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Abstract This paper deals with a uniform convergentmonotonemethod for solving
nonlinear singularly perturbed parabolic reaction-diffusion systems. The uniform
convergence on a piecewise uniform mesh is established. Numerical experiments
are presented.

1 Introduction

In this paper we give a numerical treatment for the following semi-linear singularly
perturbed parabolic system:
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@t

� "i
@2ui
@x2

C fi.x; t; u/ D 0; .x; t/ 2 ! � .0;T�; (1)

ui.0; t/ D 0; ui.1; t/ D 0; t 2 Œ0;T�;

ui.x; 0/ D  i.x/; x 2 !; ! D .0; 1/; i D 1; 2;

where 0 < "1 � "2 � 1, u � .u1; u2/, the functions fi and  i, i D 1; 2, are smooth
in their respective domains.

In the study of numerical methods for nonlinear singularly perturbed problems,
the two major points to be developed are: (1) constructing robust difference schemes
(this means that unlike classical schemes, the error does not increase to infinity,
but rather remains bounded, as the small parameters approach zero); (2) obtaining
reliable and efficient computing algorithms for solving nonlinear discrete problems.
For solving these nonlinear discrete systems, the iterative approach presented in
this paper is based on the method of upper and lower solutions and associated
monotone iterates. The basic idea of the method of upper and lower solutions is the
construction of two monotone sequences which convergemonotonically from above
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and below to a solution of the problem. The monotone property of the iterations
gives improved upper and lower bounds of the solution in each iteration. An initial
iteration in the monotone iterative method is either an upper or lower solution, which
can be constructed directly from the difference equation, this method simplifies the
search for the initial iteration as is often required in Newton’s method.

In [5], uniformly convergent numerical methods for solving linear singularly
perturbed systems of type (1) were constructed. These uniform numerical methods
are based on the piecewise uniform meshes of Shishkin-type [6].

In [2], we investigated uniform convergence properties of the monotone iterative
method for solving scalar nonlinear singularly perturbed problems of type (1).
In this paper, we extend our investigation to the case of the nonlinear singularly
perturbed system (1).

The structure of the paper as follows. In Sect. 2, we introduce a nonlinear
difference scheme for solving (1). The monotone iterative method is presented in
Sect. 3. An analysis of the uniform convergence of the monotone iterates to the
solution of the nonlinear difference scheme and to the solution of (1) is given
in Sect. 4. The final Sect. 5 presents the results of numerical experiments with a
gas-liquid interaction model.

2 The Nonlinear Difference Scheme

On ! D Œ0; 1� and Œ0;T�, we introduce meshes !h and !� :

!h D fxm; 0 � m � MxI x0 D 0; xMx D 1I hm D xmC1 � xmg;

!� D ftk; 0 � k � N� I t0 D 0; tN� D TI �k D tk � tk�1g;

and consider the nonlinear implicit difference scheme

LiUi.xm; tk/C fi.xm; tk;U/� ��1
k Ui.xm; tk�1/ D 0; .xm; tk/ 2 !h � !� ; (2)

LiUi.xm; tk/ � �"iLh
i Ui.xm; tk/C ��1

k Ui.xm; tk/:

Ui.x0; tk/ D Ui.xMx ; tk/ D 0; Ui.xm; 0/ D  i.xm/; xm 2 !h; i D 1; 2;

where U � .U1;U2/, and the difference operators Lh
i , i D 1; 2, are defined by

Lh
i Ui.xm; tk/ D

�
Ui.xmC1; tk/� Ui.xm; tk/

„mhm
� Ui.xm; tk/ � Ui.xm�1; tk/

„mhm�1

�
;

„m D .hm C hm�1/=2; i D 1; 2:
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On each time level tk, k � 1, we introduce the linear problems

.Li C ci/Wi.xm; tk/ D ˚i.xm; tk/; Wi.x0; tk/ D Wi.xMx ; tk/ D 0; (3)

ci.xm; tk/ � 0; xm 2 !h; i D 1; 2:

In the following lemma, we state the maximum principle and we give estimates on
solutions of (3) from [8].

