
Chapter 8

DIGITAL FORENSIC IMPLICATIONS
OF COLLUSION ATTACKS ON
THE LIGHTNING NETWORK

Dmytro Piatkivskyi, Stefan Axelsson and Mariusz Nowostawski

Abstract The limited size of a block in the Bitcoin blockchain produces a scaling
bottleneck. The transaction scalability problem can be addressed by
performing smaller transactions off-chain and periodically reporting the
results to the Bitcoin blockchain. One such solution is the Lightning
Network.

Bitcoin is employed by lawful users and criminals. This requires
crimes against lawful users as well as the use of Bitcoin for nefarious
purposes to be investigated. However, unlike Bitcoin, the Lightning
Network enables collusion attacks involving intermediate nodes and re-
cipients. In such an attack, regardless of a sender’s actions, money is
received by an intermediate node that colludes with a dishonest recipi-
ent. Since the dishonest recipient does not “actually” receive the money,
it does not provide the goods/service to the sender. Thus, the sender
pays for the unprovided goods/service, but the recipient can prove that
the payment was not received.

This chapter discusses the forensic implications of collusion attacks
with regard to lawful users because no discernible traces of attacks re-
main, as well as for law enforcement, where the attacks can target parties
as a form of forfeiture, analogous to law enforcement “sting” operations.
This chapter also discusses the potential of the Lightning Network to
be used for money laundering activities.

Keywords: Bitcoin, Lightning Network, audit trail

1. Introduction
Digital currencies are increasingly being leveraged by criminal enti-

ties. Therefore, it is important for digital forensic investigators to have

© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
G. Peterson and S. Shenoi (Eds.): Advances in Digital Forensics XIII, IFIP AICT 511, pp. 133–147, 2017.
DOI: 10.1007/978-3-319-67208-3_8

133



134 ADVANCES IN DIGITAL FORENSICS XIII

detailed knowledge of how these currencies work and how they can be
exploited.

Bitcoin has emerged as the de facto standard for peer-to-peer value
exchange in decentralized systems. However, a key problem with the Bit-
coin blockchain technology is its scalability. Several solutions have been
proposed to address the scalability problem. One solution is the Light-
ning Network, a peer-to-peer payment system that performs smaller
transactions off-chain and periodically reports the results to the Bitcoin
blockchain. This chapter discusses the design of the Lightning Network
and demonstrates a fundamental flaw that facilitates collusion attacks.
Such an attack enables money to go astray between a sender and a dis-
honest recipient who colludes with an intermediate to claim non-receipt
of funds. This chapter discusses the forensic implications of collusion
attacks with regard to lawful users and law enforcement, along with the
potential of the Lightning Network to be used for money laundering
activities.

2. Related Work
Decentralized crypto-currencies is a new research field. Off-chain

transactions, as used in the Lightning Network, is an emergent trend
that has not been investigated adequately. However, there is no pub-
lished research on the security of the Lightning Network nor is there any
discussion of the digital forensic implications of its use.

The concept of a collusion attack is not new. Conspiracies involving
actors in a system have been investigated before. For reasons of space,
it is not possible to discuss the topic in detail; instead, a few examples
are presented from the literature.

Distributed systems such as wireless sensor networks rely heavily on
their key management infrastructures. If the keys are not managed
properly, network nodes can collude and reveal the keys [5].

In the case of fingerprinting digital data, when users collude, finger-
prints can be removed and the data can be distributed freely [1]. Another
example is a collusion attack on an Android device where two applica-
tions can collaborate to escalate their access rights [2].

In the financial sector, collusion can be used to manipulate stock prices
or to secure loans despite having bad credit. With so many varied exam-
ples of collusion attacks, it is important that designers of new methods
of collaboration, such as the Lightning Network, understand and guard
against collusion.



Piatkivskyi, Axelsson & Nowostawski 135

Figure 1. Bitcoin transaction.

