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Abstract. Recently a lot of progress has been made in rumor modeling
and rumor detection for micro-blogging streams. However, existing auto-
mated methods do not perform very well for early rumor detection, which
is crucial in many settings, e.g., in crisis situations. One reason for this
is that aggregated rumor features such as propagation features, which
work well on the long run, are - due to their accumulating characteristic
- not very helpful in the early phase of a rumor. In this work, we present
an approach for early rumor detection, which leverages Convolutional
Neural Networks for learning the hidden representations of individual
rumor-related tweets to gain insights on the credibility of each tweets.
We then aggregate the predictions from the very beginning of a rumor
to obtain the overall event credits (so-called wisdom), and finally com-
bine it with a time series based rumor classification model. Our extensive
experiments show a clearly improved classification performance within
the critical very first hours of a rumor. For a better understanding, we
also conduct an extensive feature evaluation that emphasized on the early
stage and shows that the low-level credibility has best predictability at
all phases of the rumor lifetime.

1 Introduction

Widely spreading rumors can be harmful to the government, markets and society
and reduce the usefulness of social media channel such as Twitter by affecting the
reliability of their content. Therefore, effective method for detecting rumors on
Twitter are crucial and rumors should be detected as early as possible before they
widely spread. As an example, let us recall of the shooting incident that happened
in the vicinity of the Olympia shopping mall, Munich; in a summer day, 2016.
Due to the unclear situation at early time, numerous rumors about the event did
appear and they started to circulate very fast over social media. The city police
had to warn the population to refrain from spreading related news on Twitter
as it was getting out of control: “Rumors are wildfires that are difficult to put
out and traditional news sources or official channels, such as police departments,
subsequently struggle to communicate verified information to the public, as it gets
lost under the flurry of false information.”1 Fig. 1 shows the rumor sub-events in
1
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the early stage of the event Munich shooting. The first terror-indicating “news” –
The gunman shouted ‘Allahu Akbar’– was widely disseminated on Twitter right
after the incident by an unverified account. Later the claim of three gunmen also
spread quickly and caused public tension. In the end, all three information items
were falsified.

Fig. 1. The Munich shooting and its sub-events burst after the first 8 h, y-axis is English
tweet volume.

We follow the rumor definition [24] considering a rumor (or fake news) as a
statement whose truth value is unverified or deliberately false. A wide variety of
features has been used in existing work in rumor detection such as [6,11,13,18–
20,23,30,31]. Network-oriented and other aggregating features such as prop-
agation pattern have proven to be effective for this task. Unfortunately, the
inherently accumulating characteristic of such features, which require some time
(and Twitter traffic) to mature, does not make them very apt for early rumor
detection. A first semi-automatic approach focussing on early rumor detection
presented by Zhao et al. [32], thus, exploits rumor signals such as enquiries that
might already arise at an early stage. Our fully automatic, cascading rumor
detection method follows the idea on focusing on early rumor signals on text
contents; which is the most reliable source before the rumors widely spread.
Specifically, we learn a more complex representation of single tweets using Con-
volutional Neural Networks, that could capture more hidden meaningful signal
than only enquiries to debunk rumors. [7,19] also use RNN for rumor debunking.
However, in their work, RNN is used at event-level. The classification leverages
only the deep data representations of aggregated tweet contents of the whole
event, while ignoring exploiting other –in latter stage–effective features such
as user-based features and propagation features. Although, tweet contents are
merely the only reliable source of clue at early stage, they are also likely to
have doubtful perspectives and different stands in this specific moment. In addi-
tion, they could relate to rumorous sub-events (see e.g., the Munich shooting).
Aggregating all relevant tweets of the event at this point can be of noisy and
harm the classification performance. One could think of a sub-event detection
mechanism as a solution, however, detecting sub-events at real-time over Twitter
stream is a challenging task [22], which increases latency and complexity. In this
work, we address this issue by deep neural modeling only at single tweet level.
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Our intuition is to leverage the “wisdom of the crowd” theory; such that even
a certain portion of tweets at a moment (mostly early stage) are weakly pre-
dicted (because of these noisy factors), the ensemble of them would attribute to
a stronger prediction.

In this paper, we make the following contributions with respect to rumor
detection:

– We develop a machine learning approach for modeling tweet-level credibility.
Our CNN-based model reaches 81% accuracy for this novel task, that is even
hard for human judgment. The results are used to debunk rumors in an
ensemble fashion.

