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Preface

These days, service-oriented computing and cloud computing have become pervasive
in the software industry and the end-user market. We see services and the usage of
cloud-based computational resources practically everywhere, regardless of particular
application areas or target users. Service-oriented computing and cloud computing have
gone a long way since their advent, but emerging technologies, aiming at the con-
vergence of devices, networks, and the Internet of Things (IoT), sustain a very active
research community aiming to develop these technologies further to build smart sys-
tems in research, business, and social contexts.

For the European research community, the European Conference on Service-
Oriented and Cloud Computing (ESOCC) is the premier conference on advances in the
state of the art and practice of service-oriented computing and cloud computing. The
6th event, ESOCC 2017, took place during September 27–29, 2017 at the University of
Oslo, Norway, bringing together researchers and practitioners in the field.

ESOCC 2017 featured a number of events, most importantly the main research
track, dedicated to the presentation of novel advances in the state of the art of
service-oriented computing and cloud computing, and the industry track, dedicated to
the presentation of applications and usage of services, concepts from service-oriented
computing and cloud computing, and cloud-based computational resources in industry.
Overall, 37 submissions were received, out of which 10 were accepted as full papers
and another 6 as short papers. These papers (plus a keynote paper) are featured in these
proceedings.

Each submission received at least three reviews by the members of the Program
Committee (PC), with most submissions receiving four reviews. The review process
was carried out in a “single blind” fashion. After the initial review phase, a discussion
was initiated, which helped to further evaluate the strengths and weaknesses of the
submissions. The program chairs thank the PC members and the additional reviewers
for their accurate and extensive reviewing activities, which helped to improve the
quality of the submissions and were also a big help to the authors of rejected papers.

This year, the conference featured a special track on the IoT, which aimed at
showing how new requirements towards service-oriented computing and cloud com-
puting arise because of the IoT. Vice versa, the second aim of this track was to show
how the ESOCC community contributes to fulfilling the technical needs (and therefore
the success) of the IoT.

As part of the main technical program, two inspiring keynotes were given by Stefan
Tai (Full Professor and Head of Chair Information Systems Engineering at TU Berlin,
Germany) and Hatay Tuna (Principal Software Architect, Azure Engineering, Micro-
soft). Stefan provided a talk on “Blockchain Insights”, showing the potential of
blockchain technologies to transform how organizations produce and capture value.
Hatay gave insights on key experiences, patterns, and practices for “Design for Cloud”.



Along with the main conference program, ESOCC featured a PhD symposium and
an EU projects track, bringing together PhD students and EU project participants,
respectively. In addition, three workshops were planned: REthinking SERvices
CHallenges – Services Meet Data (IFIP WG SOS Workshop 2017), BPM@Cloud, and
the 3rd International Workshop on Cloud Adoption and Migration (CloudWays). The
proceedings are published separately.

The program chairs and the general chair would like to express their deep appre-
ciation to all those who helped to make ESOCC 2017 a success. This includes the
55 PC members and the additional reviewers, the chairs and organizers of the PhD
symposium, workshops, and EU projects track, as well as the many unnamed helpers
who contributed in the background. We are especially grateful to the local organizing
committee for their support, organizational efforts, and hospitality. Also, our thanks go
to IFIP for supporting ESOCC 2017.

Finally, we thank all authors of research and industry papers, and those who pre-
sented their results, for contributing to this successful conference. With their work and
dedication, ESOCC continues its tradition in advancing the field of service-oriented
computing and cloud computing.

September 2017 Flavio De Paoli
Stefan Schulte

Einar Broch Johnsen
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On or Off the Blockchain?
Insights on Off-Chaining Computation and Data

Jacob Eberhardt(B) and Stefan Tai

Information Systems Engineering (ISE), TU Berlin, Berlin, Germany
{je,st}@ise.tu-berlin.de

Abstract. The potential for blockchains to fundamentally transform
how organizations produce and capture value is huge and very real. Prac-
tical applications dealing with nearly any type of digital asset demon-
strate this capacity. Blockchain-based application architectures benefit
from a set of unique properties including immutability and transparency
of cryptographically-secured and peer-recorded transactions, which have
been agreed upon by network consensus. Blockchain-based applications,
however, may also suffer from high computational and storage expenses,
negatively impacting overall performance and scalability. In this paper,
we report on lessons learned and insights gained from a set of experi-
mental blockchain projects, focusing on off-chaining: How to move com-
putation and data off-the-chain, without compromising the properties
introduced and benefits gained by using blockchains in the first place.

1 Introduction

Blockchains are a combination of different computing and economics concepts,
predominantly including peer-to-peer networks, asymmetric cryptography, con-
sensus protocols, decentralized storage, decentralized computing and smart con-
tracts, and incentive mechanisms. The synthesis of these concepts positions
blockchains as a new technology and as a programmable platform and network at
the same time. Blockchains introduce unique properties including immutability
and transparency of cryptographically-secured and peer-recorded transactions,
which have been agreed upon by network consensus. As such, the potential asso-
ciated with blockchain to fundamentally transform how organizations produce
and capture value is huge – and very real. While initially discussed especially
in the financial services sector, there are practical applications today dealing
with nearly any type of digital asset, ranging from asset provenance to peer-to-
peer commerce. Establishing trustless interactions and business disintermedia-
tion remain major objectives when using blockchains.

Over the past two years, we have conducted a set of blockchain projects
at the Information Systems Engineering research group at TU Berlin, mostly
experimental projects that focus on a particular application challenge and which
have been carried out in collaboration with industry partners. Further, we are

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
F. De Paoli et al. (Eds.): ESOCC 2017, LNCS 10465, pp. 3–15, 2017.
DOI: 10.1007/978-3-319-67262-5 1



4 J. Eberhardt and S. Tai

conducting foundational research on blockchain technology and platforms, taking
a distributed systems and data management perspective. In both settings, the
question of on-chaining versus off-chaining is recurring: What exactly has to be
on the chain and what can be off the chain, while retaining the overall properties
and benefits associated with blockchains?

On-chain data – in the form of confirmed transactions organized in ordered
blocks – and on-chain code – in the form of programs written in a general-
purpose, Turing-complete language – require validation and consensus by net-
work peers and result in append-only changes to the blockchain as a shared
datastore that cannot be reversed. Transaction validation, consensus protocols,
and decentralized program execution may, however, describe a communication
and execution overhead. And they simply do take time. In addition, miners (that
is, nodes that validate transactions and propose new blocks) typically charge
fees, thereby incurring financial costs. Overall, scalability of the blockchain-
based system may suffer. Bitcoin currently has a limit of 7 transactions per
second; Ethereum has a limit of about 15 transactions per second. Furthermore,
anything on the (public) blockchain is not inherently anonymous, but on the
contrary purposely visible; privacy and confidentiality are not guaranteed for
on-chain transactions.

The objective for off-chaining data and computation is to reduce or to
overcome such limitations. By moving data and computation elsewhere off
the blockchain, for example, to another datastore, server, or third party, the
blockchain “footprint” obviously is reduced. However, the fundamental prop-
erties of blockchains and blockchain-based applications, may be compromised
to different degrees when doing so. They may even be potentially prohibitively
violated when using naive off-chaining approaches. After all, the system should
remain “trustless” in the sense that no explicit trust is required.

In this paper, we report on first insights gained on off-chaining computation
and data. We present five off-chaining patterns and discuss the context, principle
idea, and implementation for each.

2 Blockchains and Smart Contracts

In a nutshell, blockchains are distributed peer-to-peer systems which implement
a trustless shared public append-only transaction ledger [14].

Blockchains. Bitcoin, the first implementation of such a system, was proposed
in 2008 by Satoshi Nakamoto [10]. The goal which led to the creation of the
Bitcoin protocol was the design of a digital currency which allows the transfer
of digital value fully peer-to-peer without relying on a trusted intermediary. To
implement such a decentralized cryptocurrency, the system combines transac-
tions secured by asymmetric cryptography with a consensus algorithm to decide
on the transaction order within the network. Peers in the network can validate
individual transactions by checking cryptographic signatures. In addition to that,
however, a global order of the transactions has to be decided on to prevent double
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spending of digital funds. For that, as a main innovation of the Bitcoin system,
the proof-of-work consensus protocol was developed which allocates the right to
add transactions to the network in proportion to the computational effort spent
to secure the network. For efficiency, multiple transactions are grouped into a
block. These blocks are then ordered by consensus. Each block references its
predecessor, which implies a chain data structure – the blockchain.

Extending Bitcoins idea of peer-to-peer value transfer, Ethereum, a trustless
computing platform, was proposed in 2014 [9,16]. Ethereum adds a turing com-
plete and stateful programming language to the blockchain idea, which enables
the execution of complex code without trusting a server or central party. Trust
is replaced by validating each program execution on every peer in the network
and agreeing on an outcome.

Smart Contracts. These programs executed in a trustless and tamper-proof
manner in the network are referred to as Smart Contracts. Note, that Smart
Contracts need to be deterministic as otherwise peers could disagree on the
results of valid executions. Hence, e.g., filesystem and network access are not
permitted. While the term may imply a close connection to legal contracts,
smart contracts have a much wider range of use cases and can be applied where
automatically executed complex conditional logic is required. Hence, they can
be imagined as self executing autonomous agents.

3 The Need for Off-Chaining Computation and Data

Over the last two years, we gained extensive experiences during proof-of-concept
implementations of blockchain-based applications prototypes. We motivate off-
chaining insights by discussing exemplary challenges for two of these applica-
tions. While all prototypes developed at TU Berlin have been realized on the
Ethereum platform [9], we consider our findings to be representative for all of
today’s public blockchain implementations.

As a first application, we created a fair and manipulation-resistant chess
game on the Ethereum platform [1].

Today, online gaming relies on a trusted intermediary which runs games and
ensures players obey the rules. However, this intermediary needs to be trusted
to not cheat or steal funds. To eliminate that trust, we implemented the chess
logic as well as data structures required to persist the game state in a smart con-
tract. Conceptually, that already solves the problem: Players send moves to the
contract, which modifies game state persisted internally for valid moves. After a
valid move, the contract checks end game conditions and pays out the winner if
a condition is met. Checking end game conditions, however, is computationally
expensive. All potential moves have to be calculated and verified to check the
check mate condition. This is not possible in a smart contract as it violates the
complexity upper bound for on-chain transactions.
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Three things can be learned from that:

1. We need to find a way to perform the end-game check off chain, on the client
side, without impacting the blockchain’s trustlessness property.

2. As computations come with a fee, the end game check should be performed
as rarely as possible. Hence, like in a physical chess game, we should have a
player trigger the check instead of doing it after every valid move. In other
words, we should move part of the control flow to the client side.

3. We have to expect to reach scalability limits of blockchains when creating
applications. This emphasizes the need for research in and development of
off-chaining techniques.

Another much more complex proof-of-concept was a decentralized service
marketplace which enables trustless disintermediation between providers and
consumers of service APIs. Using a cryptocurrency for payments, a consumer
can buy time-constrained access to a service offered on the market place with-
out involving a marketplace intermediary. Especially service discovery, one of the
main building blocks of a service marketplace, posed a big challenge within the
fully decentralized design: Data storage on blockchains is extremely expensive
due to full replication in the peer-to-peer network. Nonetheless, a meaningful
service discovery feature requires API descriptions to be stored. Simply pointing
to an off-chain reference from a smart contract, e.g., a file hosted in a cloud stor-
age system, is no alternative to on-chain storage. This approach would introduce
trust in the storage system since the data stored could change while the reference
remains the same. Additionally, since all data in a blockchain is stored on every
node in the network, it is publicly visible. There is no obvious way for a service
provider to hide some of his service descriptions from the public.

As a direct consequence of this public visibility, there is no way to perform
computations on private data on-chain without revealing it. Assume a consumer
wants to prove to a provider that he has access to another provider’s API. That
second provider could publicly provide the hashes of all tokes that give access to
his service. Then, the consumer could simply hash his private access token and
show the hash to the first provider, which could in turn verify it by comparing
it to the published hashes. However, for this to be trustless, the consumer would
need to perform the hash operation on-chain and with that reveal his private
token. Simply computing the hash off-chain would not proof anything to the
provider.

Again, we derive three challenges from these findings:

1. We need to find a way to store data off the chain without giving up its
manipulation-resistance.

2. As all on-chain data is publicly visible, techniques for trustless but privacy-
preserving off-chain storage should be developed.

3. Off-chain computations on private data which can be verified on-chain with-
out revealing said data would augment the set of possible use cases.

In summary, off-chaining strategies are needed to address both, functional
limitations of and high costs incurring from on-chain computation and storage.
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4 Off-Chaining Patterns

We now introduce a set of off-chaining patterns identified, which can be used
individually or in combination to move computation and data off the blockchain.
Each pattern aims at maintaining the key properties of blockchains and includes
techniques to ensure that they are not compromised to an unwanted degree.

4.1 Challenge Response Pattern

Context: A smart contract models a state machine with well-defined final
states. State transitions are cheap to compute, but checking whether a given
state is a final state is expensive.

Solution: Instead of checking whether a state is final or not in a smart contract
on a blockchain, the same check is performed off-chain on the client side. A client
can notify a smart contract when a final state has been reached. Other clients
can prove claims wrong by providing a valid state transition. Using this pattern,
the computation never has to be performed on-chain (Fig. 1).

Fig. 1. Challenge response pattern

Example: The end game condition for chess is too expensive to check on-chain.
The players, however, can easily check the condition off-chain. Hence, instead
of checking the end game condition in a smart contract, a player simply claims
check mate. If the claim was false, his opponent can simply prove him wrong
by submitting a valid move. If the claim was true and the opponent cannot
submit a valid move, the winner is paid out. Figure 2 gives an overview of the
full challenge response protocol for chess also considering draws and timeouts.
For a more detailed description, we refer to [1,2].

Discussion: This pattern allows computations to be off-chained efficiently in
scenarios where smart contracts act as state-machines. Since it allows for com-
plex operations to be moved completely off-chain and with that circumvents
the complexity upper-bound for on-chain transactions, it can extend possible
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Fig. 2. Challenge response pattern applied for chess

use cases and potentially lead to cost savings. Note though, that the pattern
increases the overall amount of on-chain transactions, which requires a careful
calculation of costs. Also, increased availability of the parties involved in the
smart contract implementing the pattern is required, since the use of timeouts
is essential to ensure progress.

Implementation: This pattern does not require additional technologies besides
smart contracts. For an exemplary implementation of this pattern, refer to [2].

4.2 Off-Chain Signatures Pattern

Context: Two network participants know that they will perform a set of trans-
actions in the future. They want to reduce the cost of these transactions or want
to hide them from other network participants.

Solution: Together, the two participants specify a smart contract including a
function, which applies an external state given as argument to the contract state.
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This function includes a signature check to ensure both participants agree with
the state change. Only if valid signatures of both participants are supplied with
a requested new state, the new state is applied. This contract is deployed to the
blockchain and both participants optionally make a deposit.

Then, the participants perform transactions purely off-chain and peer-to-
peer, without involving the blockchain: One participant computes a new state,
wraps it in a transaction, signs it and sends it to his counterpart. The recipient
then checks the new state, signs the transaction as well in case he agrees and
sends it back to the sender.

This transaction, signed by both parties, can now be sent to the smart con-
tract by a participant at any point in time. After validating both signatures, the
contract updates its state accordingly.

Example: Participants A and B create a smart contract with a signature-
locked state update function and deposit 50 units of cryptocurrency each. Now,
A wants to transfer 10 units to B. For that, she creates a transaction locally,
which includes a new state where A and B have balances of 40 and 60. She
signs it and sends it to B, who signs it as well. Now, B can use the transaction
to update the on-chain balance at any point in time. However, A and B could
perform further off-chain value transfers without ever settling on-chain unless
one side’s deposit is used up. This application of the pattern for off-chain value
transfer is often referred to as payment channel.

Discussion: This pattern allows efficient off-chain transactions without intro-
ducing trust into the system. The core insight is, that the guarantee to be able
to settle a transaction is as good as actually executing the transaction on-chain.
Signing a new state is analogous to writing a check in a traditional financial
transaction. Using off-chain transactions can lead to significant cost savings as
transaction fees only apply for on-chain settlement. Furthermore, the pattern
can enhance privacy and confidentiality, as all transactions but the final settle-
ment remain hidden from the network. From a blockchain network perspective,
this pattern helps to take load off the system and with that enhances scalability.

There are many other applications besides simple value transfers. As shown
in Fig. 3, we were able to move the core parts of the chess game off-chain by
using this pattern. This not only helped to lower the cost of a game, but also to
remove time dependence on block intervals.

Since initial deposits to the smart contracts are required in most cases, estab-
lishing contracts with many peers can lock a considerable amount of funds. Also,
malicious participants could freeze funds by denying signatures. Hence, contracts
should specify timeouts which trigger automatic settlement.

Implementation: Besides on-chain smart contracts, this pattern requires a
peer-to-peer communication channel to exchange signed off-chain transactions.
In the Ethereum ecosystem, for example, the Whisper Messaging Protocol [4] can



10 J. Eberhardt and S. Tai

Fig. 3. Off- and on-chain interactions in the chess application

be used. There are various efforts to leverage this pattern to build off-chain value
transfer networks for existing blockchains: The lightning network [12] provides an
implementation for the Bitcoin ecosystem, while Raiden [5] targets the Ethereum
network.

4.3 Content-Addressable Storage Pattern

Context: A large amount of data is associated with a smart contract. On-chain
storage is too expensive.

Solution: Store the data off-chain in a content-addressable storage system and
store the reference in the smart contract. Clients using the smart contract can
retrieve the reference and based on that retrieve the data. Then, they can verify
the data’s correctness by recomputing its address from itself and comparing it
to the reference stored in the smart contract.

Example: A smart contract encodes ownership of a piece of digital art. However,
a piece of art would be very expensive to store on-chain due to its size. To
solve this problem, the description is stored in a content-addressable storage
system which stores files by their hashes. The file hash is also stored in the
smart contract, serving as a reference to the artwork. Clients can then retrieve
the hash of the externally stored piece of art from the contract and use it to
query the storage system. The result can then simply be hashed to verify its
correctness (Fig. 4).
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Fig. 4. Content-addressable storage pattern

Discussion: This pattern allows the trustless outsourcing of data to an off-
chain storage system since a modification in the data would immediately change
its address and with that invalidate its references.

By applying the pattern, an application’s storage cost can be greatly reduced
and files, which originally could not be stored on-chain in the first place, can
now be referenced without introducing trust. Additionally, as the data retrieval
is done on the client side from an external storage system, privacy features
may be implemented by adding access control to that system. However, this
requires careful considerations depending on the use case, since leaked data can
immediately be confirmed to be authentic by recalculating its address.

While not in scope of this pattern, the required external content-addressable
storage system itself has to be reliable and available. In case of unavailabil-
ity or data-loss, the blockchain-based part of the application may also become
unavailable.

In the future, this pattern could be extended to support trustless computation
on data stored off-chain: First, content-addressed data referenced from a smart
contract could be sent to the contract. Then, integrity could be verified on chain.
In case of success, the smart contract could modify the data, update its reference
to that new data and write it to an event. An untrusted external worker could
then write that data back to the content-addressable storage system the inputs
were retrieved from. While theoretically interesting, we did not yet observe this
extension. Hence, it is not part of the pattern.

Implementation: As mentioned before, a content-addressable storage system
is required to work in conjunction with smart contracts. Two such technologies,
which address data by its hash and try to ensure availability and durability are
the Interplanetary File System (IPFS) [7] and Swarm [15].
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4.4 Delegated Computation Pattern

Context:

(a) A node participating in a blockchain network wants to prove a property of
its private data without publishing it.

(b) A node wants to perform a computation that is too complex to be executed
on-chain.

Solution: Outsource computation to an untrusted third party and, besides the
result, generate a proof of correct execution. Instead of executing the computa-
tion itself, verify the proof of correct execution on-chain (Fig. 5).

Fig. 5. On-chain processing vs. delegated computation pattern

Example: There is an on-chain list of hashes of ID-card information which
refers to people who are allowed to call a smart contract function. Now, anyone
listed can prove that he has an ID-card which authorizes him to call the con-
tract function by hashing his card information locally and supplying the result
including a proof of correctness. The proof does not require to reveal any of the
information on the card.

Discussion: This pattern allows the trustless outsourcing of computation to
untrusted parties. The third party, also called the prover, does not have to
reveal any private inputs or intermediate results of the proof creation. The only
information leaked is that the prover knows all the information necessary to
correctly compute the output. For that, non-interactive zero-knowledge proofs,
more specifically zero-knowledge Succinct Non-interactive ARgument of Knowl-
edge (zkSNARKs), can be employed [8,11].



On or Off the Blockchain? Insights on Off-Chaining Computation and Data 13

Unlike with regular computations on the blockchain, this pattern allows off-
chained computations to hide information used during execution. Hence, not
having to expose information but the result of a computation greatly enhances
privacy. Furthermore, the proofs can be designed in a way that the verification
cost is independent of the complexity of the off-chained computation. Thus,
after a complexity threshold is reached, on-chain verification of a computation
is cheaper than its on-chain execution. This result can be leveraged to increase
a blockchain’s throughput. Even operations exceeding the on-chain complexity
limits for computations may still be executed off-chain using this patterns.

The state of the art non-interactive zero-knowledge proofs require a trusted
setup phase to be performed before proofs can be generated. This can, depend-
ing on the use case, introduce undesirable trust in the overall system. Addi-
tionally, the proof generation for a computation causes an overhead over its
non-verifiable execution. Yet, there is neither a high level language for the con-
venient specification of off-chain computations nor are there tools for simple
on-chain verification of proofs. Therefore, while powerful and already used in
practice, this pattern is currently only applied in rather specific scenarios, e.g.,
in zCash, which is a Bitcoin-based blockchain which implements privacy pre-
serving transactions [6,13].

Implementation: For the verification of off-chain computations from smart
contracts, the underlying blockchain needs to support the operations needed to
check proofs. These can either be use case specific, or universal building blocks
which can be used to verify any proof. While zCash directly added the verification
logic for their specific computation to their protocol, Ethereum plans to add
operations to support verification of arbitrary zkSNARKs with the Ethereum
Improvement Proposals 196 and 197 [3].

4.5 Low Contract Footprint Pattern

Context: Changing a smart contract’s state requires an on-chain transaction.
To incentivize the processing of a transaction by the network, a fee has to be
paid. This fee depends on the complexity of the smart contract function called
as well as its use of storage.

Solution: To optimize fees, contracts should be designed in a way that mini-
mizes the number and size of on-chain transactions. The following two techniques
can be used to reduce the footprint.

– Do not check conditions on-chain after a state change. Let nodes perform the
condition check locally and trigger an on-chain check in case of success.

– Optimize for writes, not reads. Reading from a smart contracts is a local
off-chain operation and does not require an on-chain transaction. Minimize
writes and store information free of redundancy. Compute derived data locally
during reads.
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Examples:

– In the service marketplace application, a service provider needs to make sure
consumers are removed from the on-chain authorization list after the time
period the consumer paid for is over. Instead of periodically triggering or
linking the condition check to another contract function and risking frequent
reevaluation, he tracks the access period locally and triggers the on-chain
check after it has elapsed. This reduces the amount of on-chain evaluations
to one.

– If the service provider wants to know the number of customers currently
subscribed to his service, he should not add a counter to the smart contract.
He can compute the number locally at any point from the authorization list.
This saves storage space and counter update operations.

Discussion: This pattern may not initially seem like an off-chaining approach,
as it does not explicitly take something off the chain. However, it prevents infor-
mation to be stored or processed on-chain in the first place. Hence, this may be
the least obvious, but the most employed and intuitive off-chaining pattern.

Implementation: No additional components or techniques are required besides
smart contracts to implement this pattern.

5 Summary and Outlook

In this paper we motivated the need for off-chain approaches to overcome lim-
itations in today’s blockchain implementations and even more, to extend their
functionality and to reduce usage costs. After deriving key challenges based on
our experiences from implementing several blockchain-based applications, we
presented five off-chaining patterns for moving computation and data off the
blockchain, without compromising important blockchain properties, in particu-
lar, the trustlessness property.

We expect blockchain systems to further mature and improve with regards to
scalability and privacy in the future by combining and implementing ideas like,
for example, new consensus algorithms, sharding, or homomorphic encryption.
However, we still consider off-chaining techniques to be key tools in blockchain-
based application engineering as they introduce additional functionality and
potentially significant cost benefits.
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Abstract. The microservices architectural style is gaining more and
more momentum for the development of applications as suites of small,
autonomous, and conversational services, which are then easy to under-
stand, deploy and scale. One of today’s problems is finding the ade-
quate granularity and cohesiveness of microservices, both when start-
ing a new project and when thinking of transforming, evolving and
scaling existing applications. To cope with these problems, the paper
proposes a solution based on the semantic similarity of foreseen/avail-
able functionality described through OpenAPI specifications. By lever-
aging a reference vocabulary, our approach identifies potential candi-
date microservices, as fine-grained groups of cohesive operations (and
associated resources). We compared our approach against a state-of-the-
art tool, sampled microservices-based applications and decomposed a
large dataset of Web APIs. Results show that our approach is able to
find suitable decompositions in some 80% of the cases, while providing
early insights about the right granularity and cohesiveness of obtained
microservices.

Keywords: Microservices · Microservice architecture · Monolith
decomposition

1 Introduction

Microservices is a novel architectural style that tries to overcome the shortcom-
ings of centralized, monolithic architectures [1,2], in which the application logic
is encapsulated in big deployable chunks. The most widely adopted definition of
a microservices architecture is “an approach for developing a single application
as a suite of small services, each running in its own process and communicating
with lightweight mechanisms, often a RESTful API” [3]. In contrast to mono-
liths, microservices foster independent deployability and scalability, and can be
developed using different technology stacks [4,5].
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Although microservices can be seen as an evolution of Service-Oriented Archi-
tectures (SOA), they are inherently different regarding sharing and reuse [6]:
given that service reuse has often been less than expected [7], instead of reusing
existing microservices for new tasks or use cases, they should be small and inde-
pendent enough to allow for rapidly developing a new one that can coexist,
evolve or replace the previous one according to the business needs [1].

Several companies have recently migrated, or are considering migrating, their
existing applications to microservices [8], and new microservice-native applica-
tions are being conceived. While the adoption of this architectural style should
help one address the typical facets of a modern software system: for example,
its distribution, coordination among parts, and operation, some aspects are still
blurred [9,10]. One key issue is the definition of the right granularity level, that
is, the trade-off between size and number of microservices [1].

The problem is not new: the literature has already addressed the decomposi-
tion problem—for identifying modules, packages, components, and “traditional”
services—mainly by means of clustering techniques upon design artifacts [11] or
source code [12]. However, the boundaries between software modules settled by
these approaches were too flexible and allowed software to evolve into “big balls
of mud” [13]. Microservices make these boundaries physical, and their unique
characteristics in terms of distribution, granularity, and independent deploya-
bility, call for a new wave of techniques. Notwithstanding the existing body of
knowledge, the elicitation of strong interface boundaries at the right level of gran-
ularity, along with proper tool support, remains an important challenge inherited
from the early times of SOA [14]. The identification of “proper” microservices
not only aims to partition the system to ease maintenance [7], but also defines
how the system will be able to evolve and scale.

This paper borrows from the aforementioned experiences to introduce a novel
approach to reason on microservices starting from an initial OpenAPI specifica-
tion [15] (a language-agnostic, machine-readable interface for REST APIs) of the
operations that the application should offer. This means that either the appli-
cation, along with its interfaces, already exists and it must be re-engineered, or
some design artifacts/specifications are available.

The process starts with mapping available OpenAPI specifications onto the
entries of a reference vocabulary by means of a fitness function. In this paper,
we use Schema.org1 as reference, but any other shared vocabulary or even a
domain-specific ontology would be appropriate. The fitness function is based
on DISCO (DIStributionally related words using CO-occurrences, [16]), a pre-
computed database of collocations and distributionally similar words that allows
for computing the semantic similarity of terms according to their co-occurrences
in large corpora of text. The goal is to provide a usable, automated solution
to devise a decomposition—that is, a set of candidate microservices defined by
groups of operations and their associated resources. The idea is to pair stan-
dardized (OpenAPI) specifications with homogeneous—because of the shared
reference vocabulary—semantic characterizations. The reference vocabulary also

1 http://Schema.org/docs/full.html.

http://Schema.org/docs/full.html
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act as a context that allows us to address large domains, in which certain con-
cepts are used with different meanings across the system. The main properties
driving the decomposition are granularity (a tradeoff between size and number
of microservices), loose coupling (minimising inter-service calls) and high cohe-
sion (keeping similar functionality together), while allowing the user to explore
different alternatives by tunning the procedure.

In summary, the contribution of this work is an automated process for identi-
fying candidate microservices by means of a lightweight, domain-agnostic seman-
tic analysis of the concepts in the input specification with regard to a reference
vocabulary.

The rest of this paper is organized as follows. Section 1.1 presents an example
application to illustrate our approach. Section 2 introduces the main technolo-
gies used throughout the paper. Section 3 presents our approach for identifying
microservices. Section 4 discusses the experimental validation. Section 5 surveys
related work and Sect. 6 concludes the paper.

1.1 Example Application: Cargo Tracking

Figure 1 shows a simplified class diagram (domain model) of Cargo Tracking2, a
well-known example application [17] used to illustrate the approach. Each class
defines a key concept and introduces a first set of attributes and operations.

The main focus of the application is to move a Cargo (identified by a
TrackingId) between two Locations through a RouteSpecification. Once
a Cargo becomes available, it is associated with one of the Itineraries (lists
of CarrierMovements), selected from existing Voyages. HandlingEvents then
trace the progress of the Cargo on the Itinerary. The Delivery of a Cargo
informs about its state, estimated arrival time, and being on track.

Fig. 1. Domain model and expected decomposition (dotted boxes) of the Cargo Track-
ing application.

2 https://github.com/citerus/dddsample-core (Java implementation).

https://github.com/citerus/dddsample-core
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2 Background

DISCO [16] is a pre-computed database of collocations and distributionally simi-
lar words. The similarities are based on the statistical analysis of very large text
collections (e.g., Wikipedia), through co-occurrence functions. For each word,
DISCO indexes the first and second order vectors of related words.

The similarity between two words is then obtained by computing the
similarity—based on co-occurrences—of the corresponding vectors. The high-
est the similarity value ([0, 1]) is, the closer the two words are. For example, if
bread co-occurred with bake, eat, and oven, and cake also co-occurred with these
three words, then bread and cake would be distributionally similar [16], and their
similarity value would be 1 (if the vectors only comprised the three words).

OpenAPI, formerly known as Swagger3, is a machine-readable, language-
agnostic interface for RESTful APIs. Although OpenAPI can be seen as yet
another attempt to define Web Service interfaces, it is just intended to describe
RESTful APIs, and is supported by major industry partners such as Google,
IBM, Microsoft, and PayPal. OpenAPI follows a JSON-based format4 and is
modular and extensible by means of the $ref keyword, with the goal of linking
elements to concepts in a shared schema, or even a reference vocabulary. The
elements/objects tagged with keyword $ref are then linked to a concept in a
certain schema, which can be based on high level vocabularies, such as FOAF5

or Schema.org. For example:

{"name":"Cargo",

"description": "A cargo (product) identified by its TrackingId.",

"schema": {

"$ref": "schema.org.apis.apievangelist.com/api-commons/product/

openapi-spec.json"

}}

says that Cargo is a Product, as defined in Schema.org. That is, all the attributes
defined for type Product in the reference vocabulary are then usable in this
description, and any external (automated) client can easily exploit them.

3 Our Approach

The identification process consists of matching the terms used in the OpenAPI
specifications supplied as input against a reference vocabulary to suggest pos-
sible decompositions. Note that when OpenAPI specifications are not available
beforehand, they can be automatically generated from existing interface specifi-
cations6 The terms extracted from input artifacts are iteratively mapped on the
3 http://swagger.io.
4 Developers can thus exploit OpenAPI through the same tools and libraries used for

JSON (e.g., Jackson).
5 http://xmlns.com/foaf/spec/.
6 E.g., the APIMatic tool (https://apimatic.io/transformer) accepts Swagger, WSDL,

WADL and RAML among others.

http://swagger.io
http://xmlns.com/foaf/spec/
https://apimatic.io/transformer
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concepts in the vocabulary by means of a fitness function based on the semantic
similarity measure provided by DISCO. The best concept mappings are obtained
through maximization of a co-occurrence matrix that contains all the possible
pairs of terms and concepts.

Algorithm 1. Decomposition Algorithm
Data: OpenAPI specs, ref. vocabulary
Result: OpenAPI microservices’ specifications

1 mappings ← ∅ ;
2 foreach input specification do
3 map ← SemanticAssessment(specification,vocabulary);
4 mappings ← mappings + map;

5 end
6 candidateMS ← GroupSimilar(mappings,vocabulary,level);
7 microserviceSpecs ← GenerateOpenApiSpecs(candidateMS, vocabulary);
8 return microserviceSpecs

Algorithm 1 summarizes the main steps of the decomposition algorithm.
It receives a set of OpenAPI specifications and the reference vocabulary as
input, and computes the best mappings between them through the DISCO-
based semantic assessment algorithm (Line 3), further detailed later. This step
generates a mapping between each operation in the input and a reference con-
cept in the vocabulary, that is, the concept that most accurately describes the
operation. The idea is that operations that share the same reference concept
are highly cohesive, and should be grouped together (Line 6). Parameter level7

determines the granularity of these groupings, that is, the level of interest in
the hierarchy of concepts. For example, level=0 would only generate one can-
didate microservice, since everything would be grouped up to the root node
of the vocabulary—Thing in Schema.org. The empirical assessment (Sect. 4),
allowed us to set level to 2 to achieve a good compromise between the number
of microservices and their granularity. Needless to say, the user can play with
different values for level, identify different groupings, and analyze them.

Then, the suggested decomposition (Line 6) comprises one candidate
microservice per identified reference concept. Each microservice is defined
through its operations and their parameters, (public) complex types, and return
values.

For example, if we started from the operations in Fig. 1 for the Cargo Tracking
application, the process of Algorithm 1 would map Delivery and Handling onto
DeliveryEvent (in Schema.org), and they would share the latter as reference
concept. Delivery and Handling should then be part of the same candidate
microservice, which could be named, for instance, EventTracker.

The OpenAPI specification of microservice EventTracker would then con-
tain the operations defined within Delivery and Handling, and also a reference
to the corresponding “shared” concept. The complete results for the case study
are discussed in Sect. 4.

7 Its values can range from 0 to the maximum depth of the vocabulary tree, which is
5 in Schema.org.
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Algorithm 2 details the DISCO-based semantic assessment, called at Line 3
of the decomposition algorithm (Algorithm 1). It analyzes each operation of
a specification artifact, along with the resources it defines (parameters, return
value, complex types), with respect to the concepts in the shared vocabulary.
The algorithm uses a robust term separator8 [18] to identify and split words in
the input terms (T ) even when identifiers do not strictly follow any predefined
naming convention (Line 3). The term separator also filters stop words9, that is,
meaningless words such as articles, pronouns, prepositions, digits, single alphabet
characters, and possibly further domain- or context-specific words.

Then, the algorithm iteratively maps the set of input terms T onto all pos-
sible concepts C in the vocabulary by using DISCO (Line 5 to 8). For example,
let us consider term CargoTracking and concept DeliveryEvent, with the fol-
lowing similarity scores:

Cargo Tracking

Delivery 0.3 0.1

Event 0.2 0.1

At a first glance, the best mappings are (cargo, delivery) and (cargo, event)
with overall score = (0.3 + 0.2)/2 = 0.25. However, this mapping is not valid
since it would consider word Cargo twice, but it would not use Tracking, and
thus it would not be an acceptable mapping for the whole term. We must then
find a suitable set of mappings that cover all the words in t and maximize the
overall mapping score. When both t and c contain multiple words, finding the
best mapping is not trivial, since it should consider all the words in t. This is
done by applying the fitness function (Formula 1), followed by the Hungarian
algorithm [19], a classical algorithm that solves the assignment problem in O(n3).
As said, both t and c can be composed of multiple words (as CargoTracking
and DeliveryEvent). col(ti, cj) is the set of collocation scores for pairs of words
(ti, cj) ∈ (t, c), and N is the number of collocations between the different words
in t and c that conform to the mapping (e.g., if t and c contain two words, then
N = 2 since there can only be two possible valid mappings with two pairs each).
Values range from 0 to 1, given the range of DISCO similarity function and the
normalization factor N . The highest col is, the closest the two terms are. Note
that although col ranges between 0 and 1, values are in general closer to 0, since
col = 1 would mean that all the words appear together for all their occurrences in
the DISCO corpus, which is highly unlikely in practice [16]. Scores are stored in
a correlation matrix, where each column is a word in t and each row corresponds
to a word in c linked to at least an element in t. Finally, the algorithm uses the
matrix (Line 9) to identify the most adequate mappings.

score(t, c) =
∑

(col(ti, cj))/N (1)

8 https://github.com/aderenzis/IdentifiersTermSeparator.
9 http://www.webconfs.com/stop-words.php.

https://github.com/aderenzis/IdentifiersTermSeparator
http://www.webconfs.com/stop-words.php
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In the end, the concept in the reference vocabulary with the highest mapping
score for a given input operation is elected as reference concept. The algorithm
then returns a list with the best mapping for each operation in the input speci-
fication.

Back to the running example, for operation CreateCargo defined in
Cargo, the concept in the vocabulary that shares the highest similarity
according to DISCO is Vehicle, where: (col(Create, V ehicle) = 0.07 +
col(Cargo, V ehicle) = 0.61)/2 = 0.34. Then, given the desired grouping gran-
ularity Vehicle can also become a Product in the vocabulary hierarchy. Since
Cargo in Fig. 1 only shows one operation, it is grouped under Product as refer-
ence concept.

Algorithm 2. Semantic Assessment Algorithm
Data: OpenAPI specification, ref. vocabulary
Result: best mappings

1 bestMappings ← ∅ ;
2 foreach operation in specification do
3 termsInput ← TermSeparation(operation);
4 correlationMatrix ← [][];
5 foreach concept in vocabulary do
6 termsContext ← TermSeparation(concept);
7 correlationMatrix ← DiscoCoOcurrrences(termsIput,termsContext);

8 end
9 bestMappings ← bestMappings + hungarianMax(correlationMatrix);

10 end
11 return bestMappings

4 Evaluation

This section presents the experiments we conducted to assess and validate the
approach10.

4.1 Decomposition of the Cargo Tracking Application

We performed the decomposition of the cargo tracking application (presented
in Sect. 2), and compared our approach against Service Cutter [20], a state-of-
the-art tool for microservice decomposition. The dotted boxes in Fig. 1 (Sect. 2)
show the expected decomposition for the cargo tracking application (as defined
in [20]). The input to our tool is an OpenAPI specification of the application
that describes its different interfaces, operations, and resources. Schema.org
is given as reference vocabulary. Figure 3 presents the candidate decomposi-
tion we obtained. As examples, we can take a closer look at some mappings.
For interface Voyage, its operation CreateVoyage was mapped to the reference
concept Trip, which is in turn an Intangible in Schema.org. Analogously,
operation RouteCargo of interface Leg is also mapped to the reference concept
Trip. Thus, these two operations will be grouped together in the candidate
microservice PlanningService, along with all the other operations mapped
10 Both the experimental prototype of the decomposition tool and the datasets used

are available here: https://github.com/mgarriga/decomposer.

https://github.com/mgarriga/decomposer
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to Trip or other Intangibles. In turn, the remaining operation in Voyage is
HandleCargoEvent, which is mapped to reference concept Event. This operation
will be grouped under another candidate microservice named EventTracker,
with the other operations also mapped to Event (or other concepts under Event
in Schema.org), such as ViewCargos (from Delivery) and ViewTrackings (from
HandlingEvent).

The input to Service Cutter is a set of specification artifacts, and a set of
weighted coupling criteria, and the output is a graph where nodes represent
candidate microservices, and weighted arcs indicate how cohesive and/or coupled
two candidates are. Finally, a clustering algorithm provides the most suitable
service cuts. Figure 2 depicts the best decomposition provided by Service Cutter,
after manually prioritizing and fine-tuning the weights of coupling criteria to
reflect the requirements of the application.

Fig. 2. Obtained decomposition with Service Cutter [20]

Our microservice decomposition process generated different candidate
microservices than those obtained with Service Cutter. No approach returned
the “expected” service decomposition, although it was defined manually in [20].
Thus, one can argue whether the expected decomposition is optimal, since it
may be subjective, and biased by certain design decisions. From a comparative
perspective, the main difference is service Voyage&Planning (Fig. 2) which in
Service Cutter’s decomposition encapsulates seven input artifacts, nine opera-
tions and two different business aspects. In contrast, our solution decomposes it
in three different microservices (Fig. 3): Trip, Planning and EventTracking, all
with a similar and finer granularity (three, four and five operations respectively).
The only candidate microservice that could be too fine-grained is Cargo, which
only encapsulates one operation.

From a comparative perspective, our approach requires as input the refer-
ence vocabulary and the OpenAPI descriptions of the interfaces (which can be
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Fig. 3. Obtained decomposition with our approach

automatically generated from other descriptions). In turn, Service Cutter
requires a detailed and exhaustive specification of the system, together with ad-
hoc specification artifacts associated with coupling criteria [20]. The availability
of such a broad range of documentation is, at least, arguable.

This section provided insights about the rationale of our approach and a
comparison with a state-of-the-art-tool through a simple example. The experi-
ments described in the next section use real-life microservice applications and a
broader dataset of real-world Web APIs to help us better devise the feasibility
of our approach.

4.2 Decomposition of Microservice Applications

The goal of the second experiment is to automatically devise adequate decom-
positions of two microservice-based applications11: Money Transfer, composed
of four microservices (Customers, Accounts, Transfer, and Login) and Kanban
Board, composed of three microservices (Boards, Tasks, and Authentication).

The original microservice architecture of each application acts as a gold stan-
dard to validate the results obtained with our approach. Again, we used the
OpenAPI specifications as input—a single JSON per application, that acts as
its “monolithic-like” description—and Schema.org as vocabulary.

Table 1 shows the decompositions for both applications. Each group of opera-
tions constitutes a different candidate microservice. Then, the rightmost column
indicates if the mapping is adequate in the context of each decomposition, that
is, whether the grouped operations corresponded to the same microservice in the
original architecture.

11 http://eventuate.io/exampleapps.html – from the curator of microservices.io [8].

http://eventuate.io/exampleapps.html
https://www.microservices.io
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Particularly, for MoneyTransfer, 8 operations out of 10 (80%) were correctly
decomposed, that is, as prescribed in the original architecture. For example, oper-
ation getAccountForCustomer was correctly placed in microservice Account
despite containing also terms of Customer. This is based on the co-occurrences
criteria and the use of a reference vocabulary to provide contextual information
to the concept analysis. This can be illustrated also by considering an operation
with completely different terms, e.g., getStatement, which would be grouped
into microservice Account since Account and Statement are highly correlated
according to DISCO (0.48 as similarity value). For the two remaining oper-
ations, getCustomersByEmail was placed in another candidate microservice,
while transactionsHistory was not mapped to any concept of Schema.org,
since the relationships found are too weak (according to the defined threshold)
to devise a similarity.

In turn, for KanbanBoard, 10 operations out of 13 (77%) were correctly
decomposed. As for the three remaining operations, they were grouped together
in another candidate microservice. Obtained results suggest that our approach is
able to detect correct candidate microservices for around 80% of an application’s
functionality, given that the expected decomposition (gold standard) was known
beforehand.

Table 1. Obtained decomposition for MoneyTransfer and KanbanBoard.

Application Cand. microservice Operation Suitable?

Money

Transfer

Customer
createCustomer,getCustomer,

getCurrentUser Yes

Account
getAccountsForCustomer Yes
addToAccount,createAccount

Login doAuthorization Yes
MoneyTransfer moneyTransfer Yes
Other getCustomersByEmail No
N/A transactionsHistory No

Total 8/10

Kanban

Board

Task

listAllTasks,saveTask,update-

Task,deleteTask,backlogTask,

completeTask,getTaskHistory

Yes

Auth doAuthentication Yes
Board listAllBoards,getBoard Yes
Other readAction,scheduleAction,resumeAction

No

Total 10/13

4.3 Decomposition of a Large Dataset of Real-World APIs

The goal of this experiment is to decompose a dataset of real-world APIs and
analyze the potential applicability/utility of our approach. Moreover, this is
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helpful to profile the decomposition process and find its optimal configuration,
according to expected decompositions defined by software engineers. We used
a dataset of OpenAPI specifications from APIs.Guru12, currently the largest
repository of publicly available, real-world OpenAPI specifications. From all the
APIs available in the repository (550 in total), we focused on specifications with
at least two operations, which is the minimal condition to be potentially decom-
posable, and less than fifty operations, which avoids the noise introduced by too
large APIs. We ended up with a dataset of 452 OpenAPI specifications defining
a total of 6634 endpoints, which are equivalent to the notion of operations in
this paper.

From this dataset, we randomly selected 5 samples of 14 services, that were
delivered to five different software engineers (both PhD. students and researchers
in software engineering with industry experience). Then the engineers manu-
ally defined the decompositions for these services. Note that the engineers were
unaware of the rationale behind our approach, to avoid biasing their answers.
We configured different similarity thresholds over the fitness function (Formula 1)
and different values for the grouping level (Algorithm 1) and executed the decom-
position over the sample services, comparing our candidate microservices with
those suggested by the developers. The results were measured in terms of preci-
sion and recall, according to the expected and achieved decompositions. Figure 4
shows the precision/recall curve that considers an average of the different sam-
ples and different configurations for the aforementioned values threshold and
level. The tiny x on the curve represents the optimal compromise between pre-
cision/recall among all the tested configurations, where precision = 0.8 and
recall = 0.8.

Fig. 4. Precision/Recall curve for the APIs.Guru
dataset.

Table 2. APIs.Guru dataset and
number of concepts mapped in
Schema.org.

Operations Services Avg. concepts

2...5 115 1.47

6...10 106 2.56

11...20 120 4.18

21...30 54 6.25

31...40 34 7.79

41...50 23 8.26

Tot.: 452 Avg.: 3.8

After this profiling and configuration step, we executed the decomposition
algorithm with the whole dataset of 452 OpenAPI specifications as input. Table 2
shows the number of operations per service and the average concepts mapped

12 https://apis.guru/openapi-directory/.

http://www.schema.org
https://apis.guru/openapi-directory/
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in Schema.org. Input APIs were decomposed in 3.8 candidate microservices on
average. Although it is not possible to analyze each suggested decomposition
individually, this value can be considered close enough to the expected range
for this dataset, since the previous step of manual decomposition generated 3.2
microservices per API on average. It could be also interesting to analyze whether
the obtained decompositions minimize the number of inter-service calls for sam-
ple use cases, but this is outside the scope of this experiment.

This experiment shows that the OpenAPI specifications in the repository are
good candidates for decomposition. The original dataset of 452 APIs potentially
contains 1735 microservices, which would be cohesive and fine-grained, according
to our decomposition approach. This also suggests the applicability/utility of our
approach to decompose real-world service APIs, particularly in scenarios where
these APIs define a high number of operations, which can then be cumbersome
to understand and analyze.

4.4 Possible Limitations

These experiments, and some others not reported here, helped us identify some
possible limitations of our solution. In certain cases, we noticed that the input
artifacts may be mapped to too few concepts of the shared vocabulary, and
thus the decomposition would generate coarse-grained microservices. If it is the
case, one should think of: (a) using a domain-specific vocabulary to reduce the
ambiguity of terms, (b) fine-tuning parameter level to analyze different decom-
positions, and (c) augmenting obtained results with manual improvements to
get a more appropriate decomposition.

Our approach relies on well-defined and described interfaces that provide
meaningful names, and follow programming naming conventions such as camel
casing and hyphenation. Unfortunately, this is not always the case and some sit-
uations are difficult to cope with (e.g., identifiers like op1, param or response).
This can be mitigated by the heuristics in the term separation algorithm, and
by applying state-of-the-art techniques to improve readability and understand-
ability of interfaces [18].

