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Abstract. The highly influential framework of conceptual spaces
provides a geometric way of representing knowledge. Instances are rep-
resented by points in a high-dimensional space and concepts are rep-
resented by convex regions in this space. After pointing out a problem
with the convexity requirement, we propose a formalization of concep-
tual spaces based on fuzzy star-shaped sets. Our formalization uses a
parametric definition of concepts and extends the original framework
by adding means to represent correlations between different domains in
a geometric way. Moreover, we define computationally efficient opera-
tions on concepts (intersection, union, and projection onto a subspace)
and show that these operations can support both learning and reasoning
processes.
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1 Introduction

One common criticism of symbolic AI approaches is that the symbols they oper-
ate on do not contain any meaning: For the system, they are just arbitrary tokens
that can be manipulated in some way. This lack of inherent meaning in abstract
symbols is called the “symbol grounding problem” [17]. One approach towards
solving this problem is to devise a grounding mechanism that connects abstract
symbols to the real world, i.e., to perception and action.

The framework of conceptual spaces [15,16] attempts to bridge this gap
between symbolic and subsymbolic AI by proposing an intermediate concep-
tual layer based on geometric representations. A conceptual space is a high-
dimensional space spanned by a number of quality dimensions that are based on
perception and/or subsymbolic processing. Convex regions in this space corre-
spond to concepts. Abstract symbols can thus be grounded in reality by linking
them to regions in a conceptual space whose dimensions are based on perception.

The framework of conceptual spaces has been highly influential in the last
15 years within cognitive science and cognitive linguistics [13,14,31]. It has also
sparked considerable research in various subfields of artificial intelligence, rang-
ing from robotics and computer vision [8–10] over the semantic web and ontology
integration [2,12] to plausible reasoning [11,27].

One important question is however left unaddressed by these research efforts:
How can an (artificial) agent learn about meaningful regions in a conceptual
space purely from unlabeled perceptual data?
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Our approach for solving this concept formation problem is to devise an
incremental clustering algorithm that groups a stream of unlabeled observations
(represented as points in a conceptual space) into meaningful regions.

In this paper, we point out that Gärdenfors’ convexity requirement prevents
a geometric representation of correlations. We resolve this problem by using star-
shaped instead of convex sets. Our mathematical formalization defines concepts
in a parametric way that is easily implementable. We furthermore define compu-
tationally efficient operations on these concepts, which can support both machine
learning and reasoning processes. This paper therefore lays the foundation for
our work on concept formation.

The remainder of this paper is structured as follows: Sect. 2 introduces the
general framework of conceptual spaces and points out a problem with the notion
of convexity. Section 3 describes our formalization of concepts as fuzzy star-
shaped sets. In Sect. 4, we define operations on these sets and in Sect. 5 we show
that they can support both machine learning and reasoning processes. Section 6
summarizes related work and Sect. 7 concludes the paper. Proofs of our propo-
sitions are provided in an appendix available online at http://lucas-bechberger.
de/appendix-ki-2017/.

2 Conceptual Spaces

2.1 Definition of Conceptual Spaces

This section presents the cognitive framework of conceptual spaces as described
in [15] and introduces our formalization of dimensions, domains, and distances.

A conceptual space is a high-dimensional space spanned by a set D of so-
called “quality dimensions”. Each of these dimensions d ∈ D represents a way in
which two stimuli can be judged to be similar or different. Examples for quality
dimensions include temperature, weight, time, pitch, and hue. We denote the
distance between two points x and y with respect to a dimension d as |xd − yd|.

A domain δ ⊆ D is a set of dimensions that inherently belong together.
Different perceptual modalities (like color, shape, or taste) are represented by
different domains. The color domain for instance consists of the three dimensions
hue, saturation, and brightness.

Gärdenfors argues based on psychological evidence [5,28] that distance within
a domain δ should be measured by the weighted Euclidean metric:

dδ
E(x, y,Wδ) =

√∑
d∈δ

wd · |xd − yd|2

The parameter Wδ contains positive weights wd for all dimensions d ∈ δ repre-
senting their relative importance. We assume that

∑
d∈δ wd = 1.

