Uniform Convergent Monotone Iterates
for Nonlinear Parabolic Reaction-Diffusion
Systems

Igor Boglaev

Abstract This paper deals with a uniform convergent monotone method for solving
nonlinear singularly perturbed parabolic reaction-diffusion systems. The uniform
convergence on a piecewise uniform mesh is established. Numerical experiments
are presented.

1 Introduction

In this paper we give a numerical treatment for the following semi-linear singularly
perturbed parabolic system:

3ui 32ui
9t — & axz +ﬁ(‘x’ L, I/l) - 07 (-xv t) € wX (O’ T]v (1)

u;(0,1) =0, wui(l,)=0, re]0,T],
ui(x,0) =vi(x), xew, o=(0,1), i=1,2,

where 0 < g; < &, < 1, u = (uy, uz), the functions f; and v;, i = 1, 2, are smooth
in their respective domains.

In the study of numerical methods for nonlinear singularly perturbed problems,
the two major points to be developed are: (1) constructing robust difference schemes
(this means that unlike classical schemes, the error does not increase to infinity,
but rather remains bounded, as the small parameters approach zero); (2) obtaining
reliable and efficient computing algorithms for solving nonlinear discrete problems.
For solving these nonlinear discrete systems, the iterative approach presented in
this paper is based on the method of upper and lower solutions and associated
monotone iterates. The basic idea of the method of upper and lower solutions is the
construction of two monotone sequences which converge monotonically from above
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and below to a solution of the problem. The monotone property of the iterations
gives improved upper and lower bounds of the solution in each iteration. An initial
iteration in the monotone iterative method is either an upper or lower solution, which
can be constructed directly from the difference equation, this method simplifies the
search for the initial iteration as is often required in Newton’s method.

In [5], uniformly convergent numerical methods for solving linear singularly
perturbed systems of type (1) were constructed. These uniform numerical methods
are based on the piecewise uniform meshes of Shishkin-type [6].

In [2], we investigated uniform convergence properties of the monotone iterative
method for solving scalar nonlinear singularly perturbed problems of type (1).
In this paper, we extend our investigation to the case of the nonlinear singularly
perturbed system (1).

The structure of the paper as follows. In Sect.2, we introduce a nonlinear
difference scheme for solving (1). The monotone iterative method is presented in
Sect. 3. An analysis of the uniform convergence of the monotone iterates to the
solution of the nonlinear difference scheme and to the solution of (1) is given
in Sect.4. The final Sect.5 presents the results of numerical experiments with a
gas-liquid interaction model.

2 The Nonlinear Difference Scheme

On w = [0, 1] and [0, 7], we introduce meshes " and w":
0" = {x,,0 <m < My xo = 0,xp, = 1; hyy = Xing1 — X},
@ ={t,0 <k <Nty =0,ty, =T; T = ty — ty—1},
and consider the nonlinear implicit difference scheme
LiU;i s 1) + fiGoms i, U) = 7 Ui ti—1) = 0, (X, 1) € 0" x 0, ()
LiUi(xm, tr) = —&LIUi (s 11) + T Ui(im, 1)
Ui(xo, 1) = UG, 1) = 0, Ui(xm, 0) = Yi(xm), xm € 0", i=1,2,

where U = (U;, U,), and the difference operators Ef.’, i = 1,2, are defined by

L Ui 1) = I:Ui(xm+lvtk) — Uilxm, ) UiGxm, 1) — Ui(xm—lstk)i|

hmhm hmhm—l

hm = (hm + hm—l)/z, i=1,2.
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On each time level #, k > 1, we introduce the linear problems
(Li + c)Wilxpm, k) = Pi(xm, ), Wilxo, i) = Wilxy,, 1) = 0, (3)
Ci(xm, tk) = Oa Xm € wh7 i = la 2.

In the following lemma, we state the maximum principle and we give estimates on
solutions of (3) from [8].