To conclude, a limitation that is not specific to our approach is the lack of
a comprehensive, well-known dataset of microservices to run experiments and
replicate/compare the results. Although an industry case study in a large orga-
nization is important for validation of a single approach [21], an open-source
large dataset of microservices can act as a gold-standard for current and future
research in the field. Due to this limitation, we performed our validation upon
case studies, example applications, and a large dataset of traditional Web APIs.

5 Related Work

The approach presented in this paper can be seen from a clustering perspective,
since candidate microservices are devised by grouping operations according to
their shared reference concepts. Clustering techniques have been broadly applied
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in the SOA field, for Web Service discovery [22,23] and composition [24]. Tradi-
tional flat clustering techniques, such as k-means, are straightforward to apply
but their results in the context of traditional Web Services [23] and microser-
vices [20] report a below-average performance. More complex techniques, such
as Hierarchical Agglomerative Clustering (HAC, [25]), have proven to be more
effective than traditional flat clustering at the cost of lower efficiency but, to
the best of our knowledge, these techniques have not been applied to the field
of microservices, thus further research in this direction is required to determine
their suitability.

Moving to other decomposition approaches for microservices, the Service Cut-
ter tool and framework [20] and the comparison with our approach are already
discussed in Sect. 4.1. In the same direction, the work in [21] describes a tech-
nique to identify microservices based on dependency graphs among the different
tiers of the application (client, server, database). This is a white-box approach,
in which interfaces between components in different tiers are analyzed to gen-
erate the dependency graph, and then code inspection is performed to devise
in detail the boundaries of candidate microservices. The authors claim that the
approach is successful since in the case study (a large banking application), candi-
date microservices were identified and suggested for all subsystems. The authors
assume the availability of white-box information (i.e., source code), which is not
always the case. Additionally, for complex domains such as banking, it is sug-
gested to start the decomposition gradually and at the edges (where the system
is more dynamic and its external interfaces are explicit) [2].

The Enterprise Services Architecture Model Integration (ESAMI) [26] sup-
ports the systematic manual integration of microservices by exploiting an ad-hoc
architectural reference model [27], and correlation matrices to identify similar-
ities. In contrast, we generalize the idea of reference model, which can be any
high-level shared vocabulary or even a domain-specific ontology. We also provide
automated support for the identification of microservices.

From the deployment point of view, [28] addresses decomposition in microser-
vices as a suitable means for cloud migration, being the first cloud-native novel
architectural style. An industry case study shows applicability scenarios and
migration patterns. In this case, the target microservices in the architecture
are defined a priori and in a manual way, since the focus is on the deployment
of the solution while our approach focuses on its design. Also [29] presents a
microservices-based architecture from a deployment point of view. They do not
fully migrate the application to microservices at application-level, but preserved
the monolithic structure of the application and replicated certain components.
This work considers microservices as a way to scale the development process
itself rather than the application’s functionality, as our solution does.

6 Conclusions and Future Work

This paper proposes a novel approach to support the identification of microser-
vices and the specification of the resulting artifacts both during the initial phases
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of the design of a new system and while re-architecting existing applications. The
specification artifacts of available operations are mapped onto the entries of a
reference vocabulary to highlight their similarities and thus their willingness of
being part of different microservices. Then, identified microservices are rendered
using OpenAPI, which allows for standardization and fine-grained reuse. Con-
ducted experiments show that our approach found suitable decompositions in
some 80% of the cases, while providing early insights about the right granularity
and cohesiveness of obtained microservices.

Our future work comprises the addition of non-functional aspects that can
affect the decomposition (response time, resource allocation or cost) and the sup-
port to “smart” deployment and execution through our deployment framework
EcoWare [30].
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Abstract. The increasing prevalence of the microservice paradigm cre-
ates a new demand for low-overhead virtualization techniques. Com-
plementing containerization, unikernels are emerging as alternative
approaches. With both techniques undergoing rapid improvements, the
current landscape of lightweight virtualization approaches presents a con-
fusing scenery, complicating the task of choosing a suited technology for
an intended purpose. This work provides a comprehensive performance
comparison covering containers, unikernels, whole-system virtualization,
native hardware, and combinations thereof. Representing common work-
loads in microservice-based applications, we assess application perfor-
mance using HTTP servers and a key-value store. With the microservice
deployment paradigm in mind, we evaluate further characteristics such
as startup time, image size, network latency, and memory footprint.

1 Introduction

With the increasing pervasiveness of the cloud computing paradigm for all sorts
of applications, low-overhead virtualization techniques are becoming indispens-
able. In particular, the microservice architectural paradigm, where small encap-
sulated services are developed, operated and maintained by separate teams,
require easy-to-use and disposable machine images. Ideally, such infrastructure
should allow for fast provisioning and efficient operation.

Approaches to lightweight virtualization roughly fall into the categories of
container virtualization and unikernels. Both have been gaining notable momen-
tum recently (see [9,21] and Fig. 1). As more and more virtualization techniques
are being introduced and discussed, making a choice between them is getting
harder. Published performance measurements thus far either have a strong focus
on throughput and execution time [2,6,27,31] – not analyzing startup latency
and other system metrics in depth – or focus on highlighting the strengths of
one particular approach without comparing it to a broad range of alternative
unikernels and container technologies [3,6,9,16,19,27].

We close this gap by presenting an extensive performance analysis of light-
weight virtualization strategies, which takes into account a broad spectrum
both of investigated technologies and measured metrics. Our evaluation includes
c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
F. De Paoli et al. (Eds.): ESOCC 2017, LNCS 10465, pp. 34–48, 2017.
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Fig. 1. The relevance of Docker and unikernels in the research community is indicated
by the number of results on Google Scholar (as of May 15, 2017).

containers (Docker, LXD), unikernels (Rumprun, OSv and MirageOS ), whole-
system virtualization, native hardware, and certain combinations thereof. While
previous work has laid a strong focus on high performance computing (HPC)
applications (see Sect. 3), our goal is to evaluate metrics that are applicable to
cloud applications. For this purpose, we measure application throughput per-
formance using HTTP servers and a key-value store. Additionally, we provide
further metrics, such as startup time, image size, network latency, and mem-
ory footprint. To facilitate full repeatability of our results, all test setups used
throughout this paper have been made available online1.

The remainder of the paper is organized as follows: Sect. 2 provides back-
ground about the employed virtualization approaches. Section 3 reviews related
work that deals with quantifying the performance impact of lightweight virtual-
ization approaches. Afterwards, Sect. 4 refines the scope of this work. Section 5
then documents the benchmark procedure yielding the results presented in
Sect. 6. Finally, Sect. 7 concludes this work with final remarks.

2 Background

“Traditional”, whole-system virtualization introduces performance and mem-
ory overhead, incurred by the hypervisor or virtual machine manager (VMM).
This problem has been addressed by introducing paravirtualization (PV) and
hardware-assisted virtualization (HVM). Still, the additional layer of indirec-
tion necessitates further context switches, which hurt I/O performance [9]. Even
though techniques such as kernel samepage merging (KSM) [1] have managed to
reduce memory demands, they do not provide an ultimate remedy as they dilute
the level of isolation among virtual machines [12].

This work focuses on lightweight virtualization approaches, which, address-
ing both issues, have gained notable momentum both in the research community
and in industry. Figure 2 illustrates how these approaches aim at supporting the
deployment of applications or operating system images while eluding the over-
head incurred by running a full-blown operating system on top of a hypervisor.
With containers and unikernels constituting the two major families of light-
weight virtualization approaches, the main characteristics and two representa-
tives of each family are introduced hereafter.

1 https://github.com/plauth/lightweight-vm-performance.

https://github.com/plauth/lightweight-vm-performance
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Fig. 2. Illustrated comparison of the software stack complexity of various deployment
strategies, including native setups, virtual machines, containers, containers within vir-
tual machines and unikernels.

2.1 Container (OS-Level Virtualization)

Containers are based on the observation that the entire kernel induces overly
much resource overhead for merely isolating and packaging small applications.
Here, we distinguish two classes of container virtualization approaches: appli-
cation and OS-oriented containers. For application-oriented containers, single
applications constitute the units of deployment. For OS-oriented containers, the
entire user space of the operating system is reproduced. Currently, with LXD, the
latter approach is becoming more prominent again, as it allows for the creation
of virtual machine (VM)-like behavior without the overhead of a hypervisor.
In the following paragraphs, we discuss the containerization technologies under
investigation.

Docker. Among the application-oriented containers, the open source project
Docker [7] currently is the most popular approach. It relies on Linux kernel
features, such as namespaces and control groups, to isolate independent contain-
ers running on the same instance of the operating system. A Docker container
encapsulates an application as well as its software dependencies; it can be run
on different Linux machines with the Docker engine.

Apart from providing basic isolation and closer-to-native performance than
whole-system virtualization, Docker containerization has the advantages that
pre-built Docker containers can be shared easily, and that the technology can
be integrated into various popular Infrastructure as a Service (IaaS) solutions
such as Amazon web services (AWS).
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LXD. The Linux-based container solution LXD [5] builds up upon the LXC
(Linux container) [4] interface to Linux containerization features. LXD uses the
LXC library for providing low-overhead operating system containers. In addition
to advanced container creation and management features, LXD offers integration
into the OpenStack Nova compute component [29].

2.2 Unikernel (Hypervisor Virtualization)

Unikernels are a new take on the library operating system concept, provid-
ing merely a thin layer of protection and multiplexing facilities for hardware
resources whereas hardware support is left to employed libraries and the applica-
tion itself. Whereas library operating systems (e.g., Exokernel [8]) had to struggle
with having to support real hardware, unikernels avoid this burden by targeting
only virtual hardware interfaces provided by hypervisors or VMMs [20]. With
the absence of many abstraction mechanisms present in traditional operating
systems, the unikernel community claims to achieve a higher degree of whole-
system optimization while reducing startup times and the VM footprint [19,21].

Rumprun. The Rumprun unikernel is based on the rump kernel project, which
is a strongly modularized version of the NetBSD kernel that was built to demon-
strate the anykernel concept [14]. With the goal of simplified driver development
in mind, the anykernel concept boils down to enabling a combination of mono-
lithic kernels, where drivers are executed in the kernel, and microkernel-oriented
user space drivers that can be executed on top of a rump kernel. One of the
major features of the Rumprun unikernel is that it supports running existing
and unmodified POSIX software [15], as long as it does not require calls to
fork() or exec().

OSv. The OSv unikernel has been designed specifically to replace general-
purpose operating systems such as Linux in cloud-based VMs. Similarly to
Rumprun, OSv supports running existing and unmodified POSIX software, as
long as certain limitations are considered [16]. However, OSv provides additional
APIs for exploiting capabilities of the underlying hypervisor, such as a zero copy
API intended to replace the socket API to provide more efficient means of com-
munication among OSv -based VMs.

MirageOS. Being developed from scratch, the MirageOS unikernel resembles
a puristic, clean-slated approach. MirageOS builds up on top of the Mini-OS
kernel from the Xen project and only supports software written in the OCaml
programming language [21]. Denying any compatibility with existing POSIX-
compatible software, the static type system and the strong runtime safety capa-
bilities of OCaml lead to a high level of software robustness [20].
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3 Related Work

An overview of publications about performance measurements of lightweight vir-
tualization techniques from the last few years are presented in Table 1. Previous
research has measured selected performance properties of lightweight virtualiza-
tion techniques, mostly in comparison with a traditional whole-system virtual-
ization approach. However, we are not aware of any comprehensive analysis of
up-to-date container versus unikernel technologies.

Felter et al. [9] have presented a comprehensive performance comparison
between Docker containers and the KVM hypervisor [17]. Their results from var-
ious compute-intensive as well as I/O-intensive programs indicate that “Docker
equals or exceeds KVM performance in every case tested”. For I/O-intensive
workloads, both technologies introduce significant overhead, while the CPU and
memory performance is hardly affected. Mao et al. [22] have studied the startup
time of virtual machines for the major cloud providers Amazon EC2, Windows
Azure, and Rackspace. Among different influencing factors, the image size was
shown to have a significant impact on the startup performance. Kivity et al. [16]
focus on the performance of OSv in comparison to whole-system virtualization
with KVM. Both micro- and macro-benchmarks indicate that OSv offers better
throughput, especially for memory-intensive workloads.

Table 1. Related work on performance measurements of lightweight virtualization
approaches. Studies printed in gray indicate a HPC context.
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4 Scope of this Work

Here, we present an extensive performance evaluation of containers (Docker,
LXD), unikernels (Rumprun, OSv and MirageOS ), and whole-system virtual-
ization. Related work has focused on subsets of the approaches we consider, but
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we are not aware of any comprehensive analysis of up-to-date container versus
unikernel technologies.

This paper extends our work published in [26], providing commensurable net-
work stack parameters for all tested approaches and measurements for additional
properties such as startup time, image size, and network latency. Furthermore,
Xen and MirageOS have been included as additional hypervisor and unikernel
approaches. Startup time is a relevant metric in scenarios, where the infrastruc-
ture is booted on demand to process certain requests. Requirements regard-
ing the infrastructure and runtime environment are getting more ad hoc, may
change spontaneously, and call for rapid just-in-time deployment and reactive
approaches. Such scenarios are becoming more common with the microservice
development pattern.

Our research questions are the following:

– How fast are containers, unikernels, and whole-system virtualization when
running different workloads? Are the results from related work confirmed in
our test cases?

– What is the most suitable virtualization technology for on-demand provision-
ing scenarios?

– What is the impact of the virtualization technology on general system prop-
erties such as image size, network latency and memory footprint?

5 Benchmark Procedure

This section provides a description of the benchmark methodologies applied
within this work. All tests were performed on an HPE ProLiant m710p server
cartridge [11] with the detailed specifications denoted in Table 2. Where applica-
ble, all approaches were evaluated using Xen, KVM and native hardware to
evaluate the performance impact of the employed virtualization approach. For
container-based approaches, we also distinguish between native and virtualized
hosts, where the latter represent the common practice for deploying containers
on top of IaaS-based virtual machines. All configuration files, custom bench-
marking utilities as well as modifications to existing utilities are provided online
(see Footnote 1).

Table 2. Specifications of the test systems.

Server model HPE ProLiant m710p Server cartridge

Processor Intel Xeon E3-1284L v4 (Broadwell)

Memory 4 × 8GB PC3L-12800 (SODIMM)

NIC Mellanox Connect-X3 Pro (Dual 10GbE)

Operating system Ubuntu Linux 16.04.1 LTS
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5.1 General Properties

Startup Time. To avoid potential confounding variables, startup time is mea-
sured irrespectively from the application type. Referring to the test procedure
suggested by Nickoloff [25], our test set-up is composed of a minimal application
which sends a UDP packet containing a single character to a predefined host and
a counterpart application listening for said UDP packet. The listening applica-
tion is executed on the virtualization host and issues the startup command for
the corresponding container or unikernel VM and measures the time until the
UDP packet is received.

Image Size. In practice, image size strongly influences startup time [22], as
images have to be transported over potentially slow networks. Hence, the even-
tual image sizes are reported for all examined technologies. To avoid skewed
readouts caused by sparse image files, the actual disk utilization is retrieved
using the du command line utility.

Network Latency. Since network latency may be a decisive factor in latency-
sensitive use cases such as network function virtualization (NFV) [23], the net-
work round-trip time is measured between a dedicated host and the test object
using the ping command line utility.

Memory Footprint. Reducing the memory footprint is one of the main objec-
tives of lightweight virtualization approaches. For native and LXD-based exe-
cution, memory consumption was measured using the htop command line util-
ity. In the case of Docker, the docker ps command line facility was used to
retrieve memory consumption measurements. As the memory footprint of VMs
and unikernels is defined statically at the time of their instantiation, VM-sizing
must be chosen carefully. Hence, we identified the least amount of memory that
did not degrade performance by testing different values in steps of 8 MiB.

5.2 Application Performance

Representing common workloads of cloud-hosted applications, we picked HTTP
servers and key-value stores as exemplary applications. As these I/O-intensive
use cases involve a large number of both concurrent clients and requests, the
network stack considerably contributes to the overall application performance.
Hence, in order to eliminate an unfavorable default configuration of the net-
work stack as a confounding variable, we modified the configuration on Linux,
Rumprun and OSv. Since many best practices guides cover the subject of tuning
network performance on Linux, we employed the recommendations from [30],
resulting in the configuration denoted in Table 3.

Based on this model, we modified the configuration parameters of both
Rumprun and OSv to correspond to the Linux-based settings [28]. The resulting
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Table 3. Optimized settings for the Linux network stack.

Path Parameter Value

/etc/sysctl.conf fs.file-max 20000

/etc/sysctl.conf net.core.somaxconn 1024

/etc/sysctl.conf net.ipv4.ip local port range 1024 65535

/etc/sysctl.conf net.ipv4.tcp tw reuse 1

/etc/sysctl.conf net.ipv4.tcp keepalive time 60

/etc/sysctl.conf net.ipv4.tcp keepalive intvl 60

/etc/security/limits.conf nofile (soft/hard) 20000

configuration for Rumprun is specified in Table 4, and the corresponding con-
figuration for OSv is documented in Table 5. Currently, there is no mechanism
in Rumprun to permanently modify the values of the ulimit parameter. As a
workaround, the Rumprun sysproxy facility has be activated by passing the
parameter -e RUMPRUN SYSPROXY=tcp://0:12345 to the rumprun command-
line utility upon start. Using the rumpctrl utility, the configuration values of
the ulimit parameter have to be changed remotely, as exemplified in Listing 1.1.

1 export RUMP_SERVER=tcp://[IP]:12345
2 . rumpctrl.sh
3 sysctl -w proc.0.rlimit.descriptors.soft=200000
4 sysctl -w proc.0.rlimit.descriptors.hard=200000
5 sysctl -w proc.1.rlimit.descriptors.soft=200000
6 sysctl -w proc.1.rlimit.descriptors.hard=200000
7 sysctl -w proc.2.rlimit.descriptors.hard=200000
8 sysctl -w proc.2.rlimit.descriptors.soft=200000
9 rumpctrl_unload

Listing 1.1. The ulimit values of Rumprun have to be changed remotely using the
sysproxy facility and the associated rumpctrl utility.

Table 4. Optimized settings for the Rumprun network stack.

Path Parameter Value

./sys/conf/param.c MAXFILES 20000

./sys/netinet/in.h IPPORT ANONMIN 1024

./sys/netinet/in.h IPPORT ANONMAX 65535

./sys/netinet/tcp timer.h TCPTV KEEP INIT 30*PR SLOWHZ

./sys/netinet/tcp timer.h TCPTV KEEPINTV 30*PR SLOWHZ

./sys/sys/socket.h SOMAXCONN 1024
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Table 5. Optimized settings for the OSv network stack.

Path Parameter Value

./include/osv/file.h FDMAX 0x30D40

./libc/libc.cc RLIMIT NOFILE 20000

./bsd/sys/netinet/in.h IPPORT EPHEMERALFIRST 1024

./bsd/sys/netinet/in.h IPPORT EPHEMERALLAST 65535

./bsd/sys/netinet/in.h IPPORT HIFIRSTAUTO 1024

./bsd/sys/netinet/in.h IPPORT HILASTAUTO 65535

./bsd/sys/netinet/tcp timer.h TCPTV KEEP INIT 60*hz

./bsd/sys/netinet/tcp timer.h TCPTV KEEPINTV 60*hz

./bsd/sys/sys/socket.h SOMAXCONN 1024

./include/api/sys/socket.h SOMAXCONN 1024

Static HTTP Server. We use the Nginx HTTP server (version 1.8.0) to eval-
uate the HTTP performance for static content, as it is available on all tested
platforms with the exception of OSv and MirageOS. As no port of Nginx exists
for MirageOS, we had to trade in the aspect of full commensurability with Nginx
and use the conduit server code example [24] in order not to exclude MirageOS
from the HTTP server discipline. Regarding OSv however, we refrain from run-
ning HTTP benchmarks due to the lacking availability of an adequate HTTP
server implementation.

Our measurement procedure employs the benchmarking tool weighttp [18]
and the abc wrapper utility [10] for automated benchmark runs and varying
connection count parameters. The abc utility has been slightly modified to report
standard deviation values in addition to average throughput values for repeated
measurements. The benchmark utility is executed on a dedicated host to avoid
unsolicited interactions between the HTTP server and the benchmark utility. As
static content, we use our institute website’s favicon2. We measured the HTTP
performance ranging from 0 to 1000 concurrent connections, with range steps of
100 and TCP keepalive being enabled throughout all measurements.

Key-Value Store. In our second application benchmark discipline, we use
Redis (version 3.0.1) as a key-value store. Except for MirageOS, Redis is avail-
able on all tested platforms. In order to rule out disk performance as a potential
bottleneck, we disabled any persistence mechanisms in the configuration files
and operate Redis in a cache-only mode of operation. For executing performance
benchmarks, we use the redis-benchmark utility, which is included in the Redis
distribution. The benchmark utility is executed on a separate host to repre-
sent real-world client-server conditions more accurately and to avoid unsolicited
interactions between the benchmark utility and the Redis server. We measured

2 http://hpi.de/favicon.ico.

http://hpi.de/favicon.ico
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the performance of GET and SET operations ranging from 0 to 1000 concur-
rent connections, with range steps of 100 and both TCP keepalive and pipelining
being enabled throughout all measurements. The CSV-formatted output of redis-
benchmark was aggregated to yield average values and standard deviation using
a simple python script.

6 Results and Discussion

Here, we provide and discuss the results obtained from the benchmark procedure
elaborated in Sect. 5. All values are expressed as mean±SD (n = 30).

6.1 General Properties

Startup Time. The measurements presented in Fig. 3(a) illustrate that both
unikernels and containers can achieve much faster startup times compared
to whole-system virtualization using Ubuntu Linux. The distinct differences
between LXD and Docker demonstrate, that a large portion of the startup time
of a Linux system is not caused by the kernel itself, but that it can be traced
back to the services launched upon startup.
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Fig. 3. A logarithmic scale is used to accommodate a wide range of values. (a) Startup
time in seconds as measured using the procedure documented in [25]. (b) Image size
in MiB as reported by the du utility. (c) Round-trip time in milliseconds as measured
from a dedicated host.
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ImageSize. The results presented in Fig. 3(b) indicate that container approaches
undercut the image size of whole-system virtualization roughly by an order of mag-
nitude, whereas unikernels reduce image sizes by one (Rumprun and OSv) or two
(MirageOS ) additional orders ofmagnitudes compared to containers.The substan-
tial reduction of image sizes can lead to a considerable advantage in IaaS scenarios,
where image size often correlates with instantiation time [22].

Network Latency. The measurements presented in Fig. 3(c) indicate similar
response times for Rumprun, OSv, and the container-based approaches. However,
the choice of the hypervisor strongly affects the round-trip time performance.
Even though para-virtualized network devices were used for both Xen and KVM,
the latter yields much faster round-trip times for all tested guest systems.

6.2 Application Performance

For a statistically meaningful evaluation, an ANOVA and a post-hoc comparison
using the Tukey method were applied. For the hypervisor-based approaches using
both Xen and KVM, the choice of the hypervisor had no statistically significant
effect on application performance. Hence, only the results for KVM are plotted
to avoid visual clutter.

Static HTTP Server. The ANOVA test revealed a significant impact of
the lightweight virtualization technique on the HTTP server performance (p <
0.0001, F (9, 2970) = 3921). Containers introduce a significant amount of over-
head compared to native execution (p < 0.0001), both in native (see Fig. 4(a))
and virtualized environments (see Fig. 4(b)). A likely cause for this overhead
is that all traffic has to go through a NAT in common configurations for both
container-based approaches.

On the side of unikernels, MirageOS is running out of competition, as the
employed conduit server can not be compared with a heavily optimized HTTP-
server such as Nginx. For Rumprun however, it is surprising to see a similar
performance compared to containers. Only for 600 concurrent clients and more,
slight but statistically significant performance improvements can be observed for
Rumprun compared to containers (p < 0.0001). With HTTP-servers heavily rely-
ing on the performance of the operating systems network stack, it can be assumed
that the Linux networking stack has undergone massive optimization efforts that
the NetBSD network stack can hardly compete with. To verify this hypothesis,
we performed the same HTTP benchmark procedure using NetBSD 7.0.1 in
a virtual machine. Here, Rumprun performed distinctly better than NetBSD
(data not shown), which indicates the potential of the unikernel-concept. With
further optimizations of the network stack, Rumprun might achieve similar or
even better performance than a regular Linux-based virtual machine.

In terms of memory footprint, unikernels manage to undercut the demands of a
full-blown Linux instance (see Fig. 5(a)). However, containers still can get by with
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the least amount of memory. The major advantage of containers remains the pos-
sibility of dynamic memory allocation, whereas virtual machines are restricted to
predefining the amount of allocated memory at the time of instantiation. Still,
MirageOS demonstrates that a puristic approach can yield distinctly reduced
memory footprints, even though sophisticated porting efforts are necessary.

Key-ValueStore. TheANOVAtest revealed a significant performance impact of
the lightweight virtualization technique (p < 0.0001, F (7, 7920) = 4099). As illus-
trated in Fig. 6, the key-value store exhibits similar results regarding container-
based approaches and whole-system virtualization: Regardless of native or vir-
tualized deployments, containers come with a significant amount of overhead
(p < 0.0001). In contrast, Rumprun and OSv offer slight but nevertheless sig-
nificant performance improvements compared to Linux under many conditions.
Regarding memory consumption (see 5(b)), containers still offer the highest degree
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Fig. 4. Throughput of Nginx (1.8.0) was evaluated on native hardware (a) and in
virtualized environments. (b) For MirageOS, the conduit server was used. Throughput
was measured using weightttp and the modified abc wrapper utility.
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Fig. 5. The memory footprints of the static HTTP server scenario (a) and the Key-
Value Store scenario (b) were measured for each virtualization technique.
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of flexibility. While Rumprun still undercuts the memory footprint of Linux, OSv
required distinctly more memory in order to withstand the benchmark.
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Fig. 6. Throughput of Redis (version 3.0.1) was evaluated on native hardware (a) and
in virtualized environments. (b) The plotted values show the throughput for GET
requests as retrieved through the redis-benchmark utility.

7 Conclusion

Performance evaluations of lightweight virtualization techniques thus far have
mostly dealt with application performance and neglected relevant system prop-
erties such as startup latency, image size, network latency and memory foot-
print. Furthermore, many of these studies focused on highlighting the strengths
of one particular approach without comparing it to a broad range of alterna-
tive technologies. To take remedial action, we present an extensive performance
evaluation of containers, unikernels, and whole-system virtualization, focusing
on metrics that are applicable to cloud applications.

Regarding application throughput, most unikernels performed at least
equally well as or even better than containers. We also demonstrated that con-
tainers are not spared from overhead regarding network performance, which
is why virtual machines or unikernels may be preferable in cases where raw
throughput matters. Even though Docker can achieve the shortest startup times
considering the raw numbers, unikernels are competitive due to tiny image sizes
and much shorter startup times than full virtual machines, especially in cases
where the image has to be transferred to the compute host first. These are
just some aspects demonstrating that, while containers have already reached a
sound level of maturity, unikernels are on the verge of becoming a viable alter-
native. Even though we did not see unikernels outperforming a virtualized Linux
instance, our brief comparison between NetBSD and Rumprun also suggested
that unikernels have the potential of outperforming their full-grown operating
system relatives.
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Abstract. This paper discusses a combination of isolatable microser-
vices and software diversity as a mitigation technique against low-level
exploitation; the effectiveness and benefits of such an architecture are
substantiated. We argue that the core security benefit of microservices
with diversity is increased control flow isolation. Additionally, a new
microservices mitigation technique leveraging a security monitor service
is introduced to further exploit the architectural benefits inherent to
microservice architectures.

Keywords: Security · Software diversity · Design patterns · Robustness

1 Introduction

Microservices is a recent trend in software design. A microservice architecture
simplifies the development of complex horizontally scalable systems that are
highly flexible, modular, and language-agnostic. We define a microservice as a
small specialized autonomous service communicating over a network boundary.
By extension, a microservice system is a distributed software system consisting
of a set of microservices communicating to perform some computation as an
aggregated result of their collective operation. For further information, we refer
the reader to the comprehensive study of microservice principles by Zimmer-
mann [1] who identified commonalities in the popular microservice definitions
and concluded that microservices represent a development- and deployment-level
variant of the service-oriented architecture (SOA).

Although microservice architectures constitute an important trend in soft-
ware design with major implications in software engineering, surveys such as the
one conducted by Dragoni et al. [2] have highlighted a general lack of research in
the area of microservice security. In Newman’s book [3] on microservice design,
a subset of security traits for improving the security of microservice networks
is discussed. The idea of combining microservices with secure containers and
compiler extensions to build critical software has been investigated in a recent
study by Fetzer [4]. The paper by Lysne et al. [5] briefly introduces the notion of
microservice networks to mitigate vendor-malware and other forms of attacks,
without any further elaboration or working examples.
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Herein, we expand and elaborate on the generalized notion of mitigating low-
level exploitation. To our knowledge, we are the first to demonstrate the benefits
of using a microservice architecture to defend against remote low-level exploita-
tion. Unlike a deployment monolith, a microservice architecture facilitates strong
process isolation partly because the services run on different physical machines.
The paper also introduces a security monitor service that further leverages the
architectural benefits of a microservice network, including added software diver-
sity, to enable anti-fragility to low-level exploitation.

2 Microservice Architecture and Its Security Merits

2.1 Model Overview

In general, an attacker wants to gain access to an asset controlled by a defender,
extending up to full access to the targeted system. It is assumed that the external
attacker is able to carry out the following types of exploits: an initial exploit
(Einit), a virtual machine or sandbox escape exploit (EVM), and a lateral exploit
(Elat). Einit is used to gain a shell on a microservice node, EVM enables the
attacker to escape from a sandbox, while Elat is an exploit type that abuses the
trusted relationship between microservice nodes in cases where additional attack
surface is needed and Einit is not sufficient.

Figure 1 illustrates a generic attack on the system model. The attacker ini-
tially obtains access using Einit and then proceeds to escape the sandbox using
EVM. Once the attacker has executed the latter exploit, full control over all nodes
hosted by the same hypervisor is obtained. However, the attacker does not control
the whole network. To extend the control further, the process must basically be
repeated. However, the same exploit Einit1 may not work against VMn1—a node
hosted by a different machine n, which cannot be reached through the hypervisor.
Therefore, the attacker will have to resort to either using a different exploit Einit2 ,
or, depending on the available attack surface and overall exploitability, a lateral
exploit Elat1 to utilize the now exposed trusted relationship between the nodes.

2.2 Security Considerations

There are two distinct types of microservices in the context of interaction:
microservices that allow both external and internal interaction and microser-
vices that only allow internal interaction. Internal interaction is communication
between two microservices within the system boundary. External interaction is
interaction between an external host and a microservice that is part of the sys-
tem. A microservice that only allows external interaction is effectively defined
as a monolithic program.

However, regardless of the type of microservice and of the granularity at
which microservices are implemented, every microservice must contain function-
ality for network interaction. The code the user can externally interact with is
the most obvious attack vector. The microservices must assume that any input
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Fig. 1. Attacking a microservice architecture with diverse microservices running in a
virtualized environments on networked machines.

encountered is hostile. Not only are the microservices communicating over an
insecure network, but some of the nodes in the network may be compromised.
Therefore, even properly authenticated nodes should not trust the subsequent
input to be sane or properly formatted by its peer(s).

Microservice systems employ several design patterns [6,7] to facilitate the
basic operation of the overall system—some of which affect the security of the
microservice network. The API Gateway pattern is the entry point for all clients.
A system without an API Gateway or equivalent would need to expose the
required services to external users—hence increasing the initial attack surface.
Circuit breaker prevents cascading failures by changing the component behav-
ior based on the number of failed calls made. Service Discovery is a centralized
scheme allowing services to discover other services. An attacker can exploit the
service discovery to determine the internal structure and communication pat-
terns between services.

A robust system is basically what is commonly referred to as a hardened
system. Robustness is a property we use to denote how much effort is required
to successfully perform a low-level exploit against the system. The following dis-
cussion covers some security considerations specific to enhancing the robustness
of microservice networks and moving towards anti-fragility [8].

Maximizing API security. Exposed network interfaces must be minimal, have
strong input validation, and be of the highest type in the Chomsky hierarchy [9].
These are well-known design traits for a secure system, and they apply equally to
both monolithic designs and microservice designs. If there is any way to accom-
plish the same functionality while exposing the server to less computation on
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µService1 µServicei µServicei+1...

Operation1→i Operationi→i+1

Operation1→i+1

Fig. 2. Depiction of an unnecessary edge, exposing additional attack surface.

external input, this is advisable. The defender should strive to minimize the set
and depth of possible control flow paths that the attacker can influence at any
step.

Avoiding unnecessary node relationships. The defender must employ an
architecture that prevents unnecessary node relationships. Consider Fig. 2. If
µService1 can reach µServicei+1 through µServicei, then there should not be any
edge between µService1 and µServicei+1. Adding the extra edge may increase
the attack surface for the involved nodes. While taking a shortcut of this type
to obtain information or perform functions directly might result in better per-
formance and less complexity, doing so would violate the trade-off of increased
security for less performance and higher complexity. If a microservice network
forms a dense graph, then most likely the design of such a system and/or its
decomposition into microservices is incorrect.

Asymmetric node strength. To optimize the robustness of the network to
low-level exploitation, the more secure nodes should be placed at critical network
segments, such as entry points and nodes guarding the more valuable assets, as
shown in Fig. 3. A more priced asset could be functionality that allows making a
transaction as compared to merely viewing the list of already performed trans-
actions. The payment functionality could use most of the budget for hardening
whereas viewing an account is considered less severe and should not be as pri-
oritized. Examples of hardening are given in the next section. High diversity as
a mechanism for hardening microservices is also discussed in the next section.
Such changes can be done a priori, in contrast to tactical choices based on real
world statistics.
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Fig. 3. The use of asymmetric node strength to defend against low-level attacks.
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3 The Security Monitor Service

3.1 Security Through Diversity

The purpose of diversity in this security context is to make an exploit less sta-
tistically likely to succeed and to make the attack scale less effectively, thus,
providing the defender with time to react to the attack. The most common
(as of 2017) examples of diversity in computer systems are the use of different
programming languages, hardware architectures, cloud providers, operating sys-
tems, hypervisors, compilers or compiler arguments, and ASLR (Address Space
Layout Randomization) versions that enable identical programs to possess diver-
sity. It has previously been argued that there are inherent benefits to software
diversity in the context of mitigation of attacks [10,11].

Minimal diversity has previously been defined [12] as “when failure of one
of the versions is always accompanied by failure of the other”. This definition is
also applicable in the context of exploitation. If there is so little diversity that
the exact same exploit works equally well on both versions, then the diversity is
of no benefit to the defender. However, diversity still serves a purpose in terms
of redundancy against other types of failures, but not against targeted attacks.

It should be stressed again that a microservice system has inherent diversity,
simply as a consequence of microservices implementing different functionality.
Different bugs are assumed to be associated with different functionality. However,
this may not be true in all cases—two microservices with different functionality
could employ a common library with an exploitable vulnerability.

3.2 Introducing the Security Monitor Service

Normally, a system will only get patched after developers have identified issues
and rolled out the changes. Although this improves the system over time it can
introduce a large attack window due to the inherent latency of the process.
A microservice network may automate some of the issues that arise, specifi-
cally by introducing a security monitor system. The security monitor can iden-
tify nodes that exhibit unusual behavior, trigger IDS detections, or in the case
of an N-version programmed system simply report inconsistent data compared
to its siblings. Anomalous behavior may result in the monitor taking explicit,
autonomous action, as explained later in this section.

A simple example would be an N-version programmed system with a set of
nodes that perform the same task using compiler derived diversity [13]. Similarly
to the N-variant system suggested by Cox et al., we propose a security monitor
scheme to exploit the fact that the defender retains part of the control flow of
the overall system [11]. If a particular node issues erroneous data, the security
monitor can detect it by comparing the output against the healthy nodes. The
erroneous node is then isolated and the security monitor notes the compiler
arguments that resulted in this defective machine code. The security monitor
is not concerned with the root cause of the program error, but the compiler
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arguments used to derive the code are assumed to be faulty and should not be
reused for the particular code in question.

Consider the case of removing an infection as indicated in Fig. 4. The security
monitor detects invalid data being sent from a service. The security monitor’s
presence on the host system is more privileged than the service itself. Hence,
the security monitor is able to forcibly destroy the environment for the service,
permute, and restore it. If the permutation step was skipped, the attacker could
simply replay the exploit. The security monitor should proceed to flag the event
as an anomaly to allow a human to examine the faulty binary to identify the
underlying cause—which is likely only masked by the permutation. The security
monitor may choose to no longer trust the hosting machine for the infected
service, i.e. informing the assumed clean services to blacklist the malicious nodes
as well as wipe and restore the system in an attempt to deal with a rootkit on
the hosting machine. In addition, the security monitor can decide to destroy,
permute, and restore all immediately adjacent services.

Another option is to start a new node and ignore, but record the I/O of
the infected node, as well as monitor it through the host system. The defender
would be able to learn information about the attacker—in particular, exploita-
tion attempts—as the attacker is likely to continue to interact with the system.
Such a honeypot strategy could be implemented to varying degrees of sophisti-
cation, all requests could be ignored, or some could be simulated, such that the
attacker would continue to interact with the simulated environment, but not be
able to gain any valuable asset or do damage. In the case of multiple infected
nodes, a segment of the system could be isolated. Regardless, the defender should
then also migrate away any other services running on the same infected host(s).
There is always the risk that the attacker could escape the VM and take control
over the whole system.

A simple policy for a security monitor service would be to detect an intrusion,
e.g. by using an IDS, kill the service environment, rebuild the environment, and
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Fig. 4. A security monitor dealing with an infection in an N-version system.



Low-Level Exploitation Mitigation by Diverse Microservices 55

finally restart the service. In this generalized procedure, the defender can either
host the security monitor as a normal process with normal user privileges, in
a container environment, or in a virtual machine. Regardless, the policy should
be the same. It is important to destroy the whole environment, otherwise the
risk of the attacker persisting increases dramatically. Even when destroying the
environment the risk is only made smaller. If no containers are used, all processes
should be removed and ideally the system (and firmware) restored from a trusted
image—although even in this case advanced rootkits may persist. If containers
or virtual machines are used, the entire container or virtual machine must be
rebuilt. The recompilation step ensures that diversity is added, which hopefully
removes the issue. Such an approach reduces the overhead in terms of cost and
time in terms of enabling the system to react to certain types of attacks. The
security monitor scheme essentially allows the system to autonomously discover
certain security related issues and react to them. Manual interaction is still
required to resolve the root cause of the issue. However, at the same time, the
microservice architecture ensures that more effort is required to compromise the
overall system, which makes the system more secure.

The security monitor system can be multi-layered. A local security monitor
may reside in each execution context for each service. However, an additional
external security monitor is also possible. An external security monitor would
enable more complex evaluations and actions being taken as a result of the state
of the overall system, as compared to merely a single node.

3.3 Evaluating the Security Monitor Service

In terms of the overall system architecture, the security monitor service becomes
a part of the infrastructure similarly to logging, monitoring, and discovery ser-
vices that are needed for any reasonably sized microservice system to function
properly. In contrast to these basic services, the security monitor attempts to
mitigate attacks autonomously, making the overall system more resilient to low-
level exploitation.

A more privileged mode that offers an attack surface is an ideal target.
Indeed, the security monitor is such a target itself. IDS systems and anti-malware
solutions have previously become a viable attack surface which raises the ques-
tion whether such systems do more harm than good [14]. An IDS is always a
trade-off, to prevent it from exposing the system to more risk rather than pro-
tecting it, the security monitor should adhere to the aforementioned principles
from Sect. 2.2 of least privilege, minimal attack surface, and have any grammar
be of the highest type in the Chomsky hierarchy [9].

4 Conclusion

We have examined how the increased isolation of microservices coupled with
software diversity can mitigate the impact of low-level exploitation. Microser-
vices, when coupled with some method of achieving diversification, appears to



56 C. Otterstad and T. Yarygina

offer added robustness over monolithic solutions. Key design rules and examples
were presented to substantiate this claim.

We claim that the slow turnaround time for issues to be detected, fixed, and
finally deployed by human operators can be made more autonomous and with
lower latency if we introduce an automated security monitor to resolve the issues.
One of the open questions that still remain is determining to what extent arbi-
trary programs can benefit from hardening and diversification. It is particularly
important to consider the cost as most security enhancing features introduce
overhead in terms of performance, compatibility, or usability, the mitigations
suggested herein being no different.
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Abstract. Cloud computing offers elastic, scalable and on-demand net-
work access to a shared pool of computing resources, such as storage,
computation and others. Resources can be rapidly and elastically provi-
sioned and the users pay for what they use. One of the major challenges
in Cloud computing adoption is security and in this paper we address
one important security aspect, the Cloud authorization. We have pro-
vided a formal Attribute Based Access Control (ABAC) model, that
is based on Event-Calculus and is able to model and verify Amazon
Web Services (AWS) Identity and Access Management (IAM) policies.
The proposed approach is expressive and extensible. We have provided
generic Event-Calculus modes and provided tool support to automati-
cally convert JSON based IAM policies in Event-Calculus. We have also
presented performance evaluation results on actual IAM policies to jus-
tify the scalability and practicality of the approach.

Keywords: AWS cloud · IAM · Access control · Verification · Event-
Calculus

1 Introduction

Information security has been in the mainstream of computing. In the last
decade, advancements in the domain of Cloud computing have further amplified
the need to protect digital information. Cloud computing offers elastic, scalable
and on-demand network access to a shared pool of computing resources such as
storage, computation and communication. Resources can be rapidly and elasti-
cally provisioned and the users pay for what they use. These benefits and offer-
ings from different Cloud providers have improved its adoption as businesses
are seeking new opportunities to reduce hardware and management costs by
offloading their capabilities to the Cloud. One of the major challenges in Cloud
computing adoption is security for Cloud users.
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The security policy of an organization helps to better prepare for and address
security challenges. It is a high-level specification of how to implement secu-
rity principles and technologies. For instance, the Authentication policy of an
organization specifies which users are allowed to use its services. In this paper
we address the issues related to one important class of security policies, called
the Access Control or Authorization policies. There is an important distinction
between the authentication and authorization policies of an organization. When
a user attempts to access some resource, the first step is to determine and val-
idate the identity of the user using some authentication measures such as login
credentials. These credentials are then matched with the organization’s authen-
tication policy to identify the validity of user. Once a user has been authen-
ticated, the authorization process involves determining what rights a user has.
The authorization process allows to determine who can access what resources,
under what conditions, and for what purpose. The authorization process can be
based on temporal aspects and may involve delegation. While the Cloud based
authentication has been a highly active research direction, Cloud authorization
has remained relatively less explored. In this paper, we have provided a formal
attribute based access control model, that is based on Event-Calculus and is
able to model and verify authorization policies. Specifically our contributions
include:

A formal authorization model: In contrast to traditional XML (or JSON
in case of AWS IAM) based authorization policy specification languages, our
approach is formal and based on Event-Calculus, a logical language for spec-
ification of and reasoning about events and their effects.

AWS IAM policies verification: We have applied our approach to model
and verify AWS IAM policies. We have categorized conflicts as either Intra
or Inter-Policy conflicts. To best of our knowledge there exists no approach
that attempts to model and verify IAM policies.

ABAC based approach: Our approach is based on Attribute Based Access
Control (ABAC) and it is by design a generic approach to handle other
authorization models. For instance, AWS IAM is based on Role Based Access
Control (RBAC) and our proposed approach allows it to be modeled and
verified by considering Role as an attribute.

Extensible approach: The proposed approach can be extended to model other
Authorization services provided by Cloud providers. For instance, OpenStack
provides Role-Based Access Control for networks (Neutron) and user man-
agement. Our approach can be used to formally verify and reason about them.

Tool support and performance evaluation: We have provided generic
Event-Calculus models and provided tool support to automatically convert
JSON based IAM policies in Event-Calculus. We have also presented perfor-
mance evaluation results on actual IAM policies to justify the scalability and
practicality of the approach.
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2 Background and Related Work

The term Access Control in the context of Cloud computing research has
attracted interest in two broad subdomains. A number of approaches have
addressed the security issues related to the data storage on the Cloud based
storage services. In this context Attribute-Based Encryption (ABE) [1] has been
proposed which implements attribute-based access control by encrypting data
based on attributes. In such a scheme, only authorized users having same set of
attributes can decrypt the data. A number of approaches have been proposed
to address different related aspects such as introduction of attribute hierarchies
[2], handling of the attributes revocation problem [3], P2P storage Cloud [4] and
attribute-based keyword search scheme with user revocation [5].

The other subdomain for the research related to access control includes the
policy languages for specifying authorization policies. For Cloud based applica-
tions or resources, authorization should not only be performed based on the con-
tent, but also by the context and is prone to performance, bandwidth, attributes
availability and other requirements. The authorization process and policies can
be considered from the enterprise or federation point of view, using approaches
such as XACML, or from a user point of view (e.g. OAuth or Lockr). In general,
access control and authorization has remained an active research area and a basic
approach is to assign access policy directly to end users. This approach however
does not scale with the increase in number of users. A number of approaches thus
consider the Role Based Access Control (RBAC) model and its variations [6]. In
RBAC users are assigned roles and the access policy is associated with these roles.
Task based access control (TBAC) extends the traditional model by considering
task based contextual information. Even though RBAC is a well defined model
and still being used extensively, for instance AWS IAM is RBAC, it suffers from
role explosion as too many roles (may even surpass the number of users) may need
to be managed [7]. Some approaches have investigated the use and challenges for
RBAC in a distributed environment [8–11].

In contrast to RBAC models, the Attribute based Access Control (ABAC)
model is based on the attributes [12]. The resources, subjects and environment
have attributes and the policy rule is a boolean function on these attributes. ABAC
model can be considered more generic and provides more flexibility and expres-
siveness than RBAC models. ABAC can subsume RBAC as a role itself can be an
attribute in an ABAC model. XACML (eXtensible Access Control Markup Lan-
guage) is a XML-based language based on the ABAC model. XACML is verbose
and based on XML and this makes it difficult to analyze and verify the consistency
of a set of policies. A number of approaches to provide formal semantics of XACML
have been proposed [13–15]. Further, a number of approaches have been proposed
that build upon XACML for its usage in collaborative and distributed environ-
ments. These include [16] in which the authors propose a distributed device access
control architecture called MPABAC. In [17] the authors have developed a formal
policy language BelLog that can express both delegation and composition opera-
tors. Some access control policies are user-centric, that is when the user determines
the access for their resources. The most prominent approach being the OAuth [18]
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which allows users to share their personal resources with other sites without giv-
ing them their credentials. User-Managed Access (UMA)1 is another user centric
approach and it provides services for authorization, monitoring and changing data
sharing. Lockr [19] is an access control system based on social relationships.

Formal methods are being used at Amazon to verify and validate their dis-
tributed systems since last few years [20]. They have used TLA+, a formal
specification language based on basic set theory and predicates, and PlusCal,
closer to a C-style programming language and even more expressive than TLA+
to model and verify AWS services such as S3, DynamoDB and EBS. However,
the AWS IAM Policies are not formally verified and although AWS does provide
a PolicySimulator, its scope and usage is limited as it does not attempt to ver-
ify the consistency of policies. In this work we have used the Event-Calculus, a
logic programming formalism, to model and verify AWS IAM policies. Our app-
roach builds upon our previous work in handling temporal, trust and delegation
aspects in distributed environments [21,22]. In this work, we have thoroughly
updated the models and instead of trust and/or temporal aspects considered
AWS IAM policies verification. We have provided generic models, tool support
and the performance is evaluated on actual AWS IAM polciies. To best of our
knowledge there exists no approach, other than limited AWS Policy Simulator,
that attempts to model and verify IAM policies.

3 AWS IAM Policies Specification

The Identity and Access Management (IAM) service provided by Amazon Web
Services (AWS) is an example of RBAC model. The service provides both authen-
tication and authorization. IAM has a notion of policy which is a high level
representation of the actions a user is allowed to perform on resources, Fig. 1.

