
Chapter 14
A Unified Conceptual Framework for Managing
Services in the Web Oriented Architecture

Devis Bianchini, Valeria De Antonellis and Michele Melchiori

Abstract In recent years, there has been an increasing adoption of the agile paradigm
for developing data-intensive web applications, relying on the selection and reuse
of third party components. In parallel, the Web Oriented Architecture (WOA) has
emerged, gathering together the notions underneath Service-Oriented Architecture
(SOA), REpresentation State Transfer (REST) and web applications. In particular,
WOA has promoted the success of: a) RESTful services for access to web data
sources, and b) public repositories where these data providing services, in the form
of Web APIs, are made available to the community of developers. In this context, it
is more and more relevant to support the developers, even operating in community
networks, to select from available repositories suitable APIs for their development
needs. Nevertheless, recent selection approaches considered different features, com-
plementary and only partially overlapping, among the ones used for service descrip-
tions in the repositories. In this chapter a conceptual framework is defined that con-
siders all the features to enable a flexible selection of data providing services over
multiple repositories. To this aim, the framework provides: (i) a multi-perspective
model for service description, that also includes a social-based perspective, focused
on the community of developers, their mutual relationships and their estimated cred-
ibility in web application development; (ii) a collection of search and ranking tech-
niques that rely on the model; (iii) a prototype system that implements the unified
conceptual framework on top of service repositories.

Devis Bianchini
Dept. of Information Engineering University of Brescia, Via Branze, 38 - 25123 Brescia (Italy)
e-mail: bianchin@ing.unibs.it

Valeria De Antonellis
Dept. of Information Engineering University of Brescia, Via Branze, 38 - 25123 Brescia (Italy)
e-mail: deantone@ing.unibs.it

Michele Melchiori
Dept. of Information Engineering University of Brescia, Via Branze, 38 - 25123 Brescia (Italy)
e-mail: melchior@ing.unibs.it

199© Springer International Publishing AG 2017
J. Cabot et al. (eds.), Conceptual Modeling Perspectives,
https://doi.org/10.1007/978-3-319-67271-7_14

bianchin@ing.unibs.it
deantone@ing.unibs.it
melchior@ing.unibs.it

200 Devis Bianchini, Valeria De Antonellis and Michele Melchiori

Key words: Web Oriented Architecture; RESTful service; developers’ social net-
work; collective knowledge; selection; search; ranking; similarity.

14.1 Introduction

In recent years, there has been an increasing adoption of the agile paradigm for
developing data-intensive web applications, relying on the selection and reuse of
third party components. In parallel, the increasing diffusion of the Web Oriented
Architecture (WOA) paradigm has progressively shifted the technologies for web
application development, gathering together the notions of Service-Oriented Ar-
chitecture (SOA), REpresentation State Transfer (REST) and web applications. In
particular, WOA has promoted the success of: a) RESTful services for access to
web data sources; b) public repositories where these data providing services, in the
form of Web APIs, are made available to the community of developers [1]. As a
consequence, nowadays, it is more and more relevant to support the developers,
even operating in community networks, to select from available repositories suit-
able data providing services for their needs. Service search and ranking techniques
generally exploit different features in service descriptions. Beyond categories, tags
and technical features, the following aspects are generally considered: (i) the co-
occurrence of APIs in the same applications [2, 3]; (ii) the network traffic, e.g.,
number of visitors around APIs and applications (also denoted as mashups) [4, 5];
(iii) the ratings assigned by developers [6, 7]. Moreover, social relationships be-
tween developers, developers’ experience and their credibility are considered rele-
vant features, as already highlighted for traditional database systems [8]. Generally,
in the approaches, subsets of features among the ones present in available reposi-
tories, such as ProgrammableWeb or Mashape, are considered. As of May 2017,
ProgrammableWeb contains over 17,000 Web APIs, that have been used in more
than 6,300 mashups (excluding the deprecated ones), while over 100,000 developers
are registered in the repository. Web APIs are described through categories, tags and
technical features, and the list of mashups that have been developed with the APIs.
Mashape1 is a cloud API hub, where each Web API is associated with the list of de-
velopers who adopted or declared their interest for it (denoted as consumers and fol-
lowers, respectively) and where a developer can follow other developers (leveraging
a twitter-like organization). Other public repositories, such as apigee or Anypoint
API Portal2, focus on a subset of these features.