Lemma 1

(i) If mesh functions Wi(x,,, t), i = 1,2, satisfy the conditions
(Li+ c)Wilxm. 1) = 0(<0), X, € 0",
Wilxo. %) 2 0(<0), Wiy, &) = 0(=<0),

then Wi(xp. 1) > 0 (< 0)inow", i = 1,2.
(ii) The following estimates on the solutions of (3) hold true

|¢i(xms tk)| }

i=1,2, 4
Gt +7 ) @

Wi 1)]r < max {
Ci

xmea)h

where ||W;(-, ) || ,» = max, ,

h |Wl‘(.xm, tk)l

3 The Monotone Iterative Method

We say that the mesh functions
UCon. 1) = (U1 G- 1), UG 1)), U 1) = (U1 Gom. 16). U (. 10))
are ordered upper and lower solutions if they satisfy the following inequalities:
U t) = Ut 10), - (6ms 11) € 0" x @07,
LiUiCons 1) + f:Goms 11, ) = 77 Uiy 1) > 0, (X 1) € 0" x 007,
LU, 1) + fiGoms 11, U) — 7 Ui 1i=1) <0, (o) € 0" x 07,
Ui(xao i) <0 < Ui(haer ), Xae = X0, Xag,.

Ui, 0) < i) < Ui(xn.0), xp €0, i=1,2.
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We introduce the notation
(Ut). U(te)) = {U@m 1) : U t6) < U, 1) < U, 1), X € 0"},

and we assume that on each time level #, k > 1, the reaction functions satisfy the
assumptions

0< gﬁ s 11, U) < €iCom, 1), on (U(1), U(t)), )
Ui
of; U, U I’ # i
0=—,, CmticU) = qiCon. ti).  on (Uw). Ut)). i # 1.

where ¢;(x,,;, ;) and g;(x,,, tx), i = 1, 2, are nonnegative bounded functions in o™

On each time level #, k > 1, the iterative method is given in the form

(Ei + Cl)Zl(n) (xrm tk) = _Ri(xms tkv U(n_l))s Xm € a)h’ (6)
RiGoms 11, U™D) = LU0 (s 10) + i Goms 15, U™D) = 77 Ui o, 15-1),
ZM (e, ) =0, n>1 =
(e, tr) =0, n>1, xe = X0, X,
Z" s 11) = U (s 1) — U (s 1),

Ui(xpn,0) = ¥i(xn), xmeo”, i=1,2,

where ¢;, i = 1,2, are defined in (5). For upper sequence, we have U;(x,,,0) =
YiCon)s U @, 1) = Ui, ) and UG 1) = U™ (1), i = 1,2, 3 € o,
where U;(x,,, 1), i = 1,2, are approximations of the exact solutions on time level
t, and ny is a number of iterative steps on time level 7. For lower sequence, we
have U;(xn, 0) = %i(xn), U® W 1) = Ui(ns 1) and U tr) = U™ (x, 1),
i=1,2,x, €0

The following theorem gives the monotone property of the iterative method (6).
Theorem 1 Let U and U be ordered upper and lower solutions, and assumption (5)
be satisfied. On each time level ty, k > 1, the sequences {U(n)}, (UMY with v =T
and U© =T, generated by the iterative method (6), converge monotonically

U™ (1) < UD Gt 1) < U s 1) < UG 11), im0, (D)

Proof Since U O _ Uand UO = /lj, then from (6) we conclude that
(Li + )2 G 1) 0. (Li + )2 G 1) 2 0, x, € O,

1
2 t) <0, Z0 (e 1) 20, xe=x0xm, i=1,2.
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From Lemma 1, it follows that

2" @) <0, Z0@nt) 20 xpeol, i=1.2. @®)

(n)

We now prove (7) forn = 1 and k = 1. From (6), in the notation Wi(") =U, U, )

n>0,i=1,2, we conclude that
(1) _ (0) (0) h
(Li+ )W, (xm, 1) = Fi(xn, 11, U ) = Fi(xp, 11, U™Y), X € 0",
Wl(l)(.X*,tl) - Os -x* = xOv-xMXs i - 1727

where Fi(ve,ti, U) = ci(Gom t)UiGoms 1) — fiGom. 1 U). Since U (om 1) >
U9 (x,, 11), by Lemma 2 from [1], we conclude that the right hand sides in the

difference equations are nonnegative. From Lemma 1, it follows Wi(l)( p.t1) >0,
i =1,2,and thisleads to (7) forn = 1,k = 1.
Using the mean-value theorem, from (6) we obtain

R(xm,rl,U(”)——(i gf )Z‘”( )+ o " ), T O)

where the partial derivatives are calculated at intermediate points which lie in the

sector (U (tl) v (t1)). From (5) and (8), we conclude that

1 1 .
R,-(xm,tl,U( ))ZO, xmewh, Ul(-)(x*,tl):O, Xse = X0, XM, 1 = 1,2.