– Based on the credibility model we develop a novel and effective cascaded
model for rumor classification. The model uses time-series structure of fea-
tures to capture their temporal dynamics. Our model clearly outperforms
strong baselines, especially for the targeted early stage of the diffusion. It
already reaches over 80% accuracy in the first hour going up to over 90%
accuracy over time.

2 Related Work

A variety of issues have been investigated using data, structural information, and
the dynamics of the microblogging platform Twitter including event detection
[16], spam detection [1,29], or sentiment detection [4]. Work on rumor detection
in Twitter is less deeply researched so far, although rumors and their spreading
have already been investigated for a long time in psychology [2,5,26]. Castillo et
al. researched the information credibility on Twitter [6,11]. The work, however,
is based solely on people’s attitude (trustful or not) to a tweet not the credibility
of the tweet itself. In other words, a false rumor tweet can be trusted by a reader,
but it might anyway contain false information. The work still provides a good
start of researching rumor detection.

Due to the importance of information propagation for rumors and their detec-
tion, there are also different simulation studies [25,27] about rumor propagations
on Twitter. Those works provide relevant insights, but such simulations cannot
fully reflect the complexity of real networks. Furthermore, there are recent work
on propagation modeling based on epidemiological methods [3,13,17], yet over
a long studied time, hence how the propagation patterns perform at early stage
is unclear. Recently, [30] use unique features of Sina Weibo to study the prop-
agation patterns and achieve good results. Unfortunately Twitter does not give
such details of the propagation process as Weibo, so these work cannot be fully
applied to Twitter.

Most relevant for our work is the work presented in [20], where a time series
model to capture the time-based variation of social-content features is used. We
build upon the idea of their Series-Time Structure, when building our approach
for early rumor detection with our extended dataset, and we provide a deep
analysis on the wide range of features change during diffusion time. Ma et al. [19]
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used Recurrent Neural Networks for rumor detection, they batch tweets into time
intervals and model the time series as a RNN sequence. Without any other hand-
crafted features, they got almost 90% accuracy for events reported in Snope.com.
As the same disadvantage of all other deep learning models, the process of learn-
ing is a black box, so we cannot envisage the cause of the good performance based
only on content features. The model performance is also dependent on the tweet
retrieval mechanism, of which quality is uncertain for stream-based trending
sub-events.

3 Single Tweet Credibility Model

Before presenting our Single Tweet Credibility Model, we will start with an
overview of our overall rumor detection method. The processing pipeline of our
classification approach is shown in Fig. 2. In the first step, relevant tweets for
an event are gathered. Subsequently, in the upper part of the pipeline, we pre-
dict tweet credibilty with our pre-trained credibility model and aggregate the
prediction probabilities on single tweets (CreditScore). In the lower part of the
pipeline, we extract features from tweets and combine them with the creditscore
to construct the feature vector in a time series structure called Dynamic Series
Time Model. These feature vectors are used to train the classifier for rumor vs.
(non-rumor) news classification.

Fig. 2. Pipeline of our rumor detection approach.

Early in an event, the related tweet volume is scanty and there are no clear
propagation pattern yet. For the credibility model we, therefore, leverage the
signals derived from tweet contents. Related work often uses aggregated con-
tent [18,20,32], since individual tweets are often too short and contain slender
context to draw a conclusion. However, content aggregation is problematic for
hierarchical events and especially at early stage, in which tweets are likely to
convey doubtful and contradictory perspectives. Thus, a mechanism for carefully
considering the ‘vote’ for individual tweets is required. In this work, we overcome
the restrictions (e.g., semantic sparsity) of traditional text representation meth-
ods (e.g., bag of words) in handling short text by learning low-dimensional tweet
embeddings. In this way, we achieve a rich hidden semantic representation for a
more effective classification.
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3.1 Exploiting Convolutional and Recurrent Neural Networks

Given a tweet, our task is to classify whether it is associated with either a news
or rumor. Most of the previous work [6,11] on tweet level only aims to measure
the trustfulness based on human judgment (note that even if a tweet is trusted,
it could anyway relate to a rumor). Our task is, to a point, a reverse engineering
task; to measure the probability a tweet refers to a news or rumor event; which
is even trickier. We hence, consider this a weak learning process. Inspired by
[33], we combine CNN and RNN into a unified model for tweet representation
and classification. The model utilizes CNN to extract a sequence of higher-level
phrase representations, which are fed into a long short-term memory (LSTM)
RNN to obtain the tweet representation. This model, called CNN+RNN hence-
forth, is able to capture both local features of phrases (by CNN) as well as global
and temporal tweet semantics (by LSTM) (see Fig. 3).

