
Human-in-the-Loop Simulation of Cloud Services

Nikolaos Bezirgiannis1(B), Frank de Boer2, and Stijn de Gouw3

1 Leiden Institute for Advanced Computer Science, Leiden, The Netherlands
n.bezirgiannis@umail.leidenuniv.nl

2 Centrum Wiskunde & Informatica (CWI), Amsterdam, The Netherlands
f.s.de.boer@cwi.nl

3 Open University, Heerlen, The Netherlands
stijn.degouw@ou.nl

Abstract. In this paper we discuss an integrated tool suite for the simu-
lation of software services which are offered on the Cloud. The tool suite
uses the Abstract Behavioral Specification (ABS) language for model-
ing the software services and their Cloud deployment. For the real-time
execution of the ABS models we use a Haskell backend which is based
on a source-to-source translation of ABS into Haskell. The tool suite
then allows Cloud engineers to interact in real-time with the execution
of the model by deploying and managing service instances. The result-
ing human-in-the-loop simulation of Cloud services can be used both for
training purposes and for the (semi-)automated support for the real-time
monitoring and management of the actual service instances.

Keywords: Human-in-the-loop simulation · Cloud services · Monitors ·
Service Level Agreement

1 Introduction

The Abstract Behavioral Specification (ABS) language1 is an executable model-
ing language which features powerful abstractions of virtualized resources [7] like
CPU time, memory, and bandwidth. As such it is particularly tailored towards
modeling and simulation of software services offered on the Cloud [1]. Further, a
variety of tools2 which include simulation with visualization support, deadlock
analysis, cost analysis, deployment synthesis, and test case generation, supports
the formal development and analysis of software models and their deployment
as executable ABS.

The Erlang backend of ABS provides a symbolic interpretation of the abstrac-
tions modeling (CPU) time, that is, time is modeled by a symbolic clock which

Partly funded by the EU project FP7-610582 Envisage. This work was carried out
on the Dutch national e-infrastructure with the support of SURF Foundation.

1 http://docs.abs-models.org.
2 http://abs-models.org/abs-tools.

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
F. De Paoli et al. (Eds.): ESOCC 2017, LNCS 10465, pp. 143–158, 2017.
DOI: 10.1007/978-3-319-67262-5 11

http://docs.abs-models.org
http://abs-models.org/abs-tools


144 N. Bezirgiannis et al.

is advanced by the execution of a certain kind of statements, so-called duration
statements. In contrast, in this paper we introduce a new Haskell backend, in the
sequel denoted by ABS RT, which is based on a source-to-source translation of
ABS into Haskell and which directly relates the ABS abstractions of time to the
underlying hardware clock. It should be noted that the term “real-time ABS”
has also been used, for example in [8], to refer to the ABS abstractions modeling
(CPU) time themselves. In this paper however we use the term “real-time” to
refer to the implementation of these abstractions with respect to some external
clock, e.g., the hardware clock. This implementation allows for a different kind
of simulation, so-called human-in-the-loop simulation, abbreviated in the sequel
by HITL. In general this kind of simulations require human interaction and are
used for training purposes. A typical example is that of flight simulations where
trainees interact in real-time with a model of a plane in flight. Clearly, for such
training to be effective the human interactions should be processed by the model
in real-time as measured by the hardware clock.

In this paper we introduce the ABS RT Haskell backend of ABS and present
its use by Cloud engineers so that they can interact in real-time with the execu-
tion of the model of the services offered on the Cloud. This interaction consists of
deploying and managing service instances and allows Cloud engineers to acquire
knowledge of the real-time consequences of their decisions. We illustrate this use
of HITL simulation of Cloud services by an industrial case study based on the
Fredhopper Cloud Services.

Main contribution and related work. There exists a variety of cloud simula-
tion tools including CloudSim [4], GreenCloud [9], and iCanCloud [10]; although
all of these tools offer finer-grained analysis (e.g. network configuration and
energy consumption in the Cloud) they rely on discrete-event computer simula-
tion engines, which do not permit live HITL intervention on a running simula-
tion. To the best of our knowledge HITL simulation of Cloud services has not
been investigated before. As already stated above, HITL simulation allows Cloud
engineers to acquire knowledge of the real-time consequences of their decisions
directly in an interactive manner.

