
123

Gilbert Peterson
Sujeet Shenoi

(Eds.)

Advances in
Digital Forensics XIII

IFIP AICT 511

IFIP Advances in Information
and Communication Technology 511

Editor-in-Chief

Kai Rannenberg, Goethe University Frankfurt, Germany

Editorial Board

TC 1 – Foundations of Computer Science
Jacques Sakarovitch, Télécom ParisTech, France

TC 2 – Software: Theory and Practice
Michael Goedicke, University of Duisburg-Essen, Germany

TC 3 – Education
Arthur Tatnall, Victoria University, Melbourne, Australia

TC 5 – Information Technology Applications
Erich J. Neuhold, University of Vienna, Austria

TC 6 – Communication Systems
Aiko Pras, University of Twente, Enschede, The Netherlands

TC 7 – System Modeling and Optimization
Fredi Tröltzsch, TU Berlin, Germany

TC 8 – Information Systems
Jan Pries-Heje, Roskilde University, Denmark

TC 9 – ICT and Society
Diane Whitehouse, The Castlegate Consultancy, Malton, UK

TC 10 – Computer Systems Technology
Ricardo Reis, Federal University of Rio Grande do Sul, Porto Alegre, Brazil

TC 11 – Security and Privacy Protection in Information Processing Systems
Steven Furnell, Plymouth University, UK

TC 12 – Artificial Intelligence
Ulrich Furbach, University of Koblenz-Landau, Germany

TC 13 – Human-Computer Interaction
Marco Winckler, University Paul Sabatier, Toulouse, France

TC 14 – Entertainment Computing
Matthias Rauterberg, Eindhoven University of Technology, The Netherlands

IFIP – The International Federation for Information Processing

IFIP was founded in 1960 under the auspices of UNESCO, following the first World
Computer Congress held in Paris the previous year. A federation for societies working
in information processing, IFIP’s aim is two-fold: to support information processing in
the countries of its members and to encourage technology transfer to developing na-
tions. As its mission statement clearly states:

IFIP is the global non-profit federation of societies of ICT professionals that aims
at achieving a worldwide professional and socially responsible development and
application of information and communication technologies.

IFIP is a non-profit-making organization, run almost solely by 2500 volunteers. It
operates through a number of technical committees and working groups, which organize
events and publications. IFIP’s events range from large international open conferences
to working conferences and local seminars.

The flagship event is the IFIP World Computer Congress, at which both invited and
contributed papers are presented. Contributed papers are rigorously refereed and the
rejection rate is high.

As with the Congress, participation in the open conferences is open to all and papers
may be invited or submitted. Again, submitted papers are stringently refereed.

The working conferences are structured differently. They are usually run by a work-
ing group and attendance is generally smaller and occasionally by invitation only. Their
purpose is to create an atmosphere conducive to innovation and development. Referee-
ing is also rigorous and papers are subjected to extensive group discussion.

Publications arising from IFIP events vary. The papers presented at the IFIP World
Computer Congress and at open conferences are published as conference proceedings,
while the results of the working conferences are often published as collections of se-
lected and edited papers.

IFIP distinguishes three types of institutional membership: Country Representative
Members, Members at Large, and Associate Members. The type of organization that
can apply for membership is a wide variety and includes national or international so-
cieties of individual computer scientists/ICT professionals, associations or federations
of such societies, government institutions/government related organizations, national or
international research institutes or consortia, universities, academies of sciences, com-
panies, national or international associations or federations of companies.

More information about this series at http://www.springer.com/series/6102

Gilbert Peterson • Sujeet Shenoi (Eds.)

Advances in
Digital Forensics XIII
13th IFIP WG 11.9 International Conference
Orlando, FL, USA, January 30 – February 1, 2017
Revised Selected Papers

123

Editors
Gilbert Peterson
Department of Electrical and Computer
Engineering

Air Force Institute of Technology
Wright-Patterson AFB
USA

Sujeet Shenoi
Tandy School of Computer Science
University of Tulsa
Tulsa
USA

ISSN 1868-4238 ISSN 1868-422X (electronic)
IFIP Advances in Information and Communication Technology
ISBN 978-3-319-67207-6 ISBN 978-3-319-67208-3 (eBook)
DOI 10.1007/978-3-319-67208-3

Library of Congress Control Number: 2016950753

© IFIP International Federation for Information Processing 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Contents

Contributing Authors ix

Preface xvii

PART I THEMES AND ISSUES

1
Establishing Findings in Digital Forensic Examinations: A Case

Study Method
3

Oluwasayo Oyelami and Martin Olivier

2
A Model for Digital Evidence Admissibility Assessment 23
Albert Antwi-Boasiako and Hein Venter

PART II MOBILE AND EMBEDDED DEVICE FORENSICS

3
Evaluating the Authenticity of Smartphone Evidence 41
Heloise Pieterse, Martin Olivier and Renier van Heerden

4
Forensic Evaluation of an Amazon Fire TV Stick 63
Logan Morrison, Huw Read, Konstantinos Xynos and Iain Sutherland

5
Detecting Anomalous Programmable Logic Controller Events Using

Machine Learning
81

Ken Yau and Kam-Pui Chow

PART III NETWORK AND CLOUD FORENSICS

6
A Forensic Methodology for Software-Defined Network Switches 97
Tommy Chin and Kaiqi Xiong

vi ADVANCES IN DIGITAL FORENSICS XIII

7
Identifying Evidence for Cloud Forensic Analysis 111
Changwei Liu, Anoop Singhal and Duminda Wijesekera

PART IV THREAT DETECTION AND MITIGATION

8
Digital Forensic Implications of Collusion Attacks on the Lightning

Network
133

Dmytro Piatkivskyi, Stefan Axelsson and Mariusz Nowostawski

9
Insider Threat Detection Using Time-Series-Based Raw Disk Foren-

sic Analysis
149

Nicole Beebe, Lishu Liu and Zi Ye

10
Anti-Forensic Threat Modeling 169
Bruno Hoelz and Marcelo Maues

PART V MALWARE FORENSICS

11
A Behavior-Based Approach for Malware Detection 187
Rayan Mosli, Rui Li, Bo Yuan and Yin Pan

12
Categorizing Mobile Device Malware Based on System Side-Effects 203
Zachary Grimmett, Jason Staggs and Sujeet Shenoi

PART VI IMAGE FORENSICS

13
Semantic Video Carving Using Perceptual Hashing and Optical

Flow
223

Junbin Fang, Sijin Li, Guikai Xi, Zoe Jiang, Siu-Ming Yiu, Liyang Yu,
Xuan Wang, Qi Han and Qiong Li

14
Detecting Fraudulent Bank Checks 245
Saheb Chhabra, Garima Gupta, Monika Gupta and Gaurav Gupta

Contents vii

PART VII FORENSIC TECHNIQUES

15
Automated Collection and Correlation of File Provenance Information 269
Ryan Good and Gilbert Peterson

16
Using Personal Information in Targeted Grammar-Based Proba-

bilistic Password Attacks
285

Shiva Houshmand and Sudhir Aggarwal

Contributing Authors

Sudhir Aggarwal is a Professor of Computer Science at Florida State
University, Tallahassee, Florida. His research interests include password
cracking, information security and building software tools and systems
for digital forensics.

Albert Antwi-Boasiako is the Principal Consultant at e-Crime Bu-
reau, Accra, Ghana and Cyber Security Advisor to the Government of
Ghana, Accra, Ghana; he is also a Ph.D. student in Computer Science
at the University of Pretoria, Pretoria, South Africa. His research inter-
ests are in the area of digital forensics, with a focus on digital forensic
process standardization.

Stefan Axelsson is an Associate Professor of Computer Science at the
Norwegian University of Science and Technology, Gjovik, Norway; and
an Associate Professor with the Norwegian National Criminal Police,
Oslo, Norway. His research interests include digital forensics, intrusion
and fraud detection, visualization and digital surveillance.

Nicole Beebe is an Associate Professor of Cyber Security at the Univer-
sity of Texas at San Antonio, San Antonio, Texas. Her research interests
include digital forensics, cyber security and advanced analytics.

Saheb Chhabra is a Ph.D. student in Computer Science and Engineer-
ing at Indraprastha Institute of Information Technology, Delhi, India.
His research interests include image processing and computer vision and
their applications to document fraud detection

Tommy Chin is an M.S. student in Computing Security at Rochester
Institute of Technology, Rochester, New York. His research interests
include cyber security and digital forensics.

x ADVANCES IN DIGITAL FORENSICS XIII

Kam-Pui Chow is an Associate Professor of Computer Science at the
University of Hong Kong, Hong Kong, China. His research interests
include information security, digital forensics, live system forensics and
digital surveillance.

Junbin Fang is an Associate Professor of Optoelectronic Engineering
at Jinan University, Guangzhou, China; and a Visiting Professor in the
Edward S. Rogers Sr. Department of Electrical and Computer Engi-
neering, University of Toronto, Toronto, Canada. His research interests
include digital forensics, quantum cryptography and visible light com-
munications.

Ryan Good is an M.S. student in Computer Science at the Air Force
Institute of Technology, Wright-Patterson Air Force Base, Ohio. His
research interests include digital forensics and network security.

Zachary Grimmett recently received his Ph.D. degree in Computer
Engineering from the University of Tulsa, Tulsa, Oklahoma. His research
interests include mobile communications devices, digital forensics and
malware analysis.

Garima Gupta is a Post Doctoral Researcher in Computer Science and
Engineering at Indraprastha Institute of Information Technology, Delhi,
India. Her research interests include image processing and computer
vision and their applications to document fraud detection

Gaurav Gupta is a Scientist D in the Ministry of Information Tech-
nology, New Delhi, India. His research interests include mobile device
security, digital forensics, web application security, Internet of Things
security and security in emerging technologies.

Monika Gupta recently received her Ph.D. degree in Physics from
the National Institutes of Technology, Kurukshetra, India. Her research
interests include image processing and computer vision and their appli-
cations to document fraud detection

Contributing Authors xi

Qi Han is an Associate Professor of Computer Science and Technology
at Harbin Institute of Technology, Harbin, China. His research inter-
ests include digital video forensics, hiding communications and digital
watermarking.

Bruno Hoelz is a Computer Forensics Expert at the National Institute
of Criminalistics, Brazilian Federal Police, Brasilia, Brazil. His research
interests include multiagent systems and artificial intelligence applica-
tions in digital forensics.

Shiva Houshmand is an Assistant Professor of Computer Science at
Southern Illinois University, Carbondale, Illinois. Her research interests
include computer and network security, authentication, digital forensics
and usable security.

Zoe Jiang is an Assistant Professor of Computer Science and Technol-
ogy at the Shenzhen Graduate School, Harbin Institute of Technology,
Shenzhen, China. Her research interests include cryptography and digi-
tal forensics.

Qiong Li is a Professor of Computer Science and Technology at Harbin
Institute of Technology, Harbin, China. Her research interests include
quantum cryptography, multimedia security and biometrics.

Rui Li is a Visiting Assistant Professor in the Golisano College of Com-
puting and Information Sciences at Rochester Institute of Technology,
Rochester, New York. His research attempts to address multidisciplinary
data analytics challenges by developing scalable statistical procedures
and efficient learning algorithms.

Sijin Li is a B.S. student in Information Engineering at Jinan Univer-
sity, Guangzhou, China. His research interests include digital forensics,
computer vision and deep learning.

Changwei Liu is a Postdoctoral Researcher in the Department of Com-
puter Science, George Mason University, Fairfax, Virginia. Her research
interests include network security, cloud computing security and digital
forensics.

xii ADVANCES IN DIGITAL FORENSICS XIII

Lishu Liu is a Machine Learning Engineer at RetailMeNot, Austin,
Texas. Her research interests involve the application of machine learn-
ing algorithms to locate, extract and present relevant information from
massive data sets.

Marcelo Maues is a Computer Forensics Expert at the Renato Chaves
Center of Forensic Sciences, Belem/Para, Brazil. His research interests
include computer and network forensics.

Logan Morrison is a Computer Scientist with the U.S. Department
of Defense in Washington, DC. His research interests include digital
forensics, computer security and data recovery.

Rayan Mosli is a Ph.D. student in Computing and Information Sciences
at Rochester Institute of Technology, Rochester, New York. His research
interests include memory-based malware detection and digital forensics.

Mariusz Nowostawski is an Associate Professor of Computer Science
at the Norwegian University of Science and Technology, Gjovik, Nor-
way. His research interests include machine learning, code generation,
autonomous and biology-inspired computing, blockchain and distributed
ledger technology, and mobile and heterogeneous peer-to-peer comput-
ing.

Martin Olivier is a Professor of Computer Science at the University of
Pretoria, Pretoria, South Africa. His research focuses on digital forensics
– in particular the science of digital forensics and database forensics.

Oluwasayo Oyelami is an M.Sc. student in Computer Science at the
University of Pretoria, Pretoria, South Africa; and an Information Se-
curity Analyst at Performanta, Midrand, South Africa. His research
interests include digital forensics, information security and threat intel-
ligence.

Yin Pan is a Professor of Computing Security at Rochester Institute of
Technology, Rochester, New York. Her research interests include game-
based digital forensics and memory-based malware detection.

Contributing Authors xiii

Gilbert Peterson, Chair, IFIP Working Group 11.9 on Digital Foren-
sics, is a Professor of Computer Science at the Air Force Institute of
Technology, Wright-Patterson Air Force Base, Ohio. His research inter-
ests include digital forensics, artificial intelligence and statistical machine
learning.

Dmytro Piatkivskyi is a Ph.D. student in Cyber and Information
Security at the Norwegian University of Science and Technology, Gjovik,
Norway. His research focuses on the analysis of off-chain scalability
solutions for Bitcoin and other crypto-currencies with an emphasis on
security.

Heloise Pieterse is a Senior Researcher at the Council for Scientific
and Industrial Research, Pretoria, South Africa; and a Ph.D. student in
Computer Science at the University of Pretoria, Pretoria South Africa.
Her research interests include digital forensics and mobile device security.

Huw Read is an Associate Professor of Digital Forensics and Director of
the Center for Advanced Computing and Digital Forensics at Norwich
University, Northfield, Vermont. His research interests include digital
forensics and computer security.

Sujeet Shenoi is the F.P. Walter Professor of Computer Science and a
Professor of Chemical Engineering at the University of Tulsa, Tulsa, Ok-
lahoma. His research interests include critical infrastructure protection,
industrial control systems and digital forensics.

Anoop Singhal is a Senior Computer Scientist in the Computer Se-
curity Division at the National Institute of Standards and Technology,
Gaithersburg, Maryland. His research interests include network security,
network forensics, web services security and data mining.

Jason Staggs recently received his Ph.D. degree in Computer Science
from the University of Tulsa, Tulsa, Oklahoma. His research interests
include telecommunications networks, industrial control systems, critical
infrastructure protection, security engineering and digital forensics.

xiv ADVANCES IN DIGITAL FORENSICS XIII

Iain Sutherland is a Professor of Digital Forensics at Noroff University
College, Kristiansand, Norway. His research interests include digital
forensics and data recovery.

Renier van Heerden is a Principal Researcher at the Council for Sci-
entific and Industrial Research, Pretoria, South Africa. His research
interests include network security, password security and network at-
tacks.

Hein Venter is a Professor of Computer Science at the University of
Pretoria, Pretoria, South Africa. His research interests are in the area of
digital forensics, with a focus on digital forensic process standardization.

Xuan Wang is a Professor and Ph.D. Supervisor in the Computer Ap-
plication Research Center at the Shenzhen Graduate School, Harbin
Institute of Technology, Shenzhen, China. His research interests include
artificial intelligence, computer vision, computer security and computa-
tional linguistics.

Duminda Wijesekera is a Professor of Computer Science at George
Mason University, Fairfax, Virginia. His research interests include sys-
tems security, digital forensics and transportation systems.

Guikai Xi is a B.S. student in Information Engineering at Jinan Univer-
sity, Guangzhou, China. His research interests include digital forensics,
deep learning and machine intelligence.

Kaiqi Xiong is an Associate Professor of Cybersecurity, Mathematics
and Electrical Engineering at the University of South Florida, Tampa,
Florida. His research interests include computer and network security.

Konstantinos Xynos is a Senior Researcher and Senior Manager at
DarkMatter LLC, Dubai, United Arab Emirates. His research interests
include digital forensics and computer security.

Ken Yau is an M.Phil. student in Computer Science at the University
of Hong Kong, Hong Kong, China. His research interests are in the
area of digital forensics, with an emphasis on industrial control system
forensics.

Contributing Authors xv

Zi Ye is a Data Analyst at Andorra Life in Los Angeles, California. Her
research interests include the application of machine learning algorithms
to locate, extract and present relevant information from massive data
sets.

Siu-Ming Yiu is an Associate Professor of Computer Science at the
University of Hong Kong, Hong Kong, China. His research interests
include security, cryptography, digital forensics and bioinformatics.

Liyang Yu is a Lecturer of Software and Microelectronics at Harbin
University of Science and Technology, Harbin, China. His research in-
terests include digital image and video forensics.

Bo Yuan is a Professor and Chair of Computing Security at Rochester
Institute of Technology, Rochester, New York. His research focuses on
applications of computational intelligence in cyber security.

Preface

Digital forensics deals with the acquisition, preservation, examination,
analysis and presentation of electronic evidence. Networked computing,
wireless communications and portable electronic devices have expanded
the role of digital forensics beyond traditional computer crime investiga-
tions. Practically every type of crime now involves some aspect of digital
evidence; digital forensics provides the techniques and tools to articu-
late this evidence in legal proceedings. Digital forensics also has myriad
intelligence applications; furthermore, it has a vital role in information
assurance – investigations of security breaches yield valuable information
that can be used to design more secure and resilient systems.

This book, Advances in Digital Forensics XIII, is the thirteenth vol-
ume in the annual series produced by the IFIP Working Group 11.9
on Digital Forensics, an international community of scientists, engineers
and practitioners dedicated to advancing the state of the art of research
and practice in digital forensics. The book presents original research re-
sults and innovative applications in digital forensics. Also, it highlights
some of the major technical and legal issues related to digital evidence
and electronic crime investigations.

This volume contains sixteen revised and edited chapters based on
papers presented at the Thirteenth IFIP WG 11.9 International Con-
ference on Digital Forensics, held in Orlando, Florida on January 30 to
February 1, 2017. The papers were refereed by members of IFIP Work-
ing Group 11.9 and other internationally-recognized experts in digital
forensics. The post-conference manuscripts submitted by the authors
were rewritten to accommodate the suggestions provided by the con-
ference attendees. They were subsequently revised by the editors to
produce the final chapters published in this volume.

The chapters are organized into seven sections: Themes and Issues,
Mobile and Embedded Device Forensics, Network and Cloud Forensics,
Threat Detection and Mitigation, Malware Forensics, Image Forensics
and Forensic Techniques. The coverage of topics highlights the richness

xviii ADVANCES IN DIGITAL FORENSICS XIII

and vitality of the discipline, and offers promising avenues for future
research in digital forensics.

This book is the result of the combined efforts of several individuals.
In particular, we thank Mark Pollitt and Jane Pollitt for their tireless
work on behalf of IFIP Working Group 11.9. We also acknowledge the
support provided by the U.S. National Science Foundation, U.S. Na-
tional Security Agency and U.S. Secret Service.

GILBERT PETERSON AND SUJEET SHENOI

I

THEMES AND ISSUES

Chapter 1

ESTABLISHING FINDINGS IN
DIGITAL FORENSIC EXAMINATIONS:
A CASE STUDY METHOD

Oluwasayo Oyelami and Martin Olivier

Abstract In digital forensics, examinations are carried out to explain events and
demonstrate the root cause from a number of plausible causes. Yin’s
approach to case study research offers a systematic process for inves-
tigating occurrences in their real-world contexts. The approach is well
suited to examining isolated events and also addresses questions about
causality and the reliability of findings. The techniques that make Yin’s
approach suitable for research also apply to digital forensic examina-
tions. The merits of case study research are highlighted in previous
work that established the suitability of the case study research method
for conducting digital forensic examinations. This research extends the
previous work by demonstrating the practicality of Yin’s case study
method in examining digital events. The research examines the rela-
tionship between digital evidence – the effect – and its plausible causes,
and how patterns can be identified and applied to explain the events.
Establishing these patterns supports the findings of a forensic exami-
nation. Analytic strategies and techniques inherent in Yin’s case study
method are applied to identify and analyze patterns in order to establish
the findings of a digital forensic examination.

Keywords: Digital forensic examinations, Yin’s method, establishing findings

1. Introduction
Causality is about drawing relationships between an observed phe-

nomenon – the effect – and its plausible cause(s) [4, 6, 7, 10, 19, 23].
Establishing these relationships supports the findings of a forensic exami-
nation. In establishing cause and effect relationships, a forensic examiner
identifies patterns in the evidence that may be used to establish findings
and also to attribute the source. Understanding these patterns and how

© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
G. Peterson and S. Shenoi (Eds.): Advances in Digital Forensics XIII, IFIP AICT 511, pp. 3–21, 2017.
DOI: 10.1007/978-3-319-67208-3_1

3

4 ADVANCES IN DIGITAL FORENSICS XIII

they can be applied to test hypotheses are central to establishing the
findings of a forensic examination.

In order to demonstrate causality, a forensic examiner searches for
patterns that support a hypothesis. The more supporting patterns that
are found, the more compelling are the causal findings. These supporting
patterns ultimately form a web of consistency that provides support for
the findings of the forensic examination. The use of a web of consistency
is supported by Casey’s certainty scale [3], which notes that evidence
supported by multiple independent sources has a higher certainty value
than information obtained from a single source.

The case study research method proposed by Yin [25] offers a system-
atic process for investigating occurrences in their real-world contexts.
This research method is very popular in the social sciences, where it has
a definite focus; in fact, Yin’s seminal book on the topic is currently
in its fifth edition [25]. An analysis of Yin’s approach reveals that it is
particularly appropriate for examining isolated events; moreover, it ad-
dresses questions on causality and the reliability of findings. The merits
of case study research are discussed in earlier work [18], which estab-
lished the suitability of the case study research method for conducting
digital forensic examinations. This research extends the earlier work
by demonstrating how the case study method can be applied in digital
forensic examinations.

2. Causality and Digital Systems
A digital system contains a complex set of software programs that are

executed within the system. The control logic of a program executes
and controls the operations of the program. It receives input commands
from a user and executes the commands on the computing system. It also
controls and executes automated operations that have been structured
in the software program.

The execution of input commands and/or automated operations by
the control logic causes effects in a digital system. This implies that the
control logic is the cause of the effects in the system. An effect triggered
by the control logic may be a passive effect or an active effect. A passive
effect occurs when control logic execution causes traces or side effects
in the digital system; thus, passive effects are referred to as traces or
side effects in the system. On the other hand, an active effect occurs
when control logic execution triggers further control logic executions
in the system; these further executions of control logic correspond to
active effects in the system. Active effects may also leave traces that are
passive.

Oyelami & Olivier 5

Figure 1. Cause and effect in a digital system.

Figure 1 illustrates a cause and effect in a digital system. A cause
C leaves a passive effect or trace T1 and its execution triggers an active
effect E1. The initiation of the active effect E1 leaves a trace T2 and its
execution triggers another active effect E2. The initiation of the active
effect E2 leaves a trace T3 and the execution of the active effect E2 leaves
a trace T4. As illustrated in Figure 1, an effect can be an active effect
or a passive effect, which is a trace in the system. The active effects –
namely, the control logic executions – are transient in the system. In
other words, active effects are not observable because the execution of
a command itself is invisible in the system. It is the traces that are
observed in the system.

The following examples clarify the concepts of cause and effect in a
digital system:

bash Shell Command Execution: An example of cause and
effect in a digital system is the execution of a bash shell command
initiated when a certain input is provided by a user. The input
to the bash shell is stored in the bash history and execution is
initiated by the control logic. A forensic examiner knows that the
control logic initiated the bash shell command because of the traces
of the command initiation left in the bash history. However, the
execution of the bash command itself is invisible. Therefore, it is
not possible to know if the command did execute. It is also possible
that environmental variables may have been configured to disable
the bash history. However, programs that execute may leave traces
and a forensic examiner may conclude that the program caused the
traces.

crontab File Execution: A second example is the execution of
a crontab file. A crontab is a system service that causes com-
mands to be executed at specified times. The execution of crontab
is controlled by the cron daemon, whose control logic executes the
commands in the system background. When the specified time

6 ADVANCES IN DIGITAL FORENSICS XIII

for a command execution is met, the cron daemon initiates the
command and passively logs the initiation of the command. The
logging of the crontab command is a passive effect while the exe-
cution of the command is an active effect. However, the command
may or may not have executed and may not leave any traces in
the system. There may or may not be passive effects to indicate
execution success or failure.

Database Trigger Execution: A third example is the execution
of a database trigger. A database trigger executes a sequence of
commands when a logical condition is met. The initiation of the
database trigger may create a log entry (passive effect) and its ex-
ecution may create another log entry and may also initiate another
trigger (active effect) that may, in turn, cause a log entry.

Email Arrival at a Mail Transfer Agent: A fourth example
is the arrival of email at a mail transfer agent. Email is forwarded
from one mail transfer agent to the next until it is delivered to the
recipient’s inbox. The arrival of an email at a mail transfer agent
causes a log of the email communication to be written, which is a
passive effect. The email is then routed to the next mail transfer
agent in the delivery path or is delivered to the recipient’s inbox.
The routing of email is an active effect while the delivery to the
recipient’s inbox is a passive effect.

Drawing inferences from the above examples, the arrival of an email
at a mail transfer agent is similar to a bash shell interface waiting for
a command from the user. It is also similar to a cron daemon waiting
until the time arrives to execute a command from crontab. It is also
similar to a database watching data and waiting for a condition to be
met in order to execute an operation. From these examples, it is possible
to conclude that a bash shell command entered by a user, the logical
conditions satisfied in the crontab and database trigger examples and
the arrival of an email at a mail transfer agent are all forms of input to
a system executed by the control logic that causes effects to occur in the
system.

A digital system operates in a pre-set mode of execution and system
configuration; additionally, as illustrated above, it is programmed to
accept certain inputs. Depending on the input that is received, the
control logic executes the expected sequence of commands that are pre-
defined by the system. Depending on the system configuration, certain
traces are typically left in the system. This implies that, by analyzing the
system configuration and the known inputs, a forensic examiner may be
able to predict the traces that will be in the system. This can be viewed

Oyelami & Olivier 7

Figure 2. Causality in a digital system.

as “forward causality.” On the other hand, a forensic examiner may
also be able to use the traces found in a system to predict the system
configuration and system inputs at the time; this can be described as
“inverse causality.”

Figure 2 illustrates the notions of causality in a digital system. For-
ward causality enables a forensic examiner to predict the traces that are
expected based on the system configuration and program input. Inverse
causality enables an examiner to predict the plausible causes in the sys-
tem. Based on the predictions made from the traces by applying inverse
causality, an examiner can test the predictions made about the plausible
causes by applying forward causality to demonstrate the observed side
effects or traces.

3. Using Yin’s Method
This section reviews the application of Yin’s case study approach as a

scientific method for conceptualizing digital forensic examinations [18].
The case study method as described by Yin [25] is suitable for examining
isolated occurrences. The process of carrying out a forensic examination
involves three main aspects: (i) understanding the body of knowledge
in the field; (ii) formulating hypotheses in the examination; and (iii)
testing the hypotheses (empirical testing).

3.1 Body of Knowledge
A forensic examiner must have scientific knowledge and experience

in the forensic field in order to practice in the field. An understanding

8 ADVANCES IN DIGITAL FORENSICS XIII

of the body of knowledge in the field is a necessary requirement for
all forensic science disciplines [9, 13, 15, 17]. An examiner must have
expert knowledge in the field in which the examination is intended to be
carried out. Without expert knowledge in the field, an examiner cannot
consistently make valid claims nor will the hypotheses be based on the
body of knowledge and experience gained from scientific practice within
the profession.

3.2 Hypotheses Formulation
Hypotheses formulation is driven by the questions that are asked

about the evidence [22, 26]. The formulation plays an important role
in the examination of evidence [1, 2, 5]. The process of formulating
hypotheses also guides the examination phase. Hypotheses formulation
typically yields multiple hypotheses, one is the main hypothesis and the
others are alternative hypotheses. The main hypothesis reflects what
the examiner expects to observe and demonstrate in the context of the
examination. The alternative hypotheses are plausible explanations that
oppose the main hypothesis and must be disproved.

In forming a hypothesis, an examiner typically would seek to answer
one or two main forms of questions during the examination of the ev-
idence. In its first form, the examiner may be required to address a
decision problem [14]. In its second form, the requirement is to address
a narrative problem [20, 21].

The decision problem addresses the examination of evidence in terms
of the narrative. For example, a generic decision problem in digital
forensics may be stated as “Does this sequence occur on the disk?” where
the sequence may refer to a software signature, execution of malicious
software, downloaded software or evidence of a network intrusion or
compromise. A decision problem is usually answered by a yes, no or
inconclusive.

The narrative problem, on the other hand, addresses the examination
in terms of causality. An example is “What caused this sequence to occur
on the disk?” where the sequence is as illustrated above. The narrative
problem requires an examiner to examine and explain the facts that
support the conclusions that are made. Interested readers are referred
to [14, 20, 21] to explore the use of decision problems and narratives in
digital forensics.

Hypotheses formulation takes one of the two forms discussed above.
While a narrative problem may also be interpreted in the form of a
decision problem, both forms serve different purposes, but also achieve
the same goal of explaining the findings made from the evidence exam-

Oyelami & Olivier 9

ination. Hypotheses formulation should be done before examining the
evidence to ensure that the examination is free from bias [8, 9, 13, 16].

It is important to note that, depending on the nature of the exami-
nation, it may not be necessary to formulate hypotheses. For example,
when measurements are required to determine an outcome, the formu-
lation of hypotheses is not a requirement.

3.3 Hypotheses Testing
The main purpose of the evidence analysis phase is to test the hypothe-

ses. In testing a hypothesis, a forensic examiner has to consider the
likelihood of a particular occurrence reaching a definite conclusion. In
the example above, which asks the question “Does this sequence occur
on the disk?” the examiner may seek to demonstrate the occurrence
of the sequence on the disk. The result is usually a yes or no based
on the weight of the supporting patterns found in the evidence. The
result may also be inconclusive, indicating that what is observed does
not provide sufficient proof to confirm or deny the plausibility of the
occurrence of the sequence. This may occur in situations involving file
deletion, evidence tampering or insufficient evidence.

The question “What caused this sequence to occur on the disk?” ex-
amines the occurrence in terms of causality. A forensic examiner may
seek to demonstrate that the sequence is attributable to a certain cause
and confirm the hypothesis. However in doing this, the examiner must
also actively identify evidence that refutes the hypothesis. An examiner
may successfully prove that an observed effect is attributable to a cause,
but in order to strengthen the finding, the examiner must refute other
plausible rival explanations.

A methodical approach must be applied to prove the hypothesis, ana-
lyze the evidence, establish causal relationships and demonstrate a web
of consistency between the evidence and its plausible causes. A number
of techniques proposed by Yin may be applied. The techniques include
pattern matching, explanation building, time-series analysis and logic
models [18, 24, 25]. Also, when examining complex digital evidence, an
examiner may use the cross-case synthesis technique, which applies the
logic of replication, namely literal replication and theoretical replication.

The pattern matching technique enables an examiner to compare pat-
terns predicted before an examination against the observed patterns.
Predicted patterns are expected findings based on the body of knowl-
edge and apply forward causality [18, 24, 25]. Using the pattern match-
ing technique, an examiner can demonstrate that a set of hypotheses or

10 ADVANCES IN DIGITAL FORENSICS XIII

explanations E explains a set of observed patterns or observations O,
while knowing E but not having observed O at the time.

The explanation building technique enables an examiner to develop a
narrative of a case by specifying a set of causal relationships about the
occurrence, or explaining how and why the occurrence happened [18, 24,
25]. This involves stating an initial hypothesis or explanation about the
case and then testing the hypothesis. If the hypothesis is found to be in-
consistent, it is revised to reflect the new findings. The revised hypothe-
sis or explanation is then tested again as more observations are made
in an iterative manner until an explanation is made that fully reflects
the final findings of the case. Using the explanation building technique,
an examiner can demonstrate how, from an initial set of hypotheses
or explanations E1, an examiner can iteratively revise and create new
explanations Ei that are consistent as the observed patterns Oi are ex-
amined.

The time-series analysis technique enables an examiner to bring to-
gether key aspects of an occurrence in chronological order. The chronol-
ogy also reflects the case as a set of causal relationships, showing which
key aspects may have caused or contributed to the existence of other
aspects [18, 24, 25]. The time-series analysis technique enables an ex-
aminer to determine that the observed patterns Oi are not causal effects
of other patterns based on their occurrence times.

A logic model enables an examiner to break down a complex occur-
rence into repeated cause and effect patterns and to demonstrate how
the final findings are obtained from intermediate findings [18, 24, 25].
Analysis of the logic model identifies the observed patterns Oi that may
have contributed to the occurrence of other observed patterns.

Another important technique is cross-case synthesis, which is mainly
applied in multiple case examinations. The cross-case synthesis tech-
nique involves multiple case studies that help determine whether the
findings from selected cases support any broader or particular conclu-
sions. This technique applies the logic of replication, which has two com-
ponents, literal replication and theoretical replication. In literal repli-
cation, an examiner selects a number of cases with the goal of demon-
strating similar findings; this provides a web of consistency. Theoretical
replication enables an examiner to select and examine another set of
cases while predicting opposing results with the goal of invalidating the
opposing results [18, 24, 25].

Whatever the technique or combination of techniques employed in a
case, a forensic examiner must consider and address the observed pat-
terns that point to alternative explanations. In doing so, the examiner
collects data on alternative explanations and examines them in order

Oyelami & Olivier 11

to demonstrate their suitability or unsuitability. Demonstrating the un-
suitability of rival explanations can be very helpful in explaining the
case.

4. Causal Relationships in Digital Forensics
This section discusses causal relationships in digital forensics and how

these relationships can be established.

4.1 Understanding Causal Relationships
Drawing relationships between a cause and its effect requires the iden-

tification of patterns during the analysis of evidence. The patterns that
are found can be applied to establish and demonstrate various relation-
ships. These relationships include correlations, data consistency and
plausible causes. Relationships that form correlations are discerned from
patterns that reflect matching data. Consistency relationships are de-
rived from patterns that posit a cause or plausible causes on an effect.
Plausible causes are a number of likely mechanisms or actions that can
initiate an effect or may have initiated an effect.

A valid user name and its corresponding password are matching data
that have a correlation as a login credential. A relationship that demon-
strates consistency could be a successful login attempt to a website,
which reflects a valid user name and that the corresponding entry in the
password database was applied. A successful login attempt to a website
may also be achieved via an SQL injection mechanism captured in a
database log (that enabled access to login information) or via a brute
force attack. Plausible causes of the successful login to the site are the
use of an SQL injection mechanism, brute force attack and valid login
credentials. By identifying patterns in the evidence, a forensic examiner
can posit that an action was taken that caused an effect to occur. Corre-
lating patterns from matching data support the claim of consistency and
consistency patterns can be applied to demonstrate causal relationships.

4.2 Establishing Causal Relationships
Establishing causal relationships supports the findings of a forensic

examination. It also strengthens the claims of causal inferences made
by the examiner. The three main concepts that help establish causal
relationships are: (i) specification of the necessary and sufficient con-
ditions for causality; (ii) establishment of a web of consistency in the
evidence; and (iii) refutation of alternative hypotheses or explanations.

12 ADVANCES IN DIGITAL FORENSICS XIII

Necessary and Sufficient Conditions for Causality. An effect
may occur under certain conditions and a number of conditions may be
necessary for an effect to occur. The existence of a number of causes may
not indicate that all the plausible causes contributed to the effect. A
cause may be considered to be sufficient to initiate an effect without the
participation of other conditions or causes. Thus, a forensic examiner
may be required to determine the cause(s) that contributed to the effect
observed from two or more plausible causes. The examiner may further
determine the conditions under which the effect would be rendered im-
plausible. A condition X is deemed to be necessary for an effect B to
occur if and only if the falsification of the condition X guarantees the
falsification of B. A condition X is deemed to be sufficient if its occur-
rence guarantees that the effect B will occur. Necessary conditions are
the conditions without which an event cannot occur whereas sufficient
conditions are the conditions that guarantee an expected outcome.

Consider a simple example where X implies visiting a web page and
the side effects Bi of X may be the HTML file displayed on the screen,
followed by subsequent connections to retrieve images for the page, fol-
lowed by requests to retrieve the linked web pages. The action of X
may also cause the source IP address to be logged on the server, the web
page to be logged in the browser web history, the file to be cached at
the source system, and so on.

Suppose that X and Y are two events where a web page was visited
and assume that a defendant has acknowledged X and denied Y . It is
sufficient to prove that Y occurred if the forensic examiner can show that
the conditions necessary for Y to have occurred are observed and the
effects that can be attributed to the occurrence of Y are also observed.
The demonstration of these conditions establishes a web of consistency
in the evidence, which shows that the claim is backed by multiple sources
of evidence that support the findings. A finding made in an examination
without the necessary conditions of the hypothesis being met refutes the
validity of a hypothesis.

Web of Consistency. A web of consistency is established when ev-
idence from various sources are found to corroborate and, therefore,
create a convincing argument for the findings. The specification of the
necessary and sufficient conditions of a case supports the establishment
of a web of consistency. The more tightly coupled the evidence, the less
likely that there will be several plausible causes.

In the case of the example above, where the defendant denied that a
web page Y was visited, establishing a web of consistency requires that
devices such as a firewall, proxy server and/or intrusion detection system

Oyelami & Olivier 13

in the network have activity logs that validate the fact that the web
page was visited. Examining the defendant’s computing device may also
provide evidence from the browser web history, web cache, search history,
cookies and web beacons that stored information about the defendant’s
online activities. It is also possible that the defendant may have cleared
the cache and deleted web history records. The examiner may then have
to show that deletions occurred. In essence, the examiner expects to see
traces or signs of deletion in order to make justified inferences about the
case. When there are limited or no traces, justified inferences cannot be
made about the case.

Alternative Hypothesis and Explanations. As stated above, plau-
sible alternative explanations may be found that explain an occurrence.
These explanations may be eliminated or at least considered doubtful
by showing that one or more conditions necessary for the effect to be
considered attributable to the alternative cause were not found. A state-
ment by Campbell [24, 25] demonstrates the significance of alternative
rival explanations in the examination of occurrences: “More and more I
have come to the conclusion that the core of the scientific method is not
experimentation per se, but rather the strategy connoted by the phrase
‘plausible rival hypothesis’.”

The refutation of rival explanations can be used as a criterion for inter-
preting the findings of an examination. When rival alternative hypothe-
ses are refuted, the findings of an examination are strengthened. The
forensic examiner must demonstrate that a certain rival cause does not
fully address the conditions present in the case and, therefore, cannot
be an attributable cause. This provides a more convincing argument
for the findings. The greater the number of rival explanations that are
addressed and excluded, the stronger the findings of the case.

In summary, when establishing causal relationships, the specification
of the necessary and sufficient conditions, the creation of a web of con-
sistency and the examination of alternative explanations enable a foren-
sic examiner to demonstrate sufficient proof of the hypothesis and to
strengthen the findings of the examination.

5. Lottery Terminal Hacking Incident
This section illustrates the application of the case study method to

demonstrate causality in a lottery terminal hacking incident [11]. The
incident involved the manipulation of a lottery game system known as 5
Card Cash [12]. The 5 Card Cash game is based on standard poker with
a digital 52-card playing deck. A player purchases a system-generated
ticket that has five randomly-selected cards. The player can win up to

14 ADVANCES IN DIGITAL FORENSICS XIII

two times. The first win is an instant prize based on the composition
of the cards on the player’s ticket. The second win is when the lottery
organizer randomly draws five cards from a deck that evening and the
player is able to match two or more cards on the purchased ticket with
the five randomly-drawn cards.

5.1 The Case
The 5 Card Cash game was suspended after it was suspected that

lottery terminals may have been manipulated. Specifically, the game
winnings were observed to be much larger than the game parameters
should have allowed.

5.2 The Investigation
An investigation determined that some lottery ticket operators were

manipulating their terminals to print more instant winner tickets and
fewer losing tickets.

An investigator determined that an operator could slow down a lottery
terminal by requesting a number of database reports or by entering
several requests for lottery game tickets. While the reports or requests
were being processed, the operator could enter sales for 5 Card Cash
tickets. However, before a ticket was printed, the operator could see
on the screen if the ticket was an instant winner. If the ticket was not
a winner, the operator could cancel the sale of the ticket before it was
printed.

5.3 The Examination
The examination focuses on testing the inferences made by the inves-

tigator. This is done by applying the principles and techniques of the
case study method. The goal is to demonstrate how the inferences may
have been determined and the certainty with which the inferences can
be considered to be reliable.

Because the case itself does not provide much information about the
design of the 5 Card Cash game, a generic design is used to illustrate
the examination and the assumptions about the workings of the game
system. The generic game system configuration presented in Figure 3
provides the context for the examination.

The system has six components, which perform functions such as gen-
erating lottery tickets, processing payments for tickets, printing tickets
and generating reports. The output of one system component may also
be an input to another component. This implies that certain system
components must execute before another component can begin to exe-

Oyelami & Olivier 15

Figure 3. 5 Cash Card game system.

cute. For example, a ticket has to be generated before it can be displayed
or printed. Also, reports have to be generated before they can be printed.

5.4 Hypotheses Formulation
From the initial investigation described above, the questions that the

examiner may be asked can be framed as a decision problem and as a
narrative problem. The decision problem addresses the examination in
terms of the narrative and the narrative problem addresses the exami-
nation in terms of causality.

The two problems are stated as follows:

Decision Problem: Are transactions deliberately canceled after
the results are known?

Narrative Problem: What enables the cancellation of transac-
tions after the results are known?

The case study based on these two questions tests the hypothesis:

Hypothesis: The terminal was manipulated in order to display
the results in a manner that provided the operator with an un-
due advantage in determining favorable results and enabling the
cancellation of unfavorable transactions.

The expected outcome of testing the hypothesis is to confirm its claim.
In order to do this, the examination must demonstrate that unfavor-
able transactions were canceled after the results were known and that
transactions considered to be favorable were allowed to continue. The
alternative rival hypothesis is:

Rival Hypothesis: The terminal was not manipulated in any way
and the winnings are the result of legitimate transactions obtained
within the scope of the game parameters.

16 ADVANCES IN DIGITAL FORENSICS XIII

Figure 4. Cause and effect pattern (logic model).

5.5 Hypothesis Testing
Based on the game system configuration in Figure 3, a forensic ex-

aminer can express the system in terms of the cause and effect pattern
or logic model shown in Figure 4. Figure 4 models the game system in
terms of input, execution and output. An input to query the database
using Select(Report) triggers the control logic to initiate the generation
of the report; this initiates a passive effect to print the report.

Another pattern is observed in ticket generation. The selection of
the lottery game triggers the program control logic to initiate the pay-
ment module, which issues the ticket and sends it to the printer without
prompting the user. The ticket is also displayed as a passive effect.

In order to test the hypothesis that the terminal was manipulated,
the examiner has to first specify the conditions that are necessary and
sufficient to demonstrate the manipulation of the terminal. Specifying
these conditions enables the examiner to know what to test. As stated
above, necessary conditions are those without which an event cannot
occur whereas sufficient conditions are those that guarantee the expected
outcome.

The necessary conditions required to support the hypothesis that the
terminal was manipulated are:

Oyelami & Olivier 17

There were sold tickets within a short time period before the trans-
action deadline.

The terminal was busy or delayed during the time that the winning
tickets were printed.

Only unfavorable tickets during terminal busy/delay times were
canceled.

These conditions are necessary in order for the operator to have an
undue advantage in determining the results and cancelling unfavorable
transactions.

The sufficient conditions are expected to provide a definite indicator
of malicious activity. Specifically, it is sufficient to prove the hypothesis
if it can be shown that:

The activities specified under the necessary conditions occurred at
numerous times.

There is a consistent pattern with which these activities occurred.

In essence, the forensic examiner is required to demonstrate that, if
there were late ticket sales and the terminal was busy, then the ticket
sales made mostly involved winning tickets and the ticket sales canceled
mostly involved unfavorable tickets. Also, the examiner may be able
to show that this pattern occurred at numerous times in a consistent
manner. Proving the hypothesis in this way eliminates the chance of
having an alternative hypothesis that would take into consideration the
necessary and sufficient conditions highlighted in the case. A hypothesis
that cannot explain these conditions is excluded. Note that sufficient
conditions may only be found if the hypotheses made are narrowed down
to plausible explanations.

The specification of the necessary and sufficient conditions also helps
establish a web of consistency. After observing the logs of system activi-
ties, the forensic examiner may be able to conduct a time-series analysis
that displays the transactions along with their occurrence times.

Querying the log of generated tickets helps the examiner determine
whether or not tickets were sold within a specified time period before the
transaction deadline. The query provides the examiner with data that
can be further analyzed to determine if tickets were processed when the
terminal was busy or delayed. To do this, the results from querying the
sold ticket log are compared with the results from the log of reports gen-
erated. This analysis is based on the knowledge that the terminal would
be busy or delayed when the suspect tickets were generated and when

18 ADVANCES IN DIGITAL FORENSICS XIII

the reports were being processed. The analysis provides the examiner
with a smaller set of tickets that were generated when the terminal was
busy or delayed. Using this set of tickets, the examiner would expect to
discover that winning tickets were printed and unfavorable tickets were
canceled. To determine whether only unfavorable tickets during termi-
nal busy times were canceled, the set of tickets is compared with the log
of canceled transactions. This could enable the examiner to show that
a larger number of unfavorable tickets were canceled and the remaining
tickets that were not canceled were primarily winning tickets.

The examiner successfully demonstrates the correctness of the hypo-
thesis when the necessary conditions for the case have been proved. This
indicates that the terminal could have been manipulated such that the
results were known before the transactions were completed and unfavor-
able transactions were deliberately canceled.

In order to demonstrate sufficient proof of the hypothesis, the ex-
aminer may widen the scope of the analysis to other time frames for
the same terminal, demonstrating that manipulations occurred multi-
ple times and, thus, establishing a web of consistency. It may also be
sufficient to demonstrate that the unfavorable tickets sold when the ter-
minal was not busy were legitimate transactions conducted on behalf of
a lottery user by the operator.

Using replication logic, the examiner can also expand the scope of
the examination to consider multiple cases. By applying literal repli-
cation, the examiner could examine a number of suspected terminals
using the same conditions and sufficiently demonstrate that manipula-
tions occurred on the suspected terminals. This would further confirm
and strengthen the hypothesis while enabling a web of consistency to be
established.

By applying theoretical replication, the examiner can select another
set of suspected terminals and examine them to invalidate the alterna-
tive hypothesis (i.e., falsify the hypothesis that the terminals were not
manipulated). Another theoretical replication approach is to select a
number of known “clean” terminals and show that the type of manipu-
lation found on the suspected terminals could not be found on the clean
terminals.

The identification, testing and validation of the necessary and suf-
ficient conditions of a hypothesis and the application of analytic tech-
niques and strategies in the case study method strengthen a forensic
examination. In particular, demonstrating causal relationships and es-
tablishing a web of consistency ensure that the findings of the examina-
tion are consistent and reliable.

Oyelami & Olivier 19

This case study has used a logic model to illustrate the application
of an analytic technique in a forensic examination of a digital system.
Other analytic techniques, namely pattern matching, explanation build-
ing, time-series analysis and cross-case synthesis, can also be applied to
establish findings in digital forensic examinations.

6. Conclusions
This chapter has sought to demonstrate the practicality of the case

study method in digital forensic examinations. The focus has been on
applying the case study method to establish the findings of a forensic
examination. The research clarifies the relationship between digital ev-
idence – the effect – and its plausible causes, and how patterns can be
identified and applied to demonstrate the findings. By applying Yin’s
case study method, an examiner can establish the relationships that
support and validate the findings of a forensic examination.

Further research is required to demonstrate how the case study method
can be applied to strengthen the findings of a forensic examination. The
suitability and applicability of the four validity tests of Yin’s method
and the tactics applied to satisfy these tests need to be investigated
for use in a digital forensic environment. Strengthening the findings of
a forensic examination would ensure that a logical approach has been
followed and that the findings follow from the underlying hypotheses.

References

[1] M. Bunge, Philosophy of Science: From Problem to Theory, Volume
One, Transaction Publishers, New Brunswick, New Jersey, 1998.

[2] B. Carrier, A Hypothesis-Based Approach to Digital Forensic Inves-
tigations, CERIAS Technical Report 2006-06, Center for Education
and Research in Information Assurance and Security, Purdue Uni-
versity, West Lafayette, Indiana, 2006.

[3] E. Casey, Digital Evidence and Computer Crime: Forensic Sci-
ence, Computers and the Internet, Academic Press, Waltham, Mas-
sachusetts, 2011.

[4] F. Cohen, Digital Forensic Evidence Examination, ASP Press, Liv-
ermore, California, 2010.

[5] S. Garfinkel, P. Farrell, V. Roussev and G. Dinolt, Bringing sci-
ence to digital forensics with standardized forensic corpora, Digital
Investigation, vol. 6(S), pp. S2–S11, 2009.

20 ADVANCES IN DIGITAL FORENSICS XIII

[6] P. Gladyshev and A. Patel, Formalizing event time bounding in
digital investigations, International Journal of Digital Evidence, vol.
4(2), 2005.

[7] C. Grobler, C. Louwrens and S. von Solms, A multi-component view
of digital forensics, Proceedings of the IEEE International Confer-
ence on Availability, Reliability and Security, pp. 647–652, 2010.

[8] L. Haber and R. Haber, Scientific validation of fingerprint evidence
under Daubert, Law, Probability and Risk, vol. 7(2), pp. 87–109,
2008.

[9] K. Inman and N. Rudin, Principles and Practice of Criminalis-
tics: The Profession of Forensic Science, CRC Press, Boca Raton,
Florida, 2000.

[10] M. Kwan, K. Chow, F. Law and P. Lai, Reasoning about evidence
using Bayesian networks, in Advances in Digital Forensics IV, I. Ray
and S. Shenoi (Eds.), Springer, Heidelberg, Germany, pp. 275–289,
2008.

[11] Lottery Post, Six now face charges in CT lottery scheme (www.
lotterypost.com/news/301512), March 23, 2016.

[12] Maryland Lottery, What is 5 card cash? Baltimore, Maryland (www.
mdlottery.com/games/5-card-cash), 2017.

[13] National Institute of Justice and National Research Council,
Strengthening Forensic Science in the United States: A Path For-
ward, National Academies Press, Washington, DC, 2009.

[14] M. Olivier, On complex crimes and digital forensics, in Informa-
tion Security in Diverse Computing Environments, A. Kayem and
C. Meinel (Eds.), IGI Global, Hershey, Pennsylvania, pp. 230–244,
2013.

[15] M. Olivier, Combining fundamentals, traditions, practice and sci-
ence in a digital forensics course, presented at the South African
Computer Lecturers’ Association Conference, 2014.

[16] M. Olivier, Towards a digital forensic science, Proceedings of the
Information Security for South Africa Conference, 2015.

[17] M. Olivier and S. Gruner, On the scientific maturity of digital foren-
sics research, in Advances in Digital Forensics IX, G. Peterson and
S. Shenoi (Eds.), Springer, Heidelberg, Germany, pp. 33–49, 2013.

[18] O. Oyelami and M. Olivier, Using Yin’s approach to case studies
as a paradigm for conducting examinations, in Advances in Digital
Forensics XI, G. Peterson and S. Shenoi (Eds.), Springer, Heidel-
berg, Germany, pp. 45–59, 2015.

Oyelami & Olivier 21

[19] J. Pearl, Causality: Models, Reasoning and Inference, Cambridge
University Press, Cambridge, United Kingdom, 2009.

[20] M. Pollitt, Digital forensics as a surreal narrative, in Advances in
Digital Forensics V, G. Peterson and S. Shenoi (Eds.), Springer,
Heidelberg, Germany, pp. 3–15, 2009.

[21] M. Pollitt, History, historiography and the hermeneutics of the hard
drive, in Advances in Digital Forensics IX, G. Peterson and S.
Shenoi (Eds.), Springer, Heidelberg, Germany, pp. 3–17, 2013.

[22] S. Tewelde, M. Olivier and S. Gruner, Notions of hypothesis in
digital forensics, in Advances in Digital Forensics XI, G. Peterson
and S. Shenoi (Eds.), Springer, Heidelberg, Germany, pp. 29–43,
2015.

[23] S. Willassen, Hypothesis-based investigation of digital timestamps,
in Advances in Digital Forensics IV, I. Ray and S. Shenoi (Eds.),
Springer, Boston, Massachusetts, pp. 75–86, 2008.

[24] R. Yin, Applications of Case Study Research, Sage Publications,
Thousand Oaks, California, 2012.

[25] R. Yin, Case Study Research: Design and Methods, Sage Publica-
tions, Thousand Oaks, California, 2013.

[26] T. Young, Forensic Science and the Scientific Method, Heart-
land Forensic Pathology, Kansas City, Missouri (www.heartla
ndforensic.com/writing/forensic-science-and-the-scienti
fic-method), 2007.

Chapter 2

A MODEL FOR DIGITAL EVIDENCE
ADMISSIBILITY ASSESSMENT

Albert Antwi-Boasiako and Hein Venter

Abstract Digital evidence is increasingly important in legal proceedings as a re-
sult of advances in the information and communications technology
sector. Because of the transnational nature of computer crimes and
computer-facilitated crimes, the digital forensic process and digital evi-
dence handling must be standardized to ensure that the digital evidence
produced is admissible in legal proceedings. The different positions of
law on matters of evidence in different jurisdictions further complicates
the transnational admissibility of digital evidence. A harmonized frame-
work for assessing digital evidence admissibility is required to provide
a scientific basis for digital evidence to be admissible and to ensure the
cross-jurisdictional acceptance and usability of digital evidence. This
chapter describes a harmonized framework that integrates the technical
and legal requirements for digital evidence admissibility. The proposed
framework, which provides a coherent techno-legal foundation for assess-
ing digital evidence admissibility, is expected to contribute to ongoing
developments in digital forensics standards.

Keywords: Digital evidence, admissibility assessment framework

1. Introduction
Despite the significance of digital evidence in legal proceedings, digital

forensics as a forensic science is still undergoing transformation. The
rapidly advancing information and communications technology sector
and the evolution of cyber crimes and legal responses underpin these
developments. Digital evidence admissibility is a key issue that arises
from the application of digital forensics in jurisprudence. However, a
reproducible and standardized framework that provides a foundation
for the admissibility of digital evidence in legal proceedings has not been
addressed holistically in the literature on digital forensics harmonization

© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
G. Peterson and S. Shenoi (Eds.): Advances in Digital Forensics XIII, IFIP AICT 511, pp. 23–38, 2017.
DOI: 10.1007/978-3-319-67208-3_2

23

24 ADVANCES IN DIGITAL FORENSICS XIII

and standardization. This research addresses the gap by proposing a
harmonized model that integrates technical and legal requirements to
determine the admissibility of digital evidence in legal proceedings.

2. Background
This section discusses digital forensics, digital evidence and previous

research on digital forensics harmonization and standardization.

2.1 Digital Forensics and Digital Evidence
Digital forensics refers to the methodical recovery, storage, analysis

and presentation of digital information [7]. Digital evidence is sim-
ply a product of a digital forensic process [11]. According to ISO/IEC
27037 [8], digital evidence is information or data stored or transmitted
in binary form that may be relied upon as evidence. Digital evidence
has become important because of the involvement of electronic devices
and systems in criminal activities. A review of the literature and court
documents suggests that digital evidence is generally admissible in many
jurisdictions [14].

Digital forensics as a scientific discipline is rooted on classic foren-
sic principles. It is underpinned by Locard’s exchange principle, which
states that contacts between two persons, items or objects will result in
an exchange [4]. Thus, traces are left after interactions between persons,
items or objects.

An example can establish the relationship between the exchange prin-
ciple and digital forensics. In order for a laptop to be connected to a pro-
tected wireless network, the laptop must make its media access control
(MAC) address available to the wireless network administrator (router)
before receiving access. An exchange occurs between the two devices
and traces are left after the connection is established (the router has
logs of the wireless access and the laptop has artifacts pertaining to the
access).

Computer users leave digital traces called digital footprints. Digital
forensic examiners can identify computer crime suspects by collecting
and analyzing these digital footprints.

The application of digital forensics in legal proceedings is significant.
Digital forensics is applied in pure cyber crime cases and incidents as well
as in cyber-facilitated incidents. This is because it is nearly impossible
in today’s information-technology-driven society to encounter a crime
that does not have a digital dimension. Pure cyber crimes are those
that can only be committed using computers, networks or other infor-
mation technology devices or infrastructures; examples include hacking

Antwi-Boasiako & Venter 25

and denial-of-service (DoS) attacks. Cyber-facilitated crimes, on the
other hand, are conventional crimes that are perpetrated using comput-
ers, networks or other information technology devices or infrastructures;
examples include murder, human trafficking, narcotics smuggling and
sales, and economic crimes such as financial fraud.

Digital evidence is highly volatile. Unlike other traditional types of
evidence, digital evidence can be altered rapidly through computing-
related activities [18]. A few mouse clicks on a file could alter its meta-
data, which is a key determinant of evidence admissibility. When a user
clicks on a file, he may not necessarily intend to alter the file meta-
data. However, doing so potentially alters metadata such as the last
accessed time, which may render the file inadmissible as evidence. In or-
der to ensure that evidence is admissible, the court must be satisfied that
the evidence conforms to established legal rules – the evidence must be
scientifically relevant, authentic, reliable and must have been obtained
legally [13].

The fragility of digital evidence also presents challenges [1]. The
rapidly-changing nature of technology, the fragility of the media on which
electronic data is stored and the intangible nature of electronic data all
render digital evidence potentially vulnerable to claims of errors, acci-
dental alteration, prejudicial interference and fabrication. These tech-
nical issues combined with legal missteps or difficulties could affect the
admissibility of digital evidence. Even when digital evidence is admitted,
these factors could impact the weight of the evidence in question. Sev-
eral efforts have focused on harmonizing digital forensic processes and
activities in order to address the technical and legal issues regarding the
admissibility of digital evidence.

2.2 Harmonization and Standardization
According to Leigland and Krings [12], digital forensic processes and

techniques are generally fragmented. Approaches for gathering digital
evidence were initially developed in an ad hoc manner by investigators,
primarily within law enforcement. Personal experience in digital inves-
tigations and expertise gained over time have led to the development of
ad hoc digital investigation models and guidelines [12].

Several researchers and practitioners have attempted to develop har-
monized digital forensic frameworks. The first attempt at the Digi-
tal Forensics Research Workshop (DFRWS) in 2001 produced a digital
forensic process model that consists of seven phases [16]: (i) identifi-
cation; (ii) preservation; (iii) collection; (iv) examination; (v) analysis;
(vi) presentation; and (vii) design. Reith et al. [17] have proposed an ab-

26 ADVANCES IN DIGITAL FORENSICS XIII

stract model of digital forensics. The Association of Chief Police Officers
Good Practice Guide [2] and the U.S. Department of Justice Electronic
Crime Scene Investigation Guide [21] are examples of efforts undertaken
by law enforcement to harmonize digital forensics and provide common
approaches for conducting digital forensic investigations. Valjarevic and
Venter [23] have proposed a harmonized digital forensic model that at-
tempts to resolve the fragmentation associated with digital forensic pro-
cesses. The Scientific Working Group on Digital Evidence (SWGDE) [20]
has published guidelines that cover specific incident investigations.

The standardization of digital forensics achieved major milestones
when the International Organization for Standardization (ISO) pub-
lished the ISO/IEC 27027 Standard – Guidelines for Identification, Col-
lection, Acquisition and Preservation of Digital Evidence in 2012 [8] and
the ISO/IEC 27043 Standard – Incident Investigation Principles and
Processes in 2015 [10]. The two ISO/IEC standards provide guidelines
for various incident investigations.

Despite the significant developments in digital forensics standardiza-
tion, analysis suggests that current standards do not adequately address
the issue of digital evidence admissibility. While it is essential to fol-
low scientific investigative processes in conducting digital investigations,
the admissibility of digital evidence is also impacted by other factors.
Current standards are very applicable to digital forensic investigations,
but they do not provide a basis for assessing the admissibility of digital
evidence.

A review of the literature and court cases suggests that technical
and legal requirements are considered when admitting digital evidence
in legal proceedings [13]. However, the problem with digital evidence
admissibility in the context of legal proceedings persists despite the for-
mulation of standards for digital forensic processes. The question about
which reproducible standardized criteria or benchmarks underpin digital
evidence admissibility has not been answered by any of the existing digi-
tal forensic models. Therefore, it is imperative to develop a standardized
model that harmonizes the technical and legal requirements in providing
a foundation for digital evidence admissibility in legal proceedings.

3. Requirements for Assessing Admissibility
This section discusses the need for harmonizing the technical and legal

requirements in order to determine the admissibility of digital evidence.
It also specifies the technical and legal requirements that underpin the
admissibility of digital evidence in legal proceedings.

Antwi-Boasiako & Venter 27

�� �����
��	
������� ��� ���������

�� ����
��	
������� ��� ���������

����� �� �
�����
��	
������� ��� ���������

�� ��������������
��	
������� ��� ���������

��������� ��������� ������������
��	
������� ��� ���������

�� ������ ������
��	
������� ��� ���������

�� ������
��	
������� ��� ���������

�� !�"�������
��	
������� ��� ���������

#
$
%
&
#
'
$
(
)
*'
$
+
$
,
-
.
&
,
/
&
.
.
$
.
.
+
$
,
-

-
$
0
1
,
* 0
&
#
'
$
(
)
*'
$
+
$
,
-
.
&
,
/
&
.
.
$
.
.
+
$
,
-

1
&
'
+
2
,
* 3
$
/
'
$
(
)
*'
$
+
$
,
-
.
4
2
'

&
/
+
*.
.
* 5
*#
*-
6
2
4
/
*%
*-
&
#
$
7
*/
$
,
0
$!���� �
�����8�����

��	
������� ��� ���������

������� �9������ ����9����
��	
������� ��� ���������

������� �9������ �
����������
��	
������� ��� ���������

������� �9������ ���������
��	
������� ��� ���������

������� �9������ �����"�����
��	
������� ��� ���������

Figure 1. Technical and legal requirements for assessing admissibility.

3.1 Harmonization of Requirements
Analysis of the literature suggests that frameworks and standards per-

taining to digital forensics do not address the question of digital evidence
admissibility from a holistic perspective. In particular, the frameworks
and standards specify technical processes and guidelines for incident in-
vestigators to follow when collecting digital evidence, but they fail to
clarify the factors that underpin digital evidence admissibility.

Analysis of evidence admissibility in legal proceedings suggests the
presence of technical and legal requirements that impact each other. In
most jurisdictions, a legal authorization or search warrant (which is a
legal requirement) is required before any digital device can be seized
for a digital forensic examination (which is a technical requirement).
Likewise, the manner in which digital evidence is retrieved during a
digital forensic analysis (technical requirement) impacts the reliability
of the evidence (legal requirement).

The harmonization of technical and legal requirements creates the
foundation for determining the admissibility of digital evidence. Figure 1

28 ADVANCES IN DIGITAL FORENSICS XIII

presents the key technical and legal requirements that underpin digital
evidence admissibility. These requirements are discussed in detail in the
following sections.

