An Approach to Semantics for UML Activities

Dariusz Gall®™ and Anita Walkowiak

Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27,
50-370 Wroctaw, Poland
{dariusz.gall,anita. walkowiak}@pwr. edu. pl

Abstract. The precise semantics for UML Activities is must-have in automated
applications of them. The paper proposes an approach to a definition of a
semantics of a set of UML Activities in the form of LTS (Labelled Transition
System). The set of activities is transformed to a graph of possible execution
traces, using OCL (Object Constraint Language) operations. So far, it covers
basic elements of an activity, i.e. sequential control and object flows. Moreover,
an Activity Semantics Metamodel is introduced. It specifies concepts, informally
described in the UML, used for Activity semantics definition.

Keywords: UML Activity - OCL - LTS - Formal semantics - Reachability
graph

1 Introduction

An activity is well-known behavior representation commonly called a “control and data
flow” model [8, 12, 15]. There are intensively used for software requirements speci-
fication [3, p. 92, p. 477, 9, 10, 17, p. 105]. However, the main obstacle in using
activity is lack of precise semantics. The definition of UML presented in the OMG
standard [8] is semi-formal, i.e. the semantics of elements is expressed in natural
language and has variation points. Additional challenges are the extensibility of the
UML and (deliberate or accidental) under-specifications.

The lack of formal semantics brings ambiguity problems [5, 8, 11, 13, 16], espe-
cially in case of automation of system development process — i.e. transformation of
PIM and PSM models and code generation in MDA approach; and design of tools
supporting the process [3]. Furthermore, the possibility of UML model-checking is
limited to syntax verification [1].

There are many works on the UML Activities semantics, e.g., [2, 3, 5, 12-16, 4].
These approaches specify the UML Activities semantics in some scope, omitting
certain aspects of the standard and consider only specific usages of the UML Activities
[2, 3,5, 8] and/or are just outdated [4], since refer to previous versions of the UML [8].
Some of these works provide translational semantics, by expressing the UML Activ-
ities in other formalisms, e.g., Petri-Nets, Abstract State Machines. Nevertheless, it is
challenging to formulate the Activity semantics in these formalism, especially when
more UML Activities constructions are considered [14, 16]. Moreover, the authors
investigate an execution of a single Activity and do not discuss an execution of a set of
Activities.

© Springer International Publishing AG 2018

J. Swiqtek et al. (eds.), Information Systems Architecture and Technology: Proceedings of 38th
International Conference on Information Systems Architecture and Technology — ISAT 2017,
Advances in Intelligent Systems and Computing 656, DOI 10.1007/978-3-319-67229-8_23

An Approach to Semantics for UML Activities 253

The main goal of the paper is to give an approach to a precise interpretation of a set
of activities, consistent with the UML standard. The interpretation is expressed in terms
of all possible execution traces that may be derived from the set. We propose a
transformation of a set of activities into the Labelled Transition System [6], which
describes the modeled behavior in the form of a graph of possible execution traces.

The proposed semantics will support automation of system development process. It
will check compliance with end-users expectations, e.g. by model simulations and
model execution. Next, it will support model checking, especially by using existing
tools, like Construction and Analysis of Distributed Processes tool (CADP). Moreover,
it is a base for test-scenarios generation. And last but not least, it is necessary to build
and validate model transformations between PIM and PSM models, and code
generation.

In Sect. 2, we discuss the syntax and semantics of the UML Activities presented in
the UML specification [8]. We define the LTS-based semantics of the UML Activities
in Sect. 3. It gives definitions that are necessary to introduce the LTS for the UML
Activities, and finally we introduce the algorithm to construct a graph of possible
execution traces. The paper is concluded in Sect. 4.

2 Syntax and Semantics of Activities

The activity defined by UML specification [8] is a graph. It is represented by the
Activity metaclass which consists of ActivityNodes connected by ActivityEdges,
stored in the node and the edge metaattributes of the Activity. The ActivityEdge
connects two ActivityNodes via the source and the target metaattributes, respec-
tively. Subclasses of the ActivityNode are the ExecutableNode, the ObjectNode,
and the ControlNode. There are two types of the ActivityEdge: the ControlFlow and
the ObjectFlow.

