Order Reduction and Uniform Convergence

of an Alternating Direction Method for Solving
2D Time Dependent Convection-Diffusion
Problems

C. Clavero and J.C. Jorge

Abstract In this work we solve efficiently 2D time dependent singularly perturbed
problems. The fully discrete numerical scheme is constructed by using a two step
discretization process, firstly in space, by using the classical upwind finite difference
scheme on a special mesh of Shishkin type, and later on in time by using the
fractional implicit Euler method. The method is uniformly convergent with respect
to the diffusion parameter having first order in time and almost first order in space.
We focus our interest on the analysis of the influence of general Dirichlet boundary
conditions in the convergence of the algorithm. We propose a simple modification of
the natural evaluations, which avoid the order reduction associated to those natural
evaluations. Some numerical tests are shown in order to exhibit, from a practical of
point of view, the robustness of the numerical method as well as the influence of the
improved boundary conditions.

1 Introduction

Let us consider 2D time dependent convection-diffusion singularly perturbed
problems defined by

Zu= "4 A0+ L) =f i@ x0.T]

u(x,y,0) = ¢(x,y), in £2,
u(x,y,t) = g(x,y, 1), in 982 x [0, T],

ey
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where £2 = (0, 1)2, and the spatial differential operators ., i = 1,2 are given by

2 0
Aoy =2 A 0@ L k.0, @)
ox ox
92 0
L) =—e, , +v2(x, 3,0, +k(xy1),
dy2 dy

respectively. We assume that the diffusion parameter &, 0 < ¢ < 1, can be very small
with respect to the convective coefficients which will be considered strictly positive
here, i.e., vi(x, y, ) > v > 0; also, the reaction terms satisfy k;(x,y,7) > 0, i = 1,2.
We assume that sufficient smoothness and compatibility conditions between data
hold so that the solution is four times derivable in space and twice in time (see [1, 3]
for instance).

It is well known that, in general, when ¢ < v, the solution of these problems
presents a multiscale character even for smooth data, and the exact solution has
regular boundary layers of size &'(¢) at the sides x = 1 and y = 1 of the boundary
of 2 (see [6-9]). In such case, the use of standard finite difference or finite element
methods, defined on uniform meshes, is inappropriate because a large number (e-
dependent) of mesh points will be necessary to obtain accurate approximations.
Then, the use of uniformly convergent methods is a much better choice, due to
the rates of convergence and the associated error constants being independent of &
and, consequently, they are able to obtain reliable solutions using meshes with a
reasonable number of mesh points independently of the value of ¢. Here, we use a
fitted mesh method (see [7, 9]), which concentrates appropriately the grid points in
the boundary layer regions, to obtain a uniformly convergent scheme.

Similar 2D parabolic singularly perturbed problems are analyzed in many
works. In [4, 5] the numerical algorithm was defined by using a two step process,
discretizing firstly in time and secondly in space. In [1, 2] the technique discretizes
first in space and later on integrates in time, via the implicit Euler method, the
derived stiff initial value problems. The resulting numerical algorithm in [1, 2] must
solve pentadiagonal linear systems at each time level; therefore, the computational
cost of the algorithm is high. To reduce the computational cost, here we follow the
same technique as in [1, 2], but now we use the fractional implicit Euler method
to discretize in time; in this way, only tridiagonal systems have to be solved.
We prove that the fully discrete scheme, which combines the fractional implicit
Euler method, on a uniform mesh, and the classical upwind scheme, defined on a
piecewise uniform Shishkin mesh, is uniformly convergent of first order in time and
of almost first order in space.

We focus special attention to the influence of considering general time dependent
Dirichlet boundary conditions. It is well known that, when using one step methods,
a classical evaluation of the boundary conditions causes, in general, a reduction,
both theoretically and numerically, in the order of convergence. This is the rationale
for as to consider a different and very simple modification of these evaluations.
We prove that the new evaluations of the boundary conditions retain the first
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order of consistency of the fractional implicit Euler method, without increasing the
computational cost of the algorithm.