The overall conceptual space CS is defined as the product space of all dimen-
sions. Again, based on psychological evidence [5,28], Gärdenfors argues that dis-
tance within the overall conceptual space should be measured by the weighted

http://lucas-bechberger.de/appendix-ki-2017/
http://lucas-bechberger.de/appendix-ki-2017/


60 L. Bechberger and K.-U. Kühnberger

Manhattan metric dM of the intra-domain distances. Let Δ be the set of all
domains in CS. We define the distance within a conceptual space as follows:

dΔ
C (x, y,W ) =

∑
δ∈Δ

wδ · dδ
E(x, y,Wδ) =

∑
δ∈Δ

wδ ·
√∑

d∈δ

wd · |xd − yd|2

The parameter W = 〈WΔ, {Wδ}δ∈Δ〉 contains WΔ, the set of positive domain
weights wδ. We require that

∑
δ∈Δ wδ = |Δ|. Moreover, W contains for each

domain δ ∈ Δ a set Wδ of dimension weights as defined above. The weights in
W are not globally constant, but depend on the current context. One can easily
show that dΔ

C (x, y,W ) with a given W is a metric.
The similarity of two points in a conceptual space is inversely related to their

distance. Gärdenfors expresses this as follows :

Sim(x, y) = e−c·d(x,y) with a constant c > 0 and a given metric d

Betweenness is a logical predicate B(x, y, z) that is true if and only if y is
considered to be between x and z. It can be defined based on a given metric d:

Bd(x, y, z) : ⇐⇒ d(x, y) + d(y, z) = d(x, z)

The betweenness relation based on dE results in the line segment connecting
the points x and z, whereas the betweenness relation based on dM results in an
axis-parallel cuboid between the points x and z. We can define convexity and
star-shapedness based on the notion of betweenness:

Definition 1 (Convexity). A set C ⊆ CS is convex under a metric

d : ⇐⇒ ∀x ∈ C, z ∈ C, y ∈ CS : (Bd(x, y, z) → y ∈ C)

Definition 2 (Star-shapedness). A set S ⊆ CS is star-shaped under a metric
d with respect to a set

P ⊆ S : ⇐⇒ ∀p ∈ P, z ∈ S, y ∈ CS : (Bd(p, y, z) → y ∈ S)

Gärdenfors distinguishes properties like “red”, “round”, and “sweet” from
full-fleshed concepts like “apple” or “dog” by observing that properties can be
defined on individual domains (e.g., color, shape, taste), whereas full-fleshed
concepts involve multiple domains.

Definition 3 (Property). A natural property is a convex region of a domain in
a conceptual space.

Full-fleshed concepts can be expressed as a combination of properties from
different domains. These domains might have a different importance for the
concept which is reflected by so-called “salience weights”. Another important
aspect of concepts are the correlations between the different domains [20], which
are important for both learning [7] and reasoning [21, Chap. 8].
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Fig. 1. Left: Intuitive way to define regions for the concepts of “adult” and “child”
(solid) as well as representation by using convex sets (dashed). Right: Representation
by using star-shaped sets with central points marked by crosses.

Definition 4 (Concept). A natural concept is represented as a set of convex
regions in a number of domains together with an assignment of salience weights
to the domains and information about how the regions in different domains are
correlated.

2.2 An Argument Against Convexity

Gärdenfors [15] does not propose any concrete way for representing correlations
between domains. As the main idea of the conceptual spaces framework is to find
a geometric representation of conceptual structures, we think that a geometric
representation of these correlations is desirable.

Consider the left part of Fig. 1. In this example, we consider two domains,
age and height, in order to define the concepts of child and adult. We would
expect a strong correlation between age and height for children, but no such
correlation for adults. This is represented by the two solid ellipses.

Domains are combined by using the Manhattan metric and convex sets under
the Manhattan metric are axis-parallel cuboids. Thus, a convex representation
of the two concepts results in the dashed rectangles. This means that we cannot
geometrically represent correlations between domains if we assume that concepts
are convex and that the Manhattan metric is used. We think that our example
is not a pathological one and that similar problems will occur quite frequently
when encoding concepts. From a different perspective, also Hernández-Conde
has recently argued against the convexity constraint in conceptual spaces [18].