3.2 Technical Requirements and Assessment
This section discusses the technical requirements assessed during le-

gal proceedings in order to provide the foundation for digital evidence
admissibility. The requirements are derived from standards, academic
research, legal precedents and expert opinion, among other sources. The
requirements have a bearing on digital evidence admissibility as well as
on the determination of the weight of a particular piece of evidence.

Digital Forensic Models: Various approaches are adopted by
digital forensic investigators to obtain digital evidence. Each foren-
sic approach or procedure is influenced by the nature of the inci-
dent, type of digital evidence, typology of the target digital device
and electronic environment. For example, a procedure for extract-
ing digital evidence from a mobile device is different from a proce-
dure for extracting digital evidence from a hard drive. As a result,
when a court assesses the admissibility of evidence, it must con-
sider the specific forensic procedures that were used to retrieve and
process the evidence in question. Digital forensic models embody
a number of guidelines to ensure that appropriate digital foren-
sic procedures are followed when conducting investigations. Key
guidelines for digital forensic processes and procedures have been
proposed by the Association of Chief Police Officers in the United
Kingdom [2], Scientific Working Group on Digital Evidence in the
United States [20] and International Organization for Standard-
ization via the ISO/IEC 27043 Standard [10].

Digital Forensic Tools: Digital forensic practitioners have access
to a number of open source and proprietary tools to assist in the
collection, analysis and preservation of digital evidence. Although
no explicit rules govern the use of digital forensic tools, there is
generally a consensus in the scientific community that forensic
tools should have been tested, validated and their error rates docu-
mented. The Daubert case in the United States [22] highlights the
importance of digital forensic tool validation as a criterion for de-
termining digital evidence admissibility. Organizations such as the
National Institute of Standards and Technology (NIST), Scientific
Working Group on Digital Evidence and International Organiza-
tion for Standardization have developed frameworks and methods
for testing digital forensic tools (see, e.g., ISO/IEC 27041 [9]).

Antwi-Boasiako & Venter 29

Chain of Custody: Chain of custody seeks to preserve the in-
tegrity of digital evidence. A document sponsored by the U.S.
National Institute of Justice [15] defines chain of custody as a pro-
cess used to maintain and document the sequential history of evi-
dence. Chain of custody cuts across all the steps of an investigative
process, but it is especially important during the digital evidence
seizure stage. According to the Association of Chief Police Offi-
cers Good Practice Guide [2], an independent third party should
be able to track the movement of evidence right from the crime
scene all the way through the investigation chain to the courtroom.
Giova [6] argues that digital evidence should be accepted as valid
in court only if its chain of custody can be established.

Digital Forensic Analysts and Experts: The qualifications
of a digital forensic examiner are also an important requirement
and assessment criterion related to digital evidence admissibility.
Analysis suggests that digital forensics as a forensic science is a
multidimensional discipline that encompasses computing (infor-
mation technology), investigations and the law. A digital forensic
examiner is expected to demonstrate his/her competence in dig-
ital forensics in order to handle digital evidence. Although no
transnational competency standards have been created to validate
the competence of digital forensic examiners, education and train-
ing, certifications and hands-on experience are generally consid-
ered to determine the suitability of an individual to handle digital
evidence.

Digital Forensic Laboratories: A well-organized digital foren-
sic laboratory with standard operating procedures (SOPs) and
quality assurance systems positively impacts investigative processes
and, consequently, the quality of the produced evidence. The Asso-
ciation of Chief Police Officers Good Practice Guide [2] lists specific
guidelines for setting up and operating digital forensics laborato-
ries. For example, a failure to adopt relevant laboratory standard
operating procedures could alter the original state of data stored
on a mobile device. The use of a poor laboratory facility or inap-
propriate storage procedures could result in digital evidence being
ruled inadmissible in legal proceedings [24].

Technical Integrity Verification: Maintaining and verifying
the integrity of digital evidence items are important technical con-
siderations that could significantly impact their admissibility. Dig-
ital data is altered, modified or copied from one environment to

30 ADVANCES IN DIGITAL FORENSICS XIII

another either through human actions or uncontrolled computing
activities [18]. Forensic examiners adopt various methods for main-
taining and demonstrating the integrity of digital evidence. The
use of a write blocker, for example, is a standard digital forensic
requirement to maintain the integrity of evidence. Digital signa-
tures, encryption and hash algorithms are also employed to main-
tain, validate and demonstrate the integrity of digital evidence.

Digital Forensic Expert Witnesses: Individuals with relevant
expertise, knowledge and skills are often called upon to serve as ex-
pert witnesses in legal proceedings [19]. According the U.S. Federal
Rules of Evidence, an expert witness must be qualified on the ba-
sis of knowledge, expertise, experience, education and/or training.
The scientific, technical and other specialized knowledge possessed
by an expert witness enables the individual to testify to the facts
in question [19].

Digital Forensic Reports: The report produced by a digital
forensic investigation is an important technical consideration that
underpins digital evidence admissibility. Garrie and Morrissy [5]
maintain that a digital forensic report must have conclusions that
are reproducible by independent third parties. They also argue
that conclusions that are not reproducible should be given little
credence in legal proceedings. In Republic vs. Alexander Twene-
boah (Ghana Suit No. TB 15/13/15 of 2016), the high court judge
in the financial court division ruled against a report submitted
by an expert witness from the e-Crime Bureau because the judge
deemed that the report did not fully represent the digital evidence
contained on an accompanying CD.

3.3 Legal Requirements and Assessment
Most jurisdictions have legal requirements that provide the grounds

for admissibility of digital evidence in legal proceedings. This section
discusses the legal issues pertaining to the admissibility of digital evi-
dence as listed in Figure 1.

Legal Authorization: Assessing digital evidence often requires
legal authorization. Human rights, data protection and privacy im-
pacts on accused parties and victims must be respected. Although
there may be exceptions, the law generally provides safeguards for
protecting the rights of individuals. Obtaining a legal authoriza-
tion grants judicial legitimacy to the evidence in question; indeed,
this may be the most important step in obtaining and handling

Antwi-Boasiako & Venter 31

digital evidence. Search warrants are normally required to seize
electronic devices and digital evidence. Failure to obtain a legal
authorization may undermine the best evidence rule and jeopar-
dize the case [13]. Admitting evidence that is not supported by
legal authorizations could result in prosecutors and law enforce-
ment (i.e., the state) trampling on civil liberties [9].

Digital Evidence Relevance: Relevance is an important deter-
minant of digital evidence admissibility. According to Mason [14],
in order for evidence to be admissible, it must be “sufficiently rel-
evant” to the facts at issue. Evidence cannot be admissible if it
is not deemed to be relevant [12]. For a piece of evidence to be
deemed relevant in legal proceedings, it must tend to prove or dis-
prove a fact in the proceedings [3]. Evidence that has probative
value must prove the fact in question to be more (or less) probable
than it would be without the evidence.

Digital Evidence Authenticity: Authenticity is another impor-
tant criterion that impacts the reliability of evidence. According
to Mason [14], for digital evidence to be admitted in a court of law,
there must be adduced evidence that the evidence in question is
indeed what it is purported to be. For example, for a digital record
to be admissible, the court would have to be convinced that the
record was indeed generated by the individual who is purported to
have authored the record. The American Express Travel Related
Services Company Inc. vs. Vee Vinhnee case [14] highlights the im-
portance of the authenticity requirement. In this case, the judge
felt that American Express failed to authenticate certain digital
records and proceeded to rule against American Express on the
basis of its failure to authenticate the records. American Express
subsequently appealed, but the appeals court affirmed the lower
court decision.

Digital Evidence Integrity: Integrity refers to the “wholeness
and soundness” of digital evidence [14]. Integrity also implies that
the evidence is complete and unaltered. An assessment of evidence
integrity is a primary requirement for digital evidence admissibility
and serves as the basis for determining the weight of evidence. Ma-
son [14] contends that digital evidence integrity is not an absolute
condition but a state of relationships. In assessing the integrity
of digital evidence, courts, therefore, consider several factors and
relationships – primarily the technical requirements discussed in
the previous section. Courts require the integrity of evidence to be

32 ADVANCES IN DIGITAL FORENSICS XIII

established and guaranteed during investigations and the evidence
to be preserved from modifications during its entire lifecycle [13].
In the Republic of South Africa, the originality of digital evidence
depends on its integrity as outlined in Section 14(2) of the Elec-
tronic Communications and Transactions Act of 2002.

Digital Evidence Reliability: In order for evidence to be ad-
missible in court, the proferrer of the evidence must establish that
no aspect of the evidence is suspect. Leroux [13] states that, for
evidence to be deemed reliable, “there must be nothing that casts
doubt about how the evidence was collected and subsequently han-
dled.” The Daubert case [22] provides the basis for assessing the
reliability of scientific evidence in the United States. In particular,
this celebrated case specifies five criteria for evaluating the relia-
bility (and by extension, the admissibility) of digital evidence: (i)
whether the technique has been tested; (ii) whether the technique
has undergone peer review; (iii) whether there is a known error
rate associated with the technique; (iv) whether standards con-
trolling its operations exist and were maintained; and (v) whether
the technique is generally accepted by the scientific community.

The integration of the technical and legal requirements discussed above
provides the foundation of a harmonized framework for assessing digital
evidence admissibility. It must be emphasized that cross examination in
legal proceedings is an important element that impacts the assessment
of the technical and legal requirements. The next section explores the
relationships between the requirements and the considerations involved
in determining digital evidence admissibility.

4. Model for Assessing Evidence Admissibility
This section discusses the proposed harmonized model for digital ev-

idence admissibility assessment and its application in legal proceedings.
A harmonized conceptual model was developed in order to integrate the
requirements discussed above. The conceptual model shown in Figure 2
provides a framework for establishing the dependencies and relationships
between the various requirements and assessment considerations.

The conceptual model encapsulates three levels of harmonization,
called phases, which are integrated in the proposed harmonized model
for digital evidence admissibility assessment. The three phases are inte-
grated but differ from each other in terms of their functional relevance to
digital evidence admissibility assessment. Figure 3 presents the proposed
harmonized model for digital evidence admissibility assessment.

Antwi-Boasiako & Venter 33

������� ���	
��

��
���
�� ����

������� ���	
��

�����	
������ ����

������� ���	
��

�
�
��������� ����

����
 �

����
 �

����
 �

Figure 2. Digital evidence admissibility assessment model schema.

4.1 Phase 1: Evidence Assessment Phase
The digital evidence assessment phase establishes the legal foundation

of the digital evidence in question. For example, when digital evidence
residing on a hard drive belonging to a suspect is presented in court,
the first consideration of the court is to determine the legal basis for
the seizure of the hard drive. Essentially, the legal authority of the
prosecution to seize the device has to be firmly established. In most ju-
risdictions, a court order may satisfy this requirement. Organizational
policies and protocols may also provide the basis for the legal author-
ity. Therefore, Phase 1 addresses the preliminary questions related to
the legal admissibility of digital evidence. Generally, digital evidence is
deemed inadmissible if it fails to meet the requirements imposed in this
important phase. Indeed, Phase 1 also provides the grounds for further
consideration of the digital evidence in question.

4.2 Phase 2: Evidence Consideration Phase
This phase focuses on the technical standards and requirements that

underpin digital evidence admissibility. Technical considerations associ-
ated with the handling and processing of digital evidence are considered
after the legal basis of the evidence has been established. This phase is
subdivided into three categories:

Pre-Requisite Requirements: These requirements must be con-
sidered before any core technical activities are conducted. The
requirements include digital forensic model, tool, analyst/expert
and laboratory requirements and assessments.

34 ADVANCES IN DIGITAL FORENSICS XIII

Figure 3. Harmonized model for digital evidence admissibility assessment.

Core Requirements: These principal technical requirements sig-
nificantly impact the determination of the admissibility of digital
evidence. The requirements comprise chain of custody and tech-
nical integrity verification requirements and assessments.

Post-Requisite Requirements: These requirements further ela-
borate or explain the requirements in the two previous categories.
The requirements comprise digital forensic expert witness and re-
port requirements and assessments.

Phase 2 focuses on the technical requirements and considerations of
digital evidence. The phase is very important because judicial conclu-
sions (Phase 3) are based primarily on the assessment outcomes of the
technical requirements.

Antwi-Boasiako & Venter 35

4.3 Phase 3: Evidence Determination Phase
This phase underpins court decisions in determining the admissibil-

ity and weight of digital evidence. The determinations of the Phase 3
requirements are based on the assessment outcomes of the Phase 2 re-
quirements (technical requirements). The determination of the weight of
a piece of digital evidence is based on the results of the various technical
considerations; each technical criterion has a specific impact (impact fac-
tor) on the evidence. For example, although the lack of a digital forensic
laboratory may impact a case involving digital evidence, the failure to
document and track the chain of custody of a piece of digital evidence
could have a wider impact on the evidence than the lack of a laboratory
facility.

5. Application in Legal Proceedings
The harmonized model provides a holistic techno-legal foundation for

assessing digital evidence admissibility in legal proceedings. The model
integrates the key technical requirements associated with digital foren-
sics and the legal principles that underpin evidence admissibility across
different jurisdictions. As a result, the harmonized model helps address
the issue of digital evidence admissibility from a trans-jurisdictional per-
spective with particular emphasis on the cross-border handling of digital
evidence. By incorporating best practices for digital evidence assessment
and exchange across different jurisdictions, the harmonized model also
contributes to digital forensics standardization efforts.

In summary, the proposed harmonized model for digital evidence ad-
missibility assessment is designed to provide a techno-legal foundation
for: (i) determining if digital evidence is admissible; and (ii) determining
the weight of digital evidence that has already been admitted subject to
further research.

6. Conclusions
Developments in computer science and information technology are ex-

pected to significantly impact the technical and legal requirements that
provide the foundation for the admissibility of digital evidence. The
proposed harmonized model for digital evidence admissibility assessment
has been created to ensure that future technological developments in the
fields are integrated into the digital forensic process. As such, the pro-
posed model contributes to ongoing efforts in digital forensics standard-
ization being undertaken by academia, industry and law enforcement.

36 ADVANCES IN DIGITAL FORENSICS XIII

The problem of admissibility of digital evidence is the central theme
of this research. The novelty lies in the introduction of a reproducible,
trans-jurisdictional and standardized model that underpins the admis-
sibility of digital evidence in legal proceedings. Key technical and legal
requirements are identified and integrated within the framework for as-
sessing digital evidence admissibility.

Different technical requirements have different impacts on the deter-
mination of evidentiary weight. Future research will investigate the
impact level of each requirement in the harmonized model on the de-
termination of the weight of a piece of evidence. In addition, future
research will evaluate practical applications of the harmonized model in
legal proceedings, with the goal of creating an expert system that would
provide advice, guidance and assessments of the admissibility and weight
of digital evidence.

References

[1] J. Ami-Narh and P. Williams, Digital forensics and the legal system:
A dilemma of our time, Proceedings of the Sixth Australian Digital
Forensics Conference, 2008.

[2] Association of Chief Police Officers, Good Practice Guide for
Computer-Based Evidence, London, United Kingdom, 2008.

[3] S. Brobbey, Essentials of the Ghana Law of Evidence, Datro Pub-
lications, Accra, Ghana, 2014.

[4] E. Casey, Digital Evidence and Computer Crime: Forensic Sci-
ence, Computers and the Internet, Academic Press, Waltham, Mas-
sachusetts, 2011.

[5] D. Garrie and J. Morrissy, Digital forensic evidence in the court-
room: Understanding content and quality, Northwestern Journal of
Technology and Intellectual Property, vol. 12(2), article no. 5, 2014.

[6] G. Giova, Improving chain of custody in forensic investigations of
electronic digital systems, International Journal of Computer Sci-
ence and Network Security, vol. 11(1), 2011.

[7] M. Grobler, Digital forensic standards: International progress,
Proceedings of the South African Information Security Multi-
Conference, pp. 261–271, 2010.

[8] International Organization of Standardization, Information Tech-
nology – Security Techniques – Guidelines for Identification, Col-
lection, Acquisition and Preservation of Digital Evidence, ISO/IEC
27037:2012 Standard, Geneva, Switzerland, 2012.

Antwi-Boasiako & Venter 37

[9] International Organization of Standardization, Information Tech-
nology – Security Techniques – Guidance on Assuring Suitabil-
ity and Adequacy of Incident Investigative Methods, ISO/IEC
27041:2015 Standard, Geneva, Switzerland, 2015.

[10] International Organization of Standardization, Information Tech-
nology – Security Techniques – Incident Investigation Principles
and Processes, ISO/IEC 27043:2015 Standard, Geneva, Switzer-
land, 2015.

[11] G. Kessler, Judges’ awareness, understanding and application of
digital evidence, Journal of Digital Forensics, Security and Law,
vol. 6(1), pp. 55–72, 2011.

[12] R. Leigland and A. Krings, A formalization of digital forensics, In-
ternational Journal of Digital Evidence, vol. 3(2), 2004.

[13] O. Leroux, Legal admissibility of electronic evidence, International
Review of Law, Computers and Technology, vol. 18(2), pp. 193–222,
2004.

[14] S. Mason, Electronic Evidence, Butterworths Law, London, United
Kingdom, 2012.

[15] National Forensic Science Technology Center, Crime Scene Investi-
gation: A Guide for Law Enforcement, Largo, Florida, 2013.

[16] G. Palmer, A Road Map for Digital Forensic Research, DFRWS
Technical Report, DTR-T001-01 Final, Air Force Research Labora-
tory, Rome, New York, 2001.

[17] M. Reith, C. Carr and G. Gunsch, An examination of digital forensic
models, International Journal of Digital Evidence, vol. 1(3), 2002.

[18] E. Roffeh, Practical Digital Evidence: Law and Technology, Part I,
CreateSpace Independent Publishing Platform, Seattle, Washing-
ton, 2015.

[19] S. Schroeder, How to be a digital forensic expert witness, Pro-
ceedings of the First International Conference on Systematic Ap-
proaches to Digital Forensic Engineering, pp. 69–85, 2005.

[20] Scientific Working Group on Digital Evidence, SWGDE Best
Practices for Computer Forensics, Version 3.1 (www.swgde.org/
documents/Current%20Documents/SWGDE%20Best%20Practices%
20for%20Computer%20Forensics), 2014.

[21] Technical Working Group for Electronic Crime Scene Investigation,
Electronic Crime Scene Investigation: A Guide for First Responders,
National Institute of Justice, Washington, DC, 2001.

[22] U.S. Supreme Court, Daubert v. Merrell Dow Pharmaceuticals Inc.,
United States Reports, vol. 509, pp. 579–601, 1983.

38 ADVANCES IN DIGITAL FORENSICS XIII

[23] A. Valjarevic and H. Venter, Harmonized digital forensic process
model, Proceedings of the Information Security for South Africa
Conference, 2012.

[24] C. Vecchio-Flaim, Developing a Computer Forensics Team, InfoSec
Reading Room, SANS Institute, Bethesda, Maryland, 2001.

II

MOBILE AND EMBEDDED
DEVICE FORENSICS

Chapter 3

EVALUATING THE AUTHENTICITY
OF SMARTPHONE EVIDENCE

Heloise Pieterse, Martin Olivier and Renier van Heerden

Abstract The widespread use and rich functionality of smartphones have made
them valuable sources of digital evidence. Malicious individuals are
becoming aware of the importance of digital evidence found on smart-
phones and may be interested in deploying anti-forensic techniques to
alter evidence and thwart investigations. It is, therefore, important to
establish the authenticity of smartphone evidence.

This chapter focuses on digital evidence found on smartphones that
has been created by smartphone applications and the techniques that
can be used to establish the authenticity of the evidence. In order to
establish the authenticity of the evidence, a better understanding of the
normal or expected behavior of smartphone applications is required.
This chapter introduces a new reference architecture for smartphone
applications that models the components and the expected behavior of
applications. Seven theories of normality are derived from the refer-
ence architecture that enable digital forensic professionals to evaluate
the authenticity of smartphone evidence. An experiment conducted to
examine the validity of the theories of normality indicates that the theo-
ries can assist forensic professionals in identifying authentic smartphone
evidence.

Keywords: Smartphone forensics, evidence, authenticity, reference architecture

1. Introduction
The 21st century has witnessed the emergence and continuous evolu-

tion of smartphones. Smartphones are compact devices that combine
traditional mobile phone features with personal computer functional-
ity [22]. The popularity of smartphones is the result of ever increas-
ing functionality provided by the hardware, operating systems such as
Google Android and Apple iOS, and their associated applications [28].

© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
G. Peterson and S. Shenoi (Eds.): Advances in Digital Forensics XIII, IFIP AICT 511, pp. 41–61, 2017.
DOI: 10.1007/978-3-319-67208-3_3

41

42 ADVANCES IN DIGITAL FORENSICS XIII

The ubiquitous use of smartphones in daily activities has rendered these
devices rich sources of digital evidence. This digital evidence is im-
portant when smartphones are linked to criminal, civil, accident and
corporate investigations.

Digital evidence stored on smartphones, referred to as smartphone
evidence, includes information of probative value that is generated by
an application or transferred to the smartphone by the user. Malicious
individuals are becoming increasingly aware of the importance of smart-
phone evidence and may attempt to manipulate, fabricate or alter the
evidence [15]. In particular, they would attempt to apply anti-forensic
techniques and tools to compromise the evidence [11]. Anti-forensics can
be described as “attempts to compromise the availability or usefulness
of evidence to the forensic process” [16]. It is, therefore important for
digital forensic professionals to mitigate anti-forensic actions and to es-
tablish the authenticity of smartphone evidence. Authenticity refers to
the preservation of evidence from the time it was first generated and the
ability to prove that the integrity of the evidence has been maintained
over the entire period of time [5, 6, 24]. Authentic smartphone evidence
is, thus, evidence that originates as a result of the normal behavior of a
smartphone application or user.

Smartphone evidence primarily resides in three components: (i) sub-
scriber identity module (SIM) card; (ii) internal storage; and (iii) port-
able storage such as a micro SD card [1, 7]. While all these compo-
nents contain valuable evidence, this work focuses on application-related
smartphone evidence that is stored directly on a smartphone. Estab-
lishing the authenticity of smartphone evidence requires a better un-
derstanding of the applications that create the evidence. Developing a
better understanding of smartphone applications can be achieved by de-
signing a reference architecture that captures the common architectural
elements and their expected behavior [8].

This chapter introduces a new reference architecture for smartphone
applications that models the components as well as the normal or ex-
pected behavior of smartphone applications. The reference architecture
is designed to enable digital forensic professionals to easily comprehend
smartphone applications and to understand how the associated evidence
originates. The architecture is used to derive theories of normality for
smartphone applications. The theories of normality capture the nor-
mal or expected behavior of smartphone applications and assist digital
forensic professionals in identifying authentic smartphone evidence and
helping eliminate unreliable evidence from being considered in arriving
at the final conclusions.

Pieterse, Olivier & van Heerden 43

2. Related Research
Evidence on a smartphone can provide a digital forensic professional

with valuable insights about the interactions that took place involving
the smartphone. Smartphone evidence is, however, vulnerable to change
and can be altered, manipulated or fabricated either maliciously or by
accident without leaving obvious signs [5, 15]. A digital forensic profes-
sional must, therefore, establish the authenticity of smartphone evidence
before arriving at the final conclusions.

Many software applications have safeguards, such as audit logs and
integrity checks, to ensure that the data is valid and has not been tam-
pered with [30]. Such safeguards could assist forensic professionals in
establishing the authenticity of smartphone evidence. However, smart-
phone applications generally do not have audit logs or similar safeguards.
Meanwhile, commercial tools, such as the Cellebrite Universal Forensic
Device (UFED) and FTK Mobile Phone Examiner, provide limited sup-
port in establishing authenticity [31]. Therefore, new techniques and
tools are required to determine the authenticity of smartphone evidence.

Pieterse et al. [26] have introduced an authenticity framework for An-
droid timestamps that enables digital forensic professionals to establish
the authenticity of timestamps found on Android smartphones. The
framework determines the authenticity of timestamps found in SQLite
databases using two methods. The first method explores the Android
filesystem (EXT4) for artifacts that indicate potential manipulations of
the SQLite databases. The second method identifies inconsistencies in
the SQLite databases. The presence of specific filesystem changes and
inconsistencies in the associated SQLite databases are indicators that
the authenticity of the stored timestamps may have been compromised.

Verma et al. [31] have proposed a technique for identifying malicious
tampering of dates and timestamps in Android smartphones. The tech-
nique gathers kernel-generated timestamps of events and stores them
in a secure location outside the Android smartphone. During a digital
forensic investigation, the preserved timestamps can be used to establish
the authenticity of the dates and times extracted from the smartphone
under examination.

Govindaraj et al. [13] have designed iSecureRing, a system for securing
iOS applications and preserving dates and timestamps. The system
incorporates two modules. One module wraps an iOS application in an
additional layer of protection while the other module preserves authentic
dates and timestamps of events relating to the application.

All the solutions described above can assist digital forensic profes-
sionals in evaluations of smartphone evidence, especially with regard to

44 ADVANCES IN DIGITAL FORENSICS XIII

authenticity. However, the solutions are either platform-specific or re-
quire software to be installed on a smartphone prior to an investigation.
Clearly, there is a need for additional solutions that can enable digi-
tal forensic professionals to determine the authenticity of smartphone
evidence.

A promising solution is to consider the structure and behavior of
smartphone applications that create the evidence in question. This can
be achieved by modeling smartphone applications using a reference archi-
tecture that captures the common architectural elements of applications
as well as their behavior [8]. Reference architectures have been specified
for several domains, including web browsers [14] and web servers [17]. In
the case of smartphone applications, a reference architecture only exists
for Android applications [27]. At this time, no generic reference archi-
tecture exists for smartphone applications across different platforms.

3. Reference Architecture
A large quantity of smartphone evidence is the result of executing ap-

plications. This evidence enables a digital forensic professional to make
informed conclusions about application usage. Should the tampering of
smartphone evidence not be detected, the digital forensic professional
could come up with inaccurate or false conclusions. Therefore, it is
important to establish the authenticity of smartphone evidence before
attempting to make any conclusions. Identifying authentic smartphone
evidence requires the digital forensic professional to have a good under-
standing of the normal or expected behavior of smartphone applications.
Using a reference architecture to model smartphone applications enables
the forensic professional to comprehend the structure and behavior of
applications and understand how the associated evidence originated.

Designing a reference architecture for smartphone applications re-
quires the evaluation of architectural designs of applications created for
various smartphone operating systems. From the architectural designs,
common architectural components are identified to create the reference
architecture. Finally, the interactions within and between the compo-
nents are modeled to complete the design of the reference architecture.

3.1 Architectural Designs of Applications
The most common mobile platforms are Google’s Android (83% mar-

ket share) and Apple’s iOS (15% market share) [18, 28]. Their pop-
ularity is directly related to their functionality, advanced capabilities
and numerous third-party applications. Applications designed for these
platforms adhere to specific architectural designs to ensure visual attrac-

Pieterse, Olivier & van Heerden 45

tiveness and enhanced performance. Examination of the documentation
of Android and iOS smartphone applications provides insights into their
architectural designs. The combined 98% market share of Android and
iOS smartphones has motivated the emphasis on Android and iOS ap-
plications in this research.

Android Applications. The visual design and user interface of An-
droid applications are determined by specific themes, styles and struc-
tured layouts. A style is a collection of properties that specifies the look
and feel of a single view; the properties typically include height, width,
padding and color of the view. A theme is a style that is applied to the
entire application, enabling all the views to have a similar presentation.
Layouts define the visual structure and determine how the views are
organized.

Developers use the Extensible Markup Language (XML) to define the
theme, styles and layouts for the user interface of an Android applica-
tion [12]. The user interface facilitates interactions between a user and an
application. The interactions are captured by an activity, which contains
a window holding the user interface. Activities interact with the user
as well as with background processes such as broadcast receivers and
services. Broadcast receivers respond to system-wide announcements
while services perform longer running operations. Activities, broadcast
receivers and services realize the logic of an Android application.

Android applications may require access to persistent data. This ac-
cess is provided by functions and procedures, captured in storage-specific
application programming interfaces (APIs). Android applications have
several data storage options: shared preferences, internal storage, exter-
nal storage and SQLite databases [3]. One or more of the options may
be used by an Android application to store data.

Pieterse et al. [27] have proposed a reference architecture for Android
applications. The reference architecture has two core components: (i)
application activity; and (ii) SQLite database. The application activity
component captures the user interface design and logic of the applica-
tion while the SQLite database component describes the data retention
policy [27]. The current reference architecture only models Android
applications that use SQLite databases to retain data. Therefore, the
architecture is not a complete solution and smartphone applications on
other platforms must be investigated to design a reference architecture
for smartphone applications in general.

iOS Applications. Developers of iOS applications tend to follow the
model-view-controller (MVC) architectural design pattern [21]. The pat-

46 ADVANCES IN DIGITAL FORENSICS XIII

Figure 1. Model-view-controller architecture [19].

tern assigns objects in an iOS application to one of three roles: (i) model;
(ii) view; or (iii) controller. As illustrated in Figure 1 [19], the pattern
also defines the communications between the objects.

The model object encapsulates the domain data specific to an iOS
application [19] and interacts with the physical storage. A view object,
which is visible to a user, renders the graphical user interface [19]. View
objects are populated with standard user interface elements provided by
the UIKit; they often include labels, buttons, tables and text fields [21].
View objects display data from an application model to a user and enable
the user to interact with persistent data.

Four common approaches for data persistence are available for iOS
applications: (i) user defaults; (ii) property lists; (iii) SQLite databases;
and (iv) core data (relational object-oriented model) [20]. The controller
object acts as a mediator between the view and model objects [19]. It
receives actions from the user and acts accordingly [21]. The controller
is also responsible for altering the model object and updating the view
object with the changes. The business logic of an iOS application is,
thus, realized by the controller object.

Although iOS applications have a different architectural design than
Android applications, it is possible to identify certain similar character-
istics. These similar characteristics enable the specification of a reference
architecture for modeling Android and iOS smartphone applications.

3.2 Reference Architecture Components
Close examination of the architectural designs of Android and iOS

applications reveals four similar architectural elements: (i) user inter-
face; (ii) application logic; (iii) data management; and (iv) data storage.
Table 1 describes the architectural elements.

The first component is the user interface, which captures the graphical
design and presents an interface for user-application interactions. The

Pieterse, Olivier & van Heerden 47

Table 1. Architectural similarities of Android and iOS applications.

Android iOS

Visual Themes, styles and View objects containing visual
Components layouts created using XML elements created using UIKit

Core Functions Activities, broadcast Controller objects
and Logic receivers and services

Data Management of stored data Management of stored data
Management using content providers using model objects

Data Shared preferences and User defaults and
Storage SQLite databases SQLite databases

interactions allow for the effective operation of the application by per-
mitting the user to perform a limited selection of actions, including the
submission of data. This implies that there are common actions, which
lead to expected results. The user interface conveys the implemented
operations and the received results in a simplistic manner to the user.

The second component is the application logic, which captures the
core functions and workflow of the application. The application logic
implements the functions responsible for validating, processing and exe-
cuting the actions and data received from the user interface component.
During processing, the data included along with an action can be con-
sumed by the process. Certain actions also cause the data or portions
of the data to be kept in their original form and produced as part of the
result. After the data is processed, the application logic executes the re-
ceived action and produces results that are passed to the user interface.
Some applications may require all or parts of the data received during
an action to be maintained in persistent storage.

The data management component receives data from the application
logic component and transforms the data into a suitable format for stor-
age or presentation in the user interface.

The final data storage component stores persistent data and makes
the stored data available to applications.

Figure 2 presents the four components of the reference architecture for
smartphone applications. The figure shows the architectural ordering of
the components and the basic interactions between the components. The
current design only provides a high-level overview of the components.
In order to obtain a better understanding of the normal or expected
behavior of smartphone applications, the reference architecture must
capture detailed information about the interactions within and between
the architectural components.

48 ADVANCES IN DIGITAL FORENSICS XIII

Figure 2. Reference architecture components for smartphone applications.

3.3 Modeling Application Behavior
Modeling smartphones at a fine level of granularity requires a detailed

exploration of the behavior of smartphone applications. The internal
behavior of smartphone applications is the result of interactions that
occur within and between the architectural components. Modeling these
interactions provides additional insights into the normal or expected
behavior of smartphone applications.

Figure 3 presents a state diagram that models the internal behavior
of smartphone applications. The state diagram abstracts the behavior
of smartphone applications in terms of four stages:

User Interface Stage: The user interface stage has three states:
(i) Idle; (ii) Ready; and (iii) Update. The successful installation
of a smartphone application places it the Idle state. An inactive
application remains in the Idle state waiting for a user to launch
the application or for an external event to occur. An application
opened by a user or external event causes it to transition from the
Idle state to the Ready state.

An application in the Ready state can accept an action from a
user, the same application (internal action) or another application
(external action). An application transitions from the Ready state

Pieterse, Olivier & van Heerden 49

Figure 3. Internal behavior of smartphone applications.

to the Process state upon receiving an action that includes data.
An action involving no data causes the application to transition
directly to the Execute state.

After an action completes, an application transitions to the Update
state. In the Update state, the user interface is updated based
on the completed action; this can involve updating the data or
elements displayed by the interface. After this is completed, the
application returns to the Ready state. Note that an application
transitions to the Idle state only when it is closed by a user.

Application Logic Stage: The application logic stage has two
states: (i) Process; and (ii) Execute. An application transitions
to the Process state upon receiving an action that includes data.
The Process state is responsible for separating the action from
the data and processing the data accordingly. The processing may
involve data validation or the application of security measures such
as encryption and encoding. Data processing may involve multiple
iterations and the application transitions to the Execute state only
after the processing has completed.

An application in the Execute state executes a received action.
If the action involves no data, the application transitions to the
Update state after completing the action. An action involving
data can cause several outcomes. First, the action may completely
consume the data and cause a transition to the Update state. If
the data or portion of the data have to be retained in storage, the
application transitions to the Transform state. Whether or not
an action involves data, it can require data that is maintained in
data storage. In order to retrieve the data, the application moves

50 ADVANCES IN DIGITAL FORENSICS XIII

to the Retrieve state. After the data is received, the application
transitions to the Update state.

Manager Stage: The manager stage has a single state called
Transform. An application moves to the Transform state from the
Execute or Retrieve states after receiving data. In the Transform
state, the received data is converted into the desired form. The
application then transitions to the Store state in order to store the
data. To complete an action that requires transformed data to be
retrieved from storage, the application transitions to the Update
state.

Data Storage Stage: The data storage state has two states:
(i) Retrieve; and (ii) Store. An application moves to the Store
state after it accepts transformed data from the Transform state;
it then proceeds to store the data in a database or file. After
the data is stored, the application transitions to the Update state.
The Retrieve state fetches data from storage and the application
transitions to the Transform state to transform the data into an
acceptable form.

3.4 Exploring an Android Application
The proposed reference architecture provides an abstraction of smart-

phone applications, enabling a digital forensic professional to easily com-
prehend the applications and their associated evidence. From this ab-
straction, the following general characteristics regarding smartphone ap-
plications can be identified:

Only a smartphone application can access and/or update the stored
data.

Data stored by a smartphone application is only accessible via an
executed action.

Data displayed by the user interface directly corresponds to the
stored data.

Changes to data stored by a smartphone application can only occur
after an action is received.

An action can only be provided by a human user, the current
smartphone application (internal action) or some other smart-
phone application (internal action).

A smartphone application only accepts a fixed set of actions.

Pieterse, Olivier & van Heerden 51

Figure 4. Modeling Android’s default messaging application.

An action in the fixed set leads to an expected result.

To illustrate the value and generality of the reference architecture,
Android’s default messaging application is modeled according to the
reference architecture. Android smartphones are equipped with basic
messaging functionality. A user can employ the default messaging ap-
plication that is pre-installed on a smartphone to send and receive text
or multimedia messages [9].

Figure 4 shows how the reference architecture is used to identify and
model the core components of the application. The messaging inter-
face enables users to view, delete, send and receive text or multimedia
messages. The SMS manager, which contains the workflow logic of the
messaging application, is implemented by SmsManger, an Android class
that manages the messaging operations [2]. The SmsManger class uses
public methods to implement the requested actions. The management
functions transform data into a suitable format for storage, which in-
cludes the creation of timestamps and the extraction of additional infor-
mation such as the service center number. After it is transformed, the
data is retained in the mmssms.db SQLite database.

The behavior of the messaging application is illustrated by sending a
new text message. The interactions involved in sending a text message
involve three phases. In the first phase, human user opens the messaging

52 ADVANCES IN DIGITAL FORENSICS XIII

application on the Android smartphone. Upon receiving the open event,
the application transitions from the Idle state to the Ready state and re-
ceives an internal action to retrieve all the stored messages. The received
action causes the application to transition to the Execute state. In the
Execute state, the action is evaluated, which requests the retrieval of
the stored messages from the SQLite database (mmssms.db) and causes
the transition to the Retrieve state. In the Retrieve state, the stored
messages are fetched and the application transitions to the Transform
state to correctly format the messages for visual presentation. Next, the
application transitions to the Update state to update the user interface
in order to display the messages. Finally, the application returns to the
Ready state where it waits for a new action.

In the second phase, the user provides a new action by selecting the
option to create a new text message. The application transitions to the
Execute state and, because the action does not request the retrieval or
storage of data, the action completes. Next, the application transitions
to the Update state and updates the user interface accordingly, enabling
the user to enter one or more recipients and write the new text message.
Finally, the application returns to the Ready state.

During the third and final phase, the user enters the recipient(s) and
the text message. Pressing the send button generates an action that
includes the data entered by the user, causing the application to move
to the Process state. In the Process state, the data is validated (i.e.,
length of the phone number and text message) before the application
transitions to the Execute state. In the Execute state, the text message
is sent, but the message must be recorded in the mmssms.db database.
Therefore, the application proceeds to the Transform state where the
data is formatted correctly, after which the application transitions to
the Store state. The application then transitions to the Update state
to update the user interface and show that the text message was sent.
Finally, the application returns to the Ready state.

Modeling Android’s default messaging application according to the
reference architecture enables a digital forensic professional to identify
valuable information about the application. Specifically, the architec-
ture serves as a valuable template for a forensic professional to gain a
good understanding of the normal or expected behavior of the messag-
ing application. Although modeling the messaging application can offer
insights about the origin of evidence related to the smartphone applica-
tion, as discussed in the next section, additional criteria are required to
efficiently identify authentic smartphone evidence.

Pieterse, Olivier & van Heerden 53

4. Theories of Normality
Despite its utility, the information provided by modeling a smartphone

application is insufficient to establish the authenticity of the related ev-
idence. Seven theories of normality are specified to assist digital foren-
sic professionals in evaluating the authenticity of smartphone evidence.
The theories capture the normal or expected behavior of smartphone
applications and can assist forensic professionals in identifying authen-
tic smartphone evidence. The following seven theories of normality stem
from the research conducted when designing the reference architecture:

Data Correspondence: Many smartphone applications include
actions that retrieve or store data in persistent storage such as a
database. This data is made accessible to a user via the user in-
terface of the application. Unauthorized changes made to stored
data may not be immediately reflected in the user interface be-
cause of cached data. Authentic smartphone evidence requires
the stored data to correspond to the data presented by the user
interface. Should the application allow for bi-directional commu-
nications (i.e., text messaging or telephone calls), the stored data
must also correspond to the data stored on the other smartphone
involved in the communications (if the other smartphone is avail-
able for examination).

Data Storage Consistency: Smartphone applications have sev-
eral options for storing persistent data, one of the most popular is
an SQLite database [4, 10]. Authentic smartphone evidence should
have consistent database records. A consistent record in a SQLite
database is one that is listed correctly when ordered according to
the auto-incremented primary key and a field containing a date or
timestamp.

File System Consistency: Files containing stored data have
specific permissions and owners that allow/restrict modifications
to the data. When a file is created for the first time, the respon-
sible application is given ownership of the file and is assigned the
necessary read/write permissions. Authentic smartphone evidence
requires file permissions and ownership to remain unaltered.

Smartphone Reboot: Tamperingwith smartphone evidence may
require a system reboot for the changes to be reflected on the
smartphone and on the user interface of the smartphone appli-
cation [27]. A system reboot is generally performed after a file
containing stored data has been modified. A timestamp associ-

54 ADVANCES IN DIGITAL FORENSICS XIII

ated with a system reboot that follows soon after the modification
of the file is a possible indicator of evidence tampering.

Presence of Anti-Forensic Tools: Anti-forensic tools for smart-
phones can be used to destroy, hide, manipulate or prevent the
creation of evidence [29]. Smartphone applications, such as File
Shredder (Android) or iShredder (iOS), can be used to destroy
data; data can be hidden using StegDroid or MobiStego (both An-
droid) applications. Eliminating the presence of anti-forensic ap-
plications on a smartphone limits the possibility of evidence tam-
pering.

Smartphone Rooting/Jailbreaking: Data stored by a smart-
phone application is inaccessible to users. Access to the application
and the data can be obtained by rooting (Android) or jailbreaking
(iOS) the smartphone [23, 25]. Although rooting or jailbreaking is
not a direct indication of data tampering, a rooted or jailbroken
smartphone lacks the additional protection measures against data
tampering that are required to ensure evidence authenticity.

Application Usage: The internal behavior of a smartphone ap-
plication, illustrated in the state diagram, shows that only actions
can create or alter stored data. Users (humans, the smartphone
application itself or another smartphone application) are the only
entities capable of providing actions; therefore, their presence must
be confirmed. Verifying that a user created or altered the data in-
creases its authenticity.

The seven theories of normality indicate whether or not the evidence
produced by a smartphone application is the result of normal or expected
behavior of the application. A digital forensic professional can, therefore,
use the theories of normality to evaluate the authenticity of smartphone
evidence.

An experiment was conducted to confirm the validity of the seven
theories of normality. The experiment involved the tampering of text
messages produced by Android’s default messaging application. The
manipulation of the text messages involved the following steps

Step 1: Root the test Android smartphone (Samsung Galaxy S5
Mini running Android version 4.4.4).

Step 2: Copy the mmssms.db and mmssms.db-wal SQLite data-
base files that contain all the text messages to the /sdcard/ loca-
tion on the Android smartphone and then to a computer.

Pieterse, Olivier & van Heerden 55

Figure 5. Confirmation of SuperSu application use in usage-history.xml.

Step 3: Use SQLite Expert Personal to alter the text messages.

Step 4: Remove the mmssms.db and mmssms.db-wal SQLite data-
base files from the Android smartphone using the rm command.

Step 5: Copy the altered mmssms.db SQLite database file to the
Android smartphone and move the file to the /data/data/com.
android.provider.telephony/databases/ location.

Step 6: Change the permissions of the mmssms.db SQlite database
file using the command chmod 666 mmssms.db.

Step 7: Reboot the Android smartphone.

Step 8: Unroot the Android smartphone.

In the experiment, the seven theories of normality were used to eval-
uate the text messages and determine whether or not the messages orig-
inated as a result of the normal behavior of the messaging application.
First, the installed applications on the Samsung Galaxy S5 Mini were
viewed. No anti-forensic applications were installed on the smartphone.
Traditional root applications, such as SuperSU and Superuser, were also
not present on the smartphone. However, their absence is not a def-
inite indicator that the smartphone was not rooted; this is because a
root application could have been uninstalled or root could have been re-
moved. Examination of the /data/system/usage/usage-history.xml
file, which contains log entries showing when the user last used an appli-
cation, revealed that the SuperSu application was previously installed
on the smartphone.

Figure 5 presents a snippet of the usage-history.xml file. Conver-
sion of the timestamp revealed that the SuperSu application was last
used on 26/07/2016 15:53:44 GMT+2:00. The log entry offers a posi-
tive indication that the smartphone was rooted.

The usage-history.xml file in Figure 6 also shows that the de-
fault messaging application (identified by the com.android.mms package
name) was last used on 23/07/2016 14:09:44 GMT+2:00 (Figure 6).

Figure 7 shows the timestamps of the SQLite database files associated
with the default messaging application. The timestamps contradict the
log entry in the usage-history.xml file. In fact, the timestamps of the

56 ADVANCES IN DIGITAL FORENSICS XIII

Figure 6. Confirmation of SMS application use in usage-history.xml.

Figure 7. Original timestamps in the mmssms.db SQLite database.

SQLite database files (mmssms.db and mmssms.db-wal) indicate that the
application was last used on 26/07/2016 16:01:00 GMT+2:00.

Figure 8. Changed timestamps in the mmssms.db SQLite database.

Closer inspection of the SQLite database files in Figure 8 indicate
changes to the file permissions and ownership. To confirm the consis-
tency of the SQLite database records, the database records were viewed
and the records were found to be listed correctly. It was also discovered
that the records stored in the SQLite database corresponded to the text
messages displayed on the user interface.

Finally, the log files associated with a system reboot were examined.
Figure 9 indicates that a system reboot occurred shortly after the SQLite
database was modified.

The specific findings – inconsistent usage of the default messaging ap-
plication, filesystem inconsistencies, subsequent rebooting and the root-
ing of the smartphone – lead to the conclusion that the text messages

Pieterse, Olivier & van Heerden 57

Figure 9. Confirmation of reboot on 26/07/2016 16:01:39 GMT+2:00.

stored on the Android smartphone may have been tampered with and
that the authenticity of the text messages cannot be established.

5. Discussion
The proposed reference architecture for smartphone applications al-

lows for the abstraction of a diverse collection of Android and iOS appli-
cations. To support the diversity, the reference architecture captures the
essential components of applications and identifies the behaviors of the
architectural components. The simplistic design clearly and concisely
describes the role of each component, enabling the easy comprehension
of modeled smartphone applications. The design is also flexible, provid-
ing digital forensic professionals with the ability to model smartphone
applications at different levels of complexity. Using the reference archi-
tecture, forensic professionals can swiftly obtain a better understand-
ing of the normal or expected behavior of smartphone applications as
well as the smartphone evidence related to the applications. The refer-
ence architecture is limited to Android and iOS applications, but it is
readily extended to model applications that run on other operating sys-
tems. However, although the reference architecture offers insights into
the internal behavior of applications, it is not sufficient to establish the
authenticity of the related smartphone evidence.

The seven theories of normality derived from the reference architec-
ture capture the normal or expected behavior of smartphone applica-
tions. Digital forensic professionals can use the theories of normality to
evaluate smartphone evidence. Based on an evaluation, a forensic pro-
fessional can decide whether to consider or disregard the smartphone ev-
idence. The experiment conducted as part of this research demonstrates
that the theories of normality provide a forensic professional with the
support needed to determine whether or not evidence originated as a
result of the normal behavior of a smartphone application. While the
theories of normality cannot directly pinpoint the tampering of smart-

58 ADVANCES IN DIGITAL FORENSICS XIII

phone evidence, they can assist in eliminating unreliable evidence. Using
the theories of normality in smartphone investigations is expected to save
digital forensic professionals valuable time and help them reach correct
and accurate conclusions.

6. Conclusions
The popularity and rich functionality of smartphones have required

digital forensic professionals to examine large quantities of smartphone
evidence. However, the integrity of smartphone evidence can be compro-
mised by anti-forensic tools, malware and malicious users. It is, there-
fore, necessary to establish whether or not smartphone evidence is the
result of the normal or expected behavior of smartphone applications.
The reference architecture described in this chapter models the com-
ponents of smartphone applications and their expected behavior. The
reference architecture helps derive seven theories of normality that as-
sist digital forensic professionals in evaluating the authenticity of smart-
phone evidence. An experiment involving the manipulation of evidence
produced by Android’s default messaging application validates the use
of the normality theories. Indeed, the experiment demonstrates that the
normality theories provide significant investigatory assistance to digital
forensic professionals while enabling them to identify unreliable evidence
so that it can be eliminated when arriving at the final conclusions.

Future research will engage the theories of normality to create a smart-
phone evidence classification model that will enhance the ability to es-
tablish the authenticity of evidence. The classification model will also
be evaluated against authentic and manipulated smartphone evidence.

References

[1] M. Al-Hadadi and A. AlShidhani, Smartphone forensics analysis: A
case study, International Journal of Computer and Electrical Engi-
neering, vol. 5(6), pp. 576–580, 2013.

[2] Android Developers, SmsManager (developer.android.com/
reference/android/telephony/SmsManager.html), 2015.

[3] Android Developers, Storage Options (developer.android.com/
guide/topics/data/data-storage.html), 2016.

[4] M. Bader and I. Baggili, iPhone 3GS forensics: Logical analysis us-
ing Apple iTunes Backup Utility, Small Scale Digital Device Foren-
sics Journal, vol. 4(1), 2010.

Pieterse, Olivier & van Heerden 59

[5] E. Casey, Digital Evidence and Computer Crime: Forensic Sci-
ence, Computers and the Internet, Academic Press, Waltham, Mas-
sachusetts, 2011.

[6] F. Cohen, Digital Forensic Evidence Examination, Fred Cohen &
Associates, Livermore, California, 2009.

[7] K. Curran, A. Robinson, S. Peacocke and S. Cassidy, Mobile phone
forensic analysis, in Crime Prevention Technologies and Applica-
tions for Advancing Criminal Investigations, C. Li and A. Ho
(Eds.), IGI Global, Hershey, Pennsylvania, pp. 250–262, 2012.

[8] W. Eixelsberger, M. Ogris, H. Gall and B. Bellay, Software architec-
ture recovery of a program family, Proceedings of the Twentieth In-
ternational Conference on Software Engineering, pp. 508–511, 1998.

[9] W. Enck, M. Ongtang and P. McDaniel, On lightweight mobile
phone application certification, Proceedings of the Sixteenth ACM
Conference on Computer and Communications Security, pp. 235–
245, 2009.

[10] F. Freiling, M. Spreitzenbarth and S. Schmitt, Forensic analysis of
smartphones: The Android Data Extractor Lite (ADEL), Proceed-
ings of the ADFSL Conference on Digital Forensics, Security and
Law, pp. 151–160, 2011.

[11] S. Garfinkel, Anti-forensics: Techniques, detection and countermea-
sures, Proceedings of the Second International Conference on i-
Warfare and Security, pp. 77–84, 2007.

[12] M. Goadrich and M. Rogers, Smart smartphone development: iOS
versus Android, Proceedings of the Forty-Second ACM Technical
Symposium on Computer Science Education, pp. 607–612, 2011.

[13] J. Govindaraj, R. Verma, R. Mata and G. Gupta, iSecureRing:
Forensic-ready secure iOS apps for jailbroken iPhones, poster paper
presented at the IEEE Symposium on Security and Privacy, 2014.

[14] A. Grosskurth and M. Godfrey, A reference architecture for web
browsers, Proceedings of the Twenty-First IEEE International Con-
ference on Software Maintenance, pp. 661–664, 2005.

[15] M. Hannon, An increasingly important requirement: Authentication
of digital evidence, Journal of the Missouri Bar, vol. 70(6), pp. 314–
323, 2014.

[16] R. Harris, Arriving at an anti-forensics consensus: Examining how
to define and control the anti-forensics problem, Digital Investiga-
tion, vol. 3(S), pp. S44–S49, 2006.

60 ADVANCES IN DIGITAL FORENSICS XIII

[17] A. Hassan and R. Holt, A reference architecture for web servers,
Proceedings of the Seventh Working Conference on Reverse Engi-
neering, pp. 150–159, 2000.

[18] International Data Corporation Research, Smartphone Growth Ex-
pected to Drop to Single Digits in 2016, Led by China’s Transition
from Developing to Mature Market, According to IDC, Press Re-
lease, Framingham, Massachusetts, March 3, 2016.

[19] T. Iulia-Maria and H. Ciocarlie, Best practices in iPhone program-
ming: Model-view-controller architecture – Carousel component de-
velopment, Proceedings of the International Conference on Com-
puter as a Tool, 2011.

[20] B. Jacobs, iOS from Scratch with Swift: Data Persistence and Sand-
boxing on iOS, Envato Tuts+ (code.tutsplus.com/tutorials/
ios-from-scratch-with-swift-data-persistence-and-sandb
oxing-on-ios--cms-25505), December 25, 2015.

[21] M. Joorabchi and A. Mesbah, Reverse engineering iOS mobile ap-
plications, Proceedings of the Nineteenth Working Conference on
Reverse Engineering, pp. 177–186, 2012.

[22] A. Kubi, S. Saleem and O. Popov, Evaluation of some tools for ex-
tracting e-evidence from mobile devices, Proceedings of the Fifth
International Conference on the Application of Information and
Communication Technologies, 2011.

[23] J. Lessard and G. Kessler, Android forensics: Simplifying cell phone
examinations, Small Scale Digital Device Forensics Journal, vol.
4(1), 2010.

[24] M. Losavio, Non-technical manipulation of digital data, in Advances
in Digital Forensics, M. Pollitt and S. Shenoi (Eds.), Springer,
Boston, Massachusetts, pp. 51–63, 2005.

[25] C. Miller, Mobile attacks and defense, IEEE Security and Privacy,
vol. 9(4), pp. 68–70, 2011.

[26] H. Pieterse, M. Olivier and R. van Heerden, Playing hide-and-seek:
Detecting the manipulation of Android timestamps, Proceedings of
the Information Security for South Africa Conference, 2015.

[27] H. Pieterse, M. Olivier and R. van Heerden, Reference architecture
for Android applications to support the detection of manipulated
evidence, SAIEE Africa Research Journal, vol. 107(2), pp. 92–103,
2016.

[28] A. Prasad, Android to rule smartphone market with 85% share in
2020 says IDC report, International Business Times, March 5, 2016.

Pieterse, Olivier & van Heerden 61

[29] I. Sporea, B. Aziz and Z. McIntyre, On the availability of anti-
forensic tools for smartphones, International Journal of Security,
vol. 6(4), pp. 58–64, 2012.

[30] L. Thomson, Mobile devices: New challenges for admissibility of
electronic evidence, Scitech Lawyer, vol. 9(3), 2013.

[31] R. Verma, J. Govindaraj and G. Gupta, Preserving dates and time-
stamps for incident handling in Android smartphones, in Advances
in Digital Forensics X, G. Peterson and S. Shenoi (Eds.), Springer,
Heidelberg, Germany, pp. 209–225, 2014.

Chapter 4

FORENSIC EVALUATION OF
AN AMAZON FIRE TV STICK

Logan Morrison, Huw Read, Konstantinos Xynos and Iain Sutherland

Abstract This chapter presents the results of a forensic acquisition and analysis
of an Amazon Fire TV Stick, a popular streaming media device. Al-
though the primary functions of the Fire TV Stick are streaming videos
and playing non-intensive video games, it is a reasonably powerful de-
vice that runs an Android operating system. This chapter explores
the additional capabilities being developed for Fire TV Sticks in the
hacker/enthusiast community and considers the implications that alter-
ations to the devices could have with regard to digital forensics. An
empirical assessment is conducted to identify the potential for misuse
of Fire TV Sticks and to provide guidance to forensic investigators who
analyze these devices.

Keywords: Embedded systems, Fire TV Stick, forensic evaluation

1. Introduction
One aspect of digital convergence is the ability of users to replace

wired entertainment systems such as cable television with wireless media
streaming services [3]. Streaming service providers have responded to
this demand by introducing devices like the Fire TV Stick. Such a device
brings streaming services to a user’s television set by merely attaching a
USB device to the set without any other connections. Over time, these
devices have become very popular – current estimates indicate that more
than 50% of U.S. homes have a television set connected to the Internet
via one of these devices. It is also estimated that global shipments
will increase from 240 million devices in 2016 to 382 million devices by
2021 [7]. The increased use of these devices has caused streaming media
forensics to become its own specialty area.

© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
G. Peterson and S. Shenoi (Eds.): Advances in Digital Forensics XIII, IFIP AICT 511, pp. 63–79, 2017.
DOI: 10.1007/978-3-319-67208-3_4

63

64 ADVANCES IN DIGITAL FORENSICS XIII

During the first quarter of 2015, it was reported that there were 4.5
million Fire TV devices in use [8] and the number of these devices has
surely grown since then. This figure incorporates Fire TV Sticks into
its calculation. Meanwhile, there is little information about the data
stored on a Fire TV Stick and how to acquire an image of the data
in a forensically-sound manner. This chapter discusses the information
stored on a Fire TV Stick that may be of interest to forensic investiga-
tors. Also, it presents guidance on conducting a forensic evaluation of a
Fire TV Stick.

2. Related Work
Streaming media devices present unique challenges when it comes to

accessing data, since many of them may require hardware modifications
in order to access data. Some research related to the forensic acquisi-
tion and analysis of data from similar streaming media devices has been
attempted, but little, if any, research has focused on the Amazon Fire
TV Stick. It is possible to understand the challenges that may be expe-
rienced with regard to potential acquisition methods by reviewing work
on similar media streaming devices and other small-scale devices.

2.1 Chromecast
Researchers have analyzed the files contained in a crash report gener-

ated by a Google Chromecast device [9]. However, this involves crashing
the device, which causes major changes to the device; it is, therefore,
less than ideal in a digital forensic investigation. The primary challenges
are that the universal asynchronous receiver/transmitter (UART) con-
nection provides minimal data and that the flash chip is encrypted with
a unique (per device) key. These challenges make data acquisition and
analysis very difficult. Nevertheless, the analysis of the crash report,
which is in the form of a ZIP file, provides information about the layout
of the NAND chip, useful timestamps and data pertaining to streamed
videos.

2.2 Measy A2W Miracast
An analysis of the Measy A2W Miracast device [9] is more interesting

because of the larger number of acquisition possibilities and the amount
of useful data that can be recovered. Hardware experiments have ac-
cessed the UART interface by physically connecting to several pins on
the main circuit board. This enables Hexdump to be used to extract a
memory dump. However, employing the UART interface can change the
device memory and, therefore, may not be forensically sound.

Morrison, Read, Xynos & Sutherland 65

Experiments with the curl binary in the device firmware revealed that
files can be posted to a Wi-Fi enabled server, but this is inconsistent and
unreliable. An experiment that imaged the NAND flash chip revealed
that the chip could be imaged effectively and in a forensically-sound
manner using a toolkit with a write blocker [9]. Experiments using a
Netcat listener to acquire files over Wi-Fi were also conducted.

Researchers were also able to recover MAC addresses, links, image
files, URLs, firmware data, timestamps regarding device usage, WPA2
passwords and SSIDs using toolkits and techniques such as file carv-
ing [9]. This work is of interest because it discusses: (i) multiple meth-
ods for acquiring data from a streaming media device; (ii) a forensically-
sound data acquisition technique, (iii) challenges that can arise when
working with the devices; and (iv) potential methods for overcoming the
challenges. However, some of the methods present risks that may keep
them from being used in digital forensic investigations, including the
possibility of permanently disabling (i.e., “bricking”) the devices [2].

2.3 Amazon Kindle Fire HD
Research by Iqbal et al. [6] is of particular interest due to the simi-

larities between the Kindle Fire HD and Fire TV Stick. Both devices
run Amazon’s Fire operating system and have an EXT4 file system [4].
Therefore, the experimental results for the Kindle Fire HD could be
useful for the Fire TV Stick as well.

An experiment conducted by Iqbal et al. used a modified USB cable
and a QEMU automated root exploit to gain root access. Next, the
Android debug bridge (ADB) was used to image the userdata partition.
The analysis of the userdata partition revealed that app data, user data,
photographs, browsing data, audio data, cloudsync status and other
useful data could be recovered.

The research on the Kindle Fire suggests an initial approach should
focus on the userdata partition of a Fire TV Stick. It also demonstrates
the challenges in achieving – and the importance of having – root access
to the device in order to access the partition. However, this method
requires the USB debugging function to be enabled on the device, which
poses problems when this feature is disabled. Note that enabling USB
debugging may result in the modification of the device and, thus, affect
the forensic soundness of the recovered information.

3. Proposed Forensic Methodology
Forensic soundness is an extremely important characteristic of an ev-

idence extraction methodology. This is accomplished by limiting, if not

66 ADVANCES IN DIGITAL FORENSICS XIII

eliminating, the changes made to the evidentiary device before and/or
during data extraction. Thus, all the experiments conducted on the Fire
TV Stick in this research have paid special attention to this requirement.

A literature survey and an exploration of the Fire TV Stick function-
ality were performed to identify potential methods and areas of interest
on the device. The research on Amazon Kindle Fire HD forensics by
Iqbal et al. [6] was extremely useful from this perspective. The Fire TV
Stick research involved reviewing its functionality as well as powering
the device and going through the various menus to ascertain the kinds
of artifacts that may reside on the device. The focus was to identify
commonly-used functionalities, applications providing the functionali-
ties and locations where artifacts related to user actions reside on the
device. It was identified empirically that the userdata partition would
be the most likely location to find artifacts of interest. Specifically, the
following features of interest to a typical user and the applications asso-
ciated with these features were identified:

Video streaming through Netflix, YouTube and free Amazon con-
tent.

Music streaming through Spotify and Pandora.

Gaming through Amazon’s App Store.

Uploading/viewing photographs through Amazon’s Cloud Drive.

App downloading through Amazon’s App Store.

Sideloading of Android apps through the Android debug bridge.

3.1 Experimental Methodology
Table 1 summarizes the experimental methodology. The methodol-

ogy was developed by exploring the device functionality, device state
(on/off) and various physical, logical and manual acquisition options.
The goal was to determine if it was possible to retrieve data generated
by the various features and applications. This involved simulating typ-
ical user behavior using the available features and applications in order
to introduce data and discover if it could be retrieved for subsequent
analysis. Towards the end of the experiment, a new software update
became available for the Fire TV Stick (version 5.0.5.1). This update
caused problems with some of the acquisition methods. Due to time
constraints, the update and its effects could not be explored fully.

Morrison, Read, Xynos & Sutherland 67

Table 1. Amazon Fire TV Stick experimental methodology.

Method Description

Evaluate Fire TV Stick
Condition

Examine a new out-of-the-box device with/without
USB debugging enabled, with/without root enabled,
before/after user interactions.

Select Method Select physical method (ADB raw device imaging
with root), logical method (file copying with custom
Python script and ADB) or manual method (visual
inspection of menus, etc.).

Activate Video Capture Record the time, create a record of actions.

Power on the Device Record time, note boot sequence of device, default
menus, etc.

Empirically Assess
Features

Systematically traverse through the identified features
and applications, interact with them, record content
consumed/created, observations and times for future
retrieval.

Power off the Device Record the time, turn off the Fire TV Stick and video
capture device.

Attempt Data Recovery Create an image of the Fire TV Stick using a physi-
cal, logical or manual method. Record the success or
failure of the method and any pertinent image-specific
data.

Investigate Images Use forensic tools (FTK Imager v.3.4.0.1, AccessData
Labs v.5.1) to retrieve data.

3.2 Sample Data
The Fire TV Stick is designed to be registered to a specific Amazon

account in order to access Amazon content. An Amazon account was
created for the device under the name “Fire Stick.” A gaming profile
was also created locally on the device under a pseudonym. An author’s
accounts for Netflix, Pandora and Spotify were used to test the video
and music streaming features.

To assess the video streaming features, Netflix and YouTube applica-
tions were installed and accessed. The Netflix application was then used
to stream the first ten minutes of several sample movies and television
shows. The YouTube application was used to stream several sample
videos. Finally, Amazon’s free streaming video content was used to
stream sample videos.