Lemma 1

(i) If mesh functions Wi.xm; tk/, i D 1; 2, satisfy the conditions

.Li C ci/Wi.xm; tk/ � 0 .� 0/; xm 2 !h;

Wi.x0; tk/ � 0 .� 0/; Wi.xMx ; tk/ � 0 .� 0/;

then Wi.xm; tk/ � 0 .� 0/ in !h, i D 1; 2.
(ii) The following estimates on the solutions of (3) hold true

kWi.�; tk/k!h � max
xm2!h

� j˚i.xm; tk/j
ci.xm; tk/C ��1

k

�
; i D 1; 2; (4)

where kWi.�; tk/k!h D maxxm2!h jWi.xm; tk/j.

3 The Monotone Iterative Method

We say that the mesh functions

eU.xm; tk/ D .eU1.xm; tk/;eU2.xm; tk//; bU.xm; tk/ D .bU1.xm; tk/;bU2.xm; tk//

are ordered upper and lower solutions if they satisfy the following inequalities:

eU.xm; tk/ � bU.xm; tk/; .xm; tk/ 2 !h � !� ;

LieUi.xm; tk/C fi.xm; tk;eU/ � ��1
k

eUi.xm; tk�1/ � 0; .xm; tk/ 2 !h � !� ;

LibUi.xm; tk/C fi.xm; tk;bU/ � ��1
k

bUi.xm; tk�1/ � 0; .xm; tk/ 2 !h � !� ;

bUi.x�; tk/ � 0 � eUi.x�; tk/; x� D x0; xMx ;

bUi.xm; 0/ �  i.xm/ � eUi.xm; 0/; xm 2 !h; i D 1; 2:
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We introduce the notation

hbU.tk/;eU.tk/i D fU.xm; tk/ W bU.xm; tk/ � U.xm; tk/ � eU.xm; tk/; xm 2 !hg;
and we assume that on each time level tk, k � 1, the reaction functions satisfy the
assumptions

0 � @fi
@ui
.xm; tk;U/ � ci.xm; tk/; on hbU.tk/;eU.tk/i; (5)

0 � � @fi
@ui0

.xm; tk;U/ � qi.xm; tk/; on hbU.tk/;eU.tk/i; i0 ¤ i;

where ci.xm; tk/ and qi.xm; tk/, i D 1; 2, are nonnegative bounded functions in !h.
On each time level tk, k � 1, the iterative method is given in the form

.Li C ci/Z
.n/
i .xm; tk/ D �Ri.xm; tk;U

.n�1//; xm 2 !h; (6)

Ri.xm; tk;U
.n�1// � LiU

.n�1/
i .xm; tk/C fi.xm; tk;U

.n�1//� ��1
k Ui.xm; tk�1/;

Z.n/i .x�; tk/ D 0; n � 1; x� D x0; xMx ;

Z.n/i .xm; tk/ � U.n/
i .xm; tk/ � U.n�1/

i .xm; tk/;

Ui.xm; 0/ D  i.xm/; xm 2 !h; i D 1; 2;

where ci, i D 1; 2, are defined in (5). For upper sequence, we have Ui.xm; 0/ D
 i.xm/, U

.0/
.xm; tk/ D eUi.xm; tk/ and Ui.xm; tk/ D U

.nk/
i .xm; tk/, i D 1; 2, xm 2 !h,

where Ui.xm; tk/, i D 1; 2, are approximations of the exact solutions on time level
tk and nk is a number of iterative steps on time level tk. For lower sequence, we
have Ui.xm; 0/ D  i.xm/, U.0/.xm; tk/ D bUi.xm; tk/ and U.xm; tk/ D U.nk/.xm; tk/,
i D 1; 2, xm 2 !h.

The following theorem gives the monotone property of the iterative method (6).

Theorem 1 Let eU and bU be ordered upper and lower solutions, and assumption (5)

be satisfied. On each time level tk, k � 1, the sequences fU.n/g, fU.n/g with U.0/ D eU
and U.0/ D bU, generated by the iterative method (6), converge monotonically

U.n�1/.xm; tk/ � U.n/.xm; tk/ � U
.n/
.xm; tk/ � U

.n�1/
.xm; tk/; xm 2 !h; (7)

Proof Since U
.0/ D eU and U.0/ D bU, then from (6) we conclude that

.Li C ci/Z
.1/

i .xm; t1/ � 0; .Li C ci/Z
.1/
i .xm; t1/ � 0; xm 2 !h;

