
Chapter 12

CATEGORIZING MOBILE DEVICE
MALWARE BASED ON
SYSTEM SIDE-EFFECTS

Zachary Grimmett, Jason Staggs and Sujeet Shenoi

Abstract Malware targeting mobile devices is an ever increasing threat. The most
insidious type of malware resides entirely in volatile memory and does
not leave a trail of persistent artifacts. Such malware requires novel
detection and capture methods in order to be reliably identified, an-
alyzed and mitigated. This chapter proposes malware categorization
and detection techniques based on measurable system side-effects ob-
served in an exploited mobile device. Using the Stagefright family of
exploits as a case study, common system side-effects produced as a result
of attempted exploitation are identified. These system side-effects are
leveraged to trigger volatile memory (i.e., RAM) collection by memory
acquisition tools (e.g., LiME) to enable analysis of the malware.

Keywords: Mobile malware, memory-resident, categorization, system side-effects

1. Introduction
Critical vulnerabilities that affect large families of mobile devices make

it imperative to develop new techniques for securing these devices against
increasingly sophisticated attacks as well as for conducting forensic in-
vestigations. Investigating attacks on mobile devices requires the cap-
ture and analysis of evidence pertaining to attacks. However, the most
insidious malware resides entirely in memory and does not create per-
sistent artifacts. Memory-resident malware that removes itself from a
mobile device after performing its malicious activities can evade capture
and analysis by malware investigators, even after its presence has been
detected by a user. Live memory acquisition is the only way to recover
memory-resident malware from exploited devices.

© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
G. Peterson and S. Shenoi (Eds.): Advances in Digital Forensics XIII, IFIP AICT 511, pp. 203–219, 2017.
DOI: 10.1007/978-3-319-67208-3_12

203



204 ADVANCES IN DIGITAL FORENSICS XIII

This chapter introduces a taxonomy for categorizing mobile device
malware based on observable system side-effects in an effort to stim-
ulate the development of new methods for memory-resident malware
detection, capture and analysis. The Stagefright family of vulnerabili-
ties and exploits is used as a case study to assess the system side-effects
that occur as a result of exploitation attempts of the libstagefright
Android library. The chapter also describes how system side-effects pro-
duced by this malware can be used to trigger volatile memory captures
for subsequent malware analysis efforts.

2. Live Memory Analysis of Mobile Devices
Live memory analysis refers to the capture and analysis of data stored

in the volatile memory of a computer system or device. Numerous situa-
tions exist where important information only resides in volatile memory.
These circumstances demand the application of techniques that can re-
liably and safely extract the information for forensic analysis.

Note that mobile devices have many more variations than computer
workstations in their design and architecture. Beyond the obvious dif-
ferences in design requirements due to their size and power constraints,
mobile devices perform other unique tasks that require special consider-
ation. Radio communications are highly sensitive to timing and poorly
suited to sharing processing time with user applications. Moreover, user
applications are equally ill-suited to execute on a real-time operating sys-
tem that could enable reliable radio communications. As a result, most
mobile devices contain two processors – an applications processor that
handles user applications and a baseband processor that independently
handles cellular communications (e.g., GSM, UMTS and LTE).

2.1 Information in Volatile Memory
The physical memory of a device essentially contains a snapshot of

the recently-used information on the device. Recent web searches, text
messages and session keys can all be recovered with access to physical
memory [19]. This is why many devices now deny access to physical
memory and restrict applications to their own allocated memory. Legit-
imate uses for physical memory dumps, such as debugging application
crashes, are arbitrated by the operating system.

While a mobile device contains many types of evidence of interest in
digital forensic investigations, some artifacts or data are unrecoverable
if they are lost from volatile memory. These artifacts include crypto-
graphic keys for unlocking encrypted containers and private messages
sent via secure messaging applications. Digital forensic investigators



Grimmett, Staggs & Shenoi 205

Device Hardware

Linux Kernel

Run within 
Application

Sandbox
Hardware Abstraction Layer

Native Libraries Android Runtime
Android Framework

Applications

Figure 1. Android security architecture [1].

face a challenging trade-off – leaving a device powered on increases the
risk of deleted data being overwritten while turning the device off risks
losing evidence stored in volatile memory [13].

