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Abstract. Recently a new account to the problem of induction has been
developed [1], based on a priori advantages of regret-weighted meta-
induction (RW) in online learning [2]. The claimed a priori advantages
seem to contradict the no free lunch (NFL) theorem, which asserts that
relative to a state-uniform prior distribution (SUPD) over possible worlds
all (non-clairvoyant) prediction methods have the same expected predic-
tive success. In this paper we propose a solution to this problem based
on four novel results:

– RW enjoys free lunches, i.e., its predictive long-run success dominates
that of other prediction strategies.

– Yet the NFL theorem applies to online prediction tasks provided the
prior distribution is a SUPD.

– The SUPD is maximally induction-hostile and assigns a probability
of zero to all possible worlds in which RW enjoys free lunches. This
dissolves the apparent conflict with the NFL.

– The a priori advantages of RW can be demonstrated even under the
assumption of a SUPD. Further advantages become apparent when
a frequency-uniform distribution is considered.

Keywords: Problem of induction · No free lunch theorem · Online pre-
diction under expert advice · Regret-weighted meta-induction

1 Introduction: The NFL Theorem and Hume’s Problem
of Induction

How can inductive inferences be rationally justified, in the sense of being reliable
or at least preferable to non-inductive inferences? This is the problem of induc-
tion raised by the philosopher David Hume 250 years ago. Hume showed that
all standard methods of justification fail when applied to the task of justifying
induction. He concluded that induction has no rational justification at all.

The no free lunch theorem (NFL) expresses a deepening of Hume’s induc-
tive skepticism. In this paper we consider the NFL theorem in application to
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online prediction tasks. A number of variants of the NFL theorem have been
formulated (cf. [3–7]); the most general formulation is found in [8]. Wolpert’s
NFL theorem comes in a weak and a strong version. Since the strong version
rests on unrealistic assumptions about the loss function, we focus in this paper
on the weak NFL theorem. It says that the probabilistically expected success
of any (non-clairvoyant) prediction method is equal to the expected success of
random guessing or any other prediction method, provided one assumes (a) a
state-uniform prior probability distribution (abbreviated SUPD) i.e., one that
is uniform over all possible event sequences, and (b) a weakly homogeneous loss
function (see below).

Does the NFL theorem undermine the project of learning theory? A stan-
dard defense of learning theorists against the NFL challenge maintains that one
should not compute the expected success of learning strategies by means of a
SUPD. Rather one should compute expected success using the (conjectured)
actual distribution of the possible states of our environment, and ‘according to
our evidence’ the latter distribution is clearly not uniform.1 We argue that this
line of defense against the NFL challenge does not work, because our beliefs
about the actual distribution of possible states of our environment are them-
selves based on an inductive inference. Thus, this argument commits the fallacy
of circularity. A general argument demonstrating the unacceptability of circular
justifications runs as follows: If we accept the inductive justification of induc-
tion (“inductions were successful in the past, whence, by induction, they will
be successful in the future”), then – on pain of inconsistency – we must also
accept the anti-inductive justification of anti-induction (“anti-inductions were
not successful in the past, whence by anti-induction they will be successful in
the future”).

For a robust defense of inductive learning methods against the NFL challenge
a better argument is needed; one that does not presuppose what must be proved.
Recently, a non-circular response to the problem of induction has been proposed,
based on a priori advantages of regret-based meta-induction (in short: RW) in
online learning. In Sects. 2 and 3 these results are presented and confronted with
a version of the weak NFL theorem that applies to iterated prediction tasks in
online learning. Thereafter the apparent contradiction is analyzed and dissolved,
from the long-run (Sect. 4) and short-run perspectives (Sect. 5). Our analysis
leads to four novel results that are summarized in the conclusion (Sect. 6).