Fig. 1. An example AWS IAM policy with two statements

1 http://docs.kantarainitiative.org/uma/draft-uma-core.html.

http://docs.kantarainitiative.org/uma/draft-uma-core.html
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The policies are high level description that explicitly lists permissions. Each pol-
icy has a set of statements and on a broad level a statement specifies the following:

– Service and Resources: You can specify to which AWS service this policy
applies; such as Amazon EC2 or Amazon S3. Then for each service you can
further specify to what specific resource this statement refers. Resources are
specified using Amazon Resource Name (ARN).

– Actions: You can further specify to what specific action(s) this statement
applies. The set of actions are service-dependent and each AWS service has its
own actions, for instance the CreateKeyPair action is associated with Amazon
EC2 service. You can select all actions using the Policy Generator or use a
wildcard (*) in the JSON document.

– Effect: You need to specify if the effect of the statement is either Allow or
Deny. For instance you can specify that a statement allows some action on
some resource of an AWS service.

– Conditions: You can optionally further constrain a statement by providing
conditions which are specified by providing a condition (for instance StringE-
quals), a key (for instance aws:userid) and a value.

Each policy document is stored in JSON format, see Fig. 1, and contains a set
of statements, each at least having the elements mentioned above. A policy may
contain other elements such as statement ID (sid) and policy version. Once a
policy has been created, it can be assigned directly to IAM Users. This basic form
of access control model can be termed as User Based Access Control as discussed
in Sect. 2. This approach would not scale and would be hard to manage with
the increase in number of users. Alternatively, AWS allows to assign a policy
to IAM Groups, a collection of users. For example, you can create an IAM
Group named, Administrators, assign it a policy giving complete access. You
can then add and remove users from this group as the need arises. Such an
access control model is termed as Role Based Access Control (RBAC). However,
one major limitation associated with RBAC based models is Role Explosion. It
may be feasible when the number of roles (IAM groups) is small but for large
organizations the number of roles may eventually surpass the number of users.
This is because of various reasons such as the scale of services provided by AWS,
most having numerous resources such as number of Buckets in S3. In addition, a
large number of actions can be performed on these services and their resources.
Principle of least privilege would force policy designer to create numerous roles
and it would make it difficult for this model to scale.

Then there are other limitations regarding policy specification and its verifica-
tion as provided by AWS IAM. The conflicts in policy specification can be broadly
categorized into intra-policy and inter-policy conflicts. Intra-policy conflicts are
within a single policy while the inter-policy conflicts are when multiple policies are
combinedandattached toa single user or group. Ifwe closely lookat thepolicy spec-
ification in Fig. 1, we can see that the two statements are conflicting; one allows for
the access to EC2 while the other denies it. During policy specification, AWS does
provide an option to validate the policy but it only checks if the policy is syntacticly
correct and does not provide such conflict detection.
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4 Proposed Approach

The proposed approach for AWS IAM Policies modeling is based on Attribute
Based Access Control (ABAC) model and this choice is both to address the
scalability and role explosion limitations associated with the IAM RBAC model,
as discussed in previous section. In contrast to RBAC model, the ABAC model
is based on the attributes [12]. The resources, subjects and environment have
attributes and the policy rule is a boolean function on these attributes. ABAC
model can be considered more generic and provides more flexibility and expres-
siveness than RBAC models. ABAC can subsume RBAC as a role itself can be
an attribute in an ABAC model. The proposed models build on our previous
work on providing a formal approach to XACML [21]. The proposed policies
specification approach is based on Event-Calculus modeling formalism.

The choice of Event-Calculus is motivated by several reasons. Space limita-
tions restrict us to provide an exhaustive comparison of all temporal languages,
however based on our analysis we do believe that Event-Calculus has many
interesting properties to model access control policies. First, Event-Calculus
integrates an explicit time structure, in contrast to Situation Calculus, and is
independent of any sequence of events (possibly concurrent). A second advan-
tage of using Event-Calculus (over Linear Temporal Logic for instance) is that
Event-Calculus supports the possibility to express quantitative time constraints
(unlike LTL, except considering extensions and with limitations – see exten-
sions of CTL/LTL). Then, considering policies that could include intervals (for
instance, an access policy is set from 8 pm to 7 am), the ability of Event-Calculus
to handle intervals (e.g. Allen’s intervals) is definitely interesting. Third, as
underlined in [23], techniques based on LTL are not fully suitable for continuous
support, whereas in our context, as events occur, the Event-Calculus models are
able to detect possible violations of the policies as soon as an event is detected.
It allows us for a number of reasoning tasks that can be broadly categorized into
deductive, abductive, and inductive tasks. In relation to TLA+ we believe that
the security policies are more event-driven and thus Event-Calculus is a better
choice. Fourth, using Event-Calculus provides the ability to express constraints
not only upon actions, but also on data. Last, Event-Calculus is very interesting
as the same logical representation can be used for verification at both design
time (static analysis) and runtime (dynamic analysis and monitoring).

4.1 Event-Calculus

Event-Calculus is a logic programming language [24], first proposed by Robert
Kowalski and Marek Sergot in 1986. The event-calculus represents the effect of
Actions on Fluents. Event-Calculus has a set of events (or actions) that trigger
the change, A, a set of fluents that represent anything whose value is subject to
change over time, F , a set of time points T , and a set of objects related to the
particular context X . Some basic event calculus predicates used for modeling
the proposed framework are:
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– Initiates(e, f, t) - fluent f holds after timepoint t if event e happens at t.
– Happens(e, t) specifies that event e happens at timepoint t.
– HoldsAt(f, t) is true iff fluent f holds at timepoint t.

The Event-Calculus models are presented using the discrete Event-Calculus
language [25] and we will only present the simplified models that represent the
core aspects, intentionally leaving out the supporting axioms2. All the variables
(such as stmt, time,. . . ) are universally quantified. Due to space limitations, some
names are either abbreviated. In addition, we have shortened representation
of some events and fluents such as AllowPolicy and DenyPoliy, are written as
Allow/DenyPolicy.

4.2 Statements Specification

The statements (abbreviated as stmt in our models) allow to specify one specific
access rule. Each statement has a Target, an Effect and the associated Condi-
tions. This would seem different from the IAM policy model where statements
contain other elements such as Actions and Resources. This approach is at the
heart of our ABAC model as we treat all the information needed as to be com-
posed of name-value attributes. For instance, the Resource, the Action, the Group
of the user and other such information is considered as attributes having names
and values. It thus allows for adding new attributes for target specification if
needed. We start our Event-Calculus modeling approach by first presenting the
Event-Calculus model for specifying statements and then using DECReasoner3

to reason about a statement.

2 Complete models can be found at https://members.loria.fr/operrin/files/esocc.txt.
3 http://decreasoner.sourceforge.net/.

https://members.loria.fr/operrin/files/esocc.txt
http://decreasoner.sourceforge.net/
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In the Event-Calculus model above, we first define some sorts, such as stmt,
atname and atvalue, which can be considered as types of which individual vari-
ables can be instantiated. We use the sort named stmt to represent individual
statements. Similarly the sorts atname and atvalue would be used to model
attribute names and value respectively. We have then defined a predicate AtHas-
Value which specifies name-value pairs for attributes.

The core part of the model above concerns definition of fluents and events to
model the state of a statement being evaluated. A fluent is anything whose value
is subject to change over time and we have thus defined fluents such as StmtIsPer-
mitted/Denied/NotApplicable. A statement is neither Approved, Denied or NotAp-
plicable by default so the fluents are initialized such that they do not hold at the
start. We then define some events which can happen and whose occurrence would
change the fluent state. To link an event with fluent state, we use Event-Calculus
initiates axioms and for instance, if the event ApproveStmt happens at time t, the
fluent StmtIsPermitted would hold at timepoint t + 1. Then we have defined some
constraints on events occurrence; for instance ApproveStmt event can only happen
at time t, if the fluents StmtTargetHolds, StmtCondHolds and StmtEffectIsPermit
holds. Finally we specify the initial conditions for the fluents and the goal for the
reasoner. The Match/Mismatch events occurrence decide if the fluent StmtTar-
getHolds holds or not. If the StmtTargetHolds doesn’t hold, we consider the state-
ment to be not applicable, StmtIsNotApplicable. If the statement does apply, that
is fluent StmtTargetHolds holds, it would decide if the statement is permitted or
denied based on its conditions and effects.

The model above has been intentionally made generic and can be considered
as a meta-model. We can put this model in a file and include the file for the
specification of any specific statement. As an example on how to use the generic
model, we model the IAM policy statement, as shown in Fig. 1, which allows any
action on any EC2 resource.

In the model above, we instantiate the generic model for a specific IAM state-
ment. We first thus include the generic model files and then specify attribute
names/values and link them using a predicate AtHasValue. We name the state-
ment (by creating an instance of sort stmt) as StmtAllow. Then we define a
conditional axiom that the event Match can only happen if the attribute name
value pairs match (we define the same for Mismtach event but is not shown due
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to space limitations). If we invoke the Event-Calculus reasoner, called DECRea-
soner, for the Event-Calculus based specification, it returns a solution as shown
below.

The solution returned by DECReasoner is shown above. In order to reason
about Event-Calculus models, DECReasoner first encodes the problem in a Sat-
isfiability (SAT) problem and then invokes the SAT solver, to reason about the
models. The solution shows that the encoded SAT problem has 55 variables and
163 clauses. Then for each time-point, the solution shows which events happen at
that time-point and what fluents hold true at that time-points. In case a fluent
starts to hold true at time-point t (after an event happens at time-point t - 1 ) it
is shown with a plus(+) sign. The solution above shows that as the attributes’
values are intentionally same as the ones specified in the statement, the state-
ment target thus holds. If we change any of the attributes like the Resource has
any other value, the DECReasoner will provide a model which shows that the
event mismatch would happen and the statement does not apply to it, modeled
by the fluent StmtIsNotApplicable(stmt).

Once the target of the statement holds, it is then evaluated based on associ-
ated Condition and Effect. The statement Effect is to either Permit or Deny and
the rule Condition can be considered as a set of predicates, based on the func-
tional and the non functional constraints, that specify what conditions we need
to check for the statement. In the statement above, we intentionally considered
statement effect to be Permit modeled by fluent StmtEffectIsPermit(StmtAllow),
and the condition to hold, modeled by fluent StmtConditionHolds(StmtAllow).

5 Intra-policy Conflicts

For the proposed approach, individual statements can be grouped into a policy,
similar to the IAM policy. The proposed modeling approach is generic and thus
allows for easily aggregating statements. In order to discuss the Event-Calculus
models related to policies, let us consider that another statement named Stmt-
Deny exists which is similar to the StmtAllow but having effect as Deny (space
limitations restrict us to detail the model). The proposed policy Event-Calculus
model is shown in the model below:
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5.1 Statements Combining Algorithms

The proposed approach does not only allow for conflict detection but rather is
generic to model other combination algorithms. For instance, the Permit Over-
rides would permit a Policy in case of conflicting outcome of statements and
Deny Overrides (the only option currently provided by AWS IAM) would deny
a policy in case of any statement being Denied. The choice of expressive Event-
Calculus allows a number of other combining algorithms based on temporal,
cardinality (for instance decision is based on majority x out of y statements),
trust and other aspects. Space limitations restrict us to detail them further.

5.2 Instantiated Policy Model

In order to see an example of intra-policy conflicts identification, we instantiate
the generic Policy model shown above to model the policy shown in Fig. 1.

In the model above, we have already defined two statements, StmtAllow and
StmtDeny and we add them to a policy using the predicate PolicyHasStmt.
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The result returned by the DECReasoner is shown below. As both the state-
ments concern the attributes event Match happens for both statements. As the
effect of one statement is Permit and other is Deny, so at time-point 2, one
gets permitted and other gets denied (as shown by fluents StmtIsDenied and
StmtIsPermitted). Then at time-point 2, event InvalidatePolicy happens and
the policy is considered invalid.

The proposed intra-policy conflicts verification approach provides a number
of benefits. First the proposed models are intentionally made generic and thus
it is easy to model policies and statements, without going into concrete details
of Event-Calculus. In addition it has allowed us to provide tool support for
automatically converting AWS IAM policies into Event-Calculus models. The
proposed models scale well and even with 100 statements within a policy, the
time taken by DECReasoner to encode the problem into a SAT problem is 1.1 s
and solution by relsat solver takes 0.1 s. We detail the performance evaluation
results in Sect. 7.

6 Inter-policy Conflicts

In order to model and verify inter policy conflicts, we group multiple policies
in a PolicySet. Just as a policy groups multiple statements, a PolicySet groups
multiple policies. The Event-Calculus models are shown below; due to space
limitations we discuss only the instantiated model and corresponding outcome.
We model the case where there are two policies, one having only one statement
to allow access to EC2 resources (the policy is thus permitted) and the second
policy has again only one statement to deny access to EC2 resources (the policy
is thus denied). To verify any conflict, we group them in a PolicySet as shown
below.

The result returned by the DECReasoner is shown below. It can be seen
that as both the policies evaluated to different decisions at time-point 3, event
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InvalidatePolicySet happens and makes the policy set invalid, as represented by
the fluent PolicySetIsInvalid.

The proposed inter-policy conflicts verification approach provides a number
of benefits. First the proposed models are intentionally made generic and thus
it is easy to model policies, and adding them to a PolicySet for the verification,
without going into concrete details of Event-Calculus. In addition it has allowed
us to provide tool support for automatically converting AWS IAM policies into
Event-Calculus models.

7 Implementation and Performance Evaluation

In order to justify the practicality of our approach and to abstract the details of
Event-Calculus models, we have developed a Web application4 to automate the
verification process. Our Web application uses AWS access keys and AWS SDK
to fetch IAM Users, Groups and their attached policies. The application then
allows to first select the IAM Users or Groups and then the Policies that need to
be evaluated, Fig. 2-A/B. For the verification process, our application automati-
cally generates the Event-Calculus models for the selected AWS policies, invokes
the DECReasoner and returns the results, Fig. 2-C. Space limitations restrict us
to discuss the implementation details further.

In order to test the scalability of the proposed approach, we need to scale
and verify policies for both intra and inter-policy conflicts. For the Inter-Policy
conflicts, we have increased the number of policies assigned to a IAM Group/User
and measured the time taken by DECreasoner to encode the problem in a SAT
problem and the time taken by the relsat solver. Instead of merely duplicating
a policy to test scalability, we have used the actual AWS Managed IAM policies
provided by the AWS. However for the Intra-Policy conflicts, we have manually
added statements to a policy as AWS managed policies does not contain a large
number of statements as needed to test the scalability of the approach.

4 Implementation details available at https://members.loria.fr/operrin/files/esocc.txt.

https://members.loria.fr/operrin/files/esocc.txt
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Fig. 2. Automatic conversion from IAM policies to Event-Calculus Models

Fig. 3. Performance evaluation results

The performance evaluation test were conducted on a Amazon EC2
m4.2 x large instance having 8 vCPUs and 32 GiB memory running Ubuntu
Server 16.04 LTS. Further, we have used modified and improved DECreasoner
version as we proposed in [26]. The performance evaluation results are shown
in Fig. 3, with Y-axis showing the time-taken in seconds while the X-axis show-
ing the increase in the problem size. In general, the solution computation by
relsat solver is very efficient even with the most complicated models. The Event-
Calculus to SAT encoding process in general does not scale well but we have
intentionally modeled policies in a way that the axioms do not use a large num-
ber of universally quantified free variables. Thus the SAT encoding also scales
reasonably well. The encoding results can be further improved by using incre-
mental encoding or by further improving DECReasoner code. For intra policy,
the proposed models scale well and even with 100 statements within a policy,
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the time taken by DECReasoner to encode the problem into a SAT problem is
1.1 s and solution by relsat solver takes 0.1 s.

The performance evaluation results are very encouraging. In order to test
the scalability of our approach we intentionally added a number of policies and
statements. However, in practice it would be rare to encounter policies with
hundreds of statements; for instance the AWS managed (provided) IAM policies
have mostly a single statement and in rare cases policies have more then ten
statements. Similarly, AWS imposes some limitations on the number of policies
attached to a single group (maximum 10 policies can be attached).

8 Conclusion

One of the major challenges in Cloud computing adoption is security and in this
paper we address one important security aspect, the Cloud authorization. In
contrast to traditional XML (or JSON in case of AWS IAM) based authoriza-
tion policy specification languages, our approach is formal and based on Event-
Calculus, a logical language for specification of and reasoning about events and
their effects. The proposed approach can be extended to model other autho-
rization services provided by Cloud providers. For instance, OpenStack provides
Role-Based Access Control for networks (Neutron) and user management. Our
approach can be used to formally verify and reason about them. We have pro-
vided generic Event-Calculus models and provided tool support to automatically
convert JSON based IAM policies in Event-Calculus. We have also presented per-
formance evaluation results on actual IAM policies to justify the scalability and
practicality of the approach.
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Abstract. By embracing cloud computing enterprises are able to boost their
agility and productivity whilst realising significant cost savings. However, due
to security and privacy concerns, many enterprises are reluctant to migrate their
data and operations to the cloud. One way to alleviate these concerns is to devise
access control policies that infuse suitable security controls into cloud services.
Nevertheless, the complexity inherent in such policies, stemming from the
dynamic nature of cloud environments, calls for a framework that provides
assurances with respect to the effectiveness of the policies. In this respect, this
work proposes a class of constraints, the so-called well-formedness constraints,
that provide such assurances by empowering stakeholders to harness the at-
tributes of the policies. Both the policies and the constraints are expressed
ontologically hence enabling automated reasoning about the abidance of the
policies with the constraints.
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1 Introduction

Cloud computing enables enterprises to realise significant cost savings, whilst boosting
their agility and productivity. Nevertheless, due to security and privacy concerns, many
enterprises are reluctant to relinquish control of—oftentimes critical—corporate assets
by migrating their data and applications to third-party cloud providers [1]. One way to
alleviate these concerns, hence bolster the adoption of cloud computing, is to infuse
adequate access control policies into the applications through which critical assets are
accessed in the cloud [2]. Nevertheless, the inherently dynamic nature of cloud envi-
ronments calls for policies that are able to incorporate a potentially complex body of
contextual knowledge pertaining to access requests [3]. As an example, consider a
policy whereby a particular entity (s) is allowed to read a sensitive data object (o) only
when: (i) o resides in a data centre in the EU; (ii) s resides in a specific geographical
area (say the city of Athens), or the request originates from a particular subnet; (iii) the
request is received during a prescribed time interval.
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We argue that, for stakeholders to entrust such complex access control policies with
the protection of their sensitive assets, a framework that provides assurances about the
effectiveness of the policies is required [2]. In particular, a framework is required that
assists developers in infusing effective access control policies into the applications
through which sensitive assets are accessed in the cloud. Our work, conducted as part
of the PaaSword project [4], provides such a framework. More specifically, it offers a
generic security-by-design solution—essentially a PaaS offering—that provides
assurances about the effectiveness of context-aware access control policies by facili-
tating their governance. To this end, it draws upon a semantic representation of
policies, one that ontologically captures the various knowledge artefacts that are
encoded in the policies. Such a representation disentangles the expression of policies
from the actual code of the applications into which they are infused hence enabling
automated reasoning about their correctness.

This paper proposes an approach to such reasoning. In particular, it proposes a set
of ontologically-expressed constraints, the so-called well-formedness constraints, that
articulate all those knowledge artefacts that must, may or must not be embodied in an
access control policy. These constraints give rise to a higher-level ontology, one that
specifies an allowable form, or structure, by which access control policies must abide.
Evidently, well-formedness constraints empower stakeholders to harness the knowl-
edge artefacts embodied in access control policies that protect their sensitive assets. In
other words, they empower stakeholders to infuse into these policies their business
logic and overall stance towards security. In this respect, well-formedness constraints
assist developers in devising policies that are appropriate for the stakeholders’ needs,
hence for the assets that they protect.

The rest of this paper is structured as follows. Section 2 presents an ontological
representation for access control policies and well-formedness constrains. Section 3
outlines a mechanism that reasons about the satisfaction of well-formedness con-
straints. Section 4 discusses related work and Sect. 5 outlines conclusions.

2 Constraining Access Control Policies

As already discussed, the dynamic nature of cloud environments calls for access
control policies that are able to incorporate the contextual knowledge pertaining to
access requests. Attribute-based Access Control (ABAC) policies [5], due to their
inherent generality stemming from their inherent reliance on the generic concept of an
attribute, are particularly suitable for capturing such knowledge [3] and are thus
adopted in our work. This section outlines an OWL-based representation for ABAC
policies and well-formedness constraints; as already mentioned, the latter harness the
attributes embodied in the former.

2.1 A Model for ABAC Rules and Policies

Following the XACML standard [6], an ABAC policy comprises one or more ABAC
rules. Upon receipt of an access request, a rule-combining algorithm [6] is executed in
order to select which one of these rules, if any, will be applied in order to arrive at a
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‘permit’ or a ‘deny’ decision. It follows that, for each access request, an ABAC policy
resolves to at most one of its constituent rules (a policy that does not resolve to any of
its constituent rules is considered ‘Not Applicable’ or ‘Indeterminate’ [6]).

An ABAC rule comprises an antecedent and a consequent. The latter specifies the
rule’s decision, which according to the XACML standard, invariably resolves to either
a ‘permit’ or a ‘deny’. The former articulates a (pre-)condition (or ‘target’ in the
XACML jargon) that must be satisfied in order for the rule to be enforceable. More
specifically, it incorporates a set of relevant knowledge artefacts, its attributes, whose
values need to be taken into account when deciding whether to permit, or deny, a
request. These attributes are drawn from an underlying Context Model (CM)—an
extensible ontological framework that includes interrelated concepts suitable for cap-
turing attributes and the properties thereof. A simplified view of the CM that is used in
this work, one which includes only concepts and properties considered in this paper, is
depicted in Fig. 1 (for more details on the CM, the interested reader is referred to [7]).

Ontologically, ABAC policies are represented as instances of the concept
ABACPolicy, and ABAC rules as instances of the concept ABACRule; ABAC policies
are associated with their constituent rules through the object property hasABACRule.
The antecedent and consequent of an ABAC rule are represented, respectively, as
instances of the concepts ABACAnt and ABACCons; an ABAC rule is associated with
its antecedent and consequent via the properties hasABACAnt and hasABACCons
respectively. In addition, the following restrictions apply. Firstly, an ABAC policy is
invariably associated with at least one ABAC rule; secondly, an ABAC rule is
invariably associated with exactly one antecedent and exactly one consequent; thirdly,

Fig. 1. HLO constraints
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the consequent of an ABAC rule always resolves to either a ‘permit’ or a ‘deny’
decision (represented respectively by the individuals permit and deny). All three
restrictions are ontologically captured in terms of terminological (TBox) axioms
expressed in the SROJQ Description Logic (DL) [8]. These axioms are presented in
Table 1. The first demands that each ABAC policy, i.e. each instance of the concept
ABACPolicy, is also an instance of the (abstract) class that comprises all those indi-
viduals that have at least one association through the property hasABACRule with an
individual from the concept ABACRule. The second demands that each ABAC rule, i.e.
each instance of ABACRule, is also an instance of the class that comprises all those
individuals that have exactly one association through each of the properties
hasABACAnt and hasABACCons with individuals from the concepts ABACAnt and
ABACCons respectively. Finally, the third axiom demands that the class ABACCons
comprises solely the individuals permit and deny.

2.2 Well-Formedness Constraints

Well-formedness constraints specify the attributes of an ABAC rule, i.e. all those
knowledge artefacts from the underlying CM that must, may or must not be embodied
in the antecedent of an ABAC rule. In this respect, well-formedness constraints give
rise to a higher-level ontology (HLO) that defines an allowable form, or structure, for
the antecedent of an ABAC rule (see Fig. 1). The HLO not only articulates the per-
missible knowledge artefacts embodied in the antecedent, but goes a step further to
determine the allowable cardinalities with which these artefacts may appear, as well as
the allowable values that they may assume.

We now briefly elaborate on the HLO constraints that have been devised for ABAC
rules in the frame of the PaaSword project. These constraints are ontologically
expressed in terms of SROJQ TBox axioms which restrict the class ABACAnt. It is to
be noted here that these constraints are malleable in the sense that they can be altered to
express alternate structures for the antecedent of ABAC rules—i.e. structures that
potentially reflect more accurately the application-specific needs of an organisation
adopting the PaaSword framework. This malleability is of utmost significance for it
empowers stakeholders to infuse into access control policies their business logic and
overall stance towards security.

The first constraint states that each ABAC rule must embody exactly one protected
asset. Ontologically, this is captured through a TBox axiom that demands that the

Table 1. ABAC policy model restriction axioms

Axiom 1 ABACPolicyY � 1hasABACRule:ABACRule
Axiom 2 ABACRuleY �Ri:Cið Þ u � 1Ri:Cið Þ

where i ¼ 1; 2 and Ri � hasABACAnt;Ci � ABACAnt; for i ¼ 1

Ri � hasABACCons;Ci � ABACCons; otherwise

Axiom 3 ABACConsequent � fpermit; denyg
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antecedent of an ABAC rule, i.e. each instance of the concept ABACAnt, is associated
with exactly one individual from the class Object of the CM, and that this association
should be realised through the object property hasObj. Table 2 provides a formal
expression of this axiom, as well as of the rest of the axioms outlined in this section.
Similarly, the second axiom states that each ABAC rule must be associated, through
the property hasAct, with exactly one action from the class Action (i.e. with exactly one
action to be performed on the protected asset); the third axiom states that each ABAC
rule must be associated with at least one subject from the class Subject (i.e. with at least
one entity requesting access to the protected asset), and the fourth axiom demands that
each ABAC rule may refer, via the property hasCE to at most one context expression—
i.e. to at most one expression that constrains the values of the contextual attributes that
pertain to an access request. Context expressions take the form of instances of the class
ContextExpr (see Fig. 1) and are further discussed below.

A context expression (CE) is a propositional logic expression that is attached to the
antecedent of an ABAC rule and articulates the contextual conditions that must hold in
order to permit, or deny, a request. These contextual conditions may refer to the subject
and/or object of a request, or to the request itself. In other words, a CE captures the
body of contextual knowledge that must be taken into account when deciding upon a
request. Ontologically, a CE is represented as an instance of the class ContextExpr (see
Fig. 1). The various attributes that it binds, i.e. its parameters, are represented as
instances of the CM—in particular, as instances of the classes encompassed by the
ContextAttributes concept. These parameters are associated with their encompassing
CE through the object property hasParam and may be combined through the usual
propositional logic connectives. A CE invariably enjoys at least one association with a
parameter; ontologically, this is captured by an axiom analogous to Axiom 3 of
Table 2. Moreover, a CE may be defined recursively, in terms of one or more other
CEs; this is captured by including the class ContextExpr in both the domain and the
range of the property hasParam. Finally, a context expression is attached to the entity
that it refers to through the object property refersTo.

The HLO may encompass constraints that restrict the allowable forms that a CE can
assume when attached to a particular ABAC rule. These constraints restrict the car-
dinalities with which certain knowledge artefacts from the class ContextAttributes may
appear in a CE, as well as the allowable ranges of values that these artefacts may
assume. As an example, consider an HLO constraint that demands that any CE attached
to an ABAC rule should invariably incorporate at least one parameter that confines the
whereabouts of the subject s of a request to the physical location identified as Athens, or

Table 2. HLO axioms

Axiom 1 ABACAntY ð� 1hasObj:ObjectÞ u ð� 1hasObj:ObjectÞ
Axiom 2 ABACAntY ð� 1hasAct:ActionÞ u ð� 1hasAct:ActionÞ
Axiom 3 ABACAntY � 1hasSubj:Subject
Axiom 4 ABACAntY � 1hasCE:ContextExpr
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to the network location identified by the subnet 123:0:0:0=8. Ontologically, this con-
straint takes the form:

ContextExpressionYð� 1refersTo:fsgÞ u ðð� 1hasParam:fAthensgÞ
t ð� 1hasParam:f123:0:0:0=8gÞÞ ð1Þ

3 Reasoning About the Correctness of ABAC Policies

Reasoning about the correctness of an ABAC rule, hence about the correctness of an
ABAC policy that resolves to that rule, involves reasoning about the abidance of the rule
by the HLO constraints. Below, we outline how this reasoning is performed by a
mechanism that we have developed as part of the PaaSword project. As an example,
suppose the following set of SROJQ axioms that articulate the attribute values asso-
ciated with an ABAC rule; we shall term such an axiom-set a knowledge base (KB) [9].

R �fABACRule rð Þ;ABACAnt að Þ;ObjectðoÞ; SubjectðsÞ;
ContextExpr eð Þ;PhyLocationðAthensÞ; hasABACAntðr; aÞ;
hasABACCons r; permitð Þ; hasObj a; oð Þ; hasSubj a; sð Þ;
hasCE a; eð Þ; hasParam e;Athensð Þ; refersToðe; sÞg

ð2Þ

According toR, the antecedent a of the ABAC rule r is associated with the object o,
the subject s and the context expression e; e is further associated with the (physical)
location parameter Athens which refers to s.

Two seminal assumptions underpinning OWL are the Open-World Assumption
(OWA) and the non-Unique Name Assumption (non-UNA). Nevertheless, these
assumptions render the use of OWL cumbersome when reasoning about constraint
satisfaction. Consider, for example, the KB R above. R fails to specify the action that
is to be performed upon the object o. However, according to the OWA, this does not
mean that the rule r described by R does not have such an action associated with its
antecedent: it merely means that this association is not specified in R. In order to
overcome this obstacle, we adopt the approach proposed in [9] and dispense with the
OWA and the non-UNA, effectively enabling closed-world reasoning when checking
the abidance of ABAC rules by HLO constraints. This reasoning is based on an
extended semantics of OWL, namely the Integrity Constraint semantics [9]; an outline
of how such reasoning is performed is in order.

Each HLO axiom is translated into a query, one that is posed to the KB under
validation with the aim of discovering any individuals that violate the axiom: if the
query returns an empty set of individuals, the axiom is considered to hold; otherwise, it
is considered to be violated. The query is, in fact, an assertion axiom that uses variables
in place of individuals and expresses the negation of the HLO axiom that it translates.
As an example, consider Axiom 2 of Table 2. This axiom is translated into a query that
attempts to discover in R any individuals that belong to the class ABACAnt and which
either enjoy no associations (through the property hasAct) with instances of the class
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Action, or enjoy two or more such associations with distinct instances of Action.
Formally:

ABACAnt ðxÞ ^ ðnotðhasActðx; yÞ ^ ActionðyÞÞ_
ðhasActðx; yÞ ^ hasActðx; zÞ ^ ActionðyÞ ^ ActionðzÞ ^ notðy ¼ zÞÞ ð3Þ

These queries are termed in [9] Distinguished Conjunctive Queries with Negation
as Failure (DCQnot). DCQnot are posed to the KB under validation as SPARQL queries
[10]. SPARQL queries are executed in the Pellet reasoner [11] (however, any other
OWL reasoner could have been used instead). In [9], a set of translation rules for
turning a SROJQ axiom into a DCQnot, hence into a SPARQL query, is presented.

4 Related Work

A number of approaches have been proposed for the semantic representation of policies
[12–14]. These generally rely on OWL [15] for capturing the various knowledge
artefacts that underpin the definition of a policy. In [12] KaoS is presented—a generic
framework offering: (i) a human interface layer for the expression of policies; (ii) a
policy management layer that is capable of resolving conflicting policies; (iii) a
monitoring and enforcement layer that encodes policies in a programmatic format
suitable for enforcing them. KaoS lacks any mechanism for automatically checking the
correctness, hence the effectiveness, of policies.

In [13] Rei is proposed: a framework for specifying, analyzing and reasoning about
policies. Similar to our work, a policy comprises a list of rules that take the form of
OWL properties; it also comprises a context that defines the underlying policy domain.
Rei resorts to the use of constructs adopted from rule-based programming languages for
the definition of policy rules. This essentially prevents Rei from exploiting the full
inferencing potential of OWL as policy rules are expressed in a formalism that is alien
to OWL. In addition, it does not provide any mechanism for reasoning about the
effectiveness of policies.

In [14] the authors propose POLICYTAB for facilitating trust negotiation in
Semantic Web environments. POLICYTAB adopts ontologies for the representation of
policies that guide a trust negotiation process ultimately aiming at granting, or denying,
access to sensitive Web resources. These policies essentially specify the credentials that
an entity must possess in order to carry out an action on a sensitive resource that is
under the ownership of another entity. Nevertheless, no attempt is made to semantically
model the context associated with access requests, rendering POLICYTAB inadequate
for the dynamic nature of cloud environments.

5 Conclusions

We have presented an approach to reasoning about the correctness, hence the effec-
tiveness, of access control policies in dynamic cloud environments. The correctness is
judged on the basis of ontologically-expressed constraints, the so-called HLO
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constraints. The reasoning is based on an extended semantics of OWL, one that dis-
penses with the OWA and the non-UNA, allowing the transformation of the constraints
into queries that are posed to the KBs that represent the rules under validation.
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Union’s Horizon 2020 research and innovation programme under grant agreement No 644814.
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Abstract. Nowadays, industrial production already benefits from an
increased level of interconnection involving various heterogeneous pro-
duction assets. Future development in the area is likely to lead to a
scenario often referred to as the Industrial Internet of Things (IIoT), a
promising factor in achieving unseen productivity goals. One of the key
IIoT use cases is remote access, which can drastically reduce the require-
ment for on-site presence of technicians and thus eliminate a large cost
factor. In this paper, we present a detailed examination of two wide-
spread Virtual Private Network (VPN) remote access frameworks and
analyse their suitability for IIoT remote access facilities. We introduce
a cloud architecture that seamlessly integrates with existing highly seg-
mented and firewalled industrial networks, yet providing secure connec-
tivity through the use of openVPN and IPsec technology. With scalability
being a key factor for a cloud architecture, we give an analysis of our
favoured protocols in order to derive potential performance bottlenecks.
We finally verify our assumptions by providing empirical performance
measurements.

Keywords: Industrial Internet of Things · Network security · Remote
access · Virtual Private Networks · IPsec · openVPN

1 Introduction and Motivation

Complex industrial production processes, as of today, are highly computerized
and involve a large number of interconnected devices. Yet, interconnection of
production environments as a driver for highly optimized production processes
is predicted to continue in the future, thus allowing for novel business models
often summarized by the visionary term of a “fourth industrial revolution” [11].

Within this vision of heavily interconnected “smart factories” [19], a key ele-
ment is remote access to the interconnected components involved in production
processes. A robust remote access framework not only allows to reduce costs by
reducing on-site maintenance and incident durations but also is an enabler for
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various machine-to-machine interaction scenarios. Malicious use of remote access
frameworks, however, must be prevented by enforcing secure authentication and
encryption facilities, which should be flanked by an anomaly detection frame-
work. IPsec [13] and openVPN [1] are well-established solutions to achieve the
first goal on the network layer; the second goal, despite being out of the scope of
this work, can be achieved on the same cloud infrastructure by inspecting traffic
that is forwarded by a centralized VPN endpoint between the involved entities.

This paper evaluates the suitability of the aforementioned VPN technologies
for such a massive IIoT remote administration architecture and is organized as
follows: Sect. 2 gives an overview of the related work. Section 3 describes our
evaluation platform and compares involved IPsec and openVPN protocol prop-
erties. In Sect. 4 we present an empirical performance evaluation of the core
cloud component for both protocols. Section 5 discusses the results we obtained
and concludes this work.

2 State-of-the-Art and Related Work

The wide availability of Internet Protocol (IP) based packet switched networks,
in conjunction with IP-based VPN protocols allowing to tunnel traffic to and
from different private domains1, allows for flexible remote access setups. Nowa-
days, there exists a variety of VPN protocols to tunnel network or data link
layer traffic, yet many of them provide little to no security [14]. With an increas-
ing awareness of security requirements in the internet domain, the most widely
used VPN technologies therefore either comply with the IPsec standard or use
a Transport Layer Security (TLS) [9] framework, as openVPN does.

In the context of IIoT scenarios involving thousands of connected devices,
the performance of VPN technology is very important. A comparison of maxi-
mally achievable bandwidths and response times using IPsec and openVPN was
performed by Kotuliak, Rybár, and Truchly [15] with IPsec outperforming open-
VPN. Migault et al. analysed processor overheads of different IPsec and cipher
suite operation modes and observed significant performance improvement upon
activation of hardware acceleration for encryption [16].

Most related work however focuses on evaluating performance in bidirectional
VPN setups and thus only partly applies for the remote access platform we
will present in Sect. 3. Our contribution consists in a performance evaluation
of a remote access platform taking the role of a trusted intermediary in secure
tunnelling scenarios for the IIoT.

3 Platform Architecture

Figure 1 depicts our evaluation architecture for secure, session-based end-to-end
tunnelling between entities located in disjoint private network zones A,B, each
isolated by at least one firewall and/or Network Address Translation (NAT) [20]

1 Employing private IPv4 address ranges according to [18].
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layer. An entity in this context represents any IP addressable device. The archi-
tecture’s core component is a cloud platform trusted by the operators of both
private networks, which consists of:

– a session database that contains all scheduled tunnelling events,
– a VPN endpoint that provides encryption and authentication facilities,
– a routing engine that forwards incoming packets to the respective recipient.

The cloud platform is located in zone C and must be reachable from the pri-
vate zones. Tunnels are established by the entities in the private subnets, traffic
within the remote access tunnel is therefore always directed to and originated
from the platform’s VPN endpoint, minimizing firewall configuration effort for
operators of the respective private zones.

The platform is not limited to traffic forwarding tasks. An important archi-
tectural property lies within traffic being available in decrypted plain-text inside
the platform, which we deem beneficially in the context of data aggregation and
anomaly detection scenarios as described in [10]. Other processing scenarios such
as accounting and monitoring are conceivable. Note that the architecture does
not break with application layer security entities may employ to prevent deep
packet inspection within the platform.

Fig. 1. Platform and test-bed architecture

In the context of these remote access scenarios, we deem high relevance to
the performance of the platform’s VPN endpoint in high traffic load conditions
and a large number of connection attempts. From a cryptographic point-of-view,
there exist various optimizations [7] which allow for fast cryptographic processing
of VPN traffic. Nonetheless, different implementation approaches of IPsec and
openVPN introduce overheads: openVPN encrypts and decrypts VPN traffic in
user space and uses TUN/TAP interfaces to interact with system space routines
responsible for actual traffic dispatching via physical network interfaces; session
keys are exchanged using a TLS handshake [17]. IPsec traffic, in contrast, is
processed by system space routines based on traffic selection and session key
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container structures called Security Associations (SA). SAs can be setup in the
system space using the Internet Key Exchange (IKE) [12] protocol that allows
for session key exchange with a reduced number of messages in comparison with
the TLS handshake.

Given these considerations and due to the fact that switching from user
to system space and vice versa introduces a context switching overhead, we
expect IPsec to perform more efficiently under heavy traffic load conditions as
it should not be subject to context switching overhead. Yet, both IPsec/IKE
and openVPN should provide similar performance when confronted with a large
number of key exchange requests.

4 Experimental Performance Evaluation

In order to verify our assumptions, we provide two separate evaluations of the
performance of the central platform depicted by Fig. 1. The first measurement
targets at the maximum achievable platform throughput that can be realized
with openVPN and IPsec and compares the resulting CPU utilization. The
second measurement evaluates the platform’s CPU utilization for both VPN
endpoints upon being confronted with a large number of key exchanges. While
maximum throughput provides a good performance measure in a highly active
network, key exchange performance is relevant in the context of massively inter-
connected IoT devices where connections are established and closed frequently.

We use an evaluation test-bed consisting of both virtual and physical entities
in the private zones and a virtualized central platform. NAT/Firewall layers are
also virtualized with the help of isolated kernel network namespaces. The virtual
entities use the QEMU [3] virtualization engine with each entity allocated a
dedicated CPU core (Intel Core i7-6700K) and a Virtual/IO-Network device that
provides link speeds in the range of the underlying system’s PCI Bus, in our case
25 GBit/s. It should be noted however that, due to the architectural approach of
routing all traffic within the platform, the maximum theoretically achievable end
to end bandwidth is only half the link bandwidth, thus 12,5 GBit/s. Nonetheless,
this setup allows us to efficiently stress the central platform without needing to
deploy hundreds of IIoT devices.

openVPN as well as the strongSwan [4] IPsec suite were evaluated using
the AES [5] symmetric cipher in Cipher Block Chaining (CBC) mode with 128-
Bit key size in conjunction with HMAC-SHA256 [6] as PRF and for integrity
checking. The AES algorithm was selected with respect to AES NI hardware
acceleration available in the testbed. Nonetheless, with a measured maximum
AES en-/decryption rate of 1.5 GB/s, we ensured that the CPU, not the link,
formed the platform’s bottleneck. All CPU and network metrics were recorded on
the central platform and evaluated using the Performance Co-Pilot open source
software suite [2].
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4.1 Maximum Throughput

Figure 2 shows the maximum platform throughput achieved for openVPN and
IPsec and highlights that IPsec clearly outperforms openVPN in this respect.
The main reason can be recognized from Fig. 3a, which shows the CPU partly
running in user, kernel and irq. irq mode handles interrupt routines required
when switching from user to kernel mode and vice-versa, but in Linux sys-
tems also performs IPsec packet processing. This is visualized in Fig. 3b, which
highlights that IPsec processing does not trigger expensive context switches and
confirms our previous implications.

Fig. 2. Maximum platform throughput achieved by IPsec and openVPN

4.2 Key Exchange

In order to compare the platform’s key negotiation performance for openVPN
and strongSwan, we repeatedly initiated tunnel initiation floods originating from
a total of four entities towards the openVPN platform endpoint. After success-
ful key exchange, tunnels were closed immediately. We determined a maximum
frequency fmax = 0.04 s where all key exchanges were still successful. Figure 4a
shows a 60 s key exchange flood towards the platform’s openVPN endpoint.
Processing mostly occurs in user space, which is what we expected. However,
one easily observes the remarkable portion of overall idle CPU time frames,
which we can only suspect to be caused by openVPN implementing an internal
key exchange rate limiter not known to us.

To provide better comparability, we flooded strongSwan using the same para-
meters. Figure 4b shows that strongSwan deals more efficiently with the key
exchange, despite often switching between user and kernel mode which most
likely results from installing negotiated IKE and IPsec SAs in the respective
kernel structures.
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(a) openVPN (b) strongSwan

Fig. 3. Platform CPU utilization during throughput measurement

(a) openVPN (b) strongSwan

Fig. 4. Platform CPU utilization during key exchange flood at fmax from four entities

5 Conclusion and Outlook

In this paper, we presented a scalable architecture that is able to flexibly inter-
connect heterogeneous IIoT entities located within segmented and highly fire-
walled environments. We therefore focused on the widespread and well-known
openVPN and IPsec tunnel protocols which not only provide good security mech-
anisms but also are able to carry legacy protocols, which is extremely important
in industrial contexts. Our work gives abstract estimates on their packet process-
ing and key exchange performance, which are widely confirmed by our empirical
measurements. Both theoretical and empirical results strongly suggest that in
case of a critical performance, either imposed by throughput or by key exchange
rate requirements, IPsec is favourable over openVPN. A promising approach of
an IKEv2 mediation server that mediates direct IPsec host-to-host connections
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has been proposed by [8] and would even increase IPsec performance in similar
architectures.

These performance parameters however, do not denote all aspects of both
protocols. Although openVPN suffers from weak performance, its very simple
configuration by far outperforms IPsec complexity and possible resulting security
issues on the other hand. The simple portability of openVPN additionally makes
it more attractive in certain situations.

While in the future, remote assistance protocols might arise that integrate
more specifically with the IoT and IIoT specifically, we have shown that state of
the art VPN solutions can provide a scalable bridging technology that enables
end-to-end tunnelling for legacy as well as novel devices.
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Abstract. Several different algorithms have been proposed in recent
years for the dynamic optimization of resource allocation in virtualized
data centers. The proposed methods range from fast and simple heuristics
to exact algorithms that yield optimal results but take much longer.
This paper suggests an algorithm portfolio approach in which multiple
algorithms coexist. Based on continual monitoring and analysis of the
state of the data center, the optimization algorithm that is most suitable
is chosen on the fly. This way, the balance between optimization quality
and reaction time can be tuned adaptively. Empirical results show that
this approach leads to improved overall results.

1 Introduction

The last years have witnessed a tremendous uptake of cloud computing. The
compelling advantages of the cloud, like the instantaneous access to services
without the need for upfront investments and the elastic scaling backed by a
seemingly unlimited pool of resources continue to drive ever more customers to
the cloud.

For a provider of Infrastructure-as-a-Service (IaaS), several important chal-
lenges must be addressed to provide the service economically and in good quality
[10]. First, the operation of the physical infrastructure is associated with high
costs. Especially the costs for electricity play an important role for operating
servers and cooling equipment [8]. For this reason, virtualization is widely used
to achieve high utilization of physical servers and switch off unused ones. In
particular, live migration of virtual machines (VMs) between physical machines
(PMs) makes it possible to react to changes in the workload and continually
consolidate VMs to just the required number of PMs [35].

Second, customers require a high level of service quality. In the case of IaaS,
the most important quality objective is that the amount of resources requested
for a VM should be available whenever the application in the VM requires it.
This objective of the customers is in conflict with the economic objective of
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Published by Springer International Publishing AG 2017. All Rights Reserved
F. De Paoli et al. (Eds.): ESOCC 2017, LNCS 10465, pp. 93–108, 2017.
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94 Z.Á. Mann

the providers. The latter would dictate aggressive consolidation of VMs, but
if the resources of a PM are over-subscribed by multiple VMs and the load
of the VMs starts to rise, this can quickly lead to an overload of the physical
resources, resulting in a situation where VMs do not obtain the requested amount
of resources. This may lead to degraded performance for client applications, thus
to customer dissatisfaction which may manifest itself in penalties (if the service
level agreement mandates this) or customer churn.1

As can be seen, it is vital for the provider to find the right balance between
the conflicting objectives of minimizing the number of used PMs and minimizing
the situations where a PM is overloaded. This leads to an interesting optimiza-
tion problem called the VM consolidation problem [24]. Most of the realistic
formulations of the VM consolidation problem are NP-hard to solve optimally
or even to approximate with low approximation factors [23]. Still, because of its
practical relevance, many algorithms have been proposed to solve this problem.

Many of the suggested algorithms are greedy heuristics that deliver a solu-
tion very quickly. However, there is no guarantee on how close the found solution
will be to the optimum and in unfortunate cases, it can be very far from it. On
the other extreme, some researchers have also proposed exact algorithms that
are guaranteed to find the optimum, although at the cost of exponential execu-
tion times. To be practical, such algorithms must be furnished with a timeout so
that overly long runs are prohibited (in which case the algorithm returns the best
solution it has found). This way, the found solution is not guaranteed to be opti-
mal; however, experience shows that this way significantly better results can be
achieved than with the simple greedy heuristics, although with also significantly
higher execution time.

It is not clear which of these approaches is the most appropriate. For example,
in a situation where the workload is quickly rising (e.g., as a result of the flash
crowd phenomenon [29]), it is paramount to react quickly. In this case, a greedy
algorithm that delivers a suboptimal result within a second is clearly preferred
over a more sophisticated algorithm that would give a better result after a minute
because by that time PMs may already be overloaded. On the other hand, in
a peaceful period of low load, it would pay off to wait for the better allocation
returned by the longer-running algorithm.

Based on these considerations, we propose here an algorithm portfolio app-
roach, in which the provider has a set of algorithms at its disposal and chooses
from them dynamically, based on the current situation of the cloud. This way,
the strengths of different algorithms can be combined.

In this paper, we describe a general approach for using an algorithm portfolio
for VM allocation, as well as a specific preliminary implementation using two
algorithms. Empirical results show that already our preliminary implementation
leads to better results than those of the individual algorithms.

1 Beyond these two basic objectives, there can be also several other factors that the
provider must take care of, such as security and privacy requirements, optimization
of data transfer among the VMs, thermal issues etc.
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2 Previous Work

The VM consolidation problem has received a lot of attention in recent years.
Several different versions of the problem have been studied and many different
algorithms have been proposed to solve it [22,26]. The proposed algorithms real-
ize different trade-offs between solution quality and algorithm execution time.