Z
.1/

i .x�; t1/ � 0; Z.1/i .x�; t1/ � 0; x� D x0; xMx ; i D 1; 2:
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From Lemma 1, it follows that

Z
.1/

i .xm; t1/ � 0; Z.1/i .xm; t1/ � 0 xm 2 !h; i D 1; 2: (8)

We now prove (7) for n D 1 and k D 1. From (6), in the notationW.n/
i D U

.n/
i �U.n/

i ,
n � 0, i D 1; 2, we conclude that

.Li C ci/W
.1/
i .xm; t1/ D Fi.xm; t1;U

.0/
/� Fi.xm; t1;U

.0//; xm 2 !h;

W.1/
i .x�; t1/ D 0; x� D x0; xMx ; i D 1; 2;

where Fi.xk; tk;U/ D ci.xm; tk/Ui.xm; tk/ � fi.xm; tk;U/. Since U
.0/
.xm; t1/ �

U.0/.xm; t1/, by Lemma 2 from [1], we conclude that the right hand sides in the
difference equations are nonnegative. From Lemma 1, it follows W.1/

i . p; t1/ � 0,
i D 1; 2, and this leads to (7) for n D 1, k D 1.

Using the mean-value theorem, from (6) we obtain

Ri.xm; t1;U
.1/
/ D �

�
ci � @fi

@ui

�
Z
.1/

i .xm; t1/C @fi
@ui0

Z
.1/

i0 .xm; t1/; i0 ¤ i; (9)

where the partial derivatives are calculated at intermediate points which lie in the

sector hU.1/
.t1/;U

.0/
.t1/i. From (5) and (8), we conclude that

Ri.xm; t1;U
.1/
/ � 0; xm 2 !h; U

.1/

i .x�; t1/ D 0; x� D x0; xMx ; i D 1; 2:

Thus, U
.1/
.xm; t1/ is an upper solution. Similarly, we prove that U.1/.xm; t1/ is a

lower solution. By induction on n, we can prove that fU.n/
.xm; t1/g and fU.n/. p; t1/g

are, respectivelymonotonically decreasing andmonotonically increasing sequences.
From (7) with t1, it follows that for i D 1; 2,

bUi.xm; t1/ � U.n1/
i .xm; t1/ � U

.n1/
i .xm; t1/ � eUi.xm; t1/; xm 2 !h: (10)

From here and by the assumption of the theorem that eU. p; t2/ and bU. p; t2/ are,
respectively, upper and lower solutions, we conclude that eU.xm; t2/ and bU.xm; t2/
are upper and lower solutions with respect to U

.n1/
.xm; t1/ and U.n1/.xm; t1/.

From (6), we conclude that W.1/.xm; t2/ satisfies

.Li C ci/W
.1/
i .xm; t2/ D Fi.xm; t2;U

.0/
/ � Fi.xm; t2;U

.0//C
��1
2 ŒU

.n1/
i .xm; t1/ � U.n1/

i .xm; t1/�;

xm 2 !h; W.1/
i .x�; t2/ D 0; x� D x0; xMx ; i D 1; 2:
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SinceU
.0/
.xm; t2/ � U.0/.xm; t2/ and taking into account (10), by Lemma 2 from [1],

we conclude that the right hand sides in the difference equations are nonnegative.
From Lemma 1, we haveW.1/

i . p; t2/ � 0, i D 1; 2, that is,

U.1/
i . p; t2/ � U

.1/

i . p; t2/; p 2 !h; i D 1; 2:

The proof that U
.1/

i .xm; t2/ and U.1/
i .xm; t2/, i D 1; 2, are, respectively, upper and

lower solutions is similar to the proof on the time level t1. By induction on n,

we can prove that fU.n/
.xm; t2/g and fU.n/.xm; t2/g are, respectively, monotonically

decreasing and monotonically increasing sequences.

By induction on k, k � 1, we prove that fU.n/
.xm; tk/g and fU.n/. p; tk/g are,

respectively, monotonically decreasing and monotonically increasing sequences,
which satisfy (7).