Another important use case for live memory analysis is malware de-
tection and analysis. There are numerous examples of seemingly benign
applications having malicious add-ons, including compromised applica-
tions that were pre-installed on some devices (e.g., Huawei G510 and
Lenovo S860 smartphones) [9]. These applications do not require live
memory analysis to detect and analyze. However, many of them act as
Trojans that download and execute malicious code that may only exist
in volatile memory. Understanding the threats posed by sophisticated
mobile device malware requires deep analysis of the targeted hardware
and operating system [7].

2.2 Memory Capture Techniques
Mobile devices have been developed with connectivity as the primary

goal and have benefited from the lessons learned about the importance
of securing connected devices. Mobile operating systems restrict user
privileges to protect the devices and the network carriers.

Android uses long-standing Unix security concepts to provide appli-
cation security – an application is limited to a “sandbox” and is assigned
a unique UID that is used to apply and enforce user permissions. This
ensures that only the Linux kernel has access to the process memory of
more than one application.

Figure 1 presents the Android security architecture. The architecture
limits software access to physical memory, a security improvement that
prevents malicious applications from compromising other applications.
For example, this prevents an infected social media application from
having unfettered access to the memory of a banking application that
may contain user account information and credentials. Under most cir-



206 ADVANCES IN DIGITAL FORENSICS XIII

cumstances, this is highly desirable behavior, but it also limits forensic
access to physical memory. Memory-resident malware running in other
applications or even system libraries may be effectively impossible to
detect without system or hardware-level access to physical memory.

Several memory acquisition tools have been developed by digital foren-
sic researchers. Thing et al. [19] have designed the memgrab tool, which
parses process information in the filesystem (/proc) in order to locate
process memory. Process tracing (via ptrace) is used to attach to a run-
ning process and suspend it while the process memory is being copied.

Sylve et al. [18] have developed the Linux Memory Extractor (LiME),
a loadable kernel module that locates system memory and copies it to lo-
cal storage or exfiltrates the memory over a TCP/IP network connection.
LiME relies on parsing the kernel resource structure iomem resource to
identify physical memory locations in system RAM.

Stuttgen and Cohen [16] have attempted to create an even more gen-
eral solution for creating forensically-sound images of live memory. Their
solution leverages a minimal kernel module that can use other kernel
modules to capture live memory. Another memory acquisition tool is
TrustDump, which uses the ARM TrustZone to capture device memory
in a manner that is completely transparent to the operating system [17].

3. Android Exploitation Techniques
Mobile devices have access to sensitive information (e.g., bank ac-

counts, saved passwords and medical data), which has motivated the
development and use of mobile device malware by criminals and hack-
ers. Mobile operating systems prioritize reliability and availability so
much that system processes restart as quickly as possible after a crash.
The information saved when a process crashes is useful for debugging,
but it is often insufficient to identify exploits. This section introduces
exploitation techniques that impact how malware interacts with and re-
sides in memory.

No single software solution can be expected to combat all potential
malware on a mobile device. However, it is possible to design solutions
that capture specific types of malware. Understanding how security
mechanisms are defeated by malware is integral to a long-term effort to
improve device security. In the short term, it enables researchers to dis-
cover and defend against current exploitation efforts. This short-term
view of security is focused on finding and fixing existing vulnerabili-
ties and benefits directly from efforts to capture previously-unidentified
malware for analysis.



Grimmett, Staggs & Shenoi 207

Lower Memory 
Addresses

Higher Memory 
Addresses

H
ea

p 
G

ro
w

th

Free Memory

Allocated Chunk

Allocated Chunk

Free Chunk

Allocated Chunk

Allocated Chunk

Before Heap Spray After Heap Spray

Allocated Chunk

Allocated Chunk

Allocated Chunk

Spray Chunk

Allocated Chunk

Free Memory

Spray Chunk

Spray Chunk

Spray Chunk

Spray Chunk

Spray Chunk

Top of Heap

Bottom of Heap
(Top of Stack)

Figure 2. Heap spray example.