The assessment of the music streaming feature involved the installa-
tion of the Spotify and Pandora apps. Spotify was used to stream several

68 ADVANCES IN DIGITAL FORENSICS XIII

sample music tracks. The Pandora app was used to stream music from
a radio station.

The gaming feature was assessed by first setting up a local gaming
profile on the Fire TV Stick. This profile was created and named auto-
matically without direct action by the user. It appeared after the first
game was downloaded and launched on the system. Amazon’s App Store
was then used to download two sample games, Flappy Birds Family and
Crossy Road. The apps were then launched individually and two rounds
of each game were played.

In order to assess the photograph uploading and viewing feature via
Amazon’s Cloud Drive, a free trial for the Cloud Drive was obtained
using the Fire Stick Amazon account and an email address. Photos were
then uploaded using the Fire Stick account, Cloud Drive website and a
desktop personal computer. After the photographs were uploaded, they
were viewed via the Fire TV Stick’s photo tab. The photo tab was then
used to view the Test and Favorites albums and to add the photographs
to the albums.

Amazon’s App Store and the app downloading feature were assessed
by downloading additional programs. NBC and HBO Go apps were
downloaded from the App Store to assess this feature. The idea was
to see the kind of information that could be recovered about apps that
were downloaded but never used.

The sideloading of Android apps from sources other than Amazon’s
App Store was assessed using the Android debug bridge and ES File
Explorer. ES File Explorer was used to download Kodi, formerly known
as the Xbox Media Center, directly from its download page. This was
done by creating a Favorites tab in Kodi to navigate to a web page and
using the remote to navigate the website. Kodi was then launched to
ensure that it worked properly. The install command of the Android
debug bridge can be used from a workstation to obtain downloaded
Android APK files and install them on the Fire TV Stick. This method
was used to install the Firefox and Google Chrome web browser apps.
The apps were then launched to ensure that they worked properly. The
web browsers were used to navigate and log into a Facebook account
and the remote was used to navigate to the page.

4. Forensic Assessment
Various tests were devised and conducted to assess the ability of a

digital forensic investigator to acquire an image and identify artifacts of
user actions and device information on a Fire TV Stick. Test data was
introduced at different times during the testing process. Timestamps

Morrison, Read, Xynos & Sutherland 69

were found to be consistent in all the tests; specifically, when files could
be retrieved during the assessments, the timestamps were reflective of
the simulated interactions with the system. This was confirmed using
FTK Imager to triage the extracted information and compare the file
timestamps against the recorded times.

4.1 ADB Extraction Test
The pull command of the Android debug bridge was used to create

an image of the userdata partition without root permissions. The test
began by powering on the Fire TV Stick, setting it up, enabling USB
debugging and powering off the Fire TV Stick. The device was then
disconnected from the TV and connected to a Windows workstation. An
Android debug bridge server was then started on the workstation and a
connection was established with the Fire TV Stick. The mount command
was then used to identify the location of the userdata partition. After
it was identified, the pull command was used to attempt to image the
partition, but this failed due to the lack of root permissions. The dd
command was also attempted, but it failed for the same reason. Thus,
the Android debug bridge extraction test failed to extract an image from
the device and, therefore, could not help identify any useful information
on the device.

4.2 UFED Touch Test
The UFED Touch v.1.9.0.130 from Cellebrite was used to attempt

physical and logical filesystem extractions from the Fire TV Stick. Re-
search by Horowitz [5] has revealed that a physical extraction from the
Amazon Kindle Fire HDX could be performed using Cellebrite’s UFED
Touch Ultimate. Because the two devices use similar operating systems,
it was expected that this method could work for the Fire TV Stick.

The experiment involved connecting the Fire TV Stick to the UFED
Touch and working through its menus to attempt physical and logical
extractions. However, the version of the UFED Touch available at the
time of this writing was unable to recognize or read the Fire TV Stick.

4.3 Python Script Test
This experiment attempted to use a custom Python script to extract

a logical image of the Fire TV Stick using the Android debug bridge
functionality without root permissions. Komodo edit 9, Python 3.5 and
the pyadb module were used to create the script. The script incorporated
native Android debug bridge commands to extract/pull all the files that
it could extract, create hashes before and after file transfer (MD5 is

70 ADVANCES IN DIGITAL FORENSICS XIII

Figure 1. File structure of the test data image produced by the Python script.

available on the Fire TV Stick without any additional modification),
compare the hashes, recreate the directory structure and then store all
the original timestamps for the files that were extracted. The script was
used to create logical images of the Fire TV Stick before and after the
test data was added.

FTK Imager v.3.4.0.1 was used to examine the images obtained using
the Python script. Figure 1 shows the file structure of the image cre-
ated after the test data was added. An analysis of the image revealed
that some artifacts of user actions were present and could be recovered.
The artifacts included remnants of the sideloading process with Kodi,
list of installed apps, files and APKs associated with installed apps, app
thumbnails and APK files for sideloaded apps. Other system artifacts
included the language setting of the device and APK/ODEX files corre-
sponding to background apps.

Certain points regarding the image need to be highlighted. First,
many useful data items and artifacts of user actions came from having
the ES File Explorer app installed on the device. If this app had not
been previously installed on the device, most of what was found in the
image would not be present. Second, the data directory, which contains
much of the useful user data, could not be extracted due to problems
with permissions (i.e., root privileges are required).

Morrison, Read, Xynos & Sutherland 71

4.4 Rooting Test
This experiment was designed to address the problem of not hav-

ing root permissions to the Fire TV Stick, which hinders access to cer-
tain areas of the device. The experiment involved the use of KingRoot
v.4.8.5. FireOS on the first-generation Fire TV and Fire TV Stick can be
rooted using the KingRoot automatic rooting app [1] up to and includ-
ing FireOS v.5.0.5. Thus, a copy of the KingRoot APK was downloaded
to a workstation and the Android debug bridge was used to install it on
the Fire TV Stick. However, the KingRoot GUI is designed to work with
a mouse, not the Fire TV Stick remote. Therefore, a Bluetooth mouse
had to be connected to the Fire TV Stick to run KingRoot. The Fire
TV Stick was successfully rooted and the SuperSU APK was sideloaded
using an Android debug bridge install. An Android debug bridge con-
nection was established from the workstation to the Fire TV Stick and
the su command was executed, successfully gaining root permissions on
the device.

After gaining root permissions, the Python script was modified to use
root permissions in an attempt to extract files. Initial tests with the
modified script revealed that timestamps were not extracted correctly.
After changing the operating system on the acquisition workstation from
Windows to Linux (Ubuntu), the MAC times were copied correctly.

4.5 ADB Extraction Test
Enabling root permissions on the device reduced the challenges en-

countered when using the previous Android debug bridge extraction
method. Therefore, the test was repeated with root permissions to see
if an image could be produced that included the userdata partition.

The procedure involved starting an Android debug bridge server with
root permissions to the Ubuntu workstation. A connection was then
established to the Fire TV Stick and the Android debug bridge mount
command was used to locate the userdata partition. The su command
was executed to gain root permissions. Next, the chmod command was
used to provide temporary (until reboot) world-read permissions on the
userdata block. The Android debug bridge pull command was used to
successfully extract an image of the Fire TV Stick’s userdata partition.
Two images were created using this method: (i) test image created ini-
tially while working through the empirical process; and (ii) test image
after the initial sample data was added.

After adding test data, attempts were made to create another image,
but an automatic software update changed the operating system from
v.5.0.5 to v.5.0.5.1, rendering the version of KingRoot unable to root

72 ADVANCES IN DIGITAL FORENSICS XIII

Table 2. Artifacts in the Amazon Fire TV Stick.

Artifacts Description

Timestamp Last access time reflective of user interaction.

Browser History The browser.db file contains evidence of navigating to web-
sites using Mozilla Firefox.

Pictures [root]/data/com.amazon.bueller.photos/files/

cmsimages contains pictures from the Amazon Cloud
Drive. Images extracted directly from the Cloud Drive
have the same hash values as the originals, but images
found at this location in the Fire TV Stick do not. It
appears that images in the Fire TV Stick are formatted
for better viewing in the system menu. Two files, each
identical in name except for *-full.jpg and *-thumb.jpg

suffixes may be found. Figure 3 shows the original image
(left), fPM452RvROeOv-iKfAa0SQ-full.jpg (center) and
fPM452RvROeOv-iKfAa0SQ-thumb.jpg (right).

Bluetooth Devices [root]/data/com.amazon.device.controllermanager/

databases/devices contains the names and MAC addresses
of devices connected via Bluetooth (Razer Orochi mouse
and Amazon Fire TV remote).

Amazon Logs [root]/data/com.amazon.device.logmanager/files con-
tains several log files, including Log.amazon\main.

the (at the time of writing) up-to-date Fire TV Stick. The acquisition
experiment was halted at this point.

It should be noted that a digital forensic investigator would not put
such a device online while working on an active case. The update oc-
curred only because connectivity was required in order to generate the
test data needed to assess the Fire TV Stick. However, it was still possi-
ble to continue the analysis of the image taken with the initial test data.
AccessData Labs v.5.1 was used to analyze the images created using the
Android debug bridge pull command. Figure 2 shows the file structure
of the test image created after the test data was added.

Analysis of the image revealed that a large amount of useful informa-
tion could be recovered (Table 2). In addition to the artifacts commonly
encountered in Android devices, it was also possible to recover several
Amazon-specific artifacts.

While the images produced using the Android debug bridge extrac-
tion method proved to be extremely useful, a few points regarding the
method should be highlighted. First, the method requires permissions
to the partition to be changed in order to use the Android debug bridge

Morrison, Read, Xynos & Sutherland 73

Figure 2. File structure of the userdata image obtained via ADB extraction.

74 ADVANCES IN DIGITAL FORENSICS XIII

Figure 3. Visual comparison of images obtained from the Fire TV Stick.

pull command for extraction. Thus, a change has to be made to the
system, which is certainly not ideal with regard to the forensic sound-
ness of the method. Upon closer inspection, the version of KingRoot
used was found to have not made significant changes to the userdata
partition; however, this would have to be considered for every future
root/exploit method. Forensic soundness is still preserved during ex-
traction because the userdata partition is only granted world-read, not
world-write, permissions (the permissions are reset after the device is
rebooted). Thus, the Android debug bridge cannot modify the data
during a pull operation.

4.6 Manual Acquisition Test
In order to handle a device that cannot be rooted, additional experi-

ments were performed to elicit artifacts using traditional manual means
– specifically, video recordings, photographs and note-taking to capture
and analyze the menus visible to a regular user. The test began by pow-
ering on the Fire TV Stick and recording the time. The user accessible
menus/pages were then examined starting with the Home tab. Each
tab/menu was fully documented before proceeding to the next tab. Fig-
ure 4 shows a photograph that documents the Home tab of the Fire TV
Stick.

An analysis of the videos and photographs revealed that a large amount
of useful information could be recovered. Artifacts of user actions that
were recovered include:

Recently accessed apps/content.

Games downloaded by the user.

User’s gaming profile.

Morrison, Read, Xynos & Sutherland 75

Figure 4. Fire TV Stick Home tab with recent activity feed highlighted.

List of apps downloaded by the user (sideloaded apps are distinguished by the
message “This app was not downloaded from Amazon”).

Amazon Prime music/account content.

User’s Amazon Cloud Drive images/albums.

Metadata for Cloud Drive images (e.g., name, taken and uploaded timestamps,
dimensions).

Email address associated with the registered user’s Amazon account.

Bluetooth devices synced with the Fire TV Stick.

Full list of installed apps with metadata (e.g., version, size, storage).

Name of the registered Amazon account.

Furthermore, the following useful system information was recovered:

Device name.

Amazon remote, game controller and other Bluetooth device information (e.g.,
name, version, serial number).

Device storage capacity.

Operating system/software version.

Device serial number.

Device date and time.

SSID of the connected Wi-Fi network.

Device IP address.

Wi-Fi adapter MAC address.

76 ADVANCES IN DIGITAL FORENSICS XIII

Number of connected controllers/Bluetooth devices.

System update timestamps.

Available Wi-Fi networks.

ZIP code of the location.

Country and timezone.

Language settings.

However, this acquisition method is problematic because it requires
the device to be analyzed live, which results in changes to the system.

5. Recommended Forensic Analysis Method
Figure 5 outlines the digital forensic methodology recommended for

acquiring an image from an Amazon Fire TV Stick.
Step 1 creates the environment for imaging a rooted Fire TV Stick.

The Android debug bridge is used to obtain shell access to the device.
SuperSU provides root access to the device, enabling all the files to be
captured.

Step 2 is the standard best practice for a live investigation. All in-
teractions with the system must be recorded and notes should be taken
along with the times in case the device time has been altered.

Step 3 turns the device on. Step 4 sets up the environment variables
in the Fire TV Stick to allow the installation of the SuperSU root APK.
Step 5 injects the files into the system, establishes root access with the
assistance of a Bluetooth mouse (Fire TV Stick does not have a USB port
for external peripherals) and confirms that root access is established.

Step 6 uses the Android debug bridge server on the Ubuntu worksta-
tion to connect to the Fire TV Stick’s shell; the built-in mount command
is used to identify which partition/block device stores data. Step 7 nav-
igates to the /dev/block directory to locate the correct device. Step 8
executes the su command on the device to obtain root privileges; fol-
lowing this, the permissions of the userdata partition can be updated to
755, enabling global read access (but importantly, not global write).

Step 9 exits the Fire TV Stick shell and, given the temporary changes
made to the userdata area, maximizes data acquisition via the Android
debug bridge pull command. Step 10 concludes the data acquisition,
powers off the Fire TV Stick and video capture device, and records the
times of both actions.

6. Conclusions
An Amazon Fire TV Stick contains a plethora of information, some

of it related to user activity and other information related to the system

Morrison, Read, Xynos & Sutherland 77

Figure 5. Forensic analysis method for the Amazon Fire TV Stick.

itself. The proposed method for imaging Fire TV Sticks enables digital
forensic investigators to perform analyses of these popular streaming
media devices. Efforts are taken to minimize, if not eliminate, data
alteration. Thus, the method can be considered to be “semi” forensically
sound.

78 ADVANCES IN DIGITAL FORENSICS XIII

Whether or not a particular Fire TV Stick can be imaged successfully
using the proposed method depends on the operating system/software
version. It is possible to use KingRoot to root a Fire TV Stick device
that runs a Fire OS version earlier than v.5.0.5.1; rooting the device
makes it possible to acquire an image using the proposed method. A
device running Fire OS version v.5.0.5.1 or later cannot be rooted using
the current version of KingRoot and, thus, an image of the device cannot
be extracted via the proposed method. An automatic Fire OS update
increases the potential of eliminating root access to a device, making it
imperative to ensure that the update server is blocked by a firewall or
the forensic analysis of the device is conducted in a Faraday cage.

Downgrading the Fire TV Stick software/firmware may make the de-
vice rootable using KingRoot. Future research will investigate this pos-
sibility as well as the potential effects on the data stored in the device.

The Fire TV Stick has a remote app, a companion application pro-
vided by Amazon, which enables the device to be controlled by a smart-
phone. It provides voice search, navigation, playback control and key-
board text entry features. Future research will analyze the interactions
between the remote app and Fire TV Stick to determine if any forensic
artifacts are retrievable.

Meanwhile, new streaming services and applications are emerging as
streaming media devices become increasingly popular. Future research
will also examine these services and applications, which may provide
artifacts of interest to digital forensic investigators as well as new avenues
for analyzing Fire TV Sticks.

References

[1] AFTVnews, Fire OS 5 on the Amazon Fire TV 1 and Fire TV Stick
can be rooted, February 20, 2016.

[2] T. Cushing, Amazon Fire TV firmware update bricks rooted de-
vices, prevents rollback to previous firmware versions, Techdirt, De-
cember 5, 2014.

[3] B. Evangelista, Cord cutting accelerated in 2015, on track to con-
tinue next year, San Francisco Chronicle, December 31, 2015.

[4] K. Fairbanks, An analysis of Ext4 for digital forensics, Digital In-
vestigation, vol. 9(S), pp. S118–S130, 2012.

[5] J. Horowitz, Kindle Fire HDX Forensics (kindlefirehdxforen
sics.blogspot.com), April 15, 2014.

Morrison, Read, Xynos & Sutherland 79

[6] A. Iqbal, H. Al Obaidli, A. Marrington and I. Baggili, Amazon Kin-
dle Fire HD forensics, Proceedings of the International Conference
on Digital Forensics and Cyber Crime, pp. 39–50, 2014.

[7] J. Smith, Here’s why consumers are increasingly turning to stream-
ing media devices to view content, Business Insider, June 16, 2016.

[8] N. Terry, Amazon Fire TV takes 30% of the streaming market,
Android Headlines, June 5, 2015.

[9] P. van Bolhuis and C. Van Bockhaven, Forensic Analysis of Chrome-
cast and Miracast Devices, Cybercrime and Forensics Project, Mas-
ter’s Program in System and Network Engineering, University of
Amsterdam, Amsterdam, The Netherlands, 2014.

Chapter 5

DETECTING ANOMALOUS
PROGRAMMABLE LOGIC CONTROLLER
EVENTS USING MACHINE LEARNING

Ken Yau and Kam-Pui Chow

Abstract Industrial control system failures can be hazardous to human lives and
the environment. Programmable logic controllers are major components
of industrial control systems that are used across the critical infrastruc-
ture. Attack and accident investigations involving programmable logic
controllers rely on forensic techniques to establish the root causes and
to develop mitigation strategies. However, programmable logic con-
troller forensics is a challenging task, primarily because of the lack of
system logging. This chapter proposes a novel methodology that logs
the values of relevant memory addresses used by a programmable logic
controller program along with their timestamps. Machine learning tech-
niques are applied to the logged data to identify anomalous or abnor-
mal programmable logic controller operations. An application of the
methodology to a simulated traffic light control system demonstrates
its effectiveness in performing forensic investigations of programmable
logic controllers.

Keywords: Programming logic controllers, forensics, machine learning

1. Introduction
Industrial control systems, which are widely used in the critical in-

frastructure, contribute to safety and convenience in every aspect of
modern society. These systems have served reliably for decades, but a
changing technological environment is exposing them to risks that they
were not designed to handle [4]. In particular, their reliance on network-
ing technologies, including remote access and control over the Internet,
significantly increase the likelihood of attacks.

© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
G. Peterson and S. Shenoi (Eds.): Advances in Digital Forensics XIII, IFIP AICT 511, pp. 81–94, 2017.
DOI: 10.1007/978-3-319-67208-3_5

81

82 ADVANCES IN DIGITAL FORENSICS XIII

A common approach when investigating attacks and anomalies involv-
ing an industrial control system is to concentrate on the central server
of the digital control system or supervisory control and data acquisition
(SCADA) system [4]. These servers typically use commodity operating
systems, enabling the use of standard digital forensic tools. However,
field devices in an industrial control system such as programmable logic
controllers (PLCs) and remote terminal units (RTUs) typically rely on
proprietary hardware and embedded operating systems, and, therefore,
require specialized digital forensic tools and techniques. Unfortunately,
these tools and techniques are very limited in their functionality or sim-
ply do not exist.

Programmable logic controllers, which interact with and manage sen-
sors and actuators, are important components of industrial control sys-
tems. As a result, they are attractive targets for attackers. A notable ex-
ample is the Stuxnet malware that targeted Siemens programming logic
controllers that operated Iran’s uranium hexafluoride centrifuges [3].
The malware reprogrammed programmable logic controller code to cause
malfunctions and damage while providing fabricated data to the opera-
tors in order to mask the attacks.

Unlike traditional digital forensics, no standard guidelines, procedures
and tools are available for performing programmable logic controller
forensics. A key challenge is the lack of system logging for forensic inves-
tigations. This chapter proposes a forensic methodology that captures
the values of relevant memory addresses used by a programmable logic
controller program in a log file. Machine learning techniques are applied
to the logged data to identify anomalous or abnormal programmable
logic controller operations. The methodology is applied to the popular
Siemens Simatic S7-1212C programmable logic controller. Experiments
with a simulated traffic light control system demonstrate the effective-
ness and utility of the methodology in forensic investigations of incidents
involving programmable logic controllers.

2. Programmable Logic Controllers
A programmable logic controller is a special microprocessor-based de-

vice that uses programmable memory to store instructions and imple-
ment functions such as logic, sequencing, timing, counting and arith-
metic in order to monitor and control equipment and processes [2]. Fig-
ure 1 shows a schematic diagram of a programmable logic controller.

The programming of controllers is an important task when design-
ing and implementing control applications. Each programmable logic
controller has to be loaded with a program that controls the status of

Yau & Chow 83

Figure 1. Programmable logic controller.

outputs based on the status of inputs. A programmable logic controller
identifies each input or output according to its memory address. In the
case of Siemens programmable logic controllers, the addresses of inputs
and outputs are expressed in terms of their byte and bit numbers. For
example, I0.1 is an input at bit 1 in byte 0 and Q0.7 is an output at
bit 7 in byte 0.

A programmable logic controller exhibits anomalous operations in the
following situations: (i) hardware failure; (ii) incompatible firmware ver-
sion; (iii) control program bugs created by an authorized programmer or
attacker; (iv) stop and start attacks [1]; and (v) memory read and write
attacks [1].

The first step in detecting these anomalous operations is to capture
the values of the inputs and outputs used by the control program in a
log file. Machine learning techniques are subsequently applied to the
logged data in order to detect anomalous operations.

3. Forensic Challenges
Digital forensic guidelines, procedures and tools have been devel-

oped for traditional information technology infrastructures and envi-
ronments. A digital forensic process includes identification, collection,
analysis and reporting. However, performing digital forensic techniques
on programmable logic controllers is subject to several challenges [11]:

Lack of Documentation: Low-level documentation of propri-
etary hardware, firmware and applications is usually not available
for programmable logic controllers.

Lack of Domain-Specific Knowledge and Experience: Dig-
ital forensics of programmable logic controllers is hindered by the
lack of expertise and experience on the part of investigators.

84 ADVANCES IN DIGITAL FORENSICS XIII

Figure 2. Supervised learning.

Lack of Logging Mechanisms: Programmable logic controllers
typically do not log data for forensic purposes.

Lack of Forensic Tools: Limited, if any, forensic tools are avail-
able for conducting investigations of incidents involving program-
mable logic controllers.

Availability/Always On: Theavailability of programmable logic
controllers in an industrial control environment is a priority. It is
extremely difficult to shut down a control system and physical
process in order to conduct a forensic investigation.

4. Machine Learning
Machine learning is a data analysis method that automates model

building. By leveraging algorithms that iteratively learn from data, ma-
chine learning enables computer systems to find hidden insights without
being explicitly programmed [12]. Machine learning techniques have
been applied in a number of areas, including pattern and image recog-
nition, email spam filtering and network intrusion detection.

Supervised learning is the most common machine learning approach
and several algorithms such as decision trees, support vector machines
and artificial neural networks have been developed to implement super-
vised learning. In general, a supervised learning algorithm takes a known
set of input data and known responses to the data, and creates a model
that effectively predicts the responses to new input data [7].

Figure 2 shows a schematic diagram of the supervised learning ap-
proach. The experiments conducted in this research leveraged decision
tree (DT) and support vector machine (SVM) learning algorithms to

Yau & Chow 85

analyze log file data in order to detect anomalous programmable logic
controller operations.

5. Related Work
The Stuxnet attack [3] significantly increased research efforts related

to industrial control system security, including intrusion detection and
anomaly detection. However, very little research has specifically focused
on applying machine learning techniques to detect intrusions and anoma-
lous operations. An example is the work of Morris et al. [9], which
trained a classifier on log data captured from a laboratory-scale gas
pipeline and used it to detect 35 cyber attacks.

Another example is the research of Mantere et al. [6], which leveraged
network traffic features to detect anomalies in specific industrial control
systems. Mantere and colleagues used machine learning to decrease the
amount of manual customization required to deploy network security
monitors and intrusion detection systems in industrial control systems.

The research presented in this chapter differs from related work in
that it concentrates on monitoring and capturing data directly from
programmable logic controllers to support forensic investigations of in-
trusions and anomalous operations.

6. Experimental Setup and Methodology
This section describes the experimental setup and the methodology

for identifying anomalous programmable logic controller operations.

6.1 Experimental Setup
The experiments used a Siemens S7-1212C programmable logic con-

troller loaded with the TLIGHT traffic light control program. TLIGHT
is a sample program provided with the Siemens SIMATIC S7-300 Pro-
grammable Controller Quick Start User Guide [16]. As shown in Fig-
ure 3, the TLIGHT program controls vehicles and pedestrian traffic at
an intersection.

In order to simulate the hardware configuration of a traffic light con-
trol system, the programmable logic controller inputs I0.0 and I0.1 were
connected to switches and the outputs Q0.0, Q0.1, Q0.5, Q0.6 and Q0.7
were connected to traffic lights. Figure 4 shows the input/output con-
nections of the Siemens S7 1212C programmable logic controller. The
Ethernet port of the programmable logic controller was used to establish
a network connection for communicating with a peripheral device such
as a laptop for programming the system.

86 ADVANCES IN DIGITAL FORENSICS XIII

Figure 3. TLIGHT control system.

Figure 4. Siemens S7 1212C showing the input/output connections.

A program using the libnodave open source library [5] was used to log
the values of relevant memory addresses used by the TLIGHT program.
In particular, the program monitored the programmable logic controller
memory addresses over the network and recorded the values along with
their timestamps. To simplify the supervised learning process, all the
non-binary values of memory addresses (e.g., timers) were converted to
binary values.

6.2 Classifying Anomalous Operations
A machine learning technique typically splits the available data into

two parts: (i) training set for learning the properties of the data; and
(ii) testing set for evaluating the learned properties of the data. The
accuracy of response prediction was evaluated using the testing set [14].

Yau & Chow 87

Table 1. TLIGHT control program instructions.

Instruction Address Description

Outputs Q 0.0 Red for pedestrians
Q 0.1 Green for pedestrians
Q 0.5 Red for vehicles
Q 0.6 Yellow for vehicles
Q 0.7 Green for vehicles

Inputs I 0.0 Switch on the right-hand side of the street
I 0.1 Switch on the left-hand side of the street

Memory Bit M 0.0 Memory bit for switching the signal
after a green request from a pedestrian

Timers (On-Delay) T 2 Red for pedestrians
T 3 Green for pedestrians
T 4 Red for vehicles
T 5 Yellow for vehicles
T 6 Green for vehicles

In order to implement supervised leaning, it was first necessary to un-
derstand the TLIGHT program logic. The TLIGHT program comprises
instructions that involve inputs, outputs, memory bits and timers. Ta-
ble 1 provides details about the TLIGHT instructions. Figure 5 shows
the input and output signal states during the TLIGHT sample program
sequence [16].

The supervised learning approach involved the following steps:

Step 1: Training Set Creation: A training example corre-
sponds to a pair of input objects (values of relevant addresses)
and known responses (normal/anomalous operations of the traffic
lights). Normal and anomalous operations of TLIGHT were de-
termined according to the values at the relevant addresses (timers
and outputs). The seven normal operations of TLIGHT presented
in Figure 5 are based on the values of the timers and outputs at
various time intervals. Table 2 shows the input objects and known
responses for the seven normal operations of TLIGHT. These were
transformed to the input data matrix format for use in supervised
learning.

The training set was generated by running the traffic light con-
trol system and logging system to capture the values of relevant
addresses (inputs, outputs and timers) used by TLIGHT. Anoma-
lous operations were created by altering some values in address
locations using Snap7, an open-source, 32/64 bit, multi-platform

88 ADVANCES IN DIGITAL FORENSICS XIII

Figure 5. Input and output signal states during the TLIGHT program sequence.

Ethernet communications suite for interfacing with Siemens S7
programmable logic controllers [10]. Thus, the generated log file
contained normal and anomalous traffic light operations.

Step 2: Supervised Learning Algorithm Selection: Decision
tree (DT) and support vector machine (SVM) supervised learning
algorithms were employed in the experiments. A decision tree algo-
rithm was selected to classify anomalous operations of TLIGHT for
several reasons [8]. First, the target function has discrete output

Yau & Chow 89

Table 2. Seven normal TLIGHT operations.

Time Input Objects Known

Interval Response

Yes=1; No=0 On=1; Off=0 Yes=1; No=0

T2=3? T3=10? T4=6? T5=3? T6=1? Q0.0 Q0.1 Q0.5 Q0.6 Q0.7 Normal?

1 0 0 0 0 0 1 0 0 0 1 1
2 0 0 0 0 0 1 0 0 1 0 1
3 1 0 0 0 0 0 1 1 0 0 1
4 1 1 0 0 0 1 0 1 0 0 1
5 1 1 1 0 0 1 0 1 1 0 1
6 1 1 1 1 0 1 0 0 0 1 1
7 0 0 0 0 1 1 0 0 0 1 1

values (TLIGHT operations). Additionally, a decision tree algo-
rithm is fairly robust at handling training data errors, including
mislabeled attribute values. Indeed, somewhat noisy data (e.g.,
due to errors in assigning response values) do not pose much of a
problem for a decision tree algorithm. A decision tree algorithm
can also handle data with missing attribute values (e.g., missing
values at memory addresses during data capture).

In addition to a decision tree algorithm, a support vector machine
supervised learning algorithm was used. This was done to deter-
mine if any obvious differences in accuracy and performance oc-
cur when a different machine learning algorithm is used. Further-
more, the support vector machine algorithm performs well even
with small training datasets

Step 3: Supervised Learning Algorithm Application: The
captured data was assigned response values corresponding to nor-
mal or anomalous operations and was subsequently transformed
to a matrix format for input to the supervised learning algorithms
(Table 2). Decision tree and support vector machine classifiers
provided by scikit-learn [15] were used for model training. Table 3
lists the settings of the classifiers used in the experiments. The
classifiers were implemented using default values of the input pa-
rameters. No k-fold cross validation was applied to the training
samples. Finally, the accuracy of response prediction was evalu-
ated based on the testing data.

90 ADVANCES IN DIGITAL FORENSICS XIII

Table 3. DT and SVM classifier settings in scikit-learn.

DT SVM

Class tree.DecisionTreeClassifier svm.SVC

Training Samples Transaction records in data log files
with assigned known responses

• Input Objects Memory addresses used in TLIGHT
• Known Responses Operational status of TLIGHT

(normal/anomalous)

Parameter Settings Default settings

Table 4. Classification accuracy.

Dataset 1 Dataset 2

Training Records 560 1,600
Testing Records 2,240 6,400

Learning Algorithm DT SVM DT SVM
Accuracy 99.91% 99.91% 99.94% 99.60%

7. Experimental Results and Discussion
In order to evaluate the accuracy of the learned models, two datasets

were prepared for the decision tree and support vector machine learn-
ing algorithms. The first set (Dataset 1) contained 2,800 records, 560
for training and 2,240 for testing. The second set (Dataset 2) con-
tained 8,000 records, 1,600 for training and 6,400 for testing. Table 4
shows the classification accuracy. The accuracy rates with Dataset 1 for
the decision tree and support vector machine learning algorithms were
99.91% while the accuracy rates with Dataset 2 for the decision tree and
support vector machine learning algorithms were 99.94% and 99.60%,
respectively.

In the experiments, transaction records in the log file corresponding
to anomalous operations were identified by machine learning. Because
the values at the relevant addresses used by TLIGHT were recorded
along with timestamps in the log file, it was possible to trace which
values had been altered and when they were altered, and subsequently
identify the anomalous TLIGHT operations. However, a log file alone
may be insufficient in a forensic investigation because it does not con-
tain information about what (e.g., IP address) induced an anomalous
operation and how it was induced. For this reason, a forensic investiga-
tor should use a network packet analyzer such as Wireshark to capture

Yau & Chow 91

Figure 6. Log file with anomalous operations.

packets while employing the logging system to record the relevant ad-
dresses used by TLIGHT. Wireshark supports the PROFINET industrial
data communications standard in order to record and analyze Ethernet
message frames. It can be used to dissect the ISO-on-TCP packets in
Siemens S7 programmable logic controller communications after adding
the Wireshark S7 dissector plugin. Note that S7 is a function-oriented
or command-oriented protocol in that each transmission contains a com-
mand or a reply.

After collecting and analyzing the log file and network packet data, a
forensic investigator can discover where the compromise originated, how
it was carried out and, possibly, who was responsible for the incident.
For example, the machine learning algorithms (decision tree and support
vector machine) identified that anomalous operations started on 09 June
2016 at 09:55.49.16 AM (Figure 6) and on 29 August 2016 at 09:27:38.96
PM (Figure 7). This step saves a forensic investigator considerable time
in identifying anomalous transactions. Based on the timestamps in the
log file, an investigator can focus on checking the actions performed on
the system (e.g., firmware or user control program updates by authorized
operators and alterations performed by unauthorized entities).

92 ADVANCES IN DIGITAL FORENSICS XIII

Figure 7. Anomalous operations.

In the experiment, the anomalous operations that started on 09 June
2016 at 09:55.49.16 AM were the result of a programmable logic con-
troller self-test and the anomalous operations that started on 29 August
2016 at 09:27:38.96 PM were due to a simulated attack (Snap7) [10].
These examples demonstrate that machine learning can help a foren-
sic investigator filter unnecessary log data and narrow the scope of the
forensic investigation.

The methodology presented in this chapter can be extended to other
brands of programmable logic controllers and other control programs.
However, it is not possible to create a single logging system for all pro-
grammable logic controller applications because different applications
require different control programs. Therefore, each programmable logic
controller application should have its own logging system. In order to
create a logging system, it is necessary to understand the design of the
control program and identify the programmable logic controller memory
addresses that must be monitored and analyzed.

In order to simplify machine learning, the experiments did not con-
sider the time sequences of normal programmable logic controller oper-
ations. Therefore, the accuracy of the results may vary. Note also that

Yau & Chow 93

supervised learning is by no means the only way to identify anomalous
programmable logic controller operations. In fact, the work described in
this chapter serves as an initial approach to determine whether or not su-
pervised learning is feasible for programmable logic controller forensics.
Indeed, the experimental results demonstrate that supervised learning
can help predict anomalous operations with uncertain inputs and re-
sponses, even in the case of complicated user control programs.

8. Conclusions
A log containing the values at the relevant memory addresses used by

a programmable logic controller program along with their timestamps
can be very valuable in a forensic investigation of an industrial control
system incident. In particular, machine learning techniques can applied
to the logged data to identify anomalous programmable logic controller
operations. The application of the methodology to a simulated traf-
fic light control system demonstrates its effectiveness in a forensic in-
vestigation involving a programmable logic controller. Since different
programmable logic controller applications require different control pro-
grams, each application should have its own logging system. In order to
create the logging system, it is necessary to understand the design of the
control program and identify the programmable logic controller memory
addresses that must be monitored and analyzed. However, a log file
alone may be insufficient in a forensic investigation because it may not
contain information about what induced an anomalous operation and
how it was induced. Therefore, it is recommended to augment the log
file with data from a network packet analyzer such as Wireshark.

This research is an initial step in developing forensic capabilities for
programmable logic controllers. Future research will attempt to ap-
ply and refine machine learning techniques to various industrial control
system applications to support forensic investigations of intrusions and
anomalous behavior in these vital systems that permeate the critical
infrastructure.

References

[1] D. Beresford, Exploiting Siemens Simatic S7 PLCs, presented at
Black Hat USA, 2011.

[2] W. Bolton, Programmable Logic Controllers, Newnes, Burlington,
Massachusetts, 2009.

[3] N. Falliere, L. O’Murchu and E. Chien, W32.Stuxnet Dossier,
Symantec, Mountain View, California, 2011.

94 ADVANCES IN DIGITAL FORENSICS XIII

[4] L. Folkerth, Forensic Analysis of Industrial Control Systems, In-
foSec Reading Room, SANS Institute, Bethesda, Maryland, 2015.

[5] T. Hergenhahn, libnodave (sourceforge.net/projects/libno
dave), 2014.

[6] M. Mantere, M. Sailio and S. Noponen, Network traffic features for
anomaly detection in a specific industrial control system network,
Future Internet, vol. 5(4), pp. 460–473, 2013.

[7] MathWorks, Supervised Learning Workflow and Algorithms, Nat-
ick, Massachusetts (www.mathworks.com/help/stats/supervised
-learning-machine-learning-workflow-and-algorithms.html
?requestedDomain=www.mathworks.com), 2017.

[8] T. Mitchell, Machine Learning, WCB/McGraw-Hill, Boston, Mas-
sachusetts, 1997.

[9] T. Morris, Z. Thornton and I. Turnipseed, Industrial control sys-
tem simulation and data logging for intrusion detection system re-
search, Proceedings of the Seventh Annual Southeastern Cyber Se-
curity Summit, 2015.

[10] D. Nardella, Step 7 Open Source Ethernet Communication Suite,
Bari, Italy (snap7.sourceforge.net), 2016.

[11] H. Patzlaff, D 7.1 Preliminary Report on Forensic Analysis for In-
dustrial Systems, CRISALIS Consortium, Symantec, Sophia An-
tipolis, France, 2013.

[12] SAS Institute, Machine Learning: What it is and Why it
Matters, Milan, Italy (www.sas.com/it_it/insights/analytics/
machine-learning.html), 2016.

[13] S. Sayad, An Introduction to Data Mining, University of Toronto,
Toronto, Canada, 2011.

[14] scikit-learn Project, An Introduction to Machine Learning
with scikit-learn (scikit-learn.org/stable/tutorial/basic/
tutorial.html), 2016.

[15] scikit-learn Project, Supervised Learning (scikit-learn.org/
stable/supervised_learning.html#), 2016.

[16] Siemens, SIMATIC S7-300 Programmable Controller Quick Start,
Primer, Preface, C79000-G7076-C500-01, Nuremberg, Germany,
1996.

III

NETWORK AND
CLOUD FORENSICS

Chapter 6

A FORENSIC METHODOLOGY FOR
SOFTWARE-DEFINED NETWORK
SWITCHES

Tommy Chin and Kaiqi Xiong

Abstract This chapter presents a forensic methodology for computing systems in
a software-defined networking environment that consists of an applica-
tion plane, control plane and data plane. The methodology involves a
forensic examination of the software-defined networking infrastructure
from the perspective of a switch. Memory images of a live switch and
southbound communications are leveraged to enable forensic investiga-
tors to identify and locate potential evidence for triage in real time. The
methodology is evaluated using a real-world testbed exposed to network
attacks. The experimental results demonstrate the effectiveness of the
methodology for forensic investigations of software-defined networking
infrastructures.

Keywords: Software-defined networks, incident response, forensics, switches

1. Introduction
Software-defined networking (SDN) is a popular enterprise technol-

ogy that employs a number of security mechanisms [4, 5, 8]. However,
attackers often erase log files and historical data in targeted systems to
mask their malicious activities. This requires the application of forensic
techniques to investigate the compromised systems. Several researchers
have studied the forensic aspects of software-defined networking, in-
cluding data centers [2], traceback techniques [6] and the management
layer [10]. However, little, if any, research has focused on triage tech-
niques for software-defined networking infrastructures, specifically for
switching devices.

Several attacks have been developed that target software-defined net-
works [7, 9, 11]. Defensive mechanisms for combating these attacks

© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
G. Peterson and S. Shenoi (Eds.): Advances in Digital Forensics XIII, IFIP AICT 511, pp. 97–110, 2017.
DOI: 10.1007/978-3-319-67208-3_6

97

98 ADVANCES IN DIGITAL FORENSICS XIII

heavily depend on sophisticated detection techniques based on signa-
tures and heuristic patterns [5, 23]. Switching software such as Open
vSwitch (OVS) [16] is widely deployed to forward traffic in software-
defined network infrastructures (Open vSwitch traditionally executes in
an operating system of choice). However, in the case of a data breach
or other compromise, it may be necessary to conduct forensic analyses
of all the devices in a software-defined network infrastructure.

This chapter presents a forensic methodology for analyzing switching
devices in software-defined networking environments. The methodol-
ogy leverages memory images of a live switch with traffic capture from
southbound communications, where a southbound interface enables a
network component to communicate with a lower-level component. Note
that southbound communications refers to the exchange of software-
defined networking messages between a switch and controller. On the
other hand, northbound communications refers to traffic between an
application-oriented system interface and controller that involves pro-
cedural calls. Northbound communications ties applications with con-
trollers, but this traffic is out of scope because the focus is on switch-
ing devices. The forensic methodology was evaluated using the Global
Environment for Network Innovation (GENI), a heterogeneous testbed
that provides extensive capabilities for software-defined networking re-
search [3]. Specifically, a series of network attacks was used to thoroughly
examine areas of interest in a forensic investigation.

2. Background
Network forensic approaches are applied to network devices that trans-

port data of relevance to investigations [2, 10]. However, traditional ap-
proaches provide limited results due to the proprietary, vendor-specific
nature of networking devices. Statistical information about network-
ing devices can be derived from Simple Network Management Protocol
(SNMP) traffic and logging services such as syslog. Other sources of
information include configuration files and settings that are backed up
remotely or locally depending on administrative needs. However, ana-
lyzing such information using available forensic techniques (e.g., [2, 6,
10]) often provides limited network event and system notification data.

Software-defined network switching devices, which come in hardware
and software variants, contain potentially valuable forensic information.
Software-based switching devices commonly reside in Linux-based com-
puting systems [5, 19] and can therefore be investigated using traditional
host-based forensic methods. Although valuable information may be ob-
tained about the software-defined networking infrastructure, limited in-

Chin & Xiong 99

formation is obtained if only local files are considered. System memory
also contains useful information about running services and programs
and can be forensically analyzed using the Volatility Framework [18].
However, there is limited research related to these aspects in software-
defined networks.

A switching device in a software-defined network forwards traffic from
one location to other destinations. This traffic originates from a vari-
ety of users, some of whom may be malicious. The switching device,
which has no way of divining user intent, simply forwards the traffic
to its destination. After a security incident, a forensic analyst can use
network device statistics to discern the point-of-entry and other infor-
mation about a malicious actor. However, a switching device is also a
valuable source of evidence and, as such, should be considered during a
forensic investigation.

The proposed methodology addresses the two main challenges in-
volved in forensic analyses of networking devices. The first challenge
deals with the timeline of events following a compromise, which is criti-
cal to an investigation. In a traditional network, memory contents may
be erased due to normal operations, leading to the loss of valuable event
information. Fortunately, software-based switches traditionally reside in
virtualized systems that provide real-time snapshots of memory. The ex-
perimental evaluation conducted in this research examined the amount
of time that an incident response team requires to collect event infor-
mation from memory before the normal operations of a virtual machine
(VM) clear the memory contents.

The second challenge deals with local storage in a software-defined
networking device. A software-defined switching device traditionally has
minimal secondary memory (hard drive) space and maximizes RAM and
processing power to obtain adequate network transmission performance.
Open vSwitch, a common distributed virtual multilayer switch used in
software-defined networks, has numerous logging mechanisms that en-
able a variety of event information to be stored locally. If the virtual
machine has limited storage space during the operation of the switch,
older historical data is overwritten with new events in a continuous cycle.
Remote storage of system logs can be implemented; however, due to the
design of a software-defined network, this storage would have to reside
in the control plane. A design limitation of software-defined networks
prevents access from the data plane to the control plane; this requires
a potentially costly solution to be implemented to obtain information.
The experimental evaluation conducted in this research examines some
problems related to the local storage of software-defined switches.

100 ADVANCES IN DIGITAL FORENSICS XIII

3. Related Work
A software-defined network is interesting from the security perspec-

tive because its controller provides an overall view of the managed net-
work [15] and because the network is programmable [16, 17]. Security
research related to software-defined networks has primarily concentrated
on the detection and mitigation of link flooding [12], denial-of-service,
man-in-middle and other attacks [8, 19]. However, most studies have em-
ployed Mininet [14] to conduct simulations for performance and security
evaluations; however, these experiments are often not very realistic.

While traditional network forensics is a mature area, limited research
has focused on forensic analysis techniques for software-defined networks.
The work of Bates et al. [2] stands out in that it employs software-defined
networking as a tool for digital forensics. However, the approach requires
a middlebox system to collect traffic information in a software-defined
network and save it to local storage.

This approach has two limitations. First, while a middlebox enables
a full network traffic capture for analysis of a variety of events, the
capture does not include the southbound communications from a con-
troller, which provide critical information about events leading up to
the incident and post incident. The second limitation is that adequate
memory is essential to the functioning of a software-defined switch, but
the preservation of memory contents is vital to forensic analysis because
the memory contains crucial information about switch operation. The
use of a middlebox is reasonable, but the memory contents may not be
accessed without root privileges, which poses a major security risk.

Thus, the approach of Bates et al. [2] may not provide a forensic
investigator with adequate information about a security incident. On the
other hand, the proposed forensic methodology enables an investigator
to examine and catalog incident information.

4. Proposed Forensic Methodology
A software-defined networking environment is impacted by security

risks to switching devices, controllers and network peripherals. As more
devices and peripherals are incorporated in a network, the number of
vulnerabilities increase and, therefore, additional risks are introduced.
This work assumes that a threat actor launches an attack from outside
the network topology (wide-area network). It also assumes that the
threat actor has compromised an internal computing system and has
wiped all the content of the local hard drive. Finally, it is assumed the
threat actor cannot access the switching device operating system (Open
vSwitch) and controller (Floodlight) [17].

Chin & Xiong 101

Figure 1. Threat model.

Figure 1 presents the threat model. The critical areas of investiga-
tion are the memory and the southbound communications of a software-
defined switch captured by local logging mechanisms as determined by
the software configuration. The figure shows a general switch configura-
tion in which multiple computing devices are attached to the switch via
physical or virtual configurations.

It is assumed that a threat actor resides in the group of end users.
End users are targeted by the threat actor, but the software-defined net-
work design ensures that Open vSwitch and Floodlight are untouched.
Additionally, the activities of the threat actor leave forensic artifacts in
memory and southbound communications traffic.

By leveraging the two main components of a switch, memory and
network traffic, along with the service log files, a forensic investigator
can identify and analyze artifacts related to a network compromise:

Memory Artifacts: A network switch has memory components
in a variety of specifications and sizes. The memory components
provide rapid-access storage locations for network switching. From
the perspective of forensic analysis, remnants of software variables
and other artifacts stored in memory can provide useful informa-
tion about the operations of the switch. Forensic tools such as
Volatility, edb and Strings may be used for memory analysis. The
experimental evaluation analyzed the amount of time various ar-
tifacts remain in the memory of an Open vSwitch.

Southbound Traffic: During the operation of a software-defined
network switch, a software-defined network controller provides in-

102 ADVANCES IN DIGITAL FORENSICS XIII

Figure 2. Experimental network topology.

structions and flow data to support network traffic to and from
network devices. The communications between a controller and
switch is known as southbound traffic, which mainly comprises
OpenFlow messages [15]. The communications can contain a va-
riety of artifacts that are valuable to a forensic investigation. The
experimental evaluation used the tcpdump tool to capture and an-
alyze southbound communications.

Service Log Files: An Open vSwitch generates several log files
that exclude operating system events. The log files reside in various
locations of local storage and can be collected and analyzed for
events of interest in a forensic investigation. The experimental
evaluation considered some critical files for analysis and identified
the information that can be utilized for forensic purposes. The
events of interest include flow insertions, performance alerts and
fault errors, among others.

5. Experimental Evaluation
This section describes the application of the proposed forensic analysis

methodology on a software-defined network that uses an Open vSwitch.
The experiments identify the valuable information that can be recovered
and help provide a timeline for the incident under investigation.

5.1 Experimental Setup
The experimental evaluation of the proposed forensic methodology

used GENI [3], which virtualized all the network nodes. Figure 2 presents
the topology of the experimental network. Two switch placements were
configured: SW1 positioned between two routers and SW2 positioned
behind a router. SW1 and SW2 were positioned to emulate a demilita-

Chin & Xiong 103

Table 1. Attack timeline.

Time Actions

00:00 Start (Authenticate)
00:15 Plant Meterpreter Shell
00:20 Exfiltrate Data
08:53 Wipe Target Drive
08:54 End (Exit Network)

rized zone (DMZ) and an internal network, respectively. All the nodes
in the GENI topology had the same hardware specifications: 2.10 GHz
Intel Xeon CPU E5-2450 with 1 GB RAM and 16 GB hard drive run-
ning Ubuntu 14.04. All the network links were set to 100 mbps and the
routers were Linux nodes with routing functionality. No latency, loss or
link degradation occurred in the experimental configuration.

5.2 Attack Scenario
A threat actor could be an insider or an external entity. The attack

scenario considered in the evaluation assumed that the attacker resides
in the Internet cloud. It was also assumed that the actor could conduct
reconnaissance to obtain network topology information.

Clients in the GENI topology were configured to have compromised
SSH accounts. The threat actor targeted a client in the demilitarized
zone and internal network. A remote shell was set up on the targeted
machine. The Metasploit Framework [13] was then used to plant a Me-
terpreter shell in the targeted machine and various configuration files
were subsequently exfiltrated to the Internet cloud.

Table 1 presents the timeline of the events involved in the attack on
the software-defined network infrastructure. The threat actor gained
access to the client using a compromised administrative access account,
planted the shell, exfiltrated data, wiped the target drive and exited the
network. Note that the time required to exfiltrate the data and wipe the
target hard drive depends on the system resources and the quantity of
data involved. However, in this scenario, after exfiltrating the data, the
threat actor simply initiated the process to wipe the drive and exited
the network.

5.3 Memory Analysis
Open vSwitch executes on a computing platform whose memory po-

tentially contains valuable artifacts. Figure 3 presents the three-step

104 ADVANCES IN DIGITAL FORENSICS XIII

Figure 3. Memory analysis.

approach for conducting a memory analysis of an Open vSwitch. The
three-step approach includes: (i) capture; (ii) interpretation; and (iii)
identification and analysis.

Memory artifacts can be obtained via root-level access from several
locations as shown in Figure 3. The following artifacts were discovered
during the experiments:

Flow Table: The flow table is used by the Open vSwitch to for-
ward traffic to the correct destinations. The flow table is stored in
memory and can be utilized to identify the origin of an attack and
the path traversed within the network by the threat actor. The
information collected included MAC addresses, switch port inter-
faces through which traffic traversed and port descriptors such as
link states, speed and the number of packets sent. This infor-
mation can be used by a forensic investigator to reconstruct the
software-defined network topology up to one neighboring device.

Logged Data: Open vSwitch has several logging mechanisms that
can be leveraged in a forensic investigation. Although the log
entries are written to local storage, the memory analysis of Open
vSwitch revealed that logged events were stored for well over 20
minutes. Network activity and memory capacity determine when
the events are erased and replaced. Note that network activity
refers to the number of network connections between hosts. A
large data transfer between two clients generates just one event
whereas microtransactions between clients generate many events.

Runtime Parameters: An administrator has to configure Open
vSwitch to tailor it to the network requirements. The parame-
ters and configurations stored in memory are of value in a forensic

Chin & Xiong 105

Figure 4. Southbound communications analysis.

investigation. These provide information about the logging mech-
anisms, controller and Open vSwitch plugins.

5.4 Southbound Traffic Analysis
Southbound communications are vital to the operation of a software-

defined network because the controller utilizes this channel to send a
variety of commands to a switch. In a forensic investigation, southbound
traffic may be captured and analyzed to discover traces of the threat
actor depending on how much time has elapsed.

Figure 4 shows the three-step approach for analyzing southbound com-
munications. Southbound communications traffic can be captured using
a variety of networking tools. Analysis of the captured communications
during the experimental evaluation revealed OpenFlow traffic, but this
quickly disappeared after the software-defined network flow timed out.
Note that a software-defined network flow is inserted into a switch for
data communications between a source and destination. The flow infor-
mation has a timeout period in order to maintain the size of the flow
table. If communications traffic stops after a period of time set by the
administrator, then the flow disappears and the controller is informed.
The timing of these communications depends heavily on the configura-
tion of the Open vSwitch and the attached controller. The experiments
used a default setting of five seconds and several runs were performed
to analyze this issue. Note that a software-defined network uses several
protocols to implement the desired network functionality, and this traffic
can be analyzed in a forensic investigation.

A software-defined network controller has numerous other mechanisms
to implement the network topology. The mechanisms can be identified
by the behavioral aspects and data encapsulation techniques used to
maintain and operate the network topology. For example, OpenFlow
has two protocol-specific flags, OF Type 13 and OF Type 10, that en-
able data plane traffic to be transmitted and received by the controller,

106 ADVANCES IN DIGITAL FORENSICS XIII

respectively. Specially-crafted packets that leverage these flags may be
configured and sent between the software-defined network planes to es-
tablish network links and collect statistical information.

In the attack scenario, the threat actor launched a simple attack and
exfiltrated data. The associated communications are visible when a flow
is inserted into a switching device, when a flow is updated and when link
discovery protocols are used to maintain statistical information about a
network path. Southbound communications can also reveal the transfer
of exfiltrated data via delay analysis techniques that identify link latency.
An investigator can use this information to carefully verify the location
of the threat actor and the path traversed to the targeted machine.

5.5 Service-Level Event Logging
Although memory and southbound communications analyses can pro-

vide detailed information about a software switch, local logging mech-
anisms can also be employed by default on Open vSwitch to capture
relevant events pertaining to software-based networking services. Open
vSwitch provides three key log files:

ovs-ctl.log: This log file contains information about the start
and stop times of Open vSwitch. The artifacts can be used to
verify the time sequence of network events and to show that Open
vSwitch was running during an incident and that it was not killed
or restarted during analysis.

ovsdb-server.log: This log file provides event information re-
lated to a running database that maintains the Open vSwitch flow
table. While this log file provides minimal details about network
characteristics, the logged information is useful for investigating
denial-of-service attacks that use spoofed IP addresses.

ovs-vswitchd.log: This log file provides the most valuable arti-
facts related to traffic flows and controller communications. Anal-
ysis of the log file in the attack scenario revealed the threat actor’s
initial communications and network exit times. While limited de-
tails are provided about southbound communications, information
in the log file provides a useful high-level overview of the chan-
nel. Indeed, using the logged information in conjunction with
a southbound traffic capture can help verify the integrity of the
southbound link.

Chin & Xiong 107

5.6 Discussion
The attack scenario considered in the experimental evaluation in-

volved a threat actor who entered the configured GENI network, compro-
mised a targeted client, exfiltrated data and erased all the information
related to the attack. However, the software switch could not be tam-
pered with by the threat actor due to access control limitations imposed
by the software-defined network configuration.

Three components of interest in forensic investigations of software-
defined networks are memory, southbound traffic and service-level log
files. Memory analysis revealed several artifacts that can be used to
identify a threat actor’s point-of-entry into the network along with a
timeline. This information can be used along with residual informa-
tion in southbound communications to verify the timing of key events,
depending, of course, on how long after the compromise the incident re-
sponse is conducted. While southbound communications might provide
limited information due to a delay in incident response, service-level lo-
cal log files can provide adequate information to correlate events and
their times. An event timeline is an important aspect of a forensic in-
vestigation and can be very helpful in identifying the threat actor.

The following configurations are recommended to enhance forensic
investigations of software-defined networks:

Memory Snapshots: Analysis of the memory of a switching
device is vital to a forensic investigation. The software switch con-
sidered in this study was merely a virtual machine running Open
vSwitch on a hypervisor. Due to the nature of virtualization, sev-
eral hypervisor platforms provide memory snapshot functionality.
Periodic memory snapshots should be taken to record a history.
However, since a memory image can be very large depending on
the amount of memory allocated to a virtual machine, it is advis-
able to focus the snapshots on important areas of memory. Addi-
tionally, compression or historical data rotation could be used to
ensure that data is not lost.

Centralized Logging Service: In a software-defined network,
limited amount of hard drive space may be allocated to a software
switch due to hardware constraints or space conservation. There-
fore, it is recommended to use a centralized logging service to col-
lect information stored in service-level log files related to a switch
in order to offload the hard drive space and facilitate data querying
and analysis. The centralized logging service should be located in
the data plane, but this can present a risk to the software-defined
network infrastructure because this device would have access to

108 ADVANCES IN DIGITAL FORENSICS XIII

the data and control planes. Consequently, the centralized logging
service should be positioned in the control plane or application to
ensure the secure collection of relevant information without inter-
actions with data plane users.

6. Conclusions
Software-defined network controllers are widely used to manage net-

work traffic, allocate computing resources [1, 20–22], control network
policies and detect and mitigate security attacks. However, limited re-
search has focused on forensic analysis techniques for software-defined
network controllers and devices. This chapter has attempted to address
the gap by proposing an approach for forensically analyzing a software-
defined network infrastructure from the perspective of a switch. The
chapter also identifies the important artifacts that can be found in the
memory image of a software switch and in southbound communications
traffic. While several researchers have used Mininet to provide simula-
tion results pertaining to their approaches, this research has employed
real-time attacks on a real-world software-defined network to demon-
strate the efficacy of the proposed approach.

Future research will focus on re-targeting the proposed approach to
forensically analyze software-defined network controllers. Efforts will
also concentrate on extending the approach to conducting forensic anal-
yses of large-scale networks and applications.

Acknowledgement
This research was partially supported by the National Science Foun-

dation under Grant Nos. CNS 1620871, CNS 1633978 and CNS 1636622;
by the BBN/GPO Project 1936 under Grant No. CNS 1346688; and by
a seed grant from the Florida Center for Cybersecurity (FC2).

References

[1] A. Akella and K. Xiong, Quality of service (QoS) guaranteed net-
work resource allocation via software-defined networking (SDN),
Proceedings of the Twelfth International Conference on Dependable,
Autonomic and Secure Computing, pp. 7–13, 2014.

[2] A. Bates, K. Butler, A. Haeberlen, M. Sherr and W. Zhou, Let
SDN be your eyes: Secure forensics in data center networks, Pro-
ceedings of the Network and Distributed System Security Workshop
on Security of Emerging Network Technologies, 2014.

Chin & Xiong 109

[3] M. Berman, J. Chase, L. Landweber, A. Nakao, M. Ott, D. Ray-
chaudhuri, R. Ricci and I. Seskar, GENI: A federated testbed for
innovative network experiments, Journal of Computer Networks,
vol. 61, pp. 5–24, 2014.

[4] T. Chin, X. Mountrouidou, X. Li and K. Xiong, An SDN-supported
collaborative approach for DDoS flooding detection and contain-
ment, Proceedings of the IEEE Military Communications Confer-
ence, pp. 659–664, 2015.

[5] T. Chin, X. Mountrouidou, X. Li and K. Xiong, Selective packet in-
spection to detect DoS flooding using software-defined networking,
Proceedings of the Thirty-Fifth IEEE International Conference on
Distributed Computing Systems Workshops, pp. 95–99, 2015.

[6] J. Francois and O. Festor, Anomaly traceback using software-
defined networking, Proceedings of the IEEE International Work-
shop on Information Forensics and Security, pp. 203–208, 2014.

[7] S. Hong, L. Xu, H. Wang and G. Gu, Poisoning network visibil-
ity in software-defined networks: New attacks and countermeasures,
Proceedings of the Twenty-Second Annual Network and Distributed
System Security Symposium, 2015.

[8] H. Hu, W. Han, G. Ahn and Z. Zhao, FlowGuard: Building robust
firewalls for software-defined networks, Proceedings of the Third
Workshop on Hot Topics in Software Defined Networking, pp. 97–
102, 2014.

[9] M. Kang, S. Lee and V. Gligor, The crossfire attack, Proceedings of
the IEEE Symposium on Security and Privacy, pp. 127–141, 2013.

[10] S. Khan, A. Gani, A. Wahab, A. Abdelaziz and M. Bagiwa, FML:
A novel forensic management layer for software-defined networks,
Proceedings of the Sixth IEEE International Conference on Cloud
System and Big Data Engineering (Confluence), pp. 619–623, 2016.

[11] D. Kreutz, F. Ramos and P. Verissimo, Towards secure and depend-
able software-defined networks, Proceedings of the Second ACM
SIGCOMM Workshop on Hot Topics in Software-Defined Network-
ing, pp. 55–60, 2013.

[12] C. Liaskos, V. Kotronis and X. Dimitropoulos, A novel frame-
work for modeling and mitigating distributed link flooding attacks,
Proceedings of the Thirty-Fifth IEEE International Conference on
Computer Communications, 2016.

110 ADVANCES IN DIGITAL FORENSICS XIII

[13] D. Maynor, K. Mookhey, J. Cervini, F. Roslan and K. Beaver,
Metasploit Toolkit for Penetration Testing, Exploit Development
and Vulnerability Research, Syngress, Burlington, Massachusetts,
2007.

[14] Mininet, Mininet (mininet.org), 2017.
[15] Open Networking Foundation, OpenFlow Switch Specification, Ver-

sion 1.5.1 (Protocol Version 0x06), ONF TS-025, Menlo Park, Cal-
ifornia, 2015.

[16] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Raja-
halme, J. Gross, A. Wang, J. Stringer, P. Shelar, K. Amidon and
M. Casado, The design and implementation of Open vSwitch, Pro-
ceedings of the Twelfth USENIX Symposium on Networked Systems
Design and Implementation, pp. 117–130, 2015.

[17] Project Floodlight, Floodlight (www.projectfloodlight.org/flo
odlight), 2017.

[18] Volatility Foundation, Volatility Framework (www.volatilityfoun
dation.org), 2017.

[19] H. Wang, L. Xu and G. Gu, FloodGuard: A DoS attack prevention
extension in software-defined networks, Proceedings of the Forty-
Fifth IEEE/IFIP International Conference on Dependable Systems
and Networks, pp. 239–250, 2015.

[20] K. Xiong, Web services performance modeling and analysis, Pro-
ceedings of the International Symposium on High Capacity Optical
Networks and Enabling Technologies, 2006.

[21] K. Xiong, Multiple priority customer service guarantees in cluster
computing, Proceedings of the IEEE International Symposium on
Parallel and Distributed Processing, 2009.

[22] K. Xiong, Resource Optimization and Security for Cloud Services,
John Wiley and Sons, Hoboken, New Jersey, 2014.

[23] A. Zaalouk, R. Khondoker, R. Marx and K. Bayarou, OrchSec:
An orchestrator-based architecture for enhancing network security
using network monitoring and SDN control functions, Proceedings
of the Twenty-Sixth Network Operations and Management Sympo-
sium, 2014.

Chapter 7

IDENTIFYING EVIDENCE FOR
CLOUD FORENSIC ANALYSIS

Changwei Liu, Anoop Singhal and Duminda Wijesekera

Abstract Cloud computing provides benefits such as increased flexibility, scala-
bility and cost savings to enterprises. However, it introduces several
challenges to digital forensic investigations. Current forensic analysis
frameworks and tools are largely intended for off-line investigations and
it is assumed that the logs are under investigator control. In cloud com-
puting, however, evidence can be distributed across several machines,
most of which would be outside the control of the investigator. Other
challenges include the dependence of forensically-valuable data on the
cloud deployment model, large volumes of data, proprietary data for-
mats, multiple isolated virtual machine instances running on a single
physical machine and inadequate tools for conducting cloud forensic
investigations.

This research demonstrates that evidence from multiple sources can
be used to reconstruct cloud attack scenarios. The sources include:
(i) intrusion detection system and application software logs; (ii) cloud
service API calls; and (iii) system calls from virtual machines. A forensic
analysis framework for cloud computing environments is presented that
considers logged data related to activities in the application layer as well
as lower layers. A Prolog-based forensic analysis tool is used to automate
the correlation of evidence from clients and the cloud service provider
in order to reconstruct attack scenarios in a forensic investigation.