An Activity is a kind of a Behavior. The Behavior describes a set of possible
executions, or more precisely it is “a specification of events that may occur dynamically
over time” [13, p. 284]. The UML specification defines an Event as “a set of possible
occurrences”, whereas an occurrence is “something that happens that has some con-
sequence with regard to the system” [13, p. 12]. An invocation of a Behavior creates its
instance, known as a behavior execution. Each behavior execution is related to a specific
execution trace, which is “actual sequence of event occurrences due to the invocation
[of the Behavior], consistent with the specification of the Behavior’ [13, p. 284].

An Activity appoints a partial order of behavior steps that may be executed and data
flows corresponding to the steps. A behavior step lasts non-zero time, is expressed by
ExecutableNode and represents, for example, an arithmetic computation, a call to an
operation, or manipulation of object contents. The partial order of behavior steps
execution is specified in terms of tokens flow rules inspired by Petri Nets formalism
[14] — “The effect of one ActivityNode on another is specified by the flow of tokens
over the ActivityEdges between ActivityNodes” [13, p. 372], whereas it is assumed
that the flow, if it occurs, is immediate. There are two kind of tokens: a control and an
object token. A control token flow specifies an effect of execution one ActivityNode on

254 D. Gall and A. Walkowiak

another — set an order of the execution, and flows over ControlFlow edges. An object
token is a container for a value that flows over ObjectFlow edges.

A behavior step is enabled to be executed when tokens are offered to it on incoming
edges and specified conditions are met. When an execution of a behavioral step is
started, “tokens are accepted from some or all of its incoming ActivityEdges and a
token is placed on the node” [13, p. 373]. When a behavioral step completes an
execution, “a token is removed from the node and tokens are offered to some or all of
its outgoing ActivityEdges” [13, p. 373]. Thereby, we may distinguish following types
of events occurring during the Activity execution:

— tokens acceptation by a node — e.g. a start of an ExecutableNode execution,
— tokens offering by a node — e.g. a finish of an ExecutableNode execution.

At the given point of an activity’s execution, event types are disjoint for an activity
node, which means that only one of them can be enabled.

An execution trace of an Activity is an actual sequence of tokens acceptances
and/or offerings occurrences due to the invocation, consistent with the specification of
the Activity. Set of all possible execution traces of the Activity is the semantic of the
Activity.

In our approach we consider the semantics of a set of Activities with one indicated
initial activity. The initial activity refers directly or indirectly to activities in the set by
calling other activities (CallBehaviorAction), signal sending (SendSignalAction), etc.

3 Semantics of Activities

We introduce the metamodel representing execution traces of a set of activities (here-
inafter referred to as “ASmetamodel”), (Fig. 1). We define the ASmetamodel in the
context of UML Activity specification [8], thereby some of classes introduced to the
ASmetamodel refer to UML Activity metaclasses, for example to the ActivityNode, the
ActivityEdge. The ASmetaclasses are marked by «ASmetaclass» keyword.

The set of activities (instances of UML Activity metaclass) are represented by a set
of Act activities. When an Act is invoked a new instance of this is created. The instance
is represented by the Execution metaclass.

An execution trace of an Act activity is defined by indicating consecutive places of
tokens within the considered Act. A place of a token in the Act is represented by the
Location metaclass (Fig. 2). A token generally is represented by Token metaclass,
which is specialized by the ControlToken and the ObjectToken metaclasses mod-
elling a control token and object token, respectively. For the sake of the simplicity, an
ObjectToken does not contain a value, however it states that a value is present at all.
In the context of the Location, a token (referenced by token metaattribute) may be
situated either at the node or the edge of the Act.

The Snapshot metaclass represents locations of all tokens at some point (snapshot)
of an execution trace of an Act activity (Fig. 2). It corresponds to progress in the Act’s
behavior execution. A Snapshot refers to the instance of the Act by the execution,
and to a set of tokens places by the locations.