Representing Tweets: Generic-purpose tweet embedding in [9,28] use
character-level RNN to represent tweets that in general, are noisy and of idio-
syncratic nature. We discern that tweets for rumors detection are often triggered
from professional sources. Hence, they are linguistically clean, making word-level
embedding become useful. In this work, we do not use the pre-trained embed-
ding (i.e., word2vec), but instead learn the word vectors from scratch from our
(large) rumor/news-based tweet collection. The effectiveness of fine-tuning by
learning task-specific word vectors is backed by [15]. We represent tweets as fol-
lows: Let xi ∈ R be the k-dimensional word vector corresponding to the i-th
word in the tweet. A tweet of length n (padded where necessary) is represented
as: x1:n = x1 ⊕ x2 ⊕ · · · ⊕ xn, where ⊕ is the concatenation operator. In general,
let xi:i+j refer to the concatenation of words xi, xi+1, ..., xi+j . A convolution
operation involves a filter w ∈ Rhk, which is applied to a window of h words
to produce a feature. For example, a feature ci is generated from a window of
words xi:i+h−1 by: ci = f(w · xi:i+h−1 + b).

Here b ∈ R is a bias term and f is a non-linear function such as the hyper-
bolic tangent. This filter is applied to each possible window of words in the tweet
{x1:h, x2:h+1, ..., xn−h+1:n} to produce a feature map: c = [c1, c2, ..., cn−h+1] with
c ∈ Rn−h+1. A max-over-time pooling or dynamic k-max pooling is often applied
to feature maps after the convolution to select the most or the k-most impor-
tant features. We also apply the 1D max pooling operation over the time-step
dimension to obtain a fixed-length output.

Using Long Short-Term Memory RNNs: RNN are able to propagate his-
torical information via a chain-like neural network architecture. While processing
sequential data, it looks at the current input xt as well as the previous output
of hidden state ht−1 at each time step. The simple RNN hence has the ability to
capture context information. However, the length of reachable context is often
limited. The gradient tends to vanish or blow up during the back propagation.
To address this issue, LSTM was introduced in [12]. The LSTM architecture has
a range of repeated modules for each time step as in a standard RNN. At each
time step, the output of the module is controlled by a set of gates in Rd as a
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Fig. 3. CNN+LSTM for tweet representation.

function of the old hidden state ht−1 and the input at the current time step xt:
forget gate ft, input gate it, and output gate ot.

3.2 CNN+LSTM for Tweet-Level Classification

We regard the output of the hidden state at the last step of LSTM as the final
tweet representation and we add a softmax layer on top. We train the entire
model by minimizing the cross-entropy error. Given a training tweet sample x(i),
its true label y

(i)
j ∈ {yrumor, ynews} and the estimated probabilities ỹ

(i)
j ∈ [0..1]

for each label j ∈ {rumor, news}, the error is defined as:

L(x(i), y(i)) = 1{y(i) = yrumor}log(ỹ(i)
rumor) + 1{y(i) = ynews}log(ỹ(i)

news) (1)

where 1 is a function converts boolean values to {0, 1}. We employ stochastic
gradient descent (SGD) to learn the model parameters.

4 Time Series Rumor Detection Model

As observed in [19,20], rumor features are very prone to change during an event’s
development. In order to capture these temporal variabilities, we build upon
the Dynamic Series-Time Structure (DSTS) model (time series for short) for
feature vector representation proposed in [20]. We base our credibility feature
on the time series approach and train the classifier with features from diffent
high-level contexts (i.e., users, Twitter and propagation) in a cascaded manner.
In this section, we first detail the employed Dynamic Series-Time Structure,
then describe the high and low-level ensemble features used for learning in this
pipeline step.