If we only require star-shapedness instead of convexity, we can represent the
correlation of age and height for children in a geometric way. This is shown in
the right part of Fig. 1: Both sketched sets are star-shaped under the Manhattan
metric with respect to a central point. Although the star-shaped sets do not
exactly correspond to our intuitive sketch in the left part of Fig. 1, they definitely
are an improvement over the convex representation.1

1 The weaker requirement of star-shapedness allows us to “cut out” some corners from
the rectangle. This enables us to geometrically represent correlations.
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Star-shaped sets cannot contain any “holes”. They furthermore have a well
defined central region P that can be interpreted as a prototype. Thus, the con-
nection that was established between the prototype theory of concepts and the
framework of conceptual spaces [15] is preserved. Replacing convexity with star-
shapedness is therefore only a minimal departure from the original framework.

The problem illustrated in Fig. 1 could also be resolved by using the Euclid-
ean metric instead of the Manhattan metric for combining domains. We think
however that this would be a major modification of the original framework. For
instance, if the use of the Manhattan metric is abolished, the usage of domains
to structure the conceptual space loses its main effect of influencing the over-
all distance metric. Moreover, psychological evidence [5,28,29] indicates that
human similarity ratings are reflected better by the Manhattan metric than by
the Euclidean metric if different domains are involved (e.g., stimuli differing in
size and brightness). As a psychologically plausible representation of similarity
is one of the core principles of the conceptual spaces framework, these findings
should be taken into account. Furthermore, in high-dimensional feature spaces
the Manhattan metric provides a better relative contrast between close and dis-
tant points than the Euclidean metric [3]. If we expect the number of domains
to be large, this also supports the usage of the Manhattan metric from an imple-
mentational point of view.

Based on these arguments, we think that weakening the convexity assumption
is a better option than abolishing the use of the Manhattan metric.

3 A Parametric Definition of Concepts

3.1 Preliminaries

Our formalization is based on the following insight:

Lemma 1. Let C1, ..., Cm be convex sets in CS under some metric d and let
P :=

⋂m
i=1 Ci. If P 
= ∅, then S :=

⋃m
i=1 Ci is star-shaped under d w.r.t. P .

Proof. Obvious (see also [30]).

We will use axis-parallel cuboids as building blocks for our star-shaped sets.
They are defined in the following way:

Definition 5 (Axis-parallel cuboid). We describe an axis-parallel cuboid2 C
as a triple 〈ΔC , p−, p+〉. C is defined on the domains ΔC ⊆ Δ, i.e. on the
dimensions DC =

⋃
δ∈ΔC

δ. We call p−, p+ the support points of C and require:

∀d ∈ DC : p+d , p−
d /∈ {+∞,−∞} ∧ ∀d ∈ D \ DC : p−

d := −∞ ∧ p+d := +∞
Then, we define the cuboid C in the following way:

C = {x ∈ CS | ∀d ∈ D : p−
d ≤ xd ≤ p+d }

2 We will drop the modifier “axis-parallel” from now on.
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Lemma 2. A cuboid C is convex under dΔ
C , given a fixed set of weights W .

Proof. It is easy to see that cuboids are convex with respect to dM and dE .
Based on this, one can show that they are also convex with respect to dΔ

C , which
is a combination of dM and dE .

Our formalization will make use of fuzzy sets [32], which can be defined in
our current context as follows:

Definition 6 (Fuzzy set). A fuzzy set Ã on CS is defined by its membership
function μ

˜A : CS → [0, 1].

Note that fuzzy sets contain crisp sets as a special case where μ
˜A : CS →

{0, 1}. For each x ∈ CS, we interpret μ
˜A(x) as degree of membership of x in Ã.

Definition 7 (Alpha-cut). Given a fuzzy set Ã on CS, its α-cut Ãα for α ∈
[0, 1] is defined as follows:

Ãα = {x ∈ CS | μ
˜A(x) ≥ α}

Definition 8 (Fuzzy star-shapedness). A fuzzy set Ã is called star-shaped under
a metric d with respect to a (crisp) set P if all of its α-cuts Ãα are either empty
or star-shaped under d w.r.t. P .