An Approach to Semantics for UML Activities 255
<<ASmetaclass>> %2 1 ActivityNode
ActivityEvent o~ nodd | enabledEvent(snap : Snapshot) : EventType [0..1]
eventType : EventType | | <<enumeration>> transition(event : EventType, snap : Snapshot): Configuration [0.."]
EventType acceptEnabled(snap : pshot) : Boolean
event <134 acoeptation offerEnabled(snap : Snapshot) : Boolean
o..* offering accepl(snap : Snapshot) : Configuration [0.."]
offer(snap : Snapshot) : Configuration [0.."]
<<ASmetadass>> |
Transition 0.1 “*node
predecesor 0.1 0. succesors
<<ASmeladass>> ActivityEdge
Configuration
new(snapshots : Snapshot) : Configuration edge ’1"0..1
new(newSnaps : Snapshot, snap : Snapshot) : Configurationfo.0lf [~ °°°7° (;o:) """
1.0)
0.* \|, snapshots 0.7 sk 0.°
<<ASmetaclass>> <<ASmetaclass>>
Snapshot locationg Location
new(execTrace : Execution. locations : Location) : Snapshot ’1_.- 0.° |new . ActivityEdge. token : Token) : Location
init(Act : Activity) : Snapshot new(node : ActivityNode, token : Token) : Location
0.° i X
(ondemsd) executionTrace 0.1 Y = —
Activity 1 Bkan Object Token
new() : Object Token
AN —— <<ASmetac
\ <<instanc >> "
' ! Sxecuton Joken <<ASmetaclass>>
' i <<i Of>> | <<AS lass>> *_Control Token
[e |le-------4
N Exacution new() : Control Token
Fig. 1. Activity semantics metamodel.
Configuration
Act, \ ﬂct2
<
J ® > J
’—//\—4 jet—T
3 ‘ :
2] i Snapshot
Location T i | K]) ‘ % ‘
;| =+l L x|
L N s
<—— \/ & @< Je— J

Fig. 2. Example configuration of a set of activities.

The Configuration metaclass represents places of tokens (indirectly via snap-
shots) after an event occurrence and before the very next event occurrence, for all
instances of activities (Fig. 2). Or, if it is the Activities’ invocation, it specifies initial
places of tokens within the instances. The Configuration refers to progress in an
execution of the set of Activities.

256 D. Gall and A. Walkowiak

An event occurrence causing a transition from one Configuration to another is
modelled by the Transition association metaclass. The event is specified by an
ActivityEvent, which has an event type (eventType) and an activity node (node)
which it refers to. An event type is one of the EventType values, i.e. either the
acceptation value, for acceptation events, or the offering value, for offering events.

A Configuration refers to a predecessor configuration, unless it is the very first
configuration, i.e. one from which it was directly transited.

There may be many successor configurations for a Configuration. Firstly, if there
are many enabled events occurrences for the configuration, e.g., many Exe-
cutableNodes in the activities are enabled to accept tokens (e.g., because of con-
current tokens flows), a new Transition is added for each event occurrence. Secondly,
there may be many successor configurations, for a single event occurrence. For
example, an ExecutableNode having optional outputs (OutputPin) may offer tokens
at every subset of the outputs. Thereby, an event occurrence — tokens offering by the
ExecutableNode - results in a set of possible successor configurations for each subset
of the outputs. Similarly, there might be many possible ways of tokens acceptation, in
example presented in Fig 3. The action within the snapshot (a.) can accept a control
token from two alternative locations, and similarly can accept an object token (via input
pin) from two alternative locations. There are four possible cases (two of them are
presented in the Fig. 3 by snapshots (b.) and (c.)).

N k/

I . a» > »

a.) b.) c)

Fig. 3. Possible ways of tokens acceptation.

Metaclasses of the ASmetamodel have operations responsible for creation and
expanding a model (a graph) representing semantic of the set of activities — all possible
execution traces of the set, Fig. 2. The operations are defined using OCL [7].

For the sake of convenience, we defined operations named new supporting
instances creations of all ASmetaclasses. In the Snapshot ASmetaclass we defined
operation init, which sets up tokens initial placement (at the very beginning of an
Activity invocation) for a given Snapshot.