4.1 Dynamic Series-Time Structure (DSTS) Model

For an event Ei we define a time frame given by timeFirsti as the start time of
the event and timeLasti as the time of the last tweet of the event in the obser-
vation time. We split this event time frame into N intervals and associate each
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tweet to one of the intervals according to its creation time. Thus, we can generate
a vector V(Ei) of features for each time interval. In order to capture the changes
of feature over time, we model their differences between two time intervals. So
the model of DSTS is represented as: V (Ei) = (FD

i,0,F
D
i,1, ...,F

D
i,N ,SD

i,1, ...,S
D
i,N ),

where FD
i,t is the feature vector in time interval t of event Ei. SD

i,t is the dif-
ference between FD

i,t and FD
i,t+1. V(Ei ) is the time series feature vector of the

event Ei. FD
i,t = ( ˜fi,t,1, ˜fi,t,2, ..., ˜fi,t,D). And SD

i,t = FD
i,t+1−FD

i,t

Interval(Ei)
. We use Z-score

to normalize feature values; ˜fi,t,k = fi,t+1,k−fi,k

σ(fi,k)
where fi,t,k is the k-th feature

of the event Ei in time interval t. The mean of the feature k of the event Ei is
denoted as f i,k and σ(fi,k) is the standard deviation of the feature k over all
time intervals. We can skip this step, when we use Random Forest or Decision
Trees, because they do not require feature normalization.

4.2 Features for the Rumor Detection Model

In selecting features for the rumor detection model, we have followed two ratio-
nales: (a) we have selected features that we expect to be useful in early rumor
detection and (b) we have collected a broad range of features from related work as
a basis for investigating the time-dependent impact of a wide variety of features
in our time-dependence study. In total, we have constructed over 50 features2 in
the three main categories i.e., Ensemble, Twitter and Epidemiological features.
We refrained from using network features, since they are expected to be of little
use in early rumor detection [8], since user networks around events need time
to form. Following our general idea, none of our features are extracted from
the content aggregations. Due to space limitation, we describe only our main
features as follows.

Ensemble Features. We consider two types of Ensemble Features: features
accumulating crowd wisdom and averaging feature for the Tweet credit Scores.
The former are extracted from the surface level while the latter comes from the
low dimensional level of tweet embeddings; that in a way augments the sparse
crowd at early stage.

CrowdWisdom: Similar to [18], the core idea is to leverage the public’s common
sense for rumor detection: If there are more people denying or doubting the
truth of an event, this event is more likely to be a rumor. For this purpose, [18]
use an extensive list of bipolar sentiments with a set of combinational rules.
In contrast to mere sentiment features, this approach is more tailored rumor
context (difference not evaluated in [18]). We simplified and generalized the
“dictionary” by keeping only a set of carefully curated negative words. We call
them “debunking words” e.g., hoax, rumor or not true. Our intuition is, that
the attitude of doubting or denying events is in essence sufficient to distinguish
rumors from news. What is more, this generalization augments the size of the
2 details are listed in the Appendix.
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crowd (covers more ’voting’ tweets), which is crucial, and thus contributes to the
quality of the crowd wisdom. In our experiments, “debunking words” is an high-
impact feature, but it needs substantial time to “warm up”; that is explainable
as the crowd is typically sparse at early stage.

CreditScore: The sets of single-tweet models’ predicted probabilities are com-
bined using an ensemble averaging-like technique. In specific, our pre-trained
CNN + LSTM model predicts the credibility of each tweet twij of event Ei.
The softmax activation function outputs probabilities from 0 (rumor-related) to
1 (news). Based on this, we calculate the average prediction probabilities of all
tweets twij ∈ Ei in a time interval tij . In theory there are different sophisticated
ensembling approaches for averaging on both training and test samples; but in
a real-time system, it is often convenient (while effectiveness is only affected
marginally) to cut corners. In this work, we use a sole training model to average
over the predictions. We call the outcome CreditScore.

5 Experimental Evaluation

5.1 Data Collection

To construct the training dataset, we collected rumor stories from online rumor
tracking websites such as snopes.com and urbanlegends.about.com. In more
detail, we crawled 4300 stories from these websites. From the story descriptions
we manually constructed queries to retrieve the relevant tweets for 270 rumors
with high impact. Our approach to query construction mainly follows [11]. For
the news event instances (non-rumor examples), we make use of the manually
constructed corpus from Mcminn et al. [21], which covers 500 real-world events.
In [21], tweets are retrieved via Twitter firehose API from 10th of October 2012
to 7th of November 2012. The involved events are manually verified and relate
to tweets with relevance judgments, which results in a high quality corpus. From
the 500 events, we select top 230 events with the highest tweet volumes (as a
criteria for event impact). Furthermore, we have added 40 other news events,
which happened around the time periods of our rumors. This results in a dataset
of 270 rumors and 270 events. The dataset details are shown in Table 1. To serve
our learning task. we then constructs two distinct datasets for (1) single tweet
credibility and (2) rumor classification.