2 Regret-Based Meta-Induction

In the area of regret-based learning, theoretical results concerning the vanishing
long-run regrets of certain meta-strategies of prediction have been developed that
hold universally, i.e., for strictly all possible event sequences, independently from
any assumed probability distribution [2]. Although labeled as “online learning
under expert advice” these results characterize the performance of strategies of
meta-learning, inasmuch as a forecaster which we call the “meta-inductivist”
1 Cf. [6, Sect. 4] and [7, Sect. 3], citing statements from a 1994 e-mail discussion.
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tracks the past success rates of accessible prediction methods (“experts”) and
utilizes that information in constructing an improved prediction strategy. Since
the meta-inductivist predicts future events based on past success rates, short-
run regrets (compared to the best method) are unavoidable. However, in the
long run the regret-weighted meta-inductivist is guaranteed to predict at least
as accurately as the best accessible prediction method, even in circumstances
of non-convergent success rates of the independent methods. A standard label
for this property is “Hannan-consistency” [2, p. 70]. Schurz and Thorn [9] argue
that it is preferable to call this property access-optimality, because

– it expresses a long-run optimality result restricted to accessible methods, and
– this label is in line with standard game-theoretical terminology of “optimal-

ity” and “dominance”; results concerning access-dominance are stated below.

The proposed solution to the problem of induction developed in [1,10] works
as follows: The meta-strategy RW has an ‘a priori’ justification, because in the
long run it is recommendable in every possible environment to apply this meta-
strategy on top of all prediction methods accessible to the epistemic agent. Fol-
lowing [1] we explicate this result within the framework of prediction games.

Definition 1 (Prediction game). A prediction game is a pair ((e),Π) con-
sisting of:

(1) An infinite sequence (e) := (e1, e2, . . .) of events en coded by real numbers
between 0 and 1, possibly rounded according to a finite accuracy. In what
follows V ⊆ [0, 1] denotes the value space of possible events en ∈ V. Each
time n corresponds to one round of the game.

(2) A finite set of prediction methods (or ‘players’) Π = {O1, . . . , Om,
M1, . . . , Mk} whose task, in each round n, is to predict the next event en+1

of the event sequence. Methods are of two sorts, independent ‘object-level’
methods O1, . . . , Om (algorithms or experts) who base their predictions on
the observed events, and dependent ‘meta-level’ methods M1, . . . ,Mk who
base their predictions on those of the independent methods in dependence on
their success (this is meant by the Oi’s ‘being accessible’ to the Mj’s).

An example of (e) could be a sequence of daily weather conditions. In what
follows the variable ‘X’ ranges over arbitrary prediction methods. We use the
following notions:

– pn(X) is the prediction of method X for time n delivered at time n − 1.
– The distance of the prediction pn from the event en is measured by a normal-

ized loss function, �(pn, en) ∈ [0, 1].
– The natural loss-function is defined as the absolute distance between predic-

tion and event, |pn −en|. The theoretical results below apply to a much larger
class, namely to all loss functions that are convex in the argument pn.

– s(pn, en) := 1 − �(pn, en) is the score obtained by prediction pn of event en.
– absn(X) :=

∑n
i=1 s(pi(X), ei) is the absolute success achieved by method X

until time n.
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– sucn(X) := absn(X)/n is the success rate of method X at time n.
– maxsucn is the maximal success rate of the independent methods at time n.

The simplest meta-inductive strategy is Imitate-the-best, abbreviated ITB,
which, in each round n, imitates the prediction of the independent method with
maximal success at time n. ITB fails to be universally access-optimal: Its success
rate breaks down when it imitates adversarial methods, who return inaccurate
predictions as soon as their predictions are imitated by ITB [1, Sect. 4].

The strategy of regret-weighted meta-induction comes in several versions. Its
simplest version is abbreviated as RW and defined as follows (where O1, . . . , Om

are the independent methods of the prediction game):

Definition 2 (Regret-weighted meta-induction)

(i) The absolute regret of RW with respect to independent method Oi at time n
is defined as Regn(Oi) := absn(Oi) − absn(RW ) and the relative regret as
regn(Oi) := Regn(Oi)/n.