We define operations within the UML metaclasses, mainly in ActivityNode. These
operations are used to define transitions rules of the Labelled Transition System,
introduced in the Subsect. 3.2.

Some of the operations (acceptEnabled, offerEnabled, accept, offer) are
abstract, because there are specific to particular types of ActivityNode. The ac-
ceptEnabled (offerEnabled) determines whether acceptation (offering) event is
enabled in the context of a node and for a given snapshot. The accept (offer) operation,

An Approach to Semantics for UML Activities 257

in the context of a node and for a given snapshot, results in a set of successor con-
figurations (transits to new configurations), when the node accept (offer) tokens.

Additionally, there are auxiliary operations supporting LTS definition en-
abledEvent and transition common for all ActivityNodes. The enabledEvent
operation (calling acceptEnabled and offerEnabled operations) provides available
event type for a node within a given snapshot if any. The operation can be seen as a
premise for running a transition on the node within the snapshot. The transition
operation (calling accept and offer) does enabled transition for a node due to a given
event type and snapshot, which results in a set of succeeding configurations.

Because of the space limitation, we put definitions of these operations in the
appendix [17].

For the sake of simplicity we write thereafter c € Configuration meaning that c is
an instance of the metaclass Configuration. Similarly, we write thereafter C C
Configuration meaning that C is a set of instances of the metaclass Configuration.

3.1 The Labelled Transition System

The semantics of an activity acty is defined in the context of a set of activities (in-
cluding acty) A being used by acty. We introduce the semantics by means of the
Labelled Transition System [6]:

LTS({acty, A)) = (C,—,E) (1)

where:

C C Configuration is the set of possible configurations of the A activities,
& C ActivityEvent is the set of the A activities events,
— C C x & xCis the set of allowed transitions between configurations.

We describe transitions — as a set of triples {(c, e, c’), where a triple (a transition)
define the very next configuration ¢, after a configuration ¢ (i.e., to which c is tran-
sited), when an event e occurs. The result of applying — on ¢ is a set of new
configurations C' C C. The semantics imposes no order on the particular event to be
processed and is nondeterministic.

A single transition: (c,e,c € —) we will note thereafter in following way: ¢ 5.

We distinguish two types of transitions (for each event type: — = —ccep
) _)oﬂer)'

— Transitions when the acceptation type events occur — if an acceptation event is
enabled for an activity node within given snapshot (operation node.acceptEnabled
returns true), then the activity node accepts tokens offered to it from some or all of its
incoming edges and starts processing, i.e. for all possible cases of acceptation, new
configurations are created (a result of node.accept call in stored in C').

258 D. Gall and A. Walkowiak

e ! .
—accept = {C —clceCNe€&NeeventType = acceptation

)

Nsccsnapshors - €.node.acceptEnabled(s) = e.node.accept(s)}

— Rules for the offering event type — if an offer event is enabled for an activity node
within given snapshot (operation node.offerEnabled returns true), then the
activity node completes execution and token is removed from the node and tokens
are offered to some or all of its outgoing edges, i.e. for all possible cases new

configurations are created (a result of node.offer call in stored in o).

— offer = {cicl|c € CANe € EANe.eventType = offering

Nsec.snapshors - €.node.offerEnableds) Ac € e.node.oﬁ”er(s)}

We specify transitions for a set of selected kinds of activity nodes. For a given kind of
node, a transition is specified for an event if it stems from UML specification. For
example the acceptation event is applicable for the FinalNodes, and the Exe-
cutableNodes, however the offering only for the ExecutableNodes [8]. We con-
cretize the acceptEnabled and the accept operations, if the acceptation event is
applicable, and accordingly the offerEnabled and the offer operations for the offering.
Below we discuss transitions for the OpaqueAction, the FlowFinalNode, and the
ActivityFinalNode, however for the sake of brevity we present detailed operations
only for OpaqueAction and acceptation event.