3. Bitcoin Blockchain
Blockchain technology enables novel decentralized applications rang-

ing from simple digital tokens that represent currency, through digital
assets management and audit trails, to establishing decentralized in-
stitutions [7]. Decentralization eliminates the need for a trusted third
party in many scenarios. The first large-scale deployment of blockchain
technology was in the Bitcoin crypto-currency and peer-to-peer payment
system [6].

Bitcoin allows fast cross-border monetary transfers, on average within
ten minutes, for a low transaction fee. In addition to providing pseudo-
nymity, the system offers several advantages. Since Bitcoin is decentral-
ized, no one holds custody over it. Moreover, if its secret keys are kept
secure, no entity can steal or seize money intended for another entity.

A payment in the Bitcoin blockchain is a transfer of a numerical value
from one public address to another. Bitcoins, the crypto-currency, are
just numbers that belong to a public address (i.e., a public key). The
ownership of bitcoins is claimed by demonstrating the associated private
key. An entity can generate as many public-private key pairs as desired.
A good practice is to generate a new key pair for every new monetary
transfer. Thus, the de-anonymization of an address to a user identity is
difficult, albeit potentially possible; in any case, this is an active topic
of research [11].

To make a payment, the sender creates a transaction – Transaction N
in Figure 1. The transaction consists of two parts: (i) inputs; and (ii)
outputs. There may be multiple inputs and multiple outputs in a trans-
action, but for the sake of simplicity, only one input and one output
are illustrated in Figure 1. In the transaction, the sender references the
output of a previous transaction (Transaction N-1) and can claim own-
ership of the coins from this output. The sender claims the ownership
via a signature made with his private key. This particular signature
must be specified in the input of the new transaction. In the output,
the sender identifies the entity to whom ownership is transferred by



136 ADVANCES IN DIGITAL FORENSICS XIII

specifying the public key of this entity (receiver). Finally, the sender
broadcasts the created transaction to the Bitcoin network of validating
nodes so that the transaction can be accepted into the system. The
broadcasted transaction is verified by each node in the network and is
eventually recorded in the shared database called the Bitcoin blockchain.
The Bitcoin blockchain protocol timestamps all transactions, preventing
double spending; the earliest transaction has precedence over more re-
cent transactions.

The blockchain is a decentralized database that is secured from tam-
pering and revision. It consists of blocks that are chained by embedding
the hash of the previous block into the next block. The hash calculation
is made intentionally difficult so that after a block is stamped with a
hash it cannot be recomputed easily. This means that all the transac-
tions that get on the blockchain remain on it forever because the blocks
cannot be changed.

The Bitcoin scalability problem arises because Bitcoin blocks can
carry a limited amount of transactions. Since the blocks have a fixed
size and new blocks are generated at fixed times, the Bitcoin payment
system can only sustain a fixed transaction rate. The current limit is
around seven transactions per second.

The scalability problem has attracted the attention of the research
community and a number of potential solutions have been proposed.
The most promising solution is the Lightning Network [9], which uses
off-chain transactions.

4. Lightning Network
The Lightning Network [9] is a payment protocol built on top of the

Bitcoin blockchain. It leverages off-chain transactions to provide a scal-
able solution to the problem of limited transaction throughput. The
fundamental idea underlying the Lightning Network is not to log all
the transactions directly on the blockchain, but to pass them between
the participating nodes in a peer-to-peer fashion and log only the final
balance of the accounts.

Transactions in the Lightning Network are processed within previ-
ously established payment channels. A channel is a set of two Bitcoin
transactions created cooperatively by the channel participants. This
work considers two participants to simplify the presentation. However,
it is possible to emulate multi-party channels with slightly more elabo-
rate protocols.

A funding transaction spends channel participants’ funds while a com-
mitment transaction returns funds to the channel participants. The



Piatkivskyi, Axelsson & Nowostawski 137

Figure 2. Funding and commitment transactions.

commitment transaction is kept off the blockchain during the time that
the channel is open. After a channel is opened, the participants can send
arbitrarily small payments to each other up to the channel capacity. The
number of transactions possible in a channel is nearly infinite and the
transaction speed is only limited by the direct connections between the
channel participants, which typically means nearly instantaneous deliv-
ery.