The fastest algorithms are greedy heuristics: their running time is at most
quadratic in the size of the problem instance, leading to very low execution times,
but also to solutions, the quality of which may not be so good. Typical examples
include the packing heuristics adopted from the related bin-packing problem,
such as First-Fit, Best-Fit, First-Fit-Decreasing etc. [4,5,13,17,20,30,36,37] and
also some proprietary methods [4,32,33,38,39].

Exact methods (i.e., algorithms that are guaranteed to yield optimal results)
are the other extreme. The proposed exact algorithms rely almost always on some
form of mathematic programming (e.g., integer linear programming) and appro-
priate solvers [13,14,25,31,41]. Unfortunately, these approaches do not scale to
practical problem sizes, so their running has to be limited.

There are also some further algorithms. These include meta-heuristics, the
execution time and quality of which can be tuned with multiple parameters, e.g.,
simulated annealing [16,27], genetic algorithms [11], particle swarm optimization
[18], ant colony optimization [9], and biogeography-based optimization [19,42].
Also, some complex proprietary heuristics fall into this category [2,17,28].

The algorithm portfolio approach advocated in this paper was originally sug-
gested by Huberman et al. [15] and then popularized in the artificial intelligence
community by Gomes and Selman [12] with the aim of attacking hard combi-
natorial problems. The fundamental idea is to select from a pool of available
algorithms the most appropriate one for each specific problem instance, based
on quickly computable features of the problem instance and a model of expected
behavior of the algorithms on problem instances with the given features. The
most well-known application of this approach has been the SATzilla solver for
the Boolean satisfiability (SAT) problem [40], which has consistently achieved
top results in the SAT competitions. The approach has also been used in the
context of automated synthesis and deployment of cloud applications [1,7].

3 General Problem Description

As shown in Fig. 1, the inputs to the VM consolidation problem consist of (i)
information about the PMs, (ii) information about the VMs, (iii) the current
mapping of VMs on PMs, and (iv) further constraints.

Each PM is characterized by its capacity, current state, and its power con-
sumption characteristic. The capacity can be one-dimensional if only a single
resource type (typically the CPU) is considered, or multi-dimensional if multiple
resources types (e.g., CPU, RAM, disk) are taken into account. The state of the
PM can be either “on” or “off”. The power consumption characteristic of the
PM is a function that defines how much power the PM consumes depending on
the load of the PM.
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Fig. 1. Inputs and outputs of VM consolidation

Fig. 2. Time-line of VM consolidation

A VM is characterized by its resource requirements. If d resource types are
considered for the capacity of PMs, then also the resource requirements of the
VMs are d-dimensional.

Some of the VMs may already exist and be placed on a PM. There can also
be newly requested VMs whose placement is not decided yet. Hence, the current
mapping of VMs on PMs defines for a subset of the VMs on which PM they
currently reside. Further, it is also possible that the termination of some VMs
has been requested; such VMs also appear in the current mapping of VMs on
PMs, but can be removed.

There can also be further constraints that VM consolidation has to respect.
For example, anti-colocation constraints prescribe that certain pairs of VMs must
not be placed on the same PM for reasons of security or fault tolerance.

The aim of VM consolidation is to determine a new mapping of VMs on PMs.
This mapping must define for each VM – including both existing and newly
requested VMs – the PM that should host it. For the newly requested VMs, the
new mapping defines on which PM they should be deployed. For existing VMs, if
the new mapping defines a different host from the current one, then a migration
must be carried out; otherwise, no action is required.

VM consolidation has two main objectives: (i) minimizing total energy con-
sumption and (ii) minimizing PM overloads. These two objectives are conflicting:
minimizing energy consumption can be achieved by aggressively consolidating
the VMs to as few highly loaded PMs as possible, but this would increase the
probability of PM overloads. Therefore, the aim is to find a good balance between
these two objectives.
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Timing also plays an important role in VM consolidation. The workload keeps
changing, and so the mapping of VMs on PMs should be re-optimized regularly
to react to the changes. Figure 2 depicts a typical time-line. According to this,
VM consolidation is carried out periodically, with a period of T . In each period,
first the input data – in particular, the current load of the VMs – are collected,
which are then fed into the consolidation algorithm. Finally, the migrations that
the algorithm decided are executed.

Collection of input data can be done in a decentralized manner and hence in
parallel, so that the time required for that is not so high. In contrast, the time
for running the algorithm can be substantial depending on the specific algorithm
used. Also the migrations can take long depending on several factors like memory
size of the migrated VMs or the available network bandwidth [34].

The time that elapses between collecting the input data and reaching the new
state is critical for two reasons. First, the more time passes, the less effective is
the reaction of the system: in case of a PM overload, it takes longer to remedy
the problem; if there are consolidation opportunities, it takes longer to exploit
them, thereby wasting energy. Second, the workload also changes during this
time, so that the state actually reached will be different from the one that the
algorithm determined based on the old load levels, and the longer it takes to
reach the new state, the higher the difference can be.

For these reasons, the usefulness of a VM consolidation algorithm not only
depends on how well it can consolidate the VMs and how well it can eliminate
PM overloads, but also how fast it is. The algorithms that have been proposed
so far in the literature differ strongly along these dimensions: some are slow
but deliver very good results, whereas others are much faster but deliver weaker
results. The question that we are trying to address is how the complementary
strengths of existing algorithms can be combined.

4 Proposed Approach

An overview of our proposed approach is sketched in Fig. 3. The main idea
is to use multiple VM consolidation algorithms that offer different trade-offs
between speed and quality. In each period, it is decided dynamically which of
the available algorithms should be used in the current optimization period. This
decision is based on a quick analysis of the current system state, consulting a
knowledge base containing information about the characteristics of the available
algorithms. The analysis has to be quick because it is on the critical path of
the decision-making process. Hence it should consist of simple rules that are
based on aggregate system metrics. For example, such a rule could state that
the fastest algorithm should be chosen if there are several overloaded PMs or if
violations of some security-related constraints have been detected.

Some algorithms have important parameters with which their behavior can
be configured. Some parameters may relate to quantities of the problem domain;
for instance, some algorithms support explicit thresholds on the number of
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Fig. 3. Overview of the proposed approach

migrations [3] or the headroom to leave on PMs to prevent overloads [5]. Other
algorithms have internal, algorithm-specific parameters that influence their effi-
ciency and effectiveness; for example, evolutionary algorithms can be tuned with
parameters like population size, mutation rate etc. Similarly to the selection of
the most appropriate algorithm for the given system state, also its most appro-
priate parameter configuration can be set on the fly, provided that the necessary
rules are known. For example, in the case of heavy network traffic, the number
of allowed migrations can be limited.

Beside selecting the algorithm and its parameters, a further customization
possibility relates to the re-optimization period T , i.e., the time until the re-
optimization cycle starts again. All previous works that we are aware of assumed
T to be constant; however, this need not always be the case. If we choose a quick
algorithm and limit it to just a few migrations so as to react quickly to an emer-
gency situation, then it makes sense to lower T so that the next re-optimization
happens earlier. This way, it can be checked in a timely manner whether the
emergency has been resolved: if yes, other optimizations can be performed that
were previously not done because of the higher-priority mitigation steps; if no,
further measures can be taken to mitigate the issue.

5 Specific Implementation

So far, we have described both the addressed problem and our proposed approach
in a generic way. The reason is that the VM consolidation problem exists in many
different flavors [22], but the presented approach can be applied to any variant
in conceptually the same way. However, the specific algorithms that make up
the portfolio, their parameters, as well as the specifics of the data center and the
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served workload may influence the details of how the proposed method should
be applied. To validate our approach, we implemented it in a specific setting
which we describe in the following.

5.1 Problem Model

We focus on CPU usage as the most important resource for consolidation. The
set of available PMs is denoted by P . Each PM p ∈ P is associated with a CPU
capacity cp and power consumption wp. The set of active or requested VMs is
denoted by V . Each VM v ∈ V is associated with a – current or predicted – CPU
size sv. The current mapping of VMs to PMs is given for a subset of the VMs
V0 ⊆ V by m0 : V0 → P . The aim is to determine a new mapping m : V → P
of each VM to a PM that fulfills the capacity constraints, also leaving some
headroom on each PM:

∀p ∈ P :
∑

v∈m−1(p)

sv ≤ λ · cp. (1)

Here, m−1(p) is the set of VMs mapped by m to PM p and 0 < λ ≤ 1 is a given
constant, defining the headroom.

A further constraint is that the number of migrations should not be too high.
The number of migrations can be computed as |{v ∈ V0 : m(v) �= m0(v)}|.

The optimization objective is to minimize the total power consumption,
which is given by the sum of the power consumption of the PMs that are active:∑{wp : p ∈ Pa}, where Pa ⊆ P is the set of active PMs.

5.2 Used Algorithms

We use a portfolio of two typical but very different algorithms. The first algo-
rithm is the heuristic of Beloglazov et al. [5]. This is based on a packing heuristic
called Modified Best Fit Decreasing (MBFD), in which the VMs to be placed are
first sorted in non-increasing order of their CPU size, and then each VM is placed
in the PM that can host it with the smallest increase in power consumption.

Newly requested VMs are placed directly using the MBFD heuristic. For re-
optimizing the placement of existing VMs, the algorithm of Beloglazov et al. first
determines the PMs whose utilization is above λ. From these PMs, some VMs
are removed until their utilization gets below λ. The VMs removed this way are
migrated to other PMs determined using again the MBFD heuristic. Finally, the
algorithm tries for each PM whether it can be emptied by migrating all the VMs
it hosts to some other PM – if this is possible, these migrations are carried out
and the PM is shut down; otherwise, the migrations are not carried out.

The second algorithm consists of converting the VM consolidation problem
to an integer linear program (ILP) and using an off-the-shelf ILP solver to solve
it. The conversion mostly follows the approach of [3], and is described next.
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Indexing VMs as vi (i = 1, . . . , |V |) and PMs as pj (j = 1, . . . , |P |), the
following binary variables are introduced:

Alloci,j =

{
1 if vi should be allocated on pj

0 otherwise

Activej =

{
1 if pj should be active
0 otherwise

Migri =

{
1 if vi should be migrated
0 otherwise

Using these variables, the integer program can be formulated as follows (i =
1, . . . , |V | and j = 1, . . . , |P |):

min α ·
m∑

j=1

wpj
· Activej + μ ·

n∑

i=1

Migri (2)

s. t.
m∑

j=1

Alloci,j = 1 ∀i (3)

Alloci,j ≤ Activej ∀i, j (4)
n∑

i=1

svi
· Alloci,j ≤ λ · cpj

∀j (5)

Migri = 1 − Alloci,m0(vi) ∀vi ∈ V0 (6)
n∑

i=1

Migri ≤ K (7)

Alloci,j , Activej ,Migri ∈ {0, 1} ∀i, j (8)

The objective function (2) is the weighted sum of the total power consump-
tion and the number of migrations (α, μ ≥ 0 are given weights). Equation (3)
ensures that each VM is allocated to exactly one PM, whereas constraint (4)
ensures that for a PM pj to which at least one VM is allocated, Activej = 1.
Together with the objective function, this ensures that Activej = 1 holds for
exactly those PMs that accommodate at least one VM. Constraint (5) is the
capacity constraint. Equation (6) determines the values of the Migri variables
and Eq. (7) constrains the number of migrations (K > 0 is a given constant).

5.3 Algorithm and Parameter Selection Logic

Our selection logic is based on a simple but powerful indicator of the current
system state: the number of PMs currently not satisfying Eq. (1). If this number,
denoted as L, is higher than a predefined threshold L0, then we assume that a
quick reaction is necessary; otherwise, the reaction can be more relaxed.
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The rationale behind using this metric is the following. We can assume that
in the previous re-optimization cycle, VMs were re-distributed among PMs in
such a way that the utilization of each PM is below λ, and for most PMs it
is near λ. If the workload is in an upturn, then the PMs whose load was just
under the limit will exceed the limit; and indeed a quick reaction is needed to
avoid negative consequences of further load increase. On the other hand, if the
workload is stagnating or decreasing, then the load of the PMs still satisfies
Eq. (1). In this case, there is more time to determine the new placement of the
VMs. Hence the number of PMs not satisfying Eq. (1) is indeed a good indicator
of how quickly a reaction is needed.

Fig. 4. Specific algorithm and parameter selection strategy

We assume that the heuristic of Beloglazov et al. is significantly faster than
the ILP-based algorithm, but typically the ILP-based algorithm delivers better
results. For this reason, we apply the fast heuristic if a quick reaction is necessary
(i.e., L > L0) and the ILP-based algorithm otherwise (see also Fig. 4).

Also the time T until the next re-optimization cycle is set adaptively, based
on a similar decision logic. If the ILP-based algorithm is carried out, then T is set
to its normal value. However, if we established that a quick reaction is necessary
and hence run the heuristic algorithm, then we set T to a lower value. The reason
is that we should keep the ability to respond quickly if the workload continues to
rise. Cloud workloads are known to be amenable to the flash crowd phenomenon,
which can quickly lead to severe violation of service level objectives. This is why
we have to be careful if the load starts to rise. On the other hand, if the load is
not rising, performing VM consolidation too often would be counterproductive
because of the overhead associated with migrations.
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6 Empirical Results

Simulations were used to assess the effects of our adaptive VM consolidation
approach, using the CloudSim simulator [6], version 4.0. CloudSim already con-
tains the VM consolidation algorithm of Beloglazov et al. We implemented the
ILP-based algorithm using the Gurobi Optimizer, version 7.0.2. In addition, we
implemented the algorithm and parameter selection logic described in Sect. 5.3.
In all cases, λ was set to 0.8.

We simulate a cluster of 100 PMs serving 500 VMs. The PMs belong to three
types (with one third of the PMs belonging to each type), having CPU capacities
of 2000, 4000, and 8000 MIPS. The VMs’ requested CPU size ranges from 200
to 1500 MIPS, and their actual CPU size is always defined as percentage of their
requested size, as explained below. Re-optimization is normally carried out every
5 min (i.e., Tnormal = 300s) like in many previous works (e.g., [21]). When T
should be reduced to respond quickly, it is set to Tquick = Tnormal/2 = 150s.
The ILP-based algorithm is given a time budget of 60 s; the execution time of
the heuristic algorithm is negligible (it was below 1 s in all of our experiments).
Migrations take on average about 32 s. The power consumption of a running PM
is 400 W. The experiments were performed on a Lenovo ThinkPad X1 laptop
with Intel Core i5-4210U CPU @ 1.70 GHz and 8 GB RAM.

We tested several different workload patterns to assess how our approach
works in different settings. Each pattern takes 1 h. In each case, the proposed
approach is compared with the two pure strategies of using always the ILP-based
algorithm or always the heuristic algorithm. The criteria for comparison are the
number of active PMs, the total energy consumption, and the number of times
a PM was overloaded, where the latter is assessed every 60 s.

Table 1. Aggregated results of the experiments

Workload Energy [kWh] Overloads

Heuristic ILP Portfolio Heuristic ILP Portfolio

Constant 11.63 9.04 9.04 0 0 0

Decrease 16.60 15.21 14.93 0 0 0

Increase 18.90 19.11 20.12 146 60 39

Peak 18.99 16.09 18.51 104 60 2

Valley 16.15 14.81 15.93 133 135 40

Sinus small 12.39 10.35 9.88 0 0 0

Sinus big 18.77 17.40 17.15 75 69 13

Total 113.43 102.01 105.56 458 324 94

The results of the experiments are summarized in Table 1. In the first experi-
ment, the workload was constant 50% of the requested capacity. As expected, all
algorithms were able to perform consolidation without incurring PM overloads.
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The ILP-based algorithm resulted in about 22% reduction in power consumption
compared to the heuristic algorithm. Since there was no rise in the workload,
the portfolio-based approach always chose the ILP-based algorithm, hence it led
to the same result.

The situation is similar in the second experiment, in which the load decreases
from 90% to 10% of the requested capacity. Again, there was no PM overload.
The three algorithms led to similar energy consumption, with the portfolio-
based approach leading to about 10% reduction in energy consumption over the
heuristic and about 2% over the ILP-based algorithm2.

In the third experiment, the opposite happens: the load is increased from
10% to 90%. As can be seen, the order of the algorithms also becomes opposite:
now the portfolio-based approach leads to 5–6% higher energy consumption than
the others. However, there are considerable differences in terms of PM overloads:
the ILP-based algorithm leads to 54% more PM overloads, the heuristic to 274%
more PM overloads than the portfolio-based approach. The details are shown

Fig. 5. Effects of the load increasing from 10% to 90%

Fig. 6. Effects of the load first increasing from 10% to 90%, then decreasing back to 10%

2 In almost all re-optimization cycles, the portfolio-based approach chooses the ILP-
based algorithm, hence they behave almost the same. The only exception is the first
cycle: since the workload starts at 90%, the initial placement of the VMs leads to
several PMs with utilization above λ, so that the fast heuristic is chosen.
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in Fig. 5. As can be seen, the portfolio-based approach can react faster to the
change than the other algorithms.

The fourth experiment, called “peak,” is a combination of the preceding
two: in the first half of the time window, the load increases from 10% to 90%,
then in the second half it decreases back to 10%. As can be seen, the energy
consumption achieved by the three evaluated approaches is again very similar
to each other; however, in terms of the number of PM overloads, the portfolio-
based approach is again clearly superior. The details are shown in Fig. 6. Not
surprisingly, the difference between the three approaches arises in the first half of
the time window, where the portfolio-based approach provides faster and better
reaction to the change than the others.

The fifth experiment, called “valley,” is the opposite of the previous one: in
the first half of the time window, the load decreases from 90% to 10%, then in
the second half it increases back to 90%. The results, shown in detail in Fig. 7,
are similar to the previous ones.

In the next two experiments, the load follows a sinus curve around 50%. In
the experiment termed “sinus small,” the amplitude of the sinus curve is 5%,
whereas in the “sinus big” experiment it is 20%. In both cases, the portfolio-based

Fig. 7. Effects of the load first decreasing from 90% to 10%, then increasing back to 90%

Fig. 8. Effects of the load following a sinus curve around 50% with amplitude 20%
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approach outperforms the other two. The details for the “sinus big” experiment
are shown in Fig. 8.

The aggregated figures (last line of Table 1) reveal that the portfolio-based
approach improves energy consumption by 7% compared to the heuristic, but
this result is still 3% worse than that of the ILP-based algorithm. Concerning
the number of overloads, the portfolio-based approach emerges as clear winner.

7 Conclusions and Future Work

In this paper, we investigated how different algorithms for the VM consolidation
problem can be combined into an algorithm portfolio from which an automated
decision-making mechanism can choose dynamically at run-time based on the
current system state. This way, the complementary advantages of different algo-
rithms can be leveraged. In particular, we have shown how a fast but simple
heuristic can be combined with a more sophisticated but slow ILP-based algo-
rithm. Beside the choice of algorithm, also algorithm parameters as well as the
re-optimization interval can be chosen by the same mechanism.

The simulation results demonstrate that the suggested approach is promising
because in most cases it leads to a better trade-off between energy consumption
and PM overloads than the two underlying algorithms.

Obviously, our current implementation is rather simple and could be
improved in several ways. For example, the used knowledge about the two under-
lying algorithms is simplistic: the ILP-based algorithm is assumed to always lead
to better quality than the heuristic. In reality, this is not always the case, so that
a more sophisticated model of the algorithms’ performance could result in bet-
ter decisions. The model of algorithm performance could also be learned during
run-time through appropriate machine learning techniques.

Also the decision-making is based on a simple metric. More intelligence could
be added, for instance in the form of time series analysis, to make better deci-
sions. Further possibilities include the addition of more algorithms to the port-
folio or running multiple algorithms from the portfolio in parallel if sufficient
parallel resources are available.
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Abstract. To achieve high levels of reliability, availability and perfor-
mance in cloud environments, a fault tolerance approach to handle fail-
ures effectively is needed. In most existing research, the primary focus has
been on explicit specification-driven solutions which requires too much
effort for application developers, and leads to inflexibility. We propose
a fuzzy job distributor (load balancer) for fault tolerance management
to reduce levels of management complexity for the user. The proposed
approach aims to reduce the possibility of fault occurrences in the sys-
tem by a fair distribution of user job requests among available resources.
In our self-adaptive approach, the system manages anomalous situations
that might lead to failure by distributing the incoming job request based
on the reliability of processing nodes, i.e., virtual machines (VMs). The
reliability of VMs is a variable parameter and changes during its life-
time. Our approach is implemented and comparatively analysed using
OpenStack. The experimental results show a significant reduction in the
occurrence of faults in comparison with other load balancing algorithms.

Keywords: Load balancing · Job distributor · Fault tolerance · Fuzzy
logic · Cloud computing · Anomaly detection · OpenStack

1 Introduction

Cloud computing offers a large-scale distributed computing environment through
a pool of abstracted, virtualized, dynamically-scalable and configurable comput-
ing resources. Unfortunately, due to unreliability in hardware or software, failure
as the major obstacle to high service availability in cloud computing, is unavoid-
able. A fault tolerance feature provided by cloud vendors aims to overcome the
impact of system failures and continue their functionality correctly even after
the occurrence of failures, is needed. Currently, several fault tolerance models
[1,6,8] are proposed generally involving the application developer to configure
and operate cloud software based on cloud-specific features in order to run reli-
ably. The major drawback and limitation of this type of approach is that requires
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knowledge and experience from the developer in order to configure and integrate
applications in an available fault-tolerance framework. This difficulty arises due
to (i) high complexity of the cloud platform, (ii) low available information about
the underlying cloud infrastructure to its users. This results in intransparency
and inflexibility of the Cloud architecture, and requiring too much effort by the
application developer. Therefore, there is a demand for a reliable and automatic
fault-tolerance management system without requirement for configuration and
integration of applications by user. An efficient job distributor (load balancer)
helps to remove critical conditions such as overload that causes a system failure
and aims to improve system performance to make systems more reliable and
fault-tolerant. Furthermore, as a part of a service layer, it brings more trans-
parency in cloud infrastructures from a user’s perspective. Recently, intelligent
approaches have received attention for cloud job distribution and load balanc-
ing. Fuzzy theory [24], as a well-known artificial intelligence approach, has var-
ious characteristics that make it a suitable for control problems [12]. For us, it
allows multiple possibly conflicting options – whether arising from an automated
(machine) learning approach as multiple options or provided by different experts
[3] – to be joined into a single decision that can be effectively enforced.

This paper proposes a fuzzy job distributor technique that ensures fault
tolerance by properly distributing user job requests load among current available
resources using anomaly and fault detection. By monitoring the current state of
system and fairness in job distribution, we calculate the priority value for each
resource and try to avoid overloading problems that are the cause of system
failure. Upon detection of anomalies, the algorithm directs the system to apply
a fault rejuvenation mechanism to an anomalously behaving virtual machine.

2 Fault Tolerance: Related Work and Positioning

Fault tolerance (FT) is the ability of a system to perform its function cor-
rectly even in the presence of internal faults. The purpose of fault tolerance
is to increase the dependability of a system. Fault recovery mechanisms enable
systems to correct the damaged state and restore to a known safe state after the
system detects and verifies faults and anomalies leading to faults. Fault toler-
ance techniques can be classified into three main categories [6]: (i) redundancy
techniques, (ii) load balancing strategies, and (iii) fault tolerance policies.

Redundancy is providing replication of system components such as hardware
and software to provide more reliability in systems. Hardware redundancy tech-
niques exploit additional hardware components. All redundant hardware exe-
cutes the same task in parallel, and fault detection and masking can be achieved
by majority voting techniques [18].

Load balancing fault tolerance strategies are based on improving fault toler-
ance based on load balancing performed using software models. In this case, a
load dispatcher component distributes all incoming job requests among avail-
able resources. For example, Amazon EC2 uses elastic load balancing (ELB) to
control how incoming requests are handled. Basically, in this context, it tries to
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reduce the likelihood of fault occurrences in the system by adequately distribut-
ing user job requests among available resources.

Fault tolerance policies can divided into proactive and reactive policies. The
principle of proactive fault tolerance is to avoid recovery from errors and failure
through preventative measures and proactively replace the suspected anomalous
components by other working components. In contrast, reactive fault tolerance
policies performs recovery from experienced failures.

Reactive Fault Tolerance is implemented in different ways. Firstly, Check-
pointing records the system state periodically, allowing to restart the failed task
from a recent checkpoint rather than from the beginning. Zhang et al. [26] pro-
pose a checkpointing strategy at user-level. The main drawback of this method
is cost, which is significant in the case of large numbers of VM images in terms of
storage space and restore processes. [25] proposes an asynchronous FT approach
based on checkpointing by preserving data on surviving nodes to potentially
accelerate recovering lost data with no overhead for checkpointing.

Secondly, Replication runs several task replicas on different resources. In
the active model, all replicas receive the requests in the same order. In the
passive model, one replica as the primary node receives the requests and all other
replicas interact with the primary replica. To address reliability demands in PaaS
cloud, a framework that automatically coordinates fault-tolerant applications
based on the Byzantine fault-tolerant (BFT) protocol is proposed in [16]. In [19]
an FT approach is proposed based on a checkpoint/replay technique for real-
time computing to reduce the service time on the cloud infrastructure. Another
reactive approach is Job migration, which migrates the failed task to another
resource. Task resubmission is also widely used: the failed task is recommitted
either to the same or a different resource.

Proactive Fault Tolerance can be distinguished into two important types:

Software Rejuvenation: it immediately terminates an application and restarts
it with a clean state at every rejuvenation interval [10]. Pre-emptive Migration:
it counts on a feedback-loop control mechanism, i.e., constantly monitors and
analyzes. It migrates the parts of an application that show anomalous behaviour
and are likely to fail [7,20]. In [17], a proactive coordinated FT (PCFT) approach
based on particle swarm optimization (PSO) to minimizing the overall transmis-
sion overhead, overall network resource consumption is proposed. In [5], a VM
placement model based on adaptive selection of fault-tolerant strategy for cloud
applications is proposed. A predictive control approach for fault management in
computing systems is presented in [14]. In most current clouds, (i) checkpointing,
the process of recording and capturing recovery system state periodically dur-
ing failure-free execution, and (ii) replication, the process of replicating tasks,
are the most common fault tolerance strategies. The drawback of replication
strategies is that they are rather expensive, i.e., higher cost for a device which
contains multiple replicas. The advantage of checkpointing is that it does not
require a high amount of hardware redundancy. However, the major drawback
of checkpointing strategies is the time overhead of performing checkpoints.
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Positioning of presented approach. Usually, the time overhead due to usage of
fault tolerance policies may result in a negative impact on resource performance.
In this work, in order to reduce the time overhead and improve the resource
utilization during the life cycle of system, we consider proactive fault tolerance
strategies using load balancing as the central controller function [11,13] and
propose a fuzzy load balancer for fault tolerance management.

The proposed framework considers multiple objectives: (i) resource CPU uti-
lization, (ii) fairness of distribution of job requests, and (iii) the history of fault
rates for each resource. Our solution combines proactive techniques such as soft-
ware rejuvenation with pre-emptive migration.

3 Fault Tolerance Management System

The first step of designing a fault tolerance mechanism as a service in cloud
infrastructure is defining how the system works.

3.1 Self-adaptive Anomaly and Fault Management Framework

Generally, the client jobs are deployed in VM instances. The fault tolerance prop-
erties of the system should be obtained through a core service that applies a coher-
ent fault tolerance mechanism in a transparent manner. To this end, we define
a fault tolerance controller as the fundamental module that monitors the cur-
rent system state and enacts a fault tolerance mechanism. It allows us to control
and handle hardware failure of user applications at the virtualization layer rather
than for the application itself. The proposed fault tolerance approach is coded
and run inside of it. Additionally, we use two more modules, namely job distribu-
tor and anomaly/failure detector components in our solution. The job distributor
has the duty to distribute client job requests across a set of computing resources
in resource pool based on current request load, priority and weight value for each
resource. The anomaly and failure detector monitors resources to detect anom-
alies that might lead to failure and server crashes. A recovery mechanism can be
applied after a failure is detected by this module. In this context, detection of node
failures and application of the recovery mechanism are performed without requir-
ing any changes to integrate a user application with fault tolerance approach.

Figure 1 shows the complete process of how the proposed fault tolerance sys-
tem works. The fault tolerance controller gathers information from ceilometer
and the current state of computing nodes in a resource pool. The ceilometer
component provides telemetry services to collect metering data in OpenStack
(which we use for implementation [2]). Then, the fault tolerance controller
decides how to modify the priority and weight value of each node in the resource
pool to reduce future anomalous behaviour. The job distributor distributes sub-
mitted jobs based on the weight value of each resource. During the life cycle of
the system, the failure detector module detects anomaly and fault occurrences
in the system and sends a recovery mechanism signal to the faulty node. Note
that each module in Fig. 1 has its own set of functional attributes.
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Fig. 1. Our fault tolerance framework Fig. 2. Interval check

Our anomaly detection framework aims to proactively prevent or detect
faults: (i) detect anomalous undesirable performance degradation (as a concrete
anomaly) that might lead to failure, (ii) identify the symptoms and root causes
of anomalous performance degradation to apply a proper corrective action, here
using fuzzy job distribution, (iii) manage the relationships and dependencies
between the symptoms, which are external manifestations of anomalous behav-
iour, and root causes, which are the reasons behind the performance degradation,
and (iv) refine the future detection through applying a recovery mechanism on
the identified faults and learning from the verified results to enhance the future
fault detection and to continuously improve the deployment and the integration
processes by using weight and priority adjustments. The following steps, aligned
with the MAPE-K control loop framework [12], are carried out (see Fig. 1):

– Monitoring: Anomaly/Failure Detection. This step collects data from the con-
troller using ceilometer, structures this data to provide a sequence presen-
tation that can be used to detect the obfuscated behaviour in data.

– Analysis: Anomaly Identification and Diagnosis. To be able to identify and
diagnose the fault root cause, we label the sequence representation in the
anomaly detection step. The main points of that step are specifying the
dependency and the relationships between faults, estimating the fault type
(fault intensity level or the dispersal of anomaly within the managed resource)
and distinguishing between fault (true anomaly diagnosing) and noise (false
anomaly diagnosing). The distinction is specified based on assigning numeri-
cal values for each.

– Planning and Execution: Anomaly Recovery. After identifying and diagnosing
faults, a recovery mechanism is applied to correct faults and remove their
effects. The objective of fault removal is to isolate the affected component
from the sequence presentation and delegate the incoming requests to another
component or choosing an alternative solution to be used in the healing. This
step is connected to the fault tolerance controller VM to re-assign a new
weight for the affected component(s) to be able to store the verified path(s)
according to their new weight.
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Furthermore, Recovery Validation evaluates the effectiveness of the previous steps
in detecting faults, in which different types of faults can be considered (such
as CPU-related fault, memory-related fault, disk-related fault and VM-related
fault). The latency, throughput and response time are measured to infer the per-
formance of the measured components after faults isolation. The verified results
are pushed back into the cloud (resource pool).

To gather status information from computing nodes in the resource pool, we
use three different time windows during detection. Δt1 specifies an interval after
which the ceilometer component performs an update of the specified meter for
the resource. Δt2 is the sampling interval used by the fault tolerance controller
machine, and the Δt3 is used for sending periodic updates to the failure detector
component. Generally, the time intervals Δt2 and Δt3 are proportional to the
ceilometer interval parameter, i.e., Δt1, in Fig. 2. For instance, if Δt1 = 10 s,
the value of Δt2 and Δt3 can be 10min and 1 h.

3.2 OpenStack

An important feature for users relates to the service uptime. To achieve high
cloud availability and improve Service Level Objectives (SLOs) satisfaction, an
efficient fault tolerance strategy needs to be employed. In contrast with a tradi-
tional manually configured approach, we propose an approach that used active
and runtime monitoring for fault tolerance. It consists of several independent
modules that work separately from each other in order to handle incoming job
request load and perform fault tolerance in the target system.

Fig. 3. An OpenStack block diagram

In order to implement the fault
tolerance controller and demonstrate
its properties in an open IaaS solu-
tion, we have chosen the open-source
OpenStack IaaS platform. It con-
sists of components that control hard-
ware pools of processing, storage,
and networking resources through-
out a data center. Users either man-
age it through a web-based dash-
board, through command-line tools,
or through a RESTful API. Figure 3
shows the OpenStack core services.
(1) Neutron is a system for man-
aging networks and IP addresses; (2) Nova is the computing engine for
deploying and managing virtual machines; (3) Glance supports discovery,
registration and delivery for disk and server images; (4) ceilometer pro-
vides telemetry services to collect metering data; (5) Keystone provides
user/service/endpoint authentication and authorization and (6) Heat is a
service for orchestrating the infrastructure needed for cloud applications
to run.
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3.3 Job Distributor Strategies

Individual compute resources can easily suffer from heavy load or underload in
the absence of a sufficient task dispatcher. The major cause for failure of the
process at the VM layer is, however, overloading. The job distributor strategies
can be classified into two major categories: (i) Static approaches divide the load
evenly among all available resources. They do not consider the current state
of the system, which may lead to heavy system load or underload conditions.
(ii) Dynamic approaches monitor the current state of the system for managing
the load and aim for a more efficient load distribution. The main aim of a job
distributor is to improve system performance by efficient usage of resources. The
most common job dispatcher/controller strategies are:

– Round-Robin (RR): In this strategy, as the name suggests, jobs are assigned
to all servers in round-robin manner. RR does not consider factors such as
the number of assigned job to the resource, CPU utilization, etc. Instead it
treats all resources as equal and divides the traffic equally. It is the simplest
strategy for implementation.

– Weighted Round-Robin (WRR): It is an extension RR strategy where
resources receive jobs according to their given weight value. Each resource
can be assigned a weight. Resources with higher weights receive new job
requests first compared to those with less weight, and resources with higher
weights get more jobs than those with less weights.

– Dynamic Weighted Round-Robin (DWRR): Since RR and WRR are static job
distribution strategies and have to have knowledge of subsequent job requests,
there are situations when already overloaded resources keep receiving more
job requests although other idle resources are still available. By considering
the real-time information and metrics of each resource such as current CPU
utilization, DWRR applies dynamic weight assignment to avoid overloading
and improves throughput of the whole system. The DWRR strategy reassigns
a new weight value to the resources periodically.

3.4 Fuzzy Logic

Fuzzy logic [24] is an effective technique to describe complex systems with lin-
guistic descriptions. A linguistic variable is a variable whose values are words in
a natural language. For example, “load” is a linguistic variable, which can take
the values as “heavy”, “medium”, “light” and so on. A Fuzzy Logic Systems
(FLS) architecture consists of several components as shown in Fig. 4:

Fig. 4. Basic configuration of FLS

The Fuzzification module transforms
the system inputs, which are crisp num-
bers, into fuzzy sets. The Rules (Knowl-
edge Base) module stores IF-THEN rules
provided by experts or learned from other
sources. The Inference Engine simulates
the human reasoning process by making
fuzzy inference on the inputs and IF-THEN
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rules; the Defuzzification module transforms the fuzzy set obtained by the infer-
ence engine into a crisp value.

A membership function (MF) is a curve that defines how each point in the
input space is mapped to a membership value (or degree of membership) between
0 and 1. MFs are used in the fuzzifier and defuzzifier modules of a FLS to map
the non-fuzzy input values to fuzzy linguistic terms and vice versa.

Fig. 5. Example of MFs

For example, Fig. 5(a) shows a smoothly varying curve that passes from a
not loaded system to heavily loaded system. The curve is known as a membership
function (μ). Both systems are busy to some degree, but one is significantly
less busy than the other. An important characteristic of fuzzy logic is that a
value can belong to multiple sets at the same time. There are different forms of
membership functions. For example, according to Fig. 5(b), a CPU utilization
value can be considered as “normal” and “busy” at the same time, with different
degree of memberships. The most common types of membership functions are
triangular, trapezoidal, and Gaussian shapes.

In a FLS, a rule base is constructed to control the output variable. Fuzzy rules
are linguistic IF-THEN constructions that have the general form “IF A THEN B”
where A and B are propositions contain linguistic variables. For instance, IF load
is high and target is medium THEN command is reduce.

3.5 Fuzzy Fault Tolerance Management

Fuzzy control provides a solution to design a controller for a dynamic process
based on available heuristic knowledge. Figure 1 earlier showed the general
overview of our fault tolerance framework. Resulting from the Resource pool
are the current weight and priority values for each available resource. Addi-
tionally, any changes of CPU utilization between two predefined intervals are
collected from the ceilometer. The output of the fault tolerance controller is
the modified weight value that determines whether the assigned job request for
a resource should be increased or decreased in the next interval.
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Fig. 6. Fuzzy membership func-
tions for the input variable

According to current state, the change of
the weight value between two intervals is cal-
culated by the fuzzy controller and send to
the job distributor module as the adaptive
weight value for the resource to be used for
the next interval. Based on the change of
CPU utilization and loaded job request to the
resource in the previous interval, the fuzzy
fault tolerance controller determines the new
value for weight and priority of each available resource for the next interval.

As it described before, the fuzzifier and defuzzifier modules (Fig. 4) in the
fuzzy controller internally work with linguistic variables and values. The input
numeric values are measured and converted to the corresponding linguistic val-
ues by the fuzzification module, and the reverse operation is performed by the
defuzzification module.

Based on the linguistic input value, the interface module selects the appro-
priate rule to be applied and produces the linguistic output value. Both fuzzifier
and defuzzifier use an MF to convert numeric values to linguistic values and
vice versa. The MF maps each numerical value to a membership value (certainty
level) between 0 and 1 (0 completely uncertain, 1 completely certain). Figure 6
represents our membership function, where the x-axis represents CPU utiliza-
tion values and the y-axis membership values. Based on possible levels of CPU
utilization, which is the metric that represents how busy a processor core is, in
this work, the linguistic variables representing the value of resource utilization
level are divided into four levels: idle, normal, busy and very busy. To determine
the boundary values of each linguistic variable, we collected the required data
from several experts in cloud application management, and used the average of
all the responses for each variable.

Our fuzzy fault tolerance controller uses the following anomaly identification
rules that help in recognising possible failure and that result in job distribution
and weight/priority adjustment as the response:

– A resources is defined as overloaded if its CPU utilization exceeds a given
threshold for a predefined time frame. In this situation, the fuzzy controller
determines the appropriate values of load weight and priority parameters for
the target resource according to its current level of CPU usage. By adjusting
the weight value, the job distributor will send less job requests to this resource
until its CPU usage is in a safe mode.

– An underload situation occurs whenever the CPU usage of the resource
becomes low value for a given time window, i.e., the resource has a low number
of jobs to execute and mostly is in idle mode. In this case, the fuzzy controller
modifies and increases the weight and priority value of idle resources to receive
more job requests from job distributor, thus reducing likely failure elsewhere
on other nodes.

Anomaly management happens in the following two ways. Firstly, overloading is
an anomaly taken as an indication that failure is likely to happen, i.e., performance
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Table 1. Description of compared strategies used in the controller evaluation

Technique Strategy Weight value

Equal weighted job
distributor (Equal-W)

Resources receive job
requests in a circular fashion
without considering resource
metric such as CPU
utilization and fault
tolerance, i.e., all resources
have same weight value (W )a

∀ ri, rj ∈ RP |W (rj) =
W (ri)

Least-CPU utilization
weighted job
distributor (cpuutil-W)

Resources are weighted based
on their CPU utilization, and
job requests are distributed
in proportion to the weight
value. Higher values will be
assigned to the resource with
lower CPU utilizationb

∀ rj ∈ RP |W (rj) =
100 − cpuutil(rj , Δt2)

Fuzzy weighted job
distributor (Fuzzy-W)

Resource weight value is
obtained by the fuzzy fault
tolerance controller based on
the current CPU utilization
and the history of weight
value for the resourcec

∀ rj ∈ RP |W (rj) =
Fuzzy(rj , Δt2)

aResource Pool contains of available resources.
bAverage CPU utilization of resource rj during previous time window Δt2.
cWeight value of resource rj based on CPU utilization during previous time window
Δt2.

degradation is a root cause for failures, and underload is an anomaly that signals
an opportunity to reduce likely failure elsewhere by allocating load to the cur-
rent node. Secondly, a further hypothesis of the anomaly framework is that incor-
rect weight and priority negatively impacts on fault occurrences. The incoming
job load to each resource are determined based on its weight and priority values.
Therefore, in order to have a fair distribution on user job requests and avoid of
over/under load situations, our fuzzy controller has duty to modify these parame-
ters based on loaded job request to the resource, the history of fault rates and the
change of CPU utilization for target resource. In this way, a proactive pre-emptive
migration FT strategy is applied.

4 Implementation

We implemented a prototype of the proposed fuzzy logic fault tolerance con-
troller in OpenStack. The Fuzzy Fault Tolerance controller is a based on a fuzzy
logic-based feedback control loop. It continuously monitors the resource utiliza-
tion (using ceilometer) and triggers the controller at each interval check period.
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Fig. 7. Overview of the implemented
fault tolerance controller

Fig. 8. cURL process of calling the
OpenStack API

According to the utilization values for each available resources, the fuzzy con-
troller module identifies appropriate load weight values in anomalous situations.

In our implementation, we assume one or more VM instances as members in
the Resource pool. We use a minimal Linux distribution, namely the cirros
image that was specifically designed for use as a test image on cloud platforms
such as OpenStack. Each instance (VM) receives a job request and executes it.
In our experiment, we consider all job requests submitted by different users as
a CPU bounded type. In order to control and manage weight values of avail-
able resources by a fuzzy logic controller, we added an additional VM resource,
which acts as a fault tolerance controller and decides and reassigns weight values
periodically. For the fault tolerance controller, due the impossibility of installing
any additional package in the cirros image, we considered a VM machine run-
ning Linux Ubuntu-based images. Figure 7 illustrates the implemented system
in OpenStack. The created job distributor distributes user job requests across
a set of resources, i.e., the Resource pool. The strategies used in the job dis-
tributor controller VM for evaluation (a comparison between our proposed fuzzy
controller and two other traditional approaches) are summarized in Table 1.

Figure 7 shows the complete process of the proposed fuzzy fault tolerance
approach. First, the fault tolerance controller gathers information from the job
distributor, ceilometer and the current state of members (available resources) in
the resource pool, then identifies appropriate load weight value for a resource
according to the situation in order to adjust anomalous situations. For example,
if a resource is overloaded, the controller determines that the incoming job load
to the resource should be decreased, therefore it reassigns a new weight value
for the resource to reduce the submitted job requests. The proposed fuzzy logic
controller is coded and run inside of the fault tolerance controller machine.

For some parameters in the proposed algorithm, such as the current number
of VM instances or workload, we need to call the OpenStack API. For example,
the command nova list shows a list of running instances. The API is a RESTful
interface, which allows us to send URL requests to the service manager to execute
commands. Due to the unavailability of direct access to the OpenStack API
inside of the fault tolerance controller machine, we used the popular command
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line utility cURL to interact with a couple of OpenStack APIs. cURL lets us
transmit and receive HTTP requests and responses from the command line or a
shell script, which enabled us to work with the OpenStack API directly.

In Fig. 8, the process of using cURL to call OpenStack APIs is shown. First,
we send a request authentication token by passing credentials (username and
password) from OpenStack Identity service. After receiving Auth-Token from
Keystone, the user can combine the authentication token and Computing Service
API Endpoint to send a HTTP request and receive the output. We use inside
the fault tolerance controller machine to execute OpenStack APIs and collect
required outputs. By combining these settings, we are able to run the fuzzy logic
approach as the controller of fault tolerance management in OpenStack.

5 Experimental Comparison

The evaluation aims at showing the effectiveness of our fuzzy logic controller for
fault tolerance management in comparison to other job distribution strategies.

5.1 Experimental Setup and Benchmark

In our experiment, the proposed fuzzy logic approach was implemented as full
working systems and was tested in the OpenStack platform. The number of
available resources considered in our experiment was set to 4 VMs. The term
job workload refers to the user request arrival. Job workload is defined as the
sequence of users submitting the job request that needs to be handled by the
job distributor. To evaluate our proposed approach, we considered a multiple
number of workloads. In each workload scenarios, there are a set of job requests
submitted by individual users. Each job request submitted by a user is considered
as a CPU bounded job. At each workload scenario, the duration of job execution
was set by Poisson Distribution. Several workload scenarios were executed and
the total duration of our experiment was 2 weeks.

In order to evaluate the proposed approach and generate/manage faults in the
target system, we used a fault detector VM, shown in Fig. 1, as a single system
fault model. By gathering information from the ceilometer about the current
situation of each available VM, the fault detector is able to detect whether
the resource goes into an anomalous state (over/underload) or not. Based on
current CPU utilization of the resource in the defined time window, the fault
detector module detects if a target resource is overloaded for a period, and sends
a recovery signal to the target resource. To simplify the fault recovery process
here, we consider hardware rejuvenation as the recovery fault tolerance strategy.

Additionally, we compared the proposed fuzzy fault tolerance approach with
two other algorithms, namely Equal-W and cpuutil-W, as shown in Table 1. In
the Equal-W approach, each available resource receives job requests in a circular
fashion without considering resource metrics such as CPU utilization and fault
tolerance, i.e., all resources have the same weight value (W ). In contrast, the
cpuutil-W approach, by monitoring resource CPU utilization, the weight values
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are assigned dynamically, and job requests are distributed in proportion to the
weight value. There is other research on load balancing strategies [4,15,23], which
aims to improve objectives such as resource response time, which are similar in
terms of the monitoring set up, but not the configuration of the analyses and
enactment strategies for fault tolerance.

5.2 Comparison Metrics

We measure the performance of the cloud environment during the whole period
for each executed scenario. The metrics used for comparison are:

– CPU utilization: as a key metric considered in resource management across
clouds, it is a function of time and is denoted by the amount of time a
CPU is busy for handling work during a specific interval. It is reported as
a percentage. CPU anomalies appear if its utilization goes beyond a high
threshold (e.g., 80%) for a sustained period of time.

– Failure rate: is the representation of the total number of failures experienced
during the experiment for each scenario. It widely used to represent the sta-
bility and reliability of a target system.

5.3 Results and Discussion

Figure 9 shows the distribution of the CPU utilization metric (cpu util)
obtained by comparing the algorithms during our experiment for each individual
available resource. For all VMs, our approach (Fuzzy-W) obtained a better dis-
tribution range, with cpuutil-W consistently second best, followed by Equal-W
as last. The wider range of CPU usage distribution shows that the job request
load has a more fair distribution among all available resources. Fairness is defined
based on the CPU usage of each resource and tries to avoid CPU overloading
for a long period. In this context, fairness represents the quality of service pro-
vided by a cloud service and it tries to avoid SLA (Service Level agreement)
violation due to host overloading. By using dynamic weight and priority values
for load job request distribution, both Fuzzy-W and cpuutil-W algorithms try
to overcome the overloading anomaly situation that causes system failures.

Fig. 9. CPU utilization (cpu util) Fig. 10. Failure rates



122 H. Arabnejad et al.

In Figs. 11(a), (b), and (c), the bars represent the percentage frequency of
CPU utilization among all available resources for the compared algorithms, i.e.,
Equal-W, cpuutil-W and Fuzzy-W, respectively.

Fig. 11. Percentage frequency of CPU utilization

5.4 Comparison of Effectiveness

Figure 10 shows the distribution of reboot occurrences (resulting from failures)
for individual resources during of our experiment under several workload sce-
narios. As it mentioned before, both Fuzzy-W and cpuutil-W approaches have
better CPU usage distribution compared to Equal-W (Fig. 11). However, due
to a higher distribution of CPU utilization in Fuzzy-W, at each time interval
for the failure detector, we have lower average values for CPU utilization, and
it shows a significant reduction of the number of reboot occurrences.

6 Conclusion

We have proposed a new fuzzy logic-based load balancer for fault tolerance in
IaaS cloud platforms. The proposed approach employs a fuzzy logic strategy
to assign a weight and priority value to each available resource as a proactive
strategy in anomalous situations. By monitoring the current state of a system, it
tries to adjust the weight value for each resource in order to achieve: (i) fairness
job distribution, (ii) avoid anomalous situations such as overloading that causes
a system failure, and (iii) improve throughput of the whole system. Overloading
of a system may lead to poor performance which can increase failure rates and
SLA violation. Underload is also dealt with to reduce anomalies elsewhere.