As it has been proven that conceptual modeling plays a crucial role since the
early stages of agile applications development [9, 10], the aim here is to demonstrate
its effectiveness in enabling flexible data providing service selection over multiple
repositories, by the definition of a unified model apt to consider all relevant features.
To this purpose, a conceptual framework is defined to provide a reference model,

1 https://www.mashape.com/
2 https://api-portal.anypoint.mulesoft.com

14 A unified conceptual framework for managing services in WOA 201

capturing different service modeling perspectives, and a collection of techniques
and methods for service selection in web application development. The conceptual
framework is the basis of WISeR (Web apI Search and Ranking) a prototype sys-
tem that has been developed to implement the service search and ranking facilities.
Partial results of our work have been presented in [7, 11, 12], here the final overall
framework is presented.

The chapter is organized as follows: in Section 14.2 existing approaches in litera-
ture are presented and motivations for a unified conceptual framework are discussed;
Section 14.3 describes the multi-perspective conceptual model; Section 14.4 details
service search and ranking techniques, that take advantage of the unified model; in
Section 14.5 the WISeR system is shortly described; finally, Section 14.6 closes the
chapter.

14.2 Related Work

Several approaches in literature based Web API search and ranking strategies on
lightweight descriptions. These approaches are referred to as selection-oriented ap-
proaches. They are conceived to select candidate Web APIs to feed composition-
oriented approaches, mainly focused on providing support for properly combin-
ing available components [13]. Among selection-oriented approaches, there have
been research efforts on service selection for mashup development based on API
co-occurrence [14, 15], quality of components [16] and collaborative filtering [17].

Table 14.1 State of the art on Web API selection-oriented approaches.

[18] [3] [6] [4] [5] [2] WISeR

Categories

Tags/keywords

Semantic tagging

Mashup/API tagging

Technical features

Web API co-occurrence

Web API rating

Mashup-contextual rating

Developers’ experience

Number of Web API uses

Different search scenarios

202 Devis Bianchini, Valeria De Antonellis and Michele Melchiori

The focus here is on approaches that study the effects of taking into account
multiple features for Web API selection. For these approaches, a summary of differ-
ences against the work described in this chapter is provided in Table 14.1, where all
the considered features are reported.

In particular, the approaches in [3, 18] combine descriptive features based on
tags with Web API popularity (number of mashups where APIs have been used
and users’ ratings). The system described in [18] firstly models user’s interests as
vectors of weighted tags, where tags are extracted by textual descriptions of the
mashups the user has interacted with in the past. Similarly, vectors of weighted tags
are extracted by textual descriptions of mashups and are used to represent them.
Secondly, users’ interests are used to recommend mashups based on a composite
metrics considering: (i) similarity of vectors describing the user’s interests and can-
didate mashups, (ii) similarity of both APIs and tags contained in the user’ request
for a mashup and in the candidate mashups. The approach has been extended into
the CSCF (Content Similarity and Collaborative Filtering) Web API recommender
system [3], where users’ ratings have been also considered to refine API ranking.
Other selection-oriented approaches include features related to social relationships
among developers to discover and propose the best ranked Web APIs to mashup de-
velopers [4, 5]. In the SoCo (Social Composer) system [4], based on collaborative
filtering, APIs are suggested to the user u considering other users who are similar to
u in a social network. Social relationships may be: (a) explicit, that is, u can explic-
itly declare to share the same interests, in terms of APIs, of other users; (b) implicit,
that is, inferred according to the activities of users, e.g., when an user adopts many
of the APIs created by other users. A Web API is suggested to u depending on the
number of times the API has been used by other users socially related to u and
on the social proximity between users. In [5] tags used to annotate both APIs and
mashups are classified into topics through a probabilistic distribution. Topics are
used to add semantics on top of traditional tagging. In [2] authors distinguish be-
tween keywords assigned to mashups and keywords assigned to APIs, and the search
takes into account this distinction. Moreover, number of mashups that include a Web
API has been used to provide a Web API ranking. The Serviut Rank proposed in [6]
has been combined with traditional tag-based or keyword-based search. The rank
has been defined taking into account the number of times an API has been used in
mashups, but also the popularity of mashups themselves, in terms of users’ ratings
and Internet traffic.

All the analysed approaches highlight useful features to perform service selec-
tion, although different approaches focus on complementary features, as shown in
Table 14.1. To improve selection effectiveness and flexibility, we propose here a
conceptual framework including a multi-perspective model that relies on all fea-
tures present in available repositories.