Thus, U(l)(xm, t1) is an upper solution. Similarly, we prove that U(l)(xm, t) is a

lower solution. By induction on n, we can prove that {U ™ (o, 1)y and {U™ (p, 1)}
are, respectively monotonically decreasing and monotonically increasing sequences.
From (7) with 7, it follows that fori = 1, 2,

TiCom 11) < UM o 11) < U o 11) < Uil 1), € 0 (10)
From here and by the assumption of the theorem that U (p,12) and U (p,12) are,
respectively, upper and lower solutions, we conclude that U (%, 1) and U (X, 12)
are upper and lower solutions with respect to u" (xm, 1) and U™ (x,,, 11).

From (6), we conclude that W) (x,,, ,) satisfies

(Li + Ci)Wi(l)(Xm, 1) = Fi(xp, 12, U(O)) — Fi(x, 12, U?) +

_ (n1)
o U™ o 11) = U™ (i 11)].

Xm € 0", Wl.(l)(x*,tz) =0, x«=2x0,%xnm, =12
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Since U © (Xms 1) = UQ(x,,, 1) and taking into account (10), by Lemma 2 from [1],
we conclude that the right hand sides in the difference equations are nonnegative.
From Lemma 1, we have Wl.(l)(p, 1) >0,i=1,2,thatis,

1 (1) .
UE)(p,tz)fUi (p, 1), pewh, i=1,2.

1 . .
The proof that Uf )(xm, t;) and U;l)(xm, ), i = 1,2, are, respectively, upper and
lower solutions is similar to the proof on the time level #;. By induction on n,

we can prove that {U ™ (X, 12)} and {U™ (x,,, 1)} are, respectively, monotonically
decreasing and monotonically increasing sequences.

By induction on k, k > 1, we prove that {U(n) (X, 1)} and {U™ (p, 1)} are,
respectively, monotonically decreasing and monotonically increasing sequences,
which satisfy (7).

3.1 Convergence on [0,T)]

We now choose the stopping criterion of the iterative method (6) in the form

max || R; (-, tx, U™)||n < 8, (11)

where § is a prescribed accuracy, and U(x,,, ) = U™ (X, 1), X € 0", where ny
is minimal subject to the stopping test.

Instead of (5), we now impose the two-sided constraints on f;, i = 1,2, in
the form
af; ~ ~
Pk < BM‘ (-xmv Tk, U) < C,'(Xm, tk)s on (U(tk)v U(tk»v (12)
aﬁ 5 =7 . N
0<-— X, t, U) < qiCom, tr), on (Ut), U(ty)), iF#7,

- Ju
where pi, k > 1, are defined in (13).

Remark 1 'We mention that the assumption df;/du; > p, i = 1,2, in (12) can
always be obtained via a change of variables. Indeed, introduce the following
functions u;(x,1) = exp(Af)zi(x,1), i = 1,2, where A is a constant. Now, z;(x, t),
i = 1,2, satisfy (1) with

@i = Azi + exp(—Ab)fi(x, 1, exp(Ar)z1, exp(At)z2).
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instead of f;, i = 1,2, and we have

i o g _ Of;
Oi oy Yo e _ 9

I A RS
aZi 314,- aZi/ aui’ ! 7él !

Thus, if A > maxg>; px, from here, we conclude that d¢;/dz; and d¢;/dzr
satisfy (12)
We impose the constraint on 7

1
< = max{max [q;(xm, %)]}. (13)

k i mew

If assumptions (12) and (13) hold, then the nonlinear difference scheme (2) has a
unique solution (see Lemmas 3 and 4 in [1] for details).
We prove the following convergence result for the iterative method (6), (11).