The assignment mechanism for choosing the appropriate weight value in the
proposed approach is based on a fuzzy logic system (FLS) and collected metering
data as its input. By considering the real-time information and collected metrics
of each resource, it achieves a more efficient load distribution and reduces the
occurrence of failures in the system. The proposed approach was coded and
implemented in OpenStack, an open-source IaaS platform, to demonstrate the
practical effectiveness of proposed approach, and evaluated based on important
metrics, including distribution of CPU utilization and failure rate during of our
experiment for each individual resource. The experimental results revealed that
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using a fuzzy approach the proposed approach outperformed the other strategies
considering all the above mentioned metrics, especially in failure rate parameters,
which is the main objective here.

We plan to apply the solution also to container-based virtualisation [9,21]
towards an edge-cloud management platform [22] in the future.
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Abstract. Data preparation is the process of collecting, cleaning and consoli-
dating raw datasets into cleaned data of certain quality. It is an important aspect
in almost every data analysis process, and yet it remains tedious and
time-consuming. The complexity of the process is further increased by the
recent tendency to derive knowledge from very large datasets. Existing data
preparation tools provide limited capabilities to effectively process such large
volumes of data. On the other hand, frameworks and software libraries that do
address the requirements of big data, require expert knowledge in various
technical areas. In this paper, we propose a dynamic, service-based, scalable
data preparation approach that aims to solve the challenges in data preparation
on a large scale, while retaining the accessibility and flexibility provided by data
preparation tools. Furthermore, we describe its implementation and integration
with an existing framework for data preparation – Grafterizer. Our solution is
based on Apache Spark, and exposes application programming interfaces (APIs)
to integrate with external tools. Finally, we present experimental results that
demonstrate the improvements to the scalability of Grafterizer.

Keywords: Distributed data parallel processing � Apache Spark � Big data
preparation � Interactive data preparation

1 Introduction

The movement towards digitalization has spread in prominent domains such as health,
industrial production, defense, and banking, to improve operations using data-driven
decisions. Such domains deploy various tools including sensors, applications, logging
and production databases to collect data in high velocity and large volumes, and extract
relevant information in tabular or text formats [1]. This process produces raw data,
often semi-structured or unstructured, that could contain missing, erroneous, incom-
plete, and duplicate values. The raw data needs to be cleaned and transformed into
structured data to meet the expected quality for further usage. Data preparation is an
important step to treat “dirty” datasets by collecting, combining and consolidating
datasets that are suitable for further data analysis. Despite of the importance of data
preparation, it remains a tedious and time-consuming process that requires significant
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effort [2, 3]. Furthermore, data preparation in the context of big data introduces even
more challenges, both functional and nonfunctional.

One of the main challenges related to large volume data preparation is that existing
frameworks and tools require expert knowledge of specific programming languages,
data models, and computational models. Examples include native language libraries
such as Pandas in Python [4] or Data Frame in the R language1, which are widely used
for data wrangling and preparation. Further, distributed data parallelization (DDP) is
the most widely realized computational model in big data processing [5]. The basic
computational abstraction of DDP performs a computation in parallel, by distributing
smaller data partitions among a set of machines or processes. It provides scalability,
load balancing and fault tolerance. Frameworks that realise DDP, such as Apache
Hadoop and Apache Spark, are used to implement scalable solutions in the big data
domain, and significantly increase technical complexity of data workers’ data prepa-
ration routines. Implementation of a solution based on the DDP model should consume
a large dataset, split it into partitions, and process and accumulate the results without
losing the semantics of the expected outcome.

A scalable data preparation tool or framework is essential to process large volumes
of data, but existing solutions lack capabilities to effectively perform such operations.
Due to their architecture, it is difficult to realize large-scale data processing techniques
including distributed and concurrent processing. Such solutions include spreadsheet
tools (e.g. Excel and Open Office) that are often used to prepare datasets, especially in
companies that lack the expertise to make use of the frameworks and tools for big data
preparation and processing [6]. Data preparation is often implemented as an iterative
process where new data quality issues can appear while existing ones are being
addressed. Consequent iterations are performed by reviewing the intermediate results
produced from previous iterations. Existing data preparation tools support interactive
preparation by providing immediate rendering of intermediate results and suggestions
for improvements. OpenRefine2, Pentaho Data Integration (Kettle)3, and Trifacta
Wrangler4 are examples of interactive solutions that are used in industries to accelerate
the data preparation process. Such solutions are primarily desktop-oriented applications
that are not dedicated to handling large amounts of data.

In this paper, we propose a solution that addresses the scalability, usability and
accessibility issues in data preparation through a mixed approach that combines
interactivity of data preparation tools with the powerful features of frameworks that
support data preparation for big data. Our solution is based on extensions to the
web-based Grafterizer transformation framework [7] that is part of the DataGraft
platform [8–10]5. We propose improvements to Graftwerk – the existing data trans-
formation back-end of Grafterizer, with the aim to augment its capability to effectively
process larger datasets. Our solution is a scalable data preparation as a service back-end

1 http://www.r-tutor.com/r-introduction/data-frame.
2 http://openrefine.org/.
3 http://community.pentaho.com/projects/data-integration/.
4 https://www.trifacta.com/products/wrangler/.
5 https://datagraft.io/.
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that can dynamically build data preparation pipelines, and effectively support inter-
active cleaning and transformation of large volumes of data using DDP techniques.

The contributions of this paper are thereby two-fold:

1. First, we describe an approach for using DDP for scalable data preparation, based
on the use of Apache Spark, which has been identified as a suitable framework that
facilitates scalable data preparation.

2. Second, we propose a proof-of-concept realization of the approach for data
preparation as a service in Grafterizer, along with validation and evaluation results
that demonstrate the difference in performance between our proposed approach and
the existing back-end.

The remainder of this paper is organized as follows. In Sect. 2, we provide a
detailed description of our approach for DDP-based data preparation. In Sect. 3, we
describe a proof-of-concept data preparation as a service back-end that realizes our
proposed approach. Section 4 shows the performance of the implemented solution in
experiments with large volumes of data. Section 5 discusses related works. Finally,
Sect. 6 summarizes this paper, and outlines further development directions of the
approach and implementation.

2 A Proposed Approach for DDP-Based Data Preparation

2.1 DDP for Data Preparation

Distributed Data Parallelization is a computational model, proven to effectively perform
large scale data processing [5]. MapReduce is a popular implementation of the DDP
model that has been adapted in many big data analytic tools [11]. Following the spike of
MapReduce, other programming models were introduced, including in-memory com-
puting [5] and iterative map-reduce [12]. In-memory computing is a general-purpose
solution for large-scale computing problems. It is a special form of DDP, where a
computation is performed on a read-only representation of data in memory. The memory
representation is held on a distributed-shared-memory (DSM) that is composed of
memory distributed across several machines. Since data preparation processes are
iterative, an in-memory computing model is suitable for the implementation of such
processes. This approach keeps intermediate results in-memory and avoids high disk
input/output latency, unlike MapReduce frameworks. In the following paragraphs, we
discuss some of the most important characteristics of designing a data preparation
approach using DDP.

Handling Data Parallelism
Parallelism is an important aspect of DDP. We aim to achieve parallelism in two ways:

• Data-flow parallelism: In data-flow parallelism, data is chunked into several par-
titions and distributed to facilitate ingestion of multiple processors in parallel. This
enables processing large datasets that cannot be processed using traditional com-
putational models. To achieve data parallelism, a computational operation should be
adapted to be executed in parallel and to use partitioned data. Subsequently, the
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output data from each partition needs to be aggregated according to the semantics of
the operation to produce the final result. DDP operations such as map, reduce,
group, match are all examples of existing DDP patterns [11].

• Control-flow parallelism: Control-flow parallelism is achieved by parallel execution
of multiple operations that do not depend on other operations’ results [13]. As
mentioned earlier, data preparation is an iterative process where the data preparation
operations are performed in a pipeline. Figure 1 exemplifies control-flow paral-
lelism optimization on such a pipeline. Suppose that operations p1 and p2 in Fig. 1a
operate independently on two parts of a dataset (i.e. they do not rely on their
respective results). With control-flow parallelism, the total execution time of the
control sequence t1 of the given operation flow can be shortened to t2 by executing
them in parallel, as shown in Fig. 1b. Control-flow parallelism provides high
throughput of execution time and optimises resource allocation.

Our proposed approach for DDP in data preparation is to use a combination of
data-flow and control-flow parallelism using DDP. Data-flow parallelism is essential to
enable large-scale data preparation that can scale horizontally. Control-flow parallelism
can be used to improve the throughput by executing dynamically adapted pipelines that
utilize optimal resources on data partitions.

Handling Data Ingestion
We want to allow cleaning and transformation of collected raw data that are available
in various volumes and formats. A position article [14] shows that 80% of the pub-
lished datasets are in tabular format. Hence, in our solution we aim to process datasets
that are already collected and made available in common tabular formats such as CSV,
TSV, Excel and other spreadsheet formats.

Data ingestion is a routine for receiving input data for data preparation processes.
The most frequently used data ingestion techniques in big data context are stream
processing, micro-batch processing and batch processing [15]. Batch processing
techniques treat input data as a complete collection that needs to be considered for
analysis [16]. Batch processing is generally used as “store-first, process second” model,

Fig. 1. Control-flow parallelization of a pipeline
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where data is collected in advance and made available to be processed. In stream
processing, the data is ingested as continuous, long running streams [17]. Data streams
are produced based on event-by-event or the complex-event-model. Data streams are
used for real-time analysis but are less appropriate when it comes to processing tabular
formats of data. Micro-batch processing combines aspects of both batch processing and
stream processing by treating data as a sequence of small batches. Streaming or
micro-batching data can be a solution to overcome the problem of processing large
data. However, since we aim to perform ETL operations on tabular data, these
approaches assume data to be homogenous, and will not always result in the expected
output, especially when performing collective operations or row-dependent operations.
Hence, we focus on support for batch processing of input data since the approach is
more suitable for processing the targeted input datasets.

2.2 Apache Spark as a Framework for DDP-Based Data Preparation

According to [18], the biggest challenge faced in data preparation solutions for big data
is providing a processing model that can do complex reasoning of small volumes of
data, simple processing of large volumes of data, and parallel processing of very large
volumes of data. In [18], the authors argue that a feasible big data preparation tool
should provide both expressiveness and scalability of functionalities. Thereby, we
compared available highly expressive and scalable solutions. Native libraries such as
Pandas in Python or Data Frame in the R language are widely used in data preparation
implementations. However, deploying these frameworks as a scalable solution in a
distributed environment is challenging since no native support for this type of
deployment currently exists. On the other hand, big data frameworks provide native
tools to deploy an application in a distributed environment out of the box. Among big
data frameworks Apache Hadoop and Apache Spark are used to implement scalable,
batch-processing solutions. Apache Spark has been selected for the implementation of
our solution since experiments show that Spark has better performance than Hadoop for
big data analytics [19].

Apache Spark is a general-purpose, in-memory data processing framework that
realizes DDP. It runs on master-slave architecture, which can scale out with additional
master and/or slave nodes. One of the advantages of Spark is its computational
abstraction called resilient distributed datasets (RDDs) [20]. RDDs are immutable
collections of objects that are partitioned across different Spark nodes in the network. It
represents the data in-memory on a DSM to enable data flow parallelism and support
batch-processing of large volumes of data.

Transformations in Spark are operations that do not depend on inputs from other
partitions such as map, filter, rename. An RDD is transformed into another RDD when
a transformation is executed. Spark implements the notion of lineage for RDDs to keep
the information of how a newer RDD is derived from parent RDD. When a partition is
lost, Spark rebuilds the partition from stored data to facilitate efficient fault-tolerance to
the system and implement data-flow parallelism.

Furthermore, Spark benefits from lazy execution of transformations to create a
directed acyclic-graph (DAG) of data and transformations instead of applying trans-
formations immediately. Once the graph is followed by an action, Spark executes the

Data Preparation as a Service Based on Apache Spark 129



formed DAG by distributing it as several tasks among nodes. An action in Spark is an
operation that reduces the output from all partitions into a final value such as reduce.
Lazy execution of transformations is used to further optimize the operations in
accordance with the control-flow. As an example, if a user wants to apply two inde-
pendent filters on two different parts of a dataset, and a global operation on the entire
data, Spark would optimize by jointly (as opposed to sequentially) applying the
independent filters without constructing the intermediate dataset after each filter. This
optimization benefits the evaluation of several consecutive RDDs, and provides effi-
cient implementation of iterative execution of the pipeline.

In addition, DataFrame is an extended model of RDD in the SparkSQL package,
which organizes data into named columns, conceptually equivalent to a relational
database structure [19]. It provides a domain-specific language for relational operations,
including select, filter, join, groupBy, and enables users to perform SQL-like queries on
DataFrames. By extending these APIs, we provide an expressive data preparation
framework that accommodates most of the data cleaning operations in relatively less
complex APIs. Finally, SparkSQL extends a novel optimizer called Catalyst [19], that
implements query analysis, logical optimization and physical planning. Catalyst sup-
ports both rule-based and cost-based optimization of relational operations. Generating
optimized queries based on the features in Catalyst allows us to indirectly realize
relational query optimization and control-flow parallelization. Therefore, in our solu-
tion, a pipeline created using DataFrame in Spark will be optimized before it is executed
using Catalyst.

3 Realization of DDP-Based Data Preparation Approach
in Grafterizer

In this section, we introduce a proof-of-concept implementation of the approach to
provide a scalable, dynamic data preparation service using Spark. The service is
deployed as a data preparation back-end for Grafterizer that processes, cleans and
transforms large volumes of tabular data. Currently, the implementation supports CSV,
TSV, and flat-JSON files, and provides rich, procedural APIs for data preparation
operations that can be easily used to build pipelines on Spark. Our solution allows for
dynamic creation of pipelines, which is the ability to create and/or modify a data
preparation pipeline during run-time. This enables the execution of the data preparation
process interactively, so that users can perform incremental modifications of the data
cleaning pipeline and observe the results.

3.1 Architecture

The high-level architecture of the service is illustrated in Fig. 2. Below, we describe
each component and its functional and technical contributions in more detail.
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Sparker
Sparker is a component that provides APIs to enable data preparation pipelines as
Spark jobs. It implements data preparation operations [21] using DataFrame and RDD
APIs, and provides pattern-oriented procedural APIs that can be used to build a
pipeline. Sparker encapsulates the implementation complexity of data cleaning oper-
ations in Spark. It provides commonly used APIs in data preparation operations that are
not already available in DataFrame. Especially reshape functions merging grouped
data, concatenating multiple columns, splitting of a given column using a separator into
multiple columns, custom group functions, filling missing values, custom query
functions with simple filters, pagination of queried data and adding additional rows of
values to a dataset are notable features. To adapt a pipeline to perform data preparation,
we designed every API to receive DataFrame objects with additional parameters
depending on the operation’s semantics, and return the result as an altered DataFrame
object according to the pipeline pattern. This allows us to create a chain of operations
by using the output of any operation as an input to another operation. The main
categories of Sparker’s APIs are: (1) converting input files to DataFrame; (2) data
cleaning/preparation operations; (3) converting DataFrame into suitable output format
as shown in Fig. 3. A standard pipeline would start with the conversion of an input file,
one or more data cleaning/preparation operations, and finally the generation of the final
result as output.

Pipeline Service
The Pipeline Service provides dynamic creation of pipelines using Sparker APIs, and
submits the current version of the pipeline to the Spark cluster. The Pipeline Service
has two main components: The Pipeline Generator and the Pipeline Submitter. The
Pipeline Generator initially receives requests with input data and corresponding
pipeline instructions, and dynamically generates pipelines using the requested infor-
mation. The pipeline is implemented in Clojure – a dynamic programming language
that allows the creation, modification and execution of programming instructions
during runtime.

Fig. 2. High-level architecture of the service
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Furthermore, pure functions in Clojure transform immutable data structures into
some output format. We use the thread-first macro, which is denoted by “- > ” in a
pipeline. Taking an initial value as its first argument, the macro threads it through one
or more expressions, thus constituting a pipeline. A sample pipeline using Pipeline
Service’s APIs is depicted in Fig. 4.

The Clojure function names are used as APIs in the Pipeline Service to enable
creation and execution of Sparker pipeline instructions during run-time. Once a pipe-
line is created, the Pipeline Generator forwards the created pipeline to the Pipeline
Submitter. The Pipeline Submitter submits given pipeline instructions as a Spark job
using spark-submit. spark-submit is a script provided by Apache Spark that submits
any given programming instruction created using Spark as a Spark job, which can then

Fig. 3. Pipeline pattern implementation using DataFrames

Fig. 4. A sample pipeline using Pipeline Service APIs realizes pipeline pattern
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be executed on a Spark cluster. Once the job is executed Pipeline Service sends a
response with the processed data.

These APIs are used to create a pipeline of data preparation operations in client
applications. Figure 4 shows a sample pipeline that uses the Pipeline Service APIs and
demonstrates how the pipeline pattern was implemented. Rows 1 and 2 define the
pipeline function and the data input parameter to the pipeline through which we pass
the dataset as argument. This is followed by the thread-first operator in line 4. Lines 5
through 8 are calls to the APIs exposed through the Pipeline Service. They consecu-
tively create the data structure (DataFrame) out of the input data, take the first row as
table headers, take the first 16 columns of data (discarding the rest), and, finally, filter
out duplicate rows based on a vector of unique values of the cells in each row that
correspond to the columns “Year”, “Month”, “DayofMonth” and “DayofWeek”.

Grafterizer
Grafterizer has been integrated to generate pipelines using calls based on the DSL/APIs
provided by the Pipeline Service during user interaction. Once a pipeline is
created/altered an HTTP request is sent to the pipeline service with the metadata of
input and the generated pipeline using the DSL/APIs. The pipeline is then executed by
the Spark-based back-end and the resulting data/output is sent back as an HTTP
response to Grafterizer and immediately previewed. The back-end service proposed in
this paper has been integrated with the currently available user interface of Grafterizer,
which is shown in Fig. 5 (the left part representing an example of data transformation
pipeline and the table depicting the data on which the pipeline executes).

4 Evaluation

We conducted a set of experiments to evaluate the performance of the proposed ser-
vice. The experiments were conducted on a cluster consisting of a master node with
Intel Core i7 3.3 GHz, 4 CPU Cores, 15 GB of RAM, 512 GB of SSD, running on
Ubuntu 14.04 LTS and 4 worker nodes each having Intel Core i7 3.3 GHz, 12 CPU

Fig. 5. Grafterizer’s preview of cleaned data using current pipeline
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Cores, 64 GB of RAM, 480 GB SSD and running on CentOS 7. A Spark executor is a
process that serves a Spark application, and typically runs on a worker node. A Spark
driver is a process that coordinates the execution of a Spark job on worker nodes.
A Spark application can scale-out with more executors and scale-up with more con-
current tasks assigned to a process.

To analyze the scalability of the proposed solution, we tuned the Spark cluster with
different numbers of executors to study its ability to scale out. By increasing the
number of executors, we multiplied the memory allocated to process input, CPUs and
concurrent tasks per executor. In this experiment, we used the Price Paid Data (PPD)6

dataset which is approximately 3.5 GB. We created a sample data pipeline to load the
input data, use the first-row as a header row for the schema and then use filters on
selected columns followed by grouping of data. We executed the same pipeline on the
given input dataset multiple times with varying number of executors, and recorded the
execution times of the first request sent to the cluster once a cluster setup was ini-
tialized. In addition, we recorded the average of the three following requests sent to that
cluster setup, because of the significant difference between the execution time of the
first and any following requests. The difference is due to overhead of distributing
dependent source files to worker nodes from drivers, which is done only when the first
request is executed. The result of the experiment is illustrated in Fig. 6.

The experiment clearly shows that the execution time is gradually decreasing. This
validates that the performance of the service increases for a given input when the
cluster scales-out with more executors. Further, this proves that the proposed service
can process large volumes of data and scale out with more executors. The service can

Fig. 6. Execution time of Pipeline Service with increasing number of executors

6 https://www.gov.uk/government/statistical-data-sets/price-paid-data-downloads.
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scale out with the size of input data, since it is based on in-memory computation, and
adding more computing resources increases the capability of processing larger volumes
of data.

Further, we benchmarked the performance of Grafterizer with the proposed service
on a single host compared to original Grafterizer with traditional back-end to measure
the improvement with respect to the current system. Due to the limitations in the ability
to process large volumes of data by existing system, we created input datasets by
sampling the UK Road Accidents Safety Data in different sizes. We created inputs that
increase by approximately 10 MB from 10 MB to 100 MB. Experiments were per-
formed on a computer with Intel Core i5 2.5 GHz processor with 4 CPU Cores, and
8 GB of RAM. Equivalent pipelines that can be executed by each system were created,
and the execution time for each input of every system were recorded. The results of the
experiment are depicted in Fig. 7.

The graph clearly shows that the proposed service is almost four times faster than
the existing Grafterizer back-end on a single node deployment. Further, the existing
Grafterizer back-end was not able to effectively process data bigger than 75 MB on the
test hardware, whereas the proposed service could easily process larger input in a short
time. This shows that the new service has significantly improved Grafterizer’s per-
formance and capacity to process large data even as a single-node deployment.
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5 Related Work

The solution proposed in this paper is an alternative to the existing Grafterizer
back-end: it enables Grafterizer to work with larger volumes of data by integrating a
scalable-backend system that can effectively scale out on a distributed environment
with the size of data, and efficiently execute data preparation pipelines. This solution
eliminates the dependencies and complexities of implementing and executing a scal-
able data preparation pipeline in Grafterizer.

Furthermore, the work presented in this paper is related to scalable data processing
systems, and data cleaning and transformation tools for big data. In the following we
discuss the most relevant recent works in these areas, pointing out the main differences
between existing solutions and our proposed approach.

SparkGalaxy [22] is a big data processing toolkit designed to perform complex
experiments using data mining and analysis for large amounts of bio-medical data.
SparkGalaxy uses Apache Spark’s RDD and Graph features to represent data and
workflows in a distributed fashion. SparkGalaxy follows a similar methodology to our
proposed solution to solve scalability problems. SparkGalaxy focuses on enabling
large-scale, workflow-based data mining of biomedical data whereas our solution
focuses on enabling a general purpose scalable data preparation tool. Our solution is
provided as a service and can be used by other client systems than Grafterizer, using
HTTP requests. SparkGalaxy was not designed to be a solution provided as a service.
On the other hand, compared to SparkGalaxy, our solution does not directly support
integration of machine learning algorithms.

Cleanix [23] is a prototype system for cleaning relational big data. It ingests data
from multiple sources and cleans them on a shared-nothing cluster. The backend system
of Cleanix is built on top of an extensible and flexible data-parallel framework called
Hyracks. A key difference is that our solution is based on Apache Spark. Compared to
Spark, Hyracks does not support iterative algorithms and is not an in-memory com-
puting framework [24], making Apache Spark more attractive for data cleaning. Nev-
ertheless, we are not aware of any studies that directly compares Spark and Hyracks
performance. Furthermore, Cleanix provides data cleaning operations mainly in four
categories of operations (value detection, incomplete data filling, data deduplication and
conflict resolution), while our solution supports expressive APIs to perform Cleanix’s
four types of operations, as well as other operations such as data reshaping and
grouping. Furthermore, one could argue that our solution is more user-friendly com-
pared to Cleanix since the data cleaning workflow is supported by graphical interactive
previews, and data upload through an intuitive graphical drag-and-drop component.

OpenRefine7 is an open-source tool for data cleaning/transformation and integra-
tion, and provides interactive user-interfaces with spreadsheet style interactions to
easily support data cleaning, and previews similar to Grafterizer. OpenRefine was
designed as a desktop application rather than a service. It is a memory-intensive tool
that runs on a desktop system which limits the size of data that can be processed. There

7 http://openrefine.org/.
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are attempts to extend OpenRefine to support large data processing, e.g., BatchRefine8

and OpenRefine-HD9. OpenRefine-HD extends OpenRefine to use Hadoop’s
MapReduce jobs on HDFS clusters. However, Apache Spark is considered faster for
iterative data preparation process [23]. Such OpenRefine extensions require manual
execution of transformation in a distributed environment whereas our solution elimi-
nates such overhead by integrating it with Grafterizer in an automated workflow.

6 Summary and Outlook

In this paper, we proposed a data preparation as a service solution that addresses the
scalability, usability and accessibility issues in data preparation. We proposed an
approach for using DDP for scalable data preparation, based on the use of Apache
Spark, and presented a proof-of-concept realization of the approach in Grafterizer,
along with validation and evaluation results that demonstrate the difference in per-
formance in data preparation between our proposed approach and the existing back-end
of Grafterizer. Experiments show that the proposed implementation scales out with
more executors, and performs better than the existing Grafterizer back-end on a
single-node deployment. It is worth mentioning that the functional benefits of the
proposed solution include user-friendliness, flexibility and ease of use for users with
moderate technical skills. Overall, the service is effective and efficient for large-scale
data preparation.

As part of future work, we are considering extending the proposed solution to
support various data formats as input for data preparation, and operationalize it for the
production environment of DataGraft.
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Abstract. In this paper we discuss an integrated tool suite for the simu-
lation of software services which are offered on the Cloud. The tool suite
uses the Abstract Behavioral Specification (ABS) language for model-
ing the software services and their Cloud deployment. For the real-time
execution of the ABS models we use a Haskell backend which is based
on a source-to-source translation of ABS into Haskell. The tool suite
then allows Cloud engineers to interact in real-time with the execution
of the model by deploying and managing service instances. The result-
ing human-in-the-loop simulation of Cloud services can be used both for
training purposes and for the (semi-)automated support for the real-time
monitoring and management of the actual service instances.

Keywords: Human-in-the-loop simulation · Cloud services · Monitors ·
Service Level Agreement

1 Introduction

The Abstract Behavioral Specification (ABS) language1 is an executable model-
ing language which features powerful abstractions of virtualized resources [7] like
CPU time, memory, and bandwidth. As such it is particularly tailored towards
modeling and simulation of software services offered on the Cloud [1]. Further, a
variety of tools2 which include simulation with visualization support, deadlock
analysis, cost analysis, deployment synthesis, and test case generation, supports
the formal development and analysis of software models and their deployment
as executable ABS.

The Erlang backend of ABS provides a symbolic interpretation of the abstrac-
tions modeling (CPU) time, that is, time is modeled by a symbolic clock which
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is advanced by the execution of a certain kind of statements, so-called duration
statements. In contrast, in this paper we introduce a new Haskell backend, in the
sequel denoted by ABS RT, which is based on a source-to-source translation of
ABS into Haskell and which directly relates the ABS abstractions of time to the
underlying hardware clock. It should be noted that the term “real-time ABS”
has also been used, for example in [8], to refer to the ABS abstractions modeling
(CPU) time themselves. In this paper however we use the term “real-time” to
refer to the implementation of these abstractions with respect to some external
clock, e.g., the hardware clock. This implementation allows for a different kind
of simulation, so-called human-in-the-loop simulation, abbreviated in the sequel
by HITL. In general this kind of simulations require human interaction and are
used for training purposes. A typical example is that of flight simulations where
trainees interact in real-time with a model of a plane in flight. Clearly, for such
training to be effective the human interactions should be processed by the model
in real-time as measured by the hardware clock.

In this paper we introduce the ABS RT Haskell backend of ABS and present
its use by Cloud engineers so that they can interact in real-time with the execu-
tion of the model of the services offered on the Cloud. This interaction consists of
deploying and managing service instances and allows Cloud engineers to acquire
knowledge of the real-time consequences of their decisions. We illustrate this use
of HITL simulation of Cloud services by an industrial case study based on the
Fredhopper Cloud Services.

Main contribution and related work. There exists a variety of cloud simula-
tion tools including CloudSim [4], GreenCloud [9], and iCanCloud [10]; although
all of these tools offer finer-grained analysis (e.g. network configuration and
energy consumption in the Cloud) they rely on discrete-event computer simula-
tion engines, which do not permit live HITL intervention on a running simula-
tion. To the best of our knowledge HITL simulation of Cloud services has not
been investigated before. As already stated above, HITL simulation allows Cloud
engineers to acquire knowledge of the real-time consequences of their decisions
directly in an interactive manner.

Our overall contribution is an integrated tool suite which supports HITL
simulations of Cloud services. This suite integrates the SAGA tool [3] for the
declarative specification of service metric functions, and SmartDeployer [6] for
the formalization of deployment requirements and the automatic generation of
provisioning scripts. At the core of this suite is a new Haskell backend ABS RT of
the ABS modeling language which supports a real-time interpretation of the
timing constructs of ABS. We further illustrate the use of our tool-suite by an
industrial case study based on the Fredhopper Cloud Services. The underlying
ABS model of the Fredhopper Cloud Services builds on the one presented in [6]
which focuses on automated generation of deployment actions. Here we extend
that model to support HITL simulation and for the generation of more realistic
deployment recommendations.

The general methodology underlying the use of ABS RT in the HITL simu-
lation of Cloud services involves the formalization of Service Level Agreements
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(SLA’s) as a property of a service metric function, as described in [5], with
a new framework in ABS which captures various monitoring concepts – from
QoS and SLAs to lower-level metrics, metric policies, and listenable and billable
events. The monitoring framework allows the formal development and analysis
of monitors as executable ABS.

Outline of the paper. In the next section we introduce the ABS RT backend. In
Sect. 3 we describe the ABS model of the Fredhopper Cloud Services. The use
of ABS RT in the HITL simulation of this model is described in Sect. 4. The
experimental results are described in Sect. 5. Finally, in Sect. 6 we draw some
conclusions.

2 The ABS Language

ABS is an executable resource-aware modeling language which at its core inte-
grates an imperative layer based on concurrent objects and a functional layer
based on algebraic data types. Concurrent objects are (strongly) typed by inter-
faces and communicate via asynchronous method calls. Such calls generate mes-
sages which are queued to be processed sequentially (by the object callee) up to
method completion or deliberate yield of control (cooperative scheduling).

ABS further provides a high-level model of deployment components which
encapsulate virtualized resources of a computer system like CPU time, memory,
and bandwidth. These components are expressed by concurrent objects them-
selves and as such are an integral part of an ABS model. Objects dynamically
deployed onto these components share their resources. Usually the ABS user does
not create deployment component objects directly (by calling new), but instead
through a higher object abstraction named CloudProvider, which serves both as
a factory of deployment components as well as a communication endpoint to an
infrastucture service (IaaS):

CloudProvider cp = new AmazonCloudProvider (params);

DeploymentComponent vm1 = cp.createInstance(map[Pair(

Cores ,4), Pair(Speed ,35), Pair(Memory ,16)]);

[DC: vm1] new WebServer (8080); // deployed object

High-level annotations of the ABS code are used to specify the corresponding
cost model. A statement in ABS can be annotated by [Cost: intExp()] stmt;

which means in practice that stmt will be only completed (and its side-effects
instantaneously realised) after some time where intExp amount of resource Speed
has been provided and consumed by the currently executing deployment compo-
nent. This model of deployment as executable ABS allows for a formal analysis
of the constraints induced by the shared resources in terms of a formal cost
model and its relation to a formalization of Service Level Agreements (SLA’s)
as a property of a service metric function.

Whereas the Cost annotation induces the passage of time locally inside the
deployment component, the timed-ABS extension of the language enables time
to pass globally (over the whole model), always with respect to an external clock.
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The statement await duration(min,max) means that the current process will be
rescheduled for execution only after min and less than max time steps from now
have passed on the clock; the statement duration (min,max) will accordingly
block the object and all of its process for that time. If the ABS clock refers to
symbolic (abstract) time—used for synchronizing distinct parts of the model—
then the models’ execution is essentially a computer simulation; however, a model
running on the real (hardware) clock defines a user-interactive simulation.

Finally, since ABS was primarily designed as a modeling language, it lacks
the common I/O functionality found in mainstream programming languages. To
allow user interaction a new language extension was introduced to the language
built around a REST API. The ABS user may annotate any object declara-
tion with [HTTPName: strExp()] I o = new ... to make the object and its fields
accessible from the outside as an HTTP endpoint. Any such object can have
some of its method definitions annotated with [HTTPCallable] to allow them to
be called from the outside; the arguments passed and the method’s result will
be serialized according to a standard JSON format.

The ABS RT backend. The original Haskell backend of ABS was designed with
speed in mind, as well as to offer distributed computing on the cloud [2]. The
choice of Haskell was made since it provides language features that closely match
those of ABS, and also certain runtime facilities that make the ABS straightfor-
ward to implement (e.g. first-class continuations).

At runtime, each ABS concurrent object (or ABS concurrent object group)
is associated with one Haskell green thread. Each such thread listens to its own
queue for new or re-activated processes and executes 1 at a time up to their next
release point (await or return). The GHC runtime (Haskell’s standard compiler)
preempts over these green threads, which are automatically load-balanced to
system threads to support Symmetric Multi-Processing (multi-core).

During an asynchronous method call, a caller creates a new process by apply-
ing the corresponding function to its arguments and ships its body (function
closure) to the end of the callee’s queue. This shipment is done for the parallel
runtime through shared-memory, or for the distributed-runtime through Cloud
Haskell (TCP/IP). To complement cooperative scheduling, awaiting on futures
is implemented a-top of extra temporary green threads and utilizing an asyn-
chronous I/O event library (e.g. epoll on Linux); await on boolean conditions are
optimized to avoid unnecessary busy-wait polling through a more notification-
like protocol.

Algebraic-datatypes, parametric polymorphism, interfaces, pure functions
are all one-to-one mapped down to Haskell. Haskell’s type system lacks sub-
typing polymorphism, and as such we implement this in the ABS RT compiler
itself through means of implicit coercive subtyping. The REST API extension of
ABS utilizes WARP: a high-performance, high-throughtput server library writ-
ten in Haskell.

Compared to some other backends (Erlang, Java), the Haskell backend does
not treat active ABS processes as individual system threads, but instead as data
(closures) that are stored in the queue of the concurrent object, which leads to a
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smaller memory footprint. This “data-oriented” implementation preserves local
message ordering of method activations, although the ABS language specification
cares to leave this unspecified.

We augment the original Haskell backend with support for the timed-ABS
language extension, and name the resuling backend ABS RT. The clock that
ABS RT uses is the available real-time hardware clock underneath. This means
that compared to the backends with a symbolic clock (Erlang, Maude), the
passage of time is not influenced by timed-ABS calls but instead by the real
clock itself. The duration statement is implemented as a sleep call on the con-
current object’s thread, whereas the await duration creates a new extra light-
weight thread which will re-schedule its continuation back to the original object
thread after the specified time. The [Cost: x] annotations are translated to a
executeCost() method call on the deployment component object as seen in Fig. 1.
The instrPS field refers to the number of instructions the particular deployment
component is able to execute per second. The unit of time (default is seconds)
is tunable as a runtime option.

Fig. 1. The implementation of cost annotation for the ABS RT backend

It is worth noting that the GHC runtime scheduler dictates that any “sleep-
ing” thread will be re-activated (preempted) no sooner than the specified time,
but may be later than prescribed (not precise). This does affect the reproducibil-
ity, among the fact that there is no notion of simultaneous method calls (no
specific ordering, thus non-deterministic hardware-dependent process-enqueuing
of simultaneous callers) as it can be done with total ordering of symbolic time.
Finally, we would like to mention that this real-time implementation as shown
in Fig. 1 is generic for any ABS backend that uses the hardware clock and imple-
ments duration/await duration as a sleep() system call. Indeed, it would be
straightforward to port it to the Erlang and Java backends as well.

3 FRH Case Study

Fredhopper3 provides the Fredhopper Cloud Services to offer search and target-
ing facilities on a large product database to e-Commerce companies as services
3 https://www.fredhopper.com/.

https://www.fredhopper.com/
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(SaaS) over the cloud computing infrastructure (IaaS). Fredhopper Cloud Ser-
vices drives over 350 global retailers with more than 16 billion in online sales
every year. A customer (service consumer) of Fredhopper is a web shop, and an
end user is a visitor to the web shop.

The services offered by Fredhopper are exposed at endpoints. In practice,
these services are implemented to be RESTful and accept connections over
HTTP. Software services are deployed as service instances. The advantages of
offering software as a service on the cloud over on-premise deployment include
the following: to increase fault tolerance; to handle dynamic throughputs; to pro-
vide seamless service update; to increase service testability; and to improve the
management of infrastructure. To fully utilize the cloud computing paradigm,
software must be designed to be horizontally scalable4. Typically, software ser-
vices are deployed as service instances. Each instance offers the same service
and is exposed via the Load Balancing Service, which in turn offers a service
endpoint (Fig. 2). Requests through the endpoint are then distributed over the
instances.

The number of requests can vary greatly over time, and typically depends on
several factors. For instance, the time of the day in the time zone where most
of the end users are located, plays an important role. Typical lows in demand
are observed daily between 2 am and 5 am. In the event of varying throughput,
a different number of instances may be deployed and be exposed through the
same endpoint. Moreover, at any time, if an instance stops accepting requests,
a new instance may be deployed in place.

3.1 Architecture of the Fredhopper Cloud Services

Each service instance offers the same service and is exposed via Load Balancer
endpoints that distribute requests over the service instances. Figure 2 shows a
block diagram of the Fredhopper Cloud Services.

Load Balancing Service. The Load Balancing Service is responsible for distribut-
ing requests from service endpoints to their corresponding instances. Currently
at Fredhopper, this service is implemented by HAProxy (www.haproxy.org), a
TCP/HTTP load balancer.

Platform Service. The Platform Service provides an interface to the Cloud Engi-
neers to manage customer information, deploy and manage service instances
associated to the customers, and associate service instance to endpoints (load
balancers). The Platform Service takes a service specification, which includes
a resource configuration for the service, and creates and deploys the specified
service. A service specification from a customer determines which type of service
is being offered, the number of service instances to be deployed initially for that
customer, and the kinds of virtualized resources on which the service instances
should be deployed.

4 en.wikipedia.org/wiki/Scalability#Horizontal and vertical scaling.

www.haproxy.org
http://en.wikipedia.org/wiki/Scalability#Horizontal_and_vertical_scaling
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Fig. 2. The architecture of the Fredhopper Cloud Services

Deployment Service. The Deployment Service provides an API to the Platform
Service to deploy service instances (using a dedicated Deployment Agent) onto
specified virtualized resources provided by the Infrastructure Service. The API
also offers operations to control the life-cycle of the deployed service instances.
The Deployment Service allows the Fredhopper Cloud Services to be independent
of the specific infrastructure that underlies the service instances.

Infrastructure Service. The Infrastructure Service offers an API to the Deploy-
ment Service to acquire and release virtualized resources. At the time of writing
the Fredhopper Cloud Services utilizes virtualized resources from the Amazon
Web Services (aws.amazon.com), where processing and memory resources are
exposed through Elastic Compute Cloud instances (https://aws.amazon.com/
ec2/instance-types/).

Monitoring and Alerting Service. The Monitoring and Alerting Service provides
24/7 monitoring services on the functional and non-functional properties of the
services offered by the Fredhopper Cloud Services, the service instances deployed
by the Platform Service, and the healthiness of the acquired virtualized resources.

If a monitored property is violated, an alert is raised to the Cloud Engi-
neers via emails and SMS messages, and Cloud Engineers can react accordingly.
For example, if the query throughput of a service instance is below a certain
threshold, they increase the amount of resources allocated to that service. For
broken functional properties, such as a run-time error during service up-time,
Cloud Engineers notify Software Engineers for further analysis. Figure 6a shows
a visualization of monitors in Grafana, the visualization framework used by ABS.

http://aws.amazon.com
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
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3.2 Human in the Loop

A dedicated team of Cloud Engineers is in charge of the day to day operation
of the Fredhopper Cloud Services. Cloud Engineers keep track of alerts raised
by the monitors and the value of monitored metrics over time. Based on their
interpretation of this information, using their domain knowledge, Cloud Engi-
neers decide if, when and how to scale up, down or restart services instances and
Virtual Machines. Manual scaling rather than auto-scaling is used, as any bug
or imprecision in an auto-scaling approach may have disastrous consequences:

1. Automatically scaling up too much jeopardizes the continuity of the business:
the infrastructure provider charges running Virtual Machines.

2. Automatically scaling down too much may break the Service Level Agree-
ment(s) (SLAs) between Fredhopper and customers. In the most extreme
case, the web shop of a customer may become unavailable, resulting in finan-
cial and reputation damage.

The Cloud Engineers must take into account many factors when deciding if,
when and how to scale. Most importantly:

– The target QoS values for service metrics specified in the SLA between Fred-
hopper and the customer.

– Logical and resource requirements on the deployment5.
– General business KPIs.

Finding scaling actions resulting in a deployment satisfying all above desiderata,
and applying them at the right time is a challenging task due to several reasons.

SLAs traditionally are informal natural language documents, not represented
at the software level. Thus, metrics tracked by the monitoring system (i.e., mem-
ory consumption), are not directly related to SLAs between Fredhopper and its
customers. The Cloud Engineer must manually infer a relation between a com-
bination of the metrics from the monitoring system (typically lower-level), and
the metrics in the SLA (typically higher-level, aggregated at the customer level).

Synthesizing a deployment satisfying all logical and resource requirements
is a computationally complex task for Cloud Engineers. Even taking only the
resource requirements into consideration, it is an instance of the NP-hard multi-
dimensional multi-knapsack problem, where the items are service instances
(whose weights are the resource requirements for the service, like the amount
of memory needed, minimal speed of CPU, etc.), and the knapsacks are virtual
machines. Logical requirements must also be taken into account. For example,
which service instances should be co-located on the same VM, and which to
deploy on a dedicated VM? For example, the Query service requires the pres-
ence of the Deployment service to function properly. Another logical requirement
is to scale with multiple VMs simultaneously in different available zones (loca-
tions) in each region. This is mandated by most infrastructure providers to be
eligible for compensation for faulty VMs.

In the next section we describe how HITL simulation of ABS models can be
used to improve the above practice of Cloud engineers.
5 A deployment associates service instances to Virtual Machines.



Human-in-the-Loop Simulation of Cloud Services 151

4 Human-in-the-loop Framework

Our tool suite for HITL simulations of Cloud services integrates several different
tools.

– The SAGA tool [3] was tweaked for monitoring SLA metrics and the Grafana
framework visualizes the metrics

– The SmartDeployer [6] for synthesizing deployment actions
– A logreplay tool for replaying real-world log files
– The new Haskell ABS RT backend for real-time simulations (Sect. 2).

We discuss below how each of these tools was exploited to contribute to the
support for realistic HITL simulations.

We defined a new layered declarative generic framework in ABS which cap-
tures various monitoring concepts – from QoS and SLAs to lower-level metrics,
metric policies, and listenable and billable events. This framework exploits the
SAGA tool for the declarative specification of service metric functions which
are used to formalize SLA’s. A service metric function is defined by a map-
ping of (time-stamped) event traces to values which indicate the different levels
of the provided quality of service. These events represent client interactions
with an endpoint of an exposed service API. Each monitor captures a sin-
gle metric, and based on the value of that metric, suggest scaling actions to
improve that metric. The MonitoringService periodically polls the registered
monitors at a user-configured interval to retrieve its suggested scaling actions.
An await duration(1,1) statement is used to advance the clock and determine
which monitors to poll at the current time.

Our tool suite further integrates SmartDeployer [6] for the formalization of
deployment requirements, and the automatical derivation of an executable (in
ABS) provisioning script that synthesizes a deployment satisfying all specified
requirements. By further integrating SmartDeployer actions into the executable,
SLA-level monitors generated by SAGA, we have a formalized model that auto-
matically suggests appropriate scaling actions at the right time: when the values
of the SLA metrics give rise to it.

The simulation itself consists of replaying a log file generated by the actual
system on the ABS model of the system. The logreplay tool is responsible for
firing at appropriate times a REST API call (as explain in Sect. 2) to the running
simulation for each request recorded in the log file. These requests will trigger
ABS code that contains Cost annotations (Fig. 3), which has the effect of the
real-time simulation as defined for the ABS RT backend.

This model includes automatically generated monitors in ABS which inte-
grate the declarative specification of service metric functions of SAGA and the
provisioning scripts of SmartDeployer. In the simulation Cloud engineers then
can interactively select the scaling actions recommended by the different moni-
tors and thus acquire realtime knowledge of their consequences. In general, these
selections requires specific domain knowledge which includes knowledge of past
behavior. For simplicity, Cloud Engineers can interact with a running HITL
simulation via an HTML/Javascript graphical user interface; a live screenshot is
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Fig. 3. ABS method that process each incoming request from the log-file

shown in Fig. 5. This interface makes also use of the REST API (Fig. 4) exten-
sion as implemented in the ABS RT backend, for fetching the metric history and
recommendations.

Fig. 4. The main ABS block exposing the FRH services through the REST API.

This model-based approach of ABS and its toolset can also be used by the
Cloud Engineers as a semi-automated support system: the Engineer still interacts
with the Fredhopper Cloud Services to perform at the right time the desired
scaling actions suggested by the framework. To achieve this the REST API
can be used to forward queries in real-time from the production system to the
ABS monitors, whereas the CloudProvider interface deploys actual IaaS virtual
machines. Hence to allow the Cloud Engineer to engage in simulating real-world
scenarios, or simply to interact with the system in a meaningful manner, we
believe it is crucial that the simulation executes in real-time.

5 Experimental Results

The FRH case study and its ABS model (≈ 2.000 lines of code6) forms the basis
of our experimental results. We focus on the following metric, which is part of the
SLA negotiated between Fredhopper and its customers (the exact percentages
are not fixed, they can be negotiated by customers):

6 The source code for the FRH model is at http://github.com/abstools/habs-frh.

http://github.com/abstools/habs-frh
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Fig. 5. The GUI of the HITL framework intended for training Cloud Engineers.

“Services must maintain 95% of the queries with less than 200ms of
processing time, and 99% with less than 500ms, subtracting the 2% slowest
queries.”

Initially, our experiments were focused on the FRH case study behavior when
simulating its model (expressed in ABS) without any human intervention. A
provisioning script generated by SmartDeployer automatically instantiated all
services of the Cloud Architecture (Fig. 2), requested suitable VMs from the
CloudProvider and deployed the various kinds of Service instances shown in the
diagram on it. For the QueryService, a minimal setup was used with a single
instance (co-located with a DeploymentService instance) deployed to an Amazon
m4.large VM. The input to the simulation was a real-world log file of a particular
customer with length of 4 min and 30 s, coming from a single production VM
(of type m4.large). Figure 6a visualizes the Service Degradation of that log file
(customer names are anonymized); We then proceeded with simulating the FRH
system on the Haskell and Erlang backends of ABS, inputted with the same exact
log and using the same deployment scenario.

The simulation of the FRH model on the Haskell-ABS backend took 4 min
and 30 s to complete, which matches the log’s length and encourages us to believe
that the simulation is done in real-time. The output of the simulation on the
Haskell backend is shown in Fig. 6b. There is a deviation that can be seen when
comparing it to the original graph of Fig. 6a: the Haskell output reports higher
degradation than what would be expected from the real-world log. This can be
attributed to three causes; first, there is the overhead of processing the log file
itself (network communicating to the logreplay tool). Secondly, the simulation
of the real-time measurements of the log file involves sleep system calls, which
as explained in Sect. 2, dictates that any “sleeping” thread will be re-activated
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(a) Original degradation from production system

(b) Haskell simulation of the degradation when simulating the original log

(c) Erlang simulation of the degradation when simulating the original log

Fig. 6. Degradation in the production system and as simulated on different backends

no sooner than the specified time, but most likely later than prescribed, which
depends on factors such as backend implementation, hardware configuration, or
the workload of the particular model. Fortunately none of these had great effect
on the models we tested, and the reported degradation is negligibly affected
by this. The last cause which however has a larger effect on the degradation is
that the log file contains a certain number of concurrent requests (requests on a
single machine that were served concurrently in time). The recorded processing
time of the requests are translated into Cost annotations (taking into account the
resource capacities of the machine that has processed the request), and therefore
the concurrent execution of such requests in the simulation as described in Fig. 1
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will further increase the simulated processing time of the individual requests. In
general, the recorded processing time of the individual requests includes the over-
head of time sharing and as such do not specify their “intrinsic” processing time.
In practice we think one can obtain a “correct” model by approximating these
intrinsic processing time of the individual requests by averaging over different
log files and different deployment scenarios.