14 A unified conceptual framework for managing services in WOA 203

14.3 Multi-Perspective Conceptual Model

14.3.1 Motivations

Different features, based on information available within service repositories, might
help developers to select third party components for developing data-intensive ap-
plications: (i) the number of service followers and the number of mashups, where
services have been used in, might help to identify widespread solutions, used by
many developers to design their own applications; (ii) votes/ratings by developers
might help to identify services shared by trustworthy providers; moreover, votes as-
signed to services while used in specific kinds of applications would be properly
used to suggest the same service for developing similar applications; (iii) largely
used and highly rated data providing services might have at their disposal valuable
datasets, as well as functionalities tested by millions of users, so their re-use might
offer advantages compared to their development from scratch, saving development
costs and testing efforts. The combination of different features might have positive
effects on service selection. In fact, service search and ranking focused on a sin-
gle perspective may bring to misleading results. For example, as underlined in [2],
service selection techniques that are based on descriptive features only heavily rely
on the quality of information specified by service providers, which in public repos-
itories cannot be always ensured. On the other hand, just considering number of
service usages or developers’ ratings suffers from the cold start problem and prefer-
ential attachment (“rich gets richer”); this means that the more used is a service, the
more likely it will be selected as part of a new application, despite its compliance
with requirements, while it is very difficult for new services to enter the market.

These considerations motivate the need of a comprehensive conceptual model
that merges together multiple perspectives on service descriptions, in terms of dif-
ferent features.

14.3.2 Representation of data providing services

The unified conceptual model here proposed to describe data providing services
brings together multiple features and is divided into three parts for Service Descrip-
tion, Service Annotation and Service Experience, as shown in Figure 14.1.

14.3.2.1 Service Description

Services are represented at two levels of abstraction:

• a component perspective, focused on categories, technical features and tags in
service descriptions;

• an application perspective, focused on service aggregations in mashups.

204 Devis Bianchini, Valeria De Antonellis and Michele Melchiori

Fig. 14.1 Overview of multi-perspective conceptual model for data providing services.

Definition 14.1. A service s is an operation/method/query to access data of a web
source, whose underlying data schema might be unknown to those who use the
service. S denotes the overall set of available services. A service s∈S is modeled
as 〈ns,descrs,URIs,Fs,Ts〉, where:

• ns is the service name;
• descrs is a human-readable, textual description of the service;
• URIs is the unique resource identifier for the service;
• Fs is an array of elements, where each element F X

s represents a technical feature
X (e.g., protocols, data formats, authentication mechanisms, to mention features
used in ProgrammableWeb.com); each technical feature is modeled as a set of
allowed values for that feature (e.g., XML or JSON as data formats);

• Ts is a set of terms used to provide a terminological description of the service
(terminological equipment).

The set of terms Ts is defined for tagging purposes as explained in the following
Service Annotation description. In Figure 14.2, examples of services taken from
ProgrammableWeb.com are listed, where URIs and textual descriptions have been
omitted.

Application Perspective. Concerning modern application development, to imple-
ment a web application starting from available services, developer has to search
the set of available services, select the most suitable ones, integrate and compose
them, in order to deploy the final application. Within the scope of this chapter, the
focus is on the first step, i.e., service selection. Service aggregations are mentioned,
instead of web applications, that are the final product of the development process.
An aggregation is defined as follows.

Service Service name Technical features Tags
s1 HotWire F DataFormat

s1
= {XML,JSON} {City, Star, Hotel, Travel}

F Protocol
s1

= {RSS, Atom, REST}
s2 EasyToBook F DataFormat

s2
= {XML} {City, Hotel, Travel}

F Protocol
s2

= {SOAP}
s3 MyAgentDeals F DataFormat

s4
= {XML,JSON} {City, Star, Near, Hotel,

F Protocol
s4

= {HTTP} Travel}

Fig. 14.2 Examples of service descriptions.

Terminological PerspectiveComponent Perspective

Application Perspective

Service Experience Service Description

developer’s
credibility

data
service

data service
aggregation

aggregation-
contextual

rating

publishes

creates
Reference Knowledge Base

Service Annotation

14 A unified conceptual framework for managing services in WOA 205

Definition 14.2. An aggregation represents a set of services that will be mashed-up
to deploy a web application. We denote with G the overall set of aggregations. An
aggregation g is modeled as 〈ng,descrg, URIg,Sg,dg〉, where:

• ng is the aggregation name;
• descrg is a human-readable, textual description of the aggregation;
• URIg is the unique resource identifier for the aggregation;
• Sg = {s1

g, . . .s
n
g|si

g∈S } is the set of services aggregated in g;
• dg is the developer of the aggregation.