3.1 Heap Exploitation
Heap memory, or dynamic memory, enables a program to access and

use memory as needed instead of requiring the program to request all
the memory it will need at startup. Memory is allocated to a program in
discrete chunks and is deallocated (freed) when it is no longer necessary.
An attacker can manipulate the heap by performing specific allocations
and deallocations that enable a vulnerability to be exploited. Heap
exploitation leverages the control of heap memory to subvert a system.
A program that does not properly verify or validate the use of dynamic
memory is often vulnerable to multiple types of attacks.

Two common heap exploitation (or manipulation) techniques are: (i)
heap spraying: and (ii) heap grooming:

Heap Spraying: A heap spray involves a (generally large) num-
ber of allocations to place a designated chunk of memory into a spe-
cific location for later use (Figure 2). This leverages the tendency
of a system to reuse and reorganize chunks in dynamic memory to
avoid memory fragmentation. The specific location targeted by a
heap spray is generally selected to be as reliable as possible while
requiring no knowledge of the current dynamic memory layout.

Programs routinely use dynamic memory to store user-controlled
data – this only becomes a problem when the data is misused by



208 ADVANCES IN DIGITAL FORENSICS XIII

Free Memory

Create Predictable 
Allocation

Lower 
Memory 

Addresses

Higher 
Memory 

Addresses

H
ea

p 
G

ro
w

th Allocated by Attacker

Allocated by Attacker

Free Memory

Free Placeholder 
Chunk

Free Memory

Reuse Freed Chunk

Freed by Attacker

Allocated by Attacker

Reallocated by AttackerAllocated by Attacker

Figure 3. Heap groom example.

an exploit. A heap spray relies on an allocation of more memory
than a system is expected to use. Such an allocation is noticeable
because it involves an unusually large amount of memory. Sev-
eral techniques have been developed to identify and prevent the
anomalous use of dynamic memory [5, 11].

Heap Grooming: Heap grooming uses allocations and dealloca-
tions to control an unspecified portion of the heap (Figure 3).
When a program deallocates a chunk of memory and subsequently
attempts to allocate another chunk of the same size, it is most effi-
cient for the operating system to allocate the same piece of memory
to the program. This behavior limits the impact of memory frag-
mentation without performing costly defragmentation techniques.
Heap grooming takes advantage of the optimization by allocating
a sequence of chunks and freeing a chunk in the middle of the
sequence [15].

Heap grooming uses far less memory than heap spraying and may
display the behavior of a normal target program; this is because
dynamic memory is intended to be allocated and deallocated as
needed. Thus, heap grooming is more difficult to detect and pre-
vent than heap spraying.

Heap manipulation techniques are not perfectly reliable. Systems with
unexpected memory usage limit the probability of a heap spray or a heap



Grimmett, Staggs & Shenoi 209

Start

Service Running

Attempt to
Exploit Service

Exploit 
Successful?

No

Finish

Wait for Service to 
Restart

Service Crash

Yes

Figure 4. Brute-force execution.

groom succeeding. A heap exploit can be designed to maximize the
chances of successful exploitation, but an alternative is to crash or reset
a target process before attempting an exploit. In the case of a system
that performs garbage collection after a process exits (or crashes), an
attacker can assume that the process is in its initialized state and has
predictable memory usage after it is restarted. Intentionally crashing
a target process also serves another purpose – for attacks that require
per-device or per-model adaptation (e.g., Stagefright), the presence of a
vulnerability can be confirmed before any effort is made to develop an
exploit for a particular model of device.

3.2 Defeating ASL Randomization
This section discusses techniques for defeating address space layout

(ASL) randomization.

Brute-Force Execution. A brute-force execution attacks the same
vulnerability repeatedly until the desired result occurs (Figure 4). The



210 ADVANCES IN DIGITAL FORENSICS XIII

Mediaserver
crashes

Retries > 3

Chrome opens 
crash.mp4

Chrome reloads 
web page

Chrome does not 
reload web page

User browses to 
crash.mp4

Retries = 0

YESNO

Retries += 1

Mediaserver stack 
is corrupted

Init restarts 
mediaserver

Mediaserver
is running

Chrome calls
mediaserver

Mediaserver
returns error Mediaserver 

reports error

Mediaserver 
parses crash.mp4

Figure 5. Google Chrome execution while parsing a crash vector.

initial Stagefright exploit (discussed below) repeatedly tries the exploit
until address space layout randomization is defeated [6]. When the ran-
dom offset address is not guessed correctly, the service crashes instead of
executing the malicious code. Not all examples of brute-force execution
either succeed or crash; it is possible for a program to merely return an
error. The only requirement for brute-force execution is that the target
returns to a vulnerable state after a failed exploit attempt.