The processed transactions are not broadcast to the Bitcoin network.
Instead, the transactions are passed in a peer-to-peer fashion between
the channel participants. The only transactions that get advertised and,
consequently, recorded on the Bitcoin blockchain are channel funding
and commitment transactions. At any time, the commitment transac-
tion reflects the channel state. When a channel is to be closed, the
commitment transaction is published on the blockchain, which returns
the funds to the channel participants. The balance is established at the
moment of channel closure. The commitment transaction is the guar-
antee that a channel participant can get the funds back at any point in
time with the agreed balance.

Figure 2 shows funding and commitment transactions. In the case of
a bi-directional channel, both channel participants create inputs to the
channel funding transaction that define the channel capacity. A funding
transaction has a single two-of-two multi-signature output. In other



138 ADVANCES IN DIGITAL FORENSICS XIII

Figure 3. Commitment transaction balances are updated after transacting 0.1BTC.

words, it takes two signatures, one belonging to each channel participant,
to spend the output.

In contrast, a commitment transaction spends the output of the fund-
ing transaction and has two outputs. Each of these outputs returns back
to an investor exactly the amount of funds invested in the channel. The
benefit of establishing the channel is that funds can be moved within
the channel capacity by simply updating the commitment transaction.

For example, if Alice wishes to send 0.1BTC to Bob, then the com-
mitment transaction is updated so that it returns 0.4BTC to Alice and
0.6BTC to Bob (Figure 3). Within the updated channel Bob now can
send to Alice up to 0.6BTC and Alice can send to Bob only up to
0.4BTC. Such payment channels allow nearly unlimited transactions
within a channel. Note however, that this simple scheme requires that
an entity has to open a channel with every entity with which it has ever
interacted. This is an expensive proposition. A solution to this problem
is to route payments through existing channels.

4.1 Payment Routing
The Lightning Network extends the idea of payment channels by rout-

ing payments over multiple entities that have pre-existing channels be-
tween them. For example, if Alice has a channel with Bob and Bob has
a channel with Charlie, then Alice can send funds to Charlie through
Bob. Because the two money transfers – from Alice to Bob and from
Bob to Charlie – are independent, there must be a way to bind them so
that the execution of one depends on execution of the other. Otherwise,
Bob can send funds to Charlie, but Alice does not send funds to Bob,
leaving Bob defrauded. Another scenario involves Alice sending funds



Piatkivskyi, Axelsson & Nowostawski 139

Figure 4. Chain of hashed timelock contracts in a channel.

to Bob, but Bob not sending funds to Charlie, leaving Alice defrauded.
The binding has to account for the untrusted nature of Bitcoin and the
Lightning Network. Specifically, network nodes do not know anything
about their peers and do not rely on established trust relationships.

The Lightning Network protocol relies on a method for binding the
execution of transactions without any custodial trust. This solution is
called a hashed timelock contract (HTLC). A hashed timelock contract
enables Bob to pull funds from Alice only after Charlie has pulled the
funds from Bob. The basic idea is that Charlie, the recipient, tells Alice,
the sender, a riddle. They agree that, in order to pull the funds, Charlie
must give the answer to the riddle. Thus, Alice makes a contract with
Bob that, if Bob knows the answer (i.e., the secret), then Alice pays
the funds to Bob. Bob cannot know the secret unless Bob pays Charlie.
Thus, two contracts are created – between Alice and Bob and between
Bob and Charlie. Each contract says “’I will pay you if you give me the
answer to the riddle.” Only Charlie knows the answer, so he gives the
answer to Bob and Bob gives the money to Charlie. Since Bob knows
the answer, he can give the answer to Alice and Alice gives him the
money.

The scheme works the same when there are more than three partici-
pants on the route. The answer to the riddle is passed through all the
nodes from the recipient to the sender. At the end, the sender is the only
node that does not pull the funds from any other node; the sender just
spends the funds whereas everyone else along the path pulls the funds
from their respective senders and pushes the funds to their respective
recipients. The recipient is the only node that just pulls the funds, so it
is the only entity to ultimately receive funds.