Table 1. Tweet Volume of News and Rumors

Type Min volume Max volume Total Average

News 98 17414 345235 1327.82

Rumors 44 26010 182563 702.06

file:www.snopes.com
http://urbanlegends.about.com
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Training data for single tweet classification. Here we follow our assumption
that an event might include sub-events for which relevant tweets are rumorous.
To deal with this complexity, we train our single-tweet learning model only with
manually selected breaking and subless3 events from the above dataset. In the
end, we used 90 rumors and 90 news associated with 72452 tweets, in total.
This results in a highly-reliable large-scale ground-truth of tweets labelled as
news-related and rumor -related, respectively. Note that the labeling of a tweet
is inherited from the event label, thus can be considered as an semi-automatic
process.

5.2 Single Tweet Classification Experiments

For the evaluation, we developed two kinds of classification models: tradi-
tional classifier with handcrafted features and neural networks without tweet
embeddings. For the former, we used 27 distinct surface-level features extracted
from single tweets (analogously to the Twitter-based features presented in
Sect. 4.2). For the latter, we select the baselines from NN-based variations,
inspired by state-of-the-art short-text classification models, i.e., Basic tanh-
RNN, 1-layer GRU-RNN, 1-layer LSTM, 2-layer GRU-RNN, FastText [14] and
CNN+LSTM [33] model. The hybrid model CNN+LSTM is adapted in our work
for tweet classification.

Single Tweet Model Settings. For the evaluation, we shuffle the 180 selected
events and split them into 10 subsets which are used for 10-fold cross-validation
(we make sure to include near-balanced folds in our shuffle). We implement the
3 non-neural network models with Scikit-learn4. Furthermore, neural networks-
based models are implemented with TensorFlow5 and Keras6. The first hidden
layer is an embedding layer, which is set up for all tested models with the embed-
ding size of 50. The output of the embedding layer are low-dimensional vectors
representing the words. To avoid overfitting, we use the 10-fold cross validation
and dropout for regularization with dropout rate of 0.25.

Single Tweet Classification Results. The experimental results of are shown
in Table 2. The best performance is achieved by the CNN+LSTM model with
a good accuracy of 81.19%. The non-neural network model with the highest
accuracy is RF. However, it reaches only 64.87% accuracy and the other two
non-neural models are even worse. So the classifiers with hand-crafted features
are less adequate to accurately distinguish between rumors and news.

Discussion of Feature Importance For analyzing the employed feature, we
rank them by importances using RF (see Table 3). The best feature is related
to sentiment polarity scores. There is a big bias between the sentiment associ-
ated to rumors and the sentiment associated to real events in relevant tweets.
3 the terminology subless indicates an event with no sub-events for short.
4 scikit-learn.org/.
5 https://www.tensorflow.org/.
6 https://keras.io/.

http://scikit-learn.org/
https://www.tensorflow.org/
https://keras.io/
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Table 2. Single Tweet classifica-
tion performance

Model Accuracy

CNN+LSTM 0.8119

2-layer GRU 0.7891

1-layer GRU 0.7644

1-layer LSTM 0.7493

Basic RNN with tanh 0.7291

FastText 0.6602

Random Forest 0.6487

SVM 0.5802

Decision Trees 0.5774

Table 3. Top features importance

Feature Importance

PolarityScores 0.146

Capital 0.096

LengthOfTweet 0.092

UserTweets 0.087

UserFriends 0.080

UserReputationScore 0.080

UserFollowers 0.079

NumOfChar 0.076

Stock 0.049

NumNegativeWords 0.030

Exclamation 0.023

In specific, the average polarity score of news event is −0.066 and the average of
rumors is −0.1393, showing that rumor-related messages tend to contain more
negative sentiments. Furthermore, we would expect that verified users are less
involved in the rumor spreading. However, the feature appears near-bottom in
the ranked list, indicating that it is not as reliable as expected. Also interest-
ingly, the feature“IsRetweet” is also not as good a feature as expected, which
means the probability of people retweeting rumors or true news are similar (both
appear near-bottom in the ranked feature list).