Our overall contribution is an integrated tool suite which supports HITL
simulations of Cloud services. This suite integrates the SAGA tool [3] for the
declarative specification of service metric functions, and SmartDeployer [6] for
the formalization of deployment requirements and the automatic generation of
provisioning scripts. At the core of this suite is a new Haskell backend ABS RT of
the ABS modeling language which supports a real-time interpretation of the
timing constructs of ABS. We further illustrate the use of our tool-suite by an
industrial case study based on the Fredhopper Cloud Services. The underlying
ABS model of the Fredhopper Cloud Services builds on the one presented in [6]
which focuses on automated generation of deployment actions. Here we extend
that model to support HITL simulation and for the generation of more realistic
deployment recommendations.

The general methodology underlying the use of ABS RT in the HITL simu-
lation of Cloud services involves the formalization of Service Level Agreements



Human-in-the-Loop Simulation of Cloud Services 145

(SLA’s) as a property of a service metric function, as described in [5], with
a new framework in ABS which captures various monitoring concepts – from
QoS and SLAs to lower-level metrics, metric policies, and listenable and billable
events. The monitoring framework allows the formal development and analysis
of monitors as executable ABS.

Outline of the paper. In the next section we introduce the ABS RT backend. In
Sect. 3 we describe the ABS model of the Fredhopper Cloud Services. The use
of ABS RT in the HITL simulation of this model is described in Sect. 4. The
experimental results are described in Sect. 5. Finally, in Sect. 6 we draw some
conclusions.

2 The ABS Language

ABS is an executable resource-aware modeling language which at its core inte-
grates an imperative layer based on concurrent objects and a functional layer
based on algebraic data types. Concurrent objects are (strongly) typed by inter-
faces and communicate via asynchronous method calls. Such calls generate mes-
sages which are queued to be processed sequentially (by the object callee) up to
method completion or deliberate yield of control (cooperative scheduling).

ABS further provides a high-level model of deployment components which
encapsulate virtualized resources of a computer system like CPU time, memory,
and bandwidth. These components are expressed by concurrent objects them-
selves and as such are an integral part of an ABS model. Objects dynamically
deployed onto these components share their resources. Usually the ABS user does
not create deployment component objects directly (by calling new), but instead
through a higher object abstraction named CloudProvider, which serves both as
a factory of deployment components as well as a communication endpoint to an
infrastucture service (IaaS):

CloudProvider cp = new AmazonCloudProvider (params);

DeploymentComponent vm1 = cp.createInstance(map[Pair(

Cores ,4), Pair(Speed ,35), Pair(Memory ,16)]);

[DC: vm1] new WebServer (8080); // deployed object

High-level annotations of the ABS code are used to specify the corresponding
cost model. A statement in ABS can be annotated by [Cost: intExp()] stmt;

which means in practice that stmt will be only completed (and its side-effects
instantaneously realised) after some time where intExp amount of resource Speed
has been provided and consumed by the currently executing deployment compo-
nent. This model of deployment as executable ABS allows for a formal analysis
of the constraints induced by the shared resources in terms of a formal cost
model and its relation to a formalization of Service Level Agreements (SLA’s)
as a property of a service metric function.

Whereas the Cost annotation induces the passage of time locally inside the
deployment component, the timed-ABS extension of the language enables time
to pass globally (over the whole model), always with respect to an external clock.



146 N. Bezirgiannis et al.

The statement await duration(min,max) means that the current process will be
rescheduled for execution only after min and less than max time steps from now
have passed on the clock; the statement duration (min,max) will accordingly
block the object and all of its process for that time. If the ABS clock refers to
symbolic (abstract) time—used for synchronizing distinct parts of the model—
then the models’ execution is essentially a computer simulation; however, a model
running on the real (hardware) clock defines a user-interactive simulation.

Finally, since ABS was primarily designed as a modeling language, it lacks
the common I/O functionality found in mainstream programming languages. To
allow user interaction a new language extension was introduced to the language
built around a REST API. The ABS user may annotate any object declara-
tion with [HTTPName: strExp()] I o = new ... to make the object and its fields
accessible from the outside as an HTTP endpoint. Any such object can have
some of its method definitions annotated with [HTTPCallable] to allow them to
be called from the outside; the arguments passed and the method’s result will
be serialized according to a standard JSON format.

The ABS RT backend. The original Haskell backend of ABS was designed with
speed in mind, as well as to offer distributed computing on the cloud [2]. The
choice of Haskell was made since it provides language features that closely match
those of ABS, and also certain runtime facilities that make the ABS straightfor-
ward to implement (e.g. first-class continuations).

At runtime, each ABS concurrent object (or ABS concurrent object group)
is associated with one Haskell green thread. Each such thread listens to its own
queue for new or re-activated processes and executes 1 at a time up to their next
release point (await or return). The GHC runtime (Haskell’s standard compiler)
preempts over these green threads, which are automatically load-balanced to
system threads to support Symmetric Multi-Processing (multi-core).