Keywords: Cloud forensics, attack scenarios, OpenStack

1. Introduction
Digital forensics involves the identification, collection, examination

and analysis of data while preserving its integrity and maintaining strict
chain of custody during post-incident investigations [9]. Network foren-
sics is a component of digital forensics that primarily focuses on the anal-
ysis of network traffic and other data from intrusion detection systems

© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
G. Peterson and S. Shenoi (Eds.): Advances in Digital Forensics XIII, IFIP AICT 511, pp. 111–130, 2017.
DOI: 10.1007/978-3-319-67208-3_7

111

112 ADVANCES IN DIGITAL FORENSICS XIII

and logs [14]. Cloud forensics is an emerging branch of network foren-
sics, which involves post-incident analysis of systems with distributed
processing, multi-tenancy, virtualization and mobility of computations.
Ruan et al. [16] identify several challenges associated with cloud foren-
sics. These include the dependence of forensically-valuable data on the
cloud deployment model and methods, large volumes of data, propri-
etary data formats, large numbers of diverse, simultaneously-executing
virtual machine instances, lack of monitoring and alerts by hypervisors
that run virtual machines, and limited techniques and tools designed
specifically for cloud forensic investigations.

The National Institute of Standards and Technology (NIST) [7] has
published a cloud computing standards roadmap that emphasizes cloud
governance, security and risk assessment. A key recommendation in
the roadmap and by members of the digital forensics research commu-
nity [14, 16] is the implementation of forensics-enabled clouds. However,
most approaches focus on evidence gathering from infrastructure-as-a-
service cloud model deployments. No formal approach currently exists
for reconstructing attack scenarios based on evidence collected in vir-
tualized cloud environments. This research demonstrates that evidence
from multiple sources can be used to reconstruct cloud attack scenarios.
The sources include: (i) intrusion detection system and application soft-
ware logs; (ii) cloud service API calls; and (iii) system calls from virtual
machines. A Prolog-based forensic analysis tool is used to automate the
correlation of evidence from the three sources in order to reconstruct
attack scenarios in cloud forensic investigations.

2. Background and Related Work
Cloud computing has three principal service deployments: (i) software-

as-a-service (SaaS); (ii) platform-as-a-service (PaaS); and (iii) infrastruc-
ture-as-a-service (IaaS) [12]. A software-as-a-service model enables con-
sumers to use service provider applications running on a cloud infra-
structure. A platform-as-a-service model allows consumers to deploy
their own applications or acquired applications using programming lan-
guages, libraries, services and tools supported by the service provider.
An infrastructure-as-a-service model provides consumers with the abil-
ity to provision processing, storage, networks and other fundamental
computing resources, including operating systems and applications.

Cloud forensics is a subset of network forensics that uses techniques
tailored to cloud computing environments [16]. For example, data ac-
quisition is different in the software-as-a-service and infrastructure-as-
a-service models because an investigator has to depend entirely on the

Liu, Singhal & Wijesekera 113

cloud service provider in the case of a software-as-a-service model whereas
an investigator can acquire virtual machine images from a customer in
an infrastructure-as-a-service model.

Several techniques have been proposed to collect evidence from cloud
environments, including remote data acquisition, management plane ac-
quisition, live forensics and snapshot analysis [15]. Dykstra and Sher-
man [3] have retrieved volatile and non-volatile data from the Amazon
EC2 cloud active user instance platform using traditional forensic tools
such as EnCase and FTK. However, these tools do not validate the in-
tegrity of the collected data. Dykstra and Sherman [4] subsequently de-
veloped the FROST toolkit, which can be integrated within OpenStack
to collect logs from the operating system that runs the virtual machines;
this technique assumes that the cloud provider is trustworthy. Zawoad
et al. [19] have designed a complete, trustworthy and forensics-enabled
cloud.

Hay and Nance [5] have conducted live digital forensic analyses on
clouds with virtual introspection, a process that enables the hypervisor
or any other virtual machine to observe the state of a chosen virtual ma-
chine. They also developed a suite of virtual introspection tools for Xen
(VIX tools). At this time, live forensic tools have not been incorporated
as a commercial service by cloud providers.

Snapshot technology enables cloud customers to freeze virtual ma-
chines in specific states [2]. A frozen snapshot image may be restored
by loading it to a target virtual machine, following which information
about the running state of the virtual machine can be obtained. Sev-
eral hypervisors, including Xen, VMWare, ESX and Hyper-V, support
snapshot features.

In order to reduce the time and effort involved in forensic investiga-
tions, researchers have proposed the use of rules to automate evidence
correlation and attack reconstruction [10, 18]. Liu et al. [10] have in-
tegrated a Prolog rule-based tool with a vulnerability database and an
anti-forensic database to ascertain the admissibility of evidence and ex-
plain missing evidence due to the use of anti-forensic tools. However,
these rule-based forensic analysis frameworks have been developed for
networks, not for cloud environments.

3. Attack Reconstruction
Liu et al. [10, 11] have described an application of the MulVAL logic-

based network security analyzer [13] that uses rules representing generic
attack techniques to ascertain the causality between different items of
evidence collected from a compromised network to reconstruct the at-

114 ADVANCES IN DIGITAL FORENSICS XIII

tack steps. The rules, which are based on expert knowledge, are used as
hypotheses by an investigator to link chains of evidence that are written
in the form of Prolog predicates in order to create attack steps. At-
tack scenarios are reconstructed in the form of acyclic graphs as defined
below [11].

Definition 1 (Logical Evidence Graph (LEG)): A logical evi-
dence graph LEG = (Nf , Nr, Nc, E, L,G) is a six-tuple where Nf , Nr

and Nc are three disjoint sets of nodes in the graph (called fact, rule and
consequence fact nodes, respectively), E ⊆ ((Nf ∪Nc)×Nr)∪ (Nr ×Nc)
is the evidence, L is a mapping from nodes to labels and G ⊆ Nc is a
set of observed attack events.

Every rule node has one or more fact nodes or consequence fact nodes
from prior attack steps as its parents and a consequence fact node as
its only child. Node labels consist of instantiations of rules or sets of
predicates specified as follows:

1. A node in Nf is an instantiation of predicates that codify system
states, including access privileges, network topology and known
vulnerabilities associated with host computers. The following pred-
icates are used:

hasAccount(principal, host, account), canAccessFile(host,
user, access, path) and other predicates model access priv-
ileges.
attackerLocated(host) and hacl(src, dst, prot, port) mod-
el network topology, including the attacker’s location and net-
work reachability information.
vulExists(host, vulID, program) and vulProperty(vulID,
range, consequence) model node vulnerabilities.

2. A node in Nr describes a single rule of the form p ← p1∧p2 · · ·∧pn.
The rule head p is an instantiation of a predicate from Nc, which is
the child node of Nr in the logical evidence graph. The rule body
comprises pi (i = 1..n), which are predicate instantiations of Nf

from the current attack step and Nc from one or more prior attack
steps that comprise the parent nodes of Nr.

3. A node in Nc represents the predicate that codifies the post-attack
state as the consequence of an attack step. The two predicates
execCode(host, user) and netAccess(machine, protocol, port)
are used to model the attacker’s capability after an attack step.
Valid instantiations of these predicates after an attack update valid
instantiations of the three predicates listed in item 1 above.

Liu, Singhal & Wijesekera 115

5

4

3

6

2

1

7 8

Figure 1. Example logical evidence graph.

Figure 1 shows an example logical evidence graph; Table 1 describes
the nodes in Figure 1. In Figure 1, fact, rule and consequence fact nodes
are represented as boxes, ellipses and diamonds, respectively. Conse-
quence fact nodes (Nodes 1 and 3) codify the attack status obtained
from event logs and other forensic tools that record the postconditions
of attack steps. Fact nodes (Nodes 5, 6, 7 and 8) include network topol-
ogy (Nodes 5 and 6), computer configuration (Node 7) and software vul-
nerabilities obtained by analyzing evidence captured by forensic tools
(Node 8). Rule nodes (Nodes 2 and 4) represent rules that change the
attack status using attack steps. These rules, which are based on expert
knowledge, are used to link chains of evidence as consequences of attack
steps. Linking a chain of evidence using a rule creates an investigator’s
hypothesis of an attack step given the evidence.

4. Reconstructing Attack Scenarios
This section demonstrates how three experimental attacks launched

on a private cloud are reconstructed using evidence from the cloud.

4.1 Experimental Setup
OpenStack was used to create a private cloud. OpenStack is a collec-

tion of Python-based software projects that manage access to pooled

116 ADVANCES IN DIGITAL FORENSICS XIII

Table 1. Descriptions of the nodes in Figure 1.

Node Notation

1 execCode(workStation1, user)

2 THROUGH 3 (remote exploit of a server program)

3 netAccess(workStation1, tcp, 4040)

4 THROUGH 8 (direct network access)

5 hacl(internet, workStation1, tcp, 4040)

6 attackerLocated(internet)

7 networkServiceInfo(workStation1, httpd, tcp, 4040, user)

8 vulExists(workStation1, ‘CVE-2009-1918’, httpd, remoteExploit,
privEscalation)

storage and computing and network resources that reside in one or
more machines corresponding to a cloud. The collection has six core
projects: (i) Neutron (networking); (ii) Nova (computing); (iii) Glance
(image management); (iv) Swift (object storage); (v) Cinder (block stor-
age); and (vi) Keystone (authentication and authorization). OpenStack
can be used to deploy software-as-a-service, platform-as-a-service and
infrastructure-as-a-service cloud models; however, it is mostly deployed
as an infrastructure-as-a-service cloud.

DevStack is a series of extensible scripts that can invoke an Open-
Stack environment quickly. DevStack was used to deploy a private
infrastructure-as-a-service cloud with a version of Juno on an Ubuntu
computer that was accessed from IP address 172.16.168.100. An au-
thenticated user can manage OpenStack services by entering the IP ad-
dress 172.16.168.100 on a browser to access the cloud control dash-
board Horizon as shown in Figure 2.

Two virtual machine instances were deployed in the private cloud,
a web server named WebServer with IP address 172.16.168.226 and
a file server named FileServer with IP address 172.16.168.229. The
instances were managed by an authenticated user named admin. Web-
Server was an Apache server with a MySQL database that enabled SQL
queries to be issued via web applications. Also, SSH was set up on
FileServer to enable authenticated users to access it remotely. The Kali
ethical hacking Linux distribution tool was set up in the same network
at IP address 172.16.168.173 in order to launch attacks.

Liu, Singhal & Wijesekera 117

Figure 2. OpenStack web user interface (Horizon).

4.2 Experimental Attacks
A SQL injection attack, distributed denial-of-service (DDoS) attack

and denial-of-service (DoS) attack were launched at the two virtual ma-
chines in the infrastructure-as-a-service cloud. The SQL injection attack
exploited an unsanitized user input (CWE89 vulnerability) to the web
server. The DDoS attack involved a TCP connection flood that used
nping in Kali to prevent legitimate requests from reaching the file server.
The SQL injection and DDoS attacks could target any network (includ-
ing a cloud) that has the associated vulnerabilities. However, only priv-
ileged users in the infrastructure-as-a-service cloud can resize and delete
a virtual machine by launching the DoS attack that exploits vulnerabil-
ity CVE-2015-3241 in OpenStack Nova versions 2015.1 through 2015.1.1
and 2014.2.3 and earlier. The process of resizing and deleting an instance
in this way is called instance migration. The migration process does not

118 ADVANCES IN DIGITAL FORENSICS XIII

Figure 3. Resizing the file server.

terminate when an instance is deleted by exploiting CVE-2015-3241, so
an authenticated user could bypass the user quota enforcement mech-
anism to deplete all the available disk space by repeatedly performing
instance migration.

Figure 3 shows the resizing of the file server from ds512M to ds1G
where the availability zone of the instances is Nova. Instances were
resized and deleted until Nova was so depleted that it could not accept
any new instances.

4.3 Collecting Evidence for Reconstruction
In order to obtain evidence for forensic analysis, WebServer and the

SQL database in WebServer were configured to log accesses and query
history. Also, Snort was installed on the virtual machines in WebServer
and FileServer while Wireshark was deployed in the Ubuntu host ma-
chine to monitor network traffic. Snort was configured to capture the
SQL injection attack, which generated alerts based on the pre-set rules
while Wireshark was configured to capture packets associated with the
DDoS and DoS attacks.

Figure 4 lists example Snort alerts and MySQL query logs for the SQL
injection attack. Note that the attack was launched using or ‘1’=‘1’
to bypass the SQL query syntax check.

Figure 5 shows a snapshot of the packets captured by Wireshark. Kali
Linux at IP address 172.16.168.173 sent numerous SYN packets to
FileServer at IP address 172.16.168.229 and FileServer sent numerous
SYN-ACK packets back to Kali Linux.

A Prolog-based forensic tool [10, 11] was used to automate the process
of correlating items of evidence to reconstruct the SQL injection and
DDoS attacks. This was accomplished by coding the evidence and the
cloud configuration as Prolog predicates to create the input file shown

Liu, Singhal & Wijesekera 119

Figure 4. Example Snort alerts and MySQL query logs.

Figure 5. Snapshot of packets captured by Wireshark.

in Figure 6. At runtime, the input file instantiated the rules to create
the attack paths shown in Figure 7.

Table 2 describes the notation used in Figure 7, which shows two
attack paths. The attack path on the left [7, 8] → 6 → [5, 9, 10] →
4 → [3, 11] → 2 → 1 corresponds to the SQL injection attack on the
web server that exploited the CWE89 vulnerability to steal user data.
The attack path on the right [8, 16] → 15 → [14, 17, 18] → 13 → 12
corresponds to the DDoS attack on FileServer.

However, Snort and Wireshark failed to capture the DoS attack on
FileServer that exploited the CVE-2015-3241 vulnerability in the Open-
Stack Nova service. Fortunately, the OpenStack Nova API logs, which
record information about user operations on running instances, provided
evidence related to the DoS attack on FileServer.

Figure 8 shows a snapshot of the Nova API logs pertaining to the
instance migration caused by the DoS attack. The commands in bold
font show that instance bd1dac18-1ce2-44b5-93ee-967fec640ff3 rep-
resenting the FileServer virtual machine was resized via the commands

120 ADVANCES IN DIGITAL FORENSICS XIII

//Initial attack status and final attack status
attackerLocated(internet).
attackGoal(serviceDown(fileServer, user)).
attackGoal(execCode(database, user)).

//Network topology and computer configuration
//“ ” means any port
hacl(internet, webServer, tcp, 80).
hacl(internet, fileServer, tcp,).
directAccess(webServer, database, modify, user).

//Evidence found in WebServer
vulExists(webServer, ’SQLInjection’, httpd).
vulProperty(’SQLInjection’, remoteExploit, privEscalation).
networkServiceInfo(webServer, httpd, tcp, 80, user).

//Evidence captured by Wireshark
vulExists(fileServer, ‘DDoS’, httpd).
vulProperty(‘DDoS’, remoteExploit, privEscalation).
networkServiceInfo(fileServer, httpd, tcp, , user).

Figure 6. Prolog predicates for the SQL injection and DDoS attacks.

mv (move) and mkdir (create new directory) issued by user admin. Ta-
ble 3 shows that the instance ID was obtained by executing the nova
list command on the Ubuntu host computer.

To combine the attack status and cloud system configuration, the
related Nova API calls were manually aggregated and encoded as Prolog
evidence predicates. This yielded the input file shown in Figure 9.

Running the Prolog-based forensic analysis tool on this input file pro-
duced the logical evidence graph shown in Figure 1, but with different
node notation (shown in Table 4). The logical evidence graph shows an
attack path that exploited the vulnerability CVE-2015-3241 and used
the control dashboard Horizon to launch a DoS attack on the cloud.

Figure 7, which represents the SQL injection and DDoS attacks, and
Figure 1, which represents the DoS attack, cannot be grouped together
because the attacks originated from different locations. In addition, the
DoS attack was on the Nova service instead of on a virtual machine,
although it was launched from a virtual machine.

5. Using System Calls for Evidence Analysis
Because system calls enable low user-level processes to request kernel

level services such as storage operations, memory and network access,
and process management, they are often used for intrusion detection and

Liu, Singhal & Wijesekera 121

7

6

5

8

15

4

3

9 10

2

1

11

16

14

13

12

17 18

Figure 7. Attack path reconstruction for the SQL injection and DDoS attacks.

2016-09-18 07:52:00.237 DEBUG oslo_concurrency.processutils [req-f79c7911-04ed-
4a0c-adbe-0ae0a487c0f7 admin admin] Running cmd (subprocess): mv /opt/stack/data/
nova/instances/bd1dac18-1ce2-44b5-93ee-967fec640ff3 /opt/stack/data/nova/instan
ces/bd1dac18-1ce2-44b5-93ee-967fec640ff3_resize from (pid=41737) execute
/usr/local/lib/python2.7/dist-packages/oslo_concurrency/processutils.py:344

2016-09-18 07:52:00.253 DEBUG oslo_concurrency.processutils [req-f79c7911-04ed-
4a0c-adbe-0ae0a487c0f7 admin admin] CMD "mv /opt/stack/data/nova/instances/ bd1d
ac18-1ce2-44b5-93ee-967fec640ff3 /opt/stack/data/nova/instances/bd1dac18-1ce2-44b5-
93ee-967fec640ff3_resize" returned: 0 in 0.016s from (pid=41737) execute
/usr/local/lib/python2.7/dist-packages/oslo_concurrency/processutils.py:374

2016-09-18 07:52:00.254 DEBUG oslo_concurrency.processutils [req-f79c7911-04ed-
4a0c-adbe-0ae0a487c0f7 admin admin] Running cmd (subprocess): mkdir –p /opt/stack/
data/nova/instances/bd1dac18-1ce2-44b5-93ee-967fec640ff3 from (pid=41737) execute
/usr/local/lib/python2.7/dist-packages/oslo_concurrency/processutils.py:344

2016-09-18 07:52:00.271 DEBUG oslo_concurrency.processutils [req-f79c7911-04ed-
4a0c-adbe-0ae0a487c0f7 admin admin] CMD "mkdir –p /opt/stack/data/nova/instances/
bd1dac18-1ce2-44b5-93ee-967fec640ff3" returned: 0 in 0.017s from (pid=41737)
execute /usr/local/lib/python2.7/dist-packages/oslo_concurrency/processutils.py:374

Figure 8. Nova API call logs.

122 ADVANCES IN DIGITAL FORENSICS XIII

Table 2. Descriptions of the nodes in Figure 7.

Node Notation

1 execCode(database, user)

2 THROUGH 7 (attack by compromised computer)

3 execCode(webServer, user)

4 THROUGH 3 (remote exploit of a server program)

5 netAccess(webServer, tcp, 80)

6 THROUGH 9 (direct network access)

7 hacl(internet, webServer, tcp, 80)

8 attackerLocated(internet)

9 networkServiceInfo(webServer, httpd, tcp, 80, user)

10 vulExists(webServer, ‘SQLInjection’, httpd, remoteExploit, privEscalation)

11 directAccess(webServer, database, modify, user)

12 execCode(fileServer, user)

13 THROUGH 3 (remote exploit of a server program)

14 netAccess(fileServer, tcp,)

15 THROUGH 9 (direct network access)

16 hacl(internet, fileServer, tcp,)

17 networkServiceInfo(fileServer, httpd, tcp, , user)

18 vulExists(fileServer, ‘DDoS’, httpd, remoteExploit, privEscalation)

Table 3. Virtual machine instances, names and IP addresses.

ID Name Networks

bd1dac18-1ce2-44b5-93ee-967fec640ff3 FileServer private = 10.0.0.13,

172.16.168.229

c01d5e66-c20d-4544-867b-d3e2b70bfc60 WebServer private = 10.0.0.5,

172.16.168.226

forensic analysis [6]. When evidence cannot be obtained from forensic
tools or system services to help recognize a known attack, system calls
can be used to ascertain system behavior. Because it would be extremely
rare to have an attack path in which every attack step is a zero-day

Liu, Singhal & Wijesekera 123

//Initial and final attack status
attackerLocated(controlDashboard).
attackGoal(execCode(nova, admin)).

//FileServer VM could be reached from control dashboard
hacl(controlDashboard, fileServer, http,).

//Evidence of attack using CVE-2015-3241 that uses RESTful service
vulExists(nova, ‘CVE-2015-3241’, ‘REST’).
vulProperty(‘CVE-2015-3241’, remoteExploit, privEscalation).
networkServiceInfo(nova, ‘REST’, http, , admin).

Figure 9. Input file for the attack using CVE-2015-3241.

Table 4. Descriptions of nodes in the DoS attack.

Node Notation

1 execCode(nova,admin)

2 THROUGH 3 (remote exploit of a server program)

3 netAccess(nova, http,)

4 THROUGH 9 (direct network access)

5 hacl(controlDashboard, nova, http,)

6 attackerLocated(controlDashboard)

7 networkServiceInfo(nova, ‘REST’, http, , admin)

8 vulExists(nova, ‘CVE-2015-3241’, ‘REST’, remoteExploit,
privEscalation)

attack [17], system calls can help reconstruct the missing attack steps
when other evidence is not available.

Five popular mechanisms are available to trace the system calls in a
cloud-based virtual machine: (i) ptrace command that sets up system
call interception and modification by modifying a software application;
(ii) strace command that logs system calls and signals; (iii) auditing
facilities within the kernel; (iv) system call table modification and the
use of system call data writing wrappers to log the corresponding system
calls; and (v) system call interception within a hypervisor [1]. Because
OpenStack supports several hypervisors, including Xen, QEMU, KVM,
LXC, Hyper-V and UML, no generic solution for intercepting system
calls within a hypervisor exists. Hence, the strace command and system

124 ADVANCES IN DIGITAL FORENSICS XIII

Sep 25 00:15:49 FileServer sshd[829]: Server listening on 0.0.0.0 port

22.

Sep 25 00:15:49 FileServer sshd[829]: Server listening on :: port 22.

Sep 25 00:28:15 FileServer sshd[1162]: Accepted password for coco from

172.16.168.173 port 44842 ssh2

Sep 25 00:28:16 FileServer sshd[1162]: pam unix(sshd:session): session

opened for user coco by (uid=0)

Figure 10. SSH authentication log.

Table 5. Important system calls.

Tasks System Calls

Process modifies file write, pwrite64, rename, mkdir, linkat, link,
symlinkat, symlink, fchmodat, fchmod, chmod,
fchownat, mount

Process uses but does not mod-
ify file

stat64, lstat6e, fsat64, open, read, pread64, ex-
ecve, mmap2, mprotect, linkat, link, symlinkat,
symlink

Process uses and modifies file open, rename, mount, mmap2, mprotect

Process creation or termination vfork, fork, kill

Process creation clone

call table modification with system call data writing wrappers may be
used to log relevant system calls.

An example attack launched from Kali Linux is used to demonstrate
how system call sequences are used in attack reconstruction. In this at-
tack, SSH was used to log into FileServer by supplying stolen credentials
from a legitimate user named coco. In order to simulate the stealthy
attack without triggering intrusion detection sytem alerts, the attacker
was assumed to use shoulder surfing to obtain the (username, password)
credentials. Figure 10 shows the SSH log from /var/log/auth.log in
FileServer. The log entry shows that coco logged into FileServer from
172.16.168.173, which actually belonged to the attacker, indicating
that the attacker stole the credentials belonging to coco.

A process typically issues many system calls; however, only some of
the calls are important for ascertaining process behavior. The important
system calls [17] are listed in the second column of Table 5.

Figure 11 shows the important system calls captured from the at-
tack. The read and write calls (in bold font) indicate that the attacker

Liu, Singhal & Wijesekera 125

write(9, “v”, 1) = 1
read(11, “v”, 16384) = 1
write(3, “\0\0\0\20\331\255\275\264c\2173)z2j\32\255n\2007d\366m\21\316
\2648\240\207\31\211” . . . , 36) = 36
read(3,“\0\0\0\20\240\253\341\227\321xU\305\347\226\246\361\316\242S =
\30\341QT\231\n\343\314\343\307\f\361”. . . , 16384) = 36
write(9, “i”, 1) = 1
read(11, “i”, 16384) = 1
write(3,“\0\0\0\20\177\352\313\332\373yjM\3416l\230\215\10\220p\252g\375
\365
\1\f\335\361\r\273\374\357”. . . , 36) = 36
read(3,“\0\0\0\20\27\334?\201x\300\16\356\346, \0379\32\220{\372)\366\4\v\1
= \347\263\311\250k\353” . . . , 16384) = 36
write(9, “ ”, 1) = 1
read(11, “ ”, 16384) = 1
write(3,“\0\0\0\20′i\321\344\220\313\322\254S\252o\201\225; 6v\243\205\10gŝ
\253\237\325\375\332v” . . . , 36) = 36
read(3, “\0\0\0\20\5\27k; \254\301\24\n\\ZN\267\260\336\323′\323\32\345\2b\
226 − \271|[B\21” . . . , 16384) = 36
write(9, “t”, 1) = 1
read(11, “t”, 16384) = 1
read(3,“\0\0\0\20\325\261\7\254\211(\201\331\272\344[\355\200\\u4\357G\347
\232\276 : \201\376\342\202\201.” . . . , 16384) = 36
write(3,“\0\0\0\20\320\254\#\312\211 \3022\n\227u\16I\372\202\347\37\252T
\257\220
\210E\343\222\342\24S” . . . , 36) = 36
write(9, “e”, 1) = 1
read(11, “e”, 16384) = 1
write(3, “\0\0\0\20\334n}4\375Q\212o\353\375\262\342\316\334w − F\213\303
\277t\312\245\16\266\255B|” . . . , 36) = 36
read(3, “\0\0\0\20\274\376\7J\214L\314OL\1c\22\364 − gvJ\%\21\344J ¡, h\363
\261\36\10” . . . , 16384) = 36
write(9, “\t”, 1) = 1
read(11, “st.txt ”, 16384) = 7
. . .

Figure 11. Traces of read and write system calls.

opened and modified a file named test.txt. In a read or write call,
the first argument is the file descriptor where the process reads/writes
data, the second is the buffer contents, the third is the number of bytes
read/written by the system call; and = 1 or any number greater than 1
indicates that the system call was executed successfully.

The program behavior and the opening and modifying of a legiti-
mate user’s file were expressed in the form of the Prolog predicate:
canAccessFile(fileServer, user, modify,). This predicate states that
the attacker as a legitimate user can modify the file located at , which
represents the home directory of the legitimate user. Using the evi-

126 ADVANCES IN DIGITAL FORENSICS XIII

//Initial attack status
attackerLocated(internet).
//Attacker was able to log into FileServer using stolen credentials
attackGoal(logInService(fileserver, tcp, 22).
attackGoal(principalCompromised(user)).
//Incompetent user
inCompetent(user).

//Attack status obtained by analyzing system call sequence
attackGoal(canAccessFile(fileServer, user, modify,)).
//User could log into FileServer using the SSH protocol
networkServiceInfo(fileServer, sshd, tcp, 22,).
//User who has the account on FileServer has file modification privileges
localFileProtection(fileServer, user, modify,).

Figure 12. Input file for modifying a file with stolen credentials.

dence obtained from the log in Figure 10, which shows that the at-
tacker with stolen credentials (expressed by the predicates: (i) attack-
Goal(principalCompromised(user)); (ii) inCompetent(user); and (iii) at-
tackerLocated(internet)) logged into FileServer using SSH (expressed
by the predicate attackGoal(principalCompromised(user))), and the fact
that user coco with an account on FileServer had the privileges to mod-
ify files (expressed by the predicate localFileProtection(fileServer, user,
modify,)), the input file shown in Figure 12 was created for the Prolog-
based tool.

Figure 13 shows the reconstructed attack paths and Table 6 shows
the associated node notation. The attack path [3, 4, 7] → 2 → 1 has
three pre-conditions, which are represented by Nodes 3, 4 and 7. Node 3
expresses the fact that files in FileServer can be modified by FileServer
users. Node 4 is obtained from the fact that FileServer can be accessed
using SSH via TCP on port 22. Node 7 is obtained from the SSH au-
thentication log in Figure 10, which indicates that the user’s credentials
were stolen by the attacker. Note that, without the evidence obtained
from the system call sequence (Node 1), the attack path [3, 4, 7] → 2
→ 1 would not have been established.

The two rule nodes (Node 5 and Node 2) in Figure 13 do not have
rule descriptions because of the obvious correlation between Node 6 and
Node 4 (if the network provides the SSH service for logging into File-
Server via TCP on port 22, then any user or attacker with stolen cre-
dentials could log into FileServer); and Nodes 3, 4 and 7 collectively and
Node 1 (if a user has privileges to modify a file in FileServer, then the
attacker who has stolen a user’s credentials could modify the file).

Liu, Singhal & Wijesekera 127

7

2

8

6

5

4

9 10

3

1

Figure 13. Attack path reconstruction using evidence obtained from system calls.

Table 6. Descriptions of the nodes in Figure 13.

Node Notation

1 canAccessFile(fileserver, user, modify,)

2 THROUGH 23 ()

3 localFileProtection(fileserver, user, modify,)

4 logInService(fileserver, tcp, 22)

5 THROUGH 18 ()

6 networkServiceInfo(fileserver, sshd, tcp, 22, user)

7 principalCompromised(user)

8 THROUGH 16 (password sniffing)

9 inCompetent(user)

10 attackerLocated(internet)

6. Conclusions
Cloud computing increases the efficiency and flexibility of enterprise

operations. However, clouds present significant challenges to digital
forensics. One challenge is the lack of customer control over the physical

128 ADVANCES IN DIGITAL FORENSICS XIII

locations of data. Other challenges include the dependence of forensically-
relevant data on the cloud deployment model, large volumes of data,
proprietary data formats, multiple isolated virtual machine instances
running on a single physical machine, and inadequate tools for conduct-
ing cloud forensic investigations.

This research has demonstrated that evidence from multiple sources
can be used to reconstruct cloud attack scenarios. The sources include
intrusion detection system and application software logs, cloud service
API calls and system calls from virtual machines. To acquire evidence
from the sources, a forensics-enabled cloud should support: (i) logging
and retrieval of intrusion detection system and software service data; (ii)
secure storage and retrieval of OpenStack service API call logs, firewall
logs and snapshots of running instances; and (iii) storage and retrieval of
system calls, especially when the first two sources are unavailable. The
Prolog-based forensic analysis presented in this chapter demonstrates
the effectiveness and utility of automating the correlation of evidence
from multiple sources to reconstruct attack scenarios in digital forensic
investigations.

Future research will implement extensions to the forensics-enabled
cloud to preserve data integrity, reduce data volume and manage the
diversity of digital forensic data stored in the cloud.

This chapter is not subject to copyright in the United States. Com-
mercial products are identified in order to adequately specify certain pro-
cedures. In no case does such an identification imply a recommendation
or endorsement by the National Institute of Standards and Technology,
nor does it imply that the identified products are necessarily the best
available for the purpose.

References

[1] F. Beck and O. Festor, Syscall Interception in Xen Hypervisor,
Technical Report no. 9999, INRIA Nancy – Grand Est, Villers-les-
Nancy, France, 2009.

[2] D. Birk and C. Wegener, Technical issues of forensic investigations
in cloud computing environments, Proceedings of the Sixth Inter-
national Workshop on Systematic Approaches to Digital Forensic
Engineering, 2011.

[3] J. Dykstra and A. Sherman, Acquiring forensic evidence from
infrastructure-as-a-service cloud computing: Exploring and evalu-
ating tools, trust and techniques, Digital Investigation, vol. 9(S),
pp. S90–S98, 2012.

Liu, Singhal & Wijesekera 129

[4] J. Dykstra and A. Sherman, Design and implementation of FROST:
Digital forensic tools for the OpenStack cloud computing platform,
Digital Investigation, vol. 10(S), pp. S87–S95, 2013.

[5] B. Hay and K. Nance, Forensic examination of volatile system data
using virtual introspection, ACM SIGOPS Operating Systems Re-
view, vol. 42(3), pp. 74–82, 2008.

[6] S. Hofmeyr, S. Forrest and A. Somayaji, Intrusion detection using
sequences of system calls, Journal of Computer Security, vol. 6(3),
pp. 151–180, 1998.

[7] M. Hogan, F. Liu, A. Sokol and J. Tong, NIST Cloud Computing
Standards Roadmap, NIST Special Publication 500-291, National
Institute of Standards and Technology, Gaithersburg, Maryland,
2011.

[8] A. Jaquith, Security Metrics: Replacing Fear, Uncertainty and
Doubt, Pearson Education, Boston, Massachusetts, 2007.

[9] K. Kent, S. Chevalier, T. Grance and H. Dang, Guide to Integrat-
ing Forensic Techniques into Incident Response, NIST Special Pub-
lication 800-86, National Institute of Standards and Technology,
Gaithersburg, Maryland, 2006.

[10] C. Liu, A. Singhal and D. Wijesekera, A logic-based network foren-
sic model for evidence analysis, in Advances in Digital Forensics XI,
G. Peterson and S. Shenoi (Eds.), Springer, Heidelberg, Germany,
pp. 129–145, 2015.

[11] C. Liu, A. Singhal and D. Wijesekara, A probabilistic network foren-
sic model for evidence analysis, in Advances in Digital Forensics
XII, G. Peterson and S. Shenoi (Eds.), Springer, Heidelberg, Ger-
many, pp. 189–210, 2016.

[12] P. Mell and T. Grance, NIST Definition of Cloud Computing, NIST
Special Publication 800-145, National Institute of Standards and
Technology, Gaithersburg, Maryland, 2011.

[13] X. Ou, S. Govindavajhala and A. Appel, MulVAL: A logic-based
network security analyzer, Proceedings of the Fourteenth USENIX
Security Symposium, 2005.

[14] G. Palmer, A Road Map for Digital Forensic Research, DFRWS
Technical Report, DTR-T001-01 Final, Air Force Research Labora-
tory, Rome, New York, 2001.

[15] A. Pichan, M. Lazarescu and S. Soh, Cloud forensics: Technical
challenges, solutions and comparative analysis, Digital Investiga-
tion, vol. 13, pp. 38–57, 2015.

130 ADVANCES IN DIGITAL FORENSICS XIII

[16] K. Ruan, J. Carthy, T. Kechadi and M. Crosbie, Cloud forensics, in
Advances in Digital Forensics V, G. Peterson and S. Shenoi (Eds.),
Springer, Heidelberg, Germany, pp. 35–46, 2011.

[17] X. Sun, J. Dai, P. Liu, A. Singhal and J. Yen, Towards probabilis-
tic identification of zero-day attack paths, Proceedings of the IEEE
Conference on Communications and Network Security, pp. 64–72,
2016.

[18] W. Wang and T. Daniels, A graph based approach toward network
forensic analysis, ACM Transactions on Information and Systems
Security, vol. 12(1), article no. 4, 2008.

[19] S. Zawoad and R. Hasan, A trustworthy cloud forensics environ-
ment, in Advances in Digital Forensics XI, G. Peterson and S.
Shenoi (Eds.), Springer, Heidelberg, Germany, pp. 271–285, 2015.

IV

THREAT DETECTION
AND MITIGATION

Chapter 8

DIGITAL FORENSIC IMPLICATIONS
OF COLLUSION ATTACKS ON
THE LIGHTNING NETWORK

Dmytro Piatkivskyi, Stefan Axelsson and Mariusz Nowostawski

Abstract The limited size of a block in the Bitcoin blockchain produces a scaling
bottleneck. The transaction scalability problem can be addressed by
performing smaller transactions off-chain and periodically reporting the
results to the Bitcoin blockchain. One such solution is the Lightning
Network.

Bitcoin is employed by lawful users and criminals. This requires
crimes against lawful users as well as the use of Bitcoin for nefarious
purposes to be investigated. However, unlike Bitcoin, the Lightning
Network enables collusion attacks involving intermediate nodes and re-
cipients. In such an attack, regardless of a sender’s actions, money is
received by an intermediate node that colludes with a dishonest recipi-
ent. Since the dishonest recipient does not “actually” receive the money,
it does not provide the goods/service to the sender. Thus, the sender
pays for the unprovided goods/service, but the recipient can prove that
the payment was not received.

This chapter discusses the forensic implications of collusion attacks
with regard to lawful users because no discernible traces of attacks re-
main, as well as for law enforcement, where the attacks can target parties
as a form of forfeiture, analogous to law enforcement “sting” operations.
This chapter also discusses the potential of the Lightning Network to
be used for money laundering activities.

Keywords: Bitcoin, Lightning Network, audit trail

1. Introduction
Digital currencies are increasingly being leveraged by criminal enti-

ties. Therefore, it is important for digital forensic investigators to have

© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
G. Peterson and S. Shenoi (Eds.): Advances in Digital Forensics XIII, IFIP AICT 511, pp. 133–147, 2017.
DOI: 10.1007/978-3-319-67208-3_8

133

134 ADVANCES IN DIGITAL FORENSICS XIII

detailed knowledge of how these currencies work and how they can be
exploited.

Bitcoin has emerged as the de facto standard for peer-to-peer value
exchange in decentralized systems. However, a key problem with the Bit-
coin blockchain technology is its scalability. Several solutions have been
proposed to address the scalability problem. One solution is the Light-
ning Network, a peer-to-peer payment system that performs smaller
transactions off-chain and periodically reports the results to the Bitcoin
blockchain. This chapter discusses the design of the Lightning Network
and demonstrates a fundamental flaw that facilitates collusion attacks.
Such an attack enables money to go astray between a sender and a dis-
honest recipient who colludes with an intermediate to claim non-receipt
of funds. This chapter discusses the forensic implications of collusion
attacks with regard to lawful users and law enforcement, along with the
potential of the Lightning Network to be used for money laundering
activities.

2. Related Work
Decentralized crypto-currencies is a new research field. Off-chain

transactions, as used in the Lightning Network, is an emergent trend
that has not been investigated adequately. However, there is no pub-
lished research on the security of the Lightning Network nor is there any
discussion of the digital forensic implications of its use.

The concept of a collusion attack is not new. Conspiracies involving
actors in a system have been investigated before. For reasons of space,
it is not possible to discuss the topic in detail; instead, a few examples
are presented from the literature.

Distributed systems such as wireless sensor networks rely heavily on
their key management infrastructures. If the keys are not managed
properly, network nodes can collude and reveal the keys [5].

In the case of fingerprinting digital data, when users collude, finger-
prints can be removed and the data can be distributed freely [1]. Another
example is a collusion attack on an Android device where two applica-
tions can collaborate to escalate their access rights [2].

In the financial sector, collusion can be used to manipulate stock prices
or to secure loans despite having bad credit. With so many varied exam-
ples of collusion attacks, it is important that designers of new methods
of collaboration, such as the Lightning Network, understand and guard
against collusion.

Piatkivskyi, Axelsson & Nowostawski 135

Figure 1. Bitcoin transaction.

3. Bitcoin Blockchain
Blockchain technology enables novel decentralized applications rang-

ing from simple digital tokens that represent currency, through digital
assets management and audit trails, to establishing decentralized in-
stitutions [7]. Decentralization eliminates the need for a trusted third
party in many scenarios. The first large-scale deployment of blockchain
technology was in the Bitcoin crypto-currency and peer-to-peer payment
system [6].

Bitcoin allows fast cross-border monetary transfers, on average within
ten minutes, for a low transaction fee. In addition to providing pseudo-
nymity, the system offers several advantages. Since Bitcoin is decentral-
ized, no one holds custody over it. Moreover, if its secret keys are kept
secure, no entity can steal or seize money intended for another entity.

A payment in the Bitcoin blockchain is a transfer of a numerical value
from one public address to another. Bitcoins, the crypto-currency, are
just numbers that belong to a public address (i.e., a public key). The
ownership of bitcoins is claimed by demonstrating the associated private
key. An entity can generate as many public-private key pairs as desired.
A good practice is to generate a new key pair for every new monetary
transfer. Thus, the de-anonymization of an address to a user identity is
difficult, albeit potentially possible; in any case, this is an active topic
of research [11].

To make a payment, the sender creates a transaction – Transaction N
in Figure 1. The transaction consists of two parts: (i) inputs; and (ii)
outputs. There may be multiple inputs and multiple outputs in a trans-
action, but for the sake of simplicity, only one input and one output
are illustrated in Figure 1. In the transaction, the sender references the
output of a previous transaction (Transaction N-1) and can claim own-
ership of the coins from this output. The sender claims the ownership
via a signature made with his private key. This particular signature
must be specified in the input of the new transaction. In the output,
the sender identifies the entity to whom ownership is transferred by

136 ADVANCES IN DIGITAL FORENSICS XIII

specifying the public key of this entity (receiver). Finally, the sender
broadcasts the created transaction to the Bitcoin network of validating
nodes so that the transaction can be accepted into the system. The
broadcasted transaction is verified by each node in the network and is
eventually recorded in the shared database called the Bitcoin blockchain.
The Bitcoin blockchain protocol timestamps all transactions, preventing
double spending; the earliest transaction has precedence over more re-
cent transactions.

The blockchain is a decentralized database that is secured from tam-
pering and revision. It consists of blocks that are chained by embedding
the hash of the previous block into the next block. The hash calculation
is made intentionally difficult so that after a block is stamped with a
hash it cannot be recomputed easily. This means that all the transac-
tions that get on the blockchain remain on it forever because the blocks
cannot be changed.

The Bitcoin scalability problem arises because Bitcoin blocks can
carry a limited amount of transactions. Since the blocks have a fixed
size and new blocks are generated at fixed times, the Bitcoin payment
system can only sustain a fixed transaction rate. The current limit is
around seven transactions per second.

The scalability problem has attracted the attention of the research
community and a number of potential solutions have been proposed.
The most promising solution is the Lightning Network [9], which uses
off-chain transactions.

4. Lightning Network
The Lightning Network [9] is a payment protocol built on top of the

Bitcoin blockchain. It leverages off-chain transactions to provide a scal-
able solution to the problem of limited transaction throughput. The
fundamental idea underlying the Lightning Network is not to log all
the transactions directly on the blockchain, but to pass them between
the participating nodes in a peer-to-peer fashion and log only the final
balance of the accounts.

Transactions in the Lightning Network are processed within previ-
ously established payment channels. A channel is a set of two Bitcoin
transactions created cooperatively by the channel participants. This
work considers two participants to simplify the presentation. However,
it is possible to emulate multi-party channels with slightly more elabo-
rate protocols.

A funding transaction spends channel participants’ funds while a com-
mitment transaction returns funds to the channel participants. The

Piatkivskyi, Axelsson & Nowostawski 137

Figure 2. Funding and commitment transactions.

commitment transaction is kept off the blockchain during the time that
the channel is open. After a channel is opened, the participants can send
arbitrarily small payments to each other up to the channel capacity. The
number of transactions possible in a channel is nearly infinite and the
transaction speed is only limited by the direct connections between the
channel participants, which typically means nearly instantaneous deliv-
ery.

The processed transactions are not broadcast to the Bitcoin network.
Instead, the transactions are passed in a peer-to-peer fashion between
the channel participants. The only transactions that get advertised and,
consequently, recorded on the Bitcoin blockchain are channel funding
and commitment transactions. At any time, the commitment transac-
tion reflects the channel state. When a channel is to be closed, the
commitment transaction is published on the blockchain, which returns
the funds to the channel participants. The balance is established at the
moment of channel closure. The commitment transaction is the guar-
antee that a channel participant can get the funds back at any point in
time with the agreed balance.

Figure 2 shows funding and commitment transactions. In the case of
a bi-directional channel, both channel participants create inputs to the
channel funding transaction that define the channel capacity. A funding
transaction has a single two-of-two multi-signature output. In other

138 ADVANCES IN DIGITAL FORENSICS XIII

Figure 3. Commitment transaction balances are updated after transacting 0.1BTC.

words, it takes two signatures, one belonging to each channel participant,
to spend the output.

In contrast, a commitment transaction spends the output of the fund-
ing transaction and has two outputs. Each of these outputs returns back
to an investor exactly the amount of funds invested in the channel. The
benefit of establishing the channel is that funds can be moved within
the channel capacity by simply updating the commitment transaction.

For example, if Alice wishes to send 0.1BTC to Bob, then the com-
mitment transaction is updated so that it returns 0.4BTC to Alice and
0.6BTC to Bob (Figure 3). Within the updated channel Bob now can
send to Alice up to 0.6BTC and Alice can send to Bob only up to
0.4BTC. Such payment channels allow nearly unlimited transactions
within a channel. Note however, that this simple scheme requires that
an entity has to open a channel with every entity with which it has ever
interacted. This is an expensive proposition. A solution to this problem
is to route payments through existing channels.

4.1 Payment Routing
The Lightning Network extends the idea of payment channels by rout-

ing payments over multiple entities that have pre-existing channels be-
tween them. For example, if Alice has a channel with Bob and Bob has
a channel with Charlie, then Alice can send funds to Charlie through
Bob. Because the two money transfers – from Alice to Bob and from
Bob to Charlie – are independent, there must be a way to bind them so
that the execution of one depends on execution of the other. Otherwise,
Bob can send funds to Charlie, but Alice does not send funds to Bob,
leaving Bob defrauded. Another scenario involves Alice sending funds

Piatkivskyi, Axelsson & Nowostawski 139

Figure 4. Chain of hashed timelock contracts in a channel.

to Bob, but Bob not sending funds to Charlie, leaving Alice defrauded.
The binding has to account for the untrusted nature of Bitcoin and the
Lightning Network. Specifically, network nodes do not know anything
about their peers and do not rely on established trust relationships.

The Lightning Network protocol relies on a method for binding the
execution of transactions without any custodial trust. This solution is
called a hashed timelock contract (HTLC). A hashed timelock contract
enables Bob to pull funds from Alice only after Charlie has pulled the
funds from Bob. The basic idea is that Charlie, the recipient, tells Alice,
the sender, a riddle. They agree that, in order to pull the funds, Charlie
must give the answer to the riddle. Thus, Alice makes a contract with
Bob that, if Bob knows the answer (i.e., the secret), then Alice pays
the funds to Bob. Bob cannot know the secret unless Bob pays Charlie.
Thus, two contracts are created – between Alice and Bob and between
Bob and Charlie. Each contract says “’I will pay you if you give me the
answer to the riddle.” Only Charlie knows the answer, so he gives the
answer to Bob and Bob gives the money to Charlie. Since Bob knows
the answer, he can give the answer to Alice and Alice gives him the
money.

The scheme works the same when there are more than three partici-
pants on the route. The answer to the riddle is passed through all the
nodes from the recipient to the sender. At the end, the sender is the only
node that does not pull the funds from any other node; the sender just
spends the funds whereas everyone else along the path pulls the funds
from their respective senders and pushes the funds to their respective
recipients. The recipient is the only node that just pulls the funds, so it
is the only entity to ultimately receive funds.

A hashed timelock contract riddle is “What value hashes to hash
H?” Nobody knows the answer except the entity that generated the
hash. Thus, Charlie, the recipient, generates a random secret value R
and calculates its hash H = h(R). Then, he sends the hash H to Alice.
Based on the hash value H, Alice creates a hashed timelock contract with
Bob and Bob creates a hashed timelock contract with Charlie (Figure 4).

140 ADVANCES IN DIGITAL FORENSICS XIII

Figure 5. All the hashed timelock contracts are executed after R is revealed.

To complete the transaction, Charlie reveals R to Bob, Bob checks
that R hashes to H and Bob pays the promised funds. Then, Bob reveals
R to Alice and receives his funds from her (Figure 5).

Figure 6. Commitment transaction with a hashed timelock contract.

A hashed timelock contract is realized as one additional output in a
commitment transaction (last output in Figure 6). There are two ways
to spend the output. Bob can spend this output by providing R (hashed
timelock contract execution delivery). Alice can spend this output after
some timeout t (hashed timelock contract timeout). Needless to say, only
one of these transactions can be published because they spend the same
output. They are kept by the channel participants as guarantees that
a counterparty will not misbehave analogous to the commitment trans-
action itself. Unlike the commitment transaction, which eventually gets
recorded on the blockchain when the channel is closed, hashed timelock
contract execution delivery and timeout transactions may never get on
the blockchain. Before closing a channel the parties may cooperatively
cancel or execute all the hashed timelock contracts in the channel.

In order to execute a hashed timelock contract, Bob sends R to Alice.
Alice knows that, if the commitment transaction gets on the blockchain,
Bob will spend the hashed timelock contract output, so she agrees to
update the commitment transaction, removing the hashed timelock con-
tract output in Bob’s favor. If Alice does not agree to update the com-
mitment transaction, then Bob simply publishes it on the blockchain

Piatkivskyi, Axelsson & Nowostawski 141

and right after it is confirmed, he publishes the execution delivery trans-
action that sends the hashed timelock contract output to himself. Bob
does the same if Alice is unresponsive for any reason.

On the other hand, Alice may wish to cancel the hashed timelock
contract if Bob does not provide the secret value R for an extended
period of time or Alice may simply wish to close the channel and release
the funds. In this case, Alice asks Bob to cancel the hashed timelock
contract in her favor. If Bob does not agree or does not respond, Alice
publishes the commitment transaction on the blockchain and after the
timeout t, she publishes the timeout transaction, which sends the hashed
timelock contract funds to her. Note that, during the timeout t, Bob
can get to know the secret value R and publish the execution delivery
transaction to get his funds. In such a case, Alice considers the payment
completed. If Alice is an intermediate node on the route, she can execute
the contract on the other side and pull her funds.

The Lightning Network uses hashed timelock contracts to provide a
secure way to route payments through untrusted nodes. The problem
is that the system relies on the recipient being honest and keeping R
secret. If the recipient is dishonest and colludes with a node along the
route, it is possible to steal money from the sender or use the scheme
for money laundering purposes.

4.2 Lightning Network Topology
Several researchers have speculated about the topology of the Light-

ning Network [8]. A Lightning channel keeps the funds locked within the
channel. Unless an entity uses the channel, the time value of the money
locked in the channel is wasted. Therefore, channel management is very
important. The intuition is that it should dictate the topology taken by
the Lightning Network.

Two likely topologies are the hub-and-spoke topology and the organic
topology. A hub-and-spoke topology assumes the emergence of bank-like
operators (hubs) that would process and route large numbers of transac-
tions. The concerns regarding this topology are centralization, privacy
and money locking. There is a fear of large hubs growing larger, which
would lead to centralization. Since hubs process transactions, they could
aggregate knowledge about many transactions and, thus, pose a threat
to privacy (anonymity). Finally, although money locking is a contextual
notion, hubs could lock the money in open channels because they do not
intend to spend money, only route money. The vast amount of money
locked in the topology could impact the viability of the topology and
result in high transaction fees.

142 ADVANCES IN DIGITAL FORENSICS XIII

Organic routing may lock less money because channels are opened on
demand. Two limitations with organic routing are route finding and
supporting the needed route capacity in the network. Another problem
is that the number of on-chain transactions are expected to be much
higher than in the hub-and-spoke topology. Detailed evaluations of these
topologies is a good topic for future research.

Onion routing has been proposed as a mechanism to alleviate the
threat to anonymity in the Lightning Network [10]. It limits the knowl-
edge about nodes in the network only to their neighbor nodes. While
the principal advantage of onion routing is final destination masking,
this type of routing can impede network analysis and hinder forensic
investigations. The implications of onion routing are discussed later in
this chapter.

5. Collusion Attack on the Lightning Network
The Lightning Network design relies on the recipient being honest and

keeping R secret. At the same time, it is designed to operate in an abso-
lutely untrusted environment and to provide a good level of anonymity
to all its participants. The latter assumes an adaption of onion rout-
ing, where every node in the network only knows its neighbor nodes. In
such conditions, the system must be perfectly secure and flawless. While
the Lighting Network is cryptographically secure, it does not take into
account the misbehavior of its users.

The original Lightning Network article [9] states that the only way of
acknowledging successful transactions is “knowing R is proof of funds
sent.” However, this does not necessary hold. The sender Alice considers
a transaction to be completed when her hashed timelock contract is
executed. The recipient Dave considers a transaction to be completed
when he receives the funds (Dave is added to the channel for a more
explanatory scenario). If the system is used as intended, these two events
occur together.

However, there is a situation in which Alice executes her hashed time-
lock contract, but Dave does not receive the funds. This can only happen
if a node on the route (e.g., Bob) knows the pre-image of the hash H
– the secret value R. It could be that Bob just guessed it; this is very
unlikely, but it is still a possibility. A much more likely scenario involves
Dave secretly sending R to Bob, enabling Bob to defraud Alice.

Figure 7 illustrates the simple collusion attack. The recipient Dave
generates a secret value R upon which depends the execution of each
hashed timelock contract on the route. Dave calculates the hash H =
h(R) and sends it to Alice. All this is according to the protocol.

Piatkivskyi, Axelsson & Nowostawski 143

Figure 7. Simple collusion attack.

However, the attack occurs when Dave also shares the secret value R
with Bob, which is a breach of the protocol. Dave and Bob are now in
collusion. Alice, who is unaware of the collusion against her, creates a
hashed timelock contract with Bob promising to pay money upon him
revealing R. At this point, Bob already knows R, so he executes the
contract. Alice still does not suspect anything and considers the trans-
action to be completed. She expects Dave to deliver the goods/services
for which she has paid. Dave “rightfully” claims not to have received
the funds. As a result, Alice loses her money to Dave and Bob.

This collusion attack is due to a fundamental flaw in the Lightning
Network. Poon and Dryja [9], the authors of the protocol, mention the
problem, but do not analyze or attempt to mitigate it:

“In the event that R gets disclosed to the participants halfway through
expiry along the path, then it is possible for some parties along the path
to be enriched. The sender will be able to know R, so due to [the] Pay to
Contract, the payment will have been fulfilled even though the receiver
did not receive the funds. Therefore, the receiver must never disclose
R.”

This scenario described by Poon and Dryja has the same dependencies
and consequences as the collusion attack discussed above. The entire
operation of the system relies on the assumption that the receiver is not
interested in revealing R. However, as discussed below, there are certain
incentives for a receiver to prematurely reveal R.

6. Collusion Attack Implications
The collusion attack has several potential consequences for digital

forensics. These consequences are passive or active. The entity making
the payment is either the victim of criminal activity or a subject of
interest to law enforcement.

144 ADVANCES IN DIGITAL FORENSICS XIII

6.1 Fraud
A straightforward use of the collusion attack is fraud. After the attack

steps are performed as described above, the attacking nodes may become
non-responsive. This attack requires the recipient to collude with a node
on the route. Of particular interest are the traces left by the attack that
remain in the Lightning Network. Unfortunately, the protocol does not
impose a requirement to save any information of value. This is one of
the fundamental points of the Lightning Network, namely to summarize
many smaller transactions into a fewer large ones for communication
with and entry into the shared ledger that is the Bitcoin blockchain.
Because it is decentralized, the Lightning Network also cannot dictate a
particular implementation with sound logging.

6.2 Money Laundering
Another possible use case is to pass money to a recipient on the route

via a regular, apparently legitimate, payment system. In this scenario,
the sender, the final recipient and an intermediary node collude in order
to pretend that a legitimate payment has been made and lost to a rogue
intermediary node along the route. The intention is to pass funds to
an “unknown” intermediary node under the false pretext of making a
legitimate payment. The sender can claim the loss of the funds that were
paid but not received by the final intended recipient. This is analogous
to the ever popular playing-poker-badly method of money laundering.

6.3 Forfeiture
It is possible for an illegal service to claim no wrongdoing and blame

intermediary nodes for the loss of sender funds. For example, in the case
of law enforcement sting operations, the police could use the mechanism
to intercept illegal funds from a criminal at one of the intermediary
nodes as a form of forfeiture [4]; the destination never receives the funds
because they have been intercepted by law enforcement.

Although this may be problematic from the law enforcement jurisdic-
tional and procedural law perspectives, it is by no means an impossible
scenario. Specifically, an anonymous payment routing protocol renders a
traditional sting operation, whose goal is to identify the perpetrator, im-
possible; as a result, law enforcement can only attempt to disrupt illegal
activity instead of prosecuting a suspect. In this scenario the ability of a
recipient to show “clean hands” by legitimately claiming that the funds
never arrived provides plausible deniability and postpones the recipient
from being flagged as a “fake” supplier by a reputation-based system.

Piatkivskyi, Axelsson & Nowostawski 145

7. Attack Mitigation
A straightforward way to mitigate a collusion attack is to require (e.g.,

via a contract) that the knowledge of R constitutes a proof of payment.
One method is via a pay-to-contract scheme [3] that is mentioned by the
inventors of the Lightning Network [9]. The obvious problem with this
approach – which is not implemented in the Lightning Network at this
time – is that it relies heavily on a public-key infrastructure. The same
is true of all similar mitigation strategies.

Forensic readiness can be implemented by the verbose logging of trans-
actions; the logs would serve as evidence if something goes wrong. How-
ever, logging Lightning Network transactions is not enough. Hashed
timelock contracts only appear in commitment transactions and they are
signed with temporary keys that are not bound to physical-world identi-
ties. This is where a public-key infrastructure is needed. If a Lightning
Network node has a SSL certificate, it can sign the commitment trans-
actions that it processes. This enables an entity to prove the obligations
of its neighbor nodes. Specifically, the completion of a monetary trans-
fer can be proven by following the route and checking the commitment
transactions with the corresponding hashed timelock contracts. All the
nodes on the route would have to follow forensically-sound logging pro-
cedures, which may be enforced by appropriate regulations. A regulated
node can also check that all the neighbor nodes fall in the appropriate
jurisdiction. However, this may require the network to be partitioned
into regulated and unregulated segments. While the regulated segment
would have the desired properties, the presence of an unregulated seg-
ment would raise the risk of abuse if the two network segments were to
interact.

To conclude, a public-key infrastructure could solve a number of fun-
damental problems with the Lightning Network and crypto-currencies
in general. An example problem is transaction acknowledgement in a
decentralized environment. Unless the receiver is a legally recognized
electronic entity, the receiver can always claim to have not received funds
even if it did receive the funds. Such problems arise due to the nature of
a virtual identity and the fact that it is distinct from a physical identity.
A public-key infrastructure does bridge the gap between the virtual and
physical worlds. However, in the domain of decentralized applications,
anonymity and freedom are paramount. Therefore, the mitigations de-
scribed in this section are not adequate and an appropriate solution
remains elusive.

146 ADVANCES IN DIGITAL FORENSICS XIII

8. Conclusions
Off-chain transactions in the Bitcoin-based Lightning Network in-

crease the likelihood of collusion attacks. These attacks enable pay-
ment recipients or merchants to collude with intermediaries to ensure
payments to the intermediaries, while claiming that payments were not
received by the ultimate receivers. This does not meet the guarantee
made by the Lightning Network, where the end state of an initiator of a
transaction is that it should end up with no funds and the goods/services
or with funds and no goods/services.

Collusion attacks have forensic implications because they enable fraud
with very little traceability. Additionally, they enable law enforcement
to intercept funds used in illegal transactions for the purpose of forfei-
ture. In the two scenarios, the fraudulent entities and law enforcement
can claim innocence when the (unidentifiable) initiators of the transac-
tions complain that their funds were lost and they did not receive any
goods/services.

Digital currencies are increasingly becoming the targets of crime and
vehicles for furthering criminal activities. It is hoped that this research
will stimulate increased efforts in this new and important area of re-
search.

References

[1] D. Boneh and J. Shaw, Collusion-secure fingerprinting for digital
data, IEEE Transactions on Information Theory, vol. 44(5), pp.
1897–1905, 1998.

[2] S. Bugiel, L. Davi, R. Dmitrienko, T. Fischer, A. Sadeghi and B.
Shastry, Towards taming privilege-escalation attacks on Android,
Proceedings of the Nineteenth Annual Network and Distributed Sys-
tem Security Symposium, 2012.

[3] I. Gerhardt and T. Hanke, Homomorphic Payment Addresses and
the Pay-to-Contract Protocol, arXiv:1212.3257v1 [cs.CR], Cornell
University Library, Cornell University, Ithaca, New York (arxiv.
org/pdf/1212.3257v1.pdf), 2012.

[4] B. Hay, Sting operations, undercover agents and entrapment, Mis-
souri Law Review, vol. 70(2), pp. 387–432, 2005.

[5] M. Moharrum, M. Eltoweissy and R. Mukkamala, Dynamic com-
binatorial key management scheme for sensor networks, Wireless
Communications and Mobile Computing, vol. 6(7), pp. 1017–1035,
2006.

Piatkivskyi, Axelsson & Nowostawski 147

[6] S. Nakamoto, Bitcoin: A Peer-to-Peer Electronic Cash System
(bitcoin.org/bitcoin.pdf), 2008.

[7] M. Nowostawski and C. Frantz, Blockchain: The emergence of dis-
tributed autonomous institutions, Proceedings of the Sixth Inter-
national Conference on Social Media Technologies, Communication
and Informatics, pp. 29–35, 2016.

[8] C. Pacia, Lightning Network skepticism (chrispacia.wordpress.
com/2015/12/23/lightning-network-skepticism), December
23, 2015.

[9] J. Poon and T. Dryja, The Bitcoin Lightning Network: Scalable
Off-Chain Instant Payments, Draft Version 0.5.9.2 (lightning.
network/lightning-network-paper.pdf), 2016.

[10] P. Prihodko, S. Zhigulin, M. Sahno, A. Ostrovskiy and O. Osun-
tokun, Flare: An Approach to Routing in the Lightning Network,
White Paper (bitfury.com/content/5-white-papers-research
/whitepaper_flare_an_approach_to_routing_in_lightning_n
etwork_7_7_2016.pdf), 2016.

[11] F. Reid and M. Harrigan, An analysis of anonymity in the Bitcoin
system, Proceedings of the Third IEEE International Conference on
Privacy, Security, Risk and Trust/Social Computing/Workshop on
Security and Privacy in Social Networks, pp. 1318–1326, 2011.

Chapter 9

INSIDER THREAT DETECTION USING
TIME-SERIES-BASED RAW DISK
FORENSIC ANALYSIS

Nicole Beebe, Lishu Liu and Zi Ye

Abstract This research tests the theory that volitional, malicious computer use
based on insider threat activity can be detected via a time-series-based
analysis of data and file type forensic artifacts that reside on a raw disk.
In other words, statistical profiling of allocated and unallocated space
pertaining to the types of files accessed and the data browsed, acquired
and processed incident to espionage, intellectual property theft, fraud
or organizational computer abuse can help detect insider threats. The
t-test approach is used to compare the means of two time windows using
the split and sliding window methods along with first-order autoregres-
sive modeling. Empirical testing against the nineteen-day snapshots of
the M57-Patents case provides support for all three methods, but the
results suggest that the first-order autoregressive modeling method is
the most robust. Additionally, the autoregressive modeling approach is
likely to generate more intuitive results for an analyst. Ground truth
analysis confirms nearly all of the outliers that were detected. While
the majority of the outliers were due to benign and easily explainable
situations and system contexts and the minority were due to malicious
activity, the approach does not yield an inordinate amount of search
hits to examine and validate. This research thus provides a new com-
putational approach for locating digital forensic evidence.