The ability to mitigate brute-force exploitation attempts varies ac-
cording to the system under attack. If reliability and availability are
high priorities, rejecting or refusing to process information after a num-
ber of failed attempts may not be acceptable. It is worth noting that this
mitigation is built into many applications to avoid getting stuck in an
infinite loop. For example, as shown in Figure 5, Google Chrome stops
the loading of a web page after four failed attempts. Unfortunately, a
mitigation that is based on counting the number of failures could be sub-
verted if an attacker succeeds before the maximum number of failures is
exceeded.

Information Leaking. A memory leak involves the unintentional dis-
closure of information to an attacker. If the leaked information is sen-
sitive, the leak itself may be the goal of an exploit. When memory ad-
dress registers (e.g., stack pointer, heap pointer and program counter)
are leaked, an attacker may gain useful information for exploiting the
system [14]. Non-register addresses can enable an attacker to identify



Grimmett, Staggs & Shenoi 211

the locations in memory where a system library has been loaded. Ad-
dress space layout randomization can be subverted if an attacker leaks
information and determines where the targeted libraries are loaded in
memory.

Exploit developers often look for arbitrary read and write operations
in vulnerable software to enable the development of reliable malware.
These operations, also called primitives, are generic and useful; they
are named after the read/write primitives that form the foundation of
programming languages. The heap manipulation techniques discussed
above can be used to leak information from memory in addition to en-
abling remote code execution. Limiting how a program handles sensitive
information can mitigate memory leaks.

4. Stagefright Exploits
Stagefright is a family of exploits that target the libstagefright

Android media-processing library [20]. Note that libstagefright refers
to the media processing library and Stagefright refers to the family of
vulnerabilities.

By exploiting integer overflow and memory corruption (heap overflow)
vulnerabilities, a Stagefright exploit can be sent to an Android device
and executed without the user’s knowledge. The exploit triggers during
preprocessing performed by libstagefrightwhenever a multimedia file
is accessed, enabling it to be transmitted via text message, e-mail, web
browsing or even when attempting to load a thumbnail of a malicious
image saved on a device. The disclosure of the Stagefright exploits in
conjunction with revelations that very few Android devices were receiv-
ing timely security patches resulted in new security update policies being
released by Google [10] and Samsung [12]. This also prompted vulnera-
bility researchers to focus on Android libraries, resulting in the discovery
of additional vulnerabilities.

Multiple researchers have released proof-of-concept exploits for lib-
stagefright. These exploits were generally released only after the ex-
ploited vulnerabilities were patched on applicable Android devices. The
exploits frequently built on previous exploits by adding new capabili-
ties or finding ways around the mitigation mechanisms. An examination
of one of these exploits can reveal the nature of the vulnerability, but
examining all of them can reveal how exploits evolve over time to com-
bat mitigation efforts. A disclosed exploit can be used to demonstrate
that the proposed modifications are successful at capturing malicious
activity; however, a proposed solution should be resilient to changes in
malware over time.



212 ADVANCES IN DIGITAL FORENSICS XIII

4.1 Zimperium zLabs
Drake [6] focused on the vulnerabilities in libstagefright because it

is a privileged process (privileges inherited as a mediaservice process)
that parses untrusted data. Additionally, mediaserver is started by the
Android init process and is restarted whenever it crashes.

Drake chose to focus exclusively on MPEG4 file processing for fuzzing
efforts; MPEG4 files are constructed in “chunks” that can be embedded
inside each other. Parsing chunk code is complicated by the recursive
MPEG4 file format and requires memory interactions that create vul-
nerabilities when unexpected sequences of chunks occur. An exploit
developed for the CVE-2015-1538 vulnerability demonstrated that large
Android frameworks incorporate assumptions that present significant
risks to devices. The changes to the Android update policies discussed
above occurred in response to this exploit, but before the details of the
exploit were released to the public.