The paper is structured as follows: in Sect. 2, we introduce the spatial discretiza-
tion of the continuous problem on a special nonuniform mesh of Shishkin type and
we prove its almost first order uniform convergence. In Sect. 3 we introduce the time
discretization and we prove the uniform convergence of the fully discrete method.
Finally, in Sect.4 some numerical results corroborating in practice the theoretical
results are shown.

Henceforth, C denotes a generic positive constant independent of the diffusion
parameter ¢ and also of the discretization parameters N and M.

2 Spatial Discretization

In this section we describe the spatial discretization chosen for (1). First we
construct the mesh £y = I.n X I, n, as a tensor product of one dimensional
piecewise uniform Shishkin meshes, I,.y = {0 = x < ... < xy = 1},
Ley =1{0 = yo < ... < yv = 1}. We give the details of the construction of
I . n. Let us choose N as an even number. We define the transition parameter

o, = min(1/2, meInN), 3)

where m, > 1/v; then, the piecewise uniform mesh has N/2 + 1 points in [0, 1 —0,]
and [1 — oy, 1], and the mesh points are given by

_{2i(1—0y)/N,i=0,...,N/2,

i= 4
M=V 1=0, +2(—N/2)o/N, i=N/2+1,...,N. @)
In a similar way, defining the transition parameter

oy = min(1/2, myeInN), (5)

where my, > 1/v, we can construct the mesh / o .

Let us denote £2y the subgrid composed by all of the points of §2,, which are in
the interior of £2. Let us denote uy () the semidiscrete approximations which we are
going to define in §2y and let us denote u, (¢) the natural extension of uy(7) to §2,,
by adding the corresponding evaluations of the boundary data. On these meshes,
Zien, 1 = 1,2, are the discretization differential operators of %, i = 1,2, using
the simple upwind finite difference scheme, which is given by

L en@un () (xi,y) = Lie jun () (Xi—1, ;) + liv jun (@) (X1, ) +

lil,juN(t)(-xiﬂyi)7 ile---sN_lsj:O""’N7 (6)
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where
—& U1 (X3, 5. 1) —&
liej= . — R R - 7
7 hx,ihx,i hXJ' i hx,i+lhx,i ( )
l,-l,j = —li—j—lit j + ki (xi,y;,1),
and analogously
L e nOun () (xi, ;) = L j—un () (i, yj—1) + L jrun (O (i, yje1)+ )
ll-z’juN(t)(xi,yj), J = 1, . ,N— 1, = 0, - ,N,
where
—& U2(X, i, 1) —&
lij— = . = 0, iy = ~ &)
T hy by, hy.j T hy by

Bi=—lij- —lijy + ka(xi, ), 1),

with by = xi — xi—1, i = 1,....N, hyj =y — Y1, j = 1,....N, hei = (hyi +
heiv1)/2,i=1,...,N—1, hy’j = (hy’j +hy’j+1)/2, j=1,...,N—1.

Let us denote [.]y, the restriction to £2y of any function defined in £2. In [1], it
was proven that it holds

||[M(X,y, t)]N - MN(I)”.QN =< CN_l 1an Vite (Os T]s (10)

showing the almost first order of uniform convergence of the spatial discretization.

3 Time Discretization: Uniform Convergence

In this section we discretize in time, by means of the fractional implicit Euler
method (see [4]), the stiff initial value problem

uy(0) + (Len() + Loen (@) uy (@) = [flv, in Qy,
”N(t) = [g]N, in -QN\QNy (11)
MN(O) = [(p]Nv in Q[\U

Let T = T/M be the time step, and let us consider the mesh Iy = {t,, = mt, m =
0,1,....,M}. Let uyy ~ un(x,y,tn), m = 0,1,...,M. Then, the fully discrete
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method is given by
(i) (initialize)
uly = [p(x, )]y, in 2y.

”1(1/ = [g(x,y,0)]y, in £2,\ 2.
(ii) (first half step)

U+ e Zren(tme )y = w0y 4 1f L in 2\0, 13 x [0, 1], (12)
Wy T = 2 in 2,040, 1} x [0, 1.