Keywords: Insider threat, anomaly detection, time series, profiling

1. Introduction
The trusted insider remains one of the most critical cyber security

threats to organizations [3, 7, 17, 23]. In fact, some contend that insid-
ers present greater risks to organizations than external attackers [19, 22].
Insiders vary along two major dimensions – malice and volition [5, 11,

© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
G. Peterson and S. Shenoi (Eds.): Advances in Digital Forensics XIII, IFIP AICT 511, pp. 149–167, 2017.
DOI: 10.1007/978-3-319-67208-3_9

149

150 ADVANCES IN DIGITAL FORENSICS XIII

24]. Malicious, volitional insiders are often characterized by their meth-
ods and motivation and placed into four categories: (i) espionage; (ii)
intellectual property theft; (iii) fraud; and (iv) sabotage [1, 12]. Voli-
tional, non-malicious insiders include users who knowingly subvert se-
curity measures to accomplish work goals and insiders who violate ac-
ceptable use policies for personal gain or satisfaction. This research
focuses on volitional insiders with malicious intent, specifically those
interested in espionage, intellectual property theft or fraud, as well as
non-malicious, volitional insiders who abuse computing privileges for
personal satisfaction (e.g., browsing pornography on the web). Both
types of insiders often leverage institutional trust and system access
privileges to facilitate their criminal or unauthorized computing activi-
ties [4, 24].

Current approaches for detecting insiders rely largely on behavioral
heuristics based on past insider cases [18]. These approaches fall short in
three important ways: (i) they fail to detect novel insider methodologies
and attacks; (ii) they fail to detect large-scale data collection within the
scope of authorized access permissions; and (iii) they fail to consider
forensic traces of information-handling activity in unallocated space.
Analyses of seven insider cases – Robert Hanssen (1979), Aldrich Ames
(1985), Harold Nicholson (1994), Brian Reagan (1999), Leandro Arag-
oncillo (2004), Chelsea Manning (2010) and Edward Snowden (2013) –
have revealed a single, common distinguishing characteristic: in prepar-
ing to exfiltrate data, an insider often browses, acquires and prepares
data for exfiltration on a single system, typically his/her own worksta-
tion [1, 6, 8, 13, 15, 16].

This research posits that digital forensic traces of user activity, in both
allocated and unallocated space, can signal impending exfiltration and
unauthorized computer use for which information browsing, collection
and/or handling are facilitating activities. Specifically, this research
seeks to profile a workstation disk at the physical level based on the
forensic artifacts that are left behind from user activity with respect
to the types of data browsed, stored and handled. Following this, it
attempts to detect statistical anomalies in the profile over time that
signal nefarious user activity. Five types of features are considered,
including file types, file classes, data types, email related features and
string classes other than email-related strings. Table 1 shows examples of
each feature type. In the case of string classes, the measures used include
the total number of instances (hits) that match the type of string and
the total number of unique instances (i.e., without repeated hits); in
the case of email addresses and URLs, the measures used also include

Beebe, Liu & Ye 151

Table 1. Feature types.

Feature Type Examples

File Types JPEG, Email, PDF, EXE
File Classes Text, Video, Audio, System
Data Types Compressed, Encrypted, Allocated
String Classes Email, CCN, SSN, URL

the numbers of instances in specific most frequently occurring (high-
frequency) domains (e.g., gmail.com).

2. Methodology
A time series analysis was conducted of four disks with a synthetic

dataset (discussed below) that were snapshotted daily for nineteen days.
Two classes of time series analysis were employed: (i) t-tests; and (ii)
autoregressive analyses, both with varied set-ups and parameters. The t-
tests involved two methods for establishing time series windows: (i) split
window; and (ii) sliding window. A post hoc ground truth analysis was
conducted to validate the statistically-detected anomalies by assessing
the Type I error (false positives) and the Type II error (false negatives).

2.1 Sample Data
The sample data was taken from the M57-Patents dataset [9, 10] cor-

responding to a case involving four employees of a fictitious corporation,
three of whom were involved in various types of criminal activity, in-
cluding intellectual property theft, extortion and possession of illegal
pornography. In producing the synthetic evidence, the scenario partici-
pants engaged in scripted and normal user activities every day for nearly
three weeks. Researchers made forensic images of the user workstations
at the end of each day. All the daily disk images from the case were
analyzed using a data driven anomaly detection algorithm.

2.2 Data Driven Algorithm Development
In this context, a statistical outlier means that the outlier media (e.g.,

an employee workstation) has a storage profile that is different from a
historical perspective. The mathematical definition of what constitutes
an inlier versus an outlier varies from dataset to dataset, especially when
the central distribution violates conditions such as normality. In such
cases, the central distribution is ideally identified by removing outliers

152 ADVANCES IN DIGITAL FORENSICS XIII

and then modeling the data. However, removing outliers may not be
possible because they are not always known. Challenges to defining in-
lying user behavior include: (i) encompassing the full range of normality;
(ii) normality that evolves over time; (iii) normality that varies across
contexts; and (iv) difficulty in establishing a precise boundary between
inlying and outlying behavior [21]. As a result, an outlier detection
process cannot be easily separated from the process of identifying the
normal storage profile.

Traditional statistical methods cannot be used when outliers cannot
be eliminated from a dataset before determining the central distribu-
tion. Instead, robust statistical measures are required that are not sig-
nificantly influenced by outliers. Otherwise, outlier masking occurs –
the central distribution is skewed by outliers, causing failures in outlier
detection [14, 20].

In a deployed application of this research, such as the ongoing moni-
toring of employees, an analyst would not know the ground truth a priori
and would be unable to separate outliers before establishing a statistical
profile of a workstation. Furthermore, the analyst would often be unable
to ensure that outliers do not already exist when establishing a statistical
profile. Accordingly, this research uses a robust data driven algorithm
that is not as sensitive to outliers as traditional methods. The data
distribution is characterized using a robust location parameter (center
of the data) and a robust dispersion parameter (variability of the data
around the center).

2.3 Time-Series-Based Anomaly Detection
In time-series-based anomaly detection, the storage profiles of daily

disk snapshots are treated as time-ordered sequences. Anomalies are
then detected by: (i) comparing means between two different time peri-
ods; or (ii) predicting future observations in a time series based on past
values and declaring as outliers the actual values that deviate signifi-
cantly from predicted values. The former is accomplished via unpaired
t-testing whereas the latter is accomplished via autoregressive modeling.

Unpaired t-Test Approach. Outliers are found in time series data
by comparing two periods of time, ΔT1 and ΔT2, for statistical dif-
ferences between the periods. Toward this end, unpaired t-tests were
conducted – unpaired because ΔT1 and ΔT2 occur at different times
and the observations are not paired in the sense of a repeated measures
design.

The basic outlier detection approach involves the following steps:

Beebe, Liu & Ye 153

Figure 1. Unpaired t-test – Split window method.

Step 1: From a complete time series A1, A2, ..., AT , create sev-
eral sub-samples where each sub-sample contains two sub-series,
X1i,X2i, ...,XMi and Y1i, Y2i, ..., YNi, where M,N < T and i is
the index of a sub-sample.

Step 2: Perform an F-test to test for the equality of the variances
of the two sub-series in each sub-sample. If the p-value of the F-
test is greater than 0.1, then the variances are considered to be
equal (σ2

X = σ2
Y).

Step 3: Perform the appropriate t-tests based on variance equality
and obtain a p-value for each sub-sample i. If a p-value is larger
than a certain significance level, then the null hypothesis that the
means of the two sub-series are equal (μX = μY) is not rejected.

Step 4: For each time series division point (split point) at which
the p-value meets a specified significance threshold, declare an out-
lier at the split point. When a time series exhibits multiple out-
lying points, order the split points in ascending order of p-value
significance to rank order the outlying points for further analysis.

Two methods for defining sub-series samples were employed: (i) split
window method; and (ii) sliding window method:

Split Window Method: In the split window method, each sub-
sample contains the entire time series sequence split into two sub-
series. Different sub-samples have successively different split points
in the time series continuum beginning at t2 (first observation is
t0) and ending at tn−2 because at least two points are needed in
a sub-series sequence. In the example shown in Figure 1, the split
point for sub-sample 1 (i = 1) occurs at the fifth to last time point
AT−5. The split point for the second sub-sample (i = 2) occurs at
the sixth time point A5. Continuing this procedure yields T − 3
sub-samples.
As described above, T − 3 p-values P1, P2, ..., PT−3 are computed.
When the p-value is statistically significant, it can be concluded

154 ADVANCES IN DIGITAL FORENSICS XIII

Figure 2. Unpaired t-test – Sliding window method.

that there is a difference between the means of the observations
that occurred before and after the split point. This is referred to as
a jump point or change point and the later observation is typically
considered to be the outlying point (chronologically speaking). Us-
ing the terminology, the outlying observation for Pi is Ai+2.

The limitations of the unpaired split window method are: (i) in-
ability to detect outliers at the first two or last two time points
in a time series because they cannot be split points; (ii) inability
to conduct a t-test when there is no variance in the sub-series on
either side of a split point (e.g., in the case of a step function); and
(iii) sub-optimal level of robustness.

Sliding Window Method: In the sliding window method, the
entire time sequence in the composite of the two sub-series is no
longer included in a single sub-sample. Furthermore, the window
size W is held constant for all the sub-series in a sub-sample. After
setting W , the window is moved incrementally along the entire
time series, creating T − W + 1 sub-series of length W . Each
sub-series is then paired with its successive sub-series to obtain
T − W sub-samples. While W remains fixed for an entire set of
sub-samples, W could vary for alternate sub-sample sets. For a
time series A1, A2, ..., AT , the range of W is 2 ≤ W ≤ T −2. Small
window sizes may bear too little information while large window
sizes are limited from the standpoint of outlier detection sensitivity,
similar to the split window method discussed above. Again, the
p-values between sub-series within each sub-sample are computed
and ranked outliers are considered based on statistically significant
p-values. Figure 2 shows a graphical depiction of two sub-series in
a single sub-sample using the sliding window method.

The limitations of the unpaired t-test sliding window method are:
(i) inability to detect outliers at the first W − 1 points or the last
W − 1 points in a time series because they cannot be split points

Beebe, Liu & Ye 155

(this is mitigated by a small window size); and (ii) inability to per-
form a t-test when there is no variance in the sub-series on either
side of a split point (e.g., in the case of a step function). When
there is a constant segment in the time series of length ≥ 2W , the
t-test cannot be performed for the segment because s2

X = s2
Y = 0

for the first W + 1 sub-samples. An anomaly detection system
should test for constant segments and univariate step functions
and the p-value should be set to one for these sub-samples because
no outliers exist in constant value segments. Finally, this approach
is not particularly robust because the sub-series means are influ-
enced by outliers. However, the effect is less pronounced than in
the split window method, especially when W is sufficiently small.

Autoregressive Model Method. Instead of comparing means be-
tween two sub-series in a time series sequence, the autoregressive (AR)
model method predicts successive observations in a time-varying se-
quence as a linear model of its previous values. AR(p) (p is the number of
prior observations in the sequence) along with a noise term help predict
the current observation. In an AR(0) time sequence, the prior observa-
tion does not help predict the current observation. In an AR(1) time
sequence, the single prior observation helps predict the current obser-
vation, and so on. When a time series conforms to the autoregressive
model assumptions and the model is AR(p > 0), then outliers can be
declared as the points whose actual values deviate statistically from the
predicted values. An autoregressive model AR(p) of order p is given by:

At = c +
p∑

j=1

φjAt−j + εt (1)

where θ = (c, φ, σ2)′ is the parameter vector and the error terms εt are
independent and identically distributed and follow a normal distribution
εt = N(0, σ2).

Since it is not possible to readily know the exact distribution of sub-
series, it is necessary to first work with the simplest autoregressive model
AR(1), which is given by:

At = c + φAt−1 + εt (2)

where θ = (c, φ, σ2)′ is the parameter vector.
The parameters are estimated using the maximum likelihood estima-

tion (MLE) method. Given an observed sample a1, a2, ..., aT of size T ,
the first step is to compute the joint probability density function:

156 ADVANCES IN DIGITAL FORENSICS XIII

fA1,A2,...,AT
(a1, a2, ..., aT ; θ) (3)

This can loosely be considered to denote the probability of having ob-
served the particular sample.

The maximum likelihood estimate θ̂ is the value for which the sample
is most likely to have been observed. Specifically, it is the value of θ that
maximizes the probability density function in Equation (3). Note that
at least three observations are required to obtain an estimate using this
approach.

Suppose that the three observations are a1, a2 and a3, and the maxi-
mum likelihood estimate is:

θ̂ = (ĉ, φ̂, σ̂2)′ (4)

It is possible to predict the next observation using the equation:

â4 = ĉ + φ̂a3 + ε̂4 (5)

and to compute the residual between the actual and predicted values as:

res4 = a4 − â4 (6)

Continued iteration yields T − 3 residuals res4, res5, ..., resT .
Using a forward (chronologically speaking) autoregressive model ap-

proach, it is not possible to identify whether the first three observations
are outliers; this is because they are required for model building. How-
ever, unlike the unpaired t-test approach, a work-around is available.
This simply involves backward (chronologically speaking) autoregres-
sive modeling. When using the reversed sequence aT , aT−1, ..., a3 as the
observed time series values, the maximum likelihood estimates are ob-
tained in the same manner as before. Specifically, the next future value
is given by:

â2 = ĉ∗ + φ̂∗a3 + ε̂2 (7)
and the residual is:

res3 = a2 − â2 (8)
Note that the residual for the third point is a2 − â2 instead of a3 − â3

because a reversed sequence is used. Also, if a3 were an outlier, a very
large difference between a2 and â2 would be obtained by the backward
procedure.

The residuals are res2, res3, ..., resT . Defining the residual threshold
for an outlier, however, is less straightforward than for unpaired t-tests
because the magnitudes of the residuals can vary widely. Therefore, the
residuals are standardized using the equation:

ressd(i) =
resi − mean(res)

var(res)
(9)

Beebe, Liu & Ye 157

and an observation whose absolute standardized residual is larger than
two is defined as an outlier: ∣∣ressd(i)

∣∣ ≥ 2 (10)

The sensitivity of this procedure can be tuned by defining a larger
absolute standardized residual value (e.g.,

∣∣ressd(i)

∣∣ ≥ 3). However, the
experiments conducted in this research suggest that it is better to use a
threshold of two.

The primary limitation of this approach is that white noise εt is re-
quired to build a time series model. However, even in constant value
segments, it is easy to add a small random noise term with the same
mean as the sub-series and with very little variance to remove the con-
stancy of the sub-series without modifying its underlying distribution.

3. Experimental Results
The three time-series-based anomaly detection methods were evalu-

ated using the nineteen observation time series for the users in the syn-
thetic M57-Patents dataset. While the intervals between observations
in this data set are not identical, they are approximately equal (daily)
and, hence, the observations were treated as having equal intervals.

Thirty-three of the 88 features have constant and/or zero values across
all nineteen time intervals and were, therefore, removed from the sam-
ple, leaving 55 univariate, time series samples for testing. The constant
and/or zero valued features included twelve credit card number features,
twelve social security number features and the following file/data types:
active server page files (.asp/.aspx), base64, base85, base16, URL en-
coded, postscript (.ps), tagged image file format (.tif/.tiff), config-
uration files (.ini) and link files (.lnk).

3.1 Unpaired t-Test/Split Window Method
A p-value of 0.05 was selected as the significance threshold for out-

lier determination. The unpaired t-test with split window method was
observed to work well for time series exhibiting sudden changes after
sustained periods with low variance (Figures 3(a) and 3(b)) and for step
functions (Figures 4(a), 4(b) and 5(a); the data type in Figure 4(a) is
the top-third most frequent email domain). Note that all the experimen-
tal results described here pertain to user Charlie. Similar functions and
outlier detection trends were realized for the other users in the dataset.

However, the t-test with the split window method can be misleading.
This is seen in Figure 5(b) when the change is more gradual (i.e., gradual
change function with misleading outlier detected using the split window

158 ADVANCES IN DIGITAL FORENSICS XIII

(a) Decrease (Data type: random). (b) Increase (Data type: allocated).

Figure 3. Time series exhibiting sudden changes.

(a) Data type: email. (b) Data type: URL.

Figure 4. Time series with pseudo-step function changes.

(a) Data type: GIF. (b) Data type: video.

Figure 5. Time series with step function (left) and gradual function changes (right).

method) and also in Figure 6 when the change is a spike function (i.e.,
temporary change returning to the previous relative, steady-state condi-
tion where the data type is the top-third most frequent email domain).
When the change is more gradual, an outlier would be declared in the
midst of the gradual change, making it difficult for an analyst to un-
derstand why the snapshot was deemed an outlier. The gradual change

Beebe, Liu & Ye 159

Figure 6. Time series with spike function change (Data type: email).

scenario is a concern because a patient and skilled insider may collect
data gradually to specifically thwart detection efforts.

When the change is a spike function, the observation identified as
an outlier is again misleading. The return to steady-state masks the
true outlying observation point that occurs one or two intervals after
the observation identified as the outlier. In this situation, without being
alerted to the full nature of the time series, an analyst may only examine
the identified outlying snapshot and erroneously declare it to be a false
positive. A different conclusion may have been reached if the analyst had
analyzed the snapshot(s) following the split point for a more complete
context. The spike function scenario is a concern when an insider col-
lects, exfiltrates and quickly wipes the collected data from the hard drive
(i.e., allocated and unallocated space). A potential mitigation strategy
is to design the system to detect significant changes in the wiped disk
space.

In summary, using the unpaired t-test and split window method can
identify outliers. However, an analyst would be able to make more in-
formed analytical and investigative decisions if provided with the sup-
porting time series function as a visualization aid.

3.2 Unpaired t-Test/Sliding Window Method
Once again, a p-value of 0.05 was selected as the significance thresh-

old for outlier determination, although this could be changed akin to
a sensitivity setting. The results indicate that an unpaired t-test with
the sliding window method works reasonably well at detecting sudden
changes and step functions; to some extent, the sliding window method
may be more sensitive at detecting small changes than the split window
method. Also, it may occasionally provide more intuitive results to an
analyst by identifying the outlying observation at the end of the change
period as in Figure 7(a) (for the video data type) rather than during the

160 ADVANCES IN DIGITAL FORENSICS XIII

(a) Gradual change. (b) Spike function change.

Figure 7. Sliding window successful detection (left) and failure (right) for W = 2.

(a) Spike function change. (b) Spike function change.

Figure 8. Sliding window spike detection failure for W = 3 (left) and W = 4 (right).

change period as in Figure 5(b). However, the sliding window approach
appears to be even less able to detect very short duration spikes regard-
less of W as shown in Figures 7(b), 8(a) and 8(b) (for the top-third most
frequent email domain data type).

Another problem with the sliding window approach is that a wide va-
riety of results were obtained depending on the window size W . This is
because there does not appear to be a single, universal objectively supe-
rior W that could be used. Two example sets are shown in Figures 9(a)
through 9(c) and in Figures 10(a) through 10(c).

The empirical results indicate that the split window method should
be preferred over the sliding window method. However, the impact that
the time aperture may have on the split window method is a concern.
The empirical time aperture was approximately nineteen days. Further
empirical research is needed to ascertain the impact of a larger time
aperture on the results.

Beebe, Liu & Ye 161

(a) W = 2. (b) W = 3.

(c) W = 4.

Figure 9. Outliers detected via sliding window (Data type: email).

(a) W = 2. (b) W = 3.

(c) W = 4.

Figure 10. Outliers detected via sliding window (Data type: JPEG).

162 ADVANCES IN DIGITAL FORENSICS XIII

(a) Data type: URL domain. (b) Data type: video.

Figure 11. Autoregression detection of spike (left) and at edge (right).

(a) Split window method. (b) Autoregressive method.

Figure 12. Outlier detection (Data type: top-ninth most frequent URL domain).

3.3 Autoregressive Method
The first-degree autoregressive model proved to be the most reliable

of the three methods. It detected the most outliers, it was the most
consistent in rank ordering outliers based on statistical significance and
it does not appear to have some of the detection limitations of the other
methods. In particular, when compared with the other methods, espe-
cially the split window method, it was better able to detect spikes in the
time series (Figure 11(a)), outliers at the edges (beginning and ending
observations in the time series in Figure 11(b) for the top-third most
frequent URL domain data type). Also, it consistently identified as an
outlier the more intuitive, successive observation, rather than the less
intuitive, precipitory observation (Figures 12(a) and 12(b)). In both fig-
ures, the successive fourth and fifth observations are identified as outliers
compared with the precipitory third observation.

Beebe, Liu & Ye 163

3.4 Ground Truth Analysis
To establish ground truth and thereby evaluate the validity of de-

tected outliers and identify false negatives, investigative interrogatories
pertaining to the detected outliers as well as general investigative in-
terrogatories pertaining to the case scenario to identify false negatives
were developed. A trained digital forensic investigator analyzed the disk
images using the interrogatories. The forensic analysis, when compared
against the anomalies detected via time series analysis, identified nine
true positives and two false positives. A true positive occurred when the
forensic analysis confirmed that the drive snapshot did indeed contain
an anomalous number of data/files of a specified type – whether benign
or nefarious in nature. A false positive occurred when the results of the
forensic analysis suggested that the drive should not have been flagged
as anomalous by the outlier detection system.

The two false positives were identified as a result of issues with the
outlier detection system design. First, it was determined that the file
extension list for video files was overly broad and included extensions
that are not exclusively used for video file types. This resulted in a
statistical anomaly that would not have been anomalous if the video
file type was defined more narrowly and reliably. Second, the approach
failed to detect recycle bin content. If the recycle bin content had been
detected, the second false positive anomaly would not have been statis-
tically anomalous because the forensic traces of the data still existed on
the disk; they were reported as missing because recycle bin content was
omitted from the analysis.

Of the nine true positives that were identified, forensic analysis re-
vealed that seven were benign anomalies. In other words, the anomalous
activity was explained by legitimate circumstances (e.g., job role/task
change) and activity (e.g., system activity related to infrequent system
logging during the period of analysis). Two true positive cases were
confirmed to be (synthetic) illegal behavior, specifically: (i) possession
of illegal graphic images; and (ii) installation of a keylogger.

False negatives are somewhat challenging to define in this context.
On the one hand, no false negatives were encountered from a statistical
perspective. However, from an investigative perspective, the outlier de-
tection method failed to detect two pieces of evidence that could have
been detected via time-series-based analysis, if not for two extenuating
circumstances. First, the same unauthorized keylogger that was de-
tected on user Pat’s machine via time series analysis of file types was
not detected on user Terry’s computer through the same means. This
is likely because the keylogger stored its log files in HTML and Terry’s

164 ADVANCES IN DIGITAL FORENSICS XIII

drive had a significant amount of HTML data as a result of much more
web browsing activity than Pat. Second, Terry had a great deal of unau-
thorized screen captures of Pat’s machine stored in the JPEG format,
but these screen captures were missed by time-series-based anomaly de-
tection. Again, this is likely because Terry’s extensive web browsing
activity masked this evidence from a time series perspective, given the
large number of .jpg files stored in the web cache on the drive.

4. Conclusions
Time-series-based analysis, specifically first-order autoregressive mod-

eling, successfully identified statistical anomalies with a direct investiga-
tive payoff. The number of true positives exceeded the number of false
positives (nine versus two) and the false negatives were due to outlier
detection system design errors, not problems with the anomaly detection
method. While only two of the nine true positives were malicious, mean-
ing that the number of investigatively-irrelevant true positives exceeded
the number of investigatively-relevant true positives, this is nothing new
in digital forensics. Text string searches typically yield 95% or more
irrelevant search hits from an investigative perspective. They are not
false positives from a search perspective; they simply are not germane
to the investigation. Similarly, the false positives were indeed statisti-
cally anomalous; they simply were not germane to the investigation. Not
only is the 70% rate of benign statistical anomalies an improvement over
what is typically experienced in text string search (>95%), but it is also
important to note that the total number of anomalies that have to be as-
sessed for benign or malicious intent is a very small fraction of what text
string search and other digital forensic techniques encounter. It is also
important to remind users of the proposed method that the outliers are
associated with p-values, which could be rank ordered to enable analysts
to examine the more outlying observations first and analyze the less out-
lying observations as resources permit. Indeed, the results demonstrate
that a time-series-based method for statistical disk profiling can detect
insider threat activity with a manageable ratio of benign to malicious
root causes and the ability to rank order the outliers.

Two key limitations of the dataset used in this research impact the re-
search findings. First, the dataset is synthetic, which limits the external
validity and generalizability of the research findings. Second, the data
is limited in the number of observations. Approximately nineteen time
series observations were available for each synthetic user. More obser-
vations would have been better, but suitable test datasets in the digital
forensics field are difficult to come by. Robust synthetic digital forensic

Beebe, Liu & Ye 165

cases are very rare and real-world datasets have access restrictions and
the results are generally not reproducible by other researchers.

Note that the views expressed in this chapter do not necessarily re-
flect the official policies of the Naval Postgraduate School nor does the
mention of trade names, commercial practices or organizations imply an
endorsement by the U.S. Department of Homeland Security or the U.S.
Government.

Acknowledgement
This research was sponsored by the U.S. Department of Homeland

Security Science and Technology Directorate, Cyber Security Division
(DHS S&T CSD) via Contract No. N6600112WX01362 under a Coop-
erative Agreement No. N00244-13-2-0004 with the Naval Postgraduate
School.

References

[1] S. Band, D. Cappelli, L. Fischer, A. Moore, E. Shaw and R. Trze-
ciak, Comparing Insider IT Sabotage and Espionage: A Model-
Based Analysis, Technical Report CMU/SEI-2006-TR-026, Soft-
ware Engineering Institute, Carnegie Mellon University, Pittsburgh,
Pennsylvania, 2006.

[2] V. Barnett and T. Lewis, Outliers in Statistical Data, John Wiley
and Sons, New York, 1994.

[3] S. Boss, D. Galletta, P. Lowry, G. Moody and P. Polak, What do
users have to fear? Using fear appeals to engender threats and fear
that motivate protective security behaviors, Management Informa-
tion Systems Quarterly, vol. 39(4), pp. 837–864, 2015.

[4] H. Chivers, J. Clark, P. Nobles, S. Shaikh and H. Chen, Knowing
who to watch: Identifying attackers whose actions are hidden within
false alarms and background noise, Information Systems Frontiers,
vol. 15(1), pp. 17–34, 2013.

[5] D. Costa, M. Collins, S. Perl, M. Albrethsen, G. Silowash and D.
Spooner, An Ontology for Insider Threat Indicators: Development
and Application, Proceedings of the Ninth Conference on Semantic
Technology for Intelligence, Defense and Security, pp. 48–53, 2014.

[6] D. Dishneau, Army general upholds Chelsea Manning’s conviction,
35-year sentence in WikiLeaks case, U.S. News and World Report,
April 14, 2014.

166 ADVANCES IN DIGITAL FORENSICS XIII

[7] F. Farahmand and E. Spafford, Understanding insiders: An analysis
of risk-taking behavior, Information Systems Frontiers, vol. 15(1),
pp. 5–15, 2013.

[8] J. Gallu, Snowden used “web crawler” to scrape NSA: New York
Times, Bloomberg Technology, February 9, 2014.

[9] S. Garfinkel, M57-Patents Scenario, Digital Corpora (digitalcor
pora.org/corpora/scenarios/m57-patents-scenario), 2017.

[10] S. Garfinkel, P. Farrell, V. Roussev and G. Dinolt, Bringing sci-
ence to digital forensics with standardized forensic corpora, Digital
Investigation, vol. 6(S), pp. S2–S11, 2009.

[11] K. Guo, Y. Yuan, N. Archer and C. Connelly, Understanding non-
malicious security violations in the workplace: A composite behavior
model, Journal of Management Information Systems, vol. 28(2), pp.
203–236, 2011.

[12] M. Hanley and J. Montelibano, Insider Threat Control: Using Cen-
tralized Logging to Detect Data Exfiltration Near Insider Termina-
tion, Technical Note CMU/SEI-2011-TN-024, Software Engineer-
ing Institute, Carnegie Mellon University, Pittsburgh, Pennsylva-
nia, 2011.

[13] K. Herbig and M. Wiskoff, Espionage Against the United States
by American Citizens 1947–2001, Technical Report 02-5, Defense
Personnel Security Research Center, Monterey, California, 2002.

[14] P. Huber and E. Ronchetti, Robust Statistics, John Wiley and Sons,
Hoboken, New Jersey, 2009.

[15] L. Kramer, R. Heuer and K. Crawford, Technological, Social and
Economic Trends that are Increasing U.S. Vulnerability to Insider
Espionage, Technical Report 05-10, Defense Personnel Security Re-
search Center, Monterey, California, 2005.

[16] M. Maasberg, Insider espionage: Recognizing ritualistic behavior by
abstracting technical indicators from past cases, Proceedings of the
Twentieth Americas Conference on Information Systems, 2014.

[17] Mandiant, M-Trends 2015: A View from the Front Line, Threat
Report, Alexandria, Virginia, 2014.

[18] A. Moore, D. McIntire, D. Mundie and D. Zubrow, The justification
of a pattern for detecting intellectual property theft by departing
insiders, Proceedings of the Nineteenth Conference on Pattern Lan-
guages of Programs, article no. 8, 2012.

[19] Ponemon Institute, 2015 Cost of Data Breach Study: Global Anal-
ysis, Ponemon Institute Research Report, Traverse City, Michigan,
2015.

Beebe, Liu & Ye 167

[20] P. Rousseeuw and A. Leroy, Robust Regression and Outlier Detec-
tion, John Wiley and Sons, Hoboken, New Jersey, 2003.

[21] K. Singh and S. Upadhyaya, Outlier detection: Applications and
techniques, International Journal of Computer Science Issues, vol.
9(1), pp. 307–323, 2012.

[22] Vormetric Data Security, 2015 Vormetric Insider Threat Report,
San Jose, California, 2015.

[23] J. Wang, M. Gupta and R. Rao, Insider threats in a financial in-
stitution: Analysis of attack-proneness of information systems ap-
plications, Management Information Systems Quarterly, vol. 39(1),
pp. 91–112, 2015.

[24] R. Willison and M. Warkentin, Beyond deterrence: An expanded
view of employee computer abuse, Management Information Sys-
tems Quarterly, vol. 37(1), pp. 1–20, 2013.

Chapter 10

ANTI-FORENSIC THREAT MODELING

Bruno Hoelz and Marcelo Maues

Abstract The role of a digital forensic professional is to collect and analyze digital
evidence. However, anti-forensic techniques can reduce the availability
or usefulness of the evidence. They threaten the digital forensic ex-
amination process and may compromise its conclusions. This chapter
proposes the use of threat modeling to manage the risks associated with
anti-forensic threats. Risk management is introduced in the early stages
of the digital forensic process to assist a digital forensic professional in
determining the resources to be invested in detecting and mitigating
the risk. The proposed threat model complements the incident response
and digital forensic processes by providing a means for assessing the im-
pact and likelihood of anti-forensic threats, evaluating the cost of risk
mitigation and selecting tools and techniques that can be used as coun-
termeasures. This renders the digital forensic process more robust and
less susceptible to the consequences of anti-forensic actions.

Keywords: Forensic examination, anti-forensics, threat modeling, risk management

1. Introduction
In digital forensics, evidence can be found in computer systems and

networks, and in devices ranging from cell phones to game consoles. Over
the years, several digital forensic process models have been proposed to
examine evidence. Some of these models deal with specific needs while
others incorporate more general approaches. Most models, however,
do not take into account the risks associated with anti-forensic actions
(AFAs) [10].

An anti-forensic action attempts to reduce the availability or useful-
ness of digital evidence in the forensic process [6]. The anti-forensic
result can be achieved via the use of a malicious tool or method, or
through the use of legitimate protection mechanisms such as passwords
and encryption.

© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
G. Peterson and S. Shenoi (Eds.): Advances in Digital Forensics XIII, IFIP AICT 511, pp. 169–183, 2017.
DOI: 10.1007/978-3-319-67208-3_10

169

170 ADVANCES IN DIGITAL FORENSICS XIII

The use of anti-forensic tools has increased, requiring greater atten-
tion to ensure the integrity of forensic results [3]. Despite the fact that
anti-forensic actions constitute a threat to the digital forensic process,
this concern is not reflected in the process models found in the literature.
Overlooking these risks could compromise an entire investigation. The
use of threat modeling during the digital forensic process can help ad-
dress anti-forensic risks in a structured manner – mitigating the threats
where possible or, at least, reducing their impact.

This chapter proposes an anti-forensic threat modeling process that
complements the digital forensic processes suggested in the literature.
The modeling process enables an expert to assess the risks posed by
anti-forensic threats, providing an opportunity to devise strategies for
handling the threats during forensic procedures ranging from collecting
evidence to data analysis and reporting.

2. Threats to the Digital Forensic Process
A threat is a potential cause of an unwanted incident that, if man-

ifested, may harm the operations and/or resources of an organization.
Stoneburner et al. [12] define a threat as the “potential for a threat-
source to exercise (accidentally trigger or intentionally exploit) a specific
vulnerability.”

Anti-forensic actions are considered to be permanent threats to a digi-
tal forensic process because they can result in evidence loss that can com-
promise an investigation. In this case, the threat-source is an attacker
or suspect who benefits from the successful execution of an anti-forensic
action. These actions can be classified into four types: (i) evidence de-
struction; (ii) evidence source elimination; (iii) evidence hiding; and (iv)
evidence counterfeiting [6].

2.1 Evidence Destruction
Evidence destruction seeks to delete or corrupt data, rendering it

unusable in the investigative process [4, 6]. This technique may leave
some evidence. For example, overwriting a file may destroy the content
partially or completely, but the software used to destroy the file can
leave traces [6]. Methods for evidence destruction include:

Wiping: Deletes files by filling their clusters with random data.

File Attribute Modification: Changes file attributes or replaces
them with random data.

Hoelz & Maues 171

User Activity Artifact Destruction: Removes user activity
artifacts such as Internet history, recently accessed files, file down-
loads and chat logs.

2.2 Evidence Hiding
Hiding actions seek to reduce or eliminate the visibility of evidence so

that it is not discovered during a forensic examination. In this case, evi-
dence is not destroyed or modified [6]. The presence of data hiding tools
on a system is an indicator that a technique has been used. Evidence
hiding methods include:

Hiding File System Structures: Hides structures such as the
slack space of an NTFS filesystem.

Encryption: Renders file content unreadable.

Steganography: Hides digital data in another file (e.g., image
file).

2.3 Evidence Source Elimination
The elimination of evidence sources prevents evidence from being cre-

ated. Unlike the other techniques, there is no need to destroy or hide evi-
dence because the evidence is simply not created. However, the evidence
source elimination process itself could produce evidence [6]. Methods for
eliminating evidence creation include:

Disabling Logs: Ensures that activity information is not recorded.

Use of Portable Applications: Reduces the amount of evidence
because the applications avoid leaving traces in the system.

Use of Operating System on Removable Media: Reduces
the amount of evidence because the operating system runs from a
CD or thumb drive.

2.4 Evidence Counterfeiting
Evidence counterfeiting is the act of creating false evidence or manipu-

lating it to compromise the conclusions of a digital forensic investigation.
Falsified evidence may mislead the investigation by pointing to individ-
uals other than the threat agent [6]. Evidence counterfeiting techniques
include:

File Attribute Modification: Modifies or tampers with file at-
tributes such as timestamps.

172 ADVANCES IN DIGITAL FORENSICS XIII

Figure 1. Threat modeling in the digital forensic process.

Spoofing: Spoofs IP or MAC addresses.

Account Hijacking: Creates fake evidence by impersonating the
account owner.

3. Threat Modeling Applied to Digital Forensics
Threat modeling is a widely discussed subject in the context of secure

software development. It allows for the identification, quantification and
treatment of risks associated with a system in a structured manner [9].

A number of threat modeling approaches are described in the liter-
ature [2, 7, 9, 11]. Each model is created according to the structure
and needs of an organization. This prevents direct comparisons of their
quality and effectiveness.

In general, threat modeling has three main steps: (i) system under-
standing; (ii) asset and access point identification; and (iii) threat iden-
tification [8]. The first step is to learn about the operation of the system
and define usage scenarios in order to reveal the essential characteristics
of the system. This is crucial to understanding the attacker objectives.
Next, the assets must be identified. These correspond to the attacker’s
targets, which must be protected. Access points should also be identified
because they enable the attacker to reach the targets. The final threat
identification step uses the information gathered in the previous steps
to evaluate the risks and propose countermeasures.

In this work, threat modeling is applied to the digital forensic process.
As shown in Figure 1, threat modeling involves five steps. The first step
involves the collection of information about the case or incident. The
second step focuses on identifying evidence sources that may be targeted.
The third step deals with the identification of anti-forensic actions that
may compromise the previously-identified evidence sources. The fourth
step manages the risk, which involves risk assessment, countermeasure

Hoelz & Maues 173

identification and risk mitigation. The final step reports the results and
uses the results to update the model.

3.1 Case Understanding
The purpose of this step is to gather information about the investi-

gated case in order to assist decision making in the subsequent steps of
the modeling process. This step is essential to the effectiveness of the
proposed model. It involves the determination of the ability, motivation
and financial profile of the suspect. A questionnaire is recommended
to guide the collection of information. The questionnaire would feature
questions such as:

Are there reasons for the use of an anti-forensic method by the
suspect?

What are the suspect’s technical skills?

Does the suspect have the support of technically-skilled profession-
als?

Are there reports of anti-forensic actions being employed in similar
cases in the past?

With regard to the last question, the proposed model incorporates a
catalog that records the occurrences of anti-forensic actions identified in
previous investigations or actions reported in external sources such as
research papers and security advisories.

3.2 Evidence Source Identification
This step attempts to identify the data storage media where evidence

related to the investigation can be found. The identification of these
resources is critical to identifying anti-forensic threats. Evidence can be
obtained from various sources such as user files, operating system event
logs, Internet browser history and file metadata. Sources also include
devices such as digital cameras, game consoles and GPS devices. The
more important the device is to the investigation, the more likely it is
to be the target of an anti-forensic action.

3.3 Threat Identification
This step analyzes the evidence sources to see if any anti-forensic

actions can be applied to compromise them. The classification of anti-
forensic methods proposed by Harris [6] is used to categorize anti-forensic
threats. As discussed above, anti-forensic methods can be classified as

174 ADVANCES IN DIGITAL FORENSICS XIII

Figure 2. Risk management components.

evidence destruction, evidence hiding, evidence source elimination and
evidence counterfeiting. For example, in a case where it is crucial to
analyze the operating system logs (evidence source), the threat identifi-
cation step should specify the actions that enable the logs to be modified
or destroyed.

The proposed model incorporates a catalog of known anti-forensic
threats to support threat identification. This catalog, which records
anti-forensic methods, must be updated whenever a new anti-forensic
method is reported or encountered.

3.4 Risk Management
This step estimates the risks that anti-forensic threats pose to the dig-

ital forensic process. It helps determine which risks should and should
not be mitigated – dealing with every possible threat is not always feasi-
ble due to limited resources, including time. Risk management has three
components: (i) risk assessment; (ii) countermeasure identification; and
(iii) risk mitigation. Figure 2 summarizes the components involved in
the risk management step.

Hoelz & Maues 175

Table 1. Capability assessment.

Score Capability Assessment

5 The suspect has technical and financial limitations to employ the anti-
forensic action.

15 The suspect has technical or financial limitations to employ the anti-
forensic action.

25 The suspect has extensive technical and/or financial abilities to em-
ploy the anti-forensic action.

Table 2. Motivation assessment.

Score Motivation

5 The anti-forensic action does little to the criminal act.
15 The anti-forensic action contributes to the criminal act.
25 The anti-forensic action is essential to the criminal act.

Risk assessment is performed by combining the threat likelihood and
impact [12]. The threat likelihood is estimated by considering factors
related to the suspect (threat agent) and factors related to the anti-
forensic action, called amplifying factors. The likelihood is rated as low,
medium or high, according to the total score assigned to each factor. The
impact is estimated by the digital forensic professional’s ability to recover
potential evidence when facing an anti-forensic threat. The impact is
also rated as low, medium or high. Finally, the risk is determined using
a risk matrix that is generated by combining the likelihood and impact
ratings.

The suspect’s capability, motivation and opportunity are key factors
in estimating the threat likelihood [13]. In the proposed model, the capa-
bility expresses suspect’s technical and financial resources for executing
the anti-forensic action. The motivation is related to the benefit of the
anti-forensic action to the suspect. For example, the anti-forensic action
may camouflage the criminal action; in credit card fraud cases, encryp-
tion is often used to hide stolen credit card data. Opportunity refers to
the circumstances that favor the success of the anti-forensic action. The
suspect may, for example, consider that an action will not be identified
during the forensic examination. Tables 1 though 3 list scores that are
used to assess a suspect’s capability, motivation and opportunity.

176 ADVANCES IN DIGITAL FORENSICS XIII

Table 3. Opportunity assessment.

Score Opportunity

0 It is part of the routine of a digital forensic expert to treat the anti-
forensic action and resources (software and hardware) and trained
personnel are available to handle the anti-forensic action.

10 It is not part of the routine of a digital forensic expert to handle
the anti-forensic action, but resources (software and hardware) and
trained personnel are available to handle the anti-forensic action.

20 It is not part of the routine of a digital forensic expert to handle the
anti-forensic action and/or resources are not available (software and
hardware) or trained personnel are not available to handle the anti-
forensic action and/or it is very difficult to handle the anti-forensic
action.

In addition to the suspect’s capability, motivation and opportunity,
certain other factors can increase the likelihood of an anti-forensic action.
These amplifying factors [13] are:

History of Occurrences: Whether or not the anti-forensic action
has been used in other situations.

Ease of Exploitation: The amount of resources necessary to
execute the anti-forensic action. The existence of tools and docu-
mentation of the method and a vulnerability contribute to the ease
of exploitation.

Table 4. History of occurrences.

Score History of Occurrences

0 There is no record of the anti-forensic action in previous reports.
5 The anti-forensic action is rarely used.
10 The anti-forensic action is sometimes used.
15 The anti-forensic action is widely used.

Tables 4 and 5 are used to determine the score of the amplifying
factors. The final likelihood is estimated by adding the scores assigned
to each factor (low, medium or high) as shown in Table 6. The score for
each factor is set so that the factors related to the suspect (capability,
motivation and opportunity) are adequate to yield a high likelihood of
an anti-forensic action.

Hoelz & Maues 177

Table 5. Ease of exploitation.

Score Ease of Exploitation

5 Limited resources (no tools) exist for executing the anti-forensic ac-
tion.

10 Some resources exist for executing the anti-forensic action.
15 Many resources (tools and documentation) exist for executing the

anti-forensic action.

Table 6. Likelihood of threat by score.

Final Score Likelihood

Below 35 Low
35 to 60 Medium
Above 60 High

The amplifying factors score increases the likelihood of occurrence,
but on its own, it cannot establish a high likelihood for the anti-forensic
action. However, in a scenario involving an anti-forensic action that is
easily and often used, the amplifying factors score would increase the
likelihood of the threat from low to medium and from medium to high.

The computation of the likelihood of a threat is illustrated for miss-
ing data hidden in the filesystem slack space. In this case, a medium
likelihood is obtained as follows:

Likelihood = (Capability + Motivation + Opportunity)
+ (History + Ease of Exploitation)

= (15 + 15 + 10) + (5 + 10) = 55 (Medium)
(1)

Having determined the likelihood of the threat, it is necessary to de-
termine its potential impact. The anti-forensic action could impact the
recovery and presentation of evidence with probative value [5]. Table 7
shows the three impact levels, low, medium and high.

After calculating the likelihood and impact, the risk of the anti-
forensic threat may be obtained by combining the results according to
the risk matrix presented in Table 8.

The level of tolerance to risk is subjective and should be evaluated
in the context of other threats. Some low-risk threats can be tolerated
in the case of a simultaneous threat of medium risk if the resources to
handle the threats are limited. Therefore, the risk level alone does not

178 ADVANCES IN DIGITAL FORENSICS XIII

Table 7. Impact levels.

Impact Level Description

Low Evidence will no longer be recovered.
Medium Usable evidence will no longer be recovered.
High Probative value of evidence is lost and can compromise

the prosecution of the suspect.

Table 8. Risk level matrix adapted from [12].

Likelihood
Low Medium High

Im
p
a
c
t Low Low Low Low

Medium Medium Medium Medium
High Medium High High

determine the obligation to take action. This depends on the available
countermeasures and the cost of mitigating the risks.

After determining the risk level of a threat, it is necessary to identify
the countermeasures that can minimize the impact and prevent evidence
loss. The proposed model incorporates a catalog that records the coun-
termeasures to threats. This catalog also specifies the techniques and
tools that must be used in each situation. Of course, the catalog must be
updated as and when new countermeasures are developed or reported.

Table 9. Cost of implementing countermeasures.

Cost Conditions

Low Requires little effort and time to employ.
Medium Requires moderate effort and time to employ.
High Requires a lot of effort and time to employ.

After identifying the available countermeasures, the risk mitigation
step evaluates the specific countermeasures that should be employed.
This depends on the risk and the available resources, including the cost
of implementing each countermeasure. The cost, which is classified as
low, medium or high, is estimated by considering the time and effort
involved, as shown in Table 9. Some countermeasures can be very costly
and, depending on the risk, may be deemed unnecessary. Naturally, this

Hoelz & Maues 179

Table 10. Mitigation strategy matrix.

Implementation Cost
Low Medium High

R
is

k Low Mitigate Accept Accept
Medium Mitigate Mitigate Accept

High Mitigate Mitigate Mitigate

decision would vary according to the resources available to an organiza-
tion.

As an example, consider a countermeasure for minimizing the risk of
missing data that is hidden in the filesystem slack space. In this situa-
tion, the countermeasure does not require much effort or time because
forensic tools are available for analyzing the slack space. Therefore, the
cost of implementing the countermeasure is low.

Table 10 shows the mitigation strategy matrix that assists in deciding
whether or not to mitigate the risk. The combination of risk and cost of
the countermeasure in the matrix suggests one of two outcomes: (i) mit-
igate the risk; or (ii) accept the risk. Mitigation involves the application
or implementation of the countermeasure. On the other hand, the risk
is accepted if the cost of implementing the countermeasure is deemed
too high or no countermeasure is available.

In the case of missing data hidden in the filesystem slack space, the
best option is to mitigate the risk by applying the available counter-
measure. This is because the risk level is considered to be medium and
the cost of applying the countermeasure is low. Note, however, that the
cost depends on the resources, including time, that are available to the
digital forensic professional or the organization.

3.5 Result Reporting and Model Updating
In this step, a report is generated with the results of the previous

steps. This report can be used to review the assessments made by the
digital forensic professional and to register the threats that were not
considered initially, but that were discovered during the examination
process. Information from the report should also be used to update the
model catalogs.

4. Applying the Threat Model
This section shows how the proposed threat model can be incorpo-

rated in a digital forensic process. The digital investigation process

180 ADVANCES IN DIGITAL FORENSICS XIII

Figure 3. Threat model actions in the digital forensic process.

model proposed by Beebe and Clark [1] is employed because it covers
the majority of the processes proposed in the literature. The model has
six steps: (i) preparation; (ii) incident response; (iii) data collection; (iv)
data analysis; (v) presentation of findings; and (vi) incident closure.

The preparation phase involves taking technical and administrative
actions prior to an incident to maximize the collection of evidence. The
incident response phase defines the strategy to be adopted in the subse-
quent data collection and analysis phases. The presentation of findings
phase covers the presentation of results through the forensic report. Fi-
nally, the incident closure phase involves an assessment of the entire
process to enhance future investigations.

The threat model actions are integrated in the various phases of the
digital forensic process. Figure 3 shows that the first step of the threat
model is executed during the incident response phase. However, before
this, during the preparation phase, the case information questionnaire is
completed and the catalogs are maintained; all this information is used
in the incident response phase. The use of the threat model results in a
list of countermeasures for treating anti-forensic threats that pose risks
to the digital forensic examination. The countermeasures are applied
during the data collection and/or data analysis phases, but after a cost
analysis is performed. During the presentation of findings phase, the
threats are articulated formally, the countermeasures are applied and the
results are recorded. During the incident closure phase, the catalogs are
updated with information pertaining to the incident. Note that, during
the preparation phase, the catalogs are also updated with new threats,
countermeasures and lessons learned from other incidents. Updating the

Hoelz & Maues 181

Table 11. Risk assessment.

Threat
Likelihood

Impact Risk
Mo Ca Op Hi Ea Total

Full-disk encryption 25 25 20 10 15 95 [H] H H
Steganography 15 25 10 0 10 60 [M] M M

H = High, M = Medium, Mo = Motivation, Ca = Capability, Op = Opportunity,

Hi = History of Occurrences, Ea = Ease of Exploitation

catalogs frequently enhances decision making during the threat modeling
process.

An investigation of a child exploitation case is used to illustrate the
application of the proposed model. In this case, the suspect, who has
no criminal history, is known to possess advanced computer skills. This
information is determined in the first case understanding step. In the
second step – evidence source identification – potential sources of digi-
tal evidence are considered, such as the suspect’s digital camera, mobile
devices, computers and storage media. In the third step, threat iden-
tification, potential threats to the evidence are identified based on the
information recorded in the threat catalog.

The example considers data hiding threats involving full-disk encryp-
tion and steganography. Table 11 shows the computation of the risk
associated with each threat.

Table 12. Countermeasures and mitigation strategy.

Threat Risk CM Cost Strategy

Full-disk encryption H CM1 M Mitigate
Steganography M CM2 H Accept

H = High, M = Medium, CM = Countermeasure

Two countermeasures are identified, CM1 and CM2. CM1 involves
the acquisition of data while the computer system is running with its
volumes mounted. CM2 involves searching for signs of steganography
applications and artifacts. The mitigation strategy matrix shown in Ta-
ble 12 considers the risks and the implementation costs of the counter-
measures in order to decide which mitigation strategy should be adopted.
In this case, the threat of full-disk encryption should be mitigated while

182 ADVANCES IN DIGITAL FORENSICS XIII

the threat of steganography should be accepted. During the last step,
a report is produced that contains the assessments of all the previous
steps along with the decisions that were made. The occurrences catalog
is updated after the threat is confirmed. Note that in some cases – as
in the threat of encryption being used – countermeasures may have to
be applied before confirming the existence of the threat.

5. Conclusions
This research advocates the use of threat modeling to handle anti-

forensic threats to the digital forensic process. The threat modeling
process adapts and incorporates concepts and methods originally pro-
posed for the software development domain. The threat modeling pro-
cess has five steps: case understanding, evidence source identification,
threat identification, risk management, and results reporting and model
updating. The model complements the phases commonly used in the
digital forensic process while systematically introducing anti-forensic risk
management activities in the workflow.

Risk management is introduced in the early stages of the digital foren-
sic process in order to assist forensic professionals in making decisions
about investing resources to detect and mitigate risks due to anti-forensic
actions. The proposed threat model complements the incident response
and digital forensic processes by helping assess the impact and likeli-
hood of anti-forensic threats, the cost of risk mitigation and the se-
lection of techniques and tools that may be used as countermeasures.
Consequently, the digital forensic process becomes more robust and less
susceptible to the negative consequences of anti-forensic actions.

Future work will focus on the application and evaluation of the threat
model in real investigations. Efforts will also be made to develop and
disseminate threat and countermeasure catalogs that will enhance risk
management in digital forensic investigations.

References

[1] N. Beebe and J. Clark, A hierarchical, objectives-based framework
for the digital investigation process, Digital Investigation, vol. 2(2),
pp. 147–167, 2005.

[2] S. Burns, Threat Modeling: A Process to Ensure Application Secu-
rity, InfoSec Reading Room, SANS Institute, Bethesda, Maryland,
2005.

[3] E. Casey (Ed.), Handbook of Digital Forensics and Investigation,
Elsevier Academic Press, Burlington, Massachusetts, 2010.

Hoelz & Maues 183

[4] R. Chandran and W. Yan, A comprehensive survey of anti-forensics
for network security, in Managing Trust in Cyberspace, S. Thampi,
B. Bhargava and P. Atrey (Eds.), CRC Press, Boca Raton, Florida,
pp. 419–447, 2013.

[5] R. de Beer, A. Stander and J. Van Belle, Anti-forensic tool use
and their impact on digital forensic investigations: A South African
perspective, Proceedings of the International Conference on Infor-
mation Security and Digital Forensics, pp. 7–20, 2014.

[6] R. Harris, Arriving at an anti-forensics consensus: Examining how
to define and control the anti-forensics problem, Digital Investiga-
tion, vol. 3(S), pp. S44–S49, 2006.

[7] J. Meier, A. Mackman, M. Dunner, S. Vasireddy, R. Escamilla
and A. Murukan, Improving Web Application Security: Threats and
Countermeasures, Microsoft, Redmond, Washington, 2003.

[8] S. Myagmar, A. Lee and W. Yurcik, Threat modeling as a basis for
security requirements, Proceedings of the Symposium on Require-
ments Engineering for Information Security, 2005.

[9] Open Web Application Security Project, Application Threat Mod-
eling, Columbia, Maryland (www.owasp.org/index.php/Applica
tion_Threat_Modeling), 2015.

[10] J. Sachowski, Implementing Digital Forensic Readiness: From Reac-
tive to Proactive Process, Elsevier, Cambridge, Massachusetts, 2016.

[11] A. Shostack, Threat Modeling: Designing for Security, John Wiley
and Sons, Indianapolis, Indiana, 2014.

[12] G. Stoneburner, A. Goguen and A. Feringa, Risk Management
Guide for Information Technology Systems, Special Publication
800-30, National Institute of Standards and Technology, Gaithers-
burg, Maryland, 2002.

[13] S. Vidalis and A. Jones, Analyzing threat agents and their at-
tributes, Proceedings of the Fourth European Conference on Infor-
mation Warfare and Security, pp. 369–380, 2005.

V

MALWARE FORENSICS

Chapter 11

A BEHAVIOR-BASED APPROACH
FOR MALWARE DETECTION

Rayan Mosli, Rui Li, Bo Yuan and Yin Pan

Abstract Malware is the fastest growing threat to information technology systems.
Although a single absolute solution for defeating malware is improba-
ble, a stacked arsenal against malicious software enhances the ability
to maintain security and privacy. This research attempts to reinforce
the anti-malware arsenal by studying a behavioral activity common to
software – the use of handles. The characteristics of handle usage by
benign and malicious software are extracted and exploited in an effort
to distinguish between the two classes. An automated malware detec-
tion mechanism is presented that utilizes memory forensics, information
retrieval and machine learning techniques. Experimentation with a mal-
ware dataset yields a malware detection rate of 91.4% with precision and
recall of 89.8% and 91.1%, respectively.

Keywords: Malware, memory forensics, machine learning, handles

1. Introduction
The threat of malware is growing. The proliferation of electronic

devices and the ever-increasing dependence on information technology
have led to malware becoming an attractive tool for conducting criminal
activities. Kaspersky Lab [10] reports that almost 250 million new and
unique malware instances were detected during the second quarter of
2016 alone. Although substantial, the report was only able to present
the amount of malware detected by anti-viral tools; it was not possible
to estimate the total number of malware instances in the wild.

Current malware detection approaches focus on extracting unique sig-
natures from captured malware samples and using the signatures in sub-
sequent sightings of the same malware. This detection strategy is fast
and has low false positive rates, but it is easily defeated by modifying

© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
G. Peterson and S. Shenoi (Eds.): Advances in Digital Forensics XIII, IFIP AICT 511, pp. 187–201, 2017.
DOI: 10.1007/978-3-319-67208-3_11

187

188 ADVANCES IN DIGITAL FORENSICS XIII

the malware code via encryption or packing [15]. Another strategy is to
use a machine learning model to detect malware based on static malware
features [24]. Although this malware detection strategy is more robust
than signature-based detection, it can still be defeated [15].

The path to improving the detection of unknown malware started
with the shift from signature-based detection to behavior-based detec-
tion. Behavior-based detection, which focuses on the activities of mal-
ware when it infects a system, can be implemented in two ways. The
first involves extracting behavioral traits from the malware code stati-
cally; these traits are called malware semantics [6]. The second approach
involves running malware in a sandbox environment and dynamically
monitoring its behavior. System calls constitute an example of malware
behavior that can be monitored dynamically and subsequently leveraged
in malware detection [17, 21, 26]. Other behavioral features include file
activity [22], registry activity [1] and API calls [27]. Behavior-based de-
tection certainly improves the detection of unknown malware, but it is
often slow and resource intensive because it requires running the mal-
ware in a sandbox. Furthermore, false positives are often a concern due
to the misclassification of benign software that exhibits behavior similar
to malware.

Several researchers have applied memory forensics to capture artifacts
of malicious behavior that reside in memory [9, 23, 35, 36]. Memory
forensics involves the analysis of a memory dump to extract evidence
of malicious activity. An investigation using memory forensics has two
stages: (i) memory acquisition; and (ii) memory analysis. In the memory
acquisition stage, a digital forensic professional obtains a memory image
via an acquisition tool such as Memoryze or Winpmem. The memory
analysis stage attempts to find evidence of malicious activity using a tool
such as Volatility or Rekall. This research employs memory forensics to
extract information from memory images that is subsequently analyzed
to detect malware.

The malware detection approach discussed in this chapter focuses on
handles, abstraction pointers that are used to identify and access system
objects without knowing their exact locations in memory. A resource
such as a file, registry key or mutant requires a handle to be opened
before it can be accessed. The handle must be closed when the resource
is no longer required. Failing to release a handle may cause a handle leak,
which can result in reaching the upper limit on the number of handles
permitted by an application [29]. More than 30 resource object types can
be identified using handles. Whenever a process requires such a resource,
it must open a handle to the resource. The proposed approach uses the
number of handles opened by a process to determine if it is potentially

Mosli, Li, Yuan & Pan 189

malicious. After dynamically obtaining the handle data by running the
software in a sandbox, machine learning is used to discriminate between
benign and malicious uses of handles and to generalize handle usage
behavior to detect previously-unknown malware.

2. Related Work
Research in malware detection can be categorized according to how

malware analysis is conducted. Static analysis involves dissecting mal-
ware code and analyzing the instructions, imported libraries, metadata,
and program functionality and structure. However, challenges arise if
the malware is packed or encrypted. Nonetheless, this type of analy-
sis offers the advantage of observing all the execution flows of the code
regardless of the environment. Dynamic analysis, on the other hand,
involves running the malware in a sandbox and monitoring its behav-
ior. Although this analysis is not affected by encryption or packing, the
malware behavior might differ according to the runtime environment.

2.1 Static Analysis
Santos et al. [32] used opcode sequences to train a support vector

machine (SVM) classifier with a normalized polynomial kernel; features
were extracted using term frequency to count the occurrences of opcodes
in malware code. Saxe and Berlin [33] used byte entropy, portable ex-
ecutable (PE) imports and metadata to train deep neural networks to
detect malware with dropout to prevent overfitting. Markel and Bil-
zor [20] also used metadata as features; they trained and compared dif-
ferent classifiers and found that a decision tree classifier outperformed
naive Bayes and logistic regression classifiers on the particular data and
feature sets. Nath and Mehtre [24] studied the performance of machine
learning classifiers trained on static features; they concluded that us-
ing static features in malware detection faces several challenges such as
encryption and packing, k-ary code and multistage loaders.

2.2 Dynamic Analysis
Pirscoveanu et al. [27] used the Cuckoo automated malware analysis

tool to execute and monitor malware. They trained a random forest
classifier using behavioral features (DNS requests, accessed files, mu-
texes, registry keys and API calls) and used INetSim to simulate an
Internet connection for malware. Berlin et al. [3] used an n-gram bag of
words with a sliding window to extract malware behavioral features from
Windows audit logs and trained a logistic regression classifier on data
generated by running and monitoring malware samples using Cuckoo.

190 ADVANCES IN DIGITAL FORENSICS XIII

Mohaisen et al. [22] developed AMAL, a malware detection and classi-
fication system. AMAL comprises two subsystems: (i) AutoMal, which
runs malware samples and extracts features related to memory, filesys-
tem, registry and network activity; and (ii) MaLabel, which vectorizes
features and trains the classifiers. Park et al. [26] derived behavioral
graphs from malware samples by running them in a sandbox and mon-
itoring their system calls using Ether. They then created a graph for
each malware family by observing a common sub-graph for malware in-
stances belonging to the same family. In the detection phase, a matching
process is used to determine the maliciousness of a file and the malware
family to which it belongs (if the file is found to be malicious).

In a previous study, the authors of this chapter [23] examined registry
activity, imported DLLs and called APIs to determine their potential
as features for discriminating between benignware and malware. The
most distinguishing features were determined, following which, machine
learning models that utilize the features were trained to classify activ-
ity (processes) as benign or malicious. A detection rate of 96% was
achieved by training a support vector machine classifier through the op-
timization of a hinge loss function. The support vector machine classifier
was trained on registry activity data generated by software from both
classes.

The use of handles in malware detection is relatively uncommon.
Galal et al. [11] used handles to categorize different API calls according
to their actions; the APIs either created handles, passed handles as ar-
guments, released or closed handles or were handle-independent. Naval
et al. [25], however, explicitly ignored handles along with all system
call parameters. Park et al. [26] used handles to express dependencies
between different kernel objects and their attributes. This chapter dis-
cusses the potential of handles to provide insightful views of program
behavior based on the resources that are used. These insights are used
to train a model to distinguish between benign software and malicious
software based on the number of handles used for each resource.

3. Windows Handles and Objects
A handle is a pointer or reference to a Windows object [16]. Objects

are managed by the Windows object manager, which is in charge of cre-
ating, deleting, protecting and tracking objects [31]. Every EPROCESS
structure in memory contains a pointer in its ObjectTable member that
points to a handle table, which contains pointers to all open objects used
by the owning process. Each table has a TableCode that specifies the
base address of the table and the number of levels in the table. A handle

Mosli, Li, Yuan & Pan 191

table may contain up to three levels that, in theory, can carry up to 229

handles. When more than one level exists in a handle table, only the
last level points to objects. Otherwise, each entry in the preceding levels
points to other tables.

A table also contains a member that holds the number of handles in
the table. When a process calls an API such as CreateFile, a pointer
to the created file is added to the process handle table and the index
of the entry is returned. This index is the handle to the file, which is
used by the process whenever the file is accessed. The HandleCount
member of the handle table is incremented whenever a handle is added.
Each entry in the handle table contains a pointer to the object header
of the referenced object and a bit mask that expresses the access rights
provided to the owning process. A subset of objects allow handles to be
inherited by child processes from parent processes; an inherited handle
has a unique value, but it points to the same object as the parent handle.

More than 30 object types are referenced by handles; observing the
number of handles to each object type provides valuable insights into the
resources that are used. The handles used by a process can be enumer-
ated in several ways. One way is to do this programmatically by calling
NtQuerySystemInformation with SystemHandleInformation. Alter-
natively, the Sysinternals Handle command line tool displays handle
information about all processes, or about a single process if a process
id (PID) is specified by the user [30]. Another approach is to use the
Application Verifier tool from Microsoft to track process handle activity
from start to finish. The proposed approach uses the Volatility handles
plugin to extract handle information. This approach walks the handle
table for a given process and displays its content. The handles plugin
provides several options to filter the results: process id, EPROCESS
structure offset, object type and object name. The process id was used
to obtain the necessary data for processes known to be benign or mali-
cious. Figure 1 shows a portion of a Volatility handles plugin output.

4. Malware Detection Using Handles
This section discusses malware detection using handles. The steps

include collecting data, extracting features and training the machine
learning models.