It has to be noted here that even though we obtain reasonable results on
the classification task in general, the prediction performance varies considerably
along the time dimension. This is understandable, since tweets become more
distinguishable, only when the user gains more knowledge about the event.

5.3 Rumor Datasets and Model Settings

We use the same dataset described in Sect. 5.1. In total –after cutting off 180
events for pre-training single tweet model – our dataset contains 360 events and
180 of them are labeled as rumors. Those rumors and news fall comparatively
evenly in 8 different categories, namely Politics, Science, Attacks, Disaster, Art,
Business, Health and Other. Note, that the events in our training data are not
necessarily subless, because it is natural for high-impact events (e.g., Missing
MH370 or Munich shooting) to contain sub-events. Actually, we empirically
found that roughly 20% of our events (mostly news) contain sub-events. As a
rumor is often of a long circulating story [10], this results in a rather long time
span. In this work, we develop an event identification strategy that focuses on
the first 48 h after the rumor is peaked. We also extract 11,038 domains, which
are contained in tweets in this 48 h time range.
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Rumor Detection Model Settings. For the time series classification model,
we only report the best performing classifiers, SVM and Random Forest, here.
The parameters of SVM with RBF kernel are tuned via grid search to C = 3.0,
γ = 0.2. For Random Forest, the number of trees is tuned to be 350. All models
are trained using 10-fold cross validation.

5.4 Rumor Classification Results

We tested all models by using 10-fold cross validation with the same shuffled
sequence. The results of these experiments are shown in Table 4. Our proposed
model (Ours) is the time series model learned with Random Forest including
all ensemble features; TS − SV M is the baseline from [20], and TS − SV Mall

is the TS − SV M approach improved by using our feature set. In the lower
part of the table, RNNel is the RNN model at event-level [19]. As shown in
the Table 4 and as targeted by our early detection approach, our model has the
best performance in all case over the first 24 h, remarkably outperforming the
baselines in the first 12 h of spreading. The performance of RNNel is relatively
low, as it is based on aggregated contents. This is expected as the news (non-
rumor) dataset used in [19] are crawled also from snopes.com, in which events
are often of small granularity (aka. subless). As expected, exploiting contents
solely at event-level is problematic for high-impact, evolving events on social
media. We leave a deeper investigation on the sub-event issue to future work.

Table 4. Performance of different models over time (bold for best accuracy, under-
lined for second-to-best). TS indicates time-series structure; we separate the TS models
(upper) with the static ones (lower).

Model Accuracy in hours

1 6 12 18 24 30 36 42 48

Ours 0.82 0.84 0.84 0.84 0.87 0.87 0.88 0.89 0.91

TS − SV Mall 0.76 0.79 0.83 0.83 0.87 0.88 0.86 0.89 0.90

TS − SV MCredit 0.73 0.80 0.83 0.85 0.85 0.86 0.88 0.90 0.90

TS − SV M [20] 0.69 0.76 0.81 0.81 0.84 0.86 0.87 0.88 0.88

RNNel [19] 0.68 0.77 0.81 0.81 0.84 0.83 0.81 0.85 0.86

SV Mstatic + Epi [13] 0.60 0.69 0.71 0.72 0.75 0.78 0.75 0.78 0.81

SV Mstatic + SpikeM [17] 0.58 0.68 0.72 0.73 0.77 0.78 0.78 0.79 0.77

SV Mstatic [31] 0.62 0.70 0.70 0.72 0.75 0.80 0.79 0.78 0.77

CreditScore and CrowdWisdom. As shown in Table 5, CreditScore is the
best feature in overall. In Fig. 4 we show the result of models learned with
the full feature set with and without CreditScore. Overall, adding CreditScore
improves the performance, especially for the first 8–10 h. The performance of all-
but-CreditScore jiggles a bit after 16–20 h, but it is not significant. CrowdWisdom
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Fig. 4. Accuracy: All features with and without CreditScore.

Table 5. Importance ranking of CreditScore, CrowdWisdom and PolarityScores over
time; 0 indicates the best rank.