The initial Stagefright vulnerabilities presented by Drake [6] demon-
strated that exploitation is possible through any vector that triggers
media processing. This includes multimedia messages (MMS) that are
automatically processed on receipt. Drake confirmed that the exploita-
tion occurs before an alert is generated and displayed to a user. Effec-
tively, an attacker could send a malicious multimedia message to a user
and exploit the phone without any user interaction or notification.

The vulnerabilities were disclosed to Google before their public re-
lease, but most devices had not yet received the security updates for
mitigating the exploits. Drake submitted patches to Google, but one
patch introduced another vulnerability (CVE-2015-3864) that subse-
quent Stagefright efforts would exploit [8]. The proof-of-concept ex-
ploit [20] targeted an unspecified Nexus device (likely Nexus 5) running
Android 4.0.4. It did not include an address space layout randomization
defeat, but it achieved 100% reliability through repeated efforts because
the mediaserver process is automatically restarted after it crashes due
to a failed exploit.

4.2 Google Project Zero
Brand [4] leveraged the new vulnerability as the basis of a Stage-

fright exploit that targeted more recent versions of Android. Android
versions 5.0 and later use a different memory allocation technique than
older versions; the new allocation is based on jemalloc and necessitated
changes to the heap grooming techniques used by the exploit [2]. Addi-
tionally, the address space layout randomization changes implemented
in Android 5.0 made exploitation attempts less likely to result in remote



Grimmett, Staggs & Shenoi 213

code execution. However, a proof-of-concept exploit revealed that these
vulnerabilities were still present in newer Android devices.

Address space layout randomization successfully prevents an attacker
from knowing exactly where shared libraries are loaded in memory, but
this can be circumvented if the attacker can leak enough information
to determine the memory layout. Alternatively, an attacker could guess
where a library is loaded. The address space layout randomization im-
plementation on Android devices only provides eight bits of entropy
when the shared library (libc.so) is loaded; thus, an attack has a one
in 256 chance of succeeding. Once again, because an unsuccessful attack
crashes mediaserver and it automatically restarts, repeatedly trying
the exploit eventually results in remote code execution. Brand [4] ex-
perimented with the exploit and discovered that successful exploitation
took 30 seconds to a little over an hour.

4.3 NorthBit
Metaphor [3] is a Stagefright implementation that incorporates im-

proved heap grooming capabilities and an address space layout random-
ization defeat. This exploit still targets the CVE-2015-3864 vulnerability
added by Drake’s patch, but it requires JavaScript execution to leak in-
formation and bypass address space layout randomization. This reduces
the set of vectors vulnerable to the attack, but the exploit is more reli-
able and less dependent on predetermined library locations. This makes
the exploit easier to adapt to other devices and it does not rely on any
additional Stagefright vulnerabilities.

MPEG4 media files can include metadata (e.g., title, duration, copy-
right and lyrics) that is accessible by JavaScript. The same heap overflow
vulnerability used to overwrite a function pointer for code execution can
be leveraged to overwrite pointers in memory and enable access to ar-
bitrary locations in memory. This primitive read operation overwrites
the pointer to the duration value (an 8-byte integer) before returning
metadata to the browser. However, because the browser requires the
duration to be a signed 64-bit integer, negative or degenerate values are
set to zero before they are reported to the browser. This limits the read-
able value to 32-35 bits of useful information after it is converted from
microseconds to milliseconds.

The Metaphor exploit relies on the same address space layout ran-
domization limitations as previous exploits – shared library modules are
limited to a maximum address range of 256 memory pages. By iterating
over these pages and performing a memory leak, an attacker could, in
theory, identify the exact location of the targeted library. However, the



214 ADVANCES IN DIGITAL FORENSICS XIII

limitation on returned values prevents the reading of information that is
normally used to identify a library (e.g., ELF header). Metaphor works
around this limitation using p memsz and p flags as identifiers. These
fields are relatively unique and are at known locations, so a lookup table
can be created to match the read value to an expected value for the
target module libc.so.