(ii) Where wn(Oi) := max(Regn(Oi), 0), the predictions of RW are defined as

pn+1(RW ) :=
∑m

i=1 wn(Oi) · pn+1(Oi)∑m
i=1 wn(Oi)

as long as n > 0 and the denominator is positive; else pn+1(RW ) = 0.5

RW is identical with the polynomially weighted forecaster Fp described in
[2, p. 12] with parameter p set to 2.

Theorem 1 (Universal access-optimality of RW). (Cesa-Bianchi and
Lugosi 2006, Corollary 2.1)

For every prediction game ((e),Π) with RW ∈ Π the following holds:
(1.1) (Short run:) (∀n ≥ 1) sucn(RW ) ≥ maxsucn − √

m
n .

(1.2) (Long-run:) limsupn→∞(maxsucn − sucn(RW )) = 0.

In the short run, RW may suffer from a possible regret. According to
Theorem 1, RW’s relative regret is upper-bounded by

√
m
n and converges to

zero when n grows large, or it oscillates endlessly but with a limsup converging
to zero.

An improvement of RW is possible with help of so-called exponential weights.
The weights of exponential regret-based meta-induction, abbreviated ERW, are
defined as: wn(X) := e

√
(8·ln(m)/n)·Regn(X). If ERW’s predictions are defined as

in Definition 2(ii) but with help of exponential weights, then one can prove that
ERW’s short-run regret is upper-bounded by 1.77 · √ln(m)/n [2, Theorem 2.3].
This is a significant improvement, but in regard to the NFL theorem the differ-
ence between RW and ERW is negligible: their long-run advantage is identical
and their performance difference in the simulations presented in Sect. 5 turned
out to be minor. Therefore we concentrate our investigation on RW.

Even if the events are binary, RW’s predictions are real-valued, because
proper weighted averages of 0 s and 1 s are real-valued. Thus the predictions
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are assumed to be elements of a value space Vp ⊆ [0, 1] that may extend the
space of event values: V (V ⊆ Vp).

What stands in apparent conflict with the NFL theorem is not the access-
optimality of RW but rather its access-dominance, that is, the fact that RW
performs at least as well and sometimes better than other accessible meth-
ods. By definition, a meta-method M dominates another method X (in the
long run) iff (i) there is no prediction game ((e),Π) with {X,M} ⊆ Π and
limsupn→∞(sucn(X) − sucn(M)) > 0, but there is a prediction game ((e)′,Π ′)
with {X,M} ⊆ Π ′ and limsupn→∞(sucn(M) − sucn(X)) > 0; this implies
that X is not access-optimal. Theorem 1 asserts the access-optimality but not
the dominance of regret-based meta-induction. Since there are other methods,
different from RW, that are likewise long-run optimal (such as ERW men-
tioned above), RW cannot be universally access-dominant. However, the fol-
lowing restricted dominance result for RW can be derived from Theorem1.

Theorem 2 (access-dominance for RW)

(2.1) RW dominates every accessible prediction method X (in the long run) that
is not universally access-optimal.

(2.2) Not universally access-optimal in the long run are (a) all independent (non-
clairvoyant) methods, and (b) among meta-strategies, for example, (b1) all
one-favorite methods (who at each time point imitate the prediction of one
independent method) and (b2) success-weighting, which identifies weights
with success rates (also called “Franklin’s rule” [11, p. 83]).

Proof. Theorem (2.1) is an immediate consequence of Theorem 1 and the defin-
itions of “access-optimality” and “-dominance”.

Proof of Theorem (2.2)(a): Let O be an independent method and (e′) an
O-adversarial event sequence defined as follows: e′

1 = 0.5, and e′
n+1 = 1 if

predn+1(O) < 0.5; else e′
n+1 = 0. The predictions of the perfect (e′)-forecaster

O′ are identified with the so-defined sequence, i.e., pn(O′) = e′
n. In the prediction

game ((e′), {O,O′, RW}) the success rate of O can never exceed 1/2, that of O′ is
always 1 and that of RW converges to 1 (by Theorem 1). So O is not universally
access-optimal.

