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�Introduction

Advances in molecular testing have made it possible to rou-
tinely incorporate molecular markers in guiding management 
of patients with indeterminate cytology thyroid nodules. 
Ultrasound and cytopathologic examination of thyroid nod-
ules are crucially important diagnostic methodologies, and 
utilization of these methodologies is able to definitively clas-
sify the majority (70–80%) of thyroid nodules as benign or 
malignant [1, 2]. The Bethesda reporting system, first proposed 
in 2007 by the National Cancer Institute, provides diagnostic 
categories with risk stratification and recommendations for 
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clinical management [3, 4]. However, 20–30% of thyroid nod-
ules fall into one of the three indeterminate categories: atypia 
of undetermined significance/follicular lesion of undetermined 
significance (AUS/FLUS) (Bethesda III), follicular or onco-
cytic (Hürthle cell) neoplasm/suspicious for follicular or onco-
cytic (Hürthle cell) neoplasm (FN/SFN) (Bethesda IV), or 
suspicious for malignant cells (SMC) (Bethesda V) [4, 5].

The AUS/FLUS category carries a risk of malignancy of 
5–15%; patients with AUS/FLUS nodules typically undergo a 
repeat fine needle aspiration (FNA) procedure. For the FN/
SFN category, the risk of malignancy is 15–30%, and patients 
are typically recommended to undergo a diagnostic lobectomy. 
The SMC category carries the highest risk of malignancy at 
60–70%. Patients with SMC category thyroid nodules are rec-
ommended to undergo either thyroidectomy or lobectomy [3].

On resection, the majority of indeterminate thyroid nod-
ules are found to be benign [4–6]. Avoiding or reducing diag-
nostic surgeries for indeterminate nodules that turn out to be 
benign would be of great benefit to patients. For the 10–40% 
of patients with indeterminate thyroid nodules that turn out 
to be malignant, if the malignant nodule is greater than 1 cm 
in size, those patients who have undergone a diagnostic 
lobectomy then undergo a completion lobectomy. These 
patients could have benefitted from an upfront thyroidec-
tomy rather than two separate procedures.

To increase the level of granularity in preoperative risk 
assessments and reduce the number of diagnostic surgeries, 
ancillary approaches such as molecular profiling of indeter-
minate nodules are increasingly being utilized. In a recent 
survey of practice patterns of members of the Endocrine 
Society, American Thyroid Association, and American 
Association of Clinical Endocrinologists, 38.8% of respon-
dents obtain molecular profiles to guide management of 
patients with AUS/FLUS nodules, and 29.0% obtain molecu-
lar profiles for patients with FN/SFN nodules [7].

Several molecular tests are currently commercially available 
(Table  15.1). These tests utilize a variety of methodologies to 
characterize thyroid nodules by gene mutations/rearrangements, 
mRNA expression, or microRNA (miRNA) expression [8–12].
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�Gene Mutation/Rearrangement Testing

Gene mutation and rearrangement testing are based upon 
decades of characterization of the molecular alterations 
responsible for driving thyroid tumorigenesis. These studies 
have culminated in recent large-scale sequencing projects, 
such as The Cancer Genome Atlas (TCGA) sequencing 
study, and have resulted in a comprehensive profile of the 
landscape of alterations in thyroid tumors.

The TCGA study of papillary thyroid cancer examined 
single-nucleotide variants, small indels, copy number altera-
tions, rearrangements, mRNA expression, miRNA expres-
sion, and DNA methylation of 496 papillary thyroid 
carcinomas [13]. Driver alterations were identified by this 
analysis for 96.5% of cases [13]. Thus, driver mutations that 
account for nearly all papillary thyroid cancers have now 
been described. The majority of alterations seen in papillary 
thyroid carcinoma involve the mitogen-activated protein 
kinase (MAPK) and phosphatidylinositol-3-kinase (PI3K) 
pathways. The knowledge gained through prior studies and 
large-scale sequencing projects have guided the design of 
gene mutation/rearrangement panels.

