
From Natural Language Instructions
to Structured Robot Plans

Mihai Pomarlan(B), Sebastian Koralewski, and Michael Beetz

Institute for Artificial Intelligence, Universität Bremen, Bremen, Germany
pomarlan@uni-bremen.de

Abstract. Research into knowledge acquisition for robotic agents has
looked at interpreting natural language instructions meant for humans
into robot-executable programs; however, the ambiguities of natural lan-
guage remain a challenge for such “translations”. In this paper, we look
at a particular sort of ambiguity: the control flow structure of the pro-
gram described by the natural language instruction. It is not always clear,
when more conditional statements appear in a natural language instruc-
tion, which of the conditions are to be thought of as alternative options
in the same test, and which belong to a code branch triggered by a previ-
ous conditional. We augment a system which uses probabilistic reasoning
to identify the meaning of the words in a sentence with reasoning about
action preconditions and effects in order to filter out non-sensical code
structures. We test our system with sample instruction sheets inspired
from analytical chemistry.

1 Motivation

A current topic of research is the acquisition of knowledge for robotic agents,
aimed at enabling them to perform more complex manipulation tasks. One
method, explored in previous work [1], is to mine “how to” resources, such as wik-
iHow, for recipes and instructions for various activities. The benefits of having
robotic agents capable to understand natural language instructions are obvious.
On one hand, sites like wikiHow already contain a wealth of information about
many activities; on the other, it helps usability if a human can instruct a robot
as they would another human.

However, the state of the art is still far from agents robustly capable of under-
standing natural language. Humans, relying on their already rich commonsense
knowledge and experience, can tolerate much more ambiguity and underspeci-
fication in their communication than machines can. Work on resolving ambigu-
ities and inferring missing information is ongoing [1,2], but has focused so far
on instructions with a simple structure that can be represented as a sequence of
steps with ambiguous parameters.

In this paper, we are concerned with instructions with more complex struc-
tures caused by the presence of (the natural language equivalent of) program flow
controls such as conditionals and loops, which create ambiguities of structure.

c© Springer International Publishing AG 2017
G. Kern-Isberner et al. (Eds.): KI 2017, LNAI 10505, pp. 344–351, 2017.
DOI: 10.1007/978-3-319-67190-1 30



From Natural Language Instructions to Structured Robot Plans 345

Fig. 1. Two possible interpretations for the metal cation identification instruction

Consider the following text, describing a procedure to identify metal cations
in a solution: add three drops of NaOH to the solution. If a brown precipitate
appears, say the solution contains Iron. If a white precipitate appears, add five
mL of NaOH. If the precipitate disappears, say the solution contains Aluminum.
If the precipitate remains, say the solution contains Magnesium. Two possible
ways to interpret this text into a program are given in Fig. 1, and there are other
ways as well.

These two programs, though consistent with the operations enumerated in
natural language, behave very differently. Nevertheless, a human can tell the
second program is wrong, even without chemistry knowledge. The purpose of
the procedure described in the example is to identify the metal ions in a solu-
tion. Once the ion has been identified, therefore the goal has been reached, the
program should be over.

The example above suggests that at least some ambiguity in program struc-
ture can be resolved through knowledge of a task’s goal, and/or its component
actions in terms of preconditions and effects. It is this intuition we examine here.

2 Overview

We consider the problem of turning a text written in natural language into a
simple structured program (a “code tree”) that may contain simple statements,
conditionals (if..else if..else..end if structures) and loops. Currently, we support
arbitrarily complex conditionals, and loop-while/untils with one instruction in
their body.

First, the natural language text is fed into a probabilistic inference system
called Prac [1] which is used to identify the meanings of words and coreference
pronouns. PRAC uses Markov logic networks to represent a probability distrib-
ution on how various action requests are formulated; the networks are created
from training on large text corpora. Interpreting a text is formalized as a prob-
abilistic query: finding the most likely action(s) requested given the natural
languge text as evidence. This produces a list of so-called “action cores”, action
descriptions in terms of roles and values. Based on this list of action cores, the
system produces a list of candidate code trees, which are then validated based
on a STRIPS-like procedure that checks whether action preconditions are met



346 M. Pomarlan et al.

at all points of the code tree. The STRIPS validation is used as a way to add
more knowledge and help disambiguating between structures for the code trees.