3.1 Convergence on Œ0;T�

We now choose the stopping criterion of the iterative method (6) in the form

max
i

kRi.�; tk;U.n//k!h � ı; (11)

where ı is a prescribed accuracy, and U.xm; tk/ D U.nk/.xm; tk/, xm 2 !h, where nk
is minimal subject to the stopping test.

Instead of (5), we now impose the two-sided constraints on fi, i D 1; 2, in
the form

�k � @fi
@ui
.xm; tk;U/ � ci.xm; tk/; on hbU.tk/;eU.tk/i; (12)

0 � � @fi
@ui0

.xm; t;U/ � qi.xm; tk/; on hbU.tk/;eU.tk/i; i ¤ i0;

where �k, k � 1, are defined in (13).

Remark 1 We mention that the assumption @fi=@ui � �k, i D 1; 2, in (12) can
always be obtained via a change of variables. Indeed, introduce the following
functions ui.x; t/ D exp.�t/zi.x; t/, i D 1; 2, where � is a constant. Now, zi.x; t/,
i D 1; 2, satisfy (1) with

'i D �zi C exp.��t/fi.x; t; exp.�t/z1; exp.�t/z2/;
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instead of fi, i D 1; 2, and we have

@'i

@zi
D �C @fi

@ui
;

@'i

@zi0
D @fi
@ui0

; i0 ¤ i; i D 1; 2:

Thus, if � � maxk�1 �k, from here, we conclude that @'i=@zi and @'i=@zi0
satisfy (12)

We impose the constraint on �k

�k <
1

�k
; �k D max

i
fmax
xm2!h

Œqi.xm; tk/�g: (13)

If assumptions (12) and (13) hold, then the nonlinear difference scheme (2) has a
unique solution (see Lemmas 3 and 4 in [1] for details).

We prove the following convergence result for the iterative method (6), (11).

Theorem 2 Assume that the mesh !� satisfies (13), and fi. p; t;U/, i D 1; 2,
satisfy (12), where eU and bU are ordered upper and lower solutions of (2). Then

for the sequences fU.n/g, fU.n/g, generated by (6), (11) with, respectively, U.0/ D eU
and U.0/ D bU, the following uniform in " estimate holds

max
i

�
max
tk2!�

kUi.�; tk/� U�
i .�; tk/k!h

�
� Tı; (14)

where U�
i . p; tk/, i D 1; 2, is the unique solution to (2).

Proof The difference problem for U.xm; tk/ D U.nk/.xm; tk/, k � 1, can be
represented in the form

LiUi.xm; tk/C fi.xm; tk;U/� ��1
k Ui.xm; tk�1/ D Ri.xm; tk;U

.nk//; xm 2 !h;

Ui.x�; tk/ D 0; x� D x0; xMx ; i D 1; 2:

From here, (2) and using the mean-value theorem, we get the difference problem for
Wi.xm; tk/ D Ui.xm; tk/ � U�

i .xm; tk/

�
Li C @fi

@ui

�
Wi.xm; tk/ D Ri.xm; tk;U/C 1

�k
Wi.xm; tk�1/ � @fi

@ui0
Wi0.xm; tk/;

(15)
xm 2 !h; Wi.x�; tk/ D 0; x� D x0; xMx i0 ¤ i; i D 1; 2;

where the partial derivatives are calculated at intermediate points Ei, i D 1; 2,

such that U�
i � Ei � U

.0/

i , i D 1; 2, in the case of upper solutions and U.0/
i �

Ei � U�
i , i D 1; 2, in the case of lower solutions. Thus, the partial derivatives

satisfy (12). From here, (12), using (4) and taking into account that according
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to Theorem 1 the stopping criterion (11) can always be satisfied, in the notation
wk D maxi kWi.�; tk/k!h we have

wk � 1

�k C ��1
k

�
ı C ��1

k wk�1 C �kwk
	
:

Solving the last inequality for wk and taking into account that ��1
k =.�k C ��1

k / > 0,
we have

wk � ı�k C wk�1:

Since w0 D 0, by induction on k, we conclude (14)

wk � ı

kX
lD1

�l � Tı; k � 1:

3.2 Construction of Initial Upper and Lower Solutions

Here, we give some conditions on functions fi and  i, i D 1; 2, to guarantee the
existence of upper eU and lower bU solutions, which are used as the initial iterations
in the monotone iterative method (6).