A hashed timelock contract riddle is “What value hashes to hash
H?” Nobody knows the answer except the entity that generated the
hash. Thus, Charlie, the recipient, generates a random secret value R
and calculates its hash H = h(R). Then, he sends the hash H to Alice.
Based on the hash value H, Alice creates a hashed timelock contract with
Bob and Bob creates a hashed timelock contract with Charlie (Figure 4).



140 ADVANCES IN DIGITAL FORENSICS XIII

Figure 5. All the hashed timelock contracts are executed after R is revealed.

To complete the transaction, Charlie reveals R to Bob, Bob checks
that R hashes to H and Bob pays the promised funds. Then, Bob reveals
R to Alice and receives his funds from her (Figure 5).

Figure 6. Commitment transaction with a hashed timelock contract.

A hashed timelock contract is realized as one additional output in a
commitment transaction (last output in Figure 6). There are two ways
to spend the output. Bob can spend this output by providing R (hashed
timelock contract execution delivery). Alice can spend this output after
some timeout t (hashed timelock contract timeout). Needless to say, only
one of these transactions can be published because they spend the same
output. They are kept by the channel participants as guarantees that
a counterparty will not misbehave analogous to the commitment trans-
action itself. Unlike the commitment transaction, which eventually gets
recorded on the blockchain when the channel is closed, hashed timelock
contract execution delivery and timeout transactions may never get on
the blockchain. Before closing a channel the parties may cooperatively
cancel or execute all the hashed timelock contracts in the channel.

In order to execute a hashed timelock contract, Bob sends R to Alice.
Alice knows that, if the commitment transaction gets on the blockchain,
Bob will spend the hashed timelock contract output, so she agrees to
update the commitment transaction, removing the hashed timelock con-
tract output in Bob’s favor. If Alice does not agree to update the com-
mitment transaction, then Bob simply publishes it on the blockchain



Piatkivskyi, Axelsson & Nowostawski 141

and right after it is confirmed, he publishes the execution delivery trans-
action that sends the hashed timelock contract output to himself. Bob
does the same if Alice is unresponsive for any reason.

On the other hand, Alice may wish to cancel the hashed timelock
contract if Bob does not provide the secret value R for an extended
period of time or Alice may simply wish to close the channel and release
the funds. In this case, Alice asks Bob to cancel the hashed timelock
contract in her favor. If Bob does not agree or does not respond, Alice
publishes the commitment transaction on the blockchain and after the
timeout t, she publishes the timeout transaction, which sends the hashed
timelock contract funds to her. Note that, during the timeout t, Bob
can get to know the secret value R and publish the execution delivery
transaction to get his funds. In such a case, Alice considers the payment
completed. If Alice is an intermediate node on the route, she can execute
the contract on the other side and pull her funds.

The Lightning Network uses hashed timelock contracts to provide a
secure way to route payments through untrusted nodes. The problem
is that the system relies on the recipient being honest and keeping R
secret. If the recipient is dishonest and colludes with a node along the
route, it is possible to steal money from the sender or use the scheme
for money laundering purposes.

4.2 Lightning Network Topology
Several researchers have speculated about the topology of the Light-

ning Network [8]. A Lightning channel keeps the funds locked within the
channel. Unless an entity uses the channel, the time value of the money
locked in the channel is wasted. Therefore, channel management is very
important. The intuition is that it should dictate the topology taken by
the Lightning Network.

Two likely topologies are the hub-and-spoke topology and the organic
topology. A hub-and-spoke topology assumes the emergence of bank-like
operators (hubs) that would process and route large numbers of transac-
tions. The concerns regarding this topology are centralization, privacy
and money locking. There is a fear of large hubs growing larger, which
would lead to centralization. Since hubs process transactions, they could
aggregate knowledge about many transactions and, thus, pose a threat
to privacy (anonymity). Finally, although money locking is a contextual
notion, hubs could lock the money in open channels because they do not
intend to spend money, only route money. The vast amount of money
locked in the topology could impact the viability of the topology and
result in high transaction fees.



