could automatically
generate mapping from relevant canonical structures to the local schema.

134 Scott Britell, Lois M. L. Delcambre and Paolo Atzeni

9.6 Conclusions

We have implemented our system on top of the Drupal framework. As part of our
future work, we hope to expand this to other frameworks and potentially create a
framework of our own based on these principles.

We have shown how using canonical structures it is possible to write generic
widgets that can be used in any number of systems while still maintaining local
schema. We believe that the added overhead in terms of runtime costs and personnel
is both minimal and justified. Our evaluation shows that in the worst-case scenario
we still perform competitively. The notion of having three roles in our system is
easily analogous to the different roles in a web framework where there are frame-
work developers (writing completely generic code), community module developers
(often writing domain specific widgets), and end-users instantiating frameworks in
whatever domain they wish. We believe that this is an important step in allowing
end-users to maintain more control over how their data is stored and presented.

We also hope to explore how we could use this paradigm to enable non-technical
users to accomplish even more technical tasks, e.g., programming or complex query
writing. We believe that by empowering end-users we may encourage them to in-
crease their technical knowledge and possibly help solve the problem of a shortage
of developers.

Acknowledgements This work was supported in part by National Science Foundation grants
0840668 and 1250340. Any opinions, findings, and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily reflect the views of the National
Science Foundation.

References

1. C# | Microsoft Docs, https://docs.microsoft.com/en-us/dotnet/csharp/csharp
2. Drupal, http://drupal.org
3. Extensible Markup Language (XML), https://www.w3.org/XML/
4. Java 8, https://java.com/en/download/faq/java8.xml
5. Pooled and Cluster Tables
6. RDF - Semantic Web Standards, https://www.w3.org/RDF/
7. Blaha, M.: Patterns of Data Modeling. CRC Press, Boca Raton,FL (jun 2010)
8. Britell, S., Delcambre, L.M.L., Atzeni, P.: Flexible Information Integration with Local Domi-

nance. Information Modelling and Knowledge Bases XXVI, 21–40 (2014)
9. Britell, S., Delcambre, L.M.L., Atzeni, P.: Facilitating Data-Metadata Transformation by Do-

main Specialists in a Web-Based Information System Using Simple Correspondences, pp.
445–459. Springer International Publishing (2016)

10. Cattell, R., Rick: Scalable SQL and NoSQL data stores. ACM SIGMOD Record 39(4), 12
(may 2011)

11. Gupta, A., Harinarayan, V., Quass, D.: Generalized projections: A powerful approach to ag-
gregation. In: Proc. 21st VLDB Conf. pp. 11–15 (1995)

12. Keller, A.M., Jensen, R., Agarwal, S.: Persistence software: bridging object-oriented program-
ming and relational databases. ACM SIGMOD Record 22(2), 523–528 (jun 1993)

https://docs.microsoft.com/en-us/dotnet/csharp/csharp
http://drupal.org
https://www.w3.org/XML/
https://java.com/en/download/faq/java8.xml
https://www.w3.org/RDF/

9 Web System Development Using Polymorphic Widgets and Generic Schemas 135

13. Mäkelä, E., Viljanen, K., Alm, O., Tuominen, J., Valkeapää, O., Kauppinen, T., Kurki, J.,
Sinkkilä, R., Kansala, T., Lindroos, R., Others: Enabling the Semantic Web with Ready-to-
Use Web Widgets. In: FIRST. pp. 56–69 (2007)

14. Miller, R.J., Hernández, M.A., Haas, L.M., Yan, L., Howard Ho, C.T., Fagin, R., Popa, L.: The
Clio project. ACM SIGMOD Record 30(1), 78–83 (mar 2001), http://dl.acm.org/citat
ion.cfm?id=373626.373713

15. Nadkarni, P.M., Brandt, C., CS, J., A, S., M, D., WE, H.: Data Extraction and Ad Hoc Query
of an Entity–Attribute–Value Database. Journal of the American Medical Informatics Associ-
ation 5(6), 511–527 (nov 1998)

16. Nowack, B.: Paggr: Linked Data widgets and dashboards. Web Semantics: Science, Services
and Agents on the World Wide Web 7(4), 272–277 (dec 2009)

17. OliveÌĄ, A.: Conceptual modeling of information systems. Springer (2007)
18. Olivé, A.: Representation of Generic Relationship Types in Conceptual Modeling, pp. 675–

691. Springer Berlin Heidelberg, Berlin, Heidelberg (2002)
19. Wyss, C.M., Robertson, E.L.: A formal characterization of PIVOT/UNPIVOT. In: Proceed-

ings of the 14th ACM international conference on Information and knowledge management -
CIKM ’05. p. 602. ACM Press, New York, New York, USA (oct 2005)

http://dl.acm.org/citation.cfm?id=373626.373713
http://dl.acm.org/citation.cfm?id=373626.373713

	9 Web System Development Using Polymorphic Widgets and Generic Schemas
	9.1 Introduction
	9.2 Background
	9.3 Canonical Structures
	9.3.1 Widgets
	9.3.2 Mappings
	9.3.3 Query Rewriting

	9.4 Evaluation
	9.5 Related Work
	9.6 Conclusions