Fictious examples of aggregations are listed in the following, where URIs and tex-
tual descriptions have been omitted.

g1 ⇒ 〈TravelPlan, Sg1 = {s1,s3}, dg1 〉
g2 ⇒ 〈Stay&Fun, Sg2 = {s2,s3}, dg2 〉

14.3.2.2 Service Annotation

Services are associated with a terminological equipment, composed of terms, that
are used for tagging purposes in order to improve search and ranking.

For semantic characterization, a term can be related to an ontological concept or
to a WordNet term and a set of other terms (denoted as bag of words) can be asso-
ciated with it. In particular, given a term t i: (i) if t i is related to a term in WordNet,
its bag of words coincides with the list of synonyms of the term; (ii) if t i is related
to a concept in an ontology, its bag of words is composed of the names of other
concepts related to t i by semantic relationships in the ontology (to this aim, in the
current version of the approach presented here, OWL/RDF equivalence relationship
is considered); (iii) finally, if t i is an unrelated term, its bag of words is empty. Start-
ing from the tag specified by the developer, who is performing tagging, a proper
wizard is used to support the developer for selecting the intended meaning. The
tagging procedure has been extensively described in [7] by using WordNet. When
based on ontologies, it is performed in a similar way. The WISeR system is compli-
ant with WordNet and any OWL ontology a developer might choose for semantic
disambiguation of terms. The approach here discussed is neutral with respect to the
adopted ontologies.

14.3.2.3 Service Experience

The focus is on the set Ds of developers, who used the service s to develop their
own mashups. In particular, a developer di∈Ds can express votes represented by
v(s j,gk,di) = µ jk∈[0,1] to denote that di assigned a quantitative rating µ jk to the
service s j when used within the aggregation gk (aggregation-contextual rating).
Votes are assigned according to the NIH 9-point Scoring System3. This scoring

3 http://enhancing-peer-review.nih.gov/scoring%26reviewchanges.html.

206 Devis Bianchini, Valeria De Antonellis and Michele Melchiori

system has few rating options (only nine) to increase potential reliability and con-
sistency and with enough range and appropriate anchors to encourage developers to
use the full scale (from poor, to denote completely useless and wrong services, to
exceptional, to denote services with very good performances and functionalities
and easy to use). These options are uniformly distributed over the [0,1] interval so
that the highest vote to a service corresponds to 1 and the lowest to 0. The possibil-
ity of assigning votes in the context of a specific aggregation is a distinguishing fea-
ture of the approach compared to the most popular repositories (and, among them,
ProgrammableWeb), where votes are assigned to Web APIs regardless the mashups
where they have been used. This distinction relies on the fact that a service could be
suitable to be used only in specific aggregations.

A social-based perspective focused on the community of developers is also part
of the model. In particular, as detailed in the following Section 14.4.3, the service
selection phase takes advantage of the aforementioned votes and weights a vote
proportionally to the rank of developer who expressed the vote. This rank summa-
rizes the importance of the developer in the social network: high rank indicates high
importance in the network, as discussed in the following Section 14.4.2.

Definition 14.3. A social network of developers is a pair SN = 〈D ,E 〉, where: (a)
D is the set of developers; (b) E is a set of follower-of relationships between devel-

opers, defined as E = {di
f−→d j|di,d j∈D}, where di

f−→d j indicates that di explicitly
declares to be inclined to learn from the choices made in the past by d j for web
application design purposes.

Each developer di∈D is modeled as 〈G (di),D∗〉, where G (di)⊆G is the set of
aggregations designed by di in the past, D∗⊆D is the set of other developers, whom
di declares to be inclined to learn from, in order to design web applications, that is,

D∗ = {dk|di
f−→dk∈E }.

The organization of the follower-of relationships determines the network struc-
ture. The developers’ social network can be represented as one or more directed
graphs, as shown in Figure 14.3, where a graph can assume different topologies. It
can be restricted to a hierarchy or can be a peer-based network where developers can
mutually follow each other in collaborative and open contexts. An example is the
network in Figure 14.3(a). A third kind of topology, see Figure 14.3(b), represents a
hybrid case, where a developer is or has been involved in different web application
design projects and, maybe depending on the particular application domain, can fol-
low different reference developers (consider, as an example, dev3, who declares to
follow both dev4 and dev8).