�Seven-Gene Mutation/Rearrangement Panels

A seven-gene panel of the mutations and rearrangements 
most frequently seen in thyroid cancer (accounting for 
approximately 70% of thyroid cancers) is one approach for 
mutational testing. These panels typically include hotspot 
mutations in BRAF, NRAS, HRAS, and KRAS, and testing for 
the fusion genes RET/PTC1, RET/PTC3, and PAX8/PPARG.

BRAF is a serine threonine kinase that plays an integral 
role in the MAPK pathway and is important in cell division 
and differentiation. Mutations in BRAF are seen in approxi-
mately 40–45% of papillary thyroid carcinomas [14, 15]. The 
most commonly seen BRAF mutation is the activating V600E 
mutation. Other mutations such as K601E or small in-frame 
insertions or deletions have been reported [16–19]. 
Additionally, activation of BRAF signaling may occur 
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through fusion of BRAF with partners such as AKAP9, 
SND1, or MKRN1 [13, 20].

NRAS, HRAS, and KRAS are oncogenes frequently 
mutated in several tumors. Activating mutations typically 
occur at codon 61 (most frequently) and also at codons 12 
and 13. Mutations in NRAS, HRAS, or KRAS have been 
reported in 40–50% of follicular carcinomas and 20–40% of 
follicular adenomas [21–24]. NRAS, HRAS, or KRAS muta-
tions have also been reported in noninvasive follicular thy-
roid neoplasm with papillary-like nuclear features (NIFTP) 
and invasive follicular variant of papillary thyroid carcinoma 
[25–27].

The fusions interrogated in seven-gene mutation/rear-
rangement panels are the RET/PTC1 (fusion of RET with 
CCDC6), RET/PTC3 (fusion of RET with NCOA4), and 
PAX8/PPARG fusions. RET/PTC1 and RET/PTC3 fusions 
are seen in papillary thyroid carcinomas. The incidence of 
which is approximately 10% of the cases (down from 20–30% 
incidence two decades ago [28–30]. PAX8/PPARG fusions 
are seen primarily in follicular carcinomas (30–40% of cases) 
[31–33]. This PAX8/PPARG fusion may also be seen, albeit at 
lower frequencies, in follicular adenomas and the follicular 
variant of papillary thyroid carcinomas [31–35].

All genes and rearrangements in the seven-gene mutation/
rearrangement panel show high specificity and positive pre-
dictive value (PPV) for cancer (although the PPV for NRAS, 
HRAS, and KRAS is lower) [12, 36, 37]. A seven-gene muta-
tion/rearrangement panel (or a similar eight- gene panel that 
also includes TRK rearrangements that occur in 5% of papil-
lary thyroid cancers) was initially validated in three prospec-
tive studies at two institutions and was found to have a high 
specificity of 97–100% and high PPV of 86–100% [12, 36, 37]. 
In subsequent studies of similar seven-gene panels, including 
a single-institution retrospective study and two prospective 
multi-institutional studies of the Asuragen miRInform test 
(now currently commercially offered by Interpace Diagnostics 
as the ThyGenX test), similar high specificities of 86–92% 
and PPV of 71–80% were seen in FN/SFN thyroid nodules 
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[38–40]. Seven-gene mutation/rearrangement panels are 
commercially available from providers such as Quest 
Diagnostics or Interpace Diagnostics (ThyGenX). The 
ThyGenX test has been modified from the miRInform test to 
also include mutations in PIK3CA. PIK3CA alterations have 
been primarily described in poorly differentiated and ana-
plastic thyroid carcinomas [41–43].