A proof-of-concept implementation includes server code that performs
a memory leak until it determines the base address for libc.so; follow-
ing this, it crafts and delivers the malicious media file. The media file
performs the necessary heap grooming and overwrites a function pointer
with an address controlled via heap overflow. Adapting the exploit to
run on a new target is straightforward if an attacker has access to the
version of libc.so running on the target device. This library can be
extracted from a downloaded factory image or any device running the
same version of the Android operating system.

These exploits demonstrate how quickly a discovered vulnerability can
transition from a low-threat proof-of-concept to a sophisticated attack.
Vulnerability researchers are paying much closer attention to Android
frameworks, but the fear remains that a similar vulnerability could go
unnoticed and result in large-scale compromise. The trade-off between a
wide attack surface (initial Stagefright exploit) and a more sophisticated
attack vector (Metaphor) is important from an attacker’s perspective.
It also plays a role in how mitigation mechanisms are developed and
applied to resolve security problems.

5. Categorizing Malware by Behavior
This section presents a novel approach for capturing malware on an

Android device for future analysis. A simple taxonomy is introduced
that classifies malware based on the crash behavior of the exploited
services.

Exploits that leverage brute-force techniques are designed with the
expectation that a targeted service will crash multiple times. An at-
tacker can intentionally cause a target service to crash in order to reset
the memory of the service and create more predictable memory usage.
Memory corruption exploits rely on sophisticated techniques (e.g., infor-
mation leakage and heap grooming), but they may not be very reliable.

If an attacker designs an exploit to be as stealthy and as reliable as
possible, it may not create side-effects that are detectable by the un-
derlying system. A highly-reliable and well-hidden exploit could still be
detected and captured on the rare occasion that it causes a crash. The
best method for capturing the most sophisticated exploits is persistent



Grimmett, Staggs & Shenoi 215

and continuous monitoring of volatile memory. However, no simple solu-
tion exists for finding an unknown malware sample in the large amount
of data collected during a continuous data capture.

5.1 Malware Categories
Malware can be classified according to its intended and designed be-

havior. This classification enables the development of capture techniques
that leverage the characteristics of each malware category.

User-Detectable Malware: Not all malware is designed to avoid
user detection – malware designed to intimidate or extort users
intentionally disrupts and inconveniences victims. Mobile devices
are now being targeted by “ransomware” that encrypts important
files or locks users out of their devices until ransoms are paid.
This category of malware is straightforward to detect and identify,
but its disruptive behavior can make memory capture for malware
analysis difficult.

System-Detectable Malware: Malware can exhibit side-effects
that are not obvious to a user, but can be detected by the under-
lying operating system. It is important to note that the focus is
on side-effects that are explicit and well-defined. The side-effects
include unreported service crashes, inappropriate application be-
havior and unexpected network connections. This category is not
mutually exclusive with user-detectable malware; in most cases,
the effects visible to a user are also apparent at the system level.

Inconspicuous Malware: Inconspicuous malware does not cre-
ate easily identifiable side-effects. This category includes malware
that may be detectable through advanced analysis techniques (e.g.,
behavioral analysis and anomaly detection). Capturing this class
of malware typically involves the collection of large amounts of
data and eliminating the false positives.

5.2 Benefits of Malware Categorization
Categorizing malware according to observable side-effects facilitates

the development of specialized detection techniques. These techniques
are similar to heuristic analysis, but they rely on the results of attempted
exploitation instead of analysis of the malware itself.

The Stagefright exploits demonstrate that mobile devices may hide
side-effects (e.g., crash notifications and excessive memory paging) that
are more noticeable on traditional computer workstations. The proposed
categorization enables the capture and study of malware that relies on



216 ADVANCES IN DIGITAL FORENSICS XIII

the differences remaining undetected. More importantly, the categoriza-
tion can also enable the detection of unknown malware that relies on
similar assumptions.

Some exploitation mechanisms are tailored specifically to a target
device – the Stagefright exploits leverage the same malicious media files
to trigger vulnerabilities across multiple devices, but they require model-
specific techniques to achieve code execution. Detecting device-specific
exploitation mechanisms requires the development and deployment of
solutions at the device model level. However, exploitation mechanisms
(and their side-effects) that can be detected at the operating system
level can be applied across multiple models of devices that run the same
operating system.