Bounded Reactions Functions Assume that fi,  i, i D 1; 2, from (1) satisfy the
conditions

��i � fi.x; t; 0/ � 0;  i.x/ � 0; ui.x; t/ � 0; x 2 !;

where �i, i D 1; 2, are positive constants. Then

bUi.xm; tk/ D
�
 i.xm/; k D 0;

0; k � 1;
xm 2 !h; i D 1; 2;

are lower solutions to (2). The solutions of the following linear problems:

Li.xm; tk/eUi.xm; tk/ D ��1
k

eUi.xm; tk�1/C �i; xm 2 !h; k � 1;

eUi.x�; tk/ D 0; x� D x0; xMx ; k � 1; eUi.xm; 0/ D  i.xm/; xm 2 !h;

are upper solutions to (2).
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Constant Upper and Lower Solutions Assume that functions fi,  i, i D 1; 2,
from (1) satisfy the conditions

fi.x; t; 0/ � 0; fi.x; t;L/ � 0;  i.x/ � 0; ui.x; t/ � 0; x 2 !; (16)

where L D const > 0. The functions

bUi.xm; tk/ D
�
 i.xm/; k D 0;

0; k � 1;
eUi.xm; tk/ D L; xm 2 !h; (17)

are, respectively, lower and upper solutions.

4 Uniform Convergence of the Monotone Iterates

We assume that 0 < "1 � "2 � 1.
In the notation u D .u1; u2/, " D ."1; "2/ and f D . f1; f2/, the following linear

system is considered in [5]:

@u

@t
� "

@2u

@x2
C A.x; t/u D f .x; t/; A.x; t/ D

�
a11.x; t/ a12.x; t/
a21.x; t/ a22.x; t/

�
;

where the matrix A.x; t/ satisfies the assumptions

aii.x; t/ > 0; aii0.x; t/ � 0; aii.x; t/C aii0.x; t/ � ˛ D const > 0;

i ¤ i0; i D 1; 2; .x; t/ 2 ! � Œ0;T�:

From [5], we write down the bounds on @ui=@x, i D 1; 2 in the form

ˇ̌̌
ˇ@u1@x .x; t/

ˇ̌̌
ˇ � C

�
1C ��1

1 ��1.x/C ��1
2 ��2.x/

	
; (18)

ˇ̌̌
ˇ@u2@x .x; t/

ˇ̌̌
ˇ � C

�
1C ��1

2 ��2.x/
	
; �	 .x/ � exp.�	�1x/C exp.�	�1.1 � x//;

where �i D p
"i, i D 1; 2, and 	 is a positive constant. These bounds show that

there are two overlapping boundary layers at x D 0 and x D 1.
By using the mean-value theorem, we write fi, i D 1; 2, from (1) in the form

fi.x; t; u/ D fi.x; t; 0/C @fi
@ui
.x; t; v/ui C @fi

@ui0
.x; t; v/ui0 ; i0 ¤ i; i; i0 D 1; 2;
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where v lies between 0 and u. We suppose that @fi=@ui and @fi=@ui0 , i0 ¤ i, i; i0 D
1; 2, for .x; t; v/ 2 ! � Œ0;T� � .�1;1/ satisfy the following assumptions:

@fi
@ui
.x; t; v/ > 0;

@fi
@ui0

.x; t; v/ � 0; i0 ¤ i; i; i0 D 1; 2; (19)

min�1�v�1

�
@fi
@ui
.x; t; v/C @fi

@ui0
.x; t; v/

�
> ˛ D const > 0:

Remark 2 If assumptions (19) hold, then Theorem 3.1, Chap. 8 in [7] guarantees
existence and uniqueness of the solution to problem (1).

We may now consider (1) as a linear problem and use bounds (18) on the exact
solutions. We introduce the piecewise uniform mesh !h of Shishkin-type from [5],
where the boundary layer thicknesses &"i , i D 1; 2, and mesh spacings h"i , i D 1; 2,
h are defined by

&"2 D min
˚
1=4; 2

p
"2 lnMx



; &"1 D min

˚
&"2=2; 2

p
"1 lnMx



; (20)

h"1 D 8&"1=Mx; h"2 D 8.&"2 � &"1/=Mx h D 2.1� 2&"2/=Mx:

The mesh !h is constructed thus: in each of the subintervals Œ0; &"1 �, Œ&"1 ; &"2 �,
Œ&"2 ; 1�&"2 �, Œ1�&"2 ; 1�&"1 � and Œ1�&"1 ; 1�, mesh points are distributed uniformly
withMx=8C1,Mx=8C1,Mx=2C1,Mx=8C1 andMx=8C1mesh points, respectively.
The mesh spacings h"1 , h"2 and h are in use, respectively, in the first and last, in the
second and fourth, in the third domains.