Theorem 2 Assumgvthat the mesh w® satisfies (13), and fi(p,t,U), i = 1,2,
satisfy (12), where U and U are ordered upper and lower solutions of (2) Then

for the sequences {U } (U™, generated by (6), (11) with, respectively, U~ = =U
and U = U, the following uniform in ¢ estimate holds

max |:max |Ui(-, %) — UF (-, tk)||wh:| <TS$, (14)
i IEW®

where U (p, t), i = 1,2, is the unique solution to (2).

Proof The difference problem for U(x,, ) = U(”k)(xm,tk), k > 1, can be
represented in the form

LiUi (s 1) + fiGoms 1, U) — 77 Ui (s t1=1) = RiCms 15, U™, x,, € 0,
U,'(x*, lk) =0, x4= X05 XM, » i=1,2.

From here, (2) and using the mean-value theorem, we get the difference problem for
Wi(xm, te) = Ui(xm, ) — U7 (X, 1)

3 I 9
(5 + 3f ) Wi Qons k) = Ri(om, 1, U) + W(-xmvtk 1) — f Wi’(xm’tk)’

(15)
Xm €O", Wilxs,t) =0, xu=x0.xpy, @ #i, i=12,

where the partial derivatives are calculated at intermediate points E;, i = 1,2,
such that U" < E; < U(O) = 1,2, in the case of upper solutions and Ufo) <
E, <Ufi=12in the case of lower solutions. Thus, the partial derivatives
satisfy (12). From here, (12), using (4) and taking into account that according
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to Theorem 1 the stopping criterion (11) can always be satisfied, in the notation
wy = max; |W;(-, )| ,» we have

1
wi < 8+ 1 'wimy + powr ] -
o [ k o ]

Solving the last inequality for wy and taking into account that 7' /(px + ;') > 0,
we have

wr < 8Tk + wi—1.
Since wy = 0, by induction on k, we conclude (14)

k
wkfé’quT& k> 1.
=1

3.2 Construction of Initial Upper and Lower Solutions

Here, we give some conditions on functions f; and ¥;, i = 1,2, to guarantee the
existence of upper U and lower U solutions, which are used as the initial iterations
in the monotone iterative method (6).

Bounded Reactions Functions Assume that f;, ¥;, i = 1,2, from (1) satisfy the
conditions

—0; < fi(x,1,0) <0, Y;(x) >0, wui(x,1)>0, xe€ow,
where 0;, i = 1, 2, are positive constants. Then

/Iji(xmy tk) = gi(xm)v : i ?7 Xy € (I)h, i = 1’2’

are lower solutions to (2). The solutions of the following linear problems:
LiCon ) UiCom 18) = 7 Ui, tie1) + 03 xm € @, k>1,
Ui(ati) =0, xe =x0.2,, k=1, Ui, 0) = ¥i(x). X € 0",

are upper solutions to (2).
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Constant Upper and Lower Solutions Assume that functions f;, ¥;, i = 1,2,
from (1) satisfy the conditions

fi(x,1,0) <0, fi(x,t,L) >0, vi(x) >0, uix,1)>0, x€ow, (16)
where L = const > 0. The functions

wi(xm)v k = Os

=~ _ h
0’ k 2 1’ Uz(xm, tk) - L, Xm € W, (17)

Ui(Xm 1r) =

are, respectively, lower and upper solutions.

4 Uniform Convergence of the Monotone Iterates

We assume that 0 < g1 < g < 1.
In the notation u = (uy,u2), ¢ = (e1,&2) and f = (f1,/>), the following linear
system is considered in [5]:

du 9%u

" 83x2 + A, Hu = f(x, 1), A(x,t) = [an(x, 1) an(x, t)} ’

a (x,1) axn(x,1)
where the matrix A(x, ) satisfies the assumptions
aii(x,1) > 0, aiy(x, 1) <0, a;(x,t) + aiy(x,t) > a = const > 0,
i#i, i=12, (x1)ecwx][0,T].