4.1 Experimental Setup
The dataset comprised 3,130 malware samples from the VirusShare

malware repository [28]. Additionally, 1,157 benign software samples

192 ADVANCES IN DIGITAL FORENSICS XIII

Offset (V) Pid Handle Access Type Details
---------- ----- ------ --------- ---------- -------
0x891cfea8 3104 0x4 0x3 Directory KnownDlls
0x8439ff80 3104 0x8 0x100020 File \Device\HarddiskVolume2\Users\
 victim\AppData\Local\Temp
0x84335368 3104 0xc 0x100020 File \Device\HarddiskVolume2\Windows\
 winsxs\x86_microsoft.windows
0x8917fbd8 3104 0x10 0x20019 Key MACHINE\SYSTEM\CONTROLSET001\
 CONTROL\NLS\SORTING\VERSIONS
0x85e0b778 3104 0x14 0x1f0001 ALPC Port
0x95cf1db8 3104 0x18 0x1 Key \MACHINE|SYSTEM|CONTROLSET001\
 CONTROL\SESSION MANAGER

Figure 1. Output of the Volatility handles plugin.

were collected from various locations such as the Windows System32
directory and from software websites such as FileHippo.

The environment used for the analysis comprised a Ubuntu virtual
machine that hosted four Windows 7 SP1 virtual machines using Vir-
tualBox. The Ubuntu virtual machine was hosted on a Windows 10
machine using VMWare. Each Windows machine was set to have 1 GB
RAM and one core.

Cuckoo [8] was used to automate the analysis process on the Ubuntu
machine. The four Windows virtual machines were run concurrently,
each with an instance of benign or malicious software. During the anal-
ysis task, a memory dump was produced of each Windows virtual ma-
chine along with a report with content and behavioral information about
the sample. Furthermore, VirusTotal was used to scan each sample to
ensure that the sample was labeled correctly as benign or malicious, and
then determine the malware family to which it belonged. The majority
of the samples were Trojans, but worms, viruses, backdoors and adware
were also encountered. A portion of the dataset was classified as being
malware, but no consensus was reached by VirusTotal about the fam-
ilies to which all the samples belonged. These samples were included
in the malware dataset, but were labeled as unclassified instead of as a
malware family.

INetSim [14] was used to simulate an Internet connection to increase
the chances of the malware behaving correctly. However, due to their
anti-virtual-machine functionality, 668 malware samples terminated in-
stantly after being launched; this left 2,462 malware samples to be used
in the experiments. Although discarding malware with anti-virtual-
machine functionality from the dataset omits such behavior from the
classifiers, the increasing popularity of virtualization in the information
technology sector is making malware with anti-virtual-machine function-
ality less common [18].

Mosli, Li, Yuan & Pan 193

Handle data was extracted from the memory dumps of machines with
benignware or malware using Volatility. Every EPROCESS structure
in memory contains a pointer to a handle table specific to the owning
process. Volatility outputs the handle information by walking the handle
table of a specified process or of all processes if no process id was specified
when running the handles plugin [16]. The process ids used to filter
the results were provided by Cuckoo; the main process id in addition
to the process ids of spawned processes were included in the Cuckoo
report. The Volatility handles plugin outputs a table with six columns:
(i) virtual offset of the handle in memory; (ii) process id of the owning
process; (iii) handle offset in the process handle table; (iv) access granted
to each object with a handle; (v) type of object pointed to by the handle;
and (vi) details about the object, if available. All the Volatility results
were stored in text files, where each text file contained information about
the handles used by a single process.

4.2 Vectorizing the Handle Data
The term frequency-inverse document frequency (TF-IDF) [19] was

used to extract measurable features from the Volatility handles out-
put; the extraction and model training was implemented using scikit-
learn [5]. A vocabulary was created comprising the handle types to be
extracted from the handle text files. A list of all the possible terms in
the vocabulary was obtained from Schuster [34]. Subsequently, the term
frequency-inverse document frequency, which counts the occurrence of
each vocabulary term in each text file, and then weights the importance
of the term according to the number of times the term occurs across
all the documents, was computed for all the handles data. This yielded
a 3, 619 × 31 matrix, each row representing a sample and each column
representing a term. A total of 58,652 non-zero entries were present in
the matrix, making the matrix 52.28% dense. To avoid division by zero,
the smooth idf option was set to true; this option adds one document
to the corpus with every term in the vocabulary appearing once. Zero
entries appearing in the matrix were largely the result of ten terms that
did not appear in any document. These terms were discarded before
training the models, resulting in a 3, 619 × 21 matrix with a density of
77.17%.

4.3 Model Training
For evaluation purposes, the dataset was divided into two subsets, one

for training and one for testing. A total of 724 samples were used for
testing (20% of the dataset) and 2,895 samples were used for training.

194 ADVANCES IN DIGITAL FORENSICS XIII

A stratified split was used to generate the test set, which resulted in a
balanced representation of both classes.

Three machine learning models were compared: (i) k-nearest neigh-
bor (KNN) [2]; (ii) support vector machine (SVM) [7]; and (iii) random
forest [12]. The k-nearest neighbor approach classifies each data point
according to its neighbors; a number of options must be considered when
training this classifier, including the number of neighbors to be evalu-
ated and the method for assigning weights to the neighbors. The support
vector machine is a discriminative model that searches for a hyperplane
with maximum separation between the data points from different classes;
the hyperplane is then used to classify new data points according to the
side of the hyperplane where they fall. Random forest is an ensem-
ble approach that trains multiple decision trees and outputs a decision
according to the predictions of all the trees.

Accuracy, precision and recall were used as evaluation metrics for the
three machine learning models. The exhaustive grid search approach was
employed to determine the parameter values that produced the highest
detection rates for the models. To perform the exhaustive grid search,
a parameter space was created for each model that was populated with
the values to be searched. Table 1 lists the parameter values tested for
each machine learning model.

The k-nearest neighbor approach achieved the highest accuracy using
three neighbors, the ball tree algorithm to find neighbors and distances
as weights. In the case of the SVM, a radial basis function (RBF) kernel
gave the highest accuracy; the numbers of support vectors used were 527
for the benign class and 625 for the malicious class. The random forest
approach performed best with 25 decision trees. After determining the
best parameter values for each model, the precision and recall were cal-
culated to measure the model performance with regard to false positives
and false negatives. Table 2 summarizes the performance of the three
machine learning models.

Table 3 shows the confusion matrix for the random forest classifier
with the predicted and true labels.

5. Results and Analysis
Observations of the use of handles by benign and malicious soft-

ware can reveal their potential for helping discriminate between the two
classes. For example, section handles are used differently by benignware
and malware. A section is a region of memory that can be shared by
multiple processes. It is used by the Windows loader when loading a
module into process address space [4]. A section is also used for inter-

Mosli, Li, Yuan & Pan 195

Table 1. Exhaustive grid search parameter space.

Model Parameter Value

KNN Algorithm for finding neighbors Ball tree
KDtree
Brute force

Number of neighbors 3
4
5
6
7

Weights of neighbors Uniform
Distance

SVM Penalty term 1
0.75
0.50
0.25

Kernel type Linear
Polynomial
RBF
Sigmoid

Degree of polynomial 1
2

Random Forest Max feature split algorithm Auto
Square root
Logarithmic
None

Number of decision trees 5
10
15
20
25

Table 2. Performance of the KNN, SVM and random forest models.

Learning Model Accuracy Precision Recall

KNN 0.910 0.892 0.899
SVM 0.911 0.899 0.920
Random Forest 0.914 0.898 0.911

196 ADVANCES IN DIGITAL FORENSICS XIII

Table 3. Confusion matrix for the random forest classifier.

Predicted
0 1

T
ru

e 0 29.5% 3.1%
1 5.3% 61.8%

process communication (IPC), where a memory-mapped file is shared
by two or more processes. When used with malicious intent, sections
provide a means for injecting code into the address spaces of other pro-
cesses. The different usage of sections by benign and malicious software
explains the difference in the numbers of handles used by the two types
of software. In the experiments, the average number of section objects
used by benignware was 8.48 whereas the average number for malware
was 27.12. Therefore, when training the random forest classifier, section
features were at the top of the decision trees; this affected the largest
fraction of sample predictions.

The number of process handles used by software is another indica-
tor of maliciousness. A process handle is often obtained when a new
process is created using the CreateProcess function. Furthermore, a
handle to a process can also be retrieved by passing a process id to the
OpenProcess function. Malware uses process handles to gain access to
other victim processes with the goal of injecting, hollowing, terminating
or hooking [13]. In the experiments, the average number of process han-
dles used by legitimate software was 0.81 whereas the average number
used by malware was 2.43. Consequently, process handles became the
second most prominent term when training the random forest classifier.

Mutants are objects that can also help distinguish between benignware
and malware. Mutants are used for mutual exclusions; specifically, to
control access to shared system resources. A mutant handle is acquired
by calling the function OpenMutex and is released by calling the function
ReleaseMutex. Mutants are often used by legitimate software to avoid
conflicts between multiple threads. However, malware samples use them
to prevent the re-infection of already-infected resources, which could
result in undesirable results. In the experiments, the average number
of mutant objects used by benignware was 11.35 whereas the average
number used by malware was 21.84. Table 4 shows the use of handles
by benignware and malware.

To determine the effects of an imbalanced dataset (benignware: 1,157
and malware: 2,462) on the machine learning model, the experiments

Mosli, Li, Yuan & Pan 197

Table 4. Use of handles by benignware and malware.

Object Type Benignware Malware
Average Variance Average Variance

Desktop 1.92 3.73 1.85 0.54
Device 22.8 710.38 25.34 148.42
Directory 2.21 0.25 2.35 0.25
Event 70.58 7468.62 94.92 2516.89
File 22.80 710.44 25.34 148.42
IOCompletion 1.06 1.36 2.31 0.93
Job 0.01 0.01 0.38 0.23
Key 32.79 873.35 49.66 277.51
KeyedEvent 0.56 0.26 0.93 0.06
Mutant 11.35 227.5 21.84 97.71
Port 7.51 57.27 12.76 25.36
Process 0.81 61.78 2.43 16.71
Section 8.48 70.13 27.12 156.99
Semaphore 10.91 173.83 12.59 43.01
Thread 14.38 668.91 20.61 98.75
Timer 2.01 4.30 2.85 0.75
Token 0.45 6.63 0.09 0.94
WindowStation 2.01 0.01 2.01 0.01
WmiGuid 0.18 0.14 0.02 0.02

were performed multiple times with a balanced dataset. This was accom-
plished by randomly discarding malware samples to reduce the number
to 1,157. During each run, a different subset of malware samples was
discarded. The performance of the classifiers trained on the balanced
datasets was only slightly lower than the classifiers trained on the origi-
nal dataset. This leads to the conclusion that significant behavior from
the malware dataset can be captured using a smaller dataset.

6. Conclusions
This research has demonstrated that handles, which capture the be-

havioral activity of software, can be used to detect malware. Specifically,
malware uses resources differently from benignware and this fact can be
used to train classifiers to categorize processes as malicious or benign.
In the experiments, Cuckoo was used to automate the execution and
monitoring of malware and benignware and to dump memory images.
Volatility was used to extract the handle information from the mem-
ory dumps, which was then analyzed to determine the different uses of
handles by the two classes of software. Three machine learning models,

198 ADVANCES IN DIGITAL FORENSICS XIII

k-nearest neighbor, support vector machine and random forest, were
used to train the classifiers. Random forest outperformed the k-nearest
neighbor and support vector machine models with a detection rate of
91.4%, precision of 89.8% and recall of 91.1%.

The experimental results demonstrate the efficacy of using handles to
detect malware. However, the approach is reactive in that it is applied
after the system has been infected. Nevertheless, one use case for the
approach is as a second layer of defense if signature-based detection
fails. The second use case is in forensic investigations, where malware
detection and analysis are routinely performed. In fact, the approach
can be applied to alleviate the cumbersome task of detecting malware
in a large number of seized machines.

This research has focused on the types of objects referenced in handle
tables. Information provided in the access rights and details columns of
the Volatility handles plugin output was not considered. The details
column provides in-depth information about objects, such as the reg-
istry key accessed by the process and the file path to which a handle
is opened. File objects, in particular, may not be actual files – they
may be devices treated as files due to similar read and write operations.
Such granular details could significantly improve the performance of the
classifiers. This exploration is a topic of future research.

Another topic for future research is the identification of other behav-
ioral artifacts that may be used to distinguish malware from benign-
ware. Zaki and Humphrey [37], who studied kernel-level artifacts left
by rootkits, discovered that callbacks are more suspicious than other
artifacts such as SSDT hooks. Future research will investigate the use
of callbacks and other artifacts in developing classifiers with improved
malware detection rates, precision and recall.

References

[1] M. Aghaeikheirabady, S. Farshchi and H. Shirazi, A new approach
to malware detection by comparative analysis of data structures in
a memory image, Proceedings of the First International Congress
on Technology, Communication and Knowledge, 2014.

[2] N. Altman, An introduction to kernel and nearest-neighbor non-
parametric regression, The American Statistician, vol. 46(3), pp.
175–185, 1992.

[3] K. Berlin, D. Slater and J. Saxe, Malicious behavior detection using
Windows audit logs, Proceedings of the Eighth ACM Workshop on
Artificial Intelligence and Security, pp. 35–44, 2015.

Mosli, Li, Yuan & Pan 199

[4] B. Blunden, The Rootkit Arsenal: Escape and Evasion in the Dark
Corners of the System, Jones and Bartlett Learning, Burlington,
Massachusetts, 2013.

[5] L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller, O.
Grisel, V. Niculae, P. Prettenhofer, A. Gramfort, J. Grobler, R.
Layton, J. VanderPlas, A. Joly, B. Holt and G. Varoquaux, API de-
sign for machine learning software: Experiences from the scikit-learn
Project, Proceedings of the European Conference on Machine Learn-
ing and Principles and Practice of Knowledge Discovery in Data-
bases Workshop: Languages for Data Mining and Machine Learn-
ing, pp. 108–122, 2013.

[6] M. Christodorescu, S. Jha, S. Seshia, D. Song and R. Bryant,
Semantics-aware malware detection, Proceedings of the IEEE Sym-
posium on Security and Privacy, pp. 32–46, 2005.

[7] C. Cortes and V. Vapnik, Support-vector networks, Machine Learn-
ing, vol. 20(3), pp. 273–297, 1995.

[8] Cuckoo Foundation, Cuckoo Sandbox (www.cuckoosandbox.org),
2016.

[9] B. Dolan-Gavitt, A. Srivastava, P. Traynor and J. Giffin, Robust
signatures for kernel data structures, Proceedings of the Sixteenth
ACM Conference on Computer and Communications Security, pp.
566–577, 2009.

[10] D. Emm, R. Unuchek, M. Garnaeva, A. Ivanov, D. Makrushin
and F. Sinitsyn, IT Threat Evolution in Q2 2016, Kaspersky Lab,
Moscow, Russia, 2016.

[11] H. Galal, Y. Mahdy and M. Atiea, Behavior-based features model
for malware detection, Journal of Computer Virology and Hacking
Techniques, vol. 12(2), pp. 59–67, 2016.

[12] T. Ho, The random subspace method for constructing decision
forests, IEEE Transactions on Pattern Analysis and Machine In-
telligence, vol. 20(8), pp. 832–844, 1998.

[13] G. Hoglund and J. Butler, Rootkits: Subverting the Windows Kernel,
Pearson Education, Upper Saddle River, New Jersey, 2006.

[14] T. Hungenberg and M. Eckert, INetSim: Internet Services Simula-
tion Suite (www.inetsim.org), 2007.

200 ADVANCES IN DIGITAL FORENSICS XIII

[15] B. Klein and R. Peters, Defeating machine learning – What your
security vendor is not telling you, presented at Black Hat USA,
2015.

[16] M. Ligh, A. Case, J. Levy and A. Walters, The Art of Memory
Forensics: Detecting Malware and Threats in Windows, Linux and
Mac Memory, John Wiley and Sons, Indianapolis, Indiana, 2014.

[17] Y. Lin, Y. Lai, C. Lu, P. Hsu and C. Lee, Three-phase behavior-
based detection and classification of known and unknown malware,
Security and Communication Networks, vol. 8(11), pp. 2004–2015,
2015.

[18] J. Luttgens, M. Pepe and K. Mandia, Incident Response and Com-
puter Forensics, McGraw Hill Education, New York, 2014.

[19] C. Manning, P. Raghavan and H. Schutze, An Introduction to Infor-
mation Retrieval, Cambridge University Press, Cambridge, United
Kingdom, 2008.

[20] Z. Markel and M. Bilzor, Building a machine learning classifier for
malware detection, Proceedings of the Second Workshop on Anti-
Malware Testing Research, 2014.

[21] M. Masud, S. Sahib, M. Abdollah, S. Selamat and R. Yusof, Anal-
ysis of features selection and machine learning classifier in Android
malware detection, Proceedings of the International Conference on
Information Science and Applications, 2014.

[22] A. Mohaisen, O. Alrawi and M. Mohaisen, AMAL: High-fidelity,
behavior-based automated malware analysis and classification,
Computers and Security, vol. 52, pp. 251–266, 2015.

[23] R. Mosli, R. Li, B. Yuan and Y. Pan, Automated malware detection
using artifacts in forensic memory images, Proceedings of the IEEE
Symposium on Technologies for Homeland Security, 2016.

[24] H. Nath and B. Mehtre, Static malware analysis using machine
learning methods, Proceedings of the Second International Confer-
ence on Recent Trends in Computer Networks and Distributed Sys-
tems Security, pp. 440–450, 2014.

[25] S. Naval, V. Laxmi, M. Rajarajan, M. Gaur and M. Conti, Employ-
ing program semantics for malware detection, IEEE Transactions
on Information Forensics and Security, vol. 10(12), pp. 2591–2604,
2015.

[26] Y. Park, D. Reeves and M. Stamp, Deriving common malware
behavior through graph clustering, Computers and Security, vol.
39(B), pp. 419–430, 2013.

Mosli, Li, Yuan & Pan 201

[27] R. Pirscoveanu, S. Hansen, T. Larsen, M. Stevanovic, J. Pedersen
and A. Czech, Analysis of malware behavior: Type classification
using machine learning, Proceedings of the International Conference
on Cyber Situational Awareness, Data Analytics and Assessment,
2015.

[28] J. Roberts, VirusShare Project (virusshare.com), 2017.
[29] M. Russinovich, Pushing the limits of Windows: Handles, Mark’s

Blog (blogs.technet.microsoft.com/markrussinovich/2009/
09/29/pushing-the-limits-of-windows-handles), September
29, 2009.

[30] M. Russinovich, Sysinternals Suite, Microsoft TechNet, Redmond,
Washington (technet.microsoft.com/en-us/sysinternals/bb8
42062.aspx), 2017.

[31] M. Russinovich, D. Solomon and A. Ionescu, Windows Internals,
Microsoft Press, Redmond, Washington, 2012.

[32] I. Santos, F. Brezo, X. Ugarte-Pedrero and P. Bringas, Opcode se-
quences as representation of executables for data-mining-based un-
known malware detection, Information Sciences, vol. 231, pp. 64–
82, 2013.

[33] J. Saxe and K. Berlin, Deep neural network based malware detec-
tion using two dimensional binary program features, Proceedings
of the Tenth International Conference on Malicious and Unwanted
Software, pp. 11–20, 2015.

[34] A. Schuster, Enumerate Object Types, Computer Forensic Blog
(computer.forensikblog.de/en/2009/04/enumerate-object-t
ypes.html), April 7, 2009.

[35] J. Stuttgen and M. Cohen, Anti-forensic resilient memory acquisi-
tion, Digital Investigation, vol. 10(S), pp. S105–S115, 2013.

[36] T. Teller and A. Hayon, Enhancing automated malware analysis
machines with memory analysis, presented at Black Hat USA, 2014.

[37] A. Zaki and B. Humphrey, Unveiling the kernel: Rootkit discovery
using selective automated kernel memory differencing, presented at
the Virus Bulletin Conference, 2014.

Chapter 12

CATEGORIZING MOBILE DEVICE
MALWARE BASED ON
SYSTEM SIDE-EFFECTS

Zachary Grimmett, Jason Staggs and Sujeet Shenoi

Abstract Malware targeting mobile devices is an ever increasing threat. The most
insidious type of malware resides entirely in volatile memory and does
not leave a trail of persistent artifacts. Such malware requires novel
detection and capture methods in order to be reliably identified, an-
alyzed and mitigated. This chapter proposes malware categorization
and detection techniques based on measurable system side-effects ob-
served in an exploited mobile device. Using the Stagefright family of
exploits as a case study, common system side-effects produced as a result
of attempted exploitation are identified. These system side-effects are
leveraged to trigger volatile memory (i.e., RAM) collection by memory
acquisition tools (e.g., LiME) to enable analysis of the malware.

Keywords: Mobile malware, memory-resident, categorization, system side-effects

1. Introduction
Critical vulnerabilities that affect large families of mobile devices make

it imperative to develop new techniques for securing these devices against
increasingly sophisticated attacks as well as for conducting forensic in-
vestigations. Investigating attacks on mobile devices requires the cap-
ture and analysis of evidence pertaining to attacks. However, the most
insidious malware resides entirely in memory and does not create per-
sistent artifacts. Memory-resident malware that removes itself from a
mobile device after performing its malicious activities can evade capture
and analysis by malware investigators, even after its presence has been
detected by a user. Live memory acquisition is the only way to recover
memory-resident malware from exploited devices.

© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
G. Peterson and S. Shenoi (Eds.): Advances in Digital Forensics XIII, IFIP AICT 511, pp. 203–219, 2017.
DOI: 10.1007/978-3-319-67208-3_12

203

204 ADVANCES IN DIGITAL FORENSICS XIII

This chapter introduces a taxonomy for categorizing mobile device
malware based on observable system side-effects in an effort to stim-
ulate the development of new methods for memory-resident malware
detection, capture and analysis. The Stagefright family of vulnerabili-
ties and exploits is used as a case study to assess the system side-effects
that occur as a result of exploitation attempts of the libstagefright
Android library. The chapter also describes how system side-effects pro-
duced by this malware can be used to trigger volatile memory captures
for subsequent malware analysis efforts.

2. Live Memory Analysis of Mobile Devices
Live memory analysis refers to the capture and analysis of data stored

in the volatile memory of a computer system or device. Numerous situa-
tions exist where important information only resides in volatile memory.
These circumstances demand the application of techniques that can re-
liably and safely extract the information for forensic analysis.

Note that mobile devices have many more variations than computer
workstations in their design and architecture. Beyond the obvious dif-
ferences in design requirements due to their size and power constraints,
mobile devices perform other unique tasks that require special consider-
ation. Radio communications are highly sensitive to timing and poorly
suited to sharing processing time with user applications. Moreover, user
applications are equally ill-suited to execute on a real-time operating sys-
tem that could enable reliable radio communications. As a result, most
mobile devices contain two processors – an applications processor that
handles user applications and a baseband processor that independently
handles cellular communications (e.g., GSM, UMTS and LTE).

2.1 Information in Volatile Memory
The physical memory of a device essentially contains a snapshot of

the recently-used information on the device. Recent web searches, text
messages and session keys can all be recovered with access to physical
memory [19]. This is why many devices now deny access to physical
memory and restrict applications to their own allocated memory. Legit-
imate uses for physical memory dumps, such as debugging application
crashes, are arbitrated by the operating system.

While a mobile device contains many types of evidence of interest in
digital forensic investigations, some artifacts or data are unrecoverable
if they are lost from volatile memory. These artifacts include crypto-
graphic keys for unlocking encrypted containers and private messages
sent via secure messaging applications. Digital forensic investigators

Grimmett, Staggs & Shenoi 205

Device Hardware

Linux Kernel

Run within
Application

Sandbox
Hardware Abstraction Layer

Native Libraries Android Runtime
Android Framework

Applications

Figure 1. Android security architecture [1].

face a challenging trade-off – leaving a device powered on increases the
risk of deleted data being overwritten while turning the device off risks
losing evidence stored in volatile memory [13].

Another important use case for live memory analysis is malware de-
tection and analysis. There are numerous examples of seemingly benign
applications having malicious add-ons, including compromised applica-
tions that were pre-installed on some devices (e.g., Huawei G510 and
Lenovo S860 smartphones) [9]. These applications do not require live
memory analysis to detect and analyze. However, many of them act as
Trojans that download and execute malicious code that may only exist
in volatile memory. Understanding the threats posed by sophisticated
mobile device malware requires deep analysis of the targeted hardware
and operating system [7].

2.2 Memory Capture Techniques
Mobile devices have been developed with connectivity as the primary

goal and have benefited from the lessons learned about the importance
of securing connected devices. Mobile operating systems restrict user
privileges to protect the devices and the network carriers.

Android uses long-standing Unix security concepts to provide appli-
cation security – an application is limited to a “sandbox” and is assigned
a unique UID that is used to apply and enforce user permissions. This
ensures that only the Linux kernel has access to the process memory of
more than one application.

Figure 1 presents the Android security architecture. The architecture
limits software access to physical memory, a security improvement that
prevents malicious applications from compromising other applications.
For example, this prevents an infected social media application from
having unfettered access to the memory of a banking application that
may contain user account information and credentials. Under most cir-

206 ADVANCES IN DIGITAL FORENSICS XIII

cumstances, this is highly desirable behavior, but it also limits forensic
access to physical memory. Memory-resident malware running in other
applications or even system libraries may be effectively impossible to
detect without system or hardware-level access to physical memory.

Several memory acquisition tools have been developed by digital foren-
sic researchers. Thing et al. [19] have designed the memgrab tool, which
parses process information in the filesystem (/proc) in order to locate
process memory. Process tracing (via ptrace) is used to attach to a run-
ning process and suspend it while the process memory is being copied.

Sylve et al. [18] have developed the Linux Memory Extractor (LiME),
a loadable kernel module that locates system memory and copies it to lo-
cal storage or exfiltrates the memory over a TCP/IP network connection.
LiME relies on parsing the kernel resource structure iomem resource to
identify physical memory locations in system RAM.

Stuttgen and Cohen [16] have attempted to create an even more gen-
eral solution for creating forensically-sound images of live memory. Their
solution leverages a minimal kernel module that can use other kernel
modules to capture live memory. Another memory acquisition tool is
TrustDump, which uses the ARM TrustZone to capture device memory
in a manner that is completely transparent to the operating system [17].

3. Android Exploitation Techniques
Mobile devices have access to sensitive information (e.g., bank ac-

counts, saved passwords and medical data), which has motivated the
development and use of mobile device malware by criminals and hack-
ers. Mobile operating systems prioritize reliability and availability so
much that system processes restart as quickly as possible after a crash.
The information saved when a process crashes is useful for debugging,
but it is often insufficient to identify exploits. This section introduces
exploitation techniques that impact how malware interacts with and re-
sides in memory.

No single software solution can be expected to combat all potential
malware on a mobile device. However, it is possible to design solutions
that capture specific types of malware. Understanding how security
mechanisms are defeated by malware is integral to a long-term effort to
improve device security. In the short term, it enables researchers to dis-
cover and defend against current exploitation efforts. This short-term
view of security is focused on finding and fixing existing vulnerabili-
ties and benefits directly from efforts to capture previously-unidentified
malware for analysis.

Grimmett, Staggs & Shenoi 207

Lower Memory
Addresses

Higher Memory
Addresses

H
ea

p
G

ro
w

th

Free Memory

Allocated Chunk

Allocated Chunk

Free Chunk

Allocated Chunk

Allocated Chunk

Before Heap Spray After Heap Spray

Allocated Chunk

Allocated Chunk

Allocated Chunk

Spray Chunk

Allocated Chunk

Free Memory

Spray Chunk

Spray Chunk

Spray Chunk

Spray Chunk

Spray Chunk

Top of Heap

Bottom of Heap
(Top of Stack)

Figure 2. Heap spray example.

3.1 Heap Exploitation
Heap memory, or dynamic memory, enables a program to access and

use memory as needed instead of requiring the program to request all
the memory it will need at startup. Memory is allocated to a program in
discrete chunks and is deallocated (freed) when it is no longer necessary.
An attacker can manipulate the heap by performing specific allocations
and deallocations that enable a vulnerability to be exploited. Heap
exploitation leverages the control of heap memory to subvert a system.
A program that does not properly verify or validate the use of dynamic
memory is often vulnerable to multiple types of attacks.

Two common heap exploitation (or manipulation) techniques are: (i)
heap spraying: and (ii) heap grooming:

Heap Spraying: A heap spray involves a (generally large) num-
ber of allocations to place a designated chunk of memory into a spe-
cific location for later use (Figure 2). This leverages the tendency
of a system to reuse and reorganize chunks in dynamic memory to
avoid memory fragmentation. The specific location targeted by a
heap spray is generally selected to be as reliable as possible while
requiring no knowledge of the current dynamic memory layout.

Programs routinely use dynamic memory to store user-controlled
data – this only becomes a problem when the data is misused by

208 ADVANCES IN DIGITAL FORENSICS XIII

Free Memory

Create Predictable
Allocation

Lower
Memory

Addresses

Higher
Memory

Addresses

H
ea

p
G

ro
w

th Allocated by Attacker

Allocated by Attacker

Free Memory

Free Placeholder
Chunk

Free Memory

Reuse Freed Chunk

Freed by Attacker

Allocated by Attacker

Reallocated by AttackerAllocated by Attacker

Figure 3. Heap groom example.

an exploit. A heap spray relies on an allocation of more memory
than a system is expected to use. Such an allocation is noticeable
because it involves an unusually large amount of memory. Sev-
eral techniques have been developed to identify and prevent the
anomalous use of dynamic memory [5, 11].

Heap Grooming: Heap grooming uses allocations and dealloca-
tions to control an unspecified portion of the heap (Figure 3).
When a program deallocates a chunk of memory and subsequently
attempts to allocate another chunk of the same size, it is most effi-
cient for the operating system to allocate the same piece of memory
to the program. This behavior limits the impact of memory frag-
mentation without performing costly defragmentation techniques.
Heap grooming takes advantage of the optimization by allocating
a sequence of chunks and freeing a chunk in the middle of the
sequence [15].

Heap grooming uses far less memory than heap spraying and may
display the behavior of a normal target program; this is because
dynamic memory is intended to be allocated and deallocated as
needed. Thus, heap grooming is more difficult to detect and pre-
vent than heap spraying.

Heap manipulation techniques are not perfectly reliable. Systems with
unexpected memory usage limit the probability of a heap spray or a heap

Grimmett, Staggs & Shenoi 209

Start

Service Running

Attempt to
Exploit Service

Exploit
Successful?

No

Finish

Wait for Service to
Restart

Service Crash

Yes

Figure 4. Brute-force execution.

groom succeeding. A heap exploit can be designed to maximize the
chances of successful exploitation, but an alternative is to crash or reset
a target process before attempting an exploit. In the case of a system
that performs garbage collection after a process exits (or crashes), an
attacker can assume that the process is in its initialized state and has
predictable memory usage after it is restarted. Intentionally crashing
a target process also serves another purpose – for attacks that require
per-device or per-model adaptation (e.g., Stagefright), the presence of a
vulnerability can be confirmed before any effort is made to develop an
exploit for a particular model of device.

3.2 Defeating ASL Randomization
This section discusses techniques for defeating address space layout

(ASL) randomization.

Brute-Force Execution. A brute-force execution attacks the same
vulnerability repeatedly until the desired result occurs (Figure 4). The

210 ADVANCES IN DIGITAL FORENSICS XIII

Mediaserver
crashes

Retries > 3

Chrome opens
crash.mp4

Chrome reloads
web page

Chrome does not
reload web page

User browses to
crash.mp4

Retries = 0

YESNO

Retries += 1

Mediaserver stack
is corrupted

Init restarts
mediaserver

Mediaserver
is running

Chrome calls
mediaserver

Mediaserver
returns error Mediaserver

reports error

Mediaserver
parses crash.mp4

Figure 5. Google Chrome execution while parsing a crash vector.

initial Stagefright exploit (discussed below) repeatedly tries the exploit
until address space layout randomization is defeated [6]. When the ran-
dom offset address is not guessed correctly, the service crashes instead of
executing the malicious code. Not all examples of brute-force execution
either succeed or crash; it is possible for a program to merely return an
error. The only requirement for brute-force execution is that the target
returns to a vulnerable state after a failed exploit attempt.

The ability to mitigate brute-force exploitation attempts varies ac-
cording to the system under attack. If reliability and availability are
high priorities, rejecting or refusing to process information after a num-
ber of failed attempts may not be acceptable. It is worth noting that this
mitigation is built into many applications to avoid getting stuck in an
infinite loop. For example, as shown in Figure 5, Google Chrome stops
the loading of a web page after four failed attempts. Unfortunately, a
mitigation that is based on counting the number of failures could be sub-
verted if an attacker succeeds before the maximum number of failures is
exceeded.

Information Leaking. A memory leak involves the unintentional dis-
closure of information to an attacker. If the leaked information is sen-
sitive, the leak itself may be the goal of an exploit. When memory ad-
dress registers (e.g., stack pointer, heap pointer and program counter)
are leaked, an attacker may gain useful information for exploiting the
system [14]. Non-register addresses can enable an attacker to identify

Grimmett, Staggs & Shenoi 211

the locations in memory where a system library has been loaded. Ad-
dress space layout randomization can be subverted if an attacker leaks
information and determines where the targeted libraries are loaded in
memory.

Exploit developers often look for arbitrary read and write operations
in vulnerable software to enable the development of reliable malware.
These operations, also called primitives, are generic and useful; they
are named after the read/write primitives that form the foundation of
programming languages. The heap manipulation techniques discussed
above can be used to leak information from memory in addition to en-
abling remote code execution. Limiting how a program handles sensitive
information can mitigate memory leaks.

4. Stagefright Exploits
Stagefright is a family of exploits that target the libstagefright

Android media-processing library [20]. Note that libstagefright refers
to the media processing library and Stagefright refers to the family of
vulnerabilities.

By exploiting integer overflow and memory corruption (heap overflow)
vulnerabilities, a Stagefright exploit can be sent to an Android device
and executed without the user’s knowledge. The exploit triggers during
preprocessing performed by libstagefrightwhenever a multimedia file
is accessed, enabling it to be transmitted via text message, e-mail, web
browsing or even when attempting to load a thumbnail of a malicious
image saved on a device. The disclosure of the Stagefright exploits in
conjunction with revelations that very few Android devices were receiv-
ing timely security patches resulted in new security update policies being
released by Google [10] and Samsung [12]. This also prompted vulnera-
bility researchers to focus on Android libraries, resulting in the discovery
of additional vulnerabilities.

Multiple researchers have released proof-of-concept exploits for lib-
stagefright. These exploits were generally released only after the ex-
ploited vulnerabilities were patched on applicable Android devices. The
exploits frequently built on previous exploits by adding new capabili-
ties or finding ways around the mitigation mechanisms. An examination
of one of these exploits can reveal the nature of the vulnerability, but
examining all of them can reveal how exploits evolve over time to com-
bat mitigation efforts. A disclosed exploit can be used to demonstrate
that the proposed modifications are successful at capturing malicious
activity; however, a proposed solution should be resilient to changes in
malware over time.

212 ADVANCES IN DIGITAL FORENSICS XIII

4.1 Zimperium zLabs
Drake [6] focused on the vulnerabilities in libstagefright because it

is a privileged process (privileges inherited as a mediaservice process)
that parses untrusted data. Additionally, mediaserver is started by the
Android init process and is restarted whenever it crashes.

Drake chose to focus exclusively on MPEG4 file processing for fuzzing
efforts; MPEG4 files are constructed in “chunks” that can be embedded
inside each other. Parsing chunk code is complicated by the recursive
MPEG4 file format and requires memory interactions that create vul-
nerabilities when unexpected sequences of chunks occur. An exploit
developed for the CVE-2015-1538 vulnerability demonstrated that large
Android frameworks incorporate assumptions that present significant
risks to devices. The changes to the Android update policies discussed
above occurred in response to this exploit, but before the details of the
exploit were released to the public.

The initial Stagefright vulnerabilities presented by Drake [6] demon-
strated that exploitation is possible through any vector that triggers
media processing. This includes multimedia messages (MMS) that are
automatically processed on receipt. Drake confirmed that the exploita-
tion occurs before an alert is generated and displayed to a user. Effec-
tively, an attacker could send a malicious multimedia message to a user
and exploit the phone without any user interaction or notification.

The vulnerabilities were disclosed to Google before their public re-
lease, but most devices had not yet received the security updates for
mitigating the exploits. Drake submitted patches to Google, but one
patch introduced another vulnerability (CVE-2015-3864) that subse-
quent Stagefright efforts would exploit [8]. The proof-of-concept ex-
ploit [20] targeted an unspecified Nexus device (likely Nexus 5) running
Android 4.0.4. It did not include an address space layout randomization
defeat, but it achieved 100% reliability through repeated efforts because
the mediaserver process is automatically restarted after it crashes due
to a failed exploit.

4.2 Google Project Zero
Brand [4] leveraged the new vulnerability as the basis of a Stage-

fright exploit that targeted more recent versions of Android. Android
versions 5.0 and later use a different memory allocation technique than
older versions; the new allocation is based on jemalloc and necessitated
changes to the heap grooming techniques used by the exploit [2]. Addi-
tionally, the address space layout randomization changes implemented
in Android 5.0 made exploitation attempts less likely to result in remote

Grimmett, Staggs & Shenoi 213

code execution. However, a proof-of-concept exploit revealed that these
vulnerabilities were still present in newer Android devices.

Address space layout randomization successfully prevents an attacker
from knowing exactly where shared libraries are loaded in memory, but
this can be circumvented if the attacker can leak enough information
to determine the memory layout. Alternatively, an attacker could guess
where a library is loaded. The address space layout randomization im-
plementation on Android devices only provides eight bits of entropy
when the shared library (libc.so) is loaded; thus, an attack has a one
in 256 chance of succeeding. Once again, because an unsuccessful attack
crashes mediaserver and it automatically restarts, repeatedly trying
the exploit eventually results in remote code execution. Brand [4] ex-
perimented with the exploit and discovered that successful exploitation
took 30 seconds to a little over an hour.

4.3 NorthBit
Metaphor [3] is a Stagefright implementation that incorporates im-

proved heap grooming capabilities and an address space layout random-
ization defeat. This exploit still targets the CVE-2015-3864 vulnerability
added by Drake’s patch, but it requires JavaScript execution to leak in-
formation and bypass address space layout randomization. This reduces
the set of vectors vulnerable to the attack, but the exploit is more reli-
able and less dependent on predetermined library locations. This makes
the exploit easier to adapt to other devices and it does not rely on any
additional Stagefright vulnerabilities.

MPEG4 media files can include metadata (e.g., title, duration, copy-
right and lyrics) that is accessible by JavaScript. The same heap overflow
vulnerability used to overwrite a function pointer for code execution can
be leveraged to overwrite pointers in memory and enable access to ar-
bitrary locations in memory. This primitive read operation overwrites
the pointer to the duration value (an 8-byte integer) before returning
metadata to the browser. However, because the browser requires the
duration to be a signed 64-bit integer, negative or degenerate values are
set to zero before they are reported to the browser. This limits the read-
able value to 32-35 bits of useful information after it is converted from
microseconds to milliseconds.

The Metaphor exploit relies on the same address space layout ran-
domization limitations as previous exploits – shared library modules are
limited to a maximum address range of 256 memory pages. By iterating
over these pages and performing a memory leak, an attacker could, in
theory, identify the exact location of the targeted library. However, the

214 ADVANCES IN DIGITAL FORENSICS XIII

limitation on returned values prevents the reading of information that is
normally used to identify a library (e.g., ELF header). Metaphor works
around this limitation using p memsz and p flags as identifiers. These
fields are relatively unique and are at known locations, so a lookup table
can be created to match the read value to an expected value for the
target module libc.so.

A proof-of-concept implementation includes server code that performs
a memory leak until it determines the base address for libc.so; follow-
ing this, it crafts and delivers the malicious media file. The media file
performs the necessary heap grooming and overwrites a function pointer
with an address controlled via heap overflow. Adapting the exploit to
run on a new target is straightforward if an attacker has access to the
version of libc.so running on the target device. This library can be
extracted from a downloaded factory image or any device running the
same version of the Android operating system.

These exploits demonstrate how quickly a discovered vulnerability can
transition from a low-threat proof-of-concept to a sophisticated attack.
Vulnerability researchers are paying much closer attention to Android
frameworks, but the fear remains that a similar vulnerability could go
unnoticed and result in large-scale compromise. The trade-off between a
wide attack surface (initial Stagefright exploit) and a more sophisticated
attack vector (Metaphor) is important from an attacker’s perspective.
It also plays a role in how mitigation mechanisms are developed and
applied to resolve security problems.

5. Categorizing Malware by Behavior
This section presents a novel approach for capturing malware on an

Android device for future analysis. A simple taxonomy is introduced
that classifies malware based on the crash behavior of the exploited
services.

Exploits that leverage brute-force techniques are designed with the
expectation that a targeted service will crash multiple times. An at-
tacker can intentionally cause a target service to crash in order to reset
the memory of the service and create more predictable memory usage.
Memory corruption exploits rely on sophisticated techniques (e.g., infor-
mation leakage and heap grooming), but they may not be very reliable.

If an attacker designs an exploit to be as stealthy and as reliable as
possible, it may not create side-effects that are detectable by the un-
derlying system. A highly-reliable and well-hidden exploit could still be
detected and captured on the rare occasion that it causes a crash. The
best method for capturing the most sophisticated exploits is persistent

Grimmett, Staggs & Shenoi 215

and continuous monitoring of volatile memory. However, no simple solu-
tion exists for finding an unknown malware sample in the large amount
of data collected during a continuous data capture.

5.1 Malware Categories
Malware can be classified according to its intended and designed be-

havior. This classification enables the development of capture techniques
that leverage the characteristics of each malware category.

User-Detectable Malware: Not all malware is designed to avoid
user detection – malware designed to intimidate or extort users
intentionally disrupts and inconveniences victims. Mobile devices
are now being targeted by “ransomware” that encrypts important
files or locks users out of their devices until ransoms are paid.
This category of malware is straightforward to detect and identify,
but its disruptive behavior can make memory capture for malware
analysis difficult.

System-Detectable Malware: Malware can exhibit side-effects
that are not obvious to a user, but can be detected by the under-
lying operating system. It is important to note that the focus is
on side-effects that are explicit and well-defined. The side-effects
include unreported service crashes, inappropriate application be-
havior and unexpected network connections. This category is not
mutually exclusive with user-detectable malware; in most cases,
the effects visible to a user are also apparent at the system level.

Inconspicuous Malware: Inconspicuous malware does not cre-
ate easily identifiable side-effects. This category includes malware
that may be detectable through advanced analysis techniques (e.g.,
behavioral analysis and anomaly detection). Capturing this class
of malware typically involves the collection of large amounts of
data and eliminating the false positives.

5.2 Benefits of Malware Categorization
Categorizing malware according to observable side-effects facilitates

the development of specialized detection techniques. These techniques
are similar to heuristic analysis, but they rely on the results of attempted
exploitation instead of analysis of the malware itself.

The Stagefright exploits demonstrate that mobile devices may hide
side-effects (e.g., crash notifications and excessive memory paging) that
are more noticeable on traditional computer workstations. The proposed
categorization enables the capture and study of malware that relies on

216 ADVANCES IN DIGITAL FORENSICS XIII

the differences remaining undetected. More importantly, the categoriza-
tion can also enable the detection of unknown malware that relies on
similar assumptions.

Some exploitation mechanisms are tailored specifically to a target
device – the Stagefright exploits leverage the same malicious media files
to trigger vulnerabilities across multiple devices, but they require model-
specific techniques to achieve code execution. Detecting device-specific
exploitation mechanisms requires the development and deployment of
solutions at the device model level. However, exploitation mechanisms
(and their side-effects) that can be detected at the operating system
level can be applied across multiple models of devices that run the same
operating system.

5.3 Detecting Malware Side-Effects
As mentioned above, kernel-level access is necessary for a tool to ar-

bitrarily dump memory that belongs to the operating system or other
processes. LiME [18] is a loadable kernel module that can dump an image
of the entire physical memory of a device with minimal impact. This
makes LiME a useful tool for capturing malicious activity that cannot
be precisely located in memory. LiME is well-suited to capturing large
amounts of memory at one time, but not for consistent or continuous
memory monitoring. This makes it useful in situations where suspicious
activity can be detected (e.g., a service freezes or crashes unexpectedly),
but its effectiveness against undetected attacks is limited.

System libraries (e.g., libstagefright) can be modified so that cer-
tain types of media are collected and saved before media parsing is per-
formed. The number of captured files that are stored and the length
of time they are maintained can be modified to suit the needs of re-
searchers. If a device is monitored consistently, the files may be stored
until they are analyzed. Conversely, if a device is only investigated in the
event of a suspected compromise, then the stored files have to be man-
aged because limited space is available on the device. However, changes
made to system libraries increase the risk that an exploit that targets the
libraries will no longer behave as expected. Consequently, this research
has focused on modifications that do not alter common services.

Some libraries on Android devices are designed to support system
and application developers. The debugging daemon (debuggerd) creates
“tombstones” when an application or library crashes; these tombstones
contain useful system information and program backtraces from the time
of the crash. Figure 6 demonstrates how debuggerd is associated with
every dynamically-linked executable. The executables specify the linker

Grimmett, Staggs & Shenoi 217

ELF
bionic/

linker.cpp
bionic/

debugger.cpp

DT_INTERP = linker

debuggerd_init()

debuggerd_signal_handler
registered

dynamically linked
libraries resolved

Figure 6. debuggerd handler setup.

DT INTERP used to interpret the included symbols. Following this, the
linker ties handlers for each signal to debuggerd before returning with
the library symbols resolved.

The signal handlers are responsible for generating crash information.
System properties can be configured to enable or disable additional de-
bugging capabilities. The property debug.db.uid causes debuggerd to
suspend a crashing process and attach gdb to the process – this enables
a user to connect using gdb and actively debug the process before it
crashes. (Note that the uid property is replaced with wait for gdb in
newer Android devices.) The process remains suspended until the user
depresses the “volume down” button or uses gdb to resume the process.

The debuggerd daemon is a useful tool for debugging Android plat-
form code, but its backtrace and memory dump functionalities are poorly
suited to analyzing exploits. Corrupted addresses in stack memory
and unexpected register values can cause debuggerd to miss portions
of memory that are relevant to malware analysis. To overcome this
limitation, debuggerd may be modified to support additional function-
ality when a crash occurs. The limited memory capture functional-
ity of debuggerd can also be enhanced with support for automatically
launching the LiME capture process when crashes occur. The stated
requirement that modifications to common libraries should be avoided
can be overlooked for debuggerd because it is explicitly prevented from
attempting to debug itself by design.

218 ADVANCES IN DIGITAL FORENSICS XIII

6. Conclusions
Combating sophisticated malware requires novel detection, capture

and mitigation techniques. This research has proposed malware detec-
tion techniques based on measurable side-effects in an exploited device.
Categorizing malware to identify common side-effects enables the auto-
mated capture of memory-resident malware using digital forensic tools
for live memory acquisition. The automated capture technique enables
digital forensic investigators to discover and analyze previously-unknown
exploitation techniques and to implement new mitigation strategies for
vulnerable devices. Most importantly, the proposed modifications that
make the technique possible are minimal and device-independent.

References

[1] Android Open Source Project, Security (source.android.com/
security), May 22, 2017.

[2] P. Argyroudis and C. Karamitas, Exploiting the jemalloc memory
allocator: Owning Firefox’s heap, presented at the Black Hat USA
Conference, 2012.

[3] H. Be’er, Metaphor: A (Real) Real-Life Stagefright Exploit, Revi-
sion 1.1, NorthBit, Herzliya, Israel (raw.githubusercontent.com/
NorthBit/Public/master/NorthBit-Metaphor.pdf), 2016.

[4] M. Brand, Stagefrightened? Project Zero, Google, Mountain
View, California (googleprojectzero.blogspot.com/2015/09/
stagefrightened.html), September 16, 2015.

[5] M. Cova, C. Kruegel and G. Vigna, Detection and analysis of drive-
by-download attacks and malicious JavaScript code, Proceedings of
the Nineteenth International Conference on World Wide Web, pp.
281–290, 2010.

[6] J. Drake, Stagefright: Scary code in the heart of Android, presented
at the Black Hat USA Conference, 2015.

[7] J. Edmonds, Cell Phone Reverse Engineering and Malware Anal-
ysis, Ph.D. Dissertation, Tandy School of Computer Science, Uni-
versity of Tulsa, Tulsa, Oklahoma, 2012.

[8] Exodus Intelligence, Stagefright: Mission Accomplished? Austin,
Texas (blog.exodusintel.com/2015/08/13/stagefright-miss
ion-accomplished), August 13, 2015.

[9] G Data Software, G Data Mobile Malware Report, Threat Report:
Q2/2015, Bochum, Germany, 2015.

Grimmett, Staggs & Shenoi 219

[10] A. Ludwig and V. Rapaka, An Update to Nexus Devices, Goo-
gle, Mountain View, California (officialandroid.blogspot.com/
2015/08/an-update-to-nexus-devices.html), August 5, 2015.

[11] P. Ratanaworabhan, B. Livshits and B. Zorn, NOZZLE: A defense
against heap-spraying code injection attacks, Proceedings of the
Eighteenth USENIX Security Symposium, pp. 169–186, 2009.

[12] Samsung Electronics, Samsung Announces an Android Security Up-
date Process to Ensure Timely Protection from Security Vulnera-
bilities, Press Release, Suwon, South Korea, August 5, 2015.

[13] Scientific Working Group on Digital Evidence, SWGDE Best Prac-
tices for Mobile Phone Forensics, Version 2.0, 2013.

[14] F. Serna, The info leak era of software exploitation, presented at
the Black Hat USA Conference, 2012.

[15] A. Sotirov, Heap feng shui in JavaScript, presented at the Black
Hat Europe Conference, 2007.

[16] J. Stuttgen and M. Cohen, Robust Linux memory acquisition with
minimal target impact, Digital Investigation, vol. 11(S1), pp. S112–
S119, 2014.

[17] H. Sun, K. Sun, Y. Wang, J. Jing and S. Jajodia, TrustDump:
Reliable memory acquisition on smartphones, Proceedings of the
Nineteenth European Symposium on Research in Computer Secu-
rity, Part I, pp. 202–218, 2014.

[18] J. Sylve, A. Case, L. Marziale and G. Richard, Acquisition and anal-
ysis of volatile memory from Android devices, Digital Investigation,
vol. 8(3-4), pp. 175–184, 2012.

[19] V. Thing, K. Ng and E. Chang, Live memory forensics of mobile
phones, Digital Investigation, vol. 7(S), pp. S74–S82, 2010.

[20] Zimperium zLabs, The Latest on Stagefright: CVE-2015-1538
Exploit is Now Available for Testing Purposes, San Francisco,
California (blog.zimperium.com/the-latest-on-stagefright-
cve-2015-1538-exploit-is-now-available-for-testing-pur
poses), September 9, 2015.

VI

IMAGE FORENSICS

Chapter 13

SEMANTIC VIDEO CARVING
USING PERCEPTUAL HASHING
AND OPTICAL FLOW

Junbin Fang, Sijin Li, Guikai Xi, Zoe Jiang, Siu-Ming Yiu, Liyang Yu,
Xuan Wang, Qi Han and Qiong Li

Abstract Video files are frequently encountered in digital forensic investigations.
However, these files are usually fragmented and are not stored consec-
utively on physical media. Suspects may logically delete the files and
also erase filesystem information. Unlike image carving, limited research
has focused on video carving. Current approaches depend on filesystem
information or attempt to match every pair of fragments, which is im-
practical. This chapter proposes a two-stage approach to tackle the
problem. The first perceptual grouping stage computes a hash value for
each fragment; the Hamming distance between hashes is used to quickly
group fragments from the same file. The second precise stitching stage
uses optical flow to identify the correct order of fragments in each group.
Experiments with the BOSS dataset reveal that the approach is very
fast and does not sacrifice accuracy or overall precision.

Keywords: Digital forensics, video carving, perceptual hashing, optical flow

1. Introduction
The amount of video encountered in digital forensic investigations

has increased significantly over the past decade. The digital evidence
includes surveillance camera and mobile device video files, forged video
files and erotic video files [15, 16]. However, video files are usually broken
into segments due to large file sizes and filesystem storage mechanisms
such as file scattering and wear leveling [10]. Additionally, criminals may
attempt to erase the files that may have recorded their actions. Indeed,
it is common for digital forensic investigators to only obtain (deleted)
raw video fragments extracted from storage media. In such instances,

© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
G. Peterson and S. Shenoi (Eds.): Advances in Digital Forensics XIII, IFIP AICT 511, pp. 223–244, 2017.
DOI: 10.1007/978-3-319-67208-3_13

223

224 ADVANCES IN DIGITAL FORENSICS XIII

video carving is needed to reassemble the fragments to create the original
video files for further investigation, especially when filesystem informa-
tion related to file organization is lost [6].

In principle, video carving should only consider the content of video
fragments instead of the filesystem structure or other metadata [13].
However, most research assumes that video fragments are stored se-
quentially or some type of metadata is available to help reorder file frag-
ments [3, 9, 11, 18, 19]. Without these assumptions, the only option is
to apply an exhaustive matching method, which compares the content of
every pair of fragments and concatenates one fragment to another when
the two fragments have the highest adjacency likelihood. This procedure
is analogous to assembling a jigsaw puzzle using brute force.

The computational effort for the brute force content-based video carv-
ing grows quadratically with the total number of fragments. Specifically,
for n fragments, the algorithm requires O(n2) steps for reassembly [11].
Garfinkel [6] notes that many video files are typically recovered from
storage devices during a digital investigation and these files are often
very large, resulting in a massive number of fragments and, thus, sig-
nificant computational costs. Therefore, an automated semantic video
carving approach with high efficiency and precision is sorely needed to
support digital forensic investigations.

Content-based video carving is complicated because fragmentation
shuffles the constituent parts of a video file; additionally, the fragments
from multiple video files are mixed together. The approach described
in this chapter is designed to semantically carve video fragments from
multiple video files, especially in the case of surveillance videos, which
are commonly encountered in digital forensic investigations. The novel
approach involves two stages that reduce the computational complex-
ity while maintaining high precision. Instead of performing pairwise
matching of all the fragments, the proposed approach employs percep-
tual grouping to collect fragments that originate from the same video
file. This step is followed by content-based precise stitching that re-
stores the video file by assembling the out-of-order fragments from a
group corresponding to a single video file.

The proposed approach first calculates the perceptual hash (P-hash)
value [12] (i.e., compressed digest) of each video fragment, following
which the Hamming distances between pairs of hashes are computed.
Two fragments whose Hamming distance is within a threshold are clus-
tered into the same group and are deemed to originate from the same
video file. The second stage precisely evaluates the adjacency likelihoods
of the raw content of fragments in each group using optical flow; this

Fang et al. 225

enables the fragments to be reordered correctly based on their motion
feature.

The overall computational complexity of semantic video carving is
reduced significantly because the scale of the precise stitching computa-
tions is decreased by the perceptual grouping stage. For example, if all n
fragments from m different video files are mixed together, the proposed
approach requires O(mn) grouping computations plus O(m(n/m)2) com-
putations to compare fragments for reassembly instead of O(n2) com-
putations required by the brute force method. Note also that the com-
putational cost for perceptual grouping is much less than the cost for
content-based precise stitching.

Experimental results obtained for the BOSS dataset [2] reveal that in-
creasing the number of video files captured by the same camera from one
file to ten files yields a final precision rate greater than 96%. Moreover,
increasing the number of cameras from one to nine, all of them recording
the same scenario, yields a final precision rate greater than 98%. The
execution times range from two seconds to 15 minutes (for 10 to 100
fragments), demonstrating that the proposed approach is practical.

2. Related Work
File carving approaches can be classified as: (i) file-signature-based

carving [17]; (ii) mapping function carving [5]; and (iii) graph theoretic-
carving [10]. Graph-theoretic carving, which is often referred to as
semantic carving, exhibits better performance than the other two ap-
proaches, especially for text carving and image carving [13].

However, while graph-theoretic carving approaches have constantly
improved, they are not as effective on video images; this is because
relatively little research has focused on semantic video carving. Most
research has leveraged file signatures, file headers of video formats, codec
specifications, etc. Additionally, the direct application of graph-theoretic
carving to video fragments has high computational complexity. Table 1
lists the principal video carving methods described in the literature.

Poisel et al. [14, 16] have proposed file carving approaches for carv-
ing fragmented multimedia files. The approaches involve preprocessing,
collating and reassembly. However, their work only focuses on image
fragments.

Yoo et al. [19] have developed a file carving approach for multimedia
AVI, WAV and MP3 files compressed by NTFS. The main contribution
is a recovery method for deleted NTFS compressed files. The approach
assumes that multimedia files are continuously allocated and that the
files can be carved based on file header signatures.

226 ADVANCES IN DIGITAL FORENSICS XIII

Table 1. Comparison of video carving methods.

Method Auxiliary Information Used

AVI Carver [19] NTFS compressed signature
Lewis Method [9] Cluster boundaries in storage media
Robust Video Carver [18] Frame and sequence headers
NFI Defraser [3] MPEG structure and semantic checks
DC3carver [3] File format characteristics
Frame-Based Recovery [11] Codec specifications and STSZ box information

Lewis [9] has proposed an improved video fragment reassembly method
that leverages the cluster boundaries in storage media. Because files are
generally saved on storage media by cluster, all the data in a single clus-
ter belongs to a single file, except for the last cluster of a file, which may
also contain data from other files in its slack or uninitialized space. The
method relies on cluster configuration information. However, it is chal-
lenging to reliably detect clusters that contain video file data. Another
challenge is to connect clusters that belong to the same fragmented file.

Yannikos et al. [18] have proposed the combination of two forensic
techniques – video file carving and robust hashing – to automate the
identification and recovery of video content. Their video frame carv-
ing approach analyzes frame information in order to extract and decode
single intracoded frames (I-frames); this results in more robust recov-
ery than traditional header/footer identification. However, the method
carves video slices by searching for I-frame headers backwards and for-
wards, assuming that all the video fragments are allocated in sequence.

Casey and Zoun [3] have compared the Defraser and DC3Carver carv-
ing tools. They also discuss the trade-offs of using carving tools in digital
forensic examinations.

Na et al. [11] have proposed a frame-based video carving approach that
leverages codec specifications for surveillance video. Their approach re-
stores corrupted video files at the frame level. However, it essentially
performs extended signature-based file restoration because it relies on
sample-to-size (STSZ) box data in MPEG-4 files, which records the
length of each frame set. Without STSZ information, the approach has
to match frames one by one, resulting in a significant time complexity
of O(n2).

3. Proposed Video Carving Approach
A successful reassembly of video fragments implies that all the frag-

ments are placed in the same sequence as in the original video file. Fig-

Fang et al. 227

Figure 1. Proposed video carving approach.

ure 1 illustrates the proposed video carving approach using a simple
example. Let F1, F2, F3, G1 and G2 be video fragments that must be
carved. Assume that F1, F2 and F3 originate from one video file while
G1 and G2 originate from a second file. Note that, in general, data frag-
ments are extracted from physical storage using a digital forensic tool
and the video fragments are identified via data type classification.

In the proposed video carving approach, each fragment is pre-processed
via content compression to produce a P-hash value. Next, the video frag-
ments (e.g., F1) and their P-hash values (e.g., PH(F1)) are input to the
perceptual grouping stage. This stage clusters the fragments based on
the Hamming distances between their P-hash values. For example, the
grouping stage clusters the fragments F1, F3 and F2 into Group 1, and
the fragments G1 and G2 into Group 2.

Next, each group (now with a substantially smaller number of frag-
ments) is input to the precise stitching stage to calculate the adjacency
likelihoods of fragments in the group. Note that no effective measure
exists for this step. In the proposed approach, optical flow is used to
estimate the similarity of the frames around the fragmentation points of
video fragments in same group. Based on the motion vectors computed
for the image frames, an improved graph-theoretic carving algorithm is
used to position the fragments in a group correctly to reconstruct the
original video file. For example, fragments F1, F3 and F2 are reordered
in the correct sequence (F1, F2, F3) and are subsequently concatenated
to produce Video File 1. Likewise, fragments G1 and G2 are reordered
as (G1, G2) and concatenated to produce Video File 2.

3.1 Perceptual Grouping
Since the video carving input is a large number of video fragments

from different video files, exhaustively matching the fragments is an ex-

228 ADVANCES IN DIGITAL FORENSICS XIII

tremely time-consuming task. Instead of conducting precise comparisons
of all the video fragments directly, a coarse grouping algorithm is em-
ployed to cluster the fragments originating from the same file in a single
group, without considering the order of the fragments.

Generally, video fragments from the same video file source have more
common features or scenes than those from different video files. Specif-
ically, video fragments from the same file are more similar semantically
than those from other files. Utilizing this characteristic, the grouping
problem can be transformed to a clustering problem, where the distance
between objects represents the dissimilarity of video fragment content
and fragments originating from the same file tend to gather around a
cluster center. The nearer the objects, the more similar the fragments
and the greater the grouping likelihood. Centroid-based clustering is
used to divide the video fragments into groups. Note that the cluster
center can be initialized as the first fragment of a video file, which is
easily identified because it usually contains a number of specific codes.
For example, the two popular codecs, MPEG-4 [7] and H.264 [8], have
the header codes 0x000001 and 0x00000001 or 0x000001, respectively,
which help identify the header fragment.

Three techniques are employed to implement this approach efficiently.
The techniques are described in the following paragraphs.

Perceptual Evaluation. The first technique helps choose an appro-
priate measure to evaluate the similarities or dissimilarities of video frag-
ments with low computational complexity and a high recall ratio. Fig-
ure 2 demonstrates this grouping technique. Start Fragment 0 indicates
the first fragment of a video file, which is obtained by simply search-
ing for the unique magic number of a file in the storage media [11];
this fragment is marked as the initial cluster center. Next, the image
frames around the fragmentation points of Start Fragment 0 and Candi-
date Fragment are compressed into binary descriptors (i.e., P-hash val-
ues corresponding to the white and black square patterns in the figure)
through perceptual hashing as described below. The clustering distance
is measured as the Hamming distance between two P-hash values. In the
example, because the Hamming distance between Start Fragment 0 and
Candidate Fragment is lower than the threshold, Candidate Fragment
is assigned to Group 0, which contains the best available fragments that
originate from the same video file as Start Fragment 0.

P-hashing is used to compress the contents of all the fragments before
running the clustering algorithm. A number of hashing functions have
been proposed based on histogram, discrete cosine transform (DCT),
singular value decomposition (SVD), local color features and random

Fang et al. 229

Figure 2. Perceptual grouping stage.

transformation methods [12]. The proposed approach generates P-hash
values using a discrete cosine transform hashing function, which involves
four steps:

Step 1 (Grayscale Transformation): A color frame contains
redundant information for processing. The grayscale transforma-
tion reduces the information content and, thus, the subsequent
computational effort.

Step 2 (Resizing): Resizing reduces the computational cost of
discrete cosine transform hashing. In this case, video frames are
resized to a fixed resolution of 32×32 pixels via linear interpolation.

Step 3 (Discrete Cosine Transformation): This transforma-
tion converts video content from the spatial domain to the fre-
quency domain, causing the primary information of a frame to
converge to the low-frequency area, which means that the mag-
nitudes of the low-frequency discrete cosine transform coefficients
are robust to slight/invisible changes to video frames. Experi-
mentation revealed that the first 64 coefficients are suitable for
computing hash values that enable robust comparisons.

230 ADVANCES IN DIGITAL FORENSICS XIII

Step 4 (Hashing): Binary hash values are computed as:

H(i) =
{

1, c[i] > cthreshold

0, otherwise
(1)

where c[i] is the ith discrete cosine transform coefficient (i = 1..64)
and cthreshold is a threshold value for the discrete cosine transform
coefficients; it is typically the average of the 64 discrete cosine
transform coefficient values.