14.4 Model-based service search and ranking

According to application development needs, developers can look for single services
or for more services apt to complete existing aggregations. Two search modalities

14 A unified conceptual framework for managing services in WOA 207

dev2

dev1

dev3

dev4

dev5

dev6 dev7

dev8

dev9 dev10 dev11

dev12 dev13 dev14

(a) (b)

Fig. 14.3 Sample social networks of developers, which present peer-based (a) and hybrid (b)
topologies.

can be defined: (i) simple search, and (ii) proactive search. In the simple search, the
developer receives suggestions about relevant services after explicitly specifying the
requested features (e.g., tags, required values for each kind of technical features, and
so on). In particular, answering a single request in the context of the simple search
modality is based on the component perspective and on the terminological one (see
Figure 14.1). In the proactive search, the developer does not specify features for the
services of interest, because he/she has just a partial idea of what he/she is look-
ing for, and the framework proactively suggests candidate services according to the
aggregation that is being developed. Answering to requests according to this modal-
ity, in order to complete an existing aggregation, requires using the whole type of
knowledge depicted in Figure 14.1, as discussed in the following.

14.4.1 Service request

A service request is formulated according to the following definition.

Definition 14.4. A service request sr is formally represented as 〈Tr,Fr,gr〉, where:

• Tr is a set of terms used to specify what the requester is looking for;
• Fr is the set of required technical features, that the developer who issues the

request can specify for further refining the search constraints; as for the spec-
ification of technical features within service description, according to Defini-
tion (14.1), Fr is defined as an array of elements, where each element F X

r con-
tains required values for a technical feature X ;

• gr is a set of services, representing the current composition of the aggregation
that is being designed; the gr element is optional.

The presence of the gr in the request sr depends on the search target. In particular,
in case of searching for a single service (e.g., to search for the first service to be
included in a new web application that is being designed) the service request is
expressed as sr = 〈Tr,Fr,gr〉, where gr = /0.

208 Devis Bianchini, Valeria De Antonellis and Michele Melchiori

Answering a service request sr is based on the following phases: (i) developers’
credibility evaluation and ranking; (ii) service search and ranking. In the following,
these phases are detailed

14.4.2 Developers’ credibility evaluation and ranking

To model the service experience perspective as described in Section 14.3.2, it be-
comes relevant to estimate the credibility of a developer, who expresses votes. To
this purpose, credibility can be assessed based on a majority-based criteria. The
basic idea is that, if a given vote on a service does not agree with the majority opin-
ion on that service, the developer’s credibility score is decreased, otherwise it is
increased. The details of the credibility assessment are given in previous work [12].

Both the credibility scores and the way the social network of developers is orga-
nized are used to determine the developer’s rank. This type of rank is considered to
answer a request, as described in the next Section 14.4.3, in particular to assign a
weight to the developer’s votes.

Let’s suppose dr be a developer who has submitted a request.The overall rank of
a developer di∈D , denoted with dr(di), is computed as the product of two different
ranks, according to the following formula:

dr(di) = ρ
dr

rel(di)·ρabs(di) ∈ [0,1] (14.1)

where: (a) a relative rank ρdr

rel(di)∈[0,1] ranks developer di based on the follower-
of relationships between di and dr (this rank is introduced to take into account the
viewpoint of dr, who explicitly declared to learn from other developers to select
services); (b) an absolute rank ρabs(di) is based on the overall network of developers
and it takes into account the authority degree of di in the network independently of
the developer dr, who issued the request. In particular, the authority degree of di can
be computed by adapting the PageRank metrics (that calculates the authority degree
for Web pages based on the incoming links) to the context considered here.

Relative rank.

The relative rank ρdr

rel(di) is inversely proportional to the distance `(dr,di) between
dr and di, in terms of follower-of relationships, that is:

ρ
dr

rel(di) =
1

`(dr,di)
∈ [0,1] (14.2)

If there is no path from dr to di, `(dr,di) is set to the length of the longest path of
follower-of relationships that relate dr to the other developers, incremented by 1, to
denote that di is far from dr more than all the developers within the dr sub-network.
Consider for example the network shown in Figure 14.3, where the developer dev3

14 A unified conceptual framework for managing services in WOA 209

is the requester and has to choose among services that have been used in the past
by the developers dev4, dev5, dev6, dev8 and dev11, whose follower-of relation-
ships are depicted in the figure. In the example, `(dev3,dev4)=`(dev3,dev8)=1,
`(dev3,dev5)=2, and `(dev3,dev6)=`(dev3, dev11)=4+1=5.

Absolute rank.