5.3 Detecting Malware Side-Effects
As mentioned above, kernel-level access is necessary for a tool to ar-

bitrarily dump memory that belongs to the operating system or other
processes. LiME [18] is a loadable kernel module that can dump an image
of the entire physical memory of a device with minimal impact. This
makes LiME a useful tool for capturing malicious activity that cannot
be precisely located in memory. LiME is well-suited to capturing large
amounts of memory at one time, but not for consistent or continuous
memory monitoring. This makes it useful in situations where suspicious
activity can be detected (e.g., a service freezes or crashes unexpectedly),
but its effectiveness against undetected attacks is limited.

System libraries (e.g., libstagefright) can be modified so that cer-
tain types of media are collected and saved before media parsing is per-
formed. The number of captured files that are stored and the length
of time they are maintained can be modified to suit the needs of re-
searchers. If a device is monitored consistently, the files may be stored
until they are analyzed. Conversely, if a device is only investigated in the
event of a suspected compromise, then the stored files have to be man-
aged because limited space is available on the device. However, changes
made to system libraries increase the risk that an exploit that targets the
libraries will no longer behave as expected. Consequently, this research
has focused on modifications that do not alter common services.

Some libraries on Android devices are designed to support system
and application developers. The debugging daemon (debuggerd) creates
“tombstones” when an application or library crashes; these tombstones
contain useful system information and program backtraces from the time
of the crash. Figure 6 demonstrates how debuggerd is associated with
every dynamically-linked executable. The executables specify the linker



Grimmett, Staggs & Shenoi 217

ELF
bionic/

linker.cpp
bionic/

debugger.cpp

DT_INTERP = linker

debuggerd_init()

debuggerd_signal_handler
registered

dynamically linked
libraries resolved

Figure 6. debuggerd handler setup.

DT INTERP used to interpret the included symbols. Following this, the
linker ties handlers for each signal to debuggerd before returning with
the library symbols resolved.

The signal handlers are responsible for generating crash information.
System properties can be configured to enable or disable additional de-
bugging capabilities. The property debug.db.uid causes debuggerd to
suspend a crashing process and attach gdb to the process – this enables
a user to connect using gdb and actively debug the process before it
crashes. (Note that the uid property is replaced with wait for gdb in
newer Android devices.) The process remains suspended until the user
depresses the “volume down” button or uses gdb to resume the process.

The debuggerd daemon is a useful tool for debugging Android plat-
form code, but its backtrace and memory dump functionalities are poorly
suited to analyzing exploits. Corrupted addresses in stack memory
and unexpected register values can cause debuggerd to miss portions
of memory that are relevant to malware analysis. To overcome this
limitation, debuggerd may be modified to support additional function-
ality when a crash occurs. The limited memory capture functional-
ity of debuggerd can also be enhanced with support for automatically
launching the LiME capture process when crashes occur. The stated
requirement that modifications to common libraries should be avoided
can be overlooked for debuggerd because it is explicitly prevented from
attempting to debug itself by design.



218 ADVANCES IN DIGITAL FORENSICS XIII

6. Conclusions
Combating sophisticated malware requires novel detection, capture

and mitigation techniques. This research has proposed malware detec-
tion techniques based on measurable side-effects in an exploited device.
Categorizing malware to identify common side-effects enables the auto-
mated capture of memory-resident malware using digital forensic tools
for live memory acquisition. The automated capture technique enables
digital forensic investigators to discover and analyze previously-unknown
exploitation techniques and to implement new mitigation strategies for
vulnerable devices. Most importantly, the proposed modifications that
make the technique possible are minimal and device-independent.

References

[1] Android Open Source Project, Security (source.android.com/
security), May 22, 2017.

[2] P. Argyroudis and C. Karamitas, Exploiting the jemalloc memory
allocator: Owning Firefox’s heap, presented at the Black Hat USA
Conference, 2012.

[3] H. Be’er, Metaphor: A (Real) Real-Life Stagefright Exploit, Revi-
sion 1.1, NorthBit, Herzliya, Israel (raw.githubusercontent.com/
NorthBit/Public/master/NorthBit-Metaphor.pdf), 2016.