During an asynchronous method call, a caller creates a new process by apply-
ing the corresponding function to its arguments and ships its body (function
closure) to the end of the callee’s queue. This shipment is done for the parallel
runtime through shared-memory, or for the distributed-runtime through Cloud
Haskell (TCP/IP). To complement cooperative scheduling, awaiting on futures
is implemented a-top of extra temporary green threads and utilizing an asyn-
chronous I/O event library (e.g. epoll on Linux); await on boolean conditions are
optimized to avoid unnecessary busy-wait polling through a more notification-
like protocol.

Algebraic-datatypes, parametric polymorphism, interfaces, pure functions
are all one-to-one mapped down to Haskell. Haskell’s type system lacks sub-
typing polymorphism, and as such we implement this in the ABS RT compiler
itself through means of implicit coercive subtyping. The REST API extension of
ABS utilizes WARP: a high-performance, high-throughtput server library writ-
ten in Haskell.

Compared to some other backends (Erlang, Java), the Haskell backend does
not treat active ABS processes as individual system threads, but instead as data
(closures) that are stored in the queue of the concurrent object, which leads to a



Human-in-the-Loop Simulation of Cloud Services 147

smaller memory footprint. This “data-oriented” implementation preserves local
message ordering of method activations, although the ABS language specification
cares to leave this unspecified.

We augment the original Haskell backend with support for the timed-ABS
language extension, and name the resuling backend ABS RT. The clock that
ABS RT uses is the available real-time hardware clock underneath. This means
that compared to the backends with a symbolic clock (Erlang, Maude), the
passage of time is not influenced by timed-ABS calls but instead by the real
clock itself. The duration statement is implemented as a sleep call on the con-
current object’s thread, whereas the await duration creates a new extra light-
weight thread which will re-schedule its continuation back to the original object
thread after the specified time. The [Cost: x] annotations are translated to a
executeCost() method call on the deployment component object as seen in Fig. 1.
The instrPS field refers to the number of instructions the particular deployment
component is able to execute per second. The unit of time (default is seconds)
is tunable as a runtime option.

Fig. 1. The implementation of cost annotation for the ABS RT backend

It is worth noting that the GHC runtime scheduler dictates that any “sleep-
ing” thread will be re-activated (preempted) no sooner than the specified time,
but may be later than prescribed (not precise). This does affect the reproducibil-
ity, among the fact that there is no notion of simultaneous method calls (no
specific ordering, thus non-deterministic hardware-dependent process-enqueuing
of simultaneous callers) as it can be done with total ordering of symbolic time.
Finally, we would like to mention that this real-time implementation as shown
in Fig. 1 is generic for any ABS backend that uses the hardware clock and imple-
ments duration/await duration as a sleep() system call. Indeed, it would be
straightforward to port it to the Erlang and Java backends as well.

3 FRH Case Study

Fredhopper3 provides the Fredhopper Cloud Services to offer search and target-
ing facilities on a large product database to e-Commerce companies as services
3 https://www.fredhopper.com/.

https://www.fredhopper.com/


148 N. Bezirgiannis et al.

(SaaS) over the cloud computing infrastructure (IaaS). Fredhopper Cloud Ser-
vices drives over 350 global retailers with more than 16 billion in online sales
every year. A customer (service consumer) of Fredhopper is a web shop, and an
end user is a visitor to the web shop.

The services offered by Fredhopper are exposed at endpoints. In practice,
these services are implemented to be RESTful and accept connections over
HTTP. Software services are deployed as service instances. The advantages of
offering software as a service on the cloud over on-premise deployment include
the following: to increase fault tolerance; to handle dynamic throughputs; to pro-
vide seamless service update; to increase service testability; and to improve the
management of infrastructure. To fully utilize the cloud computing paradigm,
software must be designed to be horizontally scalable4. Typically, software ser-
vices are deployed as service instances. Each instance offers the same service
and is exposed via the Load Balancing Service, which in turn offers a service
endpoint (Fig. 2). Requests through the endpoint are then distributed over the
instances.

The number of requests can vary greatly over time, and typically depends on
several factors. For instance, the time of the day in the time zone where most
of the end users are located, plays an important role. Typical lows in demand
are observed daily between 2 am and 5 am. In the event of varying throughput,
a different number of instances may be deployed and be exposed through the
same endpoint. Moreover, at any time, if an instance stops accepting requests,
a new instance may be deployed in place.

3.1 Architecture of the Fredhopper Cloud Services

Each service instance offers the same service and is exposed via Load Balancer
endpoints that distribute requests over the service instances. Figure 2 shows a
block diagram of the Fredhopper Cloud Services.