One can also generalize the ideas of subsethood, intersection, and union from
crisp to fuzzy sets. We adopt the most widely used definitions:

Definition 9 (Operations on fuzzy sets). Let Ã, B̃ be two fuzzy sets defined on
CS.

– Subsethood: Ã ⊆ B̃ : ⇐⇒ (∀x ∈ CS : μ
˜A(x) ≤ μ

˜B(x))
– Intersection: ∀x ∈ CS : μ

˜A∩ ˜B(x) := min(μ
˜A(x), μ

˜B(x))
– Union: ∀x ∈ CS : μ

˜A∪ ˜B(x) := max(μ
˜A(x), μ

˜B(x))

3.2 Fuzzy Simple Star-Shaped Sets

By combining Lemmas 1 and 2, we see that any union of intersecting cuboids
is star-shaped under dΔ

C . We use this insight to define simple star-shaped sets
(illustrated in Fig. 2):

Definition 10 (Simple star-shaped set). We describe a simple star-shaped set
S as a tuple 〈ΔS , {C1, . . . , Cm}〉. ΔS ⊆ Δ is a set of domains on which the
cuboids {C1, . . . , Cm} (and thus also S) are defined. We further require that the
central region P :=

⋂m
i=1 Ci 
= ∅. Then the simple star-shaped set S is defined as

S :=
m⋃

i=1

Ci
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Fig. 2. Left: Three cuboids C1, C2, C3 with nonempty intersection. Middle: Resulting
simple star-shaped set S based on these cuboids. Right: Fuzzy simple star-shaped set
S̃ based on S with three α-cuts for α ∈ {1.0, 0.5, 0.25}. (Color figure online)

In practice, it is often not possible to define clear-cut boundaries for concepts
and properties. It is, for example, very hard to define a generally accepted crisp
boundary for the property “red”. We therefore use a fuzzified version of sim-
ple star-shaped sets for representing concepts, which allows us to define impre-
cise concept boundaries. This usage of fuzzy sets for representing concepts has
already a long history (cf. [6,13,22,26,33]). We use a simple star-shaped set S
as a concept’s “core” and define the membership of any point x ∈ CS to this
concept as maxy∈S Sim(x, y):

Definition 11 (Fuzzy simple star-shaped set). A fuzzy simple star-shaped set
S̃ is described by a quadruple 〈S, μ0, c,W 〉 where S = 〈ΔS , {C1, . . . , Cm}〉 is a
non-empty simple star-shaped set. The parameter μ0 ∈ (0, 1] controls the highest
possible membership to S̃ and is usually set to 1. The sensitivity parameter c > 0
controls the rate of the exponential decay in the similarity function. Finally,
W = 〈WΔS

, {Wδ}δ∈ΔS
}〉 contains positive weights for all domains in ΔS and

all dimensions within these domains, reflecting their respective importance. We
require that

∑
δ∈ΔS

wδ = |ΔS | and that ∀δ ∈ ΔS :
∑

d∈δ wd = 1.
The membership function of S̃ is then defined as follows:

μ
˜S(x) = μ0 · max

y∈S
(e−c·dΔS

C (x,y,W ))

The sensitivity parameter c controls the overall degree of fuzziness of S̃ by
determining how fast the membership drops to zero. The weights W represent
not only the relative importance of the respective domain or dimension for the
represented concept, but they also influence the relative fuzziness with respect
to this domain or dimension. Note that if |ΔS | = 1, then S̃ represents a property,
and if |ΔS | > 1, then S̃ represents a concept.

The right part of Fig. 2 shows a fuzzy simple star-shaped set S̃. In this illus-
tration, the x and y axes are assumed to belong to different domains, and are
combined with the Manhattan metric using equal weights.
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Proposition 1. Any fuzzy simple star-shaped set S̃ = 〈S, μ0, c,W 〉 is star-
shaped with respect to P =

⋂m
i=1 Ci under dΔS

C .

Proof. See appendix (http://lucas-bechberger.de/appendix-ki-2017/).

4 Operations on Concepts

In this section, we define some operations on concepts (i.e., fuzzy simple star-
shaped sets). The set of all concepts is closed under each of these operations.