(iif) (second half step)

U+ Lo en )™ = 02 4ot in 2,\[0.1] % {0, 13,
Wi e y) = gl in 2y, N[0, 1] x {0, 1},

m=20,....M—1,

being f = fi + /o f"" = [AiCn . twrDlys £ = 063 )]y

An important question in the numerical approximation of initial value problems
is related with the evaluations of the boundary data. The most classical option for
that is given by
gy = 8y byl in Ry 140,13 x [0.1], 13

gntl = [g(x,y, tut )]y, in 2y N[0, 1] x {0, 13.

Nevertheless, in general, this choice reduces the order of unconditional (independent
of N) consistency to zero, and causes a sharp increase in the global error of the
method. Then, we propose a different choice for the boundary data, given by

+1/2
&y /

g = [yt )]y in 2y N[0 1] x 40, 1},

= (I + v Lo en (s D[yt )y — Tfy'5 ' in 2y 040,13 x [0, 1],

(14)

Theorem 1 Under sufficient smoothness and compatibility conditions on data (see
[3]), if we choose the boundary data given in (14), then the error in time satisfies

lun (tn) — ult oy < Ct, Ym=1,.... M, (15)

therefore, the time integration process (12) is uniformly and unconditionally
convergent of first order, in other words, (15) is obtained independently of the size
of € and without restrictions between N and M.

Then, combining the uniform convergence of the spatial and time discretization,
the main result follows.
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Theorem 2 Under sufficient smoothness and compatibility conditions on data (see
[3]), if we use the improved boundary data (14), then the global error given by

E = t —ul
NM 1£na§M”[”(x’y’ v — Uyl 2y

satisfies
Eyy <CIN"'InN + M),

and therefore the fully discrete method is uniformly convergent of first order in time
and almost first order in space.

Remark 1 In [3], there are the full details of the proofs of the last two results.

4 Numerical Experiments

In this section we solve some test problems using our numerical algorithm. The first
example is given by

u — eAu + uy +uy + (30t + xy)u = f(x,y,1), (x,y,1) € 2 x[0,1],
u(x,y, 1) = g(x,y, 1), in a82 x [0, 1] (16)
u(x,y,0) = ¢(x,y), x,y€l0.1],

where f(x, y,1), g(x, y, 1) and ¢(x, y) are chosen in such way that the exact solution is

u(x,y, 1) = (€2 — 1) (F@W(y) —257), with¥(x)=1—z— 11— e
!

Figure 1 shows the solution at the final time # = 1; from it, we clearly see the
boundary layersatx = l andy = 1.

In all tables corresponding to example (16), we take m, = m, = 1 to define
the transition parameters of the meshes /; ; 5 and I, , y respectively. In this example
we decompose the right-hand side in the form f(x,y,1) = fi(x,y,1) + fo(x,y,1),
where fo(x.y.1) = f(x.0,1) + y(f(x. 1.1) — f(x.0,7)) and fi(x,y,1) = f(x.y.1) —
Halx,y.0).

As the exact solution is known, the maximum global errors at the mesh points
can be computed exactly by

exy = max max max |Uy —u(x;,yj, 1),
’ 0<n<M 0<i<N 0<j<N

and therefore the numerical orders of convergence are calculated by

p = log (enm/eanam)/log2.
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1

Numerical solution at t:

Fig. 1 Numerical solution of example (16) for e = 1072, N = M = 32, at the final time r = 1

From these values we calculate the uniform maximum errors by emaxV'¥ =
max ey, and from them, in a usual way, the corresponding numerical uniform
&

orders of convergence are given by
P = log (emax™/ emax*N-*M )/log2.

Tables 1 and 2 display the errors and the orders of convergence when natural and
improved boundary conditions are used, respectively. From them, we observe the
typical almost first order of uniform convergence (up to a logarithmic factor, in both
cases; so, we can conclude that in this example the errors associated to the spatial
discretization dominate in the global error.