142 ADVANCES IN DIGITAL FORENSICS XIII

Organic routing may lock less money because channels are opened on
demand. Two limitations with organic routing are route finding and
supporting the needed route capacity in the network. Another problem
is that the number of on-chain transactions are expected to be much
higher than in the hub-and-spoke topology. Detailed evaluations of these
topologies is a good topic for future research.

Onion routing has been proposed as a mechanism to alleviate the
threat to anonymity in the Lightning Network [10]. It limits the knowl-
edge about nodes in the network only to their neighbor nodes. While
the principal advantage of onion routing is final destination masking,
this type of routing can impede network analysis and hinder forensic
investigations. The implications of onion routing are discussed later in
this chapter.

5. Collusion Attack on the Lightning Network
The Lightning Network design relies on the recipient being honest and

keeping R secret. At the same time, it is designed to operate in an abso-
lutely untrusted environment and to provide a good level of anonymity
to all its participants. The latter assumes an adaption of onion rout-
ing, where every node in the network only knows its neighbor nodes. In
such conditions, the system must be perfectly secure and flawless. While
the Lighting Network is cryptographically secure, it does not take into
account the misbehavior of its users.

The original Lightning Network article [9] states that the only way of
acknowledging successful transactions is “knowing R is proof of funds
sent.” However, this does not necessary hold. The sender Alice considers
a transaction to be completed when her hashed timelock contract is
executed. The recipient Dave considers a transaction to be completed
when he receives the funds (Dave is added to the channel for a more
explanatory scenario). If the system is used as intended, these two events
occur together.

However, there is a situation in which Alice executes her hashed time-
lock contract, but Dave does not receive the funds. This can only happen
if a node on the route (e.g., Bob) knows the pre-image of the hash H
– the secret value R. It could be that Bob just guessed it; this is very
unlikely, but it is still a possibility. A much more likely scenario involves
Dave secretly sending R to Bob, enabling Bob to defraud Alice.

Figure 7 illustrates the simple collusion attack. The recipient Dave
generates a secret value R upon which depends the execution of each
hashed timelock contract on the route. Dave calculates the hash H =
h(R) and sends it to Alice. All this is according to the protocol.



Piatkivskyi, Axelsson & Nowostawski 143

Figure 7. Simple collusion attack.

However, the attack occurs when Dave also shares the secret value R
with Bob, which is a breach of the protocol. Dave and Bob are now in
collusion. Alice, who is unaware of the collusion against her, creates a
hashed timelock contract with Bob promising to pay money upon him
revealing R. At this point, Bob already knows R, so he executes the
contract. Alice still does not suspect anything and considers the trans-
action to be completed. She expects Dave to deliver the goods/services
for which she has paid. Dave “rightfully” claims not to have received
the funds. As a result, Alice loses her money to Dave and Bob.

This collusion attack is due to a fundamental flaw in the Lightning
Network. Poon and Dryja [9], the authors of the protocol, mention the
problem, but do not analyze or attempt to mitigate it:

“In the event that R gets disclosed to the participants halfway through
expiry along the path, then it is possible for some parties along the path
to be enriched. The sender will be able to know R, so due to [the] Pay to
Contract, the payment will have been fulfilled even though the receiver
did not receive the funds. Therefore, the receiver must never disclose
R.”

This scenario described by Poon and Dryja has the same dependencies
and consequences as the collusion attack discussed above. The entire
operation of the system relies on the assumption that the receiver is not
interested in revealing R. However, as discussed below, there are certain
incentives for a receiver to prematurely reveal R.

6. Collusion Attack Implications
The collusion attack has several potential consequences for digital

forensics. These consequences are passive or active. The entity making
the payment is either the victim of criminal activity or a subject of
interest to law enforcement.



144 ADVANCES IN DIGITAL FORENSICS XIII

6.1 Fraud
A straightforward use of the collusion attack is fraud. After the attack

steps are performed as described above, the attacking nodes may become
non-responsive. This attack requires the recipient to collude with a node
on the route. Of particular interest are the traces left by the attack that
remain in the Lightning Network. Unfortunately, the protocol does not
impose a requirement to save any information of value. This is one of
the fundamental points of the Lightning Network, namely to summarize
many smaller transactions into a fewer large ones for communication
with and entry into the shared ledger that is the Bitcoin blockchain.
Because it is decentralized, the Lightning Network also cannot dictate a
particular implementation with sound logging.

