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Abstract. Developing realistic Web traffic models is essential for a reliable
Web server performance evaluation. Very significant Web traffic properties that
have been identified so far include burstiness and self-similarity. Very few
relevant studies have been devoted to e-commerce traffic, however. In this
paper, we investigate burstiness and self-similarity factors for seven different
online stores using their access log data. Our findings show that both features are
present in all the analyzed e-commerce datasets. Furthermore, a strong corre-
lation of the Hurst parameter with the average request arrival rate was discov-
ered (0.94). Estimates of the Hurst parameter for the Web traffic in the online
stores range from 0.6 for low traffic to 0.85 for heavy traffic.
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1 Introduction

Numerous studies on the analysis and characterization of Internet traffic have confirmed
its specific properties. Two very significant traffic features are its burstiness and
self-similarity. Burstiness means that the traffic is highly variable, with traffic “bursts”
observable on multiple time scales. The resulting time series, which is bursty on a wide
range of time scales, may be statistically described as a self-similar process [1].
Burstiness and self-similarity have been identified both in the network traffic [2–5] and
in Web server workloads [1, 6–9].

In reality, bursts in request arrival rates on the server may lead to transient server
overloads and consequently, to a degraded server performance. Even a small amount of
the traffic burstiness may degrade the server throughput [10, 11]. That is why this
phenomenon has to be taken into account in Web server performance evaluation using
the synthetic workload: to achieve reliable results of experiments testing the system
performance, it is essential to model and generate bursty Web traffic [12–17].

In this paper we consider an arrival process of HTTP requests on Web servers
which host B2C e-commerce websites, i.e., online stores. The motivation for our study
was the fact that very few previous Web traffic analyses have been dedicated to
e-business sites and the relevant literature lacks the comparative analysis of burstiness
and self-similarity factors for multiple e-commerce environments. We obtained 24-hour
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access log data for seven various Web stores, differing in the type and size of the store
offer, the website structure, and site popularity, and we used them to estimate burstiness
and self-similarity factors for the e-commerce sites. To the best of our knowledge, there
has not been such a wide study of the e-commerce traffic so far.

The rest of this paper is organized as follows. Section 2 explains a concept of
self-similarity and discusses methods used to evaluate the traffic burstiness and
self-similarity. Section 3 presents achieved results and Sect. 4 concludes the paper.

2 Approach for Evaluating Self-similarity and Burstiness
of the Web Traffic

2.1 Definition of Self-similarity

Self-similarity may be defined in the context of the time series distribution [1]. Let
X = (Xt; t = 1, 2, …) be a zero-mean, stationary time series. The m-aggregated series
X(m) = (Xk

(m); k = 1, 2, …) is defined by summing the time series X over nonoverlap-
ping blocks of length m. Series X is H-self-similar if for all positive m, series X(m) has
the same distribution as X rescaled by mH:

Xt ¼ m�H
Xtm

i¼ t�1ð Þmþ 1
Xi ð1Þ

for all m 2 N. H-self-similar series X has the same autocorrelation function: r kð Þ ¼
E Xt � lð Þ Xtþ k � lð Þ½ �=r2 as the series X(m) for all m.

The degree of self-similarity may be estimated by determining the Hurst parameter
(Hurst index), denoted by H. For a self-similar series this parameter is higher than 0.5.
The higher H is, the higher degree of self-similarity is revealed by the series.

Various statistical tests may be applied to assess the Hurst parameter. Popular tests
operating in the time domain are the aggregate variance method and the R/S plot
method. Other common tests, operating in the frequency domain, include the
periodogram-based method, the wavelet-based estimator, and the Local Whittle esti-
mator. Less common methods are multifractal analysis, detrended fluctuation analysis,
and the Arby-Veitch estimator.

2.2 Estimation of the Hurst Parameter Using the Aggregate Variance
Method

To verify the self-similarity of the traffic, we apply the aggregate variance method,
which has been widely applied in previous Internet traffic analyses [1, 2, 5, 8, 9, 11, 13,
17, 18]. This test uses the fact that for a self-similar process variances of the sample
mean are decaying more slowly than the reciprocal of the sample size [20].

Based on request timestamps read from log data a time series X = (Xt; t = 1,
2,…, N) is created, covering the time interval T. In our case each original series X has a
duration of T = 24 h = 86400 s.

Value of m, i.e., duration of a subinterval, is given in seconds, m 2 2;N=2½ �.
Consecutive values of m are generated as a geometric sequence 2 k, k ¼ 1; 2; . . .;
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so that m <= N/2. The m-aggregated series X(m) are created for consecutive values of
m and the variance of series X(m) is determined.

The variance of X(m) is then plotted against m on a log-log plot and approximated
by a straight line by using the least squares method. The slope of the line –b is
computed and used to determine the Hurst parameter, given by:

H ¼ 1� b=2: ð2Þ

2.3 Estimation of the Burstiness Factor

For each analyzed e-commerce dataset the request arrival data is first plotted on many
time scales to visually inspect the traffic burstiness. Then, a more rigorous analysis of a
burstiness factor is performed in the following way [19].