Moving on to the Erlang symbolic-time simulation, we observe slight inac-
curacies of the output (Fig. 6c) compared to the original graph. These inaccu-
racies can be attributed to two reasons: first, the monitors act autonomously
(while (True){await duration(1,1);...}), so they may uncontrollably advance
the symbolic time by themselves between REST calls of the logreplay tool; as a
result the graph is slightly “stretched” because of extra erroneous time advance-
ments. We propose two ways to mitigate this at the ABS language level: (a)
having a statement every(intExp()){body}; which will register the body as a
callback to be executed with the period given or (b) a statement await until(t);

which will resume the process only after the specific time given. In either case the
two statements do not advance the time by themselves. The other reason which
leads to inacccuracies is that the concurrent requests of the log are processed
sequentially (as opposed to Haskell) because of practical difficulties of synchro-
nizing an external tool that uses the real-world clock (logreplay) and the Erlang-
ABS runtime which uses the symbolic clock. Since, as mentioned before part of
the requests in the log happen to be concurrent, the resulted degradation of the
Erlang simulation may differ from the expected original.

The Erlang-ABS backend took 15 min and 30 s to complete the simulation
of real-world 4 min and 30 s of the log. This may be attributed to the fact
that the granularity of the request timestamps is per ms (as given in the
log file). We could speed it up by having a more coarse-grained (less accu-
rate) timestamps. Furthermore, the Erlang backend does not use a (parallel)
Discrete-Event simulation runtime (called also as-fast-as-possible computer sim-
ulation) but a timed-automata inspired runtime for the advancement of the
clock, which requires a computationally-heavier continuous global administra-
tion of the simulation. Given the reasons above, the code for the monitors
while (True){await duration(1,1);...} affects the execution speed. A way to
mitigate this is again to have a coarser periodicity for the monitors. Based on
these experimental findings, we believe in general simulation frameworks based
on symbolic time are not suited for HITL simulations of Cloud applications.

To evaluate the HITL simulation of FRH case study, a training exercise was
carried out for the Cloud Engineers. Using our framework, we first visualized
the Service Degradation of a different real-world log file, but include the same
Service Degradation metric from the SLA as above. The deployment configu-
ration used for that customer was the initial default configuration used by the
Cloud Ops team, which provisions the minimum number of VM’s, and each VM
has as few resources as needed by the services running on the VM. In partic-
ular, aside from the Service instances shared between different customers, such
as the PlatformService and LoadbalancerService, the non-shared initial default
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(a) No scaling - 200ms metric breaks SLA

(b) Performing a Scale-up after 1 minute

Fig. 7. No-scaling versus scaling during the haskell simulation

per-customer setup consisted of 1 query service instance and a corresponding
deployment service instance in every availability zone (in the region of the cus-
tomer), and those were deployed on an Amazon VM with instance type m4.large.

Figure 7a shows the resulting Service Degradation for that customer on this
deployment configuration. The graph shows that in the beginning, performance
is low (and Service Degradation is high). This is caused by the fact that after
a service is started, an initialization phase is triggered, and performance is (as
expected) low during this phase. After a few minutes, initialization finishes and
the service degradation metrics stabilize to around 20% queries slower than
200 ms and 0% queries slower than 500 ms (subtracting the two percent slowest
queries). This means that while the target QoS as agreed in the SLA for the
category “slower than 500 ms” is achieved, this is (by far) not the case for the
category “slower than 200 ms”.

After establishing that the initial default deployment configuration was not
sufficient to satisfy the SLA as agreed with that customer (on that real-world
query log file), the training exercise continued. The Cloud Ops were tasked with
selecting and executing appropriate scaling actions to mitigate the situation.
The scaling actions could be selected through the ABS REST API, or in a very
simple front-end (Fig. 5).

During the training exercise, several different scenarios were trained; Fig. 7b
shows one scenario of the effect on the Service Degradation after the engineer



Human-in-the-Loop Simulation of Cloud Services 157

decided to scale up with 2 query services instances (and corresponding deploy-
ment service instance) in two zones on a (simulated) Amazon m4.xlarge instance
after 1 min (13:51) into the simulation. At time 13:54 the new machines have fin-
ished initializing, and the services deployed on them have been started. After
that time, the 200 ms metric quickly improves , and after about 25 min reaches
the target ≤ 5% degradation.

The integrated tool suite described in Sect. 4 considerably simplified the task
of the Cloud Engineers in managing the day-to-day operation of the Cloud ser-
vices. In particular:

– The support for real-time simulation was critical in providing a realistic train-
ing experience for the cloud engineers. It allowed the Ops to evaluate and view
metrics of the system and apply corrective actions to the system at the same
speed as they do in the production environment.

– The high abstraction level of the metrics captured by the ABS monitoring
framework enables SLA-based scaling, simplifying the decision process of the
Cloud ops in selecting the appropriate corrective scaling actions. Still, domain
knowledge of the Cloud operator is crucial to properly “translate” their inter-
pretation of multiple (possibly conflicting) metrics over time into corrective
actions. The direct relation of the metrics to SLAs and business KPIs in our
tool suite eliminated the burden on the Cloud ops to manually interpret how
traditional lower-level metrics (such as CPU usage, memory consumption)
relate to the higher-level SLA/KPI metrics.

– By suggesting to the Cloud ops only a limited number of possible corrective
actions (synthesized by SmartDeployer), the number of choices the Cloud Op
has to take in real-time (i.e.: which and how many services to deploy, how to
link them, on what kind of VM to deploy them, etc.) was reduced substan-
tially. Since the SmartDeployer actions are synthesized based on the deploy-
ment requirements and Smartdeployer generates a corresponding provisioning
script, the numerous deployment requirements are satisfied automatically “by
construction”. However, the quality of the suggestions (actions) proposed by
the framework should be improved.

In principle, the suggested SmartDeployer scaling actions could be exploited
for a full auto-scaling approach, without any human intervention. We carried
out initial experiments, but it turned out to be very complex how to deal with
different monitors from heterogeneous sources that give conflicting scaling sug-
gestions, taking into account machine booting time, upcoming promotions from
web-shops where peaks in demand are expected, historic data, etc. Thus keeping
the human in the loop - the cloud engineers with their domain knowledge - still
is crucial to optimize the day-to-day management of services.

6 Conclusion

Our initial experimental results on the use of the presented tool suite provides
clear evidence for the viability of HITL simulation of Cloud services for train-
ing purposes. The training sessions themselves can further be used to provide
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feedback to the underlying ABS models of the Cloud services and the monitors.
Ultimately, the resulting fine-tuning of these models may reach a level of matu-
rity and confidence that allows their deployment in the real-time monitoring and
management of the actual service instances.

In general, we believe that HITL simulation of Cloud services provides a
variety of interesting and challenging research problems, for example mining the
log files to calculate an approximation of the “intrinsic” processing time of the
individual service requests, cancelling the effect of time sharing.
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1. Albert, E., de Boer, F.S., Hähnle, R., Johnsen, E.B., Schlatte, R., Tarifa, S.L.T.,
Wong, P.Y.H.: Formal modeling and analysis of resource management for cloud
architectures: an industrial case study using real-time ABS. Serv. Oriented Com-
put. Appl. 8(4), 323–339 (2014)

2. Bezirgiannis, N., de Boer, F.: ABS: a high-level modeling language for cloud-
aware programming. In: Freivalds, R.M., Engels, G., Catania, B. (eds.) SOFSEM
2016. LNCS, vol. 9587, pp. 433–444. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49192-8 35

3. de Boer, F.S., de Gouw, S.: Combining monitoring with run-time assertion check-
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Abstract. The ability to provide appropriate and complete API
descriptions to let users discover services that satisfy a set of require-
ments and compose them to fulfil more complex users’ needs is critical
for the success of any modern ICT solution. Composition suffers from the
lack of semantic matching between properties included in published API
descriptions. The work presented in this paper addresses this issue by
discussing the current formats and tools to build API descriptions, and
presenting a method for extracting and associating semantic to proper-
ties. Such method relies on a revised version of Table Interpretation tech-
niques to support semantic annotations of API properties. The objectives
are to enrich the popular OpenAPI Specification format with semantic
annotations, and add the functionality of semantic annotation and com-
position to the associated editor.

1 Introduction

The ability to provide appropriate and complete API descriptions to let users
discover services that satisfy a set of requirements and compose them to fulfil
more complex users’ needs is critical for the success of any modern ICT solution.
Extensive researches have been conducted with the vision to create automatic
integration of Web Services and APIs. Most of these approaches face the problem
to make candidate APIs communicate each others due to the lack of semantic
matching between input and output data. Although implementing APIs has
become common practice, meta-level API definition and implementation have
yet to be settled to widely-accepted standards [14]. To automate the interac-
tions between APIs a semantics description of the exchanged data is needed.
Approaches to achieve the goal are: creating API descriptions in a logic-based
language (e.g., RDF), or linking existing descriptions to shared domain vocabu-
laries or ontologies (e.g., DBpedia). As the former needs expertise in logic-based
languages, its adoption has demonstrated to be curtailed; the latter is more
approachable, and enriching existing descriptions reduces the effort required.
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There are many active initiatives to promote the creation and publication
of descriptions associated with APIs (see Sect. 2). A shortcoming is the lack
of support to add detailed information that qualifies the properties of an API
(e.g., classification of input and response data). As a result, these formats are
suitable to complete simple tasks, but inefficient in automatic API discovery and
composition due to the lack of machine processable semantics [16]. A critical
aspect is the capability of including metadata, which can be interpreted by
machine agents in a bottom up way (i.e., information structure should be in
pieces to whole) [17]. In the real world, a developer may need to compose APIs
that refer, for example, to location information. He or she may search directories
such as Programmable Web1, collect descriptions, and understand the meaning
of involved terms, e.g., understand that address refers to city and street, and
latitude/longitude refer to a geographic area; but a machine agent is unable to
understand those links without a shared representation of property semantics.
The use of links to concepts in shared vocabularies allows machine agents to
address the issue.

The goal of our project is to (semi)automatically create semantic descrip-
tions that correlate properties at semantic level to enhance interoperability and
composition by machine. The adopted methodology is: (i) evaluate the current
approaches to create API descriptions to identify a reference format; (ii) develop
a Table Interpretation method to collect sample data from existing APIs and
associate them to appropriate concepts from shared vocabularies; and finally
(iii) develop methods to support automatic composition. In this paper we con-
centrate on the first two steps to describe the approach and outline the tools
under development. This work roots and extends the one presented in [10] by
proposing a more effective Table Interpretation technique, and an initial set of
composition rules.

Section 2 discusses the different approaches to API descriptions and moti-
vate the choice of addressing OpenAPI Specification as the reference standard.
Section 3 illustrates the methods to extract information and associate them
with semantic concepts. Section 4 outlines composition techniques and shortly
describe the ongoing works on tools development and testing, and finally Sect. 5
illustrates conclusions and future work.

2 Service Descriptions: State of the Art

Descriptions have been classified into functional, dealing with provided APIs
and exchanged parameters to state what a service provide and how to access it,
and non-functional, dealing with meta information that allow potential users to
understand how a given service provides its service [9]. A further classification
splits descriptions in syntactic and semantic. The former dealing with the for-
mat of calls and exchanged messages, and the latter adding a meaning to the
description terms.

1 http://www.programmableweb.com.

http://www.programmableweb.com
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The most popular syntactic description model is WSDL 2.0 (Web Services
Description Language) [3], which defines an XML format for describing Web ser-
vices by separating the abstract functionality offered by a service from concrete
details such as “how” and “where” that functionality is offered. Although it sup-
ports descriptions of both SOAP-based services, and REST/API services, it is
the de-facto standard for the former, but is rarely adopted for the latter. The
Web Application Description Language (WADL) [6] is a machine-readable XML
format that was explicitly proposed for API services. WADL was also proposed
for standardisation, but there was no follow-up.

More recently, user-friendly and easy-to-use metadata formats have been
introduced, along with editors to support developers in the creation of descrip-
tions for REST APIs. Among others, popular description formats are the Open
API Specification (OAS)2 (also known as Swagger specification), which pro-
vides human-readable API descriptions based on YAML and JSON. RAML
is a YAML-based language for describing RESTful APIs. API Blueprint is a
documentation-oriented web API description language, which provides a set of
semantic assumptions laid on top of the Markdown syntax. The Hydra specifi-
cation, which is currently under heavy development, tries to enrich current web
APIs with tools and techniques from the semantic web area.

The OAS is the most promising choice at the moment [15], since (i) a simple
format to specify descriptions, and (ii) a large set of vendor-neutral API tools,
supported by a very large community of active users, are provided. Such tools
provide great support to almost every modern programming languages to create
and test APIs. Moreover, the Open API Initiative is an open source project
sustained by relevant stakeholders, such as Google, IBM, Microsoft and PayPal3.

The description formats discussed so far are mainly syntactic, which means
that little support to automate operations such as services discovery and com-
position, and verification of coherence to given interaction and building patterns
is provided. Although there are many approaches proposed to enrich services
descriptions with semantics, the manual work required to create descriptions,
and the lack of interoperability standards limited their adoption. The initial app-
roach proposed by the semantic web community was to define a global ontology
to include model, definitions and descriptions in a coherent system that can be
used to make discovery and automatic composition. The most popular propos-
als are OWL-S (Ontology Web Language for Services) [11] and WSMO (Web
Service Modelling Ontology) [13]. The major problem with these approaches is
the expertise required to build and manage such descriptions. The result is that
nobody actually use them. Anyway, the knowledge gained with these semantic
studies has led to the definition of simpler and easier models that marries the
annotation approach introduced by hRESTS and RDFa.

Table 1 illustrates the characteristics of API description models with respect
to the supported type of services (SOAP and/or REST), the capability of host-
ing semantic annotations, the serialisation language to publish the descriptions,

2 https://www.openapis.org/specification/repo.
3 https://www.openapis.org/membership/members.

https://www.openapis.org/specification/repo
https://www.openapis.org/membership/members
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Table 1. Comparison of API description standards.

Description Service type Semantics Serialization Tool Human

readableYes/No Format

WSDL [3] v1.1 SOAP v2.0 REST No - XML Yes No

WADL [6] REST No - XML Yes No

hREST [7] REST No - Microformat No Yes

RDFa [1] REST No - HTML+RDF No Yes

OpenAPI

Specification

REST No - YAML, JSON Yes Yes

RAML REST No - YAML Yes Yes

API Blueprint REST No - Markdown Yes Yes

OWL-S [11] SOAP REST Yes OWL OWL No No

WSMO [13] SOAP REST Yes MOFa MOF No No

SA-WSDL [8] v1.1 SOAP v2.0 REST Yes RDF XML No No

Micro WSMO [7] REST Yes RDF RDF No Yes

SA-REST [5] REST Yes RDF, OWL RDF No Yes
a Meta-Object Facility

Table 2. Comparison of API description models.

Detail/Model API blueprint RAML WADL OpenAPI spec

Format Markdown YAML XML YAML, JSON

Licence MIT ASL2.0 Sun ASL 2.0

Available Github Github www.w3c.org Github

Sponsored by Apiary Mulesoft Sun Reverb

Version Format 1A revision 7 1.0 31 August 2009 2.0

Initial commit Apr 2013 Sep 2013 Nov 2006 Jul 2011

Pricing plan Yes Yes No No

StackOverflow
questions

2015 75 37 156 732

2017 921 644 1,075 8,954

Github stars 2015 1,819 1,058 N/A 2,459

2017 5,390 2,735 6,360

the availability of supporting tools, and finally the human readability of the
descriptions. Table 2 is an adapted and updated version of the one presented in
[15] to compare the number of questions posed in Stack Overflow and the num-
ber of stars (showing appreciation to a project) received by the four description
models under study. The numbers give evidence of increasing interests in the
use of description models. The presence of a comprehensive set of tools that
support the creation, publication, use and maintenance of service descriptions is
one of the most relevant elements that state the success of a description model.
The most popular model is OAS, which we consider as reference format for
our research that aims at delivering semantic-enabled tools for describing and
discovering first, and then compose API services.

www.w3c.org
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3 An Approach to Semantic Description Building

The task of building descriptions has been recognised as a critical activity
mainly for the effort needed to actually write such descriptions, and the exper-
tise required to deliver semantic enriched descriptions. The use of tools that
(semi)automatically extract information to enrich existing descriptions should be
the right approach to incrementally build effective descriptions. In this project we
adopt the best practices proposed by the OAS model, which have been already
implemented in the Swagger editor4, and extend them to add semantic annota-
tions. The extension consists in the definition of new elements in the description
format to host semantics, and a technique to identify such annotations by collect-
ing actual responses of services. The process of annotating an API description
consists of three steps: (i) building a table with the results collected from actual
executions of the service; (ii) annotate the table by a Table Interpretation tech-
nique; and finally (iii) include the annotations in the API description.

The execution of a set of calls on the bases of the input parameters5 in the
existing descriptions allows for collecting responses to create a table with prop-
erties6 populating the header row and responses data populating the columns.
The Table Interpretation technique [18] allows for extracting semantic informa-
tion from a table, which means give an interpretation to the values in structured
data sources.

An algorithm analyses the table content and associates the semantic concepts
(or classes, types) extracted from ontologies in the Linked Open Data Cloud
(LOD), which represents the knowledge in a certain domain. In this way API’s
properties and values can be “understood” by a computer. Based on the state
of the art [12,18], given a well-formed relational table and reference sets of con-
cepts (e.g., DBpedia classes), datatypes (e.g., DBpedia datatypes), named enti-
ties (e.g., DBpedia resources) and relations (e.g., DBpedia objectProperty and
datatypeProperty), a Table Interpretation process is composed of these tasks:

1. classify columns as a “literal column” (Literal column) if contains generic data
(e.g., strings, numbers, dates) or as a “named entities columns” (NE-column)
if contains instances of a concept (e.g., dbr:Milan is a dbo:City);

2. annotate column headers with concepts if they contain entity mentions (NE-
column) (e.g., the header city can be mapped to dbo:City), or properties of
concepts if they contain literals (Literal column) (e.g., the header latLng can
be mapped to geo:location);

3. disambiguate entity mentions in “content cells” (or simply cells) by linking
them to the existing reference entities (e.g., Milan and London can be mapped
to dbr:Milan and dbr:London);

4 https://swagger.io/swagger-editor/.
5 https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md#

parameters-definitions-object.
6 https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md#

schema-object.

https://swagger.io/swagger-editor/
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md#parameters-definitions-object
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md#parameters-definitions-object
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md#schema-object
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md#schema-object
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4. identify the relations between columns (e.g., set a relation between columns
city and country using dbo:country). The type of relationship can be an object
property if it connects two semantic concepts (from NE-column to a NE-
column), or a data-type property if it links a concept to its specific property
(from the NE-column to a literal column).

Once the annotation has been identified, the API description we propose to
enrich a OpenAPI Specification adding two new properties: (i) classAnnotation
to hold the annotations relating to the type of the columns, (ii) propertyAnnota-
tion to hold the annotations that represent the relationships between columns.
Semantic annotations included in the description take the form of URIs that
uniquely identifies the concepts and relations in the reference ontologies.

Inputs need a different approach since the input parameters cannot populate
a table. Natural Language Processing (NLP) techniques [4] can help to extract
entities from the textual description associated with the API. Such entities will
be sought after in reference ontologies, and the user needs to validate or modify
the candidate annotations.

Listing 1.1 show an example of an OpenAPI description augmented with
semantic annotation. This API provides a list of spots (places to practice surf) in
the specified city. Listing shows how the input parameter “city” has been anno-
tated with the class City and “name” with the class Place of DBpedia (classAn-
notation). Similarly, classes have been identified for the other properties. In addi-
tion, “address” and “country” have been annotated with propertyAnnotations to
qualify them as related to “name”, which has been identified as a main property,
through the relations dbo:address and dbo:country, respectively.

4 Composition Rules

As noted above, the annotations can enable the composition of services, which
mainly takes the form of “mashup” of API responses. Let’s proceed with an
example to clarify what we mean by API composition. Assume that a professional
surfer wants to find the best location (spot) to practise. The sportsman want to
choose the spot, based on personal preferences and/or the context (e.g., weather
and sea conditions, spot facilities, accessibility, etc.). Unfortunately, he has to
invoke different services (e.g., weather forecast, spot list) to collect data before
making an informed decision. The surfer saves time and effort if all data are
available in an aggregated way; for example the list of spots returned by the
previous API can be composed with an API that provide information about
weather7 or sea condition8, or with a list of surf schools9.

Two kind of composition patterns can be identified: flow composition, which
means that all or part of the output of an API is used as input of another API;
and parallel composition (or mashup of outputs).

7 https://www.wunderground.com/weather/api.
8 https://developer.worldweatheronline.com/api/marine-weather-api.aspx.
9 http://www.surfline.com/home/index.cfm.

https://www.wunderground.com/weather/api
https://developer.worldweatheronline.com/api/marine-weather-api.aspx
http://www.surfline.com/home/index.cfm
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In the former, if inputs and outputs are not of the same type, an additional
API that allows conversion or integration of data is needed. In the example, to
compose the API regarding sea condition and spot list, a third API that convert
the address of a spot into latitude and longitude (e.g., Google Maps API) is
required. This two new parameters can be used to invoke sea-condition API. The
second pattern foresees that the responses from an API will be filtered out with
the responses from another API. The user can define what are the discriminating
properties for the composition. The user can also define the metrics that will be
used in the composition of the responses. These metrics are: strings similarity
metrics that are used for text fields; and, definition of ranges, used for properties
with numeric values. Regarding the example, the spot list can be merged with
the list of surf schools.

The described compositions can be performed automatically by exploiting
semantic descriptions by applying the following rules:

Annotations referring to a single ontology, same concepts. If the prop-
erties of two APIs refer to the same concepts in an ontology, the composition
is straightforward.

Annotations referring to a single ontology, different concepts. If the
involved concepts are related to rdfs:subClassOf or rdfs:subPropertyOf, as
defined by the RDF Schema [2], to indicate respectively the sub-class rela-
tionship, in which all instances of the class are also instances of the class
indicated by the object, and the sub-property relationship, that is, a defined
property as a specialization of another property, the composition can be per-
formed by considering the parent classes.

Annotation referring to different ontologies. If the involved concepts
belongs to different ontologies, the composition becomes straightforward if
the ontologies are aligned (e.g., relations of type owl:sameAs exist between
the two ontologies).

The algorithms discussed in the previous sections have been implemented
by extending the Swagger editor that can now support both the annotation of
API descriptions and composition of API. According to the test-first principle,
a set of API descriptions have been created. They are realistic since they derive
from real ones identified in Programmable Web, include all relevant property
types, and address possible composition patterns. The test phase is still ongoing,
but the initial results are encouraging since about 70% of the tested patterns
was successfully accomplished. The compositions that failed involved semantic
descriptions that included hierarchical concepts, which will trigger a further
refinement of the algorithm.

5 Conclusions and Future Work

The work presented in this paper is part of the EW-Shopp H2020 project that
aims to provide real-time responsive services to integrate consumer and market
data with weather and event data in the digital marketing domain. The semantic



166 M. Cremaschi and F. De Paoli

annotation of such services is crucial to prepare the data to support analytics
and decision making. It can be accomplished by linking properties and associ-
ated values of services to concepts in shared ontologies. Such knowledge can be
extracted by techniques like Table Interpretation that has been introduced and
exploited to populate OAS descriptions. The current activity deals with testing
to perform an initial validation and tune up of the table annotation and annota-
tion techniques against a set of selected artificial and real services. Future work
will deal with extensive validation activities against the large set of real-world
APIs developed within EW-Shopp to evaluate usability (the goal is to build
effective tools for developers with little experience on semantic techniques), and
effectiveness (the challenge is to be able to augment and compose generic APIs
as well as generic data sources published in marketplaces) of the tools.

Listing 1.1. Example of API description following OAS with annotation of input
parameter and properties.

1 prefix dbo: <http :// dbpedia.org/ontology/>
prefix dbp: <http :// dbpedia.org/property/>

3 prefix rdfs: <http ://www.w3.org /2000/01/rdf -schema#>
[...]

5 paths:
/spots:

7 get:
tags:

9 -"Spot"
description: "Returns the spots in the specified city"

11 produces:
- "application/json"

13 parameters:
- name: "city"

15 description: "Name of the city"
type: "string"

17 classAnnotation: "dbo:City"
responses:

19 200:
schema:

21 $ref: "#/ definitions/Spot"
[...]

23 definitions:
Spot:

25 type: "object"
properties:

27 name:
type: "string"

29 classAnnotation: "dbo:Place"
address:

31 type: "string"
propertyAnnotation: "dbo:address"

33 classAnnotation: "rdfs:Literal"
country:

35 type: "string"
propertyAnnotation: "dbp:country"

37 classAnnotation: "dbo:country"
[...]
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Abstract. We examine deadlock analysis for service-oriented sys-
tems with unbound concurrency and unbound recursion. In particular,
abstraction-based approaches are considered, i.e., abstract behavior mod-
els are derived from service implementations and composed according to
the architecture of service-oriented systems. It turns out that there are
some limitations of Petri-net-based approaches, e.g., such as workflow
nets if deadlocks are analyzed. We show an example that ends in a dead-
lock if recursion is considered but on a Petri-net-based abstraction, it
may regularly end.

Keywords: Process rewrite systems · Deadlock · Workflow nets

1 Introduction

To reduce the risk of unintended behavior (e.g., deadlocks or livelocks [14]) of
service-oriented systems due to composition, many approaches are proposed,
e.g., protocol conformance checking [2,10,11] or deadlock analysis [13].

In this paper we focus on an abstraction-based approach for deadlock analysis
of service-oriented systems including concurrency and recursion.

Approaches, e.g., van der Aalst’s workflow nets [13] are Petri-net-based and
used to analyze deadlocks. They do not consider recursion, recursive callbacks
and synchronization. These approaches are refinement-based, i.e., the behavior
of a service is modeled as a workflow net and then refined to the service imple-
mentation. Workflow nets are used to check for the absence of deadlocks. In
contrast, we provide an abstraction-based approach, i.e., the behavior is auto-
matically abstracted from the service’s implementation using classical compiler
technologies [1] covering all kinds of programming concepts (synchronous and
asynchronous procedure calls, synchronization, cf. Table 1). Motivation for an
abstraction-based approach is that there are many services not developed accord-
ing to a refinement-based approach. Furthermore, even if they have been devel-
oped initially by a refinement-based approach, it is unlikely that programmers
consistently maintain the implementation and its abstraction.

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
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In [15] it was shown that abstraction from recursion may lead to false pos-
itives for protocol conformance checking. In this work, we examine the same
question for deadlock analysis. We compare Petri-net-based abstractions with
abstractions including recursion. The behavior of recursive procedures and syn-
chronous procedure calls corresponds to the LIFO principle and requires there-
fore a stack [8] to trace the calling context. Process rewrite systems (PRSs) are
an extension of Petri nets by stacks [9] and therefore PRS allow to model the
behavior of (recursive) procedure calls, concurrency (fork), synchronization and
exception handling [6].

Furthermore, [6] shows that there is a correspondence between process alge-
braic expressions defined by an abstraction based on process-algebras and cactus
stacks (introduced as tree of stacks by [4]). Therefore, we focus on PRSs which
include pushdown systems as well as Petri nets. Checking reachability and dead-
locks remains decidable in process rewrite systems [9].
Our main results are:

– Each trace of a process rewrite system based abstraction corresponds step by
step to a trace of the corresponding Petri-net-based abstraction.

– A (reachable) deadlock in the process rewrite system based abstraction does
not necessarily correspond to a deadlock in the corresponding Petri-net-based
abstraction.

This paper is organized as follows: In Sect. 2 we introduce service-oriented sys-
tems, Mayr’s process rewrite systems according to [9] and we show the abstrac-
tion and composition process of a service-oriented system including unbound con-
currency and unbound recursion. Section 3 discusses the correspondence between
Petri net and process rewrite system abstractions. Furthermore, it shows that
reachable deadlocks in the process rewrite system based abstraction do not corre-
spond to deadlocks in the corresponding Petri-net-based abstraction. Section 4
discusses the related work and Sect. 5 concludes with a short overview of the
results and gives an outlook.

2 Foundations

2.1 Services and Service-Oriented Systems

A service-oriented system is composed by two or more services which communi-
cate over a required and provided interface, cf. Fig. 1. We assume that a service
A is an implementation with a provided interfaces IA, where an interface is a
set of procedure signatures. The required interface Rs of service S is the set of
procedures of other services called by S, cf. Fig. 1. It is possible that a service
calls a procedure of other services, e.g., service S calls the required procedure a
of service A provided by the provided interface IA.

Procedures of an interface can be either called synchronously (procedure a of
interface IA) or asynchronously (procedure b of interface IB). If a synchronous
procedure is called, it blocks the caller until the callee has been completed. If an
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}
Interface IA {

Bimplements I

Cimplements I

implements ID

Aimplements I

void d(){

}
    call a
return

void c(){
//something no sync/ no call

return; }

void b(){
//something no sync/ no call

return; }

void a(){

else
    call c
if e2

if e3
    sync b
else

}return

if e1
    call b

    call d

    sync c

i   :

r   :a

a

a1

a2

a3

a4

a5

a6

a7

q    :

q    :
q    :
q    :
q    : 
q    :

q    : 

Fig. 1. A service-oriented system with services S, A, B, C and D. Service S acts as a
client. Procedure b, c are asynchronous and a, d synchronous procedures.

e → e′

e ⇒ e′ (R)
e ⇒ e′

e.s ⇒ e′.s
(S)

e ⇒ e′ e′ ⇒ e′′

e ⇒ e′′ (T)

e ⇒ e′

e ‖ s ⇒ e′ ‖ s
(P1)

e ⇒ e′

e ‖ s ⇒ e′ ‖ s
(P2)

u ⇒ u
(L)

e, e′, e′′, s ∈ PEX (Q)

Fig. 2. Inference rules for the definition of the derivation relation in a PRS

asynchronous procedure is called then the callee and the caller continue their exe-
cution in parallel. They are either synchronized by an explicit statement (sync,
program point qa6 of service A) on the caller site or when both, caller and callee
reach their return statement, cf. Fig. 1 ra of service A.

2.2 Process Rewrite Systems

Mayr presented a unified view of Petri nets and several simple process algebras
by representing them as subclasses of the general rewriting formalism Process
Rewrite Systems [9]. It is based on rewrite rules on process-algebraic expressions.
The set PEX (Q) of process-algebraic expressions over a finite set Q (atomic
processes) is the smallest set satisfying:

(i) Q ⊆ PEX (Q),
(ii) If e, e′ ∈ PEX (Q), then e.e′ ∈ PEX (Q) and e ‖ e′ ∈ PEX (Q)

(sequential and parallel composition, respectively).

The parallel composition is associative and commutative. The sequential
composition is associative but not commutative.
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Table 1. Control-flow abstractions to (G,G)-PRS and (P,P)-PRS

Control Structure Abstraction Control Structure Abstraction

qi : assignment;
qj : · · ·

(G,G)
qi → qj
(P,P)
qi → qj

Synchronization
qi : sync b;
qi+1 : · · ·
b{ · · ·
qj : return}

(G,G)
qi ‖ qj → qi+1
(P,P)
qi ‖ qj → qi+1

qi : while e{
qj : · · · }
qk : · · ·

(G,G)
qi → qj
qi → qk

(P,P)
qi → qj
qi → qk

Synchronous
procedure a
qi : call a;
qi+1 : · · ·
a{qj : · · ·
qk : return}

(G,G)
qi → qj .qi+1
qk.qi+1 → qi+1
(P,P)
qi → qj
qk → qi+1

qi if e{
qj · · ·
qk last

program point}
else{

ql · · ·
qm last

program point}
qn · · ·

(G,G)
qi → qj
qi → ql
qk → qn
qm → qn
(P,P)
qi → qj
qi → ql
qk → qn
qm → qn

Asynchronous
procedure b
a{ · · ·
qi call b;
qi+1 · · ·
qj return
} · · ·
b{
qk : · · ·
ql : return}

(G,G)
qi → qi+1 ‖ qk
qj ‖ ql → qj
(P,P)
qi → qi+1 ‖ qk
qj ‖ ql → qj

Definition 1 (Process Rewrite Systems). A process rewrite system (short:
PRS) is a tuple Π � (Q, q0,→, F ) where

(i) Q is a finite set (atomic processes),
(ii) q0 ∈ Q (the initial state, an atomic process),
(iii) →⊆ PEX (Q) × PEX (Q) is a set of process-rewrite rules,
(iv) F ⊆ Q (the set of final processes).

The PRS Π defines a derivation relation ⇒⊆ PEX (Q) × PEX (Q) by the
inference rules in Fig. 2.

PRSs where no rule contains a sequential composition operator ((P,P)-PRS) are
equivalent to Petri nets [9]. Hence, the following definition applies to general
process rewrite systems ((G,G)-PRS) as well as to Petri nets.

Definition 2. Let Π = (Q, q0,→, F ) be a PRS. A process algebraic expression
e ∈ PEX (Q) is reachable iff q0 ⇒ e. A reachable e ∈ PEX (Q) is a deadlock iff
there exists no e′ ∈ PEX (Q) \ F , e′ �= e such that e ⇒ e′.

2.3 Abstraction and Composition Process

Table 1 shows different control structures and their abstraction to (P,P)-PRS
and (G,G)-PRS. The main principle is that each statement corresponds to a
program point (which refers to a statement). The most important control struc-
tures are contained in Table 1, atomic statements, e.g., assignments, condition-
als, synchronous and asynchronous procedure calls and synchronizations. Loops
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Source Code of Fig. 1 (G,G)-PRS (P,P)-PRS

main{ q0 : call a
q1 : return; } q0 → ia.q1 q0 → ia

a{ia : if e1
qa1 : call b

else
qa2 : call c
qa3 : if e2
qa4 : call d
qa5 : if e3
qa6 : sync b

else
qa7 : sync c
ra : return}

ia → qa1, ia → qa2
qa1 → qa3 ‖ ib
ra ‖ rb → ra
qa2 → qa3 ‖ ic
ra ‖ rc → ra
qa3 → qa4, qa3 → qa5
qa4 → id.qa3
rd.qa5 → qa5
qa5 → qa6, qa5 → qa7
qa6 ‖ rb → ra
qa7 ‖ rc → ra
ra.q1 → q1, ra.rd → rd

ia → qa1 ia → qa2
qa1 → qa3 ‖ ib
ra ‖ rb → ra
qa2 → qa3 ‖ ic
ra ‖ rc → ra
qa3 → qa4, qa3 → qa5
qa4 → id
rd → qa5
qa5 → qa6, qa5 → qa7
qa6 ‖ rb → ra
qa7 ‖ rc → ra
ra → q1, ra → rd

b{ ib : calc(no call/sync)
rb : return} ib → rb ib → rb

c{ ic : calc(no call/sync)
rc : return} ic → rc ic → rc

d{ id : call a
rd : return} id → ia.rd id → ia

Fig. 3. Abstractions of the service-oriented system in Fig. 1

and case statements are abstracted similarly to conditionals. For service-oriented
abstractions, the control-flow abstraction rules can be applied to every services.
The main difference is that entry and exit points are n eeded for the first pro-
gram point and the return statement of the procedure of a required interface of
a service. These entry and exit points are identified upon composition with the
corresponding services implementing the required interface. This combination
yields to a PRS modeling an abstract behavior of the service-oriented system,
cf. [2]. An analogous idea is used in [13] for combining workflow nets to Petri
nets representing the behavior of the composed service-oriented system.

Example 1 (A Service-Oriented System and its Abstractions). The example in
Fig. 1 was introduced in Subsect. 2.1. Figure 3 shows the abstraction of the single
services using the entry points ia, ib, ic, id and the exit points ra, rb, rc, rd for
the initial program points and the program points of the return statements of
a, b, c, d, respectively. The final state of the PRS is q1. Figure 3 shows the resulting
abstractions for (G,G)-PRS and (P,P)-PRS, respectively.

3 Correspondence Between (G,G)-PRS and (P,P)-PRS
Abstractions

A run of process rewrite system Π = (Q, q0,→, F ) is a sequence e0, . . . , en of
process-algebraic expressions such that ei ⇒ ei+1, i = 0, . . . , n − 1 where ei ⇒
ei+1 can be proven without using rules (T) and (L). Intuitively, this means that
exactly one PRS-rule is being applied in ei ⇒ ei+1 and the sequence e0, . . . , en

represents a step-wise execution of Π. Let S be a service-oriented system, ΠS �
(Q, q0,→Π , F ) be the (G,G)-PRS abstraction of S and Π ′

S � (Q, q0,→Π′ , F ) the
(P,P)-PRS abstraction of S, cf. Table 1. Note that the set of atomic processes
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applied rules (cf. Fig. 3)
(G,G)-PRS (P,P)-PRS (G,G)-PRS (P ,P)-PRS
q0 q0
ia.q1 ia q0 → ia.q1 q0 → ia
qa1.q1 qa1 ia → qa1 ia → qa1
(qa3 ‖ ib).q1 qa3 ‖ ib qa1 → qa3 ‖ ib qa1 → qa3 ‖ ib
(qa4 ‖ ib).q1 qa4 ‖ ib qa3 → qa4 qa3 → qa4
(qa4 ‖ rb).q1 qa4 ‖ rb ib → rb ib → rb
((id.qa5) ‖ q12).q1 id ‖ rb qa4 → id.qa5 qa4 → id
((ia.rd.qa5) ‖ rb).q1 ia ‖ rb id → ia.q16 id → ia
((qa2.rd.qa5) ‖ rb).q1 qa2 ‖ rb ia → qa2 ia → qa2
(((qa3 ‖ ic).rd.qa5) ‖ rb).q1 qa3 ‖ ic ‖ rb qa2 → qa3 ‖ ic qa2 → qa3 ‖ ic
(((qa3 ‖ rc).rd.qa5) ‖ rb).q1 qa3 ‖ rc ‖ rb ic → rc ic → rc
(((qa5 ‖ rc).rd.qa5) ‖ rb).q1 qa5 ‖ rc ‖ rb qa3 → qa5 qa3 → qa5
(((qa6 ‖ rc).rd.qa5) ‖ rb).q1 qa6 ‖ rc ‖ rb qa5 → qa6 qa5 → qa6

Fig. 4. Runs in the (G,G)-PRS and (P,P)-PRS abstractions of Fig. 3

and the initial state is by construction the same in both (G,G)- and (P,P)-PRS.
We show that each run of ΠS corresponds to a run in ΠS′ .

For this, we need to define an abstraction function α for process-algebraic
expressions of ΠS and Π ′

S . Since the PRS rules →Π′ do not contain the sequential
operator the same holds for all reachable expressions. Therefore, the abstraction
function α : PEX (Q) → PEX (Q) forgets the sequential composition, i.e., α is
inductively defined by

(i) α(q) � q for q ∈ Q ∪ {ε}
(ii) α(e1 ‖ e2) � α(e1) ‖ α(e2) for e1, e2 ∈ PEX (Q)
(iii) α(e1.e2) � α(e1) for e1, e2 ∈ PEX (Q)

Example 2 (Runs and Abstractions). The first two columns of Fig. 4 shows a run
of the (G,G)-PRS abstraction ΠS = (Q, q0,→Π , F ) and a corresponding run of
the (P,P)-PRS abstraction Π ′

S = (Q, q0,→Π′ , F ) of the service-oriented system
S in Example 1 (cf. Figs. 1 and 3). The process algebraic expressions in each row
corresponds, i.e., e′

i = α(ei) where ei is the first expression (contained in the run
in ΠS) of the i-th row and e′

i is second expression (contained in the run in Π ′
S)

of the i-th row. Furthermore, it holds →Π′= {α(e1) →Π′ α(e2) : e1 →Π e2}
Remark 1. A look at Table 1 shows that in general, →Π′= {α(e1) →Π′ α(e2) :
e1 →Π e2}, i.e., the rewrite rules of the (P,P)-PRS can be obtained from the
rewrite rules of the (G,G)-PRS by forgetting about the sequential composition.

Theorem 1 (Correspondence between Abstractions to (G,G)-PRS
and (P,P)-PRS). Let S be a service-oriented system, ΠS = (Q, q0,→Π , F )
be the abstraction of S to (G,G)-PRS according to Table 1, and Π ′

S = (Q, q0,
→Π′ , F ) be the abstraction of S to (P,P)-PRS according to Table 1. If e ⇒Π e′

then α(e) ⇒ α(e′).

Proof. The proof is by induction on the number of applications of the inference
rules. Suppose e ⇒Π e′.
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Case 1: Rule (R) is being applied. Then e →Π e′ according to Remark 1 it is
α(e) →Π′ α(e′).

Case 2: Rule (S) has been applied. Then, e = e′′.s and e′ = ē.s for some
e′′, ē, s ∈ PEX (Q), and e′′ ⇒Π ē. By induction hypothesis, it holds
α(e′′) ⇒Π′ α(ē). Now, rule (S) can be applied to obtain α(e′′).s ⇒Π′ α(ē).s.
Thus α(e) ⇒Π′ α(e′) using property (iii) of the definition of α.

The cases where rules (P1), (P2), and (T) are applied are proven analogously to
Case 2.

Corollary 1. For each run e0, . . . , en of ΠS, the sequence α(e0), . . . , α(en) is a
run of Π ′

S.

Hence, each run in the PRS-abstraction corresponds to a run in the (P,P)-
PRS abstraction (which is equivalent to the Petri nets). Thus, the workflow nets
[13] lead to a coarser abstraction than using general PRS [6].

Now, we examine the deadlock situations. Expression e � (((qa6 ‖
rc).rd.qa5) ‖ rb).q1 is a deadlock because no PRS rule is applicable, cf. Fig. 4.
However, the corresponding (P,P)-PRS expression α(e) = qa6 ‖ rc ‖ rb is not a
deadlock. Since ‖ is associative and commutative, it holds

qa6 ‖ rc ‖ rb
ass. and com. ‖

=⇒ qa6 ‖ rb ‖ rc
qa6‖rb→ra=⇒ ra ‖ rc

ra→rd=⇒ rd ‖ rc
rd→qa5=⇒

qa5 ‖ rc
qa5→qa7=⇒ qa7 ‖ rc

qa7‖rc→ra=⇒ ra
ra→q1=⇒ q1

Thus, the final state q1 is reached. However, there are alternatives leading to
a deadlock. For example the rules ra → rd and rd → qa5 could be applied to the
derivation ra. This can lead to the deadlock qa7.

4 Related Work

Van der Aalst [13] uses Petri-net-based analysis tool to verify business process
workflows. Recursion, e.g., recursive callbacks, is not considered.

In [12] recursive Petri nets (rPNs) are used to model the planning of
autonomous agents which transport goods form location A to B. The model
of rPNs is used to model dynamic processes (e.g., agent’s request). Recursion in
our sense is not considered. Deadlocks can only arise when interactions between
agents (e.g., shared attributes) invalidates preconditions. Another refinement
based approach is described in [7]. Hicheur models healthcare processes based
on algebraic and recursive Petri nets [5]. Recursive Petri nets are used to model
by the main process called subprocesses. All these approaches use the ability of
rPNs to prune subtrees.

Bouajjani et al. [3] work is the closest to ours. They discuss the abstraction-
based analysis of recursive parallel programs based on recursive vector addition
systems. They explore decidability of reachability for recursively parallel pro-
grams. It seems that their model is slightly more general as there are situations
where the reachability problem becomes undecidable.
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To our knowledge, abstraction-based deadlock analysis in service-oriented
systems including synchronous and asynchronous procedure calls (forking),
recursion and recursive callbacks and synchronization in the context of service-
oriented systems was not investigated before.

5 Conclusion

We examined two different abstractions from service-oriented systems S to gen-
eral (G,G)-PRS ΠS and to (P,P)-PRS Π ′ (which are equivalent to Petri nets).
We have shown that Π ′ is more abstract than Π (Theorem 1). However, there
is a reachable deadlock e in ΠS where the corresponding situation e′ in Π ′

S is
not necessarily a deadlock although each run q0 →ΠS

e1 →ΠS
· · · →ΠS

en in
the PRS ΠS has a corresponding run q0 →Π′

S
e′
1 →Π′

S
· · · →Π′

S
e′
n. To the best

of our knowledge, we are not aware on studies on abstraction-based deadlock
analysis of service-oriented systems taking into account unbound recursion and
unbound concurrency with synchronization.

The main result shows that the Petri net abstraction is too coarse. Further-
more, the example requires recursion. However, in our example the Petri net
abstraction Π ′

S the final state as well as a deadlock situation is reachable from
e′. Therefore, the example doesn’t provide a false positive (i.e., it erroneously
classifies the service-oriented system S deadlock-free) in the classical sense. Our
hypothesis, is that in the context of the paper, if a deadlock situation e in the
PRS abstraction ΠS of a service-oriented system S is reachable, then a deadlock
situation e′′ is reachable from the corresponding situation e′ in the Petri net
abstraction Π ′

S . It is an open question whether this hypothesis is true. However,
even it is true, the trace leading to a deadlock situation e′′ cannot be obtained
by execution of S. This may erroneously lead to classify the deadlock e′′ as a
false alarm.
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Abstract. In a multi-party business process, the choreography defines
the conversational protocol among the parties, so that the visibility of the
parties’ private processes is limited to the set of operations required to
respect such a protocol. Especially in scenarios where physical resources
are exchanged, knowing how a resource owned by a party is managed in
the premises of another party is not possible. Thus, possible misalignments
can be detected too late. At the same time, IoT is increasingly adopted
to enact business processes in many domains: e.g., logistics, manufactur-
ing, healthcare. As, with IoT, smart devices can physically flow through
the different parties involved in a process, their sensing capabilities can
be exploited to improve the process compliance checking. With this work
we propose an approach for compliance checking that mixes commitments
and smart devices. Commitments, declaratively defining mutual contrac-
tual relationships between parties, drive the configuration of smart devices
that, flowing along with the process flow, check their satisfaction and, in
case of misalignment, timely inform the involved parties.

Keywords: Multi-party process compliance · Timed commitments ·
BPMN choreography model · IoT

1 Introduction

In a multi-party business process, to properly achieve the final common goal, the
involved participants agree on a process choreography which must be respected
when the process is being executed. This requires that the participants enforce
their services with respect to the agreed protocol [10]. To this aim, IoT is attract-
ing more and more interest of researchers and practitioners as it can improve the
service monitoring capabilities. Indeed, smart devices are currently adopted in
organizations to analyze the environment in which the service is operating, by
equipping them with sensors able to measure some physical phenomenon (e.g.,
temperature, presence) accurately and continuously to reduce the time-to-repair
in case of error. As long as the objective of monitoring is related to its internal
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activities, a participant has total control over it. Conversely, in multi-party busi-
ness processes, an interaction with the other participants means to consume a
service offered by an external party and the visibility of what is happening inside
the boundary of such external partners is limited to the information that partner
offers. This is typical, for instance, in the logistic domain: e.g., a manufacturer
gives their products to a courier that promises to deliver them to the final cus-
tomer but the information about the status of the goods is usually limited to
the position with a very coarse-grained (e.g., the city of the last deposit).

Based on this scenario, to improve the compliance checking of a multi-party
business process, in this work we assume to couple smart devices to all the phys-
ical resources transferred among the different participants. In this way, as the
smart device could embed several sensors, the owner of the resources can have a
finer-grained data about the status regardless of the participant who is managing
them.1 To support this envisioned scenario, the goal of this work is to propose
an approach to improve the definition and the monitoring of requirements that
holds between participants in multi-party business processes. The design of the
process takes advantage of an extended BPMN choreography meta-model able
to embed social commitments. The resulting choreographies make explicit which
conditions/properties shall be brought during their execution. Moreover, com-
mitments explicitly account for the mutual promises/obligations arising when
multiple parties interact. The explicit definition of a timed commitment lifecy-
cle proposed in this paper that, to the best of our knowledge, has never being
analysed in the literature, allows the commitments to be directly incorporated
into a smart device. Thus, it is possible to track of the progression of the system
and to check the compliance between occurring events affecting the state of the
commitments of interest and the expected lifecycle.

The rest of the paper is organized as follows. Section 2, using a motivating
example taken from the logistic domain, discusses the characteristics and the
challenges in monitoring a multi-party business processes. Section 3 introduces
the approach describing how the commitments are adopted and extended, as
well as integrated in a BPMN choreography model. Section 4 provides the for-
malization of the commitments and their lifecycle validated by some example
taken from our running case study. Finally, Sect. 5 discusses the related work,
while Sect. 6 conclude the paper outlining possible future work.