From [5], we write down the bounds on du;/dx, i = 1,2 in the form

E)ul _ _
’ . (x, 0] < C[l —i—lelnM(x)—i—,uzlnm(x)], (18)
duz -1 _ -1 -1
g DI = C[T+puy 7, @], 7() = exp(—y™ %) +exp(=y ™ (1 =),
where u; = /g, i = 1,2, and y is a positive constant. These bounds show that

there are two overlapping boundary layers at x = 0 and x = 1.
By using the mean-value theorem, we write f;, i = 1, 2, from (1) in the form

of; of;
i (e, 2, v)u; + i G t,Vuy, i #iQ, ii=1,2,
ou; duy

1 l

filx, t,u) = fi(x,1,0) +
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where v lies between 0 and u. We suppose that df;/du; and of;/duy, i’ # i,i,i =
1,2, for (x,1,v) € w x [0, T] x (—o0, 00) satisfy the following assumptions:

of; of;

(x,1,v) > 0, (t,v) <0, i@ #£i, ii=12, (19)
du; duy
. dfi i
_oonélvnSoo |:8u,- (x,t,v) + duy (x, 2, v):| > o = const > 0.

Remark 2 If assumptions (19) hold, then Theorem 3.1, Chap. 8 in [7] guarantees
existence and uniqueness of the solution to problem (1).

We may now consider (1) as a linear problem and use bounds (18) on the exact
solutions. We introduce the piecewise uniform mesh " of Shishkin-type from [5],
where the boundary layer thicknesses ¢, i = 1,2, and mesh spacings k., i = 1,2,
h are defined by

Ge, = Min {1/4,2\/52 lnMx} , G = Min {gSZ/Z,Z\/sl lnMx} , (20)
hey = 866, /My, hey = 8(Ge, — Ge) /My h = 2(1 — 26¢,) /M.

The mesh " is constructed thus: in each of the subintervals [0, ¢;,], [, e, )»
[ers 1 —Sey], [1 — 66y, 1 — 6] @and [1 —¢,,, 1], mesh points are distributed uniformly
with M, /8+1,M,/8+1,M,/2+1,M,/8+1 and M, /8+1 mesh points, respectively.
The mesh spacings k., , he, and h are in use, respectively, in the first and last, in the
second and fourth, in the third domains.

Theorem 3 Assume that meshes w® and " satisfy, respectively, (13) and (20), and
filx,t,u), i = 1,2, satisfy (19). Then the nonlinear difference scheme (2) converges
e-uniformly to the solution of (1)

max |:max UG, 1) — ul (-, tk)||wh:| <CM'InM,+71), T= max i, (1)
i tEW®

where U and u?, i = 1,2, are, respectively, the exact solutions to (2) and (1), C is
a generic constant which is independent of ¢, M, and t.

Proof Since the proof of the theorem follows the proof of Theorem 1 from [3], then
we only present the sketch of it.

The exact solutions u (x,#), i = 1,2, can be presented on [x,,—1,X,+1] in the
integral-difference form (compare with (5) from [3])

*
u’
D Qo o ) A L 1, ¥, X, 1y € O X 07,

ot

h
eLjuT (X, 1) =
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where u* = (uf,u3), Ef.’, i = 1,2, are defined in (2) and I;, i = 1,2, are given in

the form
Kot = [ gomar(s) (J ‘“”"(S’”‘)ds) ds

i S L

([ )

W) = ety + T e ),
A

The truncation errors T;(x,,, tx), i = 1,2, can be represented in the form
Ti (s 1) = Tit (X, 1) — LG, 1, ™),

u (m, 1) — 1] (m, tr—1) B 0w (X, 1)

Tii(xm, tr) =
L,l(m k) o a[

Using the Taylor expansion about (x,,, #x), we obtain
1 *
”Tl(s tk)”wh = max |Mi,nlrk + ”Il(s tk)”a)h' (22)
2 (x1)€Q

Thus, similar to [3], using bounds (18), the following estimates on dy/;/dx,i = 1,2,
hold true

dyi(x, _ B
' w;j: ) EC[l+/’Lll7tm(x)+,l/v217l'm(x)], i=1.2,

From here, using the properties of the piecewise uniform mesh of Shishkin-type and
repeating the proof of Theorem 1 from [3], we prove the estimates

LG t0)llr < C (M InMy), i=1,2.
From here and (22), we obtain
ITiCo )l < C (M InM, + 1), i=1,2.
The difference problems for ul.*, i = 1,2, can be represented in the form
LitF s 1) + fi G iy ™) — 77 Gy tim1) = Ti(ms 1), X € @,

* .
u; Xe, ) =0, X =x0,xp,, i=12.
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From here, (2) and using the mean-value theorem, we get the difference problem for
Wi(xm, ) = Ui(xm, ) — u] (X, ) in the form

i
f VVI'/(-xmv tk)v

af; 1
Ei + f VVi(xmv tk) = _Ti(-xmv tk) + Wi(xms tk—l) -
3ui Tk Buy

X € O, Wilxs, tr) =0,  xx = X0, Xp, i #i, i=1,2.
Now the proof of the theorem repeats the proof of Theorem 2 starting from (15),
where —T;,i = 1, 2, are in use instead of R;, i = 1, 2, in (15).