Let L be the total number of requests that arrived on the Web server in the time
interval T. Let k be the average request arrival rate, given by:

k ¼ L
T
: ð3Þ

Let the time interval T be divided into n equal subintervals of duration m. Let lk be
the number of requests that arrive in subinterval k and kk be the arrival rate of requests
during subinterval k, given by:

kk ¼ n
T
� lk: ð4Þ

where k = 1, 2,…, n. Let l+ be the total number of requests that arrive in subintervals in
which the subinterval arrival rate kk exceeds the average arrival rate k. The burstiness
parameter bm is defined as the fraction of time during which the subinterval arrival rate
exceeds the average arrival rate:

bm ¼ Number of subintervals for which kk [ k
n

: ð5Þ

If the traffic is not bursty, it means that it is uniformly distributed over all subin-
tervals and consequently, b = 0. On the other hand, for the bursty traffic b > 0.

For each analyzed e-commerce dataset we compute the burstiness parameter, bm,
for m = 2, 4, 8, 16, 32, 64, 128, and 256 s. We also determine the mean value of the
burstiness parameter, bmean, to compare the burstiness across the multiple datasets.

3 Results

3.1 Empirical Data Description

We analyzed access log data of e-commerce websites obtained from seven online
retailers (the identities of the websites are not revealed for confidentiality restrictions).
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The analyzed websites vary in the type and size of the store offer, the website structure
and the traffic level in terms of the number of HTTP requests received in a 24-hour
period. The highest traffic was registered for the online bookstore site (SiteB), offering
books, films, and multimedia (89,486 requests in total) and for the website offering
products and services for elderly people (SiteE, 70,352 requests). Two datasets were for
the automotive branch e-stores: SiteA1 (10,472 requests) and SiteA2 (20,378 requests).
Two other datasets, differing significantly in the numbers of samples, were for websites
offering tourist equipment and clothes: SiteT1 (2,616 requests) and SiteT2 (37,819).
The last dataset, SiteH, was for the site offering devices and systems for house
equipment and contained only 7,666 samples (the corresponding website was not well
positioned at that time).

General information on the analyzed Web stores’ data is summarized in Table 1.
Note that although dates of data collection differ between the individual websites, time
samples in each dataset cover the total time interval of 24 h.

3.2 Burstiness

Figures 1, 2, 3, 4 and 5 illustrate request arrival rates at different time scales (per
subintervals of m = 4, 8, 16, 32, and 64 s) for the most numerous dataset, SiteB.
Depending on the subinterval duration, data shown in the figures covers various
observation windows. For example, Fig. 1 illustrates request arrival rates for 1200
4-second subintervals so the plotted data corresponds to an 80-minute time span. The
higher the value of m is, the longer observation window is reflected in a figure.

Data in Fig. 5 corresponds to the whole one day (24 h). In this case a clear diurnal
pattern of request arrivals is visible, with the least intensive traffic at night time, the
gradually increasing traffic since 5 am till the peak traffic period starting at about 2 pm
and lasting till about 10 pm.

A visual inspection of the plots confirm that the Web traffic arriving at SiteB is
evidently bursty across several different time scales. Plots for other datasets are not
presented in the paper due to space limits but they lead to similar conclusions on the
traffic burstiness.

Table 1. Basic information on the analyzed e-commerce datasets.

SiteB SiteE SiteT2 SiteA2 SiteA1 SiteH SiteT1

Branch Books For
elderly

Tourist Auto-motive Auto-motive For
house

Tourist

Date of data
collection

Apr 1,
2014

Jan 25,
2016

Mar 29,
2015

Apr 3, 2015 Nov 12,
2016

Apr 10,
2015

Feb 24,
2015

Number of
requests, L

89,486 70,352 37,819 20,378 10,472 7,666 2,616

Average request
arrival rate, k

1.04 0.81 0.44 0.24 0.12 0.09 0.03
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Fig. 1. Burstiness of the Web traffic on SiteB in slots of 4 s.
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Fig. 2. Burstiness of the Web traffic on SiteB in slots of 8 s.
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Fig. 3. Burstiness of the Web traffic on SiteB in slots of 16 s.
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Fig. 4. Burstiness of the Web traffic on SiteB in slots of 32 s.
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Burstiness visible on the plots of request arrival rates at different time scales is
confirmed by estimates of the burstiness parameters, determined according to (5).
Table 2 presents burstiness parameter values for different subinterval durations (2, 4, 8,
16, 32, 64, 128, and 256 s) and mean values of the burstiness parameter, denoted by
bmean. Figure 6 plots the burstiness parameter vs. subinterval duration for all the
datasets. It can be seen that in general the burstiness factor tends to increase with the
increase in the time scale. An exception from this tendency is the Web traffic registered
for SiteT1 and SiteA2.
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Fig. 5. Burstiness of the Web traffic on SiteB in slots of 64 s.