�ThyroSeq v2 Mutation/Rearrangement Panel

The ThyroSeq v2 panel is a large, next-generation sequencing 
(NGS)-based test. Use of NGS technology allows for the 
simultaneous interrogation of multiple genes in a cost-
effective and high-throughput manner. This test includes the 
seven genes in other mutation/rearrangement panels (BRAF, 
NRAS, HRAS, KRAS, RET/PTC1, RET/PTC3, PAX8/
PPARG), as well as additional genes that have been impli-
cated in thyroid cancer: AKT1, PTEN, TP53, TSHR, GNAS, 
CTNNB1, RET, PIK3CA, EIF1AX, and TERT and rear-
rangements of RET, BRAF, NTRK1, NTRK3, PPARG, and 
THADA [44].

EIF1AX is a novel gene recently described to be recur-
rently mutated in the TCGA study of papillary thyroid carci-
noma [13]. EIF1AX is a translational initiation factor and was 
seen in 2% of papillary thyroid carcinomas; however, in a 
subsequent study, mutations in EIF1AX were also identified 
in two follicular adenomas and one hyperplastic nodule, sug-
gesting that the presence of EIF1AX mutations is not specific 
for carcinoma [45]. EIF1AX mutations have also been 
observed in 11% of poorly differentiated and 9% of anaplas-
tic thyroid carcinomas [46, 47]. Interestingly, as opposed to 
papillary thyroid carcinoma where EIF1AX mutations were 
generally mutually exclusive with other driver mutations, in 
poorly differentiated and anaplastic thyroid carcinomas, a 
tendency toward co-occurrence of EIF1AX and RAS 
mutations was seen [13, 46, 47]. Further study is needed to 
fully elucidate the role of EIF1AX in thyroid cancer and to 
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investigate whether there may be a cooperative effect 
between EIF1AX and RAS in poorly differentiated and ana-
plastic thyroid carcinomas.

TERT promoter mutations are another important altera-
tion present on the ThyroSeq v2 panel. TERT promoter 
mutations, located either 124 or 146 bp upstream of the start 
codon, have been described as recurrent alterations in follicu-
lar cell thyroid cancers; they have not been detected in med-
ullary thyroid carcinomas or benign thyroid lesions [48–51]. 
These mutations, while present in well-differentiated papil-
lary thyroid and follicular carcinomas, are present at increased 
frequency in aggressive tumors such as poorly differentiated 
carcinoma, anaplastic thyroid carcinoma, and widely invasive 
oncocytic carcinoma [48–51]. Furthermore, studies have 
found an association of TERT promoter mutation with 
increased risk for disease-specific mortality, distant metasta-
ses, and persistent disease [51].

The ThyroSeq v2 panel also includes TP53, PIK3CA, and 
AKT1 genes. These genes are associated with aggressive 
behavior and tumor progression, and mutations in these 
genes are seen more frequently in poorly differentiated and 
anaplastic thyroid carcinomas [41–43, 52–56]. Genes that pre-
dict benign behavior, such as activating mutations of TSHR 
and GNAS, are also included in the panel [57–61]. 
Approximately 50–80% of hyperfunctioning nodules harbor 
TSHR mutations, and approximately 3–6% of hyperfunction-
ing nodules harbor GNAS mutations [57–61]. Mutations in 
either TSHR or GNAS have only rarely been reported in 
follicular carcinomas [62].

The ThyroSeq v2 panel can additionally detect mutations 
in RET which are seen in medullary thyroid carcinoma. Both 
mutations associated with sporadic medullary thyroid carci-
noma or MEN2B syndrome such as the activating tyrosine 
kinase domain mutation M918T or extracellular domain cys-
teine mutations associated with MEN2A syndrome or famil-
ial medullary thyroid carcinoma are detectable by the panel.