Theorem 4 Assume that all the assumptions in Theorem 3 are satisfied. Then for

the sequences (U™} and (U™}, generated by (6), (11) with, respectively, U = T
and U0 = U, the uniform in ¢ estimate holds

max [max Ui, 1) — uf (-, tk)||w":| < COE+M " InM, + ),
i 1EW®

(”k)

where Uij(p, t;) = (p.t) or Ui(p. 1) = U™ (p, 1) and uf, i = 1,2, are the

exact solutions to (1 )

Proof The proof of the theorem follows from Theorems 2 and 3.

5 Gas-Liquid Interaction Model

The gas-liquid interaction model in the non-dimensional variables can be presented
in the form (see [4] for details)

0 0

(;ttl - az; —k1(1—=u)u, =0, (x,1) € wx (0,7,
ad 8

El;tz o 2 bl —uus =0, (x.1) € w x (0, T],

(0,0 =ui (1,0 =0, (0,0 =u(l,0) =1,
u(x,0) =0, wuy(x,0) =sin(7x), x€w,

where u; and u; are, respectively, concentrations of a dissolved gas and a dissolved
reactant and «;, i = 1, 2, are positive constants. The test problem, which corresponds
to the case ¢; = 1, &2 = ¢, for small values of ¢ is singularly perturbed and u, has
boundary layers of width O(/¢) near x = 0 and x = 1.
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It is easy to verify that assumptions (16) with L; = 1, i = 1,2, hold true. Thus,
f],- and 5,-, i = 1,2, from (17) are, respectively, lower and upper solutions to the test
problem. From here, it follows that the inequalities in (12) hold, and one can choose
ci(xm, 1) = ki, 1 = 1,2, in (5) The exact solution is not available, so we estimate
the error of the numerical solutions UIMX, i = 1,2, with respect to the reference
solutions UiZM”, i=1,2,

Ey,

M oM,
= max [|U7 (s tv) = U Cotw)) o

and assume that Ey, = C(1/M,)"™:, where constant C is independent of M,, and
pu, 1s the order of maximum numerical error. For each M,, we compute py, from
Ey

pm, = log t
? Eau,

We choose § = 1078 in the stopping test (11). In Table 1, for parameters «; = 1,
i=12,tny, =05 1=5% 10~ and different values of ¢ and M,, we present the
maximum numerical error Ey , the order of maximum numerical error pys, and the
number of monotone iterations 7y, on each time level. The data in the table show
that for ¢ < 10™*, the numerical solution converges uniformly in ¢, has the first-
order accuracy in the space variable, and the monotone sequences converge in few
iterations.

Table 1 Numerical results

M, 32 64 128 256 512
e=1 Ey, 5949 —5 2046e—5 829%c—6 3712¢—6 1.753c—6
pu,  1.539 1.302 1.160 1.081
ny, 2 2 1 1 1
e=10"" E,, 4265¢c—4 1.684e—4 7054c—5 3280e—5 1583 —5
pu, 1341 1.255 1.105 1.051
ny, 2 2 1 1 1
e=10"2 Ey, 200le—3 9.127e—4 4293e¢—4 2078¢—4 1.02le—4
pu, 1133 1.088 1.047 1.025
ny, 3 3 2 2 2
e=10" Ey,, 2058 —3 937le—4 44lle—4 2.135e—4 1.04% —4
pu, 1135 1.087 1.047 1.025
n, 3 3 2 2 2
£<107* Ey, 2103%¢—3 9557c—4 4498 —4 2.177e—4  1.070c —4
pu, 1138 1.087 1.047 1.024

n, 3 3 2 2 2
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