The absolute rank ρabs(di)∈[0,1] is evaluated independently of the requester dr.
This rank is composed of two different parts. The first one depends on the number of
aggregations designed by di, the second one depends on the topology of the network
of other developers who declared their interest for past experiences of di, that is:

ρabs(di) =
1−α

|D |
·|G (di)|+α·

n

∑
j=1

c(d j)·ρabs(d j)

F(d j)
(14.3)

This expression is an adaptation of the PageRank metrics to the context considered
in this chapter. The value ρabs(di) represents the probability that a developer will
consider the example given by di in using a service for designing a web applica-
tion. Therefore, ∑i ρabs(di) = 1. Initially, all developers are assigned with the same
probability, that is, ρabs(di) = 1/|D |. Furthermore, at each iteration of the compu-

tation, the absolute rank of a developer d j, such that d j
f−→di, is "transferred" to di

according to the following criteria: (i) if d j follows more developers, his/her rank is
distributed over all these developers, properly weighted considering the credibility
c(d j) of d j(see the second term in Equation (14.3), where F(d j) is the number of
developers followed by d j); (ii) a contribution to ρabs(di) is given by the experience
of di and is therefore proportional to the number |G (di)| of aggregations designed
by di(see the first term in Equation (14.3)). A damping factor α∈[0,1] is used to
balance the two contributions. At each step, a normalization procedure is applied in
order to ensure that ∑i ρabs(di) = 1.

The algorithm actually used to compute recursively Equation (14.3) is similar
to the one applied for PageRank. In particular, denoting with ρabs(di,τN) the N-th
iteration in computing ρabs(di) and with DR(τN) the column vector whose elements
are ρabs(di,τN), it follows that:

DR(τN+1) =
1−α

|D |
·

|G (d1)|
|G (d2)|

...
|G (dn)|

 +α·M·DR(τN) (14.4)

where M denotes the adjacency matrix properly modified to consider credibility, that

is, Mi j =
c(d j)

F(d j)
if d j

f−→di, zero otherwise. As demonstrated in PageRank, computation
formulated in Equation (14.4) reaches a high degree of accuracy within only a few
iterations.

210 Devis Bianchini, Valeria De Antonellis and Michele Melchiori

Developer (di) |G (di)| Credibility c(di)
dev1 5 1.0
dev2 3 0.7
dev3 2 1.0
dev4 4 0.1
dev5 3 0.7
dev6 2 0.2
dev7 2 1.0
dev8 2 0.2
dev9 2 0.7

dev10 3 0.6
dev11 3 0.7
dev12 2 0.9
dev13 1 0.5
dev14 2 0.7

Table 14.2 Example of values for developers’ features, i.e., number of developed aggregations
|G (di)| and credibility c(di).

Let’s consider Table 14.2, that lists an example with values for developers’ features
(i.e., number of developed aggregations, credibility). In particular, α = 0.6. At time
τ0 ρabs(di) = 1/|D |= 0.0714 for all di. During the next iteration:

ρabs(dev4,τ1) = [
1−0.6

14
·4+0.6·1.0·0.0714

2
] = 0.1357

Similarly, ρabs(dev8,τ1) = 0.1299. After each iteration, normalization is applied
to have ∑i ρabs(di) = 1. In the example, after 5 iterations, the error measured as
Euclidean norm of the vector DR(τ5)−DR(τ4) is less than 0.001. At the end,
ρabs(dev4) = 0.0997 and ρabs(dev8) = 0.0801.

14.4.3 Service selection and ranking

Service selection is performed by exploiting: (a) tags, used for service semantic
characterisation, based on the terminological perspective; (b) past use of services
matching the request, based on the aggregation perspective, and (c) technical fea-
tures, based on the component perspective. All the defined perspectives contribute
to quantify the matching between a service s∈S and a request sr. In particular, in
order to answer service requests, similarity metrics, based on the multi-perspective
model, have been defined to quantify service-request matching:

• the tag similarity, to evaluate the similarity between the request and each service
based on tags, either semantically disambiguated or not; tag similarity is denoted
as TagA f f ({tsi},{ts j})∈[0,1], where {tsi} and {ts j} are compared sets of tags;

• the aggregation similarity, to evaluate the similarity between the request and
each service based on average similarity between the aggregation that is being
developed and aggregations where the service s has been used in the past, re-

14 A unified conceptual framework for managing services in WOA 211

spectively; this similarity is denoted as AggSim(go,gp)∈[0,1], where go and gp
are compared aggregations; the rationale here is that the more similar the ser-
vices used in the two compared aggregations according to their similarity, the
more similar the two aggregations;

• the technical feature similarity, to evaluate the similarity between the request
and each service based on technical features; similarity for a technical feature X
is denoted as TechSimX ({ fsi},{ fs j})∈[0,1], where { fsi} and { fs j} are compared
sets of values allowed for feature X .