6.2 Money Laundering
Another possible use case is to pass money to a recipient on the route

via a regular, apparently legitimate, payment system. In this scenario,
the sender, the final recipient and an intermediary node collude in order
to pretend that a legitimate payment has been made and lost to a rogue
intermediary node along the route. The intention is to pass funds to
an “unknown” intermediary node under the false pretext of making a
legitimate payment. The sender can claim the loss of the funds that were
paid but not received by the final intended recipient. This is analogous
to the ever popular playing-poker-badly method of money laundering.

6.3 Forfeiture
It is possible for an illegal service to claim no wrongdoing and blame

intermediary nodes for the loss of sender funds. For example, in the case
of law enforcement sting operations, the police could use the mechanism
to intercept illegal funds from a criminal at one of the intermediary
nodes as a form of forfeiture [4]; the destination never receives the funds
because they have been intercepted by law enforcement.

Although this may be problematic from the law enforcement jurisdic-
tional and procedural law perspectives, it is by no means an impossible
scenario. Specifically, an anonymous payment routing protocol renders a
traditional sting operation, whose goal is to identify the perpetrator, im-
possible; as a result, law enforcement can only attempt to disrupt illegal
activity instead of prosecuting a suspect. In this scenario the ability of a
recipient to show “clean hands” by legitimately claiming that the funds
never arrived provides plausible deniability and postpones the recipient
from being flagged as a “fake” supplier by a reputation-based system.



Piatkivskyi, Axelsson & Nowostawski 145

7. Attack Mitigation
A straightforward way to mitigate a collusion attack is to require (e.g.,

via a contract) that the knowledge of R constitutes a proof of payment.
One method is via a pay-to-contract scheme [3] that is mentioned by the
inventors of the Lightning Network [9]. The obvious problem with this
approach – which is not implemented in the Lightning Network at this
time – is that it relies heavily on a public-key infrastructure. The same
is true of all similar mitigation strategies.

Forensic readiness can be implemented by the verbose logging of trans-
actions; the logs would serve as evidence if something goes wrong. How-
ever, logging Lightning Network transactions is not enough. Hashed
timelock contracts only appear in commitment transactions and they are
signed with temporary keys that are not bound to physical-world identi-
ties. This is where a public-key infrastructure is needed. If a Lightning
Network node has a SSL certificate, it can sign the commitment trans-
actions that it processes. This enables an entity to prove the obligations
of its neighbor nodes. Specifically, the completion of a monetary trans-
fer can be proven by following the route and checking the commitment
transactions with the corresponding hashed timelock contracts. All the
nodes on the route would have to follow forensically-sound logging pro-
cedures, which may be enforced by appropriate regulations. A regulated
node can also check that all the neighbor nodes fall in the appropriate
jurisdiction. However, this may require the network to be partitioned
into regulated and unregulated segments. While the regulated segment
would have the desired properties, the presence of an unregulated seg-
ment would raise the risk of abuse if the two network segments were to
interact.

To conclude, a public-key infrastructure could solve a number of fun-
damental problems with the Lightning Network and crypto-currencies
in general. An example problem is transaction acknowledgement in a
decentralized environment. Unless the receiver is a legally recognized
electronic entity, the receiver can always claim to have not received funds
even if it did receive the funds. Such problems arise due to the nature of
a virtual identity and the fact that it is distinct from a physical identity.
A public-key infrastructure does bridge the gap between the virtual and
physical worlds. However, in the domain of decentralized applications,
anonymity and freedom are paramount. Therefore, the mitigations de-
scribed in this section are not adequate and an appropriate solution
remains elusive.