This processing reduces the computational cost of comparing two
1024×768-pixel video frames to the cost of comparing two 64-bit bi-
nary values, a dramatic reduction in the computational complexity of
the grouping stage.

Cluster Optimization. The second technique involves optimal and
self-adaptive clustering. Clustering is formulated as a multi-objective
optimization problem. A training module shown in Figure 2 is employed
to optimize the output groups. Since the Hamming distance between a
pair of P-hash values is chosen as the weighting parameter in cluster
analysis, adjusting the cluster radius affects the clustering performance
when the inter-member distances are small.

An optimized threshold for the clustering radius is significant to the
performance of the algorithm. If the threshold value is too small (i.e., too
strict), then some candidate fragments may be excluded (false reject or
false negative errors). On the other hand, a large threshold may lead to
the addition of outliers (false accept or false positive errors). Therefore,
before the clustering process is initiated, a training dataset must be
input to the clustering algorithm to determine the optimal threshold
by adjusting the clustering radius until optimal groups are produced
that maximize the true positives and minimize the false positives in
each group. To accomplish this, clustering performance metrics such as
precision, recall ratio and accuracy are fed back to the training module
in order to self-adjust the clustering radius threshold.

Note that if the fragments are restricted to being in exactly one group,
then when a fragment is assigned incorrectly to a group, the precise
stitching stage performance deteriorates because the correct group and
the incorrect group both have the wrong output. Therefore, fragments
are permitted to belong to multiple groups. This reduces the number of
false negatives while increasing the number of false positives. Thus, more
computations are performed during the precise stitching stage than in
theory, but they are still much less than those required by the exhaustive
matching algorithm with an optimal threshold setting.

Fang et al. 231

Fissile Clustering. The third technique seeks to improve the tradi-
tional clustering algorithm to fit the characteristics of the video frag-
ments. One problem with directly performing traditional clustering is
that after the starting fragment is set as a fixed cluster center, when
the video file is highly fragmented, the clustering radius – Hamming
distance in this case – should be large enough to include all the video
fragments (e.g., fragments around the end of the file). This occurs be-
cause of the inherent “chain-like” property of file carving. However,
the larger the clustering radius threshold, the greater the number of in-
correct fragments from other files included in each group. To address
this problem, a “fissile clustering” algorithm is employed that compares
the front-end frames of candidate fragments and the back-end frames of
current fragments in similarity evaluations.

The fissile clustering algorithm involves the following steps:

Step 1: For each group, begin with the start fragment and set it
as the current fragment.

Step 2: Calculate the Hamming distance between P-hash values
of the back-end frame(s) of the current fragment(s) and the front-
end frames of all the remaining fragments.

Step 3: Compare the similarity likelihoods based on the Hamming
distances. If the distance is below the threshold, then the candi-
date fragments are collected into a group and become the current
fragment(s).

Step 4: Select all the clustered fragments one by one, and repeat
Steps 1 through 3 until there are no more available fragments.

3.2 Precise Stitching
After all the video fragments have been clustered into smaller groups,

the second stage of the proposed approach evaluates the adjacency like-
lihoods or similarities of the fragments in each group and attempts to
stitch them together in the correct order. For each group, a graph-
theoretic carving algorithm can be applied with an appropriate weight
function. The idea is to find the shortest path for the Hamilton path
problem (i.e., optimal order of the fragments in a group). Compared
with the original graph-theoretic carving method [10, 13], the scale of
the proposed algorithm is reduced to the number of candidates in a
group instead of the total number of fragments. The smaller scale also
reduces the numbers of false positives in the groups, excluding outliers
from the final restored video file.

232 ADVANCES IN DIGITAL FORENSICS XIII

Figure 3. Graph of six video fragments with a disjoint path and rejected outlier A

Consider two possible situations in which the algorithm mistakenly
concatenates an outlier in the restored video file. First, if the content
of an outlier fragment has a higher adjacency likelihood than those of
the other candidate fragments, it may be mistakenly chosen as the best
adjacent fragment. Since this erroneous concatenation occurs due to the
high similarity between the outlier fragment and preceding fragment, it
cannot be distinguished by a graph-theoretic algorithm, including the
proposed precise stitching stage and the original graph-theoretic carving
method. In this case, a double-check procedure may be needed.

On the other hand, even if the outlier fragments have lower adjacency
likelihoods than other candidate fragments, the algorithm may still keep
appending them to the end of the video file if the exhaustive method is
not terminated based on some other constraint. Therefore, an additional
constraint is required to identify the ending vertex of the optimal path
and terminate the algorithm.

Figure 3 shows a simple example. A group with six fragments is
represented as a complete graph of six vertices, where each edge has a
weight corresponding to the adjacency likelihood between the fragments.
The header fragment in the group is the vertex H1 and assume that
fragment (vertex) A is an outlier that is mistakenly clustered during the
previous stage. The problem of reconstructing the original video file is
equivalent to finding the optimal path (i.e., shortest path in the graph).
Thus, the algorithm should attempt the best adjacent fragment for each
fragment and also try to avoid passing through the outlier vertex A.

Fang et al. 233

Otherwise, the restored video file would contain incorrect content. In
the example, the complete disjoint path is H1-C-B-E-D while the outlier
vertex A is rejected.

Since a video is a series of frames (images) in time sequence and the
objects in the video have spatial consistency between frames, the motion
field between two frames can be leveraged as a similarity measure by the
precise stitching algorithm. In the proposed method, the optical flow is
selected for the relative motion analysis of frames at the fragmentation
point of two candidate video fragments.

Suppose that two pixels from the frames of a preceding fragment
FP and a candidate fragment FC have same pixel value, although the
pixel positions may be different. In other words, ppreceding(x, y) =
pcandidate(x + Δx, y + Δy). Then, the motion distance is calculated as:

D(FP , FC) =
∑npixels

i=0

√
Δx2(i) + Δy2(i)
npixels

(2)

where npixels is the number of pixels in each frame, ppreceding(x, y) is
the pixel value of the point (x, y) in a preceding frame, pcandidate(x +
Δx, y + Δy) is the pixel value of point (x + Δx, y + Δy) in the adjacent
candidate frame and D(FP , FC) is the average distance between the
preceding frame FP and the candidate frame FC ; this is used to evaluate
the adjacency likelihoods of the available candidate fragments to the
preceding fragment.

Stitching processing is the straightforward application of a greedy ap-
proximation algorithm that is commonly used to solve edge- and vertex-
disjoint problems [10]. To start with, the header fragment is chosen as
the current fragment and its adjacency likelihoods with the remaining
fragments in the current cluster group are computed. The best avail-
able fragment is stitched to the current fragment and this best available
fragment is set as the current fragment. This process is repeated until
the entire video is reassembled.

4. Experimental Results
The performance of the proposed video carving approach is evaluated

using the BOSS public surveillance dataset [2].
The BOSS dataset has fifteen scenarios: two no-incident scenarios,

three specific-incident detection scenarios and ten incident scenarios,
such as “cell phone theft,” “disease,” “harassment” and “panic.” Each
scenario was concurrently recorded by nine surveillance cameras installed
in a single train car (from nine different angles). Therefore, each scenario
should have nine video clips. However, five scenarios do not have nine

234 ADVANCES IN DIGITAL FORENSICS XIII

(a) Cell phone theft. (b) Disease.

(c) Harassment. (d) Panic.

Figure 4. Four video scenarios recorded by Camera 1.

video clips; therefore, the other ten scenarios for which nine video clips
exist were used in the experiments. Figure 4 shows images from video
clips taken by Camera 1 for four scenarios. The parameters of the video
clips in BOSS dataset are:

Frame Rate: 25 fps interlaced.

Resolution: 720×576 pixels.

Video Container: AVI.

Codec: MJPEG 4:2:2 (Cameras 1 through 9).

Bit Rate: 30 Mbps.

To evaluate the proposed approach, all the video files were randomly
sliced into video fragments, which were then mixed. The set of mixed
video fragments was used as the experimental input. Since the proposed

Fang et al. 235

(a) Camera 2 image. (b) Camera 3 image.

(c) Camera 5 image. (d) Camera 8 image.

Figure 5. A single video scenario recorded by different cameras.

video carving approach focuses on the efficiency of reassembling video
fragments, all the fragments were present in the input.

The following three metrics were used to evaluate the performance of
the video carving approach:

Recall: TP/(TP + FN).

Precision: TP/(TP + FP).

Accuracy: (TP+TN)/(TP+TN+FP+FN) where TP, TN,FP
and FN are the numbers of true positives (inliers), true negatives,
false positives (outliers) and false negatives, respectively, and n =
(TP + TN + FP + FN) is the total number of video fragments.

Note that the dataset is quite challenging for the video carving algo-
rithm because some of original video files recorded for the same scenario
are extremely similar. For example, as shown in Figure 5, the same sce-
nario recorded by Cameras 2, 3, 5 and 8 generates four different video

236 ADVANCES IN DIGITAL FORENSICS XIII

frames, but the images are very similar, especially the images from Cam-
eras 2 and 5. The great similarities of the video files increase the diffi-
culty of video carving when the files are fragmented and the fragments
are mixed together.

A series of experiments under different conditions were conducted to
optimize the clustering threshold of the first stage and to investigate
the performance of the proposed approach. The computing platform
used in the experiments was a desktop computer with an Intel I5-3317U
2.60 GHz CPU and 6GB memory.

Optimizing the Clustering Threshold. As discussed above, the
clustering threshold has a significant impact on the performance of the
perceptual grouping stage and the overall video carving approach. If
the threshold is set too large, each group could include several outliers,
increasing the recall ratio of the grouping while decreasing its precision
and accuracy. In contrast, a small threshold could reject some inliers
from each group, increasing the precision and accuracy, but decreasing
the recall ratio. Therefore, the threshold should be selected carefully to
optimize the overall performance.

The clustering threshold was optimized by training. Two public data-
sets were used for this purpose, the CAVIAR surveillance dataset [4] and
the crowd segmentation dataset provided by the Center for Research in
Computer Vision at the University of Central Florida [1].

Forty video clips from the two training datasets were randomly sliced
into fragments to create training samples that were input to the per-
ceptual grouping algorithm. Each video clip was divided into two to 30
fragments randomly. Figure 6 shows the relationships between recall,
precision and accuracy versus the clustering threshold for the training
datasets. When the threshold is larger than 16, the recall ratio of group-
ing reaches 100% while the accuracy drops to about 30% and precision is
only 10%, meaning that the number of false positives is about nine times
the number of true positives. At the other extreme, when the threshold
is set to below 2, the recall ratio of grouping is less than 50%, meaning
that about half the fragments are clustered in the correct group.

As mentioned above, video fragments are allowed to belong to multiple
groups; this relaxes the restrictions on the precision and accuracy of a
grouping. However, if the grouping precision is too low, the increase
in the number of false positives contributes to increased computations
in the subsequent precise stitching stage. According to the curves in
Figure 6, the optimal threshold should be in the range 7 to 11 because
the recall ratio and accuracy have high values and are flat within this
range. Moreover, the recall ratio of grouping reaches 98% when the

Fang et al. 237

Figure 6. Performance metrics versus clustering threshold for the training datasets.

Figure 7. Performance metrics versus clustering threshold for the BOSS dataset.

threshold is 11 and only increases slightly after this value. Therefore,
since all the datasets involve surveillance videos, a Hamming distance of
10 was chosen as the clustering threshold, which turns out to be adequate
for the BOSS dataset to yield a 100% recall ratio. This is confirmed in
the experimental results obtained with the BOSS dataset (Figure 7).

Carving Fragments from the Same Camera. An experiment in-
vestigated the performance of the proposed approach for video fragments
originating from the same camera. Such a situation is commonly en-

238 ADVANCES IN DIGITAL FORENSICS XIII

Figure 8. Video file carving performance for the same camera.

countered in digital forensic investigations. For example, this may occur
when videos captured and stored locally by a surveillance camera are
extracted as fragments due to the lack of filesystem information or over-
writing by the storage mechanism. Because the videos were recorded by
the same camera at different times, their backgrounds should be similar,
which increases the difficulty of video carving when the fragments are
mixed together.

Digital videos in the BOSS dataset that were recorded by the same
surveillance camera were chosen for this experiment. The video files with
different scenarios were randomly divided into four pieces, giving rise to
a total of 4nf fragments, where nf , the number of video files, varied
from two to ten, yielding a total number of mixed fragments ranging
from eight to 40. Since the BOSS dataset has nine surveillance cameras
(recording sources), the experiment was performed on nine sets of video
files. Figure 8 shows the average video file carving performance for the
experiment.

Since the clustering threshold was set to 10 to achieve a 100% re-
call ratio in the perceptual grouping stage, all the fragments could be
grouped correctly with some outliers. The graph of final precision versus
the number of scenarios in Figure 8 shows that more than 96% of the
video fragments were correctly reassembled by the proposed approach
even when the number of scenarios (i.e., video files) was increased to ten.
The 4% error rate for nscenarios = 3 is due to the fact that the video file
of the No Event scenario has almost stationary pictures, which makes

Fang et al. 239

Figure 9. Frames shot in the No Event scenario.

it very difficult to judge the order between fragments because all the
frames are almost the same as shown in Figure 9.

An interesting point is that the perceptual grouping precision has less
impact on the final precision. Although the grouping precision drops
to 50% when the number of scenarios (video files) is increased to ten,
the final precision is still greater than 96%. This is because the relaxed
requirement for grouping precision is compensated for by the precise
stitching stage. Of course, an increased number of outliers in the group-
ing stage increases the computational cost of the stitching algorithm.

Carving Fragments from Different Cameras. This experiment
investigated the performance of the proposed approach when the mixed
video fragments come from different cameras, although the scenario in
the video files may be the same because the nine cameras monitored the
same spot concurrently. This situation is frequently encountered in the
real world because videos from surveillance cameras are usually uploaded
to central servers or the cloud for storage, backup or analysis. When the
servers are involved in a digital forensic investigation, it is common to
recover a huge number of mixed video fragments.

In another experiment, digital videos of the same scenario that were
recorded synchronously by different surveillance cameras were selected
for analysis. In particular, video files of a scenario recorded by each of
the nine cameras were chosen. Each video file was randomly divided into
four pieces. Ten scenarios in the BOSS dataset were selected; therefore,
ten sets, each with nine camera videos, were used in the experiment.

Figure 10 shows the average video file carving performance for the
experiment. The results reveal that the grouping precision is much better
than in the previous experiment; the final precision, which is higher than

240 ADVANCES IN DIGITAL FORENSICS XIII

Figure 10. Video file carving performance for different cameras.

98%, is also much better. The principal reason is that the video files
from different cameras have similar, but slightly different backgrounds,
which can be distinguished more robustly by the video carving approach,
contributing to the good results.

Carving Fragments with Various Fragmentation Degrees. This
experiment investigated the impact of the fragmentation degree on the
proposed video carving approach. Five video recordings of different sce-
narios recorded by the same camera were selected for analysis; each video
file was randomly divided into two to 20 pieces. Since the BOSS dataset
has nine surveillance cameras, the experiment was performed on nine
sets of video files.

Figure 11 shows the average video file carving performance. When
the fragmentation degree and number of video fragments increase, the
performance in both stages drops, especially the final precision of the
precise stitching stage. When the number of fragments in each video
file is not greater than four, the grouping precision is greater than 76%
while the final precision of the video carving approach, the final restored
rate, is 100%. Despite the fact that the number of fragments goes up to
20 per video, the final restored rate is still as high as 67%.

Computational Time. Since computational cost is positively corre-
lated with the number of fragments, the computational time for the two
stages was measured versus the number of fragments. Table 2 shows the
results. As expected, the computational time Tgrouping for the percep-

Fang et al. 241

Figure 11. Video file carving performance versus fragmentation degree.

Table 2. Average time required to carve varying numbers of video fragments.

Fragments Tgrouping (ms) Tstitching (ms)

10 2.8 2,281.0
20 16.1 18,214.5
30 40.1 45,889.6
40 79.7 109,242.1
50 127.5 195,378.6
60 197.5 329,275.1
70 245.2 402,303.9
80 304.0 562,519.6
90 451.0 863,913.9
100 584.3 946,265.4

tual grouping stage is very small while the time Tstitching for the precise
stitching stage is much larger. However, the total time for video carv-
ing is still reasonable – ranging from two seconds to 15 minutes as the
number of fragments increases from 10 to 100.

5. Conclusions
The proposed semantic reassembly approach for video files with mixed

video fragments yields good results in a reasonable amount of time. Ex-
perimental results show that most of the videos were correctly reassem-
bled using the novel coarse-to-fine technique. In particular, for one to
ten very similar videos originating from the same camera, the final pre-

242 ADVANCES IN DIGITAL FORENSICS XIII

cision was at least 96%. For the videos of the same scenario taken by
one to nine cameras, the final precision was at least 98%. On the other
hand, the performance drops when the number of fragments increases.
When the fragments per file vary from two to 20, the final precision
drops from 100% to about 67%. However, with fourteen fragments per
file, the precision is still as high as 80%. Future research will attempt to
address the drop in precision that occurs with increasing fragmentation,
although the number of fragments seldom goes beyond 20 fragments in
real-world scenarios.

The dataset selected for the experiments is challenging because the
video recordings are of very similar scenarios. Since the scenarios are
similar, more fragments exist in multiple clusters after the first group-
ing stage, which negatively impacts the effectiveness of the subsequent
stitching phase. Future research will investigate how to improve the
precision while maintaining a 100% recall in the grouping stage. Also,
techniques will be developed to reassemble fragmented video files with-
out any knowledge of the header fragments.

Acknowledgements
This research was partially supported by the China State Scholarship

Fund (Grant No. 201506785014), National Natural Science Foundation
of China (Grant Nos. 61401176 and 61361166006), Natural Science Foun-
dation of Guangdong Province (Grant No. 2014A030310205), Science
and Technology Projects of Guangdong Province (2014B010120002 and
2016A010101017), Project of Guangdong Higher Education (YQ2015018)
and NSFC/RGC Joint Research Scheme (N HKU 72913), Hong Kong.

References

[1] S. Ali and M. Shah, A Lagrangian particle dynamics approach for
crowd flow segmentation and stability analysis, Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition,
2007.

[2] BOSS Project, BOSS Dataset (www.multitel.be/BOSS), 2012.

[3] E. Casey and R. Zoun, Design tradeoffs for developing fragmented
video carving tools, Digital Investigation, vol. 11(S2), pp. S30–S39,
2014.

[4] CAVIAR Project, CAVIAR: Context Aware Vision using Image-
Based Active Recognition, School of Informatics, University of Ed-
inburgh, Edinburgh, United Kingdom (homepages.inf.ed.ac.uk/
rbf/CAVIAR), 2017.

Fang et al. 243

[5] M. Cohen, Advanced carving techniques, Digital Investigation, vol.
4(3), pp. 119–128, 2007.

[6] S. Garfinkel, Carving contiguous and fragmented files with fast ob-
ject validation, Digital Investigation, vol. 4(S), pp. S2–S12, 2007.

[7] International Organization for Standardization, Information Tech-
nology – Coding of Audio-Visual Objects – Part 2: Visual, ISO/IEC
Standard 14496-2:2004, Geneva, Switzerland, 2004.

[8] International Organization for Standardization, Information Tech-
nology – Coding of Audio-Visual Objects – Part 10: Advanced Video
Coding, ISO/IEC Standard 14496-10:2010, Geneva, Switzerland,
2010.

[9] A. Lewis, Reconstructing Compressed Photo and Video Data, Tech-
nical Report No. 813, UCAM-CL-TR-813, Computer Laboratory,
University of Cambridge, Cambridge, United Kingdom, 2012.

[10] N. Memon and A. Pal, Automated reassembly of file fragmented
images using greedy algorithms, IEEE Transactions on Image Pro-
cessing, vol. 15(2), pp. 385–393, 2006.

[11] G. Na, K. Shim, K. Moon, S. Kong, E. Kim and J. Lee, Frame-based
recovery of corrupted video files using video codec specifications,
IEEE Transactions on Image Processing, vol. 23(2), pp. 517–526,
2014.

[12] A. Neelima and K. Singh, A short survey of perceptual hash func-
tions, ADBU Journal of Engineering Technology, vol. 1, 2014.

[13] A. Pal and N. Memon, The evolution of file carving, IEEE Signal
Processing, vol. 26(2), pp. 59–71, 2009.

[14] R. Poisel and S. Tjoa, Roadmap to approaches for carving of frag-
mented multimedia files, Proceedings of the Sixth International Con-
ference on Availability, Reliability and Security, pp. 752–757, 2011.

[15] R. Poisel and S. Tjoa, A comprehensive literature review of file carv-
ing, Proceedings of the Eighth International Conference on Avail-
ability, Reliability and Security, pp. 475–484, 2013.

[16] R. Poisel, S. Tjoa and P. Tavolato, Advanced file carving approaches
for multimedia files, Journal of Wireless Mobile Networks, Ubiqui-
tous Computing and Dependable Applications, vol. 2(4), pp. 42–58,
2011.

[17] G. Richard and V. Roussev, Scalpel: A frugal, high performance
file carver, Proceedings of the Digital Forensic Research Workshop,
2005.

244 ADVANCES IN DIGITAL FORENSICS XIII

[18] Y. Yannikos, N. Ashraf, M. Steinebach and C. Winter, Automating
video file carving and content identification, in Advances in Digital
Forensics IX, G. Peterson and S. Shenoi (Eds.), Springer, Heidel-
berg, Germany, pp. 195–212, 2013.

[19] B. Yoo, J. Park, S. Lim, J. Bang and S. Lee, A study on multimedia
file carving method, Multimedia Tools and Applications, vol. 61(1),
pp. 243–261, 2012.

Chapter 14

DETECTING FRAUDULENT
BANK CHECKS

Saheb Chhabra, Garima Gupta, Monika Gupta and Gaurav Gupta

Abstract Bank checks have been subjected to fraud for centuries. Technological
advancements enable criminal actors to perpetrate innovative frauds
that are very difficult to detect. One example is the use of erasable ink
that allows alterations to be made to a bank check without raising suspi-
cion. Another example is the misuse of a victim’s handwritten signature
by scanning it and then printing on a check. Since most banking sys-
tems accept scanned copies of checks for clearance, identifying erasable
ink alterations and printed signatures on digital images can be very
challenging. This chapter describes automated, low-cost, efficient and
scalable solutions to these problems. A solution is proposed for deter-
mining whether or not a check is genuine or merely printed. A solution
for detecting erasable ink alterations localizes the erased regions in the
visible light spectrum. A solution for detecting printed signatures fo-
cuses on the high-density noise introduced by scanners and printers.

Keywords: Bank check fraud, check alteration, check forgery, image processing

1. Introduction
Rapid advances in modern scanning technology have greatly simpli-

fied the task of converting documents to a digital format. Some digitized
documents are very important and their unauthorized use could result
in monetary, organizational, social or individual losses. Criminal enti-
ties often alter or counterfeit documents for malicious purposes. The
wide availability of high-resolution scanners and printers has made it
very easy for criminals to carry out alterations and produce high-quality
counterfeits. It is very difficult for an ordinary person – sometimes,
even document experts – to distinguish between genuine and counterfeit
specimens with the naked eye. Bank checks are examples of high-value

© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
G. Peterson and S. Shenoi (Eds.): Advances in Digital Forensics XIII, IFIP AICT 511, pp. 245–266, 2017.
DOI: 10.1007/978-3-319-67208-3_14

245

246 ADVANCES IN DIGITAL FORENSICS XIII

documents that have been leveraged in a variety of frauds for centuries,
but more so in recent years due to the availability of high-resolution
scanners and printers and the acceptance of scanned copies of checks for
clearance by banks.

Document fraud can be classified as static document fraud or dynamic
document fraud. A static document holds the same information that was
recorded on it at the time it was proclaimed usable, until the time it is
declared invalid. A static document contains a combination of fixed
and unique information. Examples of static documents are academic
transcripts, banknotes, printed invoices, birth certificates, marriage cer-
tificates, driver’s licenses and passports. A common way of perpetrating
fraud involving a static document – aside from tampering – is to scan
the original, make changes using a software tool and print a high-quality
fraudulent copy.

A dynamic document is similar to a static document, except that it
has a provision for the issuing party to write in or mark additional infor-
mation (using a pen or a stamp) before the document is declared usable.
Examples of dynamic documents are bank checks, examination forms
and visas. A dynamic document fraud typically involves an alteration
of the content generated by the issuing party for malicious reasons. A
fraudster could generate a base document (i.e., dynamic document be-
fore the issuing party writes on it) using a technique for counterfeiting a
static document and then write the desired content before the document
is declared usable. Alternatively, a fraudster could write the desired con-
tent on a genuine base document. Yet another method of conducting
dynamic document fraud is to alter the content created by the issuing
party using physical means such as erasing, chemical washing or over-
writing. Dynamic document fraud detection is a much more complex
problem than static document fraud detection.

According to the Australian Payment Clearance Association [2], losses
due to fraudulently-altered checks in 2015 were 80% more than the losses
in 2013. Moreover, losses due to non-originated counterfeit checks in
2015 (i.e., fakes produced on counterfeit paper via laser printing or desk-
top publishing) registered a three-fold increase over 2013. Meanwhile,
the Reserve Bank of India [15] reports that 1,197.2 million bank checks
were cleared during the 2015-2016 fiscal year. In another report, the Re-
serve Bank of India [14] estimates that losses due to bank fraud nearly
doubled from INR 10.071 billion during the 2013-14 fiscal year to INR
19.361 billion during the 2014-15 fiscal year.

Technological advancements in printing and scanning have enabled
fraudsters to perpetrate innovative frauds that are difficult to detect.
One example is the use of erasable ink that enables a variety of al-

Chhabra, Gupta, Gupta & Gupta 247

terations to bank checks. Another example is forging a handwritten
signature by scanning it and printing it on a check. Most banks accept
scanned copies or digital photographs of customer checks for rapid and
convenient online clearance. Identifying check alterations that leverage
erasable and printed signatures in digital images of checks received by a
bank can be very challenging. In addition to being accurate, check fraud
detection solutions should be fast and inexpensive.

This chapter proposes efficient, inexpensive and scalable methods for
detecting bank check fraud. One method determines if a check is gen-
uine or printed. Another method detects check alterations by focusing
on erased regions using the visible light spectrum. A third method dis-
tinguishes printed signatures from real handwritten signatures based on
high-density noise introduced by scanners and printers.

2. Related Work
Counterfeit documents are typically detected by human experts who

manually analyze suspect documents using a microscope and video spec-
tral comparator, a process that is time-consuming, inefficient and non-
scalable. Several automated methods have been developed to identify
counterfeit documents. Gupta et al. [6] have identified several charac-
teristics of printed documents that distinguish them from genuine docu-
ments. They discovered that the unique color count in a printed docu-
ment is much larger than that in a genuine document. They also ana-
lyzed variations in intensity and the use of the gray level co-occurrence
matrix to identify printed documents; this work has indirectly helped de-
velop the proposed method for identifying printed checks. Furthermore,
after a check is identified as a printed copy, the approach presented in [7]
may be used to forensically link it to a source printer.

Garain et al. [4] have proposed a general framework for authenti-
cating security documents. Their approach extracts color features and
statistical features from check images and uses them to distinguish fake
documents from genuine documents. Kumar et al. [9] have developed a
method for authenticating bank checks. This approach uses color fea-
tures such as the 2-D histogram of hue-saturation as well as texture
features.

Other researchers [10, 16, 17] have proposed techniques for distin-
guishing counterfeit (primarily printed) documents from genuine docu-
ments. Rajendar et al. [13] have focused on the manipulation of digital
information during the check clearing process. However, their approach
differs from the current work in that they do not address the task of
detecting physically-altered checks on which erasable ink has been used.

248 ADVANCES IN DIGITAL FORENSICS XIII

Abd-ElZaher et al. [1] have deciphered information written in erasable
ink that was removed using the eraser attached to a magic pen. They use
a chemical solution (NaOH) and infrared radiation from a VSC-600 scan
converter to detect alterations. However, their approach, which requires
manual human analysis, is expensive, time-consuming and non-scalable.

Deng et al. [3] have studied trace copy forgery detection of hand-
written signatures. Their efficient approach uses wavelet transforms for
offline handwritten signature verification. Other researchers [8, 11, 12,
18] have developed methods for detecting and/or verifying forged and
imitated signatures. However, the current work is unique because no
published research has specifically addressed the problem of analyzing
handwritten signatures versus printed signatures on scanned checks.

3. Experimental Setup
This research has sought to identify credible image processing features

from scanned bank check samples that could help determine whether or
not the checks are genuine. Interviews with experts provided valuable
information about the types and nature of check frauds. Four features
were considered: (i) pantograph; (ii) microline; (iii) user-written content;
and (iv) signature. In the experiments, counterfeit checks were replaced
with printed checks that were generated by printing high quality scanned
blank checks using laser and inkjet printers. Also, fraudulent checks,
which are referred to as altered checks in this work, were created using
a magic pen to write information such as the payee name, amount (of
money) in words and amount (of money) in numbers. A magic pen is
a pen whose ink can be removed from a piece of paper using the eraser
provided with the pen.

Additionally, the experiments evaluated checks that had printed signa-
tures instead of handwritten signatures. Genuine and printed signature
checks from four Indian banks, two public banks (SBI and PNB) and
two private banks (AXIS and HDFC), were used in the experiments.
An important point is that some premium customers receive permission
from banks to print their signatures on checks (e.g., corporate executives
who sign company checks). All other checks with printed signatures are
potentially fraudulent. Therefore, checks with printed signatures are
scrutinized carefully by bank personnel.

Printed check and altered check samples used in the experiments were
created based on information obtained from experts and in the support-
ing literature [1]. The sample checks were scanned at 600 dpi resolution
using a Canon 9000F Mark II flat-bed scanner. Two printed check sam-
ples were generated for each genuine check using an HP Color LaserJet

Chhabra, Gupta, Gupta & Gupta 249

Table 1. Check features and regions of interest.

Features Regions

Pantograph 1
Microline 3
Alteration 4
Signature 1

Pro MFP M177 laser printer and a Brothers DCP-T500W inkjet printer.
The 600 dpi resolution was selected for scanning because it is the indus-
try standard (all the banks whose checks were used in this study process
checks at this resolution). Additionally, the 600 dpi resolution provides
all the feature values that can be processed in a reasonable time. The
legacy 300 dpi resolution produces scanned checks with poor or missing
features while the higher 1200 dpi resolution requires significant scanning
time and processing cost. Nevertheless, experiments were also conducted
on scanned check samples at 300 and 1200 dpi resolutions. Altered check
samples were created by writing information on the checks using a magic
pen, erasing some of the information and writing new information using
the same pen.

Table 1 lists the four primary features of checks examined in this re-
search: (i) pantograph; (ii) microline; (iii) alteration; and (iv) signature.
Each feature has one or more regions of interest (ROIs), yielding a total
of nine regions of interest.

Table 2. Check samples and scanned images examined in this study.

Bank Genuine Printed Altered Printed Total Sub-Images Total
Signature per Sample Processed

Laser Inkjet Bank Self

SBI 10 10 10 10 3 10 53 9 477
PNB 10 10 10 10 1 10 51 9 459
AXIS 10 10 10 10 0 10 50 9 450
HDFC 10 10 10 10 1 10 51 9 459

Total 1,845

Table 2 provides information about the check samples and scanned
images examined in this study.

4. Fraud Detection Methodology Overview
Checks were scanned at 600 dpi resolution (Figure 1). Each check

was aligned horizontally in order to be accepted as input. The Canon

250 ADVANCES IN DIGITAL FORENSICS XIII

Figure 1. SBI bank check image showing sub-regions.

9000F Mark II scanner used in the experiments automatically corrects
the alignment of a check image. However, bank personnel typically use
software tools that ensure the proper alignment of check images before
they are processed.

The first step involved the extraction of the regions of interest for lo-
calizing features such as the pantograph, microline, payee name, amount
in words, amount in figures and signature (Figure 1). Predefined mar-
gins were created for checks from each bank so that the required features
could be extracted in a convenient manner.

After the regions of interest were extracted, the check fraud detection
workflow presented in Figure 2 was applied to the scanned images. The
workflow comprises three parallel blocks.

The first block in the workflow is designed to identify whether or not
a check has been printed. The processing focuses on one region for the
pantograph and three regions for the microline. Three regions are used
for the microline in order to deal with checks that have been handled
roughly (i.e., old checks and folded checks).

The second block is designed to identify whether or not a check has
been altered. The identification of alterations focuses on four regions of
interest, payee name, amount in words (line 1), amount in words (line 2)
and amount in figures.

The third block is designed to determine whether or not the signature
on a check has been printed. It focuses on a single region of interest
corresponding to the signature.

The outputs of the three blocks may be presented to bank security
personnel to verify whether or not a check is genuine. In the case of

Chhabra, Gupta, Gupta & Gupta 251

Figure 2. Check fraud detection system workflow.

an altered check, the fraud detection workflow also identifies the check
regions that were modified.

5. Details of the Fraud Detection Methodology
This section presents the details of the check fraud detection method-

ology, including the underlying theory.

5.1 Check Pantographs
A pantograph is an anti-copying security feature printed on a bank

check. It contains the word VOID that is hidden by artwork. The word
VOID becomes visible when a scanned bank check is printed or a check
is photocopied, indicating that the check is not genuine.

252 ADVANCES IN DIGITAL FORENSICS XIII

Figure 3. Pantographs on genuine (left) and printed checks (right).

The following observations were made upon studying genuine and
printed checks.

The word VOID is much more visible on a printed check compared
with a genuine check (Figure 3).

Some broken lines are seen on a printed check because standard
printers are unable to print at very fine resolutions.

The noise induced by a printer (especially an inkjet printer) is
clearly visible to the naked eye.

Based on these observations, two sub-features, surface roughness and
unique color count (UNCC), were selected to distinguish between gen-
uine and printed pantographs. Significant increases in surface roughness
and unique color count occur due to the colored dots (noise) that are
typically generated when printing with a laser or inkjet.

Surface Roughness Sub-Feature. This sub-feature captures the
roughness of a pantograph by taking the sum of the absolute gradi-
ents of the grayscale image IG of the pantograph along the horizontal
axis. The sum is then divided by the size of the image:

Roughness =
∑

abs(Gx)
Image Size

(1)

where Gx is the gradient of the grayscale image and Image Size = image
rows × image columns.

Unique Color Count Sub-Feature. This sub-feature expresses the
total number of unique colors present in an image. Let Sxy = f(x, y) be
the intensity value at location (x, y) where Sxy = [Rxy Gxy Bxy] is a row
vector. Then, the matrix M is created by placing each intensity value
in a separate row:

Chhabra, Gupta, Gupta & Gupta 253

Figure 4. Microlines on genuine (top) and printed checks (bottom).

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S11

S12

.

.
S1n

.

.
Smn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2)

The unique color count is the number of unique rows (each representing
a unique color) in matrix M .

5.2 Check Microlines
The microline security feature is a micro-printed line of text on a

check. The micro-print is miniaturized to the extent that the text cannot
be read with the naked eye; instead, it appears as a complete or broken
line. The font size of microline text is too small for it to be printed
clearly by normal printers available in the market.

Figure 4 shows a genuine microline (top) and a printed microline
(bottom).

Figure 5. Zoomed views of microlines on genuine (top) and printed checks (bottom).

Figure 5 shows the zoomed views of the genuine and printed microlines
shown in Figure 4.

254 ADVANCES IN DIGITAL FORENSICS XIII

(a) Original image.

(b) Intermediate line image.

(c) Final sharpened image.

Figure 6. Original, intermediate and image-sharpened microlines.

The following observations were made upon studying microlines on
genuine and printed checks.

The microline in a printed check appears as a complete line.

The characters in the original microline are deformed in the micro-
line of a printed check, where the letters merge with each other.

Optical character recognition (OCR) was performed on the check mi-
crolines using a Tesseract OCR engine (version 3.02) [5]. The hypothesis
was that the number of consecutive pairs of characters obtained by op-
tical character recognition of a printed microline is very small compared
with that of the genuine microline. The reason is that multiple charac-
ter deformities occur when printing a microline. The detection method
involved the following steps:

Pre-Processing: The microline was segmented and programmat-
ically enhanced before the Tesseract OCR engine could process it.
Since the segmentation process is highly dependent on the color
of the microline, the goal of pre-processing was to highlight the
microline and completely suppress the background.

Let F (x, y) be the original colored image (Figure 4) and Sxy be
the intensity value at location (x, y) where Sxy = [Rxy Gxy Bxy].
In order to extract the required region (color of the microline,
dark blue in this example) in the image F (x, y), the original RGB
image was converted to an HSV (hue, saturation, value) image and
the saturation-channel image was processed because the microline
region had a high saturation.

The saturation-channel image (Figure 6(a)) was converted to a
binary image using the Otsu threshold T (Figure 6(b)), which was
then processed by applying dilation to merge the characters and

Chhabra, Gupta, Gupta & Gupta 255

create a line image (Figure 6(c)). The sum of each row of the line
image was then computed. The rows with sum values greater than
90% of the column of the line image were indexed. The indexed
rows were then identified in the original image to produce an image
containing only the microline text. Image sharpening was applied
to enhance the microline and make the characters in the extracted
line more recognizable by the Tesseract OCR engine (Figure 6(c)).

Feature Extraction: Thirty images of the text in the microlines
of checks from the four banks (e.g., STATE BANK OF INDIA on
an SBI check) were provided to the Tesseract OCR engine. The
engine processed each enhanced microline image and stored the
output in a text file. Next, successive windows of three consec-
utive characters of the microline text were selected and matched
against the optically-recognized characters stored in the text file.
A “hit” occurred if all three characters matched correctly (i.e.,
they were recognized correctly by the engine); otherwise, a “miss”
was recorded. Note that the windows started from the beginning
of the microline and terminated at the end of the microline.

The experiments revealed that a genuine microline had on average
more than six hits per 100 optically-recognized characters. In contrast,
a printed microline check had almost no hits. It is anticipated that
the accuracy of the microline feature could be improved with rigorous
training of the Tesseract OCR engine for bank-specific check samples.

5.3 Check Alterations
A check alteration involves adding and/or replacing information on a

check for malicious purposes. Altering bank checks is one of the easiest
ways to perpetrate check fraud. This work focuses on the detection of
erasable ink or removable ink used to alter bank checks. A fraudster
often uses a magic pen with erasable ink; the ink is easily removed using
the eraser attached to the end of the pen. The fraudster then offers the
magic pen to the check writer to fill out the check; following this, certain
information (e.g., payee name) is erased and replaced, and the resulting
fraudulent check is submitted for clearance.

The following observations were made upon studying altered checks:

Alteration of a check using a magic pen eraser affects the texture
of the region of the check.

The luminance and contrast of the check region are also affected
and can be distinguished from the rest of the check.

256 ADVANCES IN DIGITAL FORENSICS XIII

Figure 7. Original image (top) and text masked image IM (bottom).

The following detection method based on gamma correction identifies
the regions where an eraser was used:

Pre-Processing: The four regions of interest – payee name, am-
ount in words (line 1), amount in words (line 2) and amount in
figures – were segmented based on the bank-specific margins.

Let f(x, y) be the original RGB image (top of Figure 7) and Bxy

be the blue channel of image f(x, y). The grayscale image G(x, y)
must be subtracted from Bxy in order to extract the dominant
blue color region image IB . This enables the extraction of the
luminance from the normalized blue channel image Bxy (note that
negative values are truncated). The dominant blue color region
image IB is given by:

IB = Bxy − G(x, y) (3)

The highlighted image IB was converted to the text masked bi-
nary image IM (bottom of Figure 7) using the Otsu threshold T .
The masked image IM was used to remove the text region in fur-
ther processing. Note that, although the experiments were only
conducted for the most commonly used blue and black inks, the
feature extraction method used in this work is applicable to any
color of ink.

Feature Extraction: Identification of the altered region involves
the application of the gamma correction method followed by post-
processing. Let Sxy = f(x, y) be the intensity of an image at
location (x, y) where Sxy = [Rxy Gxy Bxy]. Then, the gamma-
corrected image is given by:

IG = cSγ (4)

Chhabra, Gupta, Gupta & Gupta 257

Figure 8. Gamma-corrected image IG.

Figure 9. Gamma-corrected binary image IGB.

Figure 10. Image showing the erased region.

where c and γ (γ > 1) are positive constants.

Figure 8 shows the gamma-corrected image IG. Since the back-
ground of the image belongs to a brighter region, the value of γ
must be greater than one to increase the contrast. The experiments
used γ = 9.
The blue channel of the gamma-corrected image IG was converted
to a binary image, primarily because the background was blue.
The noise from the binary image was then removed to obtain the
gamma-corrected binary image IGB.
Figure 9 shows the gamma-corrected binary image IGB containing
only the text and the erased region.

Finally, the masked image IM was subtracted from IGB to obtain
the erased region. Figure 10 shows the image of the erased region.

5.4 Printed vs. Handwritten Signatures
A signature is a common feature in bank checks, certificates and other

legal documents. When clearing a check, a bank attempts to match
the signature on the check against a pre-stored scanned signature of
the account holder. Several researchers have focused on the problem

258 ADVANCES IN DIGITAL FORENSICS XIII

Figure 11. Handwritten signature (top) and printed signature (bottom).

of distinguishing between genuine and forged handwritten signatures.
However, little, if any, research has attempted to distinguish printed
signatures from handwritten signatures.

Figure 11 shows images of a handwritten signature (top) and printed
signature (bottom). In order to distinguish between the two types of sig-
natures, ideas were drawn from research that attempts to differentiate
between printed characters and handwritten characters [2]. In particu-
lar, the research revealed that high-density black and dark colored dots
are present in printed characters whereas handwritten characters have
no such dots.

In a bank check clearance system, scanned copies of the printed signa-
ture and genuine signature are compared. Thus, noise from the scanner
is present in both scanned samples.

In the case of a check with a genuine signature, the check is scanned
to produce the “original” scanned signature for verification. However,
in the case of a check with a printed signature, a genuine signature is
first scanned and the scanned image is then printed on the check. When
the check with the printed signature is to be verified, it is scanned to
produce the “candidate” signature for verification. This leads to three
distinct noise sources: (i) noise generated when scanning the signature
NS ; (ii) noise generated when printing the signature NP ; and (iii) noise
generated when scanning the signature for verification NV .

In the case of a handwritten signature, only the scanner noise NV

(dark colored dots) is present. However, in the case of a printed signa-
ture, the noise introduced is amplified, corresponding to NS +NP +NV .

Chhabra, Gupta, Gupta & Gupta 259

Figure 12. Mask image (left) and signature region image (right).

Therefore, the correlation of the RGB channel pixels in a printed signa-
ture is much less than that for a genuine signature.

The following correlation-based method was used to distinguish prin-
ted signatures from handwritten signatures:

Pre-Processing: The first step was to segment the signature
text region. Only the blue color channel was considered in the
experiment, but the approach is applicable to the other channels.
Note that the method for segmenting the blue color text in the
signature region was the same as that used for check alteration
detection.

The mask image IM (Figure 12 (left)) was superimposed over the
original image to obtain the signature region image IS (Figure 12
(right)).

Noise Removal: The scanner introduces noise in a scanned image
due to minute imperfections and dirt on the scanner lens and/or
camera. A noise removal filtering function (discrete wavelet trans-
form) was used to remove the noise from the image. Applying the
discrete wavelet transform to the signature region image IS yielded
the discrete wavelet transform coefficients for the four sub-bands
(approximate, vertical, horizontal and diagonal). The image gen-
erated through the approximate sub-band IA was selected; this
image contains low-frequency components indicating that the un-
wanted noise was removed.

Feature Extraction: After obtaining the approximate sub-band
image IA, its RGB planes (IR A, IG A, IB A) were converted to
separate column vectors and stored in a matrix M . The zero rows
in M were removed because they belong to the background. Next,
the cross-correlation Cxy was calculated for IR A-IG A, IR A-IB A

260 ADVANCES IN DIGITAL FORENSICS XIII

Table 3. Pantograph results for SBI checks.

ID Genuine Printed

Laser Inkjet

UNCC Roughness UNCC Roughness UNCC Roughness

1 21402 14.56680 40309 31.15814 53481 46.73548
2 17828 16.77730 41026 34.95251 55845 47.81659
3 19808 17.27510 42947 30.54739 52846 44.30893
4 23949 19.92390 46798 31.84794 57262 47.74739
5 18905 18.23660 39749 30.84759 54736 42.93744
6 24237 16.41492 41449 32.85495 52846 48.47393
7 21415 19.62349 42137 31.95751 50746 45.17336
8 20757 17.06158 46583 33.84748 51746 43.58479
9 17030 17.63441 38596 30.85754 48364 41.28025
10 24511 18.47682 43957 35.75568 59791 48.85941

and IG A-IB A using the equation:

Cxy =

n∑
i=1

(xi − x̄)(yi − ȳ)√
n∑

i=1
(xi − x̄)2

√
n∑

i=1
(yi − ȳ)2

(5)

This yielded three correlation values, CRG, CRB and CGB , corre-
sponding to the R-G, R-B and G-B channels, respectively. The
high noise NS + NP + NV in a printed signature resulted in low
correlation values between the channels. On the other hand, a
handwritten signature with low noise NV yielded high correlation
values between the channels.

6. Experimental Results
This section describes the experimental results obtained by applying

the methods proposed for detecting printed checks, altered checks and
printed signatures.

6.1 Check Pantograph Results
Table 3 shows the pantograph results for SBI checks. The results

clearly show that the unique color count (UNCC) and surface roughness
values are high for printed checks. Since inkjet printers produce more
noise than laser printers, the inkjet printer results have very high unique
color counts and surface roughness values.

Chhabra, Gupta, Gupta & Gupta 261

Table 4. Microline results for SBI checks.

ID OCRed Matched Three OCRed Matched Three
Characters Consec. Letters Characters Consec. Letters

1 100 9 100 0
2 100 7 100 0
3 100 12 100 0
4 100 8 100 0
5 100 11 100 0
6 100 14 100 0
7 100 9 100 0
8 100 20 100 0
9 100 7 100 0
10 100 9 100 0

6.2 Check Microline Results
Table 4 shows the microline results for SBI checks. Note that the

optical character recognition output corresponding to the printed mi-
croline text in the fifth (last) column has no matches in all ten test cases
(i.e., no consecutive three letters from the original microlines matched
the optical character recognition outputs). This is because the shapes
of characters in the microline text were deformed during the printing
process.

6.3 Check Alteration Results
The process for identifying check alterations is described in Section 5.3.

A check is determined to be altered when an altered segment is present
in the check. The threshold value used to classify alterations was a 200-
pixel cluster (Figure 10). If the cluster size in a suspect check image
is greater than the threshold, then the check is classified as an altered
check. Note that the threshold depends on the handwriting of an indi-
vidual. Since compact handwriting requires less space for alteration, a
lower threshold would be needed.

6.4 Printed vs. Handwritten Signature Results
The results in Table 5 clearly indicate that printed signatures have

low correlation values CRG and CRB for the R-G and R-B channels,
respectively. The reason is the high noise density introduced by the
scanner and printer.

262 ADVANCES IN DIGITAL FORENSICS XIII

Table 5. Signature results for synthetic SBI checks.

ID Handwritten Printed (Generated)

CRG CRB CGB CRG CRB CGB

1 0.948287 0.883214 0.838135 0.461677 0.192432 0.941885
2 0.993438 0.892849 0.947063 0.471177 0.361397 0.981709
3 0.936733 0.811338 0.825890 0.322946 0.217322 0.983191
4 0.992668 0.909226 0.874532 0.778200 0.444900 0.868800
5 0.956653 0.853285 0.827092 0.876000 0.499600 0.861900
6 0.972817 0.977369 0.922073 0.769200 0.466300 0.927000
7 0.986645 0.825093 0.794458 0.437484 0.351723 0.937494
8 0.985777 0.816379 0.763721 0.539573 0.289031 0.967497

Table 6. Signature results for real SBI checks.

ID Handwritten (Bank Samples) Printed (Bank Samples)

CRG CRB CGB CRG CRB CGB

1 0.968258 0.892728 0.825478 0.253335 0.165359 0.982213
2 0.987253 0.927229 0.676692 0.884461 0.315626 0.703555
3 0.935719 0.815278 0.861325 0.627446 0.464848 0.849006

Table 6 shows the signature results for real check samples obtained
from SBI. Note that the results are very similar to those in Table 5 for
the synthetic check samples created by the authors of this chapter.

Table 7. Pantograph results for SBI, AXIS, PNB and HDFC checks.
Bank Genuine Printed

Laser Inkjet

UNCC Roughness UNCC Roughness UNCC Roughness
Range Range Range Range Range Range

SBI 17,000–25,000 14–20 38,000–47,000 30–35 48,000–60,000 41–48
AXIS 18,000–24,000 18–22 37,000–45,000 41–45 51,000–63,000 55–60
PNB 21,000–30,000 27–30 41,000–52,000 47–54 57,000–70,000 67–75
HDFC 9,000–15,000 14–17 33,000–39,000 23–27 70,000–88,000 57–65

6.5 Results for Checks from Multiple Banks
Tables 7, 8 and 9 show the results obtained for pantographs, micro-

lines and signatures in checks from the four banks considered in this
study. The range of each feature was calculated by applying each de-
tection method to all the check samples from each bank. The detection

Chhabra, Gupta, Gupta & Gupta 263

Table 8. Microline results for SBI, AXIS, PNB, HDFC checks.

Bank OCRed Matched Three OCRed Matched Three
Characters Consec. Letters Characters Consec. Letters

Range Range

SBI 100 7–20 100 0
AXIS 100 8–17 100 0–2
PNB 100 6–18 100 0
HDFC 100 8–22 100 0

Table 9. Signature results for SBI, AXIS, PNB and HDFC checks.

Bank Handwritten Printed (Generated)

CRG CRB CGB CRG CRB CGB

Range Range Range Range Range Range

SBI 0.90–0.99 0.70–0.99 0.65–0.95 0.39–0.88 0.19–0.70 0.70–0.98
AXIS 0.86–0.99 0.71–0.98 0.63–0.94 0.27–0.85 0.16–0.50 0.73–0.97
PNB 0.85–0.98 0.72–0.99 0.65–0.91 0.30–0.89 0.23–0.48 0.78–0.98
HDFC 0.89–0.99 0.74–0.99 0.66–0.89 0.42–0.90 0.27–0.45 0.71–0.95

methods work very well at 600 dpi resolution. The detection methods
were also tested at 300 and 1200 dpi resolutions for each feature. At the
300 dpi resolution, the microline feature fails because all the characters
in the microline text merge with each other. The pantograph and printed
signature results are same; however, in the case of check alteration, the
accuracy drops slightly. At the 1200 dpi resolution, all the features pro-
vide very good results compared with the 600 and 300 dpi samples, but
the computation time is higher for the 1200 dpi resolution. The 1200 dpi
resolution should become more feasible as powerful computer systems
become cheaper and easily available.

7. Integrated Check Fraud Detection Tool
An integrated scanner-based tool that implements all the methods

described above has been developed to assist bank personnel in detecting
check fraud. The algorithms, which were written using Matlab 2013a,
execute on a Dell Inspiron 14R N4010 workstation with 4GB RAM and
an Intel Core i3 M 380 2.53 GHz processor. The fraud detection tool,
which can process a check within two seconds, is efficient, inexpensive
and works on low-magnification devices. Moreover, it is easily scaled to
handle images with 600 dpi resolution taken by smartphones.

264 ADVANCES IN DIGITAL FORENSICS XIII

8. Conclusions
Counterfeit documents are typically detected by human experts who

manually analyze suspect documents using a microscope and video spec-
tral comparator. This process is time-consuming, inefficient and non-
scalable; indeed, it is infeasible for deployment at large banks. In con-
trast, the proposed check fraud detection methods are automated, low-
cost, efficient and scalable. One method effectively determines whether
or not a check is genuine or printed. Another method detects erasable
ink alterations on checks by localizing the erased regions in the visible
light spectrum. A third method distinguishes printed signatures from
handwritten signatures based on the high-density noise introduced by
scanners and printers.

The proposed check fraud detection methods have certain limitations.
The principal limitation is that the methods have to be tuned to spe-
cific bank check designs, including the color schemes. Other limitations,
which will be addressed in future research, include processing torn and
damaged checks, signatures in colors other than blue and checks with
information written in inks of multiple colors.

References

[1] M. Abd-ElZaher, Different types of inks having certain medicolegal
importance: Deciphering faded and physically erased handwriting,
Egyptian Journal of Forensic Sciences, vol. 4(2), pp. 39–44, 2014.

[2] Australian Payments Clearing Association, Australian Pay-
ments Fraud: Details and Data – 2016, ABN 12 055 136
519, Sydney, Australia (www.apca.com.au/docs/default-source/
fraud-stat istics/australian_payments_fraud_details_and_
data_2016.pdf), 2016.

[3] P. Deng, L. Jaw, J. Wang and C. Tung, Trace copy forgery de-
tection for handwritten signature verification, Proceedings of the
Thirty-Seventh Annual IEEE International Carnahan Conference
on Security Technology, pp. 450–455, 2003.

[4] U. Garain and B. Halder, On automatic authenticity verification of
printed security documents, Proceedings of the Sixth Indian Con-
ference on Computer Vision, Graphics and Image Processing, pp.
706–713, 2008.

Chhabra, Gupta, Gupta & Gupta 265

[5] GitHub, Tesseract OCR (github.com/tesseract-ocr/tesseract
/wiki), 2017.

[6] G. Gupta, C. Mazumdar, M. Rao and R. Bhosale, Paradigm shift in
document related frauds: Characteristics identification for develop-
ment of a non-destructive automated system for printed documents,
Digital Investigation, vol. 3(1), pp. 43–55, 2006.

[7] G. Gupta, S. Saha, S. Chakraborty and C. Mazumdar, Document
frauds: Identification and linking fake documents to scanners and
printers, Proceedings of the International Conference on Computing:
Theory and Applications, pp. 497–501, 2007.

[8] D. Kennard, W. Barrett and T. Sederberg, Offline signature ver-
ification and forgery detection using a 2-D geometric warping ap-
proach, Proceedings of the Twenty-First International Conference
on Pattern Recognition, pp. 3733–3736, 2012.

[9] R. Kumar and G. Gupta, Forensic authentication of bank checks,
in Advances in Digital Forensics XII, G. Peterson and S. Shenoi
(Eds.), Springer, Heidelberg, Germany, pp. 311–322, 2016.

[10] C. Lampert, L. Mei and T. Breuel, Printing technique classification
for document counterfeit detection, Proceedings of the International
Conference on Computational Intelligence and Security, vol. 1, pp.
639–644, 2006.

[11] R. Patil and S. Takale, Signature verification by distance matrix
method for bank check process, Proceedings of the International
Conference on Electrical, Electronics, Signals, Communication and
Optimization, 2015.

[12] G. Prakash and S. Sharma, Computer vision and fuzzy logic based
offline signature verification and forgery detection, Proceedings of
the IEEE International Conference on Computational Intelligence
and Computing Research, 2014.

[13] M. Rajendar and R. Pal, Detection of manipulated check images in
a check truncation system using mismatch in pixels, Proceedings of
the Second International Conference on Business and Information
Management, pp. 28–33, 2014.

[14] Rediff on the Net, In a year, bank fraud doubles – Maharashtra and
West Bengal lead the way in bank fraud, November 18, 2015.

[15] Reserve Bank of India, Handbook of Statistics on the Indian
Economy, 2014-15, Mumbai, India (rbidocs.rbi.org.in/rdocs
/Publications/PDFs/00HC398B27C6AFF47039ABE93049886B494.
PDF), 2015.

266 ADVANCES IN DIGITAL FORENSICS XIII

[16] A. Sarkar, R. Verma and G. Gupta, Detecting counterfeit currency
and identifying its source, in Advances in Digital Forensics IX, G.
Peterson and S. Shenoi (Eds.), Springer, Heidelberg, Germany, pp.
367–384, 2013.

[17] J. Xie, C. Qin, T. Liu, Y. He and M. Xu, A new method to iden-
tify the authenticity of banknotes based on texture roughness, Pro-
ceedings of the IEEE International Conference on Robotics and
Biomimetics, pp. 1268–1271, 2009.

[18] M. Yusof and V. Madasu, Signature verification and forgery detec-
tion system, Proceedings of the Student Conference on Research and
Development, pp. 9–14, 2003.

VII

FORENSIC TECHNIQUES

Chapter 15

AUTOMATED COLLECTION
AND CORRELATION OF FILE
PROVENANCE INFORMATION

Ryan Good and Gilbert Peterson

Abstract The provenance of a file is a detailing of its origins and activities. Tools
have been developed that help maintain the provenance of files. How-
ever, these tools require prior installation on a computer of interest be-
fore and while provenance-generating events occur. The automated tool
described in this chapter can reconstruct the provenance of a file from a
variety of artifacts. It identifies relevant temporal and user correlations
between the artifacts and presents them to an investigator. Results
from six use cases demonstrate that these correlations are reliable and
valuable in digital forensic investigations.

Keywords: File provenance, Windows operating systems, forensic timelines

1. Introduction
Computer forensics, which involves analyzing a digital medium for

evidence of a crime, requires the tracking and digesting myriad files
and their relationships. Parsing this information can be a daunting
task and the time requirement to conduct an analysis can prevent an
investigator from obtaining the information needed to prosecute a crime.
The automated extraction of the relationships between files and their
origins, along with the number of times and ways in which they have
been modified and accessed, can greatly speed up this process.

The provenance of a data object (e.g., file) is the “ownership and the
actions performed on [the] data object” [7]. Ownership describes the
creator of the file or the user responsible for the file arriving on the
system, while the actions describe how the file was interacted with post
arrival. In many cases, it is important to discover the responsible party
for the arrival of a file on a system in order to determine attribution.

© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
G. Peterson and S. Shenoi (Eds.): Advances in Digital Forensics XIII, IFIP AICT 511, pp. 269–284, 2017.
DOI: 10.1007/978-3-319-67208-3_15

269

270 ADVANCES IN DIGITAL FORENSICS XIII

Incorrectly arriving at the heredity of a file or not providing enough
evidence can derail a case.

The automated tool presented in this chapter enables a digital foren-
sic investigator to quickly identify correlations that can determine the
source and activity of a file in a system image. This is accomplished
by extracting common sources of provenance information from a stor-
age media image. The automated tool then processes and compares the
extracted information to determine the correlations that exist. The cor-
relations are provided to the digital forensic investigator to assist with
the case.

Six use cases demonstrate the efficacy of provenance information ex-
traction and correlation. The use cases cover a range of file sources as
well as common file activities. The correlations that are discovered are
listed within certain categories. A short explanation is provided for each
use case along with the results, demonstrating how the automated tool
can help a digital forensic investigator identify the provenance of files.

2. Related Work
This section discusses methods for gathering file provenance informa-

tion. It also provides an overview of the locations that may contain
temporal and ownership artifacts in a Windows operating system. Fi-
nally, it discusses research in the area of automated provenance creation.

Provenance refers to the earliest known history of an object [7]. It
can also refer to the record of ownership of an object. In the context of
a computer system or network, provenance pertains to the origins of a
piece of data, its relationship to other pieces of data and the processes
that created and modified it. One use of provenance is as metadata,
which enables a user to search for a file based on past interactions or
the original source. A user may forget the document that he/she was
working on, but may remember that email was exchanged with someone
about pertinent data. This information can help reduce the search space
of possible documents, enabling the user to quickly identify the object
of interest.

2.1 File Provenance Maintenance Systems
A file provenance maintenance system tracks and gathers file prove-

nance information. The system runs in the background and monitors
and records all file actions performed on the system. For example, the
Provenance Aware Storage System (PASS) [10] collects and maintains
provenance information comprising references between files and memory

Good & Peterson 271

Table 1. Temporal Granularity.

Target Source Granularity

Registry Last Modified Times NTUSER.dat Microseconds
File MAC Times File of Interest Seconds
History Entries Browser History Files Seconds
Recent Documents NTUSER.dat Days
USB Key SYSTEM Seconds
User/Group Information SAM Seconds
CurrentVersion Subkey SOFTWARE Seconds

elements such as pipes and sockets in order to create the provenance of
files.

The File Provenance System (FiPS) [14] enables the recreation of
files. This system improves on the significant overhead required by
PASS. However, it still suffers from overhead due to its use of a stack-
able filesystem. Stackable filesystems are much easier to develop than
kernel-level filesystems. Unfortunately, this ease of use comes at the cost
of performance [15].

2.2 Sources of Provenance Data
Sources of file provenance information in Windows operating systems

running the NT Filesystem (NTFS) include the modified, accessed and
created (MAC) times, file metadata, Windows registry hives and appli-
cation history, and log files. Table 1 lists the sources of provenance data
and their temporal granularities.

NTFS MAC Times and File Metadata. NTFS stores the modi-
fied, accessed and created (MAC) times for each file in the Master File
Table (MFT) [8]. The mtime is the time of a file’s last modification; it
updates whenever the file contents change. The ctime updates when-
ever a file’s content changes; it also updates whenever the file attributes
change. A file’s attributes can change for many reasons, including file
movement and ownership changes. The atime is the last interaction
time of a file and updates after any type of interaction, including simply
opening the file.

To summarize, if a file is simply opened and viewed, only its atime
changes. If the file is opened, viewed and edited, the atime and mtime
change. If the file is opened, edited and placed in another directory, then
all three values change. It is also important to note that all three values
change when the file is copied and pasted. This is because copying and

272 ADVANCES IN DIGITAL FORENSICS XIII

pasting creates a new file. This does not occur if the file is simply moved
because it is still the same file. When a file is copied or moved, the MAC
times of the containing folders reflect similar changes.

Many file formats contain metadata, which is data about data. File
metadata may comprise the file creator, the subject that last modified
the file and when actions on the file occurred. It may be tempting to
simply accept these values and assume that the origins of the file are
known. Unfortunately, values may be missing and are easily modified.
Therefore, a digital forensic investigator should either fill in the missing
information or validate the available data. Metadata can be acquired in
a number of ways; the ExifTool [6] was used to extract metadata in this
work.

Registry Hives. The registry is also a source of provenance for a
filesystem. The registry contains a number of hive files that have re-
sponsibilities ranging from tracking user activities to holding system
configuration information. Whenever an event occurs in a filesystem, it
can be expected to impact the registry in some way. Every registry key
has a value known as the “last write time,” which is modified when a rel-
evant event occurs. This value is extracted by timeline generators such
as log2timeline [4] when they collect temporal artifacts from storage
media. RegRipper [13] is also a useful tool for searching the registry and
collecting items of interest.

The registry has two types of hives: (i) user hives; and (ii) system
hives [2]. User hives focus on specific users and contain data that
can be used to trace user activity. User hives include NTUSER.dat and
USRCLASS.dat. System hives include the Security, SAM, System, Soft-
ware and AmCache hives. System hives contain information about the
overall functioning of the computer system. Information about external
storage connections, user login dates and times, account permissions,
program executions, etc. are easily obtained from the hives using tools
such as RegRipper.

Application History Files. Web browser applications serve as entry
points to a file. Browser application history files exist for each user
on a system as well as for each browser employed by a user. Each
file contains the recent history of a user’s activities involving a specific
browser. Internet Explorer, Google Chrome and Mozilla Firefox have
separate history files that are viewable with the right tools. The history
files can be parsed to discern activities that occurred in close temporal
proximity to the file’s arrival on the system. This can help determine if
the file arrived on the system via download from a website.