4.1 Intersection

If we intersect two simple star-shaped sets S1, S2, we simply need to intersect
their cuboids. As an intersection of two cuboids is again a cuboid, the result of
intersecting two simple star-shaped sets can be described as a union of cuboids.
It is simple star-shaped if these resulting cuboids have a nonempty intersection.
This is only the case if the central regions P1 and P2 of S1 and S2 intersect.3

However, we would like our intersection to result in a simple star-shaped set
even if P1∩P2 = ∅. Thus, when intersecting two star-shaped sets, we might need
to apply some repair mechanism in order to restore star-shapedness.

We propose to extend the cuboids Ci of the intersection in such a way that
they meet in some “midpoint” p∗ ∈ CS (e.g., the arithmetic mean of their
centers). We create extended versions C∗

i of all Ci by defining their support
points like this:

∀d ∈ D : p−∗
id := min(p−

id, p
∗
d), p+∗

id := max(p+id, p
∗
d)

The intersection of the resulting C∗
i contains at least p∗, so it is not empty.

This means that S′ = 〈ΔS1 ∪ ΔS2 , {C∗
1 , . . . , C∗

m∗}〉 is again a simple star-shaped
set. We denote this modified intersection (consisting of the actual intersection
and the application of the repair mechanism) as S′ = I(S1, S2).

We define the intersection of two fuzzy simple star-shaped sets as S̃′ =
I(S̃1, S̃2) := 〈S′, μ′

0, c
′,W ′〉 with:

– S′ := I(S̃α′
1 , S̃α′

2 ) (where α′ = max{α ∈ [0, 1] : S̃α
1 ∩ S̃α

2 
= ∅})
– μ′

0 := α′
– c′ := min(c(1), c(2))
– W ′ with weights defined as follows (where s, t ∈ [0, 1])4:

∀δ ∈ ΔS1 ∩ ΔS2 :
(
(w′

δ := s · w
(1)
δ + (1 − s) · w

(2)
δ )

∧ ∀d ∈ δ : (w′
d := t · w

(1)
d + (1 − t) · w

(2)
d )

)
∀δ ∈ ΔS1 \ ΔS2 :

(
(w′

δ := w
(1)
δ ) ∧ ∀d ∈ δ : (w′

d := w
(1)
d )

)
∀δ ∈ ΔS2 \ ΔS1 :

(
(w′

δ := w
(2)
δ ) ∧ ∀d ∈ δ : (w′

d := w
(2)
d )

)
3 Note that if DS1 ∩ DS2 = ∅, then P1 ∩ P2 �= ∅.
4 In some cases, the normalization constraint of the resulting domain weights might

be violated. We can enforce this constraint by manually normalizing them.

http://lucas-bechberger.de/appendix-ki-2017/
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When taking the combination of two somewhat imprecise concepts, the result
should not be more precise than any of the original concepts. As the sensitivity
parameter is inversely related to fuzziness, we take the minimum. If a weight is
defined for both original sets, we take a convex combination, and if it is only
defined for one of them, we simply copy it.

Note that for α′ < max(μ(1)
0 , μ

(2)
0 ), the α-cuts S̃α′

1 and S̃α′
2 are still guaranteed

to be star-shaped, but not necessarily simple star-shaped. In order to be still
well-defined, the modified crisp intersection I will in this case first compute
their “ordinary” intersection, then approximate this intersection with cuboids
(e.g., by using bounding boxes) and finally apply the repair mechanism.

4.2 Union

As each simple star-shaped set is defined as a union of cuboids, the union of two
such sets can also be expressed as a union of cuboids. However, the resulting
set is not necessarily star-shaped – only if the central regions of the original
simple star-shaped sets intersect. So after each union, we might again need to
perform a repair mechanism in order to restore star-shapedness. We propose to
use the same repair mechanism that is also used for intersections. We denote the
modified union as S′ = U(S1, S2).