Features Ranks

Hours 1 6 12 18 24 30 36 42 48 AVG

CreditScore 1 0 0 0 0 0 0 0 0 0.08

CrowdWisdom 34 38 21 14 8 5 5 2 2 13.18

PolarityScores 12 15 23 28 33 33 34 31 32 28

is also a good feature which can get 75.8% accuracy as a single feature. But its
performance is poor (less than 70%) in the first 32 h getting better over time
(see Table 5). Table 5 also shows the performance of sentiment feature (Polar-
ityScores), which is generally low. This demonstrates the effectiveness of our
curated approach over the sentiments, yet the crowd needs time to unify their
views toward the event while absorbing different kinds of information.

Case Study: Munich Shooting. We showcase here a study of the Munich
shooting. We first show the event timeline at an early stage. Next we discuss some
examples of misclassifications by our “weak” classifier and show some analysis
on the strength of some highlighted features. The rough event timeline looks as
follows.

– At 17:52 CEST, a shooter opened fire in the vicinity of the Olympia shopping mall
in Munich. 10 people, including the shooter, were killed and 36 others were injured.

– At 18:22 CEST, the first tweet was posted. There might be some certain delay, as we
retrieve only tweets in English and the very first tweets were probably in German.
The tweet is “Sadly, i think there’s something terrible happening in #Munich
#Munchen. Another Active Shooter in a mall. #SMH”.

– At 18:25 CEST, the second tweet was posted: “Terrorist attack in Munich????”.
– At 18:27 CEST, traditional media (BBC) posted their first tweet. “‘Shots

fired’ in Munich shopping centre - http://www.bbc.co.uk/news/world-europe-
36870800a02026 @TraceyRemix gun crime in Germany just doubled”.

– At 18:31 CEST, the first misclassified tweet is posted. It was a tweet with shock
sentiment and swear words: “there’s now a shooter in a Munich shopping centre..
What the f*** is going on in the world. Gone mad”. It is classified as rumor-related.

http://www.bbc.co.uk/news/world-europe-36870800a02026
http://www.bbc.co.uk/news/world-europe-36870800a02026
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(a) CreditScore first 12 hours (b) ContainsNews first 12 hours

(c) CreditScore 48 hours (d) ContainsNews 48 hours

Fig. 5. Creditscore and ContainsNews for Munich shooting in red lines, compared with
the corresponding average scores for rumor and news. (Color figure online)

We observe that at certain points in time, the volume of rumor-related tweets
(for sub-events) in the event stream surges. This can lead to false positives for
techniques that model events as the aggregation of all tweet contents; that is
undesired at critical moments. We trade-off this by debunking at single tweet
level and let each tweet vote for the credibility of its event. We show the Cred-
itScore measured over time in Fig. 5(a). It can be seen that although the credibil-
ity of some tweets are low (rumor-related), averaging still makes the CreditScore
of Munich shooting higher than the average of news events (hence, close to a
news). In addition, we show the feature analysis for ContainNews (percentage of
URLs containing news websites) for the event Munich shooting in Fig. 5(b). We
can see the curve of Munich shooting event is also close to the curve of average
news, indicating the event is more news-related.

6 Conclusion

In this work, we propose an effective cascaded rumor detection approach using
deep neural networks at tweet level in the first stage and wisdom of the
“machines”, together with a variety of other features in the second stage, in
order to enhance rumor detection performance in the early phase of an event.
The proposed approach outperforms state of the art methods for early rumor
detection. There is, however, still considerable room to improve the effectiveness
of the rumor detection method. The support for events with rumor sub-events
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is still limited. The current model only aims not to misclassify long-running,
multi-aspect events where rumors and news are mixed and evolve over time as
false positive.

Acknowledgements. This work was partially funded by the German Federal Ministry
of Education and Research (BMBF) under project GlycoRec (16SV7172) and K3
(13N13548).