OpaqueAction — accept

Within a given snapshot, an opaque action can accept tokens, if they are offered to all
incoming control flows, and all incoming object flows of the action’s mandatory input
pins [13, p. 401]. It is defined in the acceptEnabled as follows:

context OpaqueAction :: acceptEnabled (snap: Snapshot): Boolean
body: controlLocationsCases (snap) — notEmpty() and
mandatoryInputPins — notEmpty() implies

objectLocationsCases (mandatorylnputPins, snap) — notEmpty()

Tokens are offered to an edge by the source node of the edge. Offers propagate
through edges and control nodes until they reach an action [13, p. 374]. As itis discussed
in Subsect. 3.1, there are many ways in which tokens can be offered to the action.

We consider variations without repetition of sources of tokens. The con-
trolLocationCases operation (see the appendix [17]) returns all mutually exclusive
sets of control token locations from which tokens can be accepted by all control
incoming edges of the opaque action. Similarly, we do for object token locations by
invoking objectLocationsCases operation [17], however, ensuring that only
mandatory input pins are taken into account. Tokens can be accepted if the control
token location set is not empty and the object token location set is not empty, providing
that there are any mandatory pins.

An Approach to Semantics for UML Activities 259

Within the given snapshot, when the opaque action begins execution, tokens are
accepted from some or all of its incoming edges and a token is placed on the node [13,
p. 373]. If there are many ways of tokens acceptation, a way of the acceptance is
chosen randomly. Thereby, a new configuration is generated for each possible way, in
the following manner:

context OpaqueAction :: accept(snap: Snapshot): Set(Configuration)
post:
let loc: Location = result.snapshots.locations — flatten()
- any(l|l. ocllsNew() and l.node
= self and . token.ocllsNew () and L. token.oclIsTypeOf(ControlToken)) in
let alllnputPinsObjectLocationsCases: Set(Set(Location)) = inputPinCases
- collect(pinCase: Set (InputPin)|objectLocationsCases (pinCase, snap))

- collect (case:Set (Location)|case
- reject(l: Location| l.node <> null and L. oclIsType (DataStoreNode)))

- asSet() in
mutualExclusiveCases (Set{controlLocationsCases(snap), allinputPinsObjectLocationsCases})
- forAll(case:Set(Location)|result — one(c: Configuration|c.oclIsNew () and c.snapshots
— excluds(snap) and c.snapshots
- one(s: Snapshot|s.ocllsNew() and s.location = snap. locations — case
- including (loc))))

A new location /oc with a new control token is created for the action.

A set of alternative locations for all subsets of input pins, for which tokens can be
accepted, is computed. The set is obtained using the inputPinCases operation [17]
which returns a power set of the input pins. Next, the objectLocationsCases operation
[17] is applied to each element (a set of input pins) of the power set, and results are
collected.

Last but not least, because of the semantics of the DataStoreNode, an object token
taken from the data store has to be copied and restored [13, p. 397]. It is imitated by
removing the object token from the set of alternative locations.

The operation mutualExclusiveCases [17] is invoked to calculate all mutually
exclusive locations, i.e. combination of control token locations (result of the
controlLocationsCases operation call [17]) and object token locations (the
alllnputPinsObjectLocationsCases value).

New snapshots for the alternative locations are calculated and in the result, a new
configuration is created for each new snapshot. Finally, the configurations are returned
by the accept operation.

OpaqueAction — offer

When the opaque action completes an execution a token is removed from the action
and tokens are offered to some or all of its outgoing edges, [13, p. 373]. Within a given
snapshot, the opaque action completes execution if there is a control token location
related to the action. It is defined in the OpaqueAction:offerEnabled in the
appendix [17].

260 D. Gall and A. Walkowiak

Control tokens are offered on all outgoing control flows of the opaque action.
Object tokens are placed in all mandatory output pins in order to be offered to outgoing
object flows of the pins. Depending on a result of the opaque action execution, object
tokens may be placed within a subset of optional output pins. Moreover, if object
tokens are effectively offered to the ActivityParamterNode or the DataStoreNode,
they are immediately propagated to these nodes [13, pp. 396-397]. If there are many
ways of tokens offering, a way of the offering is chosen randomly. In such situation, the
offer operation generates a set of configurations for the all possible ways. It is defined
in the OpaqueAction::offer in the appendix [17].