Load Balancing Service. The Load Balancing Service is responsible for distribut-
ing requests from service endpoints to their corresponding instances. Currently
at Fredhopper, this service is implemented by HAProxy (www.haproxy.org), a
TCP/HTTP load balancer.

Platform Service. The Platform Service provides an interface to the Cloud Engi-
neers to manage customer information, deploy and manage service instances
associated to the customers, and associate service instance to endpoints (load
balancers). The Platform Service takes a service specification, which includes
a resource configuration for the service, and creates and deploys the specified
service. A service specification from a customer determines which type of service
is being offered, the number of service instances to be deployed initially for that
customer, and the kinds of virtualized resources on which the service instances
should be deployed.

4 en.wikipedia.org/wiki/Scalability#Horizontal and vertical scaling.

www.haproxy.org
http://en.wikipedia.org/wiki/Scalability#Horizontal_and_vertical_scaling


Human-in-the-Loop Simulation of Cloud Services 149

Fig. 2. The architecture of the Fredhopper Cloud Services

Deployment Service. The Deployment Service provides an API to the Platform
Service to deploy service instances (using a dedicated Deployment Agent) onto
specified virtualized resources provided by the Infrastructure Service. The API
also offers operations to control the life-cycle of the deployed service instances.
The Deployment Service allows the Fredhopper Cloud Services to be independent
of the specific infrastructure that underlies the service instances.

Infrastructure Service. The Infrastructure Service offers an API to the Deploy-
ment Service to acquire and release virtualized resources. At the time of writing
the Fredhopper Cloud Services utilizes virtualized resources from the Amazon
Web Services (aws.amazon.com), where processing and memory resources are
exposed through Elastic Compute Cloud instances (https://aws.amazon.com/
ec2/instance-types/).

Monitoring and Alerting Service. The Monitoring and Alerting Service provides
24/7 monitoring services on the functional and non-functional properties of the
services offered by the Fredhopper Cloud Services, the service instances deployed
by the Platform Service, and the healthiness of the acquired virtualized resources.

If a monitored property is violated, an alert is raised to the Cloud Engi-
neers via emails and SMS messages, and Cloud Engineers can react accordingly.
For example, if the query throughput of a service instance is below a certain
threshold, they increase the amount of resources allocated to that service. For
broken functional properties, such as a run-time error during service up-time,
Cloud Engineers notify Software Engineers for further analysis. Figure 6a shows
a visualization of monitors in Grafana, the visualization framework used by ABS.

http://aws.amazon.com
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/


150 N. Bezirgiannis et al.

3.2 Human in the Loop

A dedicated team of Cloud Engineers is in charge of the day to day operation
of the Fredhopper Cloud Services. Cloud Engineers keep track of alerts raised
by the monitors and the value of monitored metrics over time. Based on their
interpretation of this information, using their domain knowledge, Cloud Engi-
neers decide if, when and how to scale up, down or restart services instances and
Virtual Machines. Manual scaling rather than auto-scaling is used, as any bug
or imprecision in an auto-scaling approach may have disastrous consequences:

1. Automatically scaling up too much jeopardizes the continuity of the business:
the infrastructure provider charges running Virtual Machines.

2. Automatically scaling down too much may break the Service Level Agree-
ment(s) (SLAs) between Fredhopper and customers. In the most extreme
case, the web shop of a customer may become unavailable, resulting in finan-
cial and reputation damage.

The Cloud Engineers must take into account many factors when deciding if,
when and how to scale. Most importantly:

– The target QoS values for service metrics specified in the SLA between Fred-
hopper and the customer.

– Logical and resource requirements on the deployment5.
– General business KPIs.

Finding scaling actions resulting in a deployment satisfying all above desiderata,
and applying them at the right time is a challenging task due to several reasons.

SLAs traditionally are informal natural language documents, not represented
at the software level. Thus, metrics tracked by the monitoring system (i.e., mem-
ory consumption), are not directly related to SLAs between Fredhopper and its
customers. The Cloud Engineer must manually infer a relation between a com-
bination of the metrics from the monitoring system (typically lower-level), and
the metrics in the SLA (typically higher-level, aggregated at the customer level).

Synthesizing a deployment satisfying all logical and resource requirements
is a computationally complex task for Cloud Engineers. Even taking only the
resource requirements into consideration, it is an instance of the NP-hard multi-
dimensional multi-knapsack problem, where the items are service instances
(whose weights are the resource requirements for the service, like the amount
of memory needed, minimal speed of CPU, etc.), and the knapsacks are virtual
machines. Logical requirements must also be taken into account. For example,
which service instances should be co-located on the same VM, and which to
deploy on a dedicated VM? For example, the Query service requires the pres-
ence of the Deployment service to function properly. Another logical requirement
is to scale with multiple VMs simultaneously in different available zones (loca-
tions) in each region. This is mandated by most infrastructure providers to be
eligible for compensation for faulty VMs.