2 Motivation

To better motivate the proposed approach, the choreography diagram referring
to the logistic domain is reported in Fig. 1. This sample process is enacted by
Sea.Co., a seafood company. Every time a customer submits an order, which
consists of a list of fishes where the quantity for each item and the delivery
date are specified. A negotiation phase with the customer checks the feasibility
of the delivery date, possibly shifting it to a date where the delivery can be
1 Due to the technical nature of the proposed solution, the economical aspects are not

yet considered in this paper.
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Fig. 1. Running example: BPMN Choreography diagram.

guaranteed, and a contract is finally signed by the two parties. At this point,
the Sea.Co. organizes the actual delivery, in particular: (i) selecting the fish
warehouses (among the various that have the required food units), (ii) from each
warehouses a package is shipped to the customer, (iii) splitting the delivery of
each package into phases each of them managed by a courier, (iv) determining
which transportation modes are involved, (v) ultimately defining a timetable,
compatible with the expected delivery date.

Based on this information, several shipments will leave from the selected
warehouses to the customer and, according to the defined plan, each delivery
could consist of several steps, possibly involving different couriers. Yet, each
courier is responsible for a specific phase of the shipment that lasts from the
courier premises to the consignee premises. When the consignee corresponds
to the final customer, the shipment of the related portion of the order can be
considered concluded and an acknowledgment is sent to Sea.Co. Conversely,
when the consignee refers to the courier which has to perform the next step in
the chain, the same process is recursively repeated. On this basis, each shipment
corresponds to different process instances that could differ in terms of activities
performed, resources (e.g., trucks) involved, operating actors (e.g., couriers).

As the compliance checking for these internal processes has been extensively
studied in the literature [10], the goal of this work is to check the compliance of
the choreography: i.e., to check if all the actors operate correctly with respect
to the other actors. In fact, due to the complexity of the delivery, deviations
to the plan may occur. For example, in case of unexpected traffic, some phase
might be dynamically rearranged (e.g., changing the route and/or the trans-
portation mode). This, in turn, may create a ripple effect, requiring to conse-
quently rearrange one or more consequent phases, so as to guarantee that the
final delivery date is respected. On the other hand, the contract established
between the Sea.Co. and the customer fixes a series of constraints (or, to be
more precise, commitments) that the involved parties have to, or should, honor
no matter how the process is dynamically rearranged. Now, the question is:
“how can the Sea.Co. and the customer check the compliance of the process
that is being executed?”. Generally speaking, this question can be reformulated
as: “how can every actor involved in a multi-party business process be enabled
to check if the other actors are behaving correctly with respect to the initial
agreement?”
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Fig. 2. Centralized monitoring

To address this question, centralized solutions [14] are available (see Fig. 2).
In addition to the infrastructure enabling the execution of the process based on
the exchange of messages, a central monitoring node is responsible to receive all
the updates and to inform about the process instance execution, as well as to
identify possible deviations with respect to the expected behavior (defined by
the process model). Although the deviation detection can be not that complex
to implement as all the needed information are known, the central node needs
to know in advance which will be the entity that will publish or subscribe to
the information about the status of the process. Moreover, each entity needs
to support the protocols adopted for the communication and if a new entity
will be included in the process to manage a deviation, it must adhere to these
protocols. For instance, when Courier2 realizes the refrigerator on the van has
broken, it decides to involve Courier3 to deliver the fish a safe-mode and, to
make the centralized approach working, late binding mechanisms are required
to make this new actor connected to the monitoring system.

The approach presented in this paper aims to overcome to this limitation
extending the usage of smart devices not only to monitor how the tasks operat-
ing on a resource are behaving, but also which are the status of the resources.
As the resources should move among the participants following what modeled
in the choreography, monitoring if the status of the resources give some clue on
how the process choreography evolves (see Fig. 3). The adoption of this approach
gives two types of advantages. On the one side, instead of leaving to the involved
parties the burden of communicating the status of the process instance, auto-
nomic systems implemented on smart devices are paired to the shipping goods
to continuously monitor them and, when requested, to inform about the status
of the package. Such smart devices are configured by the owner of the goods, i.e.,
the Sea.Co. company in our realistic scenario, before leaving the warehouses.

Moreover, smart devices are responsible not only to sense the environment
in which they are immersed, but they are also configured to host portions of the
process model which include the commitments stating how, when, and where
the smart device should be managed. This, in turn, allows to timely identify
possible deviations and establish new, compensating commitments to handle
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Fig. 3. IoT-based monitoring architecture.

which mutual obligations shall be fulfilled when a deviation is detected. In this
way, the knowledge about the status of the process should not be a privilege
only of the owner of the smart device, but it can be made available to all the
parties2.

3 Commitments in Multi-party Business Processes

In our approach we advocate the use of (social) commitments [4,5,16] as a way for
specifying the conditions under which the multi-party business process should be
executed. This section briefly introduces commitments and their lifecycle (also
called commitment machine in the literature), and then provides an informal
description of how commitments are used in our approach; a more formal defin-
ition of commitments, and how they can be managed, is introduced in the next
section. The modeled commitments will be used to configure the smart devices,
so as to make them able to check if actual instantiations of those commitments
are indeed satisfied or not. To informally describe what is a commitment and
how it can be useful for our purposes, we adopt the graphical notation intro-
duced in [16] (see Fig. 4). More specifically, a commitment involves two actors:
the debtor, who is willing to offer a service under certain circumstances, and
a creditor, who takes advantage of this service. Antecedent and consequent are
two logic expressions which define under which conditions the service must be
provided and consumed. Focusing on the lifecycle, a commitment is initially null
and needs to be created. Once created, if the antecedent does holds it goes to a
detached state, otherwise in the conditional one. The latter represents a state in
which the commitment exists but is not yet active, as the antecedent still needs

2 For the sake of simplicity, this paper does not address privacy issues. These are
aspects that definitely need to be investigated in future work.
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Fig. 4. Commitment notation (left) and lifecycle (right) [16].

to become true and consequently trigger the actual obligation of the debtor to
make the consequent true as well. This is what happens in the detached state.
When the consequent holds, then the commitment is declared as satisfied ; it also
might happen that the commitment is released or – only if it is in the condi-
tional state – canceled. The operations are under the responsibility of the cred-
itor and debtor of the commitment, and may be employed to flexibly evolve the
multi-party interaction. Such a flexibility distinguishes social commitments from
normative (in particular, deontic) approaches where obligations are considered
in a rigid, immutable way. Timeouts can be also attached to the antecedent and
consequent to force their validity for a period of time. Indeed, if the antecedent
timeout expires then also the commitment is declared as expired. Conversely,
if the consequent timeout expires then the commitment is declared as violated
as the debtor was not able to perform what it has been promised although the
pre-condition for its fulfillment (i.e., the antecedent) were holding.

3.1 Commitment Templates

As well-exemplified in this survey [15], commitments are typically used to
declaratively capture (business) interactions, abstracting away from control-flow
details. In this light, commitment-based approaches are usually considered com-
plementary to activity-/flow-centric ones. The first distinctive feature of our con-
tribution is to establish a synergy between these two paradigms. To do so, we
propose an extension of commitments to make them attachable to BPMN chore-
ography models, and in particular to choreography activities. In this way, the
choreography takes care of the flow-related constraints, whereas commitments
focus on the contractual nature of the collaboration. Specifically, a choreography
activity provides the context of existence for certain commitments. This means
that, at runtime, whenever an instance for such an activity is executed, corre-
sponding instances for those commitments are created and evolved in accordance
with the course of execution. In other words, the lifecycle of choreography activ-
ities becomes connected to that of its attached commitments. More details on
this aspect, which to the best of our knowledge has never been explored in the
past, are given in Sect. 4.1.
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Fig. 5. Types of commitments.

In particular, we introduce four types of commitments classified along two
orthogonal dimensions (related shapes are shown in Fig. 5):

• Importance: we distinguish between hard (solid line) and soft commitments
(dashed lines). In the former case the consequent must be valid to consider
the commitment fulfilled. In the latter case, the creditor is expecting that the
debtor will do its best to fulfill the commitment. This distinction provides the
basis for a fine-grained handling of commitment violations and corresponding
compensations.

• Time of validity: the linkage between commitments and choreography activi-
ties calls for a distinction between persisting (cycle icon decoration) and goal
commitment (target icon decoration). In the former case, the consequent must
be valid during the execution of its target activity, possibly even spanning its
entire execution. In the latter case, the consequent must become valid when
the activity completes.

To discuss our extension more formally, we introduce the concept of commit-
ment template: a schema for a multitude of “ground” commitments reflecting the
same contractual relationship, but instantiated on different activity instances,
that is, possibly different actual participants and/or timestamps and/or targeted
objects. This reflects the dual nature of commitments: at design time, as mod-
eling abstractions to capture “types” of business relationships, and at runtime,
as computational abstractions to track the evolution of “instances” of such rela-
tionships. The importance of this duality has been increasingly recognized in the
literature, constituting an interesting point of departure from standard logical
approaches to commitments [4,6,12].

In our setting, the notion of commitment template is used to extend the
standard BPMN choreography meta-model, as depicted in Fig. 6. Concretizing
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Fig. 6. Commitment-aware extension of the BPMN choreography metamodel
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what discussed above, the entity type CommitmentTemplate captures a com-
mitment template by declaring its target ChoreographyActivity. Among the
Participant (types) referenced by the choreography activity, two are selected
as debtor and creditor of the commitment template. This induces the constraint
that, at runtime, each instance of the commitment template will relate a debtor
d and a creditor c, with the constraint that d and c participates to the activity
playing the corresponding roles attached to the commitment template. Consider,
e.g., a template established between a Warehouse and a Courier in the context of
the choreography activity start transport. At runtime, commitment instances
for that template will be created and evolved by relating actual couriers and
warehouses, in turn involved in the execution of instances of start transport.
Alongside CommitmentTemplate, we also extend the choreography meta-model
with the notion of SmartObjType, which models a type of smart object that
may exist in the system. It is then possible to (optionally) declare the focus of a
commitment template, relating it to a smart object type. This association has a
twofold nature: on the one hand, it explicitly tracks whether the reason/subject
of a commitment corresponds to a physical (smart) object; on the other hand, it
provides a context for querying the characteristics/data of such an object. This,
in turn, provides the basis for defining the antecedent and consequent of the com-
mitment template. Additionally, a commitment template comes with a number
of attributes (cf. Fig. 6). We review them one by one. The strength of a com-
mitment template indicates whether the commitment is hard or soft, whereas
the type indicates whether the template has a goal or persistence nature. Such
two attributes determine the graphical appearance of commitment templates, as
specified in Fig. 5. The two attributes CondA and CondC respectively identify the
antecedent and consequent conditions of the commitment template. Such condi-
tions may be concretely specified in different query languages, possibly expressed
over the attributes/properties of a smart object type. Such query languages may
range from standard SQL when commitments insist over relational data (such
as, e.g., in the case of [6,12]), to query languages over dynamically evolving data
such as the CQL continuous query language or proprietary languages to query
sensor data provided by smart objects. For the sake of generality, we abstract
away from the specific query language at hand. The remaining attributes are
used to express quantitative temporal constraints on the commitment template.
These are used to refine the representation of the antecedent and consequent,
defining relative temporal windows within which they are checked. Specifically,
minA and maxA respectively denote the minimum and maximum delay within
which the antecedent condition has to be achieved so as to detach the com-
mitment. The reference point for these two extremes is the time at which the
commitment is created, which coincides with the starting time of an instance
of its target activity starts.3 Similarly, minC and maxC respectively denote the
minimum and maximum timestamp within which the consequent condition has
to be achieved or maintained so as to declare the commitment as satisfied. For

3 Absolute temporal constraints can be seamlessly realized as syntactic sugar, schedul-
ing the execution of the target activity at a fixed time.
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the minC-maxC time window, two reference points may be selected: the creation
time or the detach time. This is specified through the refC attribute. The latter
choice is particularly relevant when the time window associated to the consequent
has to be determined depending on the exact moment when the commitment
was detached, i.e., the moment where a “conditional” obligation turned into an
actual one. In the spirit of [13], for goal commitments minC represents the mini-
mal delay at which the goal has to be achieved, while maxC captures the deadline
of the goal; for persistence commitments, instead, the time window delimited by
minC and maxC is the interval within which the consequent is expected to hold.
Differently from [13], though, the achievement/maintenance of the commitment
consequent are bound to that of its target activity. In this light, goal commit-
ments implicitly impose temporal constraints on when an activity is expected
to end, whereas persistence commitments may be released by the completion of
an activity.

3.2 Modeling Commitments

The proposed extension of the BPMN choreography metamodel enables the dec-
oration choreography activities with commitments. Thus, a process designer can
specify not only the conversation among the parties, but also which are the con-
tractual obligations and their characteristics. By connecting the commitments
to a BPMN Choreography model we link the lifecycle of commitments to the
lifecycle of the activities. Referring to the example shown in Fig. 7, there is a
goal commitment in which the Sea.co. is the debtor, while the consignee is the
creditor. As the commitment is attached to the whole activity, and no explicit
antecedent is included in the commitment, then the commitment becomes imme-
diately detached when the activity starts. This shows one of the benefits obtained
through the commitment-activity linkage. Being a goal commitment, we are
expecting that the consequent becomes true when the activity ends. In more
details, the diagram is stating that the fish has to be delivered within 25 days.
This can be obtained by setting minC = 0 and maxC = 25d for the commitment
template, with reference point the detach time (which, in this case, coincides
with the creation time). As said, in this case the antecedent is implicitly linked
to when the activity starts. Similarly, the validity of the commitment is related
to the termination of the activity. Thus, if the commitment consequent (i.e.,
fish delivery) is achieved when the activity ends, then it will be considered as
satisfied, otherwise it will be considered violated. This implicitly sets a deadline
on the handle order activity, since whenever it takes more than 25 days, then
the commitment becomes violated.

In the same process, the warehouse and the first courier agrees on another com-
mitment. In this case, being a soft commitment, the start transport activity should
possibly be executed in 5 days. Similarly to the previous case, this goal commit-
ment moves to the detached state when the fish is ready to leave the warehouse,
while it can be considered satisfied if the consequent is verified, i.e., when the food
is on board of the first courier. This latter condition can be specified by querying
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Fig. 7. Example of hard/goal and soft/goal of commitments.

a positioning sensor for the smart device attached to the food container, or by
simply checking when the start transport activity completes.

When the antecedent is specified, like the case in Fig. 8, the activation of the
commitment occurs when the activity starts and the antecedent becomes true
(maybe at a later time). In our running example, this occurs when the courier
responsible of a transportation phase signals that the refrigerator used to trans-
port the fish is broken. If multiple couriers are involved in the SeaCo-to-customer
transportation, each one will be attached to an instance of the multimodal trans-
port activity, and in turn to an instance of such a commitment template. When
the refrigerator of a courier gets broken, a corresponding instance of such a com-
mitment is detached and, contrarily from the previous cases, starts monitoring
the maintenance of a property related to the fish temperature, being a persisting
commitment. In particular, the consequent in this case is not expected to hold
when the multimodal transport activity ends, but for the whole time window
that spans from detach moment, to that marking the completion of the activity.
This means that, while the multimodal transport activity is under execution,

Fig. 8. Example of hard, persisting commitment.
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as soon as the fish temperature reaches 5 ◦C, the commitment instance will
become violated. Also in the case, we may declare that the commitment tem-
plate focuses on a type of smart object that is attached to a fish container, and is
equipped with a sensor providing timely information about the fish temperature.

4 Tracking Commitments

When the commitments are applied to a physical resource that is exchanged
among the parties, we propose to use smart devices to monitor if the resource is
managed according to the defined commitments. When doing this, we need to
be sure that the smart device is able to understand if the actors that are man-
aging the resources are respecting the defined obligations. Before entering into
the details of the timed-commitment lifecycle which puts the formal basis for
managing the evolution of a commitment (that has been informally introduced
in the previous section), it is fundamental to clarify how, starting from a BPMN
Choreography model extended with commitments, is possible to derive the asso-
ciations between smart devices and commitments to be tracked. Assuming that
for each resource to be monitored one smart device is used, the configuration of
the smart device DR related to a resource R requires to perform the following
steps:

• Identification of relevant activities: being A the set of Choreography
Activity, AR ∈ A corresponds the subset of ChoreographyActivity for
which the resource is either the receiving or the sending message.

• Identification of relevant commitments: being C the set of Commitment
Template, CR ∈ C corresponds to the subset CommitmentTemplate for which
the debtor or the creditor refers to one of the Participant in AR.

Being CR the commitments to be tracked by the smart devices DR, we assume
that the smart device supports the needed capabilities to check the antecedent
and the consequent of these commitments: e.g., the smart device monitoring a
fish package will have a sensor for temperature on-board, and it is able to recog-
nize (manually or automatically) when an activity starts or ends. Once deployed
on a smart device, the tracking of a commitment is possible by considering the
evolution of a commitment template as expressed by the timed commitment
lifecycle formalized in the next section.

4.1 Timed Commitment Lifecycle

Consider a specific commitment template, indicating its target activity and
debtor/creditor types, and providing values for its various attributes. At a given
time, an instance of such a commitment can be in one of the states depicted
in its commitment lifecycle (cf. Fig. 4). We now formally ground this abstract
lifecycle, indicating when, and how, a transition between states occur. More
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Fig. 9. Formalization of the timed commitment lifecycle with a target activity; tick
denotes an arbitrary event, just used to inform the commitment machine about the
current time.

specifically, a transition occurs in response to events, possibly depending on
the validity of the commitment antecedent/consequent. We consider three types
of events. First, we have activity-related events, i.e., the start and end of (an
instance of) the choreography activity targeted by the commitment. Second,
we have explicit commitment manipulation events, used to suspend, release,
reactivate, or cancel a commitment instance. Interestingly, such events may
actually be automatically generated in response to events issued on the activity
lifecycle. For example, the designer may decide that whenever a choreography
activity instance is suspended, then all commitment instances attached to it
will be suspended, too. This is just an example of the benefits of our approach.
Third, Tick events, represents the current time flowing. These events are useful
to communicate the new current time to the commitment lifecycle, and in turn
evaluate the quantitative temporal conditions attached to it [4]. Ticks may be
internally generated, or communicated from the external environment, based on
who is aware of the flow of time.

With these events at hand, we devise the timed commitment lifecycle of
Fig. 9, where the keyword this refers to the specific commitment template of
interest, function ct() returns the time associated to the currently processed
event, while tc and td get respectively assigned the time at which the commitment
is created or detached. Our approach formalizes the abstract diagram of Fig. 4
with concrete, testable transitions, employing the following macros4:
4 The commitment machine we propose enriches standard commitment machines from

the literature, adding temporal conditions on transitions. It is worth noting that, as
usual in the commitment literature, the interpretation of such different states, and
the corresponding set up of reactions, sanctions, and countermeasures, has to be
handled in a domain-specific way on top of the commitment machine, not within the
machine itself.
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• BeforeAWin = ct() ≤ tc + this.minA checks that the current time is before
the antecedent time window.

• InAWin = ct() > tc + this.minA ∧ ct() ≤ tc + this.maxA checks that the
current time falls within the antecedent time window.

• AfterAWin = ct() ≥ tc + this.maxA checks that the current time is after the
antecedent time window.

• BeforeCWin, InCWin and AfterCWin reconstruct the previous three macros
for the consequent time window. The additional complication, here, is that
the reference point depends on the this.refC attribute. E.g., InCWin is
formalized as:

{
ct() > tc + this.minC ∧ ct() ≤ tc + this.maxC if this.refC = creation

ct() > td + this.minC ∧ ct() ≤ td + this.maxC if this.refC = detach and td �= null

• CondAHolds and CondCHolds are respectively true if this.condA and
this.condC hold at time ct().

We briefly comment on the formalization. Call active a commitment (instance)
that is either conditional or detached. A commitment instance becomes active
when an instance of its target activity starts. Specifically, the commitment
instance becomes conditional or detached depending on whether its antecedent
condition evaluates to true at the creation time, and its antecedent time win-
dow has a minimum displacement of 0 (minA = 0). A conditional commitment
instance becomes:

• Expired as soon as the deadline of its antecedent time window, calculated
w.r.t. its creation time, is over.

• Terminated if its target activity instance ends (marking the fact that the
commitment instance never required an actual obligation to be fulfilled).

• Detached when, within its associated antecedent time window (calculated
w.r.t. the creation time), its antecedent condition evaluates to true.

The explicit cancellation of an active commitment instance has the effect of ter-
minating or violating the commitment instance, depending on whether it has
been detached or not. The other transitions of an active commitment instance
depend on whether it has a goal or persistence nature. In the first case, it
becomes:

• Violated as soon as the consequent time window (calculated w.r.t. the creation
or detach time depending on the refC attribute) expires, witnessing that
the target activity instance has not completed on time. If the commitment
instance is detached, also a premature completion of the activity instance
leads to violation.
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• Satisfied if its corresponding activity instance completes on time, and in a
moment in which the consequent condition holds.

Conversely, in the latter case, it becomes:

• Violated when, during the consequent time window, the consequent condi-
tion becomes false, thus witnessing that the promised condition has not been
maintained.

• Satisfied as soon as the consequent time window passes or its corresponding
activity instance is completed, witnessing that the consequent condition has
been continuously maintained until this time point.

Notice the complementary behavior of goal vs. persistence commitments in
Fig. 9, when the commitment is detached. A goal commitment is satisfied if
its target activity is completed at a time that falls within the consequent time
window, and at which the consequent holds; it is instead violated if the deadline
of the consequent time window expires while the commitment is still in the
detached state. Contrariwise, a persistence commitment is violated during the
consequent time window as soon as the consequent is not maintained anymore,
whereas it gets automatically satisfied if the commitment is still detached when
the consequent time window expires.

4.2 Implementation

The lifecycle presented in the previous section can be directly used as an actual
computational artifact during the system execution, tracking the evolution of
commitment instances as new events occur. When the commitment instance
resides on a smart object, checking the antecedent/consequent amounts to issue
the corresponding query on the data maintained the object, and/or retrieved
through its sensors. The actual implementation obviously depends on the spe-
cific programming language of choice, and the computational resources available.
To show the feasibility of the implementation, we have encoded the different
transition rules of the lifecycle in the (Reactive) Event Calculus (REC) [3], a
logic-based calculus of events that has been already used to formalize and moni-
tor business constraints [13] and timed commitments [4]. The query language to
express commitment conditions is in this case natively provided by REC itself.

The complete formalization in REC, together with the encoding of our case
study (cf. Sect. 3.2) and its embedding into a monitoring test application, can
be downloaded from http://tinyurl.com/kd8wtre. Figure 10 shows the result pro-
duced by REC on a hypothetical partial run of our case study.

http://tinyurl.com/kd8wtre
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Fig. 10. Monitoring timed commitment instances in REC.

5 Related Work

Checking the compliance of a business process requires to verify that the execu-
tion of a process is respecting what has been conceived by the process designer.
In the literature, there are several approaches and solutions able to cope with
this issue and [10] organizes them in a systematic literature review. Among the
dimensions of analysis, the survey discusses the compliance monitoring function-
ality that a monitoring system should support and in particular the importance
of considering time, data, and resources in the constraints. Going towards this
direction, and similarly to [2] where collaborative processes modeled with BPMN
has been extended to include monitoring instructions, our approach extends the
BPMN choreography model to attach commitments where constraints on time,
data, and resources are possible to be defined.

Focusing more on the peculiarities of cross-organizational processes, [9] has
identified some research challenges among which there is the need to model
cross-organizational compliance rules. To this aim, we rely on commitments [15],
exploited in [16] to model the interaction among several participants inspired by
the agent-based system literature, and translated into automaton as suggested
in [7,12]. At the same time, [8] focuses on the way in which the compliance rules
are specified and verify if there are not conflicts between them. Even though
approaches for monitoring timed extensions of commitments have been already
proposed in the past [5,15,16], the explicit definition of a timed commitment life-
cycle proposed in this paper, to the best of our knowledge, has never been devised.
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Once the constraints are modeled, their verification can be done a-posteriori,
through log analysis [1], or at run-time [11]. Our approach is close to the second
case and, as a element of novelty, we assume to exploit smart devices to perform
the compliance checking. Indeed, smart devices are now adopted to execute some
of the tasks composing a business process, as well as to monitor the status of
the resources manged in the process [17,18]. As their computational power is
getting more and more significant, we investigated the possibility to exploit this
capabilities.

6 Conclusions

In this work, we have introduced an approach for checking the compliance of
a multi-party business process by extending BPMN choreography model with
timed commitments. Classical commitments have been extended in this work to
consider hard and soft constraints as well as persisting and goal commitments.
The resulting enriched choreography model can be used to properly configure
smart devices that will be in charge of checking the validity of those commitments
due to the proposed lifecycle of extended commitments. Although this approach
is in its infancy, we can now check possible deviations of process instance in a
distributed way exploiting smart devices, inheriting the constraints defined at
design-time. Nevertheless, there are several limitations that need to be addressed
in future work. Firstly, although if the control-flow that can be defined for a
choreography model is more simple than what possible to express in a collab-
oration diagram, how to manage switches and loops is currently an open issue
that needs to be investigated. Furthermore, the proposed approach lives on the
assumption that the communication is always up, and the smart device is always
reachable. We will extend or approach to by considering reliability and commu-
nication failures.
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Kesim Çiçekli, N., Sadighi, B., Stathis, K. (eds.) Logic Programs, Norms and
Action. LNCS, vol. 7360, pp. 123–146. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-29414-3 8

http://dx.doi.org/10.1007/11575771_11
http://dx.doi.org/10.1007/978-3-642-29414-3_8
http://dx.doi.org/10.1007/978-3-642-29414-3_8


IoT-Based Compliance Checking of Multi-party Business Processes 195

4. Chesani, F., Mello, P., Montali, M., Torroni, P.: Representing and monitoring social
commitments using the event calculus. J. Auton. Agents Multi-agent Syst. 27(1),
85–130 (2013)

5. Chopra, A.K., Singh, M.P.: Generalized commitment alignment. In: Proceedings
of the International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2015)

6. Chopra, A.K., Singh, M.P.: Cupid: commitments in relational algebra. In: Proceed-
ings of the 29th AAAI Conference on Artificial Intelligence. AAAI Press (2015)

7. Ferrario, R., Guarino, N.: Commitment-based modeling of service systems. In:
Snene, M. (ed.) IESS 2012. LNBIP, vol. 103, pp. 170–185. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-28227-0 13

8. Knuplesch, D., Reichert, M., Fdhila, W., Rinderle-Ma, S.: On enabling compliance
of cross-organizational business processes. In: Proceedings of the International Con-
ference on Business Process Management (BPM 2013) (2013)

9. Knuplesch, D., Reichert, M., Mangler, J., Rinderle-Ma, S., Fdhila, W.: Towards
compliance of cross-organizational processes and their changes. In: La Rosa, M.,
Soffer, P. (eds.) BPM 2012. LNBIP, vol. 132, pp. 649–661. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-36285-9 65

10. Ly, L.T., Maggi, F.M., Montali, M., Rinderle-Ma, S., van der Aalst, W.M.: Com-
pliance monitoring in business processes: functionalities, application, and tool-
support. Inf. Syst. 54, 209–234 (2015)

11. Maggi, F.M., Montali, M., Westergaard, M., van der Aalst, W.M.P.: Monitor-
ing business constraints with linear temporal logic: an approach based on colored
automata. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS, vol.
6896, pp. 132–147. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23059-2 13

12. Montali, M., Calvanese, D., De Giacomo, G.: Verification of data-aware
commitment-based multiagent systems. In: Proceedings of the 13th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS) (2014)

13. Montali, M., Maggi, F.M., Chesani, F., Mello, P., van der Aalst, W.M.P.: Moni-
toring business constraints with the event calculus. ACM TIST 5(1), 17 (2013)

14. Sahai, A., Machiraju, V., Sayal, M., van Moorsel, A., Casati, F.: Automated
SLA monitoring for web services. In: Feridun, M., Kropf, P., Babin, G. (eds.)
DSOM 2002. LNCS, vol. 2506, pp. 28–41. Springer, Heidelberg (2002). doi:10.
1007/3-540-36110-3 6

15. Singh, M.P.: Commitments in multiagent systems: some history, some confusions,
some controversies, some prospects. In: The Goals of Cognition: Essays in Honor
of Cristiano Castelfranchi, pp. 601–626. College Publications (2012)

16. Telang, P.R., Singh, M.P.: Specifying and verifying cross-organizational business
models: an agent-oriented approach. IEEE Trans. Serv. Comput. 5(3), 305–318
(2012)

17. Thoma, M., Meyer, S., Sperner, K., Meissner, S., Braun, T.: On IoT-services:
survey, classification and enterprise integration. In: 2012 IEEE International Con-
ference on Green Computing and Communications (2012)

18. Tranquillini, S., Spieß, P., Daniel, F., Karnouskos, S., Casati, F., Oertel, N., Mot-
tola, L., Oppermann, F.J., Picco, G.P., Römer, K., Voigt, T.: Process-based design
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Abstract. The exponential increase of the data generated by pervasive
and mobile devices requires disrupting approaches for the realization of
emerging mobile and IoT applications. Although cloud computing pro-
vides virtually unlimited computational resources, low-latency applica-
tions cannot afford the high latencies introduced by sending and retriev-
ing data from/to the cloud. In this scenario, edge computing appears as a
promising solution by bringing computation and data near to users and
devices. However, the resource-finite nature of edge servers constrains
the possibility of deploying full applications on them. To cope with these
problems, we propose a serverless architecture at the edge, bringing a
highly scalable, intelligent and cost-effective use of edge infrastructure’s
resources with minimal configuration and operation efforts. The feasibil-
ity of our approach is shown through an augmented reality use case for
mobile devices, in which we offload computation and data intensive tasks
from the devices to serverless functions at the edge, outperforming the
cloud alternative up to 80% in terms of throughput and latency.

Keywords: Serverless architectures · Edge computing · Mobile Edge
Computing · Low-latency applications

1 Introduction

Mobile data will skyrocket in the coming years, mainly driven by mobile video
streaming and the Internet of Things (IoT). In 2017, data traffic of mobile devices
is expected to exceed 6 Exabytes (6 ∗ 109 Gb) per month, and when combined
with the traffic generated by laptops and machine-to-machine communications,
the overall demand should reach 11 Exabytes per month [1]. Although cloud
computing appears as a straightforward solution for processing such an amount
of data, in certain scenarios the latency introduced by sending/retrieving heavy
payloads from/to the cloud can be prohibitive [2]. To address data-intensive
and low latency requirements, as well as to avoid the bottlenecks of central-
ized servers, edge computing proposes to bring computation to the edge of the
network, that is, near to where it is needed by users and devices [3]. More-
over, Mobile Edge Computing (MEC) allows for the use of its services with low
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F. De Paoli et al. (Eds.): ESOCC 2017, LNCS 10465, pp. 196–210, 2017.
DOI: 10.1007/978-3-319-67262-5 15



Empowering Low-Latency Applications 197

latency, location awareness and mobility support to make up for the disadvan-
tages of cloud computing [4].

However, the distributed and resource-finite nature of edge infrastructure
also imposes limitations regarding its capability of hosting many diverse appli-
cations and/or services, otherwise hosted remotely in the cloud [3], since an
overloaded MEC server significantly degrades user experience and negates the
advantages of MEC [4]. Thus, such an scenario cannot be simply supported by a
straightforward migration of the existing cloud model at the edge, that is, simply
adopting virtualization and containerization technologies [5]. Recently, Server-
less Architectures [6], also known as Functions-as-a-Service (FaaS), appeared as
a disruptive alternative that delegates the management of the execution environ-
ment of an application (in the form of stateless functions) to the infrastructure
provider [7]. As a consequence, provider-managed containers are used to exe-
cute functions, without pre-allocating any computing capability or dealing with
scalability and load-balancing burden. This should boost the utility of the edge
nodes, allowing one to deploy more functionality given their limited capabilities
and resources, while meeting application’s low latency requirements.

This paper presents a serverless edge computing architecture that enables
the offloading of mobile computation with low latency and high throughput. The
objective is to allow low-latency mobile applications to minimize the impact on
the resources of devices (which are battery and CPU constrained) and satisfy
their latency requirement. The feasibility of the proposed architecture is eval-
uated through a mobile augmented reality application, and compared against
a cloud-based solution. Results show that, in data-intensive scenarios, the pro-
posed serverless edge solution outperformed the cloud-based offloading solution
up to 80% in terms of throughput and latency.

The rest of the paper is organized as follows. Section 2 defines edge computing
and serverless architectures. Section 3 presents a motivating case study: a Mobile
Augmented Reality application. Section 4 describes the proposed architecture.
Section 5 presents the evaluation we carried out. Section 6 discusses related work.
Section 7 concludes the paper.

2 Background

Edge computing is a distributed computing paradigm that aims to cope with
the rapid increase in data coming from the plethora of mobile devices. Its main
purpose is to boost the potential of the Internet-of-Things and other real-time
and data-intensive applications [3,8], by shifting the computation from the cen-
ter (server) of the system towards a computing infrastructure deployed at the
edges of the system (or of the network). The aim is to mitigate the latency and
bottlenecks of centralized or coarsely distributed servers.

In contrast to the more general term, Mobile Edge Computing (MEC) focuses
on co-locating computing and storage resources at base stations of cellular net-
works, thus reducing the stress of the network by shifting computational efforts
from servers deployed in the Internet to the edges of the mobile network [3,9].
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Being co-located at base stations, computing and storage resources of MEC
servers are also available in close proximity to mobile users, thus eliminating
the need for routing these data through the core network. MEC is seen as a
future and promising approach to increase the quality of experience in cellular
networks, and a key enabler for the evolution to 5G networks [10]. A distributed
PaaS (Platform as a Service) can be deployed within the radio access network
to serve low-latency, context-aware applications timely.

A Serverless Architecture is a refined cloud computing model to process
requested functionality without pre-allocating any computing capability.
Provider-managed containers are used to execute functions (often called lamb-
das), which are event-triggered and ephemeral (may only last for one invoca-
tion) [6]. This approach allows one to write and deploy code without considering
the runtime environment, resource allocation, load balancing, and scalability; all
these aspects are handled by the provider.

The serverless model represents a further evolution of the pay-per-use com-
puting model: we started allocating virtual machines (e.g., Amazon EC2), then
moved to containers (e.g., CS Docker Engine) and now we only allocate the
resources (a container shared by several functions) for the time needed to carry
out the computation.

The Serverless architecture has many benefits with respect to more tradi-
tional, server-based approaches. Functions share the runtime environment (typ-
ically a pool of containers), and the code specific to a particular application is
small and stateless by design. Hence, the deployment of a pool of shared con-
tainers (workers) on a machine (or a cluster of machines) and the execution of
some code onto any of them becomes inexpensive and efficient.

Horizontal scaling is completely automatic, elastic, and quick, allowing one
to increase the number of workers against sudden spikes of traffic. The server-
less model is much more reactive than the typical solutions of scaling virtual
machines or spinning up containers against bursts in the workload [11]. Finally,
the pay-per-use cost model is fine-grained, down to a 100 ms granularity for
all the major vendors, in contrast to the “usual” hour-based billing of virtual
machines and containers. This allows companies to drastically reduce the cost
of their infrastructures with regard to a typical monolithic architecture or even
a microservices architecture [12].

Several cloud providers have developed serverless solutions recently, many of
which are still in their explicit or implicit beta testing phase1. Table 1 summarizes
the main serverless solutions, with AWS Lambda that appeared 1.5 years before
the others. All these alternatives provide similar capabilities; IBM Openwhisk is
the only open-source solution among the major vendors.

1 https://blog.zhaw.ch/icclab/faas-function-hosting-services-and-their-technical-
characteristics.

https://blog.zhaw.ch/icclab/faas-function-hosting-services-and-their-technical-characteristics
https://blog.zhaw.ch/icclab/faas-function-hosting-services-and-their-technical-characteristics
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Table 1. Serverless providers and supported languages

Provider Languages

AWS Lambda Node.js, Java, Python

Google Cloud Functions Node.js

Azure Functions Node.js, C#

IBM OpenWhisk Node.js, Swift, Binary (Docker)

Webtask.io Node.js

OpenLambda Python

3 Mobile Augmented Reality

Augmented reality (AR) is the combination of a view of the real world and sup-
plementary computer-generated information [10]. More recently, Mobile Aug-
mented Reality (MAR) emerged as a fusion of AR and mobile computing. MAR
is an example of applications for which low latency and high throughput are key
requirements. These applications enrich the interaction of users with the physical
world by augmenting their vision of the reality with relevant information (e.g.,
historical information about buildings and monuments), modifying it (e.g., by
translating captured text in a different language), or by adding virtual elements
that can mimic interactions with the real world (e.g., virtual objects or creatures
from a fantasy game), or helping users fulfill physical tasks (e.g., by highlighting
a free parking spot).

Our example MAR application is supposed to help the tourists that visit a
city and want to receive relevant information about Points-of-Interest (POIs),
such as monuments, buildings, and other architectural elements, by looking at
them through their mobile devices (Fig. 1) or special glasses [13].

Based on the approach described by Huang et al. [14], the following steps
summarize the sequence of data- and computational-intensive tasks in MAR
applications:

1. The reality that must be augmented should be captured by using the device’s
camera, with a rate between 2 and 6 images per second [15,16].

2. The captured frame must be scanned to extract the features that allow the
app to identify the physical objects in the scene.

3. Virtual content, associated with the identified scene and objects, must be
retrieved from servers2 based on the previously extracted features.

4. Finally, the app produces a combined image of the real and virtual contents
and displays it on the device screen.

As users can rapidly move and target different portions of the world around
them, target scenes must be captured by the device’s camera at a fast rate (step 1),
2 This information cannot be usually stored on the device given its size and dynamic

nature.
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Fig. 1. An example mobile augmented reality app (etips.com).

generating a significant volume of data frequently. Also, the extraction of features
from the objects in these frames (step 2) is a computational-intensive task. Pro-
hibitive network traffic and latency can be avoided by letting step 2 be performed
locally and delegating only steps 3 and 4 to services in the cloud [14]. However, this
kind of approach may fail to meet users’ expectations because continuously trans-
ferring information to cloud services and interacting with them could be slow, and
it can significantly reduce the battery of their devices [17]. Offloading mobile com-
putation to a MEC platform rather than using “traditional” cloud services should
bring several advantages: First, it provides the low latency and high throughput
required by mobile augmented reality applications; second, it prevents the over-
loading of mobile devices with computational-intensive tasks; and finally, the MEC
platform can adjust provisioned resources on-the-fly and no resources are wasted.

4 Proposed Solution

Figure 2 shows the proposed architecture. Its main physical elements are mobile
devices and MEC servers. Mobile devices can be of any type (e.g., tablets, smart-
phones), running a low-latency application that needs offloading part of its com-
putation to more powerful servers. For this, the devices send the information to
be processed to the MEC server through standardized network protocols [18].
A Base Transceiver Station3 (BTS) bridges mobile devices and MEC servers
as a part of the cellular infrastructure and MEC architecture, according to its
current specifications [10]. In this scenario, mobile devices and MEC servers are

3 Different generations of wireless mobile networks use distinct names (e.g., eNodeB
in 4G).

http://etips.com
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Fig. 2. Proposed architecture: A MAR application running on mobile devices send
requests to the MEC server hosted on a cellular infrastructure (shared components of
the serverless MEC server are depicted in grey).

at no more than a few hops from each other. MEC servers host the serverless
environment, where stateless functions are deployed and executed.

While MEC servers are ideal candidates for offloading the computation
to preserve devices’ resources and kill latency, these nodes are themselves
potentially constrained. Accordingly, the feasibility of hosting dedicated vir-
tual machines, containers, and stateful applications would also be limited, as
these nodes cannot scale “infinitely” to host always-running VMs/containers as
the cloud itself. To overcome this limitation, we propose to deploy a serverless
architecture [6] onto the MEC servers.

Figure 2 also shows the serverless components deployed on the MEC server.
The entry points are the triggers associated with events: in the MAR application,
an event that triggers a function consists of uploading of an image or capturing
a frame with the device’s camera. These triggers fire requests to an Http Server
that exposes a Restful API of available functions.

To achieve network transparency, a local Domain Name Server (DNS),
deployed on the cellular infrastructure, must distinguish between requests to
the RESTful APIs exposed by the MEC server and any other request for an
Internet endpoint. The main difference from a regular DNS is locality, as the
requests must be handled by the MEC server on the current base station. To
this end, the names of edge resources must be resolved locally without being
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propagated to public DNS servers. Whereas the specific details of the naming
solution are outside the scope of this work, we argue that such a feature should
not pose a significant technical challenge.

Once a request reaches the MEC server, it is then forwarded to a controller
component, which identifies and retrieves the function being called, authorizes
the execution of such a function and identifies an available invoker to run it.
Invokers isolate the functions in containerized environments, optimized and
managed by the serverless provider to reduce overhead and response time.
Finally, results and logging information are stored in the Storage component,
a highly available, noSQL database.

Note that most of the components of the serverless architecture of the MEC
server are shared (in grey in Fig. 2) among all the functions. The highly shared
nature and the automated management of the whole platform allows any function
deployed on the MEC servers to scale up automatically and elastically to unex-
pected bursts in the workload, and to scale down when it is not used anymore.
In contrast with container-based stateful applications, the serverless platform is
responsible for allocating functions of one or more applications on a pool of con-
tainers according to the resources available at the MEC server. As a result, the
use of the computational resources of MEC servers is optimized, allowing both
more functions to be deployed and more requests to be processed simultane-
ously. A conventional cloud provider can always become part of the deployment
if needed, but it is not the focus of this paper.

There is no need to follow the common practice of deploying multiple virtual
machines or containers to be resilient and responsive against downtime of single
instances or bursts of workload. The on-demand execution of functions provides
inherent scalability and optimal utilization as the number of running functions
always matches the trigger rate. Additionally, the application developer only
focuses on the application code and can fully outsource the management of the
deployment/execution infrastructure. The serverless approach also provides a
fine-grained pay-per-use billing model with benefits for both application owners
and telecom operators (in charge of the MEC servers).

4.1 Mobile Augmented Reality on MECs

To instantiate the proposed architecture fpr the Mobile Augmented Reality
application presented in Sect. 3, the client MAR application must continuously
capture frames from the camera and send them together with other parameters
(type of POIs of interest, screen size and resolution) to the nearest MEC server.
The server is in charge of retrieving the features of the POIs in the scene, match
them against a local database, and return the corresponding data (information
about monuments, buildings and other points of interest) to the client applica-
tion, which must merge them with the image on the screen to offer a seamless
experience to the user.

Serverless functions deployed on the MEC servers are in charge of: (1) image
processing; (2) feature extraction; (3) matching; and (4) information retrieval
based on these features. Many of these activities are supported by libraries
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already integrated in major vendors’ serverless frameworks, such as IBM Visual
Recognition4, Azure Visual Cognitive Services5 and AWS Rekognition6. The
management of the execution of these functions is optimized by the serverless
environment on the MEC server, and different client applications may use the
same functions (for instance, those related to image processing and other com-
mon use cases).

The MEC architecture further provides the advantage of data locality, which
restricts the scope of the feature matching by letting a given MEC server to
store data only regarding the POIs within the region covered by its base station
(instead of considering the probably wider area covered by the cloud service).
Such advantage has two aspects: feature matching against a reduced database
becomes less expensive, and substantially reduces data fetching latency [19], and
less data must be persisted on each MEC server.

Finally, the creation and update of existing information about the POIs man-
aged by different base stations could be performed by administrators by means
of a Web application backed by cloud services. Following this approach, admin-
istrators could also request reports about the usage of the MAR application on
each base station (e.g., which touristic assets have been most accessed and which
advertised services have been most viewed in a given period of time).

5 Experimental Evaluation

We evaluated the proposed architecture in the context of the MAR application
(Sect. 3), using two alternative deployments for the serverless functions: at the
edge or in the cloud. The main goal of this experiment is not to compare “tradi-
tional” cloud services against a serverless solution, but to demonstrate that the
proposed serverless edge architecture can outperform a typical serverless cloud
provider under certain circumstances and requirements.

The experimental setup is depicted in Fig. 3. Capturing and uploading an
image (Steps 0 and 1) is emulated using Postman7, a JavaScript open source
application designed to load test functional behaviors and measure the perfor-
mance of Web APIs.

A Node.js Http server provides the endpoint for the requests and uploads of
the image (Step 2), then triggering different subsequent steps depending on the
two different deployments: Steps 3.a, 4.a and 5.a for the edge-based solution,
and Steps 3.b, 4.b and 5.b for the cloud one. Additionally, the Node.js server
collects the metrics relevant to the experiment, such as latency, throughput and
computation time.

The edge node deploys the IBM Openwhisk serverless framework8 that man-
ages actions (the equivalent of functions in openwhisk). Being open-source, open-
whisk is (to date) the only serverless alternative among the major vendors that
4 https://console.ng.bluemix.net/catalog/services/watson vision combined.
5 https://azure.microsoft.com/en-us/services/cognitive-services.
6 https://aws.amazon.com/rekognition/.
7 https://www.getpostman.com/.
8 https://developer.ibm.com/openwhisk/.

https://console.ng.bluemix.net/catalog/services/watson_vision_combined
https://azure.microsoft.com/en-us/services/cognitive-services
https://aws.amazon.com/rekognition/
https://www.getpostman.com/
https://developer.ibm.com/openwhisk/
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Fig. 3. Experimental setup for the example system.

can be deployed locally or on private clouds. Particularly, openwhisk provides a
built-in noSQL database: CouchDB, which is associated with the implemented
actions through user-defined triggers and rules. In our experiment, uploading
an image to CouchDB (Step 3.a) triggers the action that performs the feature
extraction and matching (Step 4.a) with the points-of-interest, supported by a
visual recognition library (Step 5.a).

For this experiment, we considered two alternatives for the deployment of
the serverless architecture to mimic the behavior of an edge node (Fig. 4). The
edge-local alternative is an implementation with openwhisk deployed on a regu-
lar laptop, in a virtual machine with 4x CPU, 4x GB of RAM and 40 GB SSD
of storage. This deployment allows us to represent an extreme situation where
latency is close to zero, but the computational resources are highly constrained.
On the other hand, we deployed the serverless architecture on Policloud9, the
private IaaS solution of Politecnico di Milano where the computational resources
are less constrained, and still low latency can be achieved due to physical prox-
imity and data locality. This setup runs on a small cluster of 4 virtual machines
with 2x CPU, 4x GB of Ram and 100 GB SSD, each running a different compo-
nent of openwhisk (triggers and storage, Http server, controller, and invokers).
Note that in both cases the edge node is deployed in the same LAN that origi-
nates the requests, to emulate the few-hop scenario in which devices are directly
connected to their corresponding MEC.

The cloud alternative for this experiment uses AWS Lambda10 and the asso-
ciated AWS services, as the first-available and most mature serverless solution in
the market. Both the functions and the services (S3 storage, image recognition)
are hosted in the us-west region, which is enforced by AWS to guarantee a certain
degree of data locality. The image is uploaded through an S3 bucket (Step 3.b),
a trigger associates it with the corresponding lambda functions (Step 4.b) that

9 http://policloud.polimi.it/.
10 https://aws.amazon.com/lambda/.

http://policloud.polimi.it/
https://aws.amazon.com/lambda/
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Fig. 4. Deployment alternatives to mimic the behavior and network proximity of edge
nodes.

perform the feature extraction and matching supported by the AWS Rekognition
service (Step 5.b).

The size of the payload for this experiment was fixed using a sample image
of approximately 500 Kb, which is a reasonable size for this use case [20]. The
workload was parameterized, ranging from 100 to 1000 requests, considering not
only the default maximum for concurrent executions in AWS Lambda11, but also
the limited resources of the local edge node. All functions deployed at the edge
and on cloud were configured with a maximum of 256 Mb of RAM per instance.

Results. Figure 5 shows the execution results for 100 and 1000 requests served
by the edge-based (locally and on PoliCloud) and cloud-based deployment alter-
natives. We run five times each experiment and show the average values.

Fig. 5. Experimental results for 100 and 1000 requests in the Edge-based and in the
Cloud-based deployments.