Appendix A Time Period of an Event

The time period of a rumor event is hard to define. One reason is a rumor may
be created for a long time and kept existing on Twitter, but it did not attract the
crowd’s attention. However it can be triggered by other events after a uncertain
time and suddenly spreads as a bursty event. E.g., a rumor7 claimed that Robert
Byrd was member of KKK. This rumor has been circulating in Twitter for
a while. As shown in Fig. 6(a) that almost every day there were several tweets
talking about this rumor. But this rumor was triggered by a picture about Robert
Byrd kissing Hillary Clinton in 20168 and Twitter users suddenly noticed this
rumor and it was bursted. And what we are really interested in is the tweets
which are posted in hours around the bursty peak. We defined the hour with
the most tweets’ volume as tmax and we want to detect the rumor event as soon
as possible before its burst, so we define the time of the first tweet before tmax

within 48 h as the beginning of this rumor event, marked as t0. And the end time
of the event is defined as tend = t0 + 48. We show the tweet volumes in Fig. 6 of
the above rumor example.

(a) Before (b) After

Fig. 6. tweet volume of the rumor event of Robert Byrd at full scale and after selected
time period

7 http://www.snopes.com/robert-byrd-kkk-photo/.
8 http://www.snopes.com/clinton-byrd-photo-klan/.

http://www.snopes.com/robert-byrd-kkk-photo/
http://www.snopes.com/clinton-byrd-photo-klan/
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Appendix B Full FeaturesTime Period of an Event

See Table 6.

Table 6. Features of Time Series Rumor Detection Model

Category Feature Description

Twitter features Hashtag % tweets contain #hashtag [6,11,18,18,24]

Mention % tweets mention others @user
[6,11,18,18,24]

NumUrls # URLs in the tweet [6,11,18,24,31]

Retweets Average # retweets [18]

IsRetweet % tweets are retweeted from others [6,11]

ContainNEWS % tweets contain URL and its domain’s
catalogue is News [18]

WotScore Average WOT score of domain in URL [11]

URLRank5000 % tweets contain URL whose domain’s
rank less than 5000 [6]

ContainNewsURL % tweets contain URL whose domain is
News Website

Text features LengthofTweet Average tweet lengths [6,11]

NumOfChar Average # tweet characters [6,11]

Capital Average fraction of characters in
Uppercase [6]

Smile % tweets contain : − >, : −), ;− >, ;−)
[6,11]

Sad % tweets contain : − <, : −(, ;− >, ;−(
[6,11]

NumPositiveWords Average # positive words [6,11,18,31]

NumNegativeWords Average # negative words [6,11,18,31]

PolarityScores Average polarity scores of the Tweets
[6,18,31]

Via % of tweets contain via [11]

Stock % of tweets contain $ [6,11]

Question % of tweets contain ? [6,18]

Exclamation % of tweets contain ! [6,18]

QuestionExclamation % of tweets contain multi Question or
Exclamation mark [6,18]

I % of tweets contain first pronoun like I,
my, mine, we, our [6,11,18]

You % of tweets contain second pronoun like U,
you, your, yours [6]

He/She % of tweets contain third pronoun like he,
she, they, his, etc. [6]
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Table 6. (Continued)

Category Feature Description

User features UserNumFollowers Average number of followers
[6,11,18]

UserNumFriends Average number of friends [6,11,18]

UserNumTweets Average number of users posted
tweets [6,11,18,31]

UserNumPhotos Average number of users posted
photos [31]

UserIsInLargeCity % of users living in large city
[18,31]

UserJoinDate Average days since users joining
Twitter [6,18,31]

UserDescription % of user having description
[6,18,31]

UserVerified % of user being a verified user
[18,31]

UserReputationScore Average ratio of #Friends over
(#Followers + #Friends) [18]

Epidemiological features βSIS Parameter β of Model SIS [13]

αSIS Parameter α of Model SIS [13]

βSEIZ Parameter β of Model SEIZ [13]

bSEIZ Parameter b of Model SEIZ [13]

lSEIZ Parameter l of Model SEIZ [13]

pSEIZ Parameter p of Model SEIZ [13]

εSEIZ Parameter ε of Model SEIZ [13]

ρSEIZ Parameter ρ of Model SEIZ [13]

RSI Parameter RSI of Model SEIZ [13]

SpikeM model features Ps Parameter Ps of Model Spike [17]

Pa Parameter Pa of Model SpikeM [17]

Pp Parameter Pp of Model SpikeM [17]

Qs Parameter Qs of Model SpikeM
[17]

Qa Parameter Qa of Model SpikeM
[17]

Qp Parameter Qp of Model SpikeM
[17]

Crowd wisdom CrowdWisdom % of tweets containing “Debunking
Words” [18,32]

CreditScore CreditScore Average CreditScore
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