In the next section we describe how HITL simulation of ABS models can be
used to improve the above practice of Cloud engineers.
5 A deployment associates service instances to Virtual Machines.



Human-in-the-Loop Simulation of Cloud Services 151

4 Human-in-the-loop Framework

Our tool suite for HITL simulations of Cloud services integrates several different
tools.

– The SAGA tool [3] was tweaked for monitoring SLA metrics and the Grafana
framework visualizes the metrics

– The SmartDeployer [6] for synthesizing deployment actions
– A logreplay tool for replaying real-world log files
– The new Haskell ABS RT backend for real-time simulations (Sect. 2).

We discuss below how each of these tools was exploited to contribute to the
support for realistic HITL simulations.

We defined a new layered declarative generic framework in ABS which cap-
tures various monitoring concepts – from QoS and SLAs to lower-level metrics,
metric policies, and listenable and billable events. This framework exploits the
SAGA tool for the declarative specification of service metric functions which
are used to formalize SLA’s. A service metric function is defined by a map-
ping of (time-stamped) event traces to values which indicate the different levels
of the provided quality of service. These events represent client interactions
with an endpoint of an exposed service API. Each monitor captures a sin-
gle metric, and based on the value of that metric, suggest scaling actions to
improve that metric. The MonitoringService periodically polls the registered
monitors at a user-configured interval to retrieve its suggested scaling actions.
An await duration(1,1) statement is used to advance the clock and determine
which monitors to poll at the current time.

Our tool suite further integrates SmartDeployer [6] for the formalization of
deployment requirements, and the automatical derivation of an executable (in
ABS) provisioning script that synthesizes a deployment satisfying all specified
requirements. By further integrating SmartDeployer actions into the executable,
SLA-level monitors generated by SAGA, we have a formalized model that auto-
matically suggests appropriate scaling actions at the right time: when the values
of the SLA metrics give rise to it.

The simulation itself consists of replaying a log file generated by the actual
system on the ABS model of the system. The logreplay tool is responsible for
firing at appropriate times a REST API call (as explain in Sect. 2) to the running
simulation for each request recorded in the log file. These requests will trigger
ABS code that contains Cost annotations (Fig. 3), which has the effect of the
real-time simulation as defined for the ABS RT backend.

This model includes automatically generated monitors in ABS which inte-
grate the declarative specification of service metric functions of SAGA and the
provisioning scripts of SmartDeployer. In the simulation Cloud engineers then
can interactively select the scaling actions recommended by the different moni-
tors and thus acquire realtime knowledge of their consequences. In general, these
selections requires specific domain knowledge which includes knowledge of past
behavior. For simplicity, Cloud Engineers can interact with a running HITL
simulation via an HTML/Javascript graphical user interface; a live screenshot is



152 N. Bezirgiannis et al.

Fig. 3. ABS method that process each incoming request from the log-file

shown in Fig. 5. This interface makes also use of the REST API (Fig. 4) exten-
sion as implemented in the ABS RT backend, for fetching the metric history and
recommendations.

Fig. 4. The main ABS block exposing the FRH services through the REST API.

This model-based approach of ABS and its toolset can also be used by the
Cloud Engineers as a semi-automated support system: the Engineer still interacts
with the Fredhopper Cloud Services to perform at the right time the desired
scaling actions suggested by the framework. To achieve this the REST API
can be used to forward queries in real-time from the production system to the
ABS monitors, whereas the CloudProvider interface deploys actual IaaS virtual
machines. Hence to allow the Cloud Engineer to engage in simulating real-world
scenarios, or simply to interact with the system in a meaningful manner, we
believe it is crucial that the simulation executes in real-time.

5 Experimental Results

The FRH case study and its ABS model (≈ 2.000 lines of code6) forms the basis
of our experimental results. We focus on the following metric, which is part of the
SLA negotiated between Fredhopper and its customers (the exact percentages
are not fixed, they can be negotiated by customers):

6 The source code for the FRH model is at http://github.com/abstools/habs-frh.

http://github.com/abstools/habs-frh


Human-in-the-Loop Simulation of Cloud Services 153

Fig. 5. The GUI of the HITL framework intended for training Cloud Engineers.

“Services must maintain 95% of the queries with less than 200ms of
processing time, and 99% with less than 500ms, subtracting the 2% slowest
queries.”