The overall similarity between two services, computed as a linear combination of
the above three similarities, is denoted as Sim(si,s j)∈[0,1]. Overall testing and setup
of weights, to proper balance tag, technical feature and aggregation similarity, have
been discussed in [7].

The aim is to combine this overall similarity value with a ranking function ρserv :
S 7→ [0,1], that is based on: (i) the ranking of developers who used s∈S ; (ii) the
votes v(s,gi,dk) assigned to s by each developer dk who used s in an aggregation
gi. In particular, the better the ranking of developers who used the service s and the
higher the votes assigned to s, the closer the value ρserv(s) to 1.0 (maximum value).
The value ρserv(s) is therefore computed as follows:

ρserv(s) =
∑

n
k=1 ∑

mk
i=1 dr(dk) · v(s,gi,dk)

N
∈ [0,1] (14.5)

where dk∈D , for each k, are the developers who used the service s in their own mk
web application design projects, the vote v(s,gi,dk) is weighted by dr(dk) that is
the overall rank of developer dk with respect to the request sr, as discussed in the
previous section. Moreover, N is the number of times the service s has been selected
(under the hypothesis that a developer might use a data service s in m≥1 projects,
then dr(dk) is considered m times), thus N = ∑

n
k=1 mk. The overall service similar-

ity Sim(sr,s) and ρserv(s) elements are finally combined in the following harmonic
mean in order to rank service s:

rank(s) =
2 ·ρserv(s) ·Sim(sr,s)
ρserv(s)+Sim(sr,s)

∈ [0,1] (14.6)

14.5 The WISeR system for service selection

The WISeR system (Web apI Search and Ranking) has been developed as web appli-
cation and it implements the framework and the multi-perspective model described
in the previous sections. The system functional architecture is shown in Figure 14.4.
The WISeR core module is the Matching and Ranking Engine, that embeds the
similarity metrics presented in previous section and is invoked through the Search
GUI. Given a service published within a repository, proper wrappers (implemented
within the Web API Features Extractor) are used to extract service features and

212 Devis Bianchini, Valeria De Antonellis and Michele Melchiori

developer

Contribute
GUI

Search
GUI WISeR

API

Model-driven
Web API Features Extractor

Web API
repositories

Simple
search

Proactive
search

Matching and Ranking
Engine

Web API Registry
(multi-perspective model)

Fig. 14.4 WISeR functional architecture.

store them within the internal Web API Registry. The current implementation of
WISeR is built upon the ProgrammableWeb and Mashape repositories. The Web
API Registry stores categories, technical features, terminological equipment, used
for service search and ranking. Note that in WISeR, by means of a specific inter-
face, Contribute GUI, developers can add features that are not present in the original
repositories, but are exploited by the system matching and ranking techniques. It is
the case, for example, of aggregation-contextual votes. To add information related to
service experience, developers registration is required. The search interface, Search
GUI, permits to use both the WISeR service selection modalities and the original
keyword-based search mechanisms available in the repositories. The Search GUI
also embeds a ranking function based on the service publication date: all services
are listed starting from the most recently published one.

The WISeR system has been used for experiments aimed to evaluate the effec-
tiveness in service selection and developer’s ranking [12]. In particular, these exper-
iments have confirmed the positive contribution and importance of using the multi-
perspective model to improve the selection precision.

14.6 Conclusions and Future Work

The diffusion of Web Oriented Architecture and data intensive web application de-
velopment, relying on the selection and reuse of third party components, called for
new data providing service search and ranking approaches. A conceptual framework
that merges different Web data service features becomes crucial to build applications
starting from ready-to-use components. Beyond descriptive features like categories,
tags and technical features, the choice among different alternatives might be in-

14 A unified conceptual framework for managing services in WOA 213

spired by the experiences of other developers in using them, such as developers’
ratings and similar applications where services have been included. In this chap-
ter, a conceptual framework is described to provide: (i) a multi-perspective model
for service description, that also includes a social-based perspective, focused on the
community of developers, their mutual relationships and their estimated credibility
in web application development; (ii) a collection of search and ranking techniques
that rely on the model; (iii) a prototype system that implements the unified concep-
tual framework on top of service repositories. Future work will focus on advanced
service search and ranking techniques to enable dynamic exploration and access on
data of interest, also considering application domains where Internet of Things (IoT)
and Internet of Services (IoS) technologies enable sharing and integration of huge
quantity of heterogeneous data.

References

1. W. Tan, Y. Fan, A. Ghoneim, M. Hossain, S. Dustdar, From the Service-Oriented Architecture
to the Web API Economy, IEEE Internet Computing 20 (4) (2016) 64–68.