146 ADVANCES IN DIGITAL FORENSICS XIII

8. Conclusions
Off-chain transactions in the Bitcoin-based Lightning Network in-

crease the likelihood of collusion attacks. These attacks enable pay-
ment recipients or merchants to collude with intermediaries to ensure
payments to the intermediaries, while claiming that payments were not
received by the ultimate receivers. This does not meet the guarantee
made by the Lightning Network, where the end state of an initiator of a
transaction is that it should end up with no funds and the goods/services
or with funds and no goods/services.

Collusion attacks have forensic implications because they enable fraud
with very little traceability. Additionally, they enable law enforcement
to intercept funds used in illegal transactions for the purpose of forfei-
ture. In the two scenarios, the fraudulent entities and law enforcement
can claim innocence when the (unidentifiable) initiators of the transac-
tions complain that their funds were lost and they did not receive any
goods/services.

Digital currencies are increasingly becoming the targets of crime and
vehicles for furthering criminal activities. It is hoped that this research
will stimulate increased efforts in this new and important area of re-
search.

References

[1] D. Boneh and J. Shaw, Collusion-secure fingerprinting for digital
data, IEEE Transactions on Information Theory, vol. 44(5), pp.
1897–1905, 1998.

[2] S. Bugiel, L. Davi, R. Dmitrienko, T. Fischer, A. Sadeghi and B.
Shastry, Towards taming privilege-escalation attacks on Android,
Proceedings of the Nineteenth Annual Network and Distributed Sys-
tem Security Symposium, 2012.

[3] I. Gerhardt and T. Hanke, Homomorphic Payment Addresses and
the Pay-to-Contract Protocol, arXiv:1212.3257v1 [cs.CR], Cornell
University Library, Cornell University, Ithaca, New York (arxiv.
org/pdf/1212.3257v1.pdf), 2012.

[4] B. Hay, Sting operations, undercover agents and entrapment, Mis-
souri Law Review, vol. 70(2), pp. 387–432, 2005.

[5] M. Moharrum, M. Eltoweissy and R. Mukkamala, Dynamic com-
binatorial key management scheme for sensor networks, Wireless
Communications and Mobile Computing, vol. 6(7), pp. 1017–1035,
2006.



Piatkivskyi, Axelsson & Nowostawski 147

[6] S. Nakamoto, Bitcoin: A Peer-to-Peer Electronic Cash System
(bitcoin.org/bitcoin.pdf), 2008.

[7] M. Nowostawski and C. Frantz, Blockchain: The emergence of dis-
tributed autonomous institutions, Proceedings of the Sixth Inter-
national Conference on Social Media Technologies, Communication
and Informatics, pp. 29–35, 2016.

[8] C. Pacia, Lightning Network skepticism (chrispacia.wordpress.
com/2015/12/23/lightning-network-skepticism), December
23, 2015.

[9] J. Poon and T. Dryja, The Bitcoin Lightning Network: Scalable
Off-Chain Instant Payments, Draft Version 0.5.9.2 (lightning.
network/lightning-network-paper.pdf), 2016.

[10] P. Prihodko, S. Zhigulin, M. Sahno, A. Ostrovskiy and O. Osun-
tokun, Flare: An Approach to Routing in the Lightning Network,
White Paper (bitfury.com/content/5-white-papers-research
/whitepaper_flare_an_approach_to_routing_in_lightning_n
etwork_7_7_2016.pdf), 2016.

[11] F. Reid and M. Harrigan, An analysis of anonymity in the Bitcoin
system, Proceedings of the Third IEEE International Conference on
Privacy, Security, Risk and Trust/Social Computing/Workshop on
Security and Privacy in Social Networks, pp. 1318–1326, 2011.


	8 DIGITAL FORENSIC IMPLICATIONS OF COLLUSION ATTACKS ON THE LIGHTNING NETWORK
	1. Introduction
	2. Related Work
	3. Bitcoin Blockchain
	4. Lightning Network
	4.1 Payment Routing
	4.2 Lightning Network Topology

	5. Collusion Attack on the Lightning Network
	6. Collusion Attack Implications
	6.1 Fraud
	6.2 Money Laundering
	6.3 Forfeiture

	7. Attack Mitigation
	8. Conclusions
	References