[4] M. Brand, Stagefrightened? Project Zero, Google, Mountain
View, California (googleprojectzero.blogspot.com/2015/09/
stagefrightened.html), September 16, 2015.

[5] M. Cova, C. Kruegel and G. Vigna, Detection and analysis of drive-
by-download attacks and malicious JavaScript code, Proceedings of
the Nineteenth International Conference on World Wide Web, pp.
281–290, 2010.

[6] J. Drake, Stagefright: Scary code in the heart of Android, presented
at the Black Hat USA Conference, 2015.

[7] J. Edmonds, Cell Phone Reverse Engineering and Malware Anal-
ysis, Ph.D. Dissertation, Tandy School of Computer Science, Uni-
versity of Tulsa, Tulsa, Oklahoma, 2012.

[8] Exodus Intelligence, Stagefright: Mission Accomplished? Austin,
Texas (blog.exodusintel.com/2015/08/13/stagefright-miss
ion-accomplished), August 13, 2015.

[9] G Data Software, G Data Mobile Malware Report, Threat Report:
Q2/2015, Bochum, Germany, 2015.



Grimmett, Staggs & Shenoi 219

[10] A. Ludwig and V. Rapaka, An Update to Nexus Devices, Goo-
gle, Mountain View, California (officialandroid.blogspot.com/
2015/08/an-update-to-nexus-devices.html), August 5, 2015.

[11] P. Ratanaworabhan, B. Livshits and B. Zorn, NOZZLE: A defense
against heap-spraying code injection attacks, Proceedings of the
Eighteenth USENIX Security Symposium, pp. 169–186, 2009.

[12] Samsung Electronics, Samsung Announces an Android Security Up-
date Process to Ensure Timely Protection from Security Vulnera-
bilities, Press Release, Suwon, South Korea, August 5, 2015.

[13] Scientific Working Group on Digital Evidence, SWGDE Best Prac-
tices for Mobile Phone Forensics, Version 2.0, 2013.

[14] F. Serna, The info leak era of software exploitation, presented at
the Black Hat USA Conference, 2012.

[15] A. Sotirov, Heap feng shui in JavaScript, presented at the Black
Hat Europe Conference, 2007.

[16] J. Stuttgen and M. Cohen, Robust Linux memory acquisition with
minimal target impact, Digital Investigation, vol. 11(S1), pp. S112–
S119, 2014.

[17] H. Sun, K. Sun, Y. Wang, J. Jing and S. Jajodia, TrustDump:
Reliable memory acquisition on smartphones, Proceedings of the
Nineteenth European Symposium on Research in Computer Secu-
rity, Part I, pp. 202–218, 2014.

[18] J. Sylve, A. Case, L. Marziale and G. Richard, Acquisition and anal-
ysis of volatile memory from Android devices, Digital Investigation,
vol. 8(3-4), pp. 175–184, 2012.

[19] V. Thing, K. Ng and E. Chang, Live memory forensics of mobile
phones, Digital Investigation, vol. 7(S), pp. S74–S82, 2010.

[20] Zimperium zLabs, The Latest on Stagefright: CVE-2015-1538
Exploit is Now Available for Testing Purposes, San Francisco,
California (blog.zimperium.com/the-latest-on-stagefright-
cve-2015-1538-exploit-is-now-available-for-testing-pur
poses), September 9, 2015.


	12 CATEGORIZING MOBILE DEVICE MALWARE BASED ON SYSTEM SIDE-EFFECTS
	1. Introduction
	2. Live Memory Analysis of Mobile Devices
	2.1 Information in Volatile Memory
	2.2 Memory Capture Techniques

	3. Android Exploitation Techniques
	3.1 Heap Exploitation
	3.2 Defeating ASL Randomization

	4. Stagefright Exploits
	4.1 Zimperium zLabs
	4.2 Google Project Zero
	4.3 NorthBit

	5. Categorizing Malware by Behavior
	5.1 Malware Categories
	5.2 Benefits of Malware Categorization
	5.3 Detecting Malware Side-Effects

	6. Conclusions
	References