3 Representing Actions and World States

We use disjunctive normal form expressions (dnf-expressions) to represent
world states, action pre- and postconditions, and “ifconditions” (the condi-
tions appearing in an if or loop statement). A “term” is a simple statement
about the world state or its negation (for example, (STATE switch on) and
(NOT (STATE switch on)) are terms). A “clause” is a conjunction of terms.
A dnf-expression is then a disjunction of clauses.

We say that a clause is consistent (with itself) when it doesn’t contain both a
term and its negation; we will thereafter assume all clauses we work with are self-
consistent, except for postcondition clauses. We say two clauses are consistent if
there is no term appearing in one clause that appears negated in the other. We
say that clause A includes clause B if they are consistent and all terms appearing
in B also appear in A. The world state is represented by a dnf-expression in
which each clause is a possible world. The world state is updated during code
tree validation, based on the postconditions of the actions in the code tree. We
use open-world semantics: if something is not stated, in a possible world, to be
true or false, then it is unknown in that world.

A precondition is represented by a dnf-expression. When validating an
action in a code tree, we say that the action is valid if its precondition is known
to be true in all worlds that are possible when the action is encountered in the
code tree: for every possible world W, there exists a clause P in the precondition
such that W includes P. If an action is invalid when it is encountered in the code
tree, then this counts as an error and the code tree is considered invalid and
rejected.

An ifcondition is represented by a dnf-expression. When checking an if or
loop instruction in the code tree, we say that the instruction is meaningful if
its ifcondition is consistent with at least one of the worlds possible when the
instruction is met: there exists a possible world W, such that there exists a
clause P in the ifcondition, such that W and P are consistent with each other.
If there is no such possible world W, then this counts as a warning, which we
currently treat as a reason to reject a code tree.

A postcondition is represented by what is syntactically a dnf-expression;
this allows our actions to have several sets of possible effects, such as different
reactions which may be observed between a known and an unknown reagent.
However, we interpret a postcondition dnf differently from other expressions
above. In particular, clauses are allowed to be inconsistent and their order
matters. When performing an update on a possible world, terms about the
world are added in the order in which they appear in the postcondition clause,
and replace previous contradicting terms. For example, a postcondition branch
(AND (NOT (STATE s off)) (NOT (STATE s on)) (STATE s ?new)) first
makes sure the entity s will no longer be in either on or off states, and then puts
entity s in state ?new (which can be, for example, on).



From Natural Language Instructions to Structured Robot Plans 347

A terminal condition is a dnf expression we use to represent a goal state,
after which no more statements are expected. A terminal condition is considered
achieved if there is at least one possible world in which it holds: there is a possible
world W, such that there is a clause P in the terminal condition, such that W
includes P. The reason why we ask whether a satisfying possible world exists
(rather than requiring the terminal condition to hold everywhere) is to guarantee
that instructions achieving the terminal condition are the last executed in a code
tree.

Note that while our code tree validation procedure is inspired by STRIPS,
we go beyond it by using open-world semantics and actions with more sets
of possible effects. This is important, since we aim for an approach usable in
environments that are only partially known, and where the effects of actions are
unpredictable.

4 Code Tree Generation and Validation

As our motivating example shows, knowledge about the basic actions in a pro-
gram can help check that the program’s structure makes sense. We chose a
STRIPS representation for actions because it is easy to use. Note, we do not
do STRIPS planning; we obtain candidate “plans” from interpreting the input
natural language instruction, where a plan may not be just a sequence (as would
be the case with STRIPS plans) but instead a structured program with branches
and loops. A program is considered valid if the procedure described below comes
to the conclusion that at every step of the program, preconditions for the current
action to perform are met.