Finally, the ThyroSeq v2 panel can detect an expanded set 
of fusion genes. Rearrangements involving NTRK1 and 
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NTRK3 are seen in 5% of papillary thyroid carcinomas [62–
66]. In pediatric cases of papillary thyroid carcinoma, the 
incidence of NTKR1 or NTRK3 rearrangements may be even 
higher [67]. Fusions involving THADA have been reported in 
approximately 1% of papillary thyroid carcinomas [13]. 
Fusions involving the ALK gene are potentially targetable 
and have been seen in approximately 1–2% of papillary thy-
roid carcinomas, 4–9% of poorly differentiated carcinomas, 
4% of anaplastic thyroid carcinomas, and 1–2% of medullary 
thyroid carcinomas [47, 68, 69].

ThyroSeq v2 was initially validated in a single-institution, 
combined retrospective and prospective study of 143 FN/
SFN cytology thyroid nodules [44]. Results from this study 
showed overall very good performance with a specificity of 
93%, sensitivity of 90%, PPV of 83%, and NPV of 96% [44]. 
In a follow-up, single-institution, prospective study of 465 
AUS/FLUS thyroid nodules, similar good performance of the 
assay was seen, with sensitivity of 90.9%, specificity of 92.1%, 
PPV of 76.9%, and NPV of 97.2% [70].

�Expression Classifier Testing

�mRNA Gene Expression Classifier

The Afirma gene expression classifier (GEC), offered by 
Veracyte, was developed by examining the gene expression 
profile patterns of thyroid nodules and using this data to train 
a molecular classifier [71]. The Afirma classifier uses the pat-
tern of expression of 142 genes to classify nodules into one of 
two categories: benign or suspicious [8, 71]. Initial validation 
of the Afirma test was done using 265 indeterminate nodules 
in a multi-institutional study [71]. Both high sensitivity (90%) 
and NPV (94%) were seen; lower values were seen for speci-
ficity (52%) and PPV (37%) [71]. Subsequent studies at other 
institutions with higher disease prevalence reported lower 
NPVs [72–75]. In many of these studies, the rate of true nega-
tives or false negatives was difficult to definitively ascertain 
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as many patients with benign results by Afirma testing did 
not undergo surgical resection. A recent meta-analysis of 
seven studies reported a pooled sensitivity of 95.7% and 
pooled specificity of 30.5% [76].

In addition to the Afirma GEC, Afirma offers two malig-
nancy classifiers, Afirma MTC and Afirma BRAF.  These 
malignancy classifiers are recommended to be performed on 
thyroid nodules that have a suspicious result by the Afirma 
GEC or are SMC on cytology. The Afirma MTC classifier 
examines the expression of genes differentially expressed in 
medullary thyroid carcinoma. In a recent small validation 
study of the MTC classifier, a sensitivity of 96.3% was 
reported [77]. The Afirma BRAF classifier analyzes the 
expression of genes differentially expressed in thyroid nod-
ules with the BRAF V600E mutation.

�miRNA Expression Classifier

MicroRNAs (miRNAs) are small, noncoding RNAs that are 
important in regulation of gene expression. Studies have 
demonstrated the differential expression of several miRNAs 
in thyroid carcinoma; some have additionally shown associa-
tion with prognostic features such as advanced disease or 
extrathyroidal extension [78, 79].

A miRNA classifier assay is offered by Rosetta Genomics 
(Rosetta GX Reveal). This assay examines the expression of 
24 miRNAs from a single stained diagnostic smear to clas-
sify nodules as “suspicious for malignancy by miRNA profil-
ing,” “positive for medullary marker,” or “benign” [80]. In a 
multicenter, retrospective study that utilized a total of 109 
Bethesda III and IV cytology samples, this test was reported 
to show a sensitivity of 85%, a specificity of 72%, and an 
NPV of 91% [9].

The ThyraMIR test (Interpace Diagnostics) also utilizes a 
panel of miRNAs to classify thyroid nodules as “positive” or 
“negative.” The ThyraMIR test analyzes the expression of ten 
miRNAs and is currently offered as reflex testing on nodules 
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that are negative by the eight-gene ThyGenX mutation/rear-
rangement panel. The performance of this assay, as reported 
in the initial validation study based on the analysis of a total 
of 150 Bethesda III and IV cytology samples (which did not 
include any cases of Hurthle cell carcinomas), is sensitivity of 
57%, specificity of 92%, NPV of 82%, and PPV of 77% [40].