We define the union of two fuzzy simple star-shaped sets as S̃′ = U(S̃1, S̃2) :=
〈S′, μ′

0, c
′,W ′〉 with:

– S′ := U(S1, S2)
– μ′

0 := max(μ(1)
0 , μ

(2)
0 )

– c′ and W ′ as described in Sect. 4.1

Proposition 2. Let S̃1 = 〈S1, μ
(1)
0 , c(1),W (1)〉 and S̃2 = 〈S2, μ

(2)
0 , c(2),W (2)〉 be

two fuzzy simple star-shaped sets. If we assume that ΔS1 = ΔS2 and W (1) =
W (2), then S̃1 ∪ S̃2 ⊆ U(S̃1, S̃2) = S̃′.

Proof. See appendix (http://lucas-bechberger.de/appendix-ki-2017/).

4.3 Subspace Projection

Projecting a cuboid onto a subspace results in a cuboid. As one can easily see,
projecting a simple star-shaped set S onto a subspace results in another simple
star-shaped set. We denote the projection of S onto domains ΔS′ ⊆ ΔS as
S′ = P (S,ΔS′).

We define the projection of a fuzzy simple star-shaped set S̃ onto domains
ΔS′ ⊆ ΔS as S̃′ = P (S̃,ΔS′) := 〈S′, μ′

0, c
′,W ′〉 with:

– S′ := P (S,ΔS′)
– μ′

0 := μ0

– c′ := c
– W ′ := 〈{|Δ′

S | · wδ
∑

δ′∈Δ
S′ wδ′ }δ∈ΔS′ , {Wδ}δ∈ΔS′ 〉

http://lucas-bechberger.de/appendix-ki-2017/
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Note that we only apply minimal changes to the parameters: μ0 and c stay
the same, only the domain weights are updated in order to not violate their
normalization constraint.

Projecting a set onto two complementary subspaces and then intersecting
these projections again in the original space yields a superset of the original set.
This is intuitively clear for simple star-shaped sets and can also be shown for
fuzzy simple star-shaped sets under one additional constraint:

Proposition 3. Let S̃ = 〈S, μ0, c,W 〉 be a fuzzy simple star-shaped set. Let
S̃1 = P (S̃,Δ1) and S̃2 = P (S̃,Δ2) with Δ1 ∪ Δ2 = ΔS and Δ1 ∩ Δ2 = ∅. Let
S̃′ = I(S̃1, S̃2) as described in Sect. 4.1. If

∑
δ∈Δ1

wδ = |Δ1| and
∑

δ∈Δ2
wδ =

|Δ2|, then S̃ ⊆ S̃′.

Proof. See appendix (http://lucas-bechberger.de/appendix-ki-2017/).

5 Supported Applications

5.1 Machine Learning Process: Clustering

The operations described in Sect. 4 can be used by a clustering algorithm in the
following way:

The clustering algorithm can create and delete fuzzy simple star-shaped sets.
It can move and resize an existing cluster as well as adjust its form by modifying
the support points of the cuboids that define its core. One must however ensure
that such modifications preserve the non-emptiness of the cuboids’ intersection.
Moreover, a cluster’s form can be changed by modifying the parameters c and W :
By changing c, one can control the overall degree of fuzziness, and by changing
W , one can control how this fuzziness is distributed among the different domains
and dimensions. Two neighboring clusters S̃1, S̃2 can be merged into a single
cluster by unifying them. A single cluster can be split up into two parts by
replacing it with two smaller clusters.

So clusters can be created, deleted, modified, merged, and split – which is
sufficient for defining a clustering algorithm.

5.2 Reasoning Process: Concept Combination

The operations defined in Sect. 4 can also be used for combining concepts.
The modified intersection I(S̃1, S̃2) roughly corresponds to a logical “AND”:

Intersecting “green” with “blue” results in the set of all colors that are both
green and blue to at least some degree. The modified union U(S̃1, S̃2) can be
used to construct higher-level categories: For instance, the concept of “fruit” can
be obtained by the unification of “apple”, “banana”, “pear”, “pineapple”, etc.

Gärdenfors [15] argues that adjective-noun combinations like “green apple”
or “purple banana” can be expressed by combining properties with concepts.
This is supported by our operations of intersection and subspace projection:

http://lucas-bechberger.de/appendix-ki-2017/
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In combinations like “green apple”, property and concept are compatible. We
expect that their cores intersect and that the μ0 parameter of their intersection
is therefore relatively large. In this case, “green” should narrow down the color
information associated with the “apple” concept. This can be achieved by simply
computing their intersection.