2. B. Tapia, R. Torres, H. Astudillo, Simplifying mashup component selection with a combined
similarity- and social-based technique, in: Proceedings of the 5th International Workshop on
Web APIs and Service Mashups, 2011, pp. 1–8.

3. B. Cao, M. Tang, X. Huang, Cscf: A mashup service recommendation approach based on
content similarity and collaborative filtering, International Journal of Grid and Distributed
Computing 7 (2) (2014) 163–172.

4. A. Maaradji, H. Hacid, R. Skraba, A. Lateef, J. Daigremont, N. Crespi, Social-based Web
Services Discovery and Composition for Step-by-Step Mashup Completion, in: Proc. of Int.
Conference on Web Services (ICWS), 2011.

5. C. Li, R. Z. Z. Huai, H. Sun, A novel approach for api recommendation in mashup develop-
ment, in: Proc. of Int. Conference on Web Services (ICWS), 2014, pp. 289–296.

6. K. Gomadam, A. Ranabahu, M. Nagarajan, A. Sheth, K. Verma, A Faceted Classification
Based Approach to Search and Rank Web APIs, in: Proc. of International Conference on Web
Services (ICWS), 2008, pp. 177–184.

7. D. Bianchini, V. De Antonellis, M. Melchiori, A Multi-perspective Framework for Web API
Search in Enterprise Mashup Design (Best Paper), in: Proc. of 25th Int. Conference on Ad-
vanced Information Systems Engineering (CAiSE), Vol. LNCS 7908, 2013, pp. 353–368.

8. D. Archer, L. Delcambre, D. Maier, User Trust and Judgments in a Curated Database with
Explicit Provenance, Search of Elegance in the Theory and Practice of Computation (2013)
89–111.

9. A. Olivé, Conceptual Modeling in Agile Information Systems Development, in: Proc. of the
16th International Conference on Enterprise Information Systems (ICEIS14), 2014.

10. M. González, L. Cernuzzi, N. Aquino, O. Pastor, Developing web applications for different ar-
chitectures: The MoWebA approach, in: Proc. of IEEE International Conference on Research
Challenges in Information Science (RCIS2016), 2016, pp. 1–11.

11. D. Bianchini, V. D. Antonellis, M. Melchiori, WISeR: A Multi-dimensional Framework for
Searching and Ranking Web APIs, ACM Transactions on the Web, (in press).

12. D. Bianchini, V. D. Antonellis, M. Melchiori, The role of developers’ social relationships in
improving service selection, International Journal of Web Information Systems 12 (4) (2016)
477–503.

13. O. Díaz, I. Aldalur, C. Arellano, H. Medina, S. Firmenich, Web Mashups with WebMakeup,
in: Proc. of ICWE Rapid Mashup Challenge workshop (RMC2015), 2015, pp. 82–97.

214 Devis Bianchini, Valeria De Antonellis and Michele Melchiori

14. A. Riabov, E. Boillet, M. Feblowitz, Z. Liu, A. Ranganathan, Wishful search: interactive com-
position of data mashups, in: Proc. of the 19th Int. World Wide Web Conference (WWW’08),
Beijin, China, 2008, pp. 775–784.

15. O. Greenshpan, T. Milo, N. Polyzotis, Autocompletion for Mashups, in: Proc. of the 35th Int.
Conference on Very Large DataBases (VLDB), Lyon, France, 2009, pp. 538–549.

16. M. Picozzi, M. Rodolfi, C. Cappiello, M. Matera, Quality-based recommendations for mashup
composition, in: Proceedings of the 10th international conference on Current trends in web
engineering (ICWE), 2010, pp. 360–371.

17. M. Kayaalp, T. Ozyer, S. T. Ozyer, A mash-up application utilizing hybridized filtering tech-
niques for recommending events at a social networking site, Social Network Analysis and
Mining 1 (3) (2011) 231–239.

18. B. Cao, J. Liu, M. Tang, Z. Zheng, G. Wang, Mashup Service Recommendation based on User
Interest and Social Network, in: Proc. of Int. Conference on Web Services (ICWS), 2013.

	14 A Unified Conceptual Framework for Managing Services in the Web Oriented Architecture
	14.1 Introduction
	14.2 Related Work
	14.3 Multi-Perspective Conceptual Model
	14.3.1 Motivations
	14.3.2 Representation of data providing services

	14.4 Model-based service search and ranking
	14.4.1 Service request
	14.4.2 Developers' credibility evaluation and ranking
	14.4.3 Service selection and ranking

	14.5 The WISeR system for service selection
	14.6 Conclusions and Future Work