The proof of Theorem (2.2)(b1) is found in [1, Sect. 4] and that of (2.2)(b2)
in [9, Sect. 7]. ��
Theorem (2.1 + 2) entails that in the long run there are “free lunches” for regret-
based meta-induction in the sense that there are prediction methods X and event
sequences (e) for which RW’s long run success is strictly greater than that of
X without there being any ‘compensating’ event sequences (e′) in which RW’s
long-run success is smaller than that of X. This apparent conflict with the NFL
folklore is investigated in the next sections.

3 NFL Theorems for Prediction Games

It is not straightforward to apply the NFL theorems to regret-based online learn-
ing. First of all, the RW account is more general than the NFL framework as
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the results of the former account hold even if clairvoyant methods are admitted
– these are prediction functions that may have future events as input. How-
ever, regret-based meta-induction should not only be attractive for those who
consider paranormal worlds as possible. Thus in what follows we take the non-
clairvoyance assumption of the NFL theorems [8, p. 1380] as granted.

Two further possible hindrances of applying the NFL framework to regret-
based online learning are treated as follows:

– Regret-based learning is defined for meta-strategies, while the NFL frame-
work applies to arbitrary prediction methods (defined as computable func-
tions from past event sequences into the next event). But every finite com-
bination of a fixed set of independent prediction methods is itself a defined
prediction method. Thus the NFL framework equally applies to prediction
meta-strategies, given that they are applied to an (arbitrary but) fixed set of
independent methods. This assumption will be made in the following.

– Online learning consists of a (possibly infinite) iteration of one-shot learning
tasks in which the test item of round n is added to the training set of round
n + 1. For this reason the NFL theorems are only applicable if one assumes a
SUPD (see below).

The strong version of Wolpert’s NFL theorem presupposes that the loss func-
tion is homogeneous [8, p. 1349], which means by definition that for every possible
loss value c, the number of possible event values e ∈ V for which a given pre-
diction leads to a loss of c is the same for all possible predictions. This require-
ment is overly strong; it is satisfied for prediction games with binary events
and the zero-one loss function loss 1− 0, which has only two possible loss values:
loss 1− 0(p, e) = 0 if p = e and loss 1− 0(p, e) = 1 if p 	= e. As soon as real-valued
predictions are allowed, a reasonable loss function will assign a loss different
from 0 or 1 to predictions different from 0 or 1. Such a loss function is no longer
homogeneous. So the strong NFL theorem does not apply to RW or any other
real-valued prediction method. Note that real-valued predictions not only make
sense in application to real-valued events but also to binary or discrete events, by
predicting their conjectured probabilities. Only a weak version of the NFL the-
orem holds for prediction games with binary events and real-valued predictions,
provided the loss function is weakly homogeneous:

Definition 3 (Weakly homogeneous loss function). 2 A loss function is
weakly homogeneous iff for each possible prediction the sum of losses over all
possible events is the same, or formally, iff ∀p ∈ Vp:

∑
e∈V �(p, e) = c� (where

c� is a constant).

For binary games with real-valued predictions and natural loss function the
condition of Definition 3 is satisfied, since for every prediction p ∈ [0, 1], �(p, 1)+
�(p, 0) = 1 − p + p = 1. Under this assumption the following weak NFL theorem
holds for the probabilistic expectation value (ExpP ) of the success rate of a
2 [8] mentions the weak no free lunch theorem in a small paragraph on p. 1354; for our

purpose this NFL theorem is the most important one.
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prediction method X, where “(e1− n)” abbreviates “(e1, . . . , en)” and V(C) =
{�(p, e) : p ∈ Vp, e ∈ V} is the set of possible loss values:

Theorem 3 (Weak NFL theorem for prediction games). Given a state-
uniform P -distribution over the space of event sequences with r possible event
values and a weakly homogeneous loss function, the following holds for every
(non-clairvoyant) prediction method X and n ≥ 0:

The expectation value of X’s success rate after an arbitrary number of rounds
is 1− c�

r , or formally, ExpP (sucn(X)) :=
∑

c∈V(C) c ·P (sucn(X) = c) = 1− c�

r .