To clarify the influence, in the numerical behavior of the method, of the two
options for the boundary data considered here as well as the improvements provided
by the non natural evaluations of the boundary conditions, we estimate the local
errors in time. As the exact solution is known, such estimates are calculated as

eyy = max max max |Uy — u(xi,yj, tw)l,
0<m=<M 0<i<N 0<j<N

where N must be chosen large enough in order to the contribution of the spatial
discretization can be neglected and UY; are the result of performing one step of our
algorithm, but substituting U%~! by [u(x;, y;, tu—1]n. From them, the quantities

p = log(enm/enom)/log2,

permit to estimate the numerical orders of consistency in time, given by p — 1.
Next tables show such estimated local errors and the values of p corresponding
to the two choices of the boundary data, taking N = 512 fixed. Table 3 displays
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Table 1 Maximum errors and orders of convergence for (16) with natural boundary conditions

N=16

€ M=8

1 3.6250E—1
0.183

272 5.1934E—1
0.293

274 7.2837E—1
0.468

276 9.1870E—1
0.548

28 9.8648E—1
0.529

2-10 1.0042E+0
0.522

2—12 1.0086E+0
0.519

214 1.0098E+0
0.519

2-16 1.0100E+0
0.519

272 1.0101E+0
0.519

emax'M 1.0101E+0

pr 0.519

N=32
M=16
3.1930E—1
0.391
4.2391E—1
0.471
5.2644E—1
0.588
6.2821E—1
0.713
6.8344E—1
0.702
6.9951E—1
0.691
7.0369E—1
0.687
7.0474E—1
0.686
7.0501E—1
0.686

7.0509E—1
0.686
7.0509E—1
0.686

N=64
M=32
2.4345E—1
0.580
3.0583E—1
0.643
3.5019E—1
0.714
3.8314E—1
0.754
4.2006E—1
0.817
4.3330E—1
0.809
4.3702E—1
0.805
4.3798E—1
0.804
4.3822E—1
0.804

4.3830E—1
0.803
4.3830E—1
0.803

N=128
M=64
1.6290E—1
0.732
1.9585E—1
0.780
2.1350E—1
0.820
2.2717E—1
0.847
2.3851E—1
0.883
2.4729E—1
0.886
2.5012E—1
0.883
2.5087E—1
0.882
2.5107E—1
0.881

2.5113E—1
0.881
2.5113E—1
0.881

N=256

M=128

9.8094E—2
1.1409E—1
1.2095E—1
1.2632E—1
1.2930E—1
1.3379E—1
1.3561E—1

1.3614E—1

1.3628E—1

1.3633E—1

1.3633E—1

the result when natural boundary conditions are used; from it the zero order of
consistency of the algorithm can be observed. Table 4 displays the result when
improved boundary conditions are used; here, we can appreciate the first order of
consistency of the algorithm according to the theoretical results.

The second example that we consider is given by

u—eAu+ (1 + 1+ x4+ y)u, + (1 + xy)uy + (30f + 10xye ")u =
e’(x—l—y—l—xz—l—yz), (x,y.1) € 2 x[0,1],

uCe,y, ) =t(x+y+x* +y%), in 92 x [0, 1]
ulx,y,0) =0, x,yel0,1].

a7

In this case the exact solution is unknown. We take again m, = m, = 1 to define the
piecewise uniform Shishkin mesh, and we decompose the source term in a different

way; now we take f1(x,y,7) = fo(x,y,1) = f(x,y,1)/2.
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Table 2 Maximum errors and orders of convergence for (16) with improved boundary conditions

N=16

& M=8

1 8.1032E—2
0.392

272 3.0553E—1
0.506

2~ 6.6342E—1
0.572

276 8.9060E—1
0.553

28 9.5140E—1
0.517

210 9.6591E—1
0.508

2712 9.6947E—1
0.506

214 9.7035E—1
0.505

2-16 9.7058E—1
0.505

272 9.7065E—1
0.505

emax'M 9.7065E—1

p 0.505

N=32
M=16
6.1745E—2
0.585
2.1515E—1
0.690
4.4616E—1
0.728
6.0712E—1
0.738
6.6489E—1
0.709
6.7917E—1
0.696
6.8270E—1
0.692
6.8358E—1
0.691
6.8380E—1
0.691

6.8387E—1
0.691
6.8387E—1
0.691

N=64
M=32
4.1156E—2
0.736
1.3340E—1
0.819
2.6930E—1
0.842
3.6390E—1
0.854
4.0674E—1
0.845
4.1938E—1
0.829
4.2265E—1
0.823
4.2347E—1
0.822
4.2368E—1
0.821