Our procedure is to generate all possible code trees from a list of action cores
returned by Prac, then discard from this list all code trees that produce errors
(preconditions not met) or warnings (meaningless ifconditions). In the future,
we will merge the validation and generation steps, for efficiency.

In order to validate a code tree, we first “unroll” all the loops present: a
loop is replaced with an IF statement (with ifcondition being the negation of
the loop termination condition), where the body of this IF is the body of the
loop repeated twice, followed by an assertion of the loop’s termination condition.
Our STRIPS-like validation, which we will call cs-validation here, is defined as
follows:

– sequences without control structures (branches or loops) are cs-valid if they
are valid STRIPS sequences (no invalid actions, no action after terminal con-
dition met)

– an IF and its branches are cs-valid if each branch is cs-valid, and if the
ifcondition is meaningful (consistent with at least one possible world)

– sequences with control structures are valid if each of their elements are cs-
valid

While the validation procedure traverses the code tree, it updates the world
state based on postconditions and assertions about the world state. Postcondi-
tions and assertions are applied to all possible worlds at a point in a program (all



348 M. Pomarlan et al.

Fig. 2. Converting a list of action cores (left) into possible code trees (right)

clauses in the world state dnf expression). Entering an IF branch also affects the
world state: for instructions inside the IF body, only possible worlds consistent
with its ifcondition are considered.

Our procedure takes as input: the code tree to validate; a domain description
(action preconditions and effects); an initial world state; optionally, a terminal
condition.

We will now look at structural ambiguities caused by conditionals. Figure 2
shows the three possible structures that are consistent with a list of action cores
containing two conditional instructions (for conciseness, the action cores are sim-
plified). More structures are possible in the sequential case: if more statements
appear in block-1, there are several ways to split it into statements appearing
in, and outside of the IF body, but for ease of exposition, we will focus here on
these three cases.

We will refer to the postconditions of block-1 as the changes to the world
state done by the postconditions of the actions in block-1, and by the selection
of possible worlds made by ifcondition-1. Similarly, preconditions of block-2 will
mean here both the preconditions of the actions in block-2, and ifcondition-2.

A “nested” structure can be unambiguously selected when the preconditions
of block-2 depend on the postconditions of block-1 to be valid/meaningful. An
“else-if” structure can be unambiguously selected when block-1 achieves the
terminal condition, or the preconditions of block-2 would be invalidated by the
postconditions of block-1. An “else-if” structure can also be explicitly invoked
in natural language (for example by statements such as “otherwise, if”) and we
take this into account when generating candidate code trees: when it is clear
from the language that a conditional appears as an ELSE-IF branch of some
previous conditional, we mark it as such.

Currently, our approach does not have a way to unambiguously select the
sequential case. If the preconditions of block-2 are unaffected by block-1, then
both nested and sequential interpretations are still cs-valid; this will be shown
in the evaluation, below.

5 Evaluation

To test cs-validation as a method to disambiguate code structures we have used
several instruction sheets inspired by analytical chemistry. For page count rea-
sons we don’t include the action pre-/postconditions here, but these are available
on request; they are currently hand-coded, but we will look at more autonomous



From Natural Language Instructions to Structured Robot Plans 349

ways to acquire them. For each instruction sheet, we generate a list of code trees,
from which we then remove the code trees that generate errors or warnings dur-
ing cs-validation. When more code trees remain in the list, we also look at the
world state after each code tree is run.

An example instruction sheet is storage: if the jar is sealed, put it into the
fridge. If the jar is empty, then open the drawer. If the lid is there, take it and put
it on the jar. This results in 37 candidate code trees, out of which only the one
corresponding to the correct interpretation survives cs-validation. In this case,
cs-validation is able to uniquely select among the available options to arrange
control structures, and it is able to do so despite the large number of candidates
present.

Another example instruction sheet we use is base titration: put a drop of
alizarin into the test solution. Put drops of hydrogen chloride into the solution
until it turns yellow. If the drop count is less than five, put two drops of litmus
in the solution. If the solution turns red, put more drops of the NaOH in the
solution until it turns blue. There are three possible candidates generated for
this instruction sheet, out of which two survive cs-validation (given in Fig. 3).
These two candidates result in the same set of possible final world states, and
both look like plausible interpretations.