Theorem 3 Assume that meshes !� and !h satisfy, respectively, (13) and (20), and
fi.x; t; u/, i D 1; 2, satisfy (19). Then the nonlinear difference scheme (2) converges
"-uniformly to the solution of (1)

max
i

�
max
tk2!�

kU�
i .�; tk/� u�

i .�; tk/k!h

�
� C.M�1

x lnMx C �/; � D max
k
�k; (21)

where U�
i and u�

i , i D 1; 2, are, respectively, the exact solutions to (2) and (1), C is
a generic constant which is independent of ", Mx and � .

Proof Since the proof of the theorem follows the proof of Theorem 1 from [3], then
we only present the sketch of it.

The exact solutions u�
i .x; t/, i D 1; 2, can be presented on Œxm�1; xmC1� in the

integral-difference form (compare with (5) from [3])

"iLh
i u

�
i .xm; tk/ D @u�

i

@t
C fi.xm; tk; u

�/C Ii.xm; tk; u
�/; xm; tk 2 !h � !� ;
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where u� D .u�
1 ; u

�
2 /, Lh

i , i D 1; 2, are defined in (2) and Ii, i D 1; 2, are given in
the form

Ii.xm; tk; u
�/ D 1

„m

ż xm

xm�1


2;m�1.s/
�ż s

xm

d i.�; tk/

d�
d�

�
ds

C 1

„m

ż xmC1

xm


1;m.s/

�ż s

xm

d i.�; tk/

d�
d�

�
ds;

 i.x; tk/ D fi.x; tk; u
�/C @u�

i .x; tk/

@t
; x 2 Œxm�1; xmC1�;


1;m.x/ D xmC1 � x

„m
; 
2;m.x/ D x � xm

„m
;

The truncation errors Ti.xm; tk/, i D 1; 2, can be represented in the form

Ti.xm; tk/ D Ti;1.xm; tk/ � Ii.xm; tk; u
�/;

Ti;1.xm; tk/ � u�
i .xm; tk/� u�

i .xm; tk�1/
�k

� @u�
i .xm; tk/

@t
:

Using the Taylor expansion about .xm; tk/, we obtain

kTi.�; tk/k!h � 1

2
max
.x;t/2Q ju�

i;ttj�k C kIi.�; tk/k!h : (22)

Thus, similar to [3], using bounds (18), the following estimates on d i=dx, i D 1; 2,
hold true ˇ̌̌

ˇd i.x; t/

dx

ˇ̌̌
ˇ � C

�
1C ��1

1 ��1.x/C ��1
2 ��2.x/

	
; i D 1; 2:

From here, using the properties of the piecewise uniformmesh of Shishkin-type and
repeating the proof of Theorem 1 from [3], we prove the estimates

kIi.�; tk/k!h � C
�
M�1

x lnMx
�
; i D 1; 2:

From here and (22), we obtain

kTi.�; tk/k!h � C
�
M�1

x lnMx C �
�
; i D 1; 2:

The difference problems for u�
i , i D 1; 2, can be represented in the form

Liu
�
i .xm; tk/C fi.xm; tk; u

�/� ��1
k u�

i .xm; tk�1/ D Ti.xm; tk/; xm 2 !h;

u�
i .x�; tk/ D 0; x� D x0; xMx ; i D 1; 2:
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From here, (2) and using the mean-value theorem, we get the difference problem for
Wi.xm; tk/ D Ui.xm; tk/ � u�

i .xm; tk/ in the form

�
Li C @fi

@ui

�
Wi.xm; tk/ D �Ti.xm; tk/C 1

�k
Wi.xm; tk�1/� @fi

@ui0
Wi0.xm; tk/;

xm 2 !h; Wi.x�; tk/ D 0; x� D x0; xMx i0 ¤ i; i D 1; 2:

Now the proof of the theorem repeats the proof of Theorem 2 starting from (15),
where �Ti, i D 1; 2, are in use instead ofRi, i D 1; 2, in (15).