The latency is shown in Fig. 5(a), along with the standard deviation, calcu-
lated as the average over 100 and 1000 requests, respectively. These results do
not consider the actual computation time of the functions, that is, they only
consider the overhead of network communication per call. For the 100-request
11 http://docs.aws.amazon.com/lambda/latest/dg/concurrent-executions.html.

http://docs.aws.amazon.com/lambda/latest/dg/concurrent-executions.html
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scenario, the latency added by the edge-based solution is 80% and 31% less (Poli-
cloud and local, respectively) than the latency in the cloud alternative. For 1000
simultaneous requests, Edge-Policloud maintains a latency similar to the previ-
ous scenario. It still shows a clear advantage over the Cloud deployment (72% in
latency), which features a slight improvement but still higher latency and higher
deviation (as shown by the error indicators of top of each bar in Fig. 5(a)). The
results for edge-local deployment are not shown since it was not able to serve this
heavy workload, thus the openwhisk architecture throttles the execution causing
considerable overhead. The throughput is shown in Fig. 5(b) (standard deviation
is negligible thus not shown here) where the number of requests served per sec-
ond is better in the edge-based solutions, 80% (Policloud) and 30% (local) for
the 100 requests scenario. Regarding the 1000-request scenario, Edge-Policloud
maintains a similar throughput, a 3% better than the Cloud deployment, which
improved significantly due to the higher degree of parallelism achieved. Again,
the throughput for the Edge-local deployment is not shown since it was not able
to serve the workload timely.

Discussion. Obtained results confirm our hypotheses regarding the higher
latencies introduced by a cloud solution in the context of data-intensive, low-
latency applications. Despite the high degree of parallelism that can be achieved
by deploying a serverless solution in the cloud, the throughput decreases when
dealing with a heavy workload with images as payload.

In the 100-request scenario, where the cloud solution does not exploit all
the parallelism that it can achieve, the Edge solution clearly outstands. Particu-
larly, the Edge-Policloud solution outperformed the Cloud one by a 80% both in
latency and throughput. Even the Edge-local solution brings some improvement
(30%) despite its strictly constrained resources.

In the heavy workload scenario, the throughput of the Edge-Policloud and
Cloud solutions are similar. The näıve edge-local alternative fails on this scenario
since it cannot increase its allocated resources, which is a potential shortcom-
ing of too resource-constrained MEC nodes. We foresee that with even heavier
workloads, the Cloud solution will certainly outperform, since the higher laten-
cies introduced by sending/retrieving data from/to the Cloud are compensated
by its high scalability and parallelism, serving almost all requests simultane-
ously. However, in a real deployment, we foresee that the edge nodes will also
have access to more resources than in our experiment. Although the edge is cer-
tainly more resource-constrained than the cloud, several edge nodes would be
involved and interconnected in this architecture, allowing one to load-balance
the requests among them, and this achieve better throughput and lower latency,
as shown in the experiments.

Threats to Validity. First, the CPU power of serverless functions is allo-
cated proportionally to their memory configuration12. Thus, for CPU-intensive

12 https://aws.amazon.com/lambda/faqs/#functions.

https://aws.amazon.com/lambda/faqs/#functions
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applications, allocating the maximum memory to cloud functions will certainly
outperform the edge alternative (where it is not feasible to over-allocate mem-
ory and CPU due to limited resources) because of the shorter processing times,
and mitigates the gains in terms of latency. One should test and benchmark
the architecture to find the adequate trade-off among the resources allocated to
functions, the resources available in the edge nodes, and the overall cost. Sec-
ond, the connection among nodes in the mimicked edge architecture (local and
Policloud) was done through LAN (as depicted in Fig. 4), which may deliver
different connection speeds than a cellular network. To make this scenario more
accurate, we emulated 4G connection speeds between the Postman requests and
the Node.js server (Fig. 3) using network throttling tools13. Experiments with
real mobile devices and different link quality are very important. Finally, the
experiments focused on the latency of the serverless architecture stressed with
varying numbers of requests to the same functions. The performance of a server-
less solution stressed with heterogeneous functions calls was not part of this work.
Nonetheless, the ability of serverless providers [6,11] to handle the deployment
of heterogeneous functions on a limited set of containers is a strong argument
in favor of our solution when compared against a “simple” container-based edge
solution.

6 Related Work

The work in [3] presents the technical details of the first real-world MEC plat-
form by Nokia Siemens and Intel [21]. In this platform, MEC servers on base
stations are equipped with commodity hardware and application deployment is
based on virtualization technologies. Applications running on the mobile edge are
expected to be event-driven, which is in line with the serverless model discussed
in our paper. Besides, the authors present a taxonomy of MEC applications that
can profit from MEC deployment. Interestingly, our MAR application (Sect. 3)
is representative of two of the most benefited application classes: “Offloading”
and “Augmentation”.

Ismail et al. [22] evaluated different aspects of the deployment and opera-
tion of a container technology locally on edge nodes. In their work, a testbed
was setup using a database and three edge nodes interconnected by a company
network. Despite the similarity with this work, our proposal moves away from
virtualization and containerization of application logic, in favor of serverless com-
puting to optimize the use of edge resources and boost the potential of mobile
edge computing.

The work in [4] proposes two different recovery schemes for overloaded or
broken MEC servers. One recovery scheme is where an overloaded MEC server
offloads its work to available neighbors within transfer range. The other recovery
scheme is for situations when there is no available neighboring MEC within
transfer range, and uses devices as ad-hoc relay nodes in order to bridge two
13 https://developers.google.com/web/tools/chrome-devtools/network-performance/

network-conditions.

https://developers.google.com/web/tools/chrome-devtools/network-performance/network-conditions
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MEC servers. In a similar direction, Tärneberg et al. [2] proposed a model that
bridges mobile edge computing and the distributed cloud paradigm, as well as
an algorithm to solve the resource management challenges that emerge from this
integration. In contrast with these works, our approach mitigates the overload
in MEC servers by deploying a serverless architecture on them, which provides
an effective and efficient usage of available resources. Certainly, the scalability of
our proposed architecture could be extended by means of a neighbor offloading
strategy as proposed in [4] or by an integration of MEC and cloud resources as
proposed in [2].

The first documented efforts for bringing serverless capabilities to the edge
are very recent, and come mostly from industry. Lambda@Edge14 is a new func-
tionality of AWS (in preview at the time of writing this paper) that allows one to
explicitly deploy lambda functions to certain edge locations, closer to the user.
However, the notion of edge locations in AWS is coarse grained (but finer grained
than AWS regions): their edge schema, named CloudFront, consists of approx-
imately 70 edge nodes worldwide. In contrast, we consider that MEC enables
fine-grained edge nodes to be deployed closer to the user. In our proposed archi-
tecture, MEC servers can be distributed one every km2 or less. Furthermore,
the upcoming small 5G cells and microcells [3] allow us to think of one edge
node per block, or even per building in certain vital places, such as government
buildings, shopping centers or transport stations.

EdgeScale [23] is another platform that leverages serverless cloud computing
to enable storage and processing on a hierarchy of data centers, positioned over
the geographic span of a network between the user and traditional wide-area
cloud providers. EdgeScale applications are structured as lightweight, stateless
functions that can be rapidly instantiated on demand. This approach implements
all the functions, storage, routing and additional capabilities from scratch, while
we opted for leveraging current open technologies such as Openwhisk, which have
broad support from a major vendor (IBM) and an active community. Besides,
regarding the expected benefits of the approach, EdgeScale is on an early stage
and does not report any empirical evaluation of concrete gains in terms of latency,
throughput and bandwidth.

7 Conclusions and Future Work

This paper presents a novel serverless edge computing architecture that enables
the offloading of mobile computation with low latency and high throughput.
MEC servers are ideal candidates for offloading the computation to preserve
devices’ resources and kill latency, while a serverless model provides inherent
scalability and optimal resource utilization as the allocation of functions to con-
tainers is handled by the serverless platform itself, and the number of running
functions always matches the trigger rate. Additionally, the application developer
only focuses on the application code and can fully outsource the management of
the deployment/execution infrastructure.
14 http://docs.aws.amazon.com/lambda/latest/dg/lambda-edge.html.

http://docs.aws.amazon.com/lambda/latest/dg/lambda-edge.html


Empowering Low-Latency Applications 209

The proposed architecture is instantiated using a Mobile Augmented Reality
application, as a good example of a low-latency application in which the latency
introduced by transferring heavy payloads from/to the cloud can degrade the
user experience. We conducted experiments comparing an edge-based solution
with a cloud-based solution in this scenario, with the former outperforming the
latter up to 80% in terms of throughput and latency.

Our future work comprises the scenario in which several edge nodes are inter-
connected and can be involved in serving the requests. This should allow us to
achieve better throughput and lower latency, but with the additional complexity
of introducing load-balancing and resource-allocation mechanisms [24]. Addi-
tionally, the comparison with a traditional (non-serverless) deployment in the
cloud should be addressed, to find the right balance among resource consump-
tion, performance, and cost.
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Abstract. Block-level Storage is widely used to support heavy work-
loads. It can be directly accessed by the operating system, but it faces
some durability issues, hardware limitations and performance degrada-
tion in geographically distributed systems. Object-based Storage Device
(OSD) is a data storage concept widely used to support write-once-read-
many (WORM) systems. Because OSD contains data, metadata and an
unique identifier, it becomes very powerful and customizable. OSDs are
ideal for solving the increasing problems of data growth and resilience
requirements while mitigating costs. This paper describes a scalable stor-
age architecture that uses OSD from a distributed P2P Cloud Storage
system and delivers a Block-level Storage layer to the user. This archi-
tecture combines the advantages of the replication, reliability, and scala-
bility of a OSD on commodity hardware with the simplicity of raw block
for data-intensive workload. We retrieve data from the OSD in a set of
blocks called buckets, allowing read-ahead operations to improve the per-
formance of the raw block layer. Through this architecture we show the
possibility of using OSD on the back end and deliver a storage layer based
on raw blocks with better performance to the end user. We evaluated the
proposed architecture based on the cache behavior to understand non-
functional properties. Experiments were performed with different cache
sizes. High throughput performance was measured for heavy workloads
at the two storage layers.
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1 Introduction

The concept for Block-level Storage is almost universally employed for all types
of storage [10,17]. It splits files into evenly-sized blocks of data, each with its
own address, but with no additional information (metadata) to provide more
context about the block. This data storage concept can be directly accessed by
the operating systems as a mounted drive volume and it delivers a significant
performance improvement compared to others data storage concepts. Beyond
a hundred of terabytes, however, it may run into durability issues, hardware
limitations, or management overhead. Moreover, performance degrades on geo-
graphically distributed systems.

Object-based Storage (OSD) emerged after promising to be more powerful
and customizable [6,13]. This data storage concept does not split files into raw
blocks of data, but into entire clumps of data stored in objects that contain data,
metadata, and an unique identifier. There is no limit on the type or amount of
metadata, so objects can include anything (e.g., security classification). OSD
is mainly used to solve problems related to data growth due to its scalability
properties. Nevertheless, OSD typically does not offer good throughput for the
end user.

In this work we attempt to combine the benefits of both data storage con-
cepts. We propose a storage architecture that uses Block-level Storage on its first
layer and OSD on its second layer. We created a set of blocks on the first layer
and called them buckets. The buckets have metadata that are used to upload
and retrieve them from the OSD to a very small and fast device for the Block-
level Storage (cache). This storage architecture we call uStorage. The OSD layer
we call CSP (Cloud Storage Platform) and it consists of a low-cost distribute
system to store files using P2P networks.

There are several other systems that deliver a Block-level Storage to the end
user, but store data in a different architectures. Ceph uses POSIX [24], Panasas
uses a cluster with RAID [14], IBM Storwize uses a cluster [9] and Nexenta uses
a Cloud Storage Service based on Objects [1]. It is very acceptable to use Block-
level Storage on the user interface and couple with another storage architecture,
as long the back-end Storage architecture addresses non-functional requirements
to the Block-level Storage (e.g., reliability, responsiveness, availability). However,
it is also crucial to have a good strategy on the first storage layer to handle heavy
workloads.

This paper presents uStorage, an architecture that can handle heavy work-
loads on the Block-level Storage and also be coupled to an OSD. We evaluated
the architecture based on the cache non-functional properties, using the same
methodology adopted by others [3,7]. The buckets that are not used on the cache
can be removed, and those that are requested have to be restored from the OSD.
The challenge in this architecture is to optimize the bucket and the cache size to
avoid performance degradation. This paper presents the uStorage architecture
on Sect. 2 and its implementation details on Sect. 3. The evaluation is presented
on Sect. 4 followed by some related works on Sect. 5. The final Sect. 6 describes
the main conclusions and proposed future work.



uStorage - A Storage Architecture to Provide Block-Level Storage 215

2 uStorage Architecture

The uStorage architecture delivers raw block interface to the users through
the iSCSI components presented on the Fig. 1. All the components on the
CSP [4,5] module are used as a OSD storage. The CSP is a module of the
uStorage that is responsible for saving all buckets on the DataPeers with its
metadata on the Metadata Storage. The CSP also provides high availabil-
ity for the buckets because there are at least two copies of them in different
DataPeers. Each DataPeer is a commodity hardware where the buckets are stored.
The horizontal scalability property is achieved by adding more DataPeers on the
Data Storage.

Fig. 1. uStorage architecture components: CSP (Cloud Storage Platform) contains a
Metadata Storage, Server and SuperPeer to manage all buckets on the DataPeers. The
iSCSI Target cache is located in a SSD drive. The admin layer uses the broker layer to
manage the whole uStorage platform.

Block-level Storage devices are usually designed to be the first storage layer
because it can be directly accessed by the operating system as a mounted drive
volume. Meanwhile, OSD cannot do so without significant performance degra-
dation. The OSD storage does not split files up into raw blocks of data. Instead,
entire clumps of data are stored in an object that contains the data, metadata,
and an unique identifier. There is no limit on the type or amount of metadata,
which makes OSD powerful and customizable. In the enterprise data center, OSD
is used for these same types of storage needs, where the data needs to be highly
available and durable [4,5]. This type of system has certain characteristics that
would be impossible to achieve if only one of these types of storage architectures
were used. uStorage achieves through this architecture the following properties:
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– unlimited storage space as much the CSP module can offer. This is achieved
through the DataPeers that can be added dynamically.

– It does not use the user’s computer as a cache stage or replication of files as
CSP uses, but still guarantee the scalability and reliability of the CSP.

– It reaches an acceptable performance compared to other storage system.
– It provides all these features using a coupled architecture of rawblocks andOSD.

2.1 uStorage Components

uStorage delivers a virtual disk with large capacity using block-level virtualiza-
tion. This virtual disk delivered to the user is on the master mode. The slave
mode achieves the reliability feature of this storage architecture. The architec-
ture uses an iSCSI Target component as cache with the CSP as back end to
store objects. The users connect to the uStorage through the iSCSI initiator or
by any interfaces connected to it (e.g., NFS, CIFS, APFS). The original iSCSI
systems have the data centralized in a server called Target [18]. However, the
iSCSI Target at the uStorage is a cache with high performance and small storage
capacity. The data arrives in the iSCSI Target cache and as soon the metadata
has been created, the data is flushed to the DataPeers on the CSP, according
to the iSCSI Target cache algorithm.

The iSCSI protocol is used between the two iSCSI components and to connect
the iSCSI initiator with the user. This protocol transports SCSI messages over
TCP/IP [23]. Other SCSI protocols include SCSI Serial [22] and FCP (Fibre
Channel Protocol) [15]. A major advantage of iSCSI over FCP is that it can run
over standard off-the-shelf network components, such as Ethernet. Moreover,
iSCSI can exploit existing IP-based protocols such as IPSec for security and
SLP (Service Location Protocol) for discovery.

The files copied to the iSCSI initiator are sharded in pieces in the iSCSI
Target cache (buckets). The bucket size is 2 MB and it has a set of raw blocks.
Once the buckets are request by the iSCSI initiator, the iSCSI Target cache has
the role of restore them from the CSP if they are not in the cache. If the buckets
are less used by the iSCSI initiator, the iSCSI Target cache keep them only in
the CSP. Only the frequently used buckets remain in the cache. The others will
stay in the CSP to be requested on demand. These buckets are replicated in
different DataPeers with the minimum quorum of two. Although the uStorage
architecture does not use RAID as other storages architectures to replicate data
[1,14], the DataPeers contain replicated buckets.

The cache on the iSCSI Target is a possible spot of failure that has to be
always available to the iSCSI initiator. uStorage provides a master and slave
architecture for the iSCSI Target cache on a second server. The slave server has
an iSCSI Target configured with the same IP address of the master server. Its
network interface is enabled only when the master goes down. All the buckets
are replicated from the master CSP to the slave CSP through a process running
on the Server. All the buckets on the master are independent from the slave
server. The buckets frequently used on the master iSCSI Target cache are also
updated on the slave iSCSI Target cache.
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Fig. 2. Physical or deployment architectural view of the uStorage according to archi-
tectural model 4+1 [11]. The users can mount the NFS drive or direct connect to the
iSCSI initiator. The iSCSI Target manages all buckets on the cache and it uses an
improved JXTA protocol to transfer them to the CSP. The user can mount the iSCSI
drive and manage to add or remove DataPeers on the Admin through AMQP messages.

The iSCSI Target capacity is limited by the filesystem (i.e., ext4, xfs, NTFS)
because it is virtualized. The bucket size (2 MB) allows read ahead on the files
and the iSCSI Target cache spares restore operations on the CSP. The size of
the buckets is a trade-off approach because, if they are too small it is necessary
to do a lot of restore operations. Nevertheless, if they are too big the write
operation lacks performance on the iSCSI protocol. Figure 2 presents the physical
architecture model of the iSCSI Target connected to the CSP. The iSCSI Target
can contain multiple instances of LUNs (Logic Unit Number). These instances
can share the same cache space. It is better to have several iSCSI virtual disks of
8 TB capacity connected to the NFS instead of having just one very large iSCSI
virtual disk of 128 TB connected. Because the iSCSI Target virtualise its size
based on the CSP module, it can deliver a very large disk to the iSCSI initiator.

2.2 CSP (Cloud Storage Platform)

The distribute storage module CSP (Cloud Storage Platform) [4,5] consists of a
low-cost architecture to store files as objects using P2P networks. The files are
split and stored in pieces of predefined size (buckets) and recorded on several
computers (network nodes) connected to the P2P network. The bucket replica-
tion is done by a running algorithm on the Server component. The CSP module
can be used to store large amounts of data (greater than 1 PBytes). Figure 2
presents the communication among all components.

Superpeer is responsible to manage the Server and the DataPeers connected
on the CSP through a P2P network. It works as a proxy that has a list of
services, managing their availability. The Server manages the services used
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on the P2P network: authentication, bucket management, peers availability,
DataPeer and bucket lookup. Metadata Storage stores the buckets metadata,
that we use a relational database. The Data Storage is composed by DataPeers
to store buckets. Buckets are files and its name start with letters that correspond
to the DataPeer and directory that they located. The algorithm that chooses the
location to store each bucket is on the Server component. The communication
among the CSP components is done by a improved JXTA protocol, an open
source P2P protocol specification created by Sun Microsystems [8].

CSP enables unlimited storage space reachable through large levels of hor-
izontal scalability by simply adding new DataPeers. The availability feature is
done by ensuring the level of bucket replication greater than one. The buckets
are built on the iSCSI Target as a set of raw blocks. The CSP can sharded them,
however this operation is not efficient when they need to be restored. The bucket
represents the OSD objects because it is a file with a set of attributes that define
various aspects of itself on the metadata (i.e., size, host and filesystem locality,
deduplication version). This simplifies the task of the storage architecture and
increases its flexibility by distributing the management of the data with the data
itself.

After saving the buckets on the CSP, they can be removed from the iSCSI
Target Cache when they are not being frequently accessed, according to the
cache algorithm. The access control of these buckets is done by a read and
write cache algorithm, which may have its size configured on the iSCSI Target.
The cache size is usually 10 GB less the size of the SSD drive, where the iSCSI
Target cache is configured (safety approach in case of the overloaded cache). The
cache accelerates the read and write access to the iSCSI Target like some RAID
controllers use cache with the same propose.

2.3 Providing Block-Level Storage Through Object-Based Storage

The uStorage architecture uses raw block (iSCSI) on the first layer and OSD on
the second layer (CSP). The capacity of the iSCSI Target cache is virtualized to
the OSD layer, that has much more scalability provision through the DataPeers.
This strategy makes possible to have more space on the iSCSI initiator virtual
disk than it is available on the iSCSI Target. Through the raw blocks on the first
layer, the I/O operations are faster than OSD [6,13]. Moreover, to achieve scal-
ability the OSD architecture is more recommended [12]. As a result, we deliver
a fast interface to the user through the iSCSI initiator and scale horizontally
the OSD.

The iSCSI Target cache is the main component that improves the perfor-
mance of the whole storage architecture. It is possible to create different LUN’s
on this component and connect them on the same iSCSI initiator. So we can
have different users sharing the same iSCSI Target cache. The Server is respon-
sible to replicate all the buckets on the iSCSI Target master to the slave. All the
buckets state are saved on the Metadata Storage, so it is possible to know which
buckets were on the iSCSI Target cache master fail over.
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3 uStorage Architecture Implementation

Given the uStorage architecture described before, the implementation of the
iSCSI Target cache has the following requirements:

R.1 which clean policy must be used on the iSCSI Target cache?
R.2 when the clean policy must be executed?
R.3 how many buckets must be removed on the policy execution?
R.4 which buckets must be removed from the iSCSI Target cache?

Most of the cache policies use LRU (Least Recently Used) algorithm [3,7].
Moreover, it makes more sense to leave the frequently used buckets on the cache
and remove the buckets not used (R.1). The policy must be executed on the
same pace that the buckets are accessed in a real scenario. So, if any file (on
the raw block layer) is accessed, the policy will execute and the cache is going
to have the same buckets that it had before (R.2). For this calibration we set
the policy execution schedule between five and seven seconds, based on the
evaluation demonstrated at Sect. 4.

It is necessary to make room for the new buckets by removing an amount of
buckets that can be written between each policy execution or when the cache is
almost full (90%). When the stored buckets amount exceeds 90% of the cache
size, the buckets less accessed and already recorded on the CSP can be removed
from the iSCSI Target cache. When these buckets are required to read or write,
they are restored from the CSP. In another view, 10% of the cache free space
must be enough to have a high write throughput to store new buckets and remove
the ones already stored on the CSP (R.3), as we demonstrated on Sect. 4.

The Least Recently Used on the iSCSI Target cache queue must be removed.
This module also knows which buckets have higher probability to contain
inodes1. The metadata of the bucket has two status: INDEX or DATA. If the
status is set to INDEX, even if it is not recently used, the bucket will not be
removed. The INDEX buckets are set during the disk format. All other buckets
after the disk formatting are set as DATA status. They are eligible to be removed
by the policy even if they have inodes (R.4), because they are not crucial to open
the disk and then can be found through the inodes chain [16].

3.1 iSCSI Target Cache Algorithm

Figure 3 shows the sequence diagram of the iSCSI Target cache algorithm, with
write and read operations, according to the architectural model 4+1 [11]. The
process can be split into six components. The iSCSI components are the ini-
tiator and the Target cache modules of the uStorage. It receives read and
write operations from the initiator and the communication is through the iSCSI
protocol [18].

1 An inode is the primary structure used in many UNIX file systems. It contains file
attributes such as access time, size, and group and user information.
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Fig. 3. Sequence diagram of the uStorage architecture according to architectural model
4+1 [11]. The iSCSI’s components read and write all buckets from the LRU cache. The
get messages are synchronous and do not use the WOC component. When a bucket
has to be send to the Backup component it is an asynchronous message and it uses the
WOC component to make sure it is not being edited while it is being send to the CSP.

The LRU cache component is the Least Recently Used algorithm implemented
to increase the performance on the iSCSI Target cache. The cache is allocated
on a SSD hard drive with 100 GB size, which I/O responses are 250 MB/s, while
the HDD are 70 MB/s. If the iSCSI Target receives a read operation and the
bucket is in the cache, it is not necessary to restore it from the CSP, otherwise
the process goes to the Restore component in a synchronous way to get the
bucket. The write operation get the bucket from the LRU Cache if it is present,
otherwise get it from CSP through the Restore component in a synchronous
process. While this operation is writing on the LRU Cache, it also set a time on
the WOC component (policy write-on-close) to save this bucket on the CSP in an
asynchronous process. We decided to allocate the Metadata Storage component
on the SSD drive to improve the cache performance.

The WOC component guarantees the backup process (saving buckets into
the CSP) more efficient in an asynchronous process. This is based on the policy
write-on-close for filesystem [20]. This strategy ensures that the bucket will only
be sent to the CSP when it is no longer receiving bytes and also after 10 s without
write access (also configurable). If the bucket contains several inodes, it will be
changed a lot in less then 10 s and the cache algorithm will not send it to the
CSP. If the bucket contains only data and no inodes, it will be written and not
accessed afterwards. After 10 s with out receiving write I/O operations it will be
sent to the CSP in an asynchronous process.

3.2 FSM (Finite-State Machine) for Bucket Management

Figure 4 depicts the usage control flow of buckets within the uStorage architec-
ture. These states are persisted on the Metadata Storage component, as was
presented at the Fig. 2. A given bucket can be in one of four states:
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Fig. 4. Buckets metadata Finite-State Machine applied to bucket management within
the uStorage architecture. The dotted line are asynchronous operations and the con-
tinuous lines are synchronous operations. The buckets can have four states (LOCAL,
LOCAL CSP, CSP, PROCESSING).

S.1 LOCAL: the bucket is only on the iSCSI Target cache and CSP has an old
version.

S.2 LOCAL CSP : the bucket has the same version on the iSCSI Target cache
and CSP.

S.3 CPS : the bucket is only on CSP and not on the iSCSI Target cache.
S.4 PROCESS : the bucket is on backup process to the CSP and it is locked to

edition.

Five operations can be performed over the buckets:

O.1 write: this operation always modify the buckets state to LOCAL and the
bucket version on CSP became old.

O.2 restore on write: this operation modifies the bucket state to LOCAL, since
it is also a write operation. It happens when the bucket is only on CSP.
The bucket needs to be restored before its content is modified. If the restore
operation fail the file can be corrupted.

O.3 restore on read : this operation doesn’t modify the bucket content, however,
it happens when the bucket is only on the CSP. The bucket state is modified
to LOCAL CSP.

O.4 backup: this operation is asynchronous (dotted line), so it does not decrease
the uStorage architecture performance. It happens in two steps. First the
buckets are changed to PROCESS state and when the backup is successful,
its state is changed to LOCAL CSP. These two steps ensure the same version
on the iSCSI Target cache and CSP.

O.5 clean LRU cache: this operation is also asynchronous and it is executed
by the LRU algorithm. The less accessed buckets and the buckets with the
LOCAL CSP state can be deleted from iSCSI Target cache and their state
are changed to CSP.

3.3 Architecture Calibrations

Since the uStorage writing operation should be performed immediately when it
is starting, a batch was created to periodically reserve space on the cache. The
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Fig. 5. uStorage iSCSI Target cache configured to 20GB and set of files with 20GB
in total. The cache has the same size of the set of files we are storing. All eviction
(bucket remove) operations are mostly due to create inodes. We have few Cache Miss
(restore) operations and the eviction operations don’t need to work often.

cache algorithm will not remove buckets until it reaches 90% of its usage, so we
guarantee that 90 GB of buckets are in use. We judge to always keep 10% of
the cache space free to receive new buckets and if the CSP is off. This space
will always be available if there is any recording buckets on the iSCSI Target
[19,20]. It is hard recommended to always have a reserve free space on the iSCSI
Target cache to write buckets and avoid performance degradation. This space
was estimated according to calibrations and tests with the system explained on
the Figs. 5 and 6.

The restore operation had to be implemented to lock the bucket for any pos-
sible write. Otherwise it is a big chance to lose the file we are accessing or even
lose the whole filesystem. This situation was avoid by making sure that there
is always one thread restoring the bucket requested by the iSCSI Target cache.
After the restore operation is completed, read and write threads operations can
be done concurrently, because the came from the iSCSI protocol. In our sce-
narios, the restore operations took less than 0.5 s. Considering we are using a
2 MB bucket size, the read-ahead operation gains performance just in this restore
process.
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Fig. 6. uStorage iSCSI Target cache configured to 5 GB and set of files with 20GB
in total. The cache is four times fewer than the files we are storing. The algorithm is
always making space on the cache with the eviction (bucket remove) operation and all
the Cache Miss (restore) operations never overlaps the quantity of evictions.

4 uStorage Architecture Evaluation

We used three methodologies to evaluate the uStorage architecture. The purpose
of each methodology was to simulate the max performance that the iSCSI Target
cache can deliver to the user. The first methodology we evaluate the cache using
the same concept used by Amazon ElastiCache to measure and take the best
performance of the iSCSI Target cache [3]. The main factor of an effective cache
strategy is to enable systems to have good scalability. Amazon ElastiCache has
two major operations that are available on its cache. The eviction operation has
the same semantics of the bucket remove operation of the iSCSI Target cache.
Its objective is make place for new buckets that are arriving in the cache. The
Cache Miss operation has the same semantic of the bucket restore operation of
the iSCSI Target cache. When the bucket is not found in the iSCSI Target cache
it is necessary to restore it.

A large number of eviction operations (bucket remove) can be a sign that the
space on the cache is overloaded. If a Cache Miss (restore) operation is stable
there is nothing to worry. However, if the combination of a large number of Cache
Miss with a large number of eviction operation is happening, it is a sign that
the cache is failing due a lack of memory. Figure 5 presents a 20 GB cache size
and how many buckets have been processed by the eviction (remove) operation
and by the Cache Miss (restore) operation. Figure 6 presents the same metrics
but with a 5 GB cache. Both evaluation we used a file of 20 GB size. Through
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Fig. 7. Benchmark FIO of uStorage with 20GB file and cache of 5GB. Avg: 23131
IOPs.

these two metrics we can see the good behavior of the cache because the number
of Cache Miss never exceed the number of the eviction. Even in a very small
cache of 5 GB size and with files four times its size (20 GB size) the eviction and
Cache Miss operations are more concentrated.

The second evaluation we used FIO benchmark [2] to test how many IOPs
the iSCSI Target cache could reach. FIO is a popular tool to measure IOPs
on Linux storage servers. We configured the cache for 5 GB size and the FIO
benchmark to work with a set of 20 GB files. Through this configuration we could
achieve 75% of Cache Miss (restore) and eviction (bucket remove) operations
on the cache. Figure 7 shows that the uStorage reaches 63 K IOPs on its peak
and an average of 23 K IOPs.

The third evaluation on the iSCSI Target cache we used the methodology
proposed by [21]. The uStorage was set to work with different number of LUNs
in each measure and different size of buckets as well. We variated the bucket size
from 1 KB to 1 MB and took the average of the results. Then we took 10 metrics
for each LUN quantity that we configured for the same iSCSI Target cache (1
until 4). Table 1 shows the results for writes on the same iSCSI Target cache
using the dd command pointed to /dev/random with a 10 GB file. The write
process was in parallel as we add more LUNs, and we calculated the average
of all results. uStorage could reach more IOPs comparing to a SATA disk, also
when we add more LUNs on its cache to do parallel writing. The number of the
threads on the uStorage didn’t grow on the same pace of the number of LUNs.
The same behavior can be said for the memory and cpu usage.
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Table 1. Parallel write comparison on only one SATA hard disk and different number
of LUNs on the same iSCSI Target cache.

SATA IOPs LUNs Target cache IOPs Threads Mem GB CPU%

10 m 30 s 62.6 1 11 m 21 s 168.5 642 2.3 26.1

23 m 30 s 59.1 2 17 m 26 s 207.2 881 3.4 46.5

39 m 46 s 54.2 3 33 m 45 s 203.6 1127 3.6 59.4

58 m 10 s 81.3 4 41 m 35 s 217.2 1254 4.5 69.4

5 Related Work

This section describes some related works to the uStorage architecture, which
therefore involve cloud storage and the closest possible to the SAN architectures.

NexentaStor [1] is a storage system with access levels to I/Os for files (NFS)
and blocks (iSCSI). Its architecture provides techniques for spreading I/O work-
load over multiple domains (local and remote), while at the same time increasing
operational mobility and data redundancy. File and block level I/O access are
addressed. NexentaStor uses metadata for blocks, the domains are physical, and
it has characteristics of horizontal scaling. It has a method for resolving a single
server bottleneck performing one or more of the following operations: splitting
a filesystem into two or more parts; extending a filesystem residing on a given
storage server with its new filesystem part in a certain specified I/O domain;
migrating or replicating one or more of those parts into separate I/O domains;
merging some or all of the filesystem parts to create a single combined filesystem,
and then redirecting the filesystem clients to use the resulting filesystem span-
ning multiple I/O domains. NexentaStor uses File-based Storage and Block-level
Storage while uStorage architecture uses also OSD to reach scalability on the
second storage layer.

IBM Storwize [9] has an architecture to create, read and write compressed
data for utilization with a block mode access storage. The compressed data are
packed into plurality of compressed units and stored in a storage LU (Logical
Unit). One or more corresponding compressed units may be read or updated with
no need of restoring the entire storage LU while maintaining de-fragmented LU
structure. IBM Storwize specially works with cluster. The blocks are compressed
and decompressed from nodes, due to save time for many restore operations and
space on the entire cluster. The main goal of the IBM Storwize is to use less
restore operations as possible, by compressing the data in blocks. The uStorage
architecture does have similar goal and it is achieved by grouping a set of blocks
in buckets, that we are configured to 2 MB size. The larger the bucket is, less
restore operations are need. We tested the compress and decompress operations
with set of buckets, but it waste a lot of cpu process and compete with the iSCSI
PDU process.

Ceph [24] maximizes the separation between data and metadata management
by replacing allocation tables with a pseudo-random data distribution function
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(CRUSH ) designed for heterogeneous and dynamic clusters of unreliable OSDs.
Its device has intelligence of distributing data replication, failure detection and
recovery to semi-autonomous OSDs running on a specialized local object filesys-
tem. The design goals of Ceph are a POSIX filesystem (as much as close) that is
scalable, reliable, and has very good performance. However, probably the most
fundamental core assumption in the design of Ceph is that large-scale storage
systems are dynamic and there are guaranteed to be failures. Therefore, the
storage hardware is added and removed and the workloads on the system are
changing. It is presumed there will be hardware failures and the filesystem needs
to adaptable and resilient. Ceph uses its own filesystem based on OSD, while
uStorage architecture uses Linux filesystem to deliver raw blocks on the primary
storage layer. As result both architectures can provide a reliable storage layer
to save contents with heterogeneous and dynamic cluster, but they use different
ways to achieve it.

Panasas [14] is a company that builds object storage systems and took over
the Extended Object FS (exofs) project, previously called osdfs (OSD file sys-
tem). The exofs is a traditional Linux filesystem built on an object storage system
with the origin of the ext2 filesystem. The Panasas Storage Cluster architec-
ture is a Block-level Storage interface to OSD. This filesystem is partitioned
between clients and manager, and uses RAID to strip data across OSDs. The
Panasas ActiveScale Storage Cluster core is a decoupling of the datapath (read,
write) from the control path (metadata). This separation provides a method for
allowing clients direct and parallel access to the storage devices, providing high
bandwidth to individual clients and to workstation clusters. It also distributes
the system metadata allowing shared file access without a central bottleneck.
Metadata is managed in a metadata server, a computing node separate from the
OSDs, but residing on the same physical network. While Panasas uses RAID to
make the data reliable, uStorage uses the DataPeers to store buckets.

6 Conclusion

This paper presented a storage architecture that uses Object-based Storage
Device (OSD) on the back-end and delivers a Block-level Storage interface to the
user. The motivation to use these two data storage concepts is because raw blocks
handle heavy workloads and the OSD can easily scale horizontally with great
reliability. The cache algorithm was evaluated by three methodologies. First we
analyzed the health of the cache based on Amazon ElastiCache parameters [3].
Second we used the FIO benchmark to see how much IOPs the iSCSI Target
cache achieves when it is configured in a very small size. Third we instantiated
several LUNs on the same iSCSI Target cache and took metrics with different
buckets size. When multiple users are connected to the uStorage the architecture
uses less resources than multiple iSCSI Target on the same architecture.

Some considerations of future work on this architecture can be spread to its
components. The iSCSI Target cache algorithm can be improved using black-
box model for storage system [25]. The Metadata Storage can use a different



uStorage - A Storage Architecture to Provide Block-Level Storage 227

database to improve its performance, but it is still necessary to guarantee the
ACID properties.
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Abstract. Nowadays, healthcare is facing Big Data processing in order
to support medical staff by means of decision making tools. In this con-
text, a challenging topic is the storing and analysis of data in the car-
diology field. Electrocardiogram produces signals about the heart health
that need to be processed in order to detect a possible disorder. In this
paper, we discuss an Apache Spark based tool and that uses the Menard
algorithm. In order to validate our solution, we performed experiments
on a use case in which the algorithm has been implemented in order to
detect heart disorder. Experiments prove the goodness of our approach
in terms of performance.

Keywords: Big Data · Healthcare · Cardiology · Heart · ECG ·
Arrhythmia

1 Introduction

Currently, the healthcare industry is looking at the adoption of Big Data due to
the volume, velocity and variety properties of health data. Big Data solutions
have been adopted so far in different healthcare fields including biotechnology
[1], clinical analysis [2], and so on. Therefore, a careful study of clinical data
performed by means of decision making tools helps doctors to make diagnosis.

In this regard, hospital facilities are relying on external providers or internal
staff to manage and analyze clinical data. Apache Spark is a licensed frame-
work designed to support distributed applications for creating batch applica-
tions, interactive queries and stream processing. Spark adopts the MapReduce
software framework, created by Google to support distributed data computing
on cluster.

In this scientific work, we used Apache Spark in order to analyze electro-
cardiogram (ECG) signals. Specifically, goal of our analysis was to detect heart
disorder. To this end, we planned to use the Menard algorithm.

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
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The rest of the paper is organized as follows. Related work are summarized in
Sect. 2. An overview about heart physiognomy and functionality and ECG is pre-
sented in Sects. 3 and 4, whereas a Menard algorithm description and its Spark
implementation for hearbeat peaks detection are presented in Sect. 5. Experi-
ments and evaluation results are presented in Sect. 6. In the end, conclusion and
lights to the future are summarized in Sect. 7.

2 Related Work

The scientific community has proposed several scientific works on heart disorder
analysis in order to improve the accuracy, prevent diseases and reduce mortality.
In the following, we report some of these works.

Many scientific works combine ECG signal analysis with the most famous
Big Data framework: Apache Hadoop. A tele-ECG system has been proposed
in [3]. The authors aimed to process Big Data in order to detect and moni-
tor heart diseases. They proposed a cluster which takes advantage of Apache
Spark framework. Specifically, this system classifies data using decision tree and
random forest.

An analysis of arrhythmias has ben proposed in [4], in which the authors
proposed an automatic detection of P-wave in an ECG. More specifically, they
worked a improved method based on local distance transform, such as horizontal
segments and rising or declining segment. As result, they proved the simplicity
and efficiency of the algorithms for transplanting to wearable medical devices
whose processing ability is weak.

In order to facilitate the data migration from medical devices to Cloud stor-
age, we mention the work proposed in [5]. The authors described the first step of
an architecture able to manage the Big Data Acquisition and Integration work-
flow for storing health data coming from several medical instrumentations. This
scientific work has proved the goodness of the method used in terms of time
performance.

A Cardiovascular Disease (CVD) detection algorithm was proposed in [6].
The algorithm uses patient demographic data as input, along with several ECG
signal features automatically extracted through signal processing techniques.
The algorithm has been integrated into a web based system that can be used
at anytime by patients to check their heart health status. Signals are sent from
the ECG sensor attached on the patient’s body to the detection algorithm via
an Android device. Cross-validation results showed the 98.29% accuracy.

We aim to enrich the scientific literature by proposing a work that uses
the Menard algorithm to perform the distributed calculation of an ECG signal
through the Apache Spark framework, in order to detect the most common heart
diseases.

3 The Heart. How Does It Work?

The heart is passively filled with blood that comes from veins and actively
pushes blood through the body. A complete contraction and relaxation sequence
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Fig. 1. The heart cycle (The mammalian heart & cardiac cycle)

represents the heart cycle, which normally is repeated about 75 times per minute.
The Fig. 1 shows this cycle.

Specifically, in the first phase (diastole) the heart is completely relaxed and
blood flows into its four cavities because of the atriovascular valves opening. The
second phase (systole) begins with a short limbs contraction that completely fills
ventricles with blood. Afterwards, the ventricles will contract for about 0.3 s. The
force of their contraction closes the atrioventricular valves, opens the semilunar
valves and pumps blood into the large arteries. During the last phase, blood
flows into the atrioventriculars.

4 Heart Medical Instrumentation: The ECG

The electrocardiogram (ECG) is an instrumental diagnostic test that graphi-
cally records the rhythm and electrical activity of the heart. This allows the
cardiologist to detect health disorder such as the presence of heart arrhythmias,
ischemia, myocardial infarction or outcomes of a previous heart attack.

Indeed, heart pathological phenomena creates abnormal conditions in the
muscle fibrocells, generating a different pattern from the standard. However, a
standard pattern does not represent a proper heart condition, and vice versa,
healthy people can have abnormal ECG outcomes. In these conditions, medical
opinion is always mandatory.

The ECG test produces positive and negative waves, according to the signal
position compared to the baseline, called isoelectric. Each wave is the graphic
representation of an electric phenomenon that occurred in the heart. In par-
ticular, we can distinguish five signal period as reported in the Fig. 2. For our
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Fig. 2. ECG outcomes (hyperphysics.phy-astr.gsu.edu)

purpose, here we specify the QRS complex as the stimulus propagation to the
ventricular muscle.

5 Application Design

Over the years, many algorithms have been developed for recognizing the QRS
complex, which can be classified according to their complexity and performance.
Specifically, most efficient and complex algorithms are based on appropriate tech-
niques for filtering and processing ECG signals, whereas less complex algorithms
are based on statistical thresholds. In the following, we are going to focus on a
specific algorithm based on ECG signal derivation: the Menard algorithm [7].
This is calculated using the following equation:

Y (n) = −2X(n − 2) − X(n − 1) + X(n + 1) + 2X(n + 2) (1)

Afterwards, a ζ threshold of 70% of the maximum Y (n) value is chosen:

ζ = 0.7 ∗ max[Y (n)] (2)

Finally, the algorithm adopts the following decision rule to detect the QRS
complex:

Y (i) > ζ ⇒ QRS (3)

http://hyperphysics.phy-astr.gsu.edu
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In this scientific work, the Menard algorithm has been used for calculating
the QRS complex thorugh the utilization of Apache Spark. The dataset used
for the following experiments comes from the Physionet.org European ST-T
Database. It includes a signal acquired by a digitizer with sampling rate equal
to fs = 250Hz. In order to process it, the file must be properly formatted. For
this purpose, two preliminary steps were needed.

Primarily, having to act on multiple samples at the same time, we needed
to organize an appropriate set of samples on one file line because Apache Spark
treates each of them as a strings RDD. Moreover, Spark distributes workload in
tasks, which involves multiple lines processement of the RDD. Neverthess, the
Menard algorithm implementation performs the derivation through the formula
1, which shows how a continuous set of data is needed. Indeed, in order to deter-
mine the nth element of the derivative, we needed to know the two previous and
subsequent elements of the nth ECG signal. Thus, we overlap content introduc-
ing row by row redundancy (except the last one). This avoids the information
losing during the cluster distribution phase. Moreover, during the source file
formatting process, each line is indexed for tracking the reference samples.

However, how many samples should form an RDD element? How many values
should be placed on a row of the file? Let’s consider that an electrocardiogram
typically oscillates between -20 mv and 20 mv, the calculation of the Menard
algorithm threshold may not take into account these variations using a signal
large portion. Therefore, it may not correctly detect heartbeat peaks. The pro-
posed solution was to implement a version of the algorithm with an adaptive
threshold, which is calculated differently for each sample block.

Thus, our implementation uses a set of samples with a duration equal to 10 s.
To this end, if we indicate with fs the sampling frequency of the ECG signal,
all the file lines (except the last one) have n = (fs ∗ 10) + 4, where 4 is due to
the abovementioned overlap.

The only information required for calculating the QRS complex is represented
by the detected peak index because, multiplying it by the sampling frequency
reciprocal, it is useful to trace the beat time. Moreover, we had to determine
which peak signals above the threshold may be considered a heartbeat. Indeed,
these values are more than one around a QRS complex. In order to simplify it,
we chose the first value above the threshold. The Fig. 3 shows the peak signals
of an ECG derivative.

In order to distribute the RDD to the cluster’s nodes and create a elements
list on the driver, it is necessary to use the collect() method. It is the first
action performed by the application. Indeed, until now, we have only talked
about transformations. Therefore, the saveAsTextFile() method examines all
the peaks’ RDD trasformations in order to save it on a file.

What if the threshold values of a ECG signal section were between two blocks
(or between two nodes)? Both the first index above the threshold of the first block
and the first index above the threshold of the second block would be selected as
peaks. The proposed solution requires that application knows the values found,
and recognizes the extremely close peaks.
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Fig. 3. ECG derivative and threshold

6 Experiments

The testbed for performing our experiments was configured into a three nodes
(1 master, 2 slaves) docker distributed environment with the following hard-
ware specifications: Quad-Core and RAM 8 GB. Each node was configured with
Ubuntu 14.04, OpenJDK 7, Spark 1.6.1 and Scala 2.11.8. Moreover, the Apache
Spark framework used its scheduling process, without relying on third party
cluster manager, such as YARN. Specifically, using a 5 GB input file, Spark dis-
tributes the workload in 157 tasks among cluster’s nodes.

The test included a hour ECG signal with sampling rate equal to 360 Hz.
With reference to Sect. 5, actions carried out by the Spark application are collect
and saveAsTextFile. In this regard, we show the collect tests outcomes in the
Fig. 4.

The temporal outcomes are quite similar, as highlighted by the small confi-
dence interval. The collect average time value is about 23 s.

Now consider the case of the saveAsTextFile action, shown in the Fig. 5.
Again, the input size increasing causes a nonlinear increasing of the action exe-
cution time. Specifically, the average execution time is about 5.6 s. In this specific
context, the collect benefits more from parallelization than saveAsTextFile.

The analyses carried out are related to a specific ECG signal. Clearly, each
ECG differs from others in terms of peaks and abnormalities, therefore these
outcomes are not considered indicative for generic ECG signal.
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Fig. 4. collect action for 5 GB file. 20 proofs average and confidence interval equal
to 95%

Fig. 5. saveAsTextFile action for 5 GB file. 20 proofs average and confidence interval
equal to 95%
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7 Conclusion and Future Work

This scientific work has addressed the problem of the ECG signals distrib-
uted processing. Specifically, the algorithm implemented for the determination
of heartbeats and arrhythmias required a preprocessing phase. Each Big Data
framework bases its computing philosophy on task independence, wherefore this
context is not in the ideal conditions for exploiting distributed processing. To this
end, a local files preprocessing must be made. Thus, large files could represent
the bottleneck of the entire application.

On the other hand, the performance offered by this computing paradigm is
definitely important. As a conseguence, solved the problem of local preprocessing
of the ECG signals, the application would only get benefits from processing
on a cluster. For this purpose, an idea might be to use an ad hoc device for
recording the electrocardiogram. Specifically, if we suppose to make a device
that during the recording of the ECG signal introduces the overlapping required
for the algorithm, any limitation due to the nature of the data itself would be
eliminated.

From the algorithm point of view, the ECG signal analysis was performed
based on the heart rhythm obtained by calculating the R-R intervals. Indeed,
more complex operations could be implemented by making elaborations based on
the shape of the waves that make up a heartbeat. Thus, exploiting the compute
parallelization, it would be possible to implement computationally highly costly
algorithms by obtaining relevant performance by processing on a cluster.

Finally, Spark Streaming could be used to perform continuous and Real Time
processing. In this regard, an ad-hoc device for sending electrocardiogram sec-
tions should be implemented, allowing continuous monitoring of the patient’s
health status.
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