Initially, our experiments were focused on the FRH case study behavior when
simulating its model (expressed in ABS) without any human intervention. A
provisioning script generated by SmartDeployer automatically instantiated all
services of the Cloud Architecture (Fig. 2), requested suitable VMs from the
CloudProvider and deployed the various kinds of Service instances shown in the
diagram on it. For the QueryService, a minimal setup was used with a single
instance (co-located with a DeploymentService instance) deployed to an Amazon
m4.large VM. The input to the simulation was a real-world log file of a particular
customer with length of 4 min and 30 s, coming from a single production VM
(of type m4.large). Figure 6a visualizes the Service Degradation of that log file
(customer names are anonymized); We then proceeded with simulating the FRH
system on the Haskell and Erlang backends of ABS, inputted with the same exact
log and using the same deployment scenario.

The simulation of the FRH model on the Haskell-ABS backend took 4 min
and 30 s to complete, which matches the log’s length and encourages us to believe
that the simulation is done in real-time. The output of the simulation on the
Haskell backend is shown in Fig. 6b. There is a deviation that can be seen when
comparing it to the original graph of Fig. 6a: the Haskell output reports higher
degradation than what would be expected from the real-world log. This can be
attributed to three causes; first, there is the overhead of processing the log file
itself (network communicating to the logreplay tool). Secondly, the simulation
of the real-time measurements of the log file involves sleep system calls, which
as explained in Sect. 2, dictates that any “sleeping” thread will be re-activated



154 N. Bezirgiannis et al.

(a) Original degradation from production system

(b) Haskell simulation of the degradation when simulating the original log

(c) Erlang simulation of the degradation when simulating the original log

Fig. 6. Degradation in the production system and as simulated on different backends

no sooner than the specified time, but most likely later than prescribed, which
depends on factors such as backend implementation, hardware configuration, or
the workload of the particular model. Fortunately none of these had great effect
on the models we tested, and the reported degradation is negligibly affected
by this. The last cause which however has a larger effect on the degradation is
that the log file contains a certain number of concurrent requests (requests on a
single machine that were served concurrently in time). The recorded processing
time of the requests are translated into Cost annotations (taking into account the
resource capacities of the machine that has processed the request), and therefore
the concurrent execution of such requests in the simulation as described in Fig. 1



Human-in-the-Loop Simulation of Cloud Services 155

will further increase the simulated processing time of the individual requests. In
general, the recorded processing time of the individual requests includes the over-
head of time sharing and as such do not specify their “intrinsic” processing time.
In practice we think one can obtain a “correct” model by approximating these
intrinsic processing time of the individual requests by averaging over different
log files and different deployment scenarios.

Moving on to the Erlang symbolic-time simulation, we observe slight inac-
curacies of the output (Fig. 6c) compared to the original graph. These inaccu-
racies can be attributed to two reasons: first, the monitors act autonomously
(while (True){await duration(1,1);...}), so they may uncontrollably advance
the symbolic time by themselves between REST calls of the logreplay tool; as a
result the graph is slightly “stretched” because of extra erroneous time advance-
ments. We propose two ways to mitigate this at the ABS language level: (a)
having a statement every(intExp()){body}; which will register the body as a
callback to be executed with the period given or (b) a statement await until(t);

which will resume the process only after the specific time given. In either case the
two statements do not advance the time by themselves. The other reason which
leads to inacccuracies is that the concurrent requests of the log are processed
sequentially (as opposed to Haskell) because of practical difficulties of synchro-
nizing an external tool that uses the real-world clock (logreplay) and the Erlang-
ABS runtime which uses the symbolic clock. Since, as mentioned before part of
the requests in the log happen to be concurrent, the resulted degradation of the
Erlang simulation may differ from the expected original.

The Erlang-ABS backend took 15 min and 30 s to complete the simulation
of real-world 4 min and 30 s of the log. This may be attributed to the fact
that the granularity of the request timestamps is per ms (as given in the
log file). We could speed it up by having a more coarse-grained (less accu-
rate) timestamps. Furthermore, the Erlang backend does not use a (parallel)
Discrete-Event simulation runtime (called also as-fast-as-possible computer sim-
ulation) but a timed-automata inspired runtime for the advancement of the
clock, which requires a computationally-heavier continuous global administra-
tion of the simulation. Given the reasons above, the code for the monitors
while (True){await duration(1,1);...} affects the execution speed. A way to
mitigate this is again to have a coarser periodicity for the monitors. Based on
these experimental findings, we believe in general simulation frameworks based
on symbolic time are not suited for HITL simulations of Cloud applications.