4.2375E—1
0.821
4.2375E—1
0.821

N=128
M=64
2.4708E—2
0.847
7.5618E—2
0.901
1.5028E—1
0.913
2.0135E—1
0.921
2.2638E—1
0.925
2.3610E—1
0.914
2.3889E—1
0.906
2.3962E—1
0.903
2.3981E—1
0.903

2.3987E—1
0.902
2.3987E—1
0.902

N=256

M=128

1.3735E—2
4.0493E—2
7.9834E—2
1.0637E—1
1.1920E—1
1.2533E—1
1.2751E—1

1.2811E—1

1.2827E—1

1.2832E—1

1.2832E—1

To approximate the maximum pointwise errors, we use a variant of the two-
mesh principle. We calculate {#"}, the numerical solution on the mesh {(%;, 3, 7,)}
containing the original mesh points and its midpoints, i.e.,

)ACQL':)CZ‘, i=0,.
Yo =Yj j=0,.
ton =tw, m=20,..

...N,
...N,
LM,

)ACZZ‘_H = (xi+xi+1)/2, i= 0,...,N—
Y1 = +yi+1)/2, j=0,....N—
;2m+l =ty + tw+1)/2, m=0,....M—1.

L,
L,

Then, we estimate the maximum errors at the mesh points of the coarse mesh as

d;; = max max |,y b)) — 0 O, Vist) |,
i,j,N.M 0§m§M0§i,j§N| ( i yj m) ( i yj, m)l

the corresponding numerical orders of convergence are given by

q = IOg (di,j,N,M/di,j,ZN,2M)/log 2
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Table 3 Local errors and values of p for (16) with natural boundary conditions, N = 512

3 M=38 M=16 M=32 M=64 M=128
4.3707E—1 3.5384E—1 2.5674E—1 1.6629E—1 9.7885E—2
0.305 0.463 0.627 0.765

272 6.2590E—1 4.8022E—1 3.2776E—1 2.0041E—1 1.1249E—1
0.382 0.551 0.710 0.833

274 7.2042E—1 5.3813E—1 3.5638E—1 2.1165E—1 1.1575E—1
0.421 0.595 0.752 0.871

276 8.3783E—1 5.6795E—1 3.7471E—1 2.2236E—1 1.2209E—1
0.561 0.600 0.753 0.865

28 9.2029E—1 5.7860E—1 3.8173E—1 2.2684E—1 1.2497E—1
0.670 0.600 0.751 0.860

2-10 9.4871E—1 5.8178E—1 3.8395E—1 2.2840E—1 1.2611E—1
0.705 0.600 0.749 0.857

212 9.5726E—1 5.8272E—1 3.8462E—1 2.2889E—1 1.2650E—1
0.716 0.599 0.749 0.856

214 9.5967E—1 5.8298E—1 3.8481E—1 2.2903E—1 1.2661E—1
0.719 0.599 0.749 0.855

Table 4 Local errors and values of p for (16) with improved boundary conditions, N = 512

3 M=38 M=16 M=32 M=64 M=128

1 8.1463E—2 5.6560E—2 3.2374E—-2 1.5063E—2 5.8364E—3
0.526 0.805 1.104 1.368

272 2.9521E—1 1.7902E—1 8.6850E—2 3.4115E—-2 1.1376E—2
0.722 1.044 1.348 1.584

24 6.0748E—1 3.5087E—1 1.6056E—1 5.9411E—2 1.8797E—2
0.792 1.128 1.434 1.660

276 8.2049E—1 4.6890E—1 2.1207E—1 7.7674E—2 2.4431E—-2
0.807 1.145 1.449 1.669

28 9.1301E—1 5.2039E—1 2.3469E—1 8.5809E—2 2.7069E—2
0.811 1.149 1.452 1.664

2710 9.4559E—1 5.3919E—1 2.4365E—1 8.9700E—2 2.8880E—2
0.810 1.146 1.442 1.635

2712 9.5452E—1 5.4465E—1 2.4662E—1 9.1388E—2 3.0196E—2
0.809 1.143 1.432 1.598

2~ 9.5675E—1 5.4605E—1 2.4744E—1 9.1910E—2 3.0710E—2

0.809 1.142 1.429 1.582
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dN M

The uniform maximum errors are estimated by = maxd, jym; from them, as
&

usual, we define the numerical uniform orders of convergence as
quni — 10g (dN,M/dZN,ZM)/IOg 2
Tables 5 and 6 display the errors and the orders of convergence when natural and
improved boundary conditions are used, respectively. Again, it can be observed that,

if the improved boundary conditions are used, the maximum errors present a much
better behavior, according to the theoretical results.