Good & Peterson 273

Each browser requires a separate tool to parse its history. NirSoft
provides a suite of tools that includes Internet Explorer History View
(IEHV) [11] for viewing Internet Explorer history folders, ChromeHis-
toryView [12] for the Google Chrome browser and MZHistory View, a
Firefox history viewer.

2.3 Evidence Correlation
Image analysis tools such as EnCase, Sleuth Kit and Forensic ToolKit

can be used to gather event information, but they do not present it in
a form that facilitates the comparison of timestamps. Timelines are a
visualization aid that assist forensic investigators in understanding the
events that occurred on a system. Zeitline [1] allows for enhanced visu-
alization of the data in a storage media image in the form of timelines.
An investigator may import events that are grouped, filtered and pre-
sented in a manner that is more indicative of a timeline or sequence.
The log2timeline tool expands on this functionality by incorporating
additional sources of timeline data such as artifacts and log files. Time-
line tools facilitate information presentation, but still require effort on
the part of a human to parse the events and determine correlations.
PyDFT [5] improves on the basic timeline functionality by analyzing
low-level events to determine when high-level interactions (e.g., USB
device connections) occur. The functionality provided by these timeline
tools is valuable, but they do not provide summarized information about
a file of interest.

A clear and concise view of relevant data makes it easier for digital
forensic professionals to quickly parse through information that can aid
in their investigations. The FACE tool [3] enhances data presentation
and automates forensic data correlation; it primarily focuses on data
in system memory and network traffic captures. Ramparser, a tool for
Linux memory analysis, gathers information from running processes,
open files and socket/netstat information. This data is provided by
Ramparser to FACE, which then discovers correlations. Unfortunately,
none of this is viable for storage media images.

Forensic automation is also valuable for determining the attributes
of a file. The approach leverages machine learning techniques to sift
through large amounts of data. For example, a machine learning al-
gorithm can use provenance data to determine a file’s extension [9].
This data includes the relationships between files and processes, their
locations relative to each other and the frequency with which they are
accessed.

274 ADVANCES IN DIGITAL FORENSICS XIII

Figure 1. Provenance Collection Tool.

3. Provenance Collection
The Provenance Collection Tool developed as part of this research

constructs the provenance of a file of interest and its logical path in a
storage media image. The tool runs several external programs to collect
temporal and association artifacts related to the file. It then parses the
information to discover correlations that can help determine the origin
of the file and activities involving the file.

Figure 1 shows the provenance extraction and correlation process.
Data is collected by DataGather.py, which invokes the RegRipper, log2-
timeline, psort, ExifTool, ChromeHistoryView, MZHistory View and
IEHV tools. Next, DataProcess.py attempts to determine the origins
of the file in the image. It accomplishes this by searching for indica-
tors that a forensic investigator often leverages to determine file origin.
The two Python scripts use functions in AutoLib.py, a library created
as part of this research. The Provenance Collection Tool considers in-
dicators related to local file creation, web browsers, USB devices, etc.
The indicators are passed to the user, who can draw conclusions and
determine how to best tailor the forensic analysis to the investigation.

Good & Peterson 275

3.1 Data Gathering
DataGather.py requires the file of interest to be specified by its name

and logical path, along with the location of the image in which it is
contained. In order to mount the image, DataGather.py needs to know
the start block of the image of interest. It obtains this information by
running mmls on the image and routing the output to a text file, which
is parsed to find the start block of the image. The block size is assumed
to be 512 because this is almost always the case. After the information
has been gathered, the mount command is invoked to locally mount the
image as read only. The find command is then invoked to find the file of
interest. Following this, DataGather.py checks for a file with the same
name that has a .torrent extension, as this can be an indicator of a
torrent source.

File metadata is extracted using ExifTool. This tool collects informa-
tion about the file creator, editor and creation/editing dates/times, if
they are available. The state command is then invoked to obtain the
NTFS MAC times of the file.

After capturing the metadata, DataGather.py obtains the last write
times from the NTUSER.dat hive, along with any pertinent values. The
NTUSER.dat hive is examined because it contains most of the informa-
tion relevant to file provenance, including user activities and program
execution. This is accomplished using the log2timeline tool, along
with filters that prevent it from analyzing the entire image.

For user attribution, DataGather.py checks the Users folder in Win-
dows to determine the users that are present in the system. The default
users that are present in all systems are filtered along with unrelated di-
rectories. These include All Users, desktop.ini, Default, Default User
and Public.

DataGather.py obtains the USB connection history from the system
hive. This information includes the first date/time that the system inter-
faced with the USB device, most recent time that the system interfaced
with the USB device and serial number of the device. Following this, the
RegRipper samparse plugin collects all the relevant information in the
SAM hive. Since log2timeline gathers information in the GMT/UCT
format while other sources are relative to the system time, the system
timezone is parsed from the SYSTEM registry hive to obtain the data.

The next item of interest is the user web history. The IEHV tool
is used to obtain a user’s Internet Explorer history by examining the
corresponding history folder. Following this, a similar process occurs
with ChromeHistoryView. Finally, the MZHistoryView tool obtains the
user’s Firefox history.

276 ADVANCES IN DIGITAL FORENSICS XIII

3.2 Data Processing
A digital forensic investigator typically has to manually parse the

collected data in order to determine where relevant correlations may
exist. DataProcess.py automates many of the correlation checks that
are relevant to file provenance by parsing the data and modifying it so
that all the data is in the same format and comparable. It then searches
for correlations and sets the relevant Boolean flags based on its findings.

DataProcess.py facilitates the comparisons by organizing all the data
sources into class structures. All timestamps are modified to be in UTC
24-hour time, the names of months are replaced by their numerical equiv-
alents, etc., in order to enable value comparisons.

Five categories of provenance correlations are considered. The cate-
gories are: (i) local factors; (ii) browser factors; (iii) USB factors; (iv)
Skype factors; and (v) torrent factors.

Local Factors. The following Boolean flags are indicators of local file
creation or interactions:

recentuser: The file of interest appears in the user’s recent docu-
ment registry key list.

localuser: A reference to the file exists in the user’s recent docu-
ments or any recent documents iterations in the history (found
using log2timeline).

date check: Relevant timeline entries exist in NTUSER.dat, which
refer to the file of interest on the day of its creation. The creation
date is determined from the metadata, if available. If no metadata
is available, the flag is set to false.

time check: Relevant timeline entries exist in NTUSER.dat, which
refer to the file of interest within 30 minutes of its creation. The
creation time is determined from the metadata, if available. If no
metadata is available, the flag is set to false.

systemuser: The file creator has the same user name as another
system user. The creating user is determined from the metadata,
if available. If no metadata is available, the flag is set to false.

word create day: Microsoft Word was used on the creation date
of the file. The flag is only set to true if the file type is a Microsoft
Word document.

word appear day: Microsoft Word was used on the first day that
the file was seen on the system. This flag is mostly a fail-safe if

Good & Peterson 277

the file metadata is not available. It is also useful to reinforce the
validity of the metadata and to indicate the possibility of editing,
but not creation. The flag is set to true if Microsoft Word ran
on the same day that the file first appeared in the log created by
log2timeline based on NTUSER.dat.

impossiblelocal: The operating system was installed on the sys-
tem after the file was created. Therefore, the file could not have
been created on the system. The creation date/time is determined
from the metadata. Therefore, if metadata is unavailable, the flag
is set to false.

movement: The file was likely moved within the system file struc-
ture. This is determined based on the file’s MAC times. If mtime is
much different from ctime, then the file was likely moved because
there are few other reasons for this difference in the timestamps.

editing: This indicates possible file editing while the file was on
the system of interest. This is based on the file’s MAC times as
well as NTUSER.dat timestamps. If mtime is not relatively close to
the first date/time the file was seen on the system, then the file has
likely been edited. Note that this could also occur if the user had
copied and pasted the file of interest and then deleted the original
file. This is because the system would consider the copied file as
a new file and reset the MAC times to the time when the file was
copied while the same arrival date/time would be in NTUSER.dat.

difmod: The file was modified by someone other than the creator.

samedaylogin: This flag is set to true if the last login date of
a system user is the same as the date that the file arrived on the
system. All the users with the matching last login date are listed.

Browser Factors. The following Boolean flags are indicators of brow-
ser source:

relevant chrome visits: This flag is set to true if Chrome web-
sites were visited within ±2 hours of the file’s arrival on the system.
If this is the case, all the relevant visits are recorded. For each visit,
the user who visited the site, the site that was visited and the date
and time of the visit are listed.

relevant ie visits: This flag is the same as that for Chrome,
except that it is for Internet Explorer.

278 ADVANCES IN DIGITAL FORENSICS XIII

relevant firefox visits: This flag is the same as that for Chrome,
except that it is for Firefox.

USB Factors. The following Boolean flags are indicators of USB
source:

timelinerelevant removable disk usage: This flag is set to
true if a timeline entry references the file of interest and a USB
device. This usually occurs when the recently used documents
contain references to both items at any point in time.

usbdatematch: A removable disk was used on the same day that
the file first arrived on the system. This is determined based on
the output of RegRipper’s USBdevices plugin, which examines
the system hive to determine when USB devices were last used.
This flag assumes that, if a user decides to transfer a malicious
or inappropriate file to a computer using a USB device, the USB
device will most likely not be used again. For this reason, the USB
device’s last write times are compared against the first sighting of
the file in the log2timeline logs.

Skype Factors. The following Boolean flags are indicators of Skype
source:

skypedatematch: Skype was used on the same day that the file
first arrived on the system. This is determined by searching for
references to Skype.exe under the UserAssist key in the registry.
An entry is created whenever Skype is used. All updates to this
key can be seen in the timeline created by running log2timeline
on the NTUSER.dat hive.

skype30min: Skype was used within 30 minutes of the file first
being seen on the system. This is the same check as skypedatemach
except that the granularity of the check is narrower.

Torrent Factors. The following Boolean flags are indicators of torrent
source:

torrentfile: A torrent file exists that has the same name as the
file of interest. This file is found by searching the system for the
file of interest with .torrent appended to the end of the filename.
If a file with this extension is found, it is highly likely that the
source of the file of interest is a torrent file.

fwiredatematch: FrostWire was used on the day that the file
first arrived on the system. This is determined by searching for

Good & Peterson 279

references to FrostWire.exe under the UserAssist key in the
registry. An entry is created whenever FrostWire is used. All
updates to this key can be seen in the timeline created by running
log2timeline on the NTUSER.dat hive.

4. Experimental Results
The effectiveness of the tool in constructing the provenance of files

is demonstrated via six use cases. For each use case, a user conducted
a different interaction with a file of interest. After the interaction, the
computer media was imaged and analyzed.

Each use case was performed on a computer running Windows 7 Ser-
vice Pack 2 with Google Chrome, Firefox, FrostWire and Skype installed.
The following six use cases were evaluated:

Use Case 1: A user logged on, created a Word document and
then logged off. Another user then logged in and edited the Word
document.

Use Case 2: A Word document was transferred to the system via
USB. A user then edited the Word document.

Use Case 3: A user called someone using Skype and received a
Word document from the called party. The file was then moved.

Use Case 4: A user torrented a Word document using FrostWire
and then edited the Word document.

Use Case 5: A user downloaded a Word document using Chrome
and then edited the Word document.

Use Case 6: A user downloaded a Word document using Internet
Explorer and then edited the Word document.

The following flags were set in Use Case 1:

difmod: The file creator and modifier are different.

localuser: The file is in one or more users’ recent documents.

time check: Relevant timeline entries exist that refer to the file
within 30 minutes of its creation.

systemuser: The file creator has the same username as a user on
the system.

word create day: Microsoft Word was used on the system on
the creation date of the file.

280 ADVANCES IN DIGITAL FORENSICS XIII

word appear day: Microsoft Word was used on the first day that
the file was seen on the system.

editing: The file was possibly edited on the system.

From these flags, a digital forensic investigator can determine that
the file was edited and that the editing most likely occurred locally.
This is based on the editing and difmod flags and supported by the
localuser flag. In addition, the time check, systemuser, localuser
and word create day flags show that the file was created locally.

The following flags were identified in Use Case 2:

usbdatematch: A removable disk was used on the same day that
the file first arrived on the system.

timelinerelevant removable disk usage: A timeline entry ref-
erences the file of interest as well as a USB device.

word appear day: Microsoft Word was used on the first day that
the file was seen on the system.

difmod: The file creator and modifier are different.

samedaylogin: The users who last logged in on the same day
that the file first arrived on the system are listed.

time check: Relevant timeline entries exist that refer to the file
within 30 minutes of its creation.

The usbdatematch and timelinerelevant removable disk usage
flags indicate that the file could have originated from a USB device.
The word appear day and difmod flags show that the file was most likely
modified using Microsoft Word after its arrival. The samedaylogin flag
implies that all the users who logged in that day would be listed, helping
narrow down the user who connected the USB device to the system. The
time check flag was active due to testing, because the file was quickly
transferred after creation for the purposes of this use case; therefore, the
presence of this flag can be ignored.

The following flags were identified in Use Case 3:

skypedatematch: Skype was used on the same day that the file
first arrived on the system.

skype30min: Skype was used within 30 minutes of the file first
being seen on the system.

samedaylogin: The users who last logged in on the same day
that the file first arrived on the system are listed.

Good & Peterson 281

movement: The file was likely moved in the system file structure.

The skypedatematch and skype30min flags indicate that Skype was
used within 30 minutes of the file’s arrival. The samedaylogin lists
the users who were logged in on the date the file arrived, helping nar-
row down the user who allowed the file to arrive on the system. The
movement flag shows that the file may have been moved because the
ctime and mtime are different. The ctime and mtime values are re-
ported for verification.

The following flags were identified in Use Case 4:

torrentfile: A torrent file exists that has the same name as the
file of interest.

fwiredatematch: FrostWire was used on the day that the file
was first seen on the system.

difmod: The file creator and modifier are different.

editing: The file was possibly edited on the system.

samedaylogin: The users who last logged in on the same day
that the file first arrived on system are listed.

impossiblelocal: The operating system was installed on the sys-
tem after the file was created.

time check: Relevant timeline entries exist that refer to the file
within 30 minutes of its creation.

word appear day: Microsoft Word was used on the first day that
the file was seen on the system.

The torrentfile and fwiredatematch flags indicate a possible tor-
rent source. The combination of the difmod, editing, time check and
word appear day flags indicate that the file was edited locally with high
likelihood. It is unlikely that any of these flags was activated by file
creation because of the impossiblelocal flag. The impossiblelocal
flag also indicates the creation date of the file is earlier than that of the
operating system. This dramatically decreases the likelihood of local file
creation.

The following flags were identified in Use Case 5 and Use Case 6:

relevant chrome visits: Chrome was used within ±2 hours of
the file’s arrival.

relevant ie visits: Internet Explorer was used within ±2 hours
of the file’s arrival.

282 ADVANCES IN DIGITAL FORENSICS XIII

difmod: The file creator and modifier are different.

editing: The file was possibly edited on the system.

samedaylogin: The users who last logged in on the same day
that the file first arrived on system are listed.

impossiblelocal: The operating system was installed on the sys-
tem after the file was created.

time check: Relevant timeline entries exist that refer to the file
of interest within 30 minutes of its creation.

Use Cases 5 and 6 have similar results because they both involve
browser history parsing. The relevant chrome visits and relevant -
ie visits flags are both set, which means the tool lists all the web pages
visited within a four-hour period. This provides insight into the source
of the file, especially because the file’s source web page contains the
name of the file in the download mirror. The tool presents information
in a readable single-line format, enabling a digital forensic investigator
to parse the results easily. The usual login (samedaylogin) and editing
(difmod and editing) flags are also active, showing that the file was
modified locally.

5. Conclusions
This research demonstrates that it is possible to automatically cor-

relate factors related to file provenance. The factors are of great value
to digital forensic investigators who seek to determine the origins and
activities of files of interest. Typically, an investigator would have to
manually mount the image, run various tools and analyze the results in
order to determine file provenance. The Provenance Collection Tool pre-
sented in this chapter could shave hours off investigations by revealing
correlations that would enable digital forensic investigators to quickly
focus their attention on more relevant factors.

There are many other checks that, if incorporated, could greatly en-
hance the functionality and utility of the tool. For example, many dif-
ferent torrent sources exist apart from FrostWire. While the Provenance
Collection Tool focuses on FrostWire to show how torrent detection can
occur, it is important that it should account for other torrent tools. The
same is true for browsers, starting with the implementation of Firefox
history checks. The timespans used by the tool to determine correlations
are often arbitrary; therefore, the approach can benefit from a large-scale
analysis of user activity that would enable the timespans to be narrowed
or broadened to render them more effective.

Good & Peterson 283

References

[1] F. Buchholz and C. Falk, Design and implementation of Zeitline:
A forensic timeline, Digital Investigation, vol. 6(S), pp. S78–S87,
2005.

[2] H. Carvey, Windows Registry Forensics: Advanced Digital Foren-
sic Analysis of the Windows Registry, Syngress, Cambridge, Mas-
sachusetts, 2016.

[3] A. Case, A. Cristina, L. Marziale, G. Richard and V. Roussev,
FACE: Automated digital evidence discovery and correlation, Dig-
ital Investigation, vol. 5(S), pp. S65–S75, 2008.

[4] K. Gudjonsson, Mastering the super timeline with log2timeline,
InfoSec Reading Room, SANS Institute, Bethesda, Mary-
land (www.sans.org/reading-room/whitepapers/logging/mast
ering-super-timeline-log2timeline-33438), 2010.

[5] C. Hargreaves and J. Patterson, An automated timeline reconstruc-
tion approach for digital forensic investigations, Digital Investiga-
tions, vol. 9(S), pp. S69–S79, 2012.

[6] P. Harvey, ExifTool (www.sno.phy.queensu.ca/~phil/exiftool),
2017.

[7] C. Jensen, H. Lonsdale, E. Wynn, J. Cao, M. Slater and T. Diet-
terich, The life and times of files and information: A study of desk-
top provenance, Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pp. 767–776, 2010.

[8] G. Lenik, I’m your MAC(b) daddy, presented at DEF CON 19,
2011.

[9] D. Margo and R. Smogor, Using provenance to extract semantic
file attributes, Proceedings of the Second Conference on Theory and
Practice of Provenance, 2010.

[10] K. Muniswamy-Reddy, D. Holland, U. Braun and M. Seltzer,
Provenance-aware storage systems, Proceedings of the USENIX An-
nual Technical Conference, 2006.

[11] NirSoft, IEHistoryView v1.70 (www.nirsoft.net/utils/iehv.ht
ml), 2011.

[12] NirSoft, ChromeHistoryView v1.30 (www.nirsoft.net/utils/chr
ome_history_view.html), 2017.

[13] B. Shavers, RegRipper (brettshavers.cc/index.php/brettsbl
og/entry/regripper), 2015.

284 ADVANCES IN DIGITAL FORENSICS XIII

[14] S. Sultana and E. Bertino, A file provenance system, Proceedings of
the Third ACM Conference on Data and Application Security and
Privacy, pp. 153–156, 2013.

[15] E. Zadok and I. Badulescu, A stackable filesystem interface for
Linux, Proceedings of the LinuxExpo Conference, pp. 141–151, 1999.

Chapter 16

USING PERSONAL INFORMATION IN
TARGETED GRAMMAR-BASED
PROBABILISTIC PASSWORD ATTACKS

Shiva Houshmand and Sudhir Aggarwal

Abstract Passwords are the primary means of authentication and security for on-
line accounts and are commonly used to encrypt files and disks. This re-
search demonstrates how personal information about users can be added
systematically to enhance password cracking. Specifically, a dictionary-
based probabilistic context-free grammar approach is proposed that ef-
fectively incorporates personal information about a targeted user into
component grammars and dictionaries used for password cracking. The
component grammars model various types of personal information such
as family names and dates, previous password information and pos-
sible information about sequential passwords. A mathematical model
for merging multiple grammars that combines the characteristics of the
component grammars is presented. The resulting merged target gram-
mar, which is also merged with a standard grammar, is used along
with various dictionaries to generate guesses that quickly match target
passwords. The experimental results demonstrate that the approach
significantly improves password cracking performance.

Keywords: Password cracking, context-free grammars, personal information

1. Introduction
The use of passwords for authentication is almost universal and the

quality of passwords continues to be important despite mechanisms such
as two-factor authentication and biometrics. A recent survey [15] reports
that a typical user has around 26 online accounts, but only five differ-
ent passwords. To ensure quality passwords, policies are used by many
websites to ensure that users employ strong passwords; however, there
are no clear indications about the efficacy of these policies.

© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
G. Peterson and S. Shenoi (Eds.): Advances in Digital Forensics XIII, IFIP AICT 511, pp. 285–303, 2017.
DOI: 10.1007/978-3-319-67208-3_16

285

286 ADVANCES IN DIGITAL FORENSICS XIII

Research has demonstrated that many passwords from revealed data-
sets [13] can be broken via improved password cracking techniques. How-
ever, in a real-world situation, a substantial number of passwords are not
easily broken because users may employ different forms of passwords for
“high value” sites.

During forensic investigations of seized hard drives, law enforcement
professionals frequently encounter encrypted volumes or disks. Encryp-
tion techniques such as the one used by TrueCrypt are specifically de-
signed to take a long time to compute the hashes, rendering it imprac-
tical to try millions of guesses; in such situations, additional resources –
beyond more computing power – must be brought to bear.

A promising solution is to leverage personal information about users
in cracking their passwords. This research explores how knowledge about
a user (target) can be used to enhance the ability of law enforcement to
attack passwords belonging to the target. The attacker might leverage
specific information about the target such as names of family mem-
bers, important dates, addresses and numbers, as well as possibly some
of the target’s previous passwords for the same account or from sis-
ter accounts. The approach employs the dictionary-based probabilistic
context-free grammar (PCFG) approach to password cracking [6, 16,
17], which trains a grammar on revealed password sets and uses the
learned grammar – called the attack grammar – to generate guesses in
optimal probability order. Personal information about a target can be
incorporated in PCFG-based password cracking in a very straightfor-
ward manner. The experimental results demonstrate that the approach
augmented with information about a target significantly improves pass-
word cracking performance.

2. Background and Related Work
A probabilistic context-free grammar is derived via training on a large

set of revealed passwords. This grammar is then used to generate guesses
in probability order. If no other information is known, this is referred
to as an optimal off-line or on-line password attack. Interested readers
are referred to [6, 17] for details about PCFG-based password cracking.

PCFG-based password cracking has two major phases (and code com-
ponents):

Training: In this phase, first-level production rules of the gram-
mar are learned. These rules generate base structures from a start
symbol S. A base structure comprises grammar variables that ab-
stract the class and length of password components. For example,
class types can be L denoting alphabet strings, D denoting dig-

Houshmand & Aggarwal 287

its and S denoting special characters. Additionally, K is used for
keyboard patterns and M for multi-word patterns. Capitalization
is represented by the class type U/N (uppercase/lowercase), but
they are treated slightly differently. The length of a substring is
indicated as a part of a variable. For example, S → M8D4S2 is a
rule that derives a base structure of three variables of the indicated
lengths.

Second-level grammar rules derive terminal substrings from base
structure variables such as D4 → 2001 . For example, the deriva-
tion of the password iloveyou2001## is:

S ⇒ M8D4S2

⇒ iloveyouD4S2

⇒ iloveyou2001S2

⇒ iloveyou2001##

The probabilities of most of these secondary rules are also learned
from the training set. Probability smoothing can be used to give
appropriate probability values to rules that are not found in the
training set. To calculate the probability of a string derived from
the start symbol, the probabilities of the rules used in the vari-
ous steps are multiplied together. Additional information used for
cracking is incorporated in dictionaries, which contain words that
can replace the L and M structures when generating guesses.

Guess Generation: In this phase, the learned probabilistic con-
text-free grammar and a set of multiple (attack) dictionaries are
used to generate password guesses in decreasing probability order.
Probabilities are associated with each dictionary. A dictionary can
be generated by learning from the training set or via other means.
The probabilities of the actual words used during guess generation
depend on the dictionaries and their probabilities.

Little research has focused on using personal information, including
previous passwords, to improve password cracking. One reason is that
very few revealed password datasets with personal information were
available. A second reason is ethical concerns about using email and
personal information about users, even if they were leaked by hackers
and posted on public websites. For example, if one has a revealed email
and password, the ethical dilemma is whether it is appropriate to look
online to find additional personal information about the user even if the
new information is not made public. Several authors [1, 7, 14] have

288 ADVANCES IN DIGITAL FORENSICS XIII

recently used leaked information to explore how users create passwords
using personal information and how this information may be used to
crack passwords.

Castelluccia et al. [1] have attempted to leverage personal information
to improve password cracking using a Markov model [10]. Their OMEN+
system integrates personal information with normal training based on
revealed passwords. The fundamental difficulty with the Markov ap-
proach [4, 10] is that it is computationally expensive to generate pass-
words in probability order because the training typically uses the learned
probabilities of n-grams to determine the probability of a password
string. Thus, it is first necessary to create various discretized proba-
bility levels assigned to buckets in which strings are placed based on the
3-gram probabilities of strings in the training set. The strings in the
buckets are attempted in the highest probability order of the buckets.

Castelluccia et al. [1] have also explored the use of personal informa-
tion such as email, birthdays and usernames, but did not use previous
passwords or cross-site passwords. Their OMEN+ system attempts to
determine if a password set containing personal information has any
overlap with a password with personal information. If an overlap ex-
ists, then the corresponding probabilities of the overlapping 3-grams are
increased based on a parameter. For some reason, instead of targeting
a specific individual, Castelluccia et al. modify the 3-gram probabili-
ties such that better results can be obtained for a complete test set.
In contrast, the proposed approach uses a highly efficient PCFG-based
training system without the problems of the Markov approach. More-
over, it does not require changes to the training or cracking components;
instead, only additional grammars and dictionaries have to be created.

Li et al. [7] have explored the use of personal information in pass-
word cracking using the 12306 dataset that was leaked from a Chinese
railway ticket website. The dataset contains approximately 130,000 Chi-
nese passwords as well as personal information such as email address,
username, cell phone number and the user’s Chinese name. Additional
information that can be extracted includes the birthday and gender of a
user. Li et al. extended the probabilistic context-free grammar approach
of Weir et al. [17] to develop the Personal-PCFG system. The extension
adds a new grammar variable for each type of personal information such
as B for birthday, N for name and E for email address; additionally,
as in other probabilistic context-free grammars, subscripts are used to
indicate lengths. During the preprocessing phase, a password such as
helloalice816! is converted to the structure helloN5B3! if the personal
information (name and birthday) match.

Houshmand & Aggarwal 289

The problem with this approach is that Li et al. do not appreciate
the grammar ambiguity that arises when several base structures yield
the same terminal string. Generating guesses in the order of highest
probability when using a context-free grammar relies on the grammar
being unambiguous. This ensures that there is a well-defined probability
for a guess that depends on a single unique derivation.

The ambiguity problem is discussed by Houshmand et al. [6], where
several new variables such as K for keyboard combinations and M for
multiword combinations are introduced to minimize or eliminate gram-
mar ambiguity. Note that the training and cracking components have
to be modified to accommodate the new variables. Furthermore, the
highest probability order of guesses generated cannot be maintained un-
less an effort is made during training to eliminate ambiguity. Otherwise,
the PCFG-based approach would still generate guesses for all the base
structures, but the probability order of guesses would not be preserved.

Wang et al. [14] also extend probabilistic context-free grammars [17]
to accommodate personal information and explore the use of previous
passwords. They follow the approach of Li et al. [7], except that instead
of using a new variable B for personal information such as birthday
with the subscript indicating length, they incorporate a tagged variable
system where specific subscripted variables reflect different formats for
a birthday. Thus, for each type of personal information, they have to
predefine different formats for the particular variable; these become the
only formats that are learned during the training process.

The approach of Wang et al. has exactly the same, if not worse, am-
biguity problems as that of Li et al. when generating guesses because
many different base structures can yield identical passwords, leading to
incorrect assignments of probabilities to the guesses. For example, the
password string 120982 can be derived from various variables represented
as B1, B2, ... , B10 or even D6, which would then give incorrect prob-
abilities to terminal strings during guessing because all possible proba-
bilities of the string derivations have to be added. When using previous
password information, Wang et al. also introduce new variables to the
grammar that represent various transformations of passwords. But this
causes similar problems as discussed above. In contrast, the approach
for accommodating previous passwords presented in this chapter does
not require changes to probabilistic context-free grammar training or
guess generation.

Das et al. [3] have used publicly-available leaked password sets with
user identifiers and have analyzed the data to find passwords for the
users. In particular, they were able to find 6,077 unique users with at
most two passwords for each user; 43% were identical passwords and the

290 ADVANCES IN DIGITAL FORENSICS XIII

remaining were non-identical. However, Das et al. do not consider the
changes that a user might make when using similar passwords for the
same or other accounts.

Zhang et al. [18] have conducted a large-scale study focusing on pass-
word changes necessitated by password expiration. They were able to
access a dataset of more than 7,700 accounts containing a known pass-
word and a subsequently changed password for each account. They
model a password change as a sequence of transforms (based on various
criteria) and organize the transforms as a tree with the old password
as the root. A path in the tree is a sequence of transforms that yields
the new password with common subsequences being the same from the
root. A search starts at the root with an input password and, upon
visiting each node in the tree, the corresponding transform is applied to
the output of the parent node. Then, each output is tested as a pass-
word guess against the target password hash. The primary limitation
of this algorithm is its time complexity; thus, the depth of the tree is
restricted to three levels. Furthermore, the algorithm does not incor-
porate information about a user. In contrast, the approach proposed
in this chapter derives a new grammar that precisely incorporates user
information to enhance PCFG-based password cracking. The approach
enables the use of specific information about a previous password instead
of generic transformations that a number of users may employ. Addition-
ally, the approach can simultaneously incorporate personal information
about the targeted user.

3. Building a Targeted Attack
This section discusses the proposed approach for creating a proba-

bilistic context-free grammar designed to crack a password for a targeted
user. It is assumed that there is a single target and that some personal
information about the target and the password hash are available. The
goal is to create an attack grammar that specifically generates guesses
for the target. Note that multiple hashes are not targeted simultane-
ously. This is not really a limitation because, if the hashes are salted,
attacks have to be re-executed for each hash. Also, this is a common
situation that holds true for online attacks on the target; this is because
there is no notion of trying multiple users simultaneously. If no personal
information is available, the same grammar would most likely be used
for all targets. Of course, some general information could guide the use
of different training datasets (e.g., Chinese vs. English targets). The
added complexity of the proposed approach is simply that a grammar
is developed for each target. As will be discussed later, grammars can

Houshmand & Aggarwal 291

be combined to handle a situation where the personal information was
used to create the password as well as a situation where it was not (e.g.,
the user simply created some other password).

The available personal information can be as simple as the username
or the first and last names of the user or it can be more detailed such
as the names of family members, their dates of birth and addresses.
Password policies often do not allow users to use their login ids or even
their real names when creating passwords. However, human beings tend
to use phrases, names and numbers that are familiar to them for easy
memorization. Thus, personal information gathered about a target can
be very useful in password cracking. The proposed approach can lever-
age any type of personal information about a target with only minor
categorization.

The next section discusses the combination of multiple grammars to
create a new grammar that models the use of the component grammars
in a precise way. Following this, the use of the combined grammar in
cracking passwords belonging to a specific target is described.

3.1 Merging Context-Free Grammars
Generating a probabilistic context-free grammar from a training set

of disclosed user passwords can be time consuming depending on the size
of the training set. Merging two or more grammars gives the advantage
of combining two training sets without having to repeat the training
phase.

Suppose it is desired to concatenate two training sets to create a
grammar. One way is to merge the training sets and produce a context-
free grammar from the entire set. On the other hand, assume that two
grammars have been generated, each using a different training set. Then,
the two grammars can be merged to create a new grammar that is the
result of training using both the sets. This technique also permits the
specification of a weight for each grammar to control how much it is
affected by each training set.

A probabilistic context free grammar has a set of production rules Rj

(j = 1..n) where n is the number of rules. Each rule has a single variable
(or non-terminal) on the left-hand side with a sequence of variables or
terminals on the right-hand side. Each rule Rj has an associated proba-
bility pj with the requirement that the probabilities of all the rules with
the same left-hand side must sum to one.

Definition: Let G1 and G2 be two probabilistic context-free grammars
with base structures and component structures as defined in [6, 17].

292 ADVANCES IN DIGITAL FORENSICS XIII

Then, the new grammar G, which is called the “merge” of G1 and G2,
is given by:

G = αG1 + (1 − α)G2 where 0 ≤ α ≤ 1

Note that this is only representational because grammars are actually
complex abstract tuples. It is assumed that the variables and terminals
in the two grammars are chosen from the same possible sets. The pa-
rameter α is used to give an appropriate weight to grammar G1 versus
grammar G2.

Next, it is necessary to define the new set of rules and their probabil-
ities for the merged grammar G.

Definition: Let R be a grammar rule that is in G1 or G2. Let the
probability of R in G1 be p1 and the probability of R in G2 be p2 (if R
is not in a grammar, then its probability is zero). Then, the probability
p of R in the merged grammar G is given by:

p = αp1 + (1 − α)p2

It is easily shown that G is a well-defined probabilistic context-free
grammar. This is because the probability values of all rules with the
same left-hand side variable in the merged grammar sum to one. Fur-
thermore, the combination of the two grammars can be viewed as an
affine transformation with the points being grammars in an abstract
space. Intuitively, it is possible to combine any number of grammars by
simply ensuring that the sum of their component weights is equal to one
and the resulting grammar is the same regardless of the ordering of the
combinations.

Table 1 shows a simple example involving the merging of two gram-
mars. The following sections discuss how merged grammars can be used
to crack passwords belonging to a target.

3.2 Integrating Personal Information
The approach enables a user to input almost any available personal

information about a target. Law enforcement personnel often encounter
cases in which they have to break the passwords of suspects about whom
they have significant personal information. Examples include the names
of family members and friends, usernames, relevant numbers (social se-
curity and phone numbers), addresses (street name, city, state and zip
code), important dates, favorite sports teams and players. Personal in-
formation is entered in a structured way such that the entries can be
massaged as needed.

Houshmand & Aggarwal 293

Table 1. Merging grammars G1 and G2 with α = 0.8.

Grammar G1

Rule Probability

S → L5D3 | L5S1 0.6 | 0.4
D3 → 999 | 124 0.8 | 0.2
S1 → ! | @ 0.63 | 0.37

Grammar G2

Rule Probability

S → L5S1 | L4S1 0.7 | 0.3
D3 → 123 | 124 0.6 | 0.4
S1 → # | & 0.72 | 0.28

Merged Grammar
Rule Probability

S → L5D3 | L5S1 | L4S1 0.48 | 0.46 | 0.06
D3 → 999 | 124 | 123 0.64 | 0.24 | 0.12
S1 → ! | @ | # | & 0.504 | 0.296 | 0.144 | 0.056

Based on the personal information (PI), a PI-grammar and PI-diction-
ary are constructed for password cracking. Numbers are added to the
digit variables of the PI-grammar. Names, words and alphabet charac-
ter strings are added directly to the PI-dictionary. Multiple dictionaries
can be used during the attack phase (guess generation). For example,
a basic dictionary would be a fairly large standard dictionary of words;
these words are not learned via the training process because the training
set would be too sparse to accurately account for or reflect word us-
age. Additional specialized dictionaries could be used; examples include
a “top words” dictionary that contains the most frequently-occurring
words in the training set and the PI-dictionary that contains words
based on personal information for use in a targeted attack. The use
of the PI-dictionary during guess generation ensures that the strings in
the dictionary will be used with higher probabilities in the guesses.

Dates are broken down into month, day and year components, and
most variations of dates are similarly added to the PI-grammar. For
example, when 02/10/2016 is entered, the following numbers are added
to the digit components of the PI-grammar: 02, 10, 2016, 16, 02102016,
021016, 10022016, 100216, 0210, 1002, etc. The name of the month and
its variations are also added to the PI-dictionary (e.g., February and
Feb). Note that the PI-grammar alone is not very useful in password
cracking because it has very few base structures and components. The

294 ADVANCES IN DIGITAL FORENSICS XIII

proposed approach merges this grammar with a general grammar in
order to generate guesses.

3.3 Using Old Password Information
As the number of accounts per user increases, users are more likely to

reuse their passwords or change their passwords slightly to avoid mem-
orizing new passwords. This is particularly true when a security policy
forces users to change their passwords frequently. A survey by Shay et
al. [12] conducted on 470 university students, staff and faculty revealed
that 60% of the individuals used one password with slight changes for
different accounts. Moreover, a study of leaked password sets by Dur-
muth et al. [4] demonstrated that users often apply simple tricks to make
slight changes to their old passwords.

Old passwords contain vital information such as important numbers,
dates and names of family members. The goal is to specify a gram-
mar that can generate guesses similar to an old password. Since users
often change their passwords with slight modifications, the AMP edit
distance [5] is used to define a metric for similar passwords and to de-
termine a grammar that can generate such passwords. AMP uses a dis-
tance function to create strengthened passwords within an edit distance
of one of a user-chosen password based on the Damerau-Levenshtein edit
distance [2]. The Damerau-Levenshtein edit distance measures the mini-
mum number of operations needed to transform one string into another.
The AMP version of this distance function includes insertion, deletion,
substitution and transposition of components of the base structure as
well as similar operations within a component. The AMP distance func-
tion is improved by adding operations on keyboard patterns and mul-
tiword patterns. These patterns were originally incorporated in proba-
bilistic context-free grammars by Houshmand et al. [6]. For multiwords,
the revised AMP edit distance has the unit operations:

Insertion: Insert a D1 or S1 in between two words in a multiword.
For example, for a password containing starwars (M8), star5wars
or star!wars are created.

Transposition of Components: Transpose two adjacent words
as well as the first and last word in a multiword. For example,
mysweetbaby can be changed to sweetmybaby, mybabysweet and
babysweetmy.

Deletion: Delete a word from a multiword, which results in a
new base structure as well as a new multiword in the grammar.
For example, given the password mysweetbaby12 with base struc-

Houshmand & Aggarwal 295

ture M11D2, it is possible to create other base structures such as
M9D2, M6D2, M7D2 as well as mysweet, mybaby and sweetbaby as
multiwords in the grammar.

This approach produces an ED-grammar (edit distance grammar)
that, by itself, generates all the guesses within a revised AMP edit dis-
tance of one from an old password. Note that every possible change is
considered to be equally probable.

3.4 Predicting New Passwords
This section assumes that the attacker has even more information

about the target. The focus is on the knowledge about the target’s
password habits and it is assumed that the attacker has access to at
least two similar subsequent old passwords. The first approach can be
leveraged to use the passwords to generate an ED-grammar. However,
it is also possible to gather information about the changes made to the
previous passwords of the target and use this information to predict
the new password. In the following paragraphs, an algorithm for deter-
mining changes between two subsequent known passwords is presented.
Following this, a new password based on the information is predicted.

In order to determine the changes between two passwords, a function
is implemented that finds the minimum edit distance by creating a dis-
tance matrix. The function also incorporates a backtracking algorithm
that determines the operations made between the two strings. The edit
distance function is based on the Damerau-Levenshtein algorithm. The
algorithm starts by filling a (distance) matrix D of size n1 × n2, where
n1 is the length of the first string s and n2 is the length of the second
string t. The D[i,j] value measures the distance between the initial sub-
string of s of length i and the initial substring of t of length j. At the
time of creating the matrix, the operations associated with each step are
captured and stored in another matrix O (using i: insertion, d: deletion,
t: transposition). This is used to create the transformation algorithm
that backtracks using the matrix and finds the exact operations made
when transforming one string to another.

Hierarchical Transformation Algorithm. Note that the AMP edit
distance function [5] is different from the regular Damerau-Levenshtein
edit distance. The main difference is in the transposition operation.
The Damerau-Levenshtein edit distance considers a transposition of two
adjacent characters as one edit distance. While this can be useful to
model string similarities, it is not appropriate for password changes.
For example, when two passwords such as iloveyou123 and 123iloveyou

296 ADVANCES IN DIGITAL FORENSICS XIII

are compared, the Damerau-Levenshtein edit distance between the two
strings is computed as 6 (the algorithm finds that there are three in-
sertions in the beginning and three deletions at the end of the string).
However, when considering these two strings as passwords with different
components, it is clear that the target has only made one change by
transposing the multiword component M8 with the digit component D3.

This is modeled using a hierarchical transformation algorithm that
first finds the edit distance between the simple base structures. A simple
base structure is the base structure of the password without considering
the length of each component. For example, the simple base structure
of love456! is LSD.

Given two old subsequent passwords, in the first level, both passwords
are parsed to their simple base structures. Then, the edit distance algo-
rithm is invoked for these two simple base structures to determine the
differences in the base structures. Using the backtracking algorithm,
the operations that caused the change in the simple base structure are
determined.

The backtracking algorithm starts from the bottom-right corner of the
matrix and travels back to the upper-left corner of the matrix and, in
each step, determines the operation that was performed to calculate the
edit distance. It then creates a string of the operations along the path
that shows how one string has been transformed to the other. If a trans-
position has been made within the simple base structure, the algorithm
checks the values of each component and then reverses the transposition
such that it neutralizes the initial transposition effect and recreates one
of the passwords similar to the other by applying the transposition.

The second level of the hierarchical algorithm proceeds to find the
edit distance between the changed password along with the second pass-
word to identify the edit distance and the operations between the two
strings. For example, the backtracking function returns nndnnnnnt (n:
no change, d: deletion, t: transposition) given 123alice!$ and 12alice$!.
This hierarchical transformation algorithm is used in the next section to
predict the changes that the target has made to create the new password.

Creating the Grammar. The transformations between two old pass-
words can be used to generate guesses of the most recent password of
the target. Some of the most common and important changes based on
the available data and the results of other studies [3, 18] are used to cre-
ate the PM-grammar (password modifications grammar). The following
functions add appropriate structures to the PM-grammar:

Increment/Decrement the Digit Component: An increment
or decrement of one in the digit component in the old passwords is

Houshmand & Aggarwal 297

identified. Upon finding such a change, the next predictable change
is added to the grammar. For example, if the old passwords are
bluemoon22 and bluemoon23, the number 24 is added to the D2

component of the grammar. The same base structure L8D2 also
has to be added to the grammar to increase the likelihood of using
the same structure again.

Insertion of the Same Digit: Algorithms have been developed
to recognize if a digit has been inserted into a password and if it
has been added repeatedly. Examples are bluemoon → bluemoon5
→ bluemoon55 → bluemoon555. In this case, if the old passwords
are bluemoon3 and bluemoon33, 333 is added to D3 in the grammar
as well as L8D3 to the base structures of the grammar.

Capitalization of Alpha Strings: If the old passwords both
have the same alpha sequence with different capitalizations, both
the capitalizations are added to the grammar because the chances
of using the masks are higher.

3.5 Merging Grammars and Generating Guesses
After the PI-grammar, ED-grammar and PM-grammar have been con-

structed based on the kind of information available, the grammars are
merged with a more comprehensive general grammar that is used for
password cracking when no personal information is known. By assign-
ing appropriate weights to the grammars, the generated guesses can be
balanced such that guesses with personal information are typically gen-
erated earlier with higher probability values and guesses that are more
general are typically generated later in the guessing process.

This approach, unlike other methods [7, 14], does not require chang-
ing the training code or the cracking code of the probabilistic context-
free grammar that implements training and guessing. In fact, it can
be viewed as an add-on intermediate step that requires no changes to
training and guessing.

After training on a large password set (general grammar), the PI-
grammar, ED-grammar and PM-grammar are created based on the avail-
able personal information. These grammars are merged with the general
grammar. The resulting final target grammar can be used as before in
offline or online attacks and can generate a wide variety of guesses (in
highest probability order) while giving higher probabilities to passwords
similar to those used by the target.

The advantage is that no matter which version of a probabilistic
context-free grammar is used, the approach still holds. Note that the
attacker uses personal information in the hope that the target has used

298 ADVANCES IN DIGITAL FORENSICS XIII

personal information to create the password. Clearly, the merging of
grammars is a powerful mechanism.

A key aspect of the merging technique is that, if the target has not
used personal information in passwords, the password cracking system
will still work appropriately. For example, merging a general grammar
and a special targeted grammar based on a seed password can be used to
generate passwords that favor the seed password, but it is not stuck with
a limited number of guesses and generates guesses based on the general
grammar as well. Furthermore, by adjusting the weights when merging
the grammars, it is possible to favor one approach (general) versus the
other (seed).

4. Experiments
This section discusses the experimental results on the effectiveness of

targeted password attacks. It can be proven that, if personal informa-
tion (excluding previous passwords) was used in a password such as a
name or date, the password cracking approach would automatically use
such passwords earlier in guess generation because the probabilities of
these passwords are higher due to the grammar merging operation. Un-
fortunately, obtaining a validated personal information password set or
simulating one through user studies is problematic. Therefore, no tests
were performed on the PI-grammar. Instead, the experiments focused
on a situation where previous passwords are available.

The first experiment compared attacks with and without the ED-
grammar. These attacks are referred to as targeted and general at-
tacks, respectively. The (extended) probabilistic context-free grammar
of Houshmand et al. [6] was used for training. In the general attack,
training was performed using a large dataset of real user passwords and
the (general) grammar was used to generate guesses. In the targeted at-
tack, the old password was used to create the ED-grammar, which was
then combined with the same general grammar produced for the general
attack while also using the same dictionary.

A total of 300,000 passwords were randomly selected from the Yahoo!
set of real user passwords that was leaked in 2012 [9]. This training
set was used to produce the general grammar. The training approach
requires a training dictionary to determine multiwords [6]. EOWL [8]
augmented with common proper names and top words from movie scripts
was used as in [5]. Additionally, dict-0294 [11] was used as the primary
attack dictionary. The test set contained 56 pairs of old and new pass-
words obtained through a survey of how users change passwords. The

Houshmand & Aggarwal 299

survey study was approved by the Florida State University Institutional
Review Board (IRB).

4.1 Password Survey
About 2,000 randomly-selected students from Florida State University

were invited to participate in the password survey. The participants were
asked to create an account with a password on the survey website. The
only password policy requirement was to use at least eight characters.
The participants were asked to log in once a day for a total of four times
during a period of one week. At each login, the participants were asked
a few survey questions. On the third website visit, the participants were
asked to change their passwords. On the fourth visit, the participants
logged in with their changed passwords and completed the survey.

Multiple logins enabled the participants to gain familiarity and be-
come comfortable with the passwords they had created before they were
asked to change their passwords. A total of 144 participants created
accounts and 56 of them proceeded to change their passwords; 53% of
the participants were female and 47% male. About 40% said that they
did not create new passwords for the survey, but simply used their old
passwords. Only 14% said that they created new passwords for each ac-
count. When creating their passwords, 30% of the participants said they
modified their existing passwords, about 24% reused their old passwords
and only 14% created new passwords. These percentages are consistent
with other studies.

4.2 Testing and Cracking Results
After the participants had changed their passwords, they were asked

how they changed their passwords and whether they changed them by
modifying their previous passwords. This question was important be-
cause it revealed which passwords were changed intentionally by mod-
ifying the old passwords. Otherwise, it would not have been possible
to divine the intentions of the user although the passwords appeared to
be similar. Of the 56 passwords, 23 were claimed to be created based
on the previous password. Therefore, the analysis only focused on these
passwords to check if the passwords could be guessed effectively.

During each cracking session, the old password was used as input to
generate the ED-grammar. This grammar was then combined with the
general grammar. Guesses were generated for the targeted and general
attacks. Table 2 shows the old password used as input, the new password
that was attacked and the number of guesses required to find the new
password using the targeted and general attacks.

300 ADVANCES IN DIGITAL FORENSICS XIII

Table 2. Test Result of Targeted Attack.

Old Password New Password Guesses in the Guesses in the
Targeted Attack General Attack

tharaborithor thorborithara – –
Simba144! @Simba2523 734,505,973 –
$unGl@$$220 $unGl@$$110 4,070 –
research! Research! 554 5,059,949,503
starWars@123 star#Ecit@123 2,227,558 –
thebigblackdogjumps blackdogmoretime – –
Ahk@1453 Ahk#1453 12,026 –
qpalzm73 qpalzm73* 1,810 –
pluto1995 boonepluto – –
caramba10 caramba12 14 11,424,542
Elvis1993! Professional1993!2 – –
pepper88 peppergator88 128,197,109 2,563,504,751
ganxiedajiA1!! 1ganxiedajiA 7,794 –
88dolphins! 55dolphins! 38,503 –
kannj2013! Kannj2013 97 –
!FSU$qr335 !FSU$qr335mcddt – –
vballgrl77 schatzimae – –
nickc1007 corkn1007 – –
sunflower12 sunflower13 202 119,336,969
meg51899 Meg51899* 5,381 –
Research1 research11 206 23,728,452
Gleek1993 Gleek1985 9,661 1,994,709,669
Oaklea0441 Oaklea0112 91,014 –

Since this work seeks to demonstrate that passwords are cracked faster
using personal information (e.g., old passwords), the number of guesses
was limited to 10 billion in the password cracking session. The idea was
to verify that passwords can be cracked in much shorter sessions than
in a regular offline password cracking session.

The results in Table 2 reveal that it was possible to guess most of
the passwords that were changed slightly. However, a few of the pass-
words could not be guessed (shown as –) primarily because there were
no relevant alpha strings in the dictionaries. For example, the pass-
word tharaborithor is not in English and the password vballgrl77 was not
actually modified, although the user claimed it was. The results show
that only a few of the passwords were broken during a general password
cracking attack and it took much longer for the others compared with
the targeted attack. Indeed, the targeted attack was more efficient when
information about the old passwords of users was incorporated.

To explore the proposed approach further, a small list of 30 sets of
previous passwords from a private entity was used. This list contained
no other information. All but two of the passwords were pairs and only

Houshmand & Aggarwal 301

two comprised three sequential passwords. The PM-grammar could be
used on the two sequential sets and the third password in the sequence
could be cracked on the first guess. Furthermore, 78% of the passwords
in the list could be cracked, with 66% of the passwords cracked in less
than 20 guesses.

5. Conclusions
This research has demonstrated that personal information belong-

ing to targeted users can be systematically incorporated in probabilistic
context-free grammars to efficiently generate password guesses. Three
grammars, PI-grammar, ED-grammar and PM-grammar, are created
based on various pieces of information such as names, dates, numbers
and previous passwords. Multiple grammars are merged using a pa-
rameter that appropriately weights each grammar and the new merged
grammar maintains its probabilistic properties. The proposed approach
is an add-on intermediate step between the training and cracking phases
of probabilistic context-free grammars, enabling it to be used very easily
with all the probabilistic context-free grammar variations.

Experimental results demonstrate that many of the passwords can be
guessed using a targeted grammar; however, a general grammar is not as
successful. Passwords are also guessed at a much faster rate (many fewer
guesses) using a targeted grammar compared with a general grammar.
Future research will attempt to evaluate and refine the proposed research
by conducting surveys with much larger numbers of participants and,
therefore, more password pairs.

References

[1] C. Castelluccia, A. Chaabane, M. Durmuth and D. Perito, When
privacy meets security: Leveraging personal information for pass-
word cracking, Computing Research Repository, abs/1304.6584,
2013.

[2] F. Damerau, A technique for computer detection and correction of
spelling errors, Communications of the ACM, vol. 7(3), pp. 171–176,
1964.

[3] A. Das, J. Bonneau, M. Caesar, N. Borisov and X. Wang, The tan-
gled web of password reuse, Proceedings of the Network and Dis-
tributed Systems Security Symposium, 2014.

302 ADVANCES IN DIGITAL FORENSICS XIII

[4] M. Durmuth, F. Angelstorf, C. Castelluccia, D. Perito and A. Chaa-
bane, OMEN: Faster password guessing using an ordered Markov
enumerator, Proceedings of the Seventh International Symposium
on Engineering Secure Software and Systems, pp. 119–132, 2015.

[5] S. Houshmand and S. Aggarwal, Building better passwords using
probabilistic techniques, Proceedings of the Twenty-Eighth Annual
Computer Security Applications Conference, pp. 109–118, 2012.

[6] S. Houshmand, S. Aggarwal and R. Flood, Next Gen PCFG pass-
word cracking, IEEE Transactions on Information Forensics and
Security, vol. 10(8), pp. 1776–1791, 2015.

[7] Y. Li, H. Wang and K. Sun, A study of personal information in
human-chosen passwords and their security implications, Proceed-
ings of the Thirty-Fifth Annual IEEE International Conference on
Computer Communications, 2016.

[8] K. Loge, The English Open Word List, Dreamsteep (dreamsteep.
com/projects/the-english-open-word-list.html), 2017.

[9] S. Musil, Hackers post 450K credentials pilfered from Yahoo, CNET,
July 11, 2012.

[10] A. Narayanan and V. Shmatikov, Fast dictionary attacks on pass-
words using time-space tradeoff, Proceedings of the Twelfth ACM
Conference on Computer and Communications Security, pp. 364–
372, 2005.

[11] Outpost9.com, Word Lists..., (www.outpost9.com/files/WordLis
ts.html), 2004.

[12] R. Shay, S. Komanduri, P. Kelley, P. Leon, M. Mazurek, L. Bauer,
N. Christin and L. Cranor, Encountering stronger password require-
ments: User attitudes and behaviors, Proceedings of the Sixth Sym-
posium on Usable Privacy and Security, article no. 2, 2010.

[13] A. Vance, If your password is 123456, just make it hackme, The
New York Times, January 20, 2010.

[14] D. Wang, Z. Zhang, P. Wang, J. Yan and X. Huang, Targeted on-
line password guessing: An underestimated threat, Proceedings of
the ACM SIGSAC Conference on Computer and Communications
Security, pp. 1242–1254, 2016.

[15] R. Waugh, No wonder hackers have it easy: Most of us now have
26 different online accounts – but only five passwords, Daily Mail,
July 16, 2102.

Houshmand & Aggarwal 303

[16] M. Weir, S. Aggarwal, M. Collins and H. Stern, Testing metrics for
password creation policies by attacking large sets of revealed pass-
words, Proceedings of the Seventeenth ACM Conference on Com-
puter and Communications Security, pp. 162–175, 2010.

[17] M. Weir, S. Aggarwal, B. de Medeiros and B. Glodek, Password
cracking using probabilistic context-free grammars, Proceedings of
the IEEE Symposium on Security and Privacy, pp. 391–405, 2009.

[18] Y. Zhang, F. Monrose and M. Reiter, The security of modern pass-
word expiration: An algorithmic framework and empirical analysis,
Proceedings of the Seventeenth ACM Conference on Computer and
Communications Security, pp. 176–186, 2010.

	Contents
	Contributing Authors
	Preface
	I THEMES AND ISSUES
	1 ESTABLISHING FINDINGS IN DIGITAL FORENSIC EXAMINATIONS: A CASE STUDY METHOD
	1. Introduction
	2. Causality and Digital Systems
	3. Using Yin’s Method
	3.1 Body of Knowledge
	3.2 Hypotheses Formulation
	3.3 Hypotheses Testing

	4. Causal Relationships in Digital Forensics
	4.1 Understanding Causal Relationships
	4.2 Establishing Causal Relationships

	5. Lottery Terminal Hacking Incident
	5.1 The Case
	5.2 The Investigation
	5.3 The Examination
	5.4 Hypotheses Formulation
	5.5 Hypothesis Testing

	6. Conclusions
	References

	2 A MODEL FOR DIGITAL EVIDENCE ADMISSIBILITY ASSESSMENT
	1. Introduction
	2. Background
	2.1 Digital Forensics and Digital Evidence
	2.2 Harmonization and Standardization

	3. Requirements for Assessing Admissibility
	3.1 Harmonization of Requirements
	3.2 Technical Requirements and Assessment
	3.3 Legal Requirements and Assessment

	4. Model for Assessing Evidence Admissibility
	4.1 Phase 1: Evidence Assessment Phase
	4.2 Phase 2: Evidence Consideration Phase
	4.3 Phase 3: Evidence Determination Phase

	5. Application in Legal Proceedings
	6. Conclusions
	References

	II MOBILE AND EMBEDDED DEVICE FORENSICS
	3 EVALUATING THE AUTHENTICITY OF SMARTPHONE EVIDENCE
	1. Introduction
	2. Related Research
	3. Reference Architecture
	3.1 Architectural Designs of Applications
	3.2 Reference Architecture Components
	3.3 Modeling Application Behavior
	3.4 Exploring an Android Application

	4. Theories of Normality
	5. Discussion
	6. Conclusions
	References

	4 FORENSIC EVALUATION OF AN AMAZON FIRE TV STICK
	1. Introduction
	2. Related Work
	2.1 Chromecast
	2.2 Measy A2W Miracast
	2.3 Amazon Kindle Fire HD

	3. Proposed Forensic Methodology
	3.1 Experimental Methodology
	3.2 Sample Data

	4. Forensic Assessment
	4.1 ADB Extraction Test
	4.2 UFED Touch Test
	4.3 Python Script Test
	4.4 Rooting Test
	4.5 ADB Extraction Test
	4.6 Manual Acquisition Test

	5. Recommended Forensic Analysis Method
	6. Conclusions
	References

	5 DETECTING ANOMALOUS PROGRAMMABLE LOGIC CONTROLLER EVENTS USING MACHINE LEARNING
	1. Introduction
	2. Programmable Logic Controllers
	3. Forensic Challenges
	4. Machine Learning
	5. Related Work
	6. Experimental Setup and Methodology
	6.1 Experimental Setup
	6.2 Classifying Anomalous Operations

	7. Experimental Results and Discussion
	8. Conclusions
	References

	III NETWORK AND CLOUD FORENSICS
	6 A FORENSIC METHODOLOGY FOR SOFTWARE-DEFINED NETWORK SWITCHES
	1. Introduction
	2. Background
	3. Related Work
	4. Proposed Forensic Methodology
	5. Experimental Evaluation
	5.1 Experimental Setup
	5.2 Attack Scenario
	5.3 Memory Analysis
	5.4 Southbound Traffic Analysis
	5.5 Service-Level Event Logging
	5.6 Discussion

	6. Conclusions
	Acknowledgement
	References

	7 IDENTIFYING EVIDENCE FOR CLOUD FORENSIC ANALYSIS
	1. Introduction
	2. Background and Related Work
	3. Attack Reconstruction
	4. Reconstructing Attack Scenarios
	4.1 Experimental Setup
	4.2 Experimental Attacks
	4.3 Collecting Evidence for Reconstruction

	5. Using System Calls for Evidence Analysis
	6. Conclusions
	References

	IV THREAT DETECTION AND MITIGATION
	8 DIGITAL FORENSIC IMPLICATIONS OF COLLUSION ATTACKS ON THE LIGHTNING NETWORK
	1. Introduction
	2. Related Work
	3. Bitcoin Blockchain
	4. Lightning Network
	4.1 Payment Routing
	4.2 Lightning Network Topology

	5. Collusion Attack on the Lightning Network
	6. Collusion Attack Implications
	6.1 Fraud
	6.2 Money Laundering
	6.3 Forfeiture

	7. Attack Mitigation
	8. Conclusions
	References

	9 INSIDER THREAT DETECTION USING TIME-SERIES-BASED RAW DISK FORENSIC ANALYSIS
	1. Introduction
	2. Methodology
	2.1 Sample Data
	2.2 Data Driven Algorithm Development
	2.3 Time-Series-Based Anomaly Detection

	3. Experimental Results
	3.1 Unpaired t-Test/Split Window Method
	3.2 Unpaired t-Test/Sliding Window Method
	3.3 Autoregressive Method
	3.4 Ground Truth Analysis

	4. Conclusions
	Acknowledgement
	References

	10 ANTI-FORENSIC THREAT MODELING
	1. Introduction
	2. Threats to the Digital Forensic Process
	2.1 Evidence Destruction
	2.2 Evidence Hiding
	2.3 Evidence Source Elimination
	2.4 Evidence Counterfeiting

	3. Threat Modeling Applied to Digital Forensics
	3.1 Case Understanding
	3.2 Evidence Source Identification
	3.3 Threat Identification
	3.4 Risk Management
	3.5 Result Reporting and Model Updating

	4. Applying the Threat Model
	5. Conclusions
	References

	V MALWARE FORENSICS
	11 A BEHAVIOR-BASED APPROACH FOR MALWARE DETECTION
	1. Introduction
	2. Related Work
	2.1 Static Analysis
	2.2 Dynamic Analysis

	3. Windows Handles and Objects
	4. Malware Detection Using Handles
	4.1 Experimental Setup
	4.2 Vectorizing the Handle Data
	4.3 Model Training

	5. Results and Analysis
	6. Conclusions
	References

	12 CATEGORIZING MOBILE DEVICE MALWARE BASED ON SYSTEM SIDE-EFFECTS
	1. Introduction
	2. Live Memory Analysis of Mobile Devices
	2.1 Information in Volatile Memory
	2.2 Memory Capture Techniques

	3. Android Exploitation Techniques
	3.1 Heap Exploitation
	3.2 Defeating ASL Randomization

	4. Stagefright Exploits
	4.1 Zimperium zLabs
	4.2 Google Project Zero
	4.3 NorthBit

	5. Categorizing Malware by Behavior
	5.1 Malware Categories
	5.2 Benefits of Malware Categorization
	5.3 Detecting Malware Side-Effects

	6. Conclusions
	References

	VI IMAGE FORENSICS
	13 SEMANTIC VIDEO CARVING USING PERCEPTUAL HASHING AND OPTICAL FLOW
	1. Introduction
	2. Related Work
	3. Proposed Video Carving Approach
	3.1 Perceptual Grouping
	3.2 Precise Stitching

	4. Experimental Results
	5. Conclusions
	Acknowledgements
	References

	14 DETECTING FRAUDULENT BANK CHECKS
	1. Introduction
	2. Related Work
	3. Experimental Setup
	4. Fraud Detection Methodology Overview
	5. Details of the Fraud Detection Methodology
	5.1 Check Pantographs
	5.2 Check Microlines
	5.3 Check Alterations
	5.4 Printed vs. Handwritten Signatures

	6. Experimental Results
	6.1 Check Pantograph Results
	6.2 Check Microline Results
	6.3 Check Alteration Results
	6.4 Printed vs. Handwritten Signature Results
	6.5 Results for Checks from Multiple Banks

	7. Integrated Check Fraud Detection Tool
	8. Conclusions
	References

	VII FORENSIC TECHNIQUES
	15 AUTOMATED COLLECTION AND CORRELATION OF FILE PROVENANCE INFORMATION
	1. Introduction
	2. Related Work
	2.1 File Provenance Maintenance Systems
	2.2 Sources of Provenance Data
	2.3 Evidence Correlation

	3. Provenance Collection
	3.1 Data Gathering
	3.2 Data Processing

	4. Experimental Results
	5. Conclusions
	References

	16 USING PERSONAL INFORMATION IN TARGETED GRAMMAR-BASED PROBABILISTIC PASSWORD ATTACKS
	1. Introduction
	2. Background and Related Work
	3. Building a Targeted Attack
	3.1 Merging Context-Free Grammars
	3.2 Integrating Personal Information
	3.3 Using Old Password Information
	3.4 Predicting New Passwords
	3.5 Merging Grammars and Generating Guesses

	4. Experiments
	4.1 Password Survey
	4.2 Testing and Cracking Results

	5. Conclusions
	References