ActivityFinalNode — accept

Within a given snapshot, an activity final node can accept tokens, if they are offered to
any incoming control flow. When the activity final node accepts tokens, an activity
instance (an execution) referred by the snapshot is finished. It is defined in the Activ-
ityFinalNode::acceptEnabled and ActivityFinalNode::accept in the appendix [17].

FlowFinalNode — accept

Within a given snapshot, a flow final node can accept tokens, if they are offered to any
incoming control flow. When the flow final node accepts tokens, the tokens are
removed from an activity instance (an execution) referred by the snapshot. If there are
no enabled events for any node within the activity instance, the snapshot is removed
and the activity instance is destroyed. It is defined in the FlowFinalNode:ac-
ceptEnabled and FlowFinalNode::accept in the appendix [17].

3.2 Reachability Graph

A graph of possible execution traces of an activity acty in the context of a set of
activities A is defined as:

G((acto, A)) = (V,A) 4)

where:

V —is a set of graph vertices; each vertex is labeled by a configuration which is
reachable from the initial configuration ¢y of the activity acty (co is an initial
configuration when a snapshot of the configuration represents the acty instance
initialized, i.e. locations are distributed within nodes and edges with respect to rules
defined in [13, p. 376]. It is reflected in the Snapshot:init [17]).

A —is a set of graph arcs; each arc is labeled by a transition; and has form (u, 7,v) € A,
where u,v € V are vertices labeled by c,, ¢, : Configuration, and t : Transition.

The graph is directed. The root of the graph represents an initial configuration cy,
while leafs correspond to final configurations. A sequence of transitions starting from
the ¢ results in one of the possible execution traces of the set of activities. The set of all
possible execution traces corresponds to semantics of the activities.

We will use the function label : V — Configuration, which for a given vertex of
the graph of possible execution traces returns a configuration labeling the vertex. The
graph are constructed iteratively starting from: V = (), A = ().

An Approach to Semantics for UML Activities 261

1. The initial vertex is set up:
a. The initial configuration ¢, for the activity act is created:
co = Configuration :: new(Set{Snapshot :: init(acty, Sequence{})})
b. Let vy be a vertex labeled by the configuration cp: V «— V U{wo}
2. The set of leaf-vertices is defined:
Vieaves = {v € Vl|label(v) € ¢y — closure(succesors) — select(succesors — isEmpty())}
3. For each leaf-vertex v € Vjgpes:
a. For each snapshot of leaf-vertex snap € label(v).snapshots:
(1) The set of events which enable transitions for snapshot snap is defined:
EnabledEvents = snap.execution.type.node — collect(n|n.enabledEvent(snap))
(2) For each enabled event e € EnabledEvents:
i. The set of new configurations C' are created: C' = e.node.transition(e)
ii. For each new configuration ¢’ € C":
(a) The transition ¢ is created: t = Transition :: new(e.node,e,c,c)
(b) Let V' be a vertex labeled by configuration ¢: V « V U {v/}
(c) Let a be an arc of the form (v,£,v): A «— A U{a}
b. Checkifany new vertexhasbeencreated: \/ .y, /oy Vicrransiiion (Vs 1 V) €A,
if yes go to step 2.

4 Conclusions

We gave a precise interpretation of a set of Activities in form of set of execution traces.
We developed the transformation of a set of activities into the formally precise abstract
behavior model, i.e. the graph of possible execution traces. Nodes of the graph cor-
respond to a configuration, arcs correspond to transitions between two configurations,
triggered when an event occurs. The provided semantics cover flows of control and
object tokens taking into consideration variety caused by control nodes.

The transformation is formulated as the set of OCL rules, which makes it easily
portable to transformation frameworks and model-based frameworks. It is the starting
point for model analysis, execution (model debugging) tools, or support in checking
correctness of model transformations.

In the future works, we will extend the semantics to other parts of the UML
Activity notation. We will add support for new type of actions, e.g., call behavior
action, send signal action, accept event action, and so far. We will support values
transportation in object tokens. Moreover, we want to define semantics for parallel
processing.

We want to develop the tool for generating a reachability graph of a set of activities.
Next, our goal is to prepare more advanced tool supporting Use-Case specification
process, model transformations, etc.

262

D. Gall and A. Walkowiak

References

10.