Fig. 3. CS-valid code trees for base titration

Another example instruction sheet is the metal cation identification, given in
Sect. 1. In this case, 55 candidate code trees are generated from the instruction
sheet, however only 2 survive cs-validation, which shows its power to prune the
candidate set. The surviving code trees are shown in Fig. 4. This time however
the two code trees do not result in the same set of possible final world states:
only the correct plan would say nothing when the analyte contains neither iron,
aluminum, or magnesium.

Ambiguities result when a nested and a sequential structure both survive cs-
validation. For base titration this appears benign, but in general the code trees
will not behave the same, and some further disambiguation (e.g. via questions
to a human) is necessary. Still, cs-validation significantly reduces the number of
candidates to disambiguate.



350 M. Pomarlan et al.

Fig. 4. CS-valid code trees for metal cation identification

6 Related Work

There has been substantial work in analyzing the meaning of conditionals in nat-
ural language [3,4]. Other work has tackled the ambiguity of sentiment analysis
in conditionals [5]. We used an intensional interpretation [3], which matches the
procedural one from computer programming: a conditioned action is performed
iff its condition is true.

Extracting sequences of procedures (without branching) from text has been
shown in [6]. Workflows that branch into parallel tracks that may recombine
are extracted from text in [7] using a notion of “trace index”. These work-
flows describe deterministic, possibly parallel actions in known environments.
There are also natural language interpretation systems to enable dialog between
humans and robotic agents [8–10]. However, they are intended for deterministic
environments where the initial state is fully observable, and can handle only
simple conditionals– a condition, an action, optionally an else with its action,
with no nesting.

References

1. Nyga, D., Beetz, M.: Cloud-based probabilistic knowledge services for instruction
interpretation. In: International Symposium of Robotics Research (ISRR), Italy,
Sestri Levante (Genoa) (2015)

2. Misra, D.K., Sung, J., Lee, K., Saxena, A.: Tell me dave: context-sensitive ground-
ing of natural language to manipulation instructions. In: Proceedings of Robotics:
Science and Systems, Berkeley, USA, July 2014

3. Abbott, B.: Conditionals in English and fopl. In: Shu, D., Turner, K., (eds.) Con-
trasting Meanings in Languages of the East and West, pp. 579–606. Peter Lang,
Oxford (2010)

4. Rothschild, D.: Conditionals and propositions in semantics. J. Philos. Logic 44(6),
781 (2015)

5. Narayanan, R., Liu, B., Choudhary, A.: Sentiment analysis of conditional sentences.
In: Proceedings of the 2009 Conference on Empirical Methods in Natural Language
Processing, vol. 1, pp. 180–189. Association for Computational Linguistics (2009)

6. Dufour-Lussier, V., Le Ber, F., Lieber, J., Nauer, E.: Automatic case acquisition
from texts for process-oriented case-based reasoning. Inf. Syst. 40, 153–167 (2014)



From Natural Language Instructions to Structured Robot Plans 351

7. Schumacher, P., Minor, M.: Extracting control-flow from text. In: IRI, pp. 203–210.
IEEE (2014)

8. Bos, J., Oka, T.: A spoken language interface with a mobile robot. Artif. Life
Robot. 11(1), 42–47 (2007)

9. Misra, D.K., Tao, K., Liang, P., Saxena, A.: Environment-driven lexicon induction
for high-level instructions. In: ACL (1), pp. 992–1002 (2015)

10. Eppe, M., Trott, S., Feldman, J.: Exploiting deep semantics and compositionality
of natural language for human-robot-interaction. In: 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 731–738. IEEE (2016)


	From Natural Language Instructions to Structured Robot Plans
	1 Motivation
	2 Overview
	3 Representing Actions and World States
	4 Code Tree Generation and Validation
	5 Evaluation
	6 Related Work
	References