�Comparison of Test Performance

Sensitivity measures the proportion of actual positives which 
are true positives, and specificity measures the proportion of 
negatives which are true negatives. Sensitivity and specificity 
reflect the performance characteristics of a test. PPV and 
NPV, however, will vary depending on the prevalence of dis-
ease. For example, a patient population with higher incidence 
of thyroid cancer than the population where the test was vali-
dated will have a lower NPV. Another factor that may affect 
observed NPV and PPV may be institutional differences in 
the malignancy rates for each indeterminate cytology cate-
gory. Published test performance characteristics are summa-
rized in Table 15.2.

Strengths of gene mutation/rearrangement panels are 
their high specificity and PPV for malignancy. In general, 
these tests are being utilized to “rule in” malignancy. Strengths 
of gene expression classifiers are their high sensitivity and 
NPV. This test is being used to “rule out” malignancy. The 
ideal diagnostic test would have high sensitivity, specificity, 
NPV, and PPV and would be able to both rule in and rule out 
malignancy. Combination testing is one approach being pur-
sued: for example, addition of the ThyraMIR test to the 
ThyGenX test gives a sensitivity of 89%, specificity of 85%, 
NPV of 94%, and PPV of 74%. Also, addition of the Afirma 
MTC or Afirma BRAF malignancy classifiers may add some 
specificity to the Afirma GEC, although no data regarding 
this has been published yet.

Of the currently commercially available tests, the ThyroSeq 
v2 test shows much promise as a stand-alone test that could 
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be used to both rule in and rule out malignancy, with a NPV 
of 96% and PPV of 83% in FN/SFN nodules and a NPV of 
97.2% and PPV of 76.9% in AUS/FLUS nodules. Further 
understanding of thyroid pathogenesis and the potential role 
of cooperating genes or mutations may help in further refin-
ing the NPV and PPV of the panel. In particular, RAS altera-
tions, which may be seen in carcinomas as well as benign/
indolent neoplasms such as follicular adenomas or NIFTP, 
confer a lower risk of malignancy of 74 to 87% than other 
alterations such as the BRAF V600E mutation which has a 
>95% risk of malignancy [12, 36, 37]. Knowledge of the dif-
ferences in risk based on the specific gene mutation present 
can guide patient management. Furthermore, use of large, 
NGS-based mutation panels would allow for the discovery of 
co-occurring mutations (e.g., in TP53 or EIF1AX) that may 
prove to be associated with increased risk.

�Utilizing the Results of Molecular  
Profiling in Clinical Management

Test performance characteristics have formed the basis of 
clinical algorithms to guide the use of molecular testing in 
guiding perioperative decision making [81]. For a positive 
result on seven-gene mutation/rearrangement panels, which 
have high specificity and high PPV, indeterminate cytology 
thyroid nodules may be managed with oncologic thyroidec-
tomy. A negative result on a seven-gene mutation/rearrange-
ment panel may be managed by observation or diagnostic 
thyroid lobectomy for AUS/FLUS nodules and by diagnostic 
thyroid lobectomy for FN/SFN or SMC nodules. Gene 
expression classifiers have high sensitivity and high NPV. For 
a benign result, observation or diagnostic thyroid lobectomy 
would be appropriate, and for a suspicious result on AUS/
FLUS or FN/SFN nodules, at least a diagnostic lobectomy 
should be considered.