Table 5 Maximum errors and orders of convergence for (17) with natural boundary conditions

N=16 N=32 N=64 N=128 N=256

3 M=38 M=16 M=32 M=64 M=128

1 1.3913E—1 2.4139E—1 2.6596E—1 2.1717E—1 1.4631E—1
—.795 —.140 0.292 0.570

272 1.2604E—1 2.1200E—1 2.6799E—1 2.3349E—1 1.6160E—1
—.750 —.338 0.199 0.531

274 1.5672E—1 1.7202E—1 2.1551E—1 1.9894E—1 1.4647E—1
—.134 —.325 0.115 0.442

276 2.0382E—1 2.0250E—1 2.4525E—1 2.1963E—1 1.5769E—1
0.009 —.276 0.159 0.478

28 2.2383E—1 2.1158E—1 2.5590E—1 2.2750E—1 1.6231E—1
0.081 —.274 0.170 0.487

2-10 2.2922E—1 2.1399E—1 2.5896E—1 2.3008E—1 1.6393E—1
0.099 =275 0.171 0.489

212 2.3064E—1 2.1460E—1 2.5974E—1 2.3083E—1 1.6443E—1
0.104 =275 0.170 0.489

214 2.3101E—1 2.1476E—1 2.5993E—1 2.3101E—1 1.6458E—1
0.105 =275 0.170 0.489

216 2.3110E—1 2.1480E—1 2.5998E—1 2.3106E—1 1.6461E—1
0.106 =275 0.170 0.489

272 2.3113E—1 2.1481E—1 2.6000E—1 2.3108E—1 1.6463E—1
0.106 =275 0.170 0.489

anm 2.3113E—1 2.4139E—1 2.6799E—1 2.3349E—1 1.6463E—1

g —.063 —.151 0.199 0.504
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Table 6 Maximum errors and orders of convergence for (17) with improved boundary condi-
tions

N=16 N=32 N=64 N=128 N=256
e M=8 M=16 M=32 M=64 M=128
1.4057E—1 1.2136E—1 9.2976E—2 6.3759E—2 4.0322E—2
0.212 0.384 0.544 0.661
272 2.3371E—1 1.6670E—1 1.1193E—1 7.0281E—2 4.2088E—2
487 0.575 0.671 0.740
24 2.9010E—1 2.2153E—1 1.5507E—1 1.0209E—1 6.2416E—2
0.389 0.515 0.603 0.710
276 2.9941E—1 2.2677TE—1 1.5615E—1 1.0104E—1 6.1765E—2
0.401 0.538 0.628 0.710
28 2.9985E—1 2.2861E—1 1.5698E—1 1.0114E—1 6.1679E—2
0.391 0.542 0.634 0.714
2-10 2.9954E—1 2.2933E—1 1.5746E—1 1.0321E—1 6.1757TE—2
0.385 0.542 0.609 0.741
2-12 2.9961E—1 2.2950E—1 1.5845E—1 1.0568E—1 6.3412E—2
0.385 0.534 0.584 0.737
2~ 2.9965E—1 2.2954E—1 1.5903E—1 1.0634E—1 6.3966E—2
0.385 0.529 0.581 0.733
2716 2.9966E—1 2.2955E—1 1.5918E—1 1.0650E—1 6.4106E—2
0.385 0.528 0.580 0.732

272 2.9966E—1 2.2955E—1 1.5923E—1 1.0656E—1 6.4153E—2

0.385 0.528 0.579 0.732
avm 2.9985E—1 2.2955E—1 1.5923E—1 1.0656E—1 6.4153E—2
g 0.385 0.528 0.579 0.732
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