Table 2. Burstiness factors for the analyzed datasets.

SiteB SiteE SiteT2 SiteA2 SiteA1 SiteH SiteT1

b2 0.12 0.05 0.19 0.32 0.07 0.05 0.02
b4 0.16 0.08 0.13 0.52 0.11 0.08 0.04
b8 0.25 0.12 0.12 0.43 0.18 0.12 0.07
b16 0.38 0.10 0.15 0.36 0.16 0.10 0.13
b32 0.39 0.13 0.20 0.31 0.19 0.13 0.23
b64 0.42 0.13 0.25 0.26 0.21 0.13 0.14
b128 0.42 0.17 0.28 0.25 0.24 0.17 0.12
b256 0.41 0.24 0.31 0.26 0.30 0.24 0.15
Mean burstiness (bmean) 0.32 0.13 0.20 0.34 0.18 0.13 0.11
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Fig. 6. Burstiness factor vs. subinterval duration.
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3.3 Self-similarity

A visual inspection of the traffic burstiness and the determined burstiness factors
suggest the presence of self-similarity in the Web traffic on all the analyzed
e-commerce sites – even though the traffic stationarity at higher time scales is ques-
tionable. This is confirmed by estimates of H, all of which exceed 0.5 (Table 3).

We examined the correlation between the H estimates and the burstiness parameters
for different durations of a data aggregation subinterval, m. In the case of low values of
m (2, 4, 8, 16, and 32) and bmean there was no linear relationship or it was very weak
(below 0.4). However, the relationship between H and b64 was moderate (0.64) and the
relationships between H and b128 and b256 were quite strong (0.73 and 0.80,
respectively).

Figures 7, 8, 9 and 10 show variance-time log-log plots for the analyzed time
series. In all cases the shape of the line approximating the data significantly differs from
–1, resulting in values of the Hurst parameter ranging from 0.6 to 0.85, depending on a
dataset. These estimates confirm previous findings on H for e-commerce traffic, which
was estimated as 0.66 for the traffic with the average arrival rate of 0.65 requests/s in
the study [7] and ranged from 0.73 to 0.8, depending on the H estimating test, for the
peak e-commerce traffic in the study [8].

We observed that higher traffic intensity levels on e-commerce sites correspond to
higher values of the Hurst index. It is confirmed by a very high correlation between
H and k, equal to 0.94. This conclusion is also consistent with some previous findings
for the non-e-commerce Web traffic [1, 6], stating that although self-similarity is not
necessarily an invariant in all Web server workloads, it is evident in heavy workloads.
However, in contrast, we identified the self-similarity in all the analyzed e-commerce
server workloads, even for the websites subject to very low traffic levels.

Table 3. Hurst parameter determined for the analyzed datasets.

SiteB SiteE SiteT2 SiteA2 SiteA1 SiteH SiteT1

H 0.85 0.77 0.69 0.65 0.69 0.66 0.60

Fig. 7. Aggregate variance plot for SiteB (left) and SiteH (right).
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Fig. 8. Aggregate variance plot for SiteE (left) and SiteA1 (right).

Fig. 9. Aggregate variance plot for SiteA2 (left) and SiteT1 (right).

Fig. 10. Aggregate variance plot for SiteT2.
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4 Concluding Remarks

In our study we verified burstiness and self-similarity of Web traffic on seven different
e-commerce sites. The resulting estimates of the burstiness parameters (including mean
burstiness factors ranging from 0.11 to 0.32, depending on a site) confirm the very
variable character of the workloads on all the analyzed e-commerce servers.

Moreover, in all cases the Hurst parameter exceeds 0.5 which proves the presence
of self-similarity in the e-commerce traffic (H estimates range from 0.6 for low traffic
level to 0.85 for heavy traffic). Our results are consistent with older reports on H index
for e-commerce severs with moderate [7] and heavy [8] traffic levels, estimated as 0.66
and 0.73-0.8, respectively. Our study also confirms some previous conclusions that a
degree of self-similarity of Web traffic is a bit higher on e-commerce sites than on other
sites [9].

In contrast to some previous related work for non-e-commerce Web traffic, we
identified the self-similarity property in all seven analyzed e-commerce datasets, even
for the websites subject to low traffic levels. Furthermore, we discovered that the more
requests arrive at an e-commerce server, the higher degree of self-similarity is revealed
by the traffic – there is a very strong correlation of the Hurst parameter with the average
request arrival rate, equal to 0.94.

Our study advances the state-of-the-art on properties of the Web traffic on
e-commerce servers. The use of several datasets for online stores differing in the offered
products, the website structure, and the site popularity allows us to generalize the
results to multiple e-commerce scenarios. Our findings may be useful in developing
representative models of e-commerce workloads for Web server performance
evaluation.

Acknowledgment. This paper is based upon work from COST Action IC1304 Autonomous
Control for a Reliable Internet of Services (ACROSS), supported by COST (European Coop-
eration in Science and Technology).
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