To evaluate the HITL simulation of FRH case study, a training exercise was
carried out for the Cloud Engineers. Using our framework, we first visualized
the Service Degradation of a different real-world log file, but include the same
Service Degradation metric from the SLA as above. The deployment configu-
ration used for that customer was the initial default configuration used by the
Cloud Ops team, which provisions the minimum number of VM’s, and each VM
has as few resources as needed by the services running on the VM. In partic-
ular, aside from the Service instances shared between different customers, such
as the PlatformService and LoadbalancerService, the non-shared initial default



156 N. Bezirgiannis et al.

(a) No scaling - 200ms metric breaks SLA

(b) Performing a Scale-up after 1 minute

Fig. 7. No-scaling versus scaling during the haskell simulation

per-customer setup consisted of 1 query service instance and a corresponding
deployment service instance in every availability zone (in the region of the cus-
tomer), and those were deployed on an Amazon VM with instance type m4.large.

Figure 7a shows the resulting Service Degradation for that customer on this
deployment configuration. The graph shows that in the beginning, performance
is low (and Service Degradation is high). This is caused by the fact that after
a service is started, an initialization phase is triggered, and performance is (as
expected) low during this phase. After a few minutes, initialization finishes and
the service degradation metrics stabilize to around 20% queries slower than
200 ms and 0% queries slower than 500 ms (subtracting the two percent slowest
queries). This means that while the target QoS as agreed in the SLA for the
category “slower than 500 ms” is achieved, this is (by far) not the case for the
category “slower than 200 ms”.

After establishing that the initial default deployment configuration was not
sufficient to satisfy the SLA as agreed with that customer (on that real-world
query log file), the training exercise continued. The Cloud Ops were tasked with
selecting and executing appropriate scaling actions to mitigate the situation.
The scaling actions could be selected through the ABS REST API, or in a very
simple front-end (Fig. 5).

During the training exercise, several different scenarios were trained; Fig. 7b
shows one scenario of the effect on the Service Degradation after the engineer



Human-in-the-Loop Simulation of Cloud Services 157

decided to scale up with 2 query services instances (and corresponding deploy-
ment service instance) in two zones on a (simulated) Amazon m4.xlarge instance
after 1 min (13:51) into the simulation. At time 13:54 the new machines have fin-
ished initializing, and the services deployed on them have been started. After
that time, the 200 ms metric quickly improves , and after about 25 min reaches
the target ≤ 5% degradation.

The integrated tool suite described in Sect. 4 considerably simplified the task
of the Cloud Engineers in managing the day-to-day operation of the Cloud ser-
vices. In particular:

– The support for real-time simulation was critical in providing a realistic train-
ing experience for the cloud engineers. It allowed the Ops to evaluate and view
metrics of the system and apply corrective actions to the system at the same
speed as they do in the production environment.

– The high abstraction level of the metrics captured by the ABS monitoring
framework enables SLA-based scaling, simplifying the decision process of the
Cloud ops in selecting the appropriate corrective scaling actions. Still, domain
knowledge of the Cloud operator is crucial to properly “translate” their inter-
pretation of multiple (possibly conflicting) metrics over time into corrective
actions. The direct relation of the metrics to SLAs and business KPIs in our
tool suite eliminated the burden on the Cloud ops to manually interpret how
traditional lower-level metrics (such as CPU usage, memory consumption)
relate to the higher-level SLA/KPI metrics.

– By suggesting to the Cloud ops only a limited number of possible corrective
actions (synthesized by SmartDeployer), the number of choices the Cloud Op
has to take in real-time (i.e.: which and how many services to deploy, how to
link them, on what kind of VM to deploy them, etc.) was reduced substan-
tially. Since the SmartDeployer actions are synthesized based on the deploy-
ment requirements and Smartdeployer generates a corresponding provisioning
script, the numerous deployment requirements are satisfied automatically “by
construction”. However, the quality of the suggestions (actions) proposed by
the framework should be improved.

In principle, the suggested SmartDeployer scaling actions could be exploited
for a full auto-scaling approach, without any human intervention. We carried
out initial experiments, but it turned out to be very complex how to deal with
different monitors from heterogeneous sources that give conflicting scaling sug-
gestions, taking into account machine booting time, upcoming promotions from
web-shops where peaks in demand are expected, historic data, etc. Thus keeping
the human in the loop - the cloud engineers with their domain knowledge - still
is crucial to optimize the day-to-day management of services.