Theorem 4 Assume that all the assumptions in Theorem 3 are satisfied. Then for

the sequences fU.n/g and fU.n/g, generated by (6), (11) with, respectively, U.0/ D eU
and U.0/ D bU, the uniform in " estimate holds

max
i

�
max
tk2!�

kUi.�; tk/ � u�
i .�; tk/k!h

�
� C.ı C M�1

x lnMx C �/;

where Ui. p; tk/ D U
.nk/
. p; tk/ or Ui. p; tk/ D U.nk/. p; tk/ and u�

i , i D 1; 2, are the
exact solutions to (1).

Proof The proof of the theorem follows from Theorems 2 and 3.

5 Gas-Liquid Interaction Model

The gas-liquid interaction model in the non-dimensional variables can be presented
in the form (see [4] for details)

@u1
@t

� @u1
@x2

� �1.1� u1/u2 D 0; .x; t/ 2 ! � .0;T�;

@u2
@t

� "@u2
@x2

C �2.1 � u1/u2 D 0; .x; t/ 2 ! � .0;T�;

u1.0; t/ D u1.1; t/ D 0; u2.0; t/ D u2.1; t/ D 1;

u1.x; 0/ D 0; u2.x; 0/ D sin.�x/; x 2 !;

where u1 and u2 are, respectively, concentrations of a dissolved gas and a dissolved
reactant and �i, i D 1; 2, are positive constants. The test problem, which corresponds
to the case "1 D 1, "2 D ", for small values of " is singularly perturbed and u2 has
boundary layers of width O.p"/ near x D 0 and x D 1.
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It is easy to verify that assumptions (16) with Li D 1, i D 1; 2, hold true. Thus,bUi and eUi, i D 1; 2, from (17) are, respectively, lower and upper solutions to the test
problem. From here, it follows that the inequalities in (12) hold, and one can choose
ci.xm; tk/ D �i, i D 1; 2, in (5) The exact solution is not available, so we estimate
the error of the numerical solutions UMx

i , i D 1; 2, with respect to the reference
solutions U2Mx

i , i D 1; 2,

EMx D max
iD1;2 kUMx

i .�; tN� / � U2Mx
i .�; tN� /k!h ;

and assume that EMx D C.1=Mx/
pMx , where constant C is independent of Mx, and

pMx is the order of maximum numerical error. For each Mx, we compute pMx from

pMx D log2
EMx

E2Mx

:

We choose ı D 10�8 in the stopping test (11). In Table 1, for parameters �i D 1,
i D 1; 2, tN� D 0:5, � D 5 � 10�4 and different values of " and Mx, we present the
maximum numerical error EMx , the order of maximum numerical error pMx and the
number of monotone iterations nMx on each time level. The data in the table show
that for " � 10�4, the numerical solution converges uniformly in ", has the first-
order accuracy in the space variable, and the monotone sequences converge in few
iterations.

Table 1 Numerical results

Mx 32 64 128 256 512

" D 1 EMx 5:949e � 5 2:046e � 5 8:296e � 6 3:712e � 6 1:753e � 6

pMx 1.539 1.302 1.160 1.081

nMx 2 2 1 1 1

" D 10�1 EMx 4:265e � 4 1:684e � 4 7:054e � 5 3:280e � 5 1:583e � 5

pMx 1.341 1.255 1.105 1.051

nMx 2 2 1 1 1

" D 10�2 EMx 2:001e � 3 9:127e � 4 4:293e � 4 2:078e � 4 1:021e � 4

pMx 1.133 1.088 1.047 1.025

nMx 3 3 2 2 2

" D 10�3 EMx 2:058e � 3 9:371e � 4 4:411e � 4 2:135e � 4 1:049e � 4

pMx 1.135 1.087 1.047 1.025

nMx 3 3 2 2 2

" � 10�4 EMx 2:103e � 3 9:557e � 4 4:498e � 4 2:177e � 4 1:070e � 4

pMx 1.138 1.087 1.047 1.024

nMx 3 3 2 2 2
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