Proof. First we prove the following.

Lemma: For every prediction method X, the expectation value of X’s loss in the
prediction of the ‘next’ event equals c*/r, conditional on every possible sequence
of ‘past’ events, or formally:

ExpP (�(pn +1, en +1) | (e1 − n)) :=
∑

c∈V(C)

c · P (�(pn +1, en +1) = c | (e1 − n)) = c�/r.

Proof of lemma: As in [8] we allow that prediction methods are probabilistic,
i.e., deliver predictions conditional on past events with certain probabilities
P (pn+1 | (e1− n)). First we compute the conditional probability of a particular
loss value c. By probability theory it holds for all n ≥ 0:

P (�(pn+1, en+1) = c | (e1− n)) =
∑

pn +1∈Vp

∑
en +1∈V δ(�(pn+1, en+1), c) ·

P (pn+1, en+1) | (e1− n)), where “δ” is the Kronecker symbol. By probability
theory we obtain =

∑
pn +1∈Vp

∑
en +1∈V δ(�(pn+1, en+1), c) · P (pn+1 | (e1− n),

en+1) · P (en+1|(e1− n)), which gives us by non-clairvoyance =
∑

pn +1∈Vp∑
en +1∈V δ(�(pn+1, en+1), c) · P (pn+1 | (e1− n)) · P (en+1|(e1− n)), and by re-

arranging terms =
∑

pn +1∈Vp
P (pn+1 | (e1− n)) · ∑

en +1∈V δ(�(pn+1, en+1), c) ·
P (en+1|(e1− n)), and finally by the state-uniformity of P (*) =

∑
pn +1∈Vp

P (pn+1|(e1− n)) · (1/r) · ∑
en +1∈V δ(�(pn+1, en+1), c). Next we compute the

expectation value: ExpP (�(pn+1, en+1) | (e1− n)) :=
∑

c∈V(C) c · P (�(pn+1,

en+1) = c | (e1− n)) from which we get by the result in line (*) =
∑

c∈V(C) c ·
∑

pn +1∈Vp
P (pn+1 | (e1− n)) · (1/r) · ∑

en +1∈V δ(�(pn+1, en+1), c) and by re-
arranging terms =

∑
pn +1∈Vp

P (pn+1 | (e1− n)) · (1/r) · ∑
c∈V(C) c · ∑

en +1∈V δ

(�(pn+1, en+1), c).
Note that “

∑
c∈V(C) c · ∑

en +1∈V δ(�(pn+1, en+1), c)” is nothing but the sum
of pn+1’s loss values for all possible events, i.e.,

∑
en +1∈V �(pn+1, en+1). So, by

the weak homogeneity of the loss function, we continue as follows: =
∑

pn +1∈Vp

P (pn+1 | (e1− n)) · (1/r) · c� = c�/r (since
∑

pn +1∈Vp
P (pn+1 | (e1− n)) = 1).

(End of proof of lemma.)
The expectation value of X’s success rate is the expectation value of the sum

of X’s scores divided by n. Since the result of the lemma holds for every round n,
the additivity of expectation values (ExpP (X1 + X2) = ExpP (X1) + ExpP (X2))
entails that ExpP (sucn(X)) = n · (1 − (c�/r))/n = 1 − (c�/r). ��
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The SUPD is a necessary condition of the application of the NFL theorem to
prediction games, because its proof presupposes that the P-distribution over V is
uniform conditional on every possible past sequence. There are generalizations
of NFL theorems for one-shot learning procedures to certain non-uniform P-
distributions [6], but they are not valid for prediction games.