11.

12.

13.

14.

15.

16.

17.

. Daw, Z., Cleaveland, R., Vetter, M.: Formal verification of software-based medical devices

considering medical guidelines. Int. J. Comput. Assist. Radiol. Surg. 9(1), 145-153 (2014)

. Daw, Z., Cleaveland, R.: An extensible operational semantics for UML activity diagrams. In:

Calinescu, R., Rumpe, B. (eds.) SEFM 2015. LNCS, vol. 9276, pp. 360-380. Springer,
Cham (2015)

. Daw, Z., Cleaveland, R.: Comparing model checkers for timed UML activity diagrams. In:

Science of Computer Programming, pp. 277-299 (2015)

. Eshuis, R., Wieringa, R.: Tool support for verifying UML activity diagrams. IEEE Trans.

Softw. Eng. 30, 437-447 (2004)

. Gronniger, H., Reif3, D., Rumpe, B.: Towards a semantics of activity diagrams with semantic

variation points. In: Petriu, D.C., Rouquette, N., Haugen, @. (eds.) MODELS 2010, Part I.
LNCS, vol. 6394, pp. 331-345. Springer, Heidelberg (2010)

. Keller, R.M.: Formal verification of parallel programs. Commun. ACM 19(7), 371-384

(1976)

. OMG Object Constraint Language 2.4. http://www.omg.org/spec/OCL/2.4/. Accessed 03

Feb 2014

. OMG Unified Modeling Language 2.5. http://www.omg.org/spec/UML/2.5/. Accessed 1

Mar 2015

. Reggio, G., Leotta, M., Ricca, F.: Who knows/uses what of the UML: a personal opinion

survey, model-driven engineering languages and systems. In: 17th International Conference,
MODELS 2014, Valencia, Spain, pp. 149-165. Springer (2014)

Reggio, G., Leotta, M., Ricca, F., Clerissi D.: What are the used activity diagram constructs? —
A survey. In: 2014 2nd International Conference on Model-Driven Engineering and Software
Development (MODELSWARD), IEEE (2014)

Roubtsova, E.: Advances in behavior modeling. In: Advances in Computers, pp. 49—109.
Academic Press, Orlando (2015)

Storrle, H.: Semantics of control-flow in UML 2.0 activities. In: Bottoni, P., Hundhausen, C.,
Levialdi, S., Tortora, G. (eds.) Proceedings of the IEEE Symposium on Visual Languages
and Human- Centric Computing (VL/HCC), pp. 235-242 (2004)

Storrle, H.: Semantics of UML 2.0 acitivities. In: International Symposium on Visual
Languages/Human Computer Centered Systems, pp. 235-242 (2004)

Storrle, H.: Towards a petri-net semantics of data flow in UML 2.0 activities. Technical
report TR 0504, University of Munich (2004)

Storrle, H.: Semantics and verification of data flow in UML 2.0 activities. Electron. Notes
Theor. Comput. Sci. 127, 35-52 (2005)

Storrle, H., Hausmann, J.H.: Towards a formal semantics of UML 2.0 activities. In:
Liggesmeyer, P., Pohl, K., Goedicke, M. (eds.) Software Engineering, Fachtagungdes
GI-Fachbereichs Softwaretechnik. LNI, vol. 64, pp. 117-128. GI (2005)

Walkowiak, A., Gall, D.: An approach to semantics for UML activities — appendix. https://
www.dropbox.com/s/11jrz5z061k5vxr/OCL_Appendix.pdf?dl=0. Accessed 31 May 2017

http://www.omg.org/spec/OCL/2.4/
http://www.omg.org/spec/UML/2.5/
https://www.dropbox.com/s/11jrz5zo6lk5vxr/OCL_Appendix.pdf?dl=0
https://www.dropbox.com/s/11jrz5zo6lk5vxr/OCL_Appendix.pdf?dl=0

	An Approach to Semantics for UML Activities
	Abstract
	1 Introduction
	2 Syntax and Semantics of Activities
	3 Semantics of Activities
	3.1 The Labelled Transition System
	3.2 Reachability Graph

	4 Conclusions
	References