In combinations like “purple banana”, property and concept are incompat-
ible. We expect that their cores do not intersect and that the μ0 parameter
of their intersection is relatively small. In this case, “purple” should replace the
color information associated with the “banana” concept. This can be achieved by
first removing the color domain from the “banana” concept (through a subspace
projection) and by then intersecting this intermediate result with “purple”.

As one can see from this short discussion, our formalized framework is also
capable of supporting reasoning processes.

6 Related Work

This work is of course not the first attempt to devise an implementable formal-
ization of the conceptual spaces framework.

An early and very thorough formalization was done by Aisbett and Gibbon
[4]. Like we, they consider concepts to be regions in the overall conceptual space.
However, they stick with Gärdenfors’ assumption of convexity and do not define
concepts in a parametric way. Their formalization targets the interplay of sym-
bols and geometric representations, but it is too abstract to be implementable.

Rickard et al. [24,25] provide a formalization based on fuzziness. They repre-
sent concepts as co-occurrence matrices of properties. By using some mathemat-
ical transformations, they interpret these matrices as fuzzy sets on the universe
of ordered property pairs. Their representation of correlations is not geometri-
cal: They first discretize the domains (by defining properties) and then compute
the co-occurrences between these properties. Depending on the discretization,
this might lead to a relatively coarse-grained notion of correlation. Moreover, as
properties and concepts are represented in different ways, one has to use differ-
ent learning and reasoning mechanisms. Their formalization is also not easy to
work with due to the complex mathematical transformations involved.

Adams and Raubal [1] represent concepts by one convex polytope per domain.
This allows for efficient computations while being potentially more expressive
than our cuboid-based representation. The Manhattan metric is used to com-
bine different domains. However, correlations between different domains are not
taken into account as each convex polytope is only defined on a single domain.
Adams and Raubal also define operations on concepts, namely intersection, sim-
ilarity computation, and concept combination. This makes their formalization
quite similar in spirit to ours. One could generalize their approach by using
polytopes that are defined on the overall space and that are convex under the
Euclidean and star-shaped under the Manhattan metric. However, we have found
that this requires additional constraints in order to ensure starshapedness. The
number of these constraints grows exponentially with the number of dimensions.
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Each modification of a concept’s description would then involve a large con-
straint satisfaction problem, rendering this representation unsuitable for learn-
ing processes. Our cuboid-based approach is more coarse-grained, but it only
involves a single constraint, namely that the intersection of the cuboids is not
empty.

Lewis and Lawry [19] have recently formalized conceptual spaces using ran-
dom set theory. They define properties as random sets within single domains
and concepts as random sets in a boolean space whose dimensions indicate the
presence or absence of properties. Their approach is similar to ours in using a
distance-based membership function to a set of prototypical points. However,
their work focuses on modeling concept combinations and does not explicitly
consider correlations between domains.

Many practical applications of conceptual spaces (e.g., [10–12,23]) use only
partial ad-hoc implementations of the conceptual spaces framework which usu-
ally ignore some important aspects of the framework (e.g., the domain structure).

Finally, we can relate our work to statistical relational learning (SRL): Our
geometric representation of concepts is a complex data structure (in SRL one
typically uses logics for this) that is augmented with soft computing in the form
of fuzziness (similar to the usage of probability theory in SRL).

7 Conclusion and Future Work

In this paper, we proposed a new formalization of the conceptual spaces frame-
work. We aimed to geometrically represent correlations between domains, which
led us to consider the more general notion of star-shapedness instead of Gärden-
fors’ favored constraint of convexity. We defined concepts as fuzzy sets based on
intersecting cuboids and a similarity-based membership function. Moreover, we
provided different computationally efficient operations and illustrated that these
operations can support both learning and reasoning processes.

This work is mainly seen as a theoretical foundation for an actual imple-
mentation of the conceptual spaces theory. In future work, we will enrich this
formalization with additional operations. Moreover, we will devise a clustering
algorithm that will work with the proposed concept representation. Both the
mathematical framework presented in this paper and the clustering algorithm
will be implemented and tested in practice which will provide valuable feedback.
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