For the ThyroSeq v2 panel, which has good overall sensi-
tivity, specificity, NPV, and PPV, the following clinical 
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algorithm can be considered (Fig. 15.1). When test is negative 
for all alterations, in nodules with Bethesda III and IV cytol-
ogy (and pretest cancer probability is that expected for these 
Bethesda categories), the residual probability of cancer is 
expected to be 3–4%. According to the NCCN guidelines, 
these patients can be followed by observation, similar to the 
recommendations for benign cytology nodules. For nodules 
with a positive ThyroSeq result, the type of mutation and 
other test results allow one to predict the probability of can-
cer in the nodule and estimate how aggressive the cancer is, 
helping to define the most appropriate surgical approach. An 
isolated RAS or RAS-like mutation predicts a high probabil-
ity (~80%) of either low-risk cancer or a precancerous 
tumor, NIFTP. Many of these patients can be treated with 

Bethesda III-IV Cytology

ThyroSeq v2

Test result
Negative:

no mutations

3-4%

N/A

Observation Lobectomy
Total

thyroidectomy
or lobectomy

Total
thyroidectomy

NIFTP or low-
risk cancer

Intermediate-risk
cancer

High-risk cancer

80-90% 95-99% 98%
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RAS-like
mutation

Positive:
BRAF-like
mutation
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multiple driver

mutations

Probability of
Cancer or NIFTP

Tumor type, risk
of recurrence

Patient
management

Figure 15.1  Algorithm for clinical management using the ThyroSeq 
v2 test, based on the risk conferred by specific mutations. Negative 
nodules have a risk of cancer of 3–4%, similar to that for benign 
cytology nodules, and can be managed with observation. Nodules 
positive for a RAS-like mutation have a risk of either low-risk can-
cer or NIFTP and can be managed with lobectomy. Nodules positive 
for a BRAF-like mutation are intermediate-risk cancers and can be 
managed with total thyroidectomy or lobectomy. Nodules positive 
for multiple driver mutations are high-risk cancers and can be man-
aged with total thyroidectomy, with possible local lymph node dis-
section
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therapeutic lobectomy, which is currently recommended for 
low-risk thyroid cancers. Isolated BRAF V600E or other 
BRAF V600E-like mutations confer a very high (>95%) 
probability of cancer of intermediate risk for disease recur-
rence. The risk may be further modified by clinical parame-
ters; for example, small (<1 cm) tumors may still be of low 
risk. These patients can be treated with total thyroidectomy 
or lobectomy. Test positivity for multiple driver mutations is 
virtually diagnostic of cancer and predicts a significant risk of 
disease recurrence and tumor-related mortality. These 
patients would benefit from total thyroidectomy, with consid-
eration for central compartment lymph node dissection.

Studies have suggested that use of molecular testing can 
help avoid unnecessary surgeries and can reduce the number 
of two-step surgeries (initial lobectomy followed by comple-
tion thyroidectomy). In a study of 471 patients with 
AUS/FLUS or FN/SFN cytology nodules, patients who did 
not have seven-gene mutation/rearrangement testing were 
2.5 more times likely to require a two-step surgery [82]. Cost-
effectiveness modeling studies of seven-gene mutation/rear-
rangement panels, gene expression classifier testing, and 
combined mutation and miRNA testing all show potential 
cost savings [83, 84].

�Conclusions

Advances in technology and further elucidation of the molec-
ular mechanisms underlying thyroid tumor pathogenesis 
have made possible the incorporation of molecular testing to 
ultrasound and cytopathologic examination in guiding the 
management of the patient with a thyroid nodule. Multiple 
tests are commercially available, and each utilizes different 
methodologies to profile the molecular alterations in indeter-
minate thyroid nodules. These tests have their own strengths 
and weakness; some have excellent utility in ruling in malig-
nancy, and some have excellent utility in ruling out malig-
nancy. Usage of these tests is increasingly being adopted in 
clinical practice and has potential to reduce costs by reducing 
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the number of unnecessary surgeries. Further advances in 
testing and test performance are likely to occur and may 
prove to have additional utility, for example, by predicting 
tumor aggressiveness or response to therapy.
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