6 Conclusion

Our initial experimental results on the use of the presented tool suite provides
clear evidence for the viability of HITL simulation of Cloud services for train-
ing purposes. The training sessions themselves can further be used to provide



158 N. Bezirgiannis et al.

feedback to the underlying ABS models of the Cloud services and the monitors.
Ultimately, the resulting fine-tuning of these models may reach a level of matu-
rity and confidence that allows their deployment in the real-time monitoring and
management of the actual service instances.

In general, we believe that HITL simulation of Cloud services provides a
variety of interesting and challenging research problems, for example mining the
log files to calculate an approximation of the “intrinsic” processing time of the
individual service requests, cancelling the effect of time sharing.

References

1. Albert, E., de Boer, F.S., Hähnle, R., Johnsen, E.B., Schlatte, R., Tarifa, S.L.T.,
Wong, P.Y.H.: Formal modeling and analysis of resource management for cloud
architectures: an industrial case study using real-time ABS. Serv. Oriented Com-
put. Appl. 8(4), 323–339 (2014)

2. Bezirgiannis, N., de Boer, F.: ABS: a high-level modeling language for cloud-
aware programming. In: Freivalds, R.M., Engels, G., Catania, B. (eds.) SOFSEM
2016. LNCS, vol. 9587, pp. 433–444. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49192-8 35

3. de Boer, F.S., de Gouw, S.: Combining monitoring with run-time assertion check-
ing. In: Bernardo, M., Damiani, F., Hähnle, R., Johnsen, E.B., Schaefer, I. (eds.)
SFM 2014. LNCS, vol. 8483, pp. 217–262. Springer, Cham (2014). doi:10.1007/
978-3-319-07317-0 6

4. Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A.F., Buyya, R.: Cloudsim:
A toolkit for modeling and simulation of cloud computing environments and eval-
uation of resource provisioning algorithms. Softw. Pract. Exp. 41(1), 23–50 (2011)

5. Giachino, E., de Gouw, S., Laneve, C., Nobakht, B.: Statically and dynamically
verifiable SLA metrics. In: Theory and Practice of Formal Methods - Essays Ded-
icated to Frank de Boer on the Occasion of His 60th Birthday, pp. 211–225 (2016)

6. de Gouw, S., Mauro, J., Nobakht, B., Zavattaro, G.: Declarative elasticity in
ABS. In: Aiello, M., Johnsen, E.B., Dustdar, S., Georgievski, I. (eds.) ESOCC
2016. LNCS, vol. 9846, pp. 118–134. Springer, Cham (2016). doi:10.1007/
978-3-319-44482-6 8

7. Johnsen, E.B.: Separating cost and capacity for load balancing in ABS deployment
models. In: Giachino, E., Hähnle, R., Boer, F.S., Bonsangue, M.M. (eds.) FMCO
2012. LNCS, vol. 7866, pp. 145–167. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-40615-7 5

8. Johnsen, E.B., Schlatte, R., Tapia Tarifa, S.L.T.: Modeling resource-aware virtu-
alized applications for the cloud in real-time ABS. In: Aoki, T., Taguchi, K. (eds.)
ICFEM 2012. LNCS, vol. 7635, pp. 71–86. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-34281-3 8

9. Kliazovich, D., Bouvry, P., Audzevich, Y., Khan, S.U.: Greencloud: a packet-level
simulator of energy-aware cloud computing data centers. In: 2010 IEEE Global
Telecommunications Conference GLOBECOM 2010, pp. 1–5, December 2010

10. Núñez, A., Vázquez-Poletti, J.L., Caminero, A.C., Castañé, G.G., Carretero, J.,
Llorente, I.M.: iCanCloud: a flexible and scalable cloud infrastructure simulator.
J. Grid Comput. 10(1), 185–209 (2012)

http://dx.doi.org/10.1007/978-3-662-49192-8_35
http://dx.doi.org/10.1007/978-3-662-49192-8_35
http://dx.doi.org/10.1007/978-3-319-07317-0_6
http://dx.doi.org/10.1007/978-3-319-07317-0_6
http://dx.doi.org/10.1007/978-3-319-44482-6_8
http://dx.doi.org/10.1007/978-3-319-44482-6_8
http://dx.doi.org/10.1007/978-3-642-40615-7_5
http://dx.doi.org/10.1007/978-3-642-40615-7_5
http://dx.doi.org/10.1007/978-3-642-34281-3_8
http://dx.doi.org/10.1007/978-3-642-34281-3_8

	Human-in-the-Loop Simulation of Cloud Services
	1 Introduction
	2 The ABS Language
	3 FRH Case Study
	3.1 Architecture of the Fredhopper Cloud Services
	3.2 Human in the Loop

	4 Human-in-the-loop Framework
	5 Experimental Results
	6 Conclusion
	References