For prediction games with real-valued events, convex loss functions are not
even weakly homogeneous, although certain restricted NFL theorems can be
demonstrated [12]. However, in this paper we focus on prediction games with
binary events, to which the weak NFL theorem applies, because here the apparent
conflict of this theorem with RW’s access-dominance is most vivid.

4 Meta-Induction and NFL: The Long-Run Perspective

Is there a contradiction between the weak NFL theorem and the existence of
free lunches for RW meta-induction? In regard to the long run perspective our
answer can be summarized as follows: No, the contradiction is only apparent.
According to Theorem 2 (Sect. 2) there are RW-accessible methods whose long-
run success rate is strictly smaller than that of RW in some world states and
never greater than that of RW in any world state. Let us call these methods
Xinf (for “inferior”). Nevertheless the state-uniform expectation values of the
success rates of RW and Xinf are equal, because the state-uniform distribution
that Wolpert assumes assigns a probability of zero to all worlds in which RW
dominates Xinf ; so these worlds do not affect the probabilistic expectation value.

Wolpert seems to assume that the state-uniform prior distribution is epis-
temically privileged. Reasonable doubts can be raised here, inasmuch as a well-
known result in probability theory tells us that the state-uniform distribution is
the most induction-hostile prior distribution one can imagine:

Theorem 4 (Induction-hostile uniformity). [13, pp. 564–566], [14, pp. 64–
66]: Assume the probability density distribution DP is uniform over the space of
all infinite binary event sequences {0, 1}ω. Then P (en+1 = 1 | (e1− n)) = 1/2,
for every possible next event en+1 and sequence of past events (e1− n). Thus P
satisfies the properties of a random IID-distribution over {0, 1}, whence inductive
learning from experience is impossible.

Theorem 4 implies that a proponent of a state-uniform distribution believes
with probability 1 that the event sequence to be predicted is an IID random
sequence, i.e., (a) it consists of mutually independent events with a limiting
frequency of 0.5, and (b) it is non-computable. Condition (a) follows from
Theorem 4 and condition (b) from the fact that there are uncountably many
sequences, but only countably many computable ones. However, the sequences
for which a non-clairvoyant prediction method can be better than random guess-
ing are precisely those that do not fall into the intersection of classes (a) or (b).
Summarizing, according to a state-uniform prior distribution we are a priori
certain that the world is completely irregular so that no inductive or other intel-
ligent prediction method can have more than random success.
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If every sequence (e) ∈ {0, 1}ω is represented by a real number r ∈ [0, 1] in
binary representation, then the state-uniform density distribution DP is uniform
over the interval [0, 1]. Yet, if the same density is distributed over the space of
statistical hypotheses Hr, asserting that the limiting frequency of 1s in (e) is
r (for r ∈ [0, 1]), it becomes maximally dogmatic, being concentrated over the
point r = 1/2: D(Hq) = 0 for q 	= r and D(Hq) = ∞ for q = r.

According to a second well-known result in probability theory, a prior dis-
tribution that is not state-uniform but frequency-uniform, i.e., uniform over all
possible frequency limits r ∈ [0, 1] of binary sequences, is highly induction-
friendly. Such a distribution validates Laplace’s rule of induction, P (en+1 =
1 | freqn(1) = k

n ) = k +1
n+2 . Solomonoff [15, Sect. 4.1] has proved that a distri-

bution is frequency-uniform iff the probability it assigns to sequences decreases
exponentially with their algorithmic complexity.

Which prior distributions are more ‘natural’, state-uniform ones or frequency-
uniform ones? In our eyes, this question has no objective answer. It is a great
advantage of the optimality of meta-induction that it holds regardless of any
assumed prior probability distribution. For a frequency-uniform prior distribu-
tion the probability of world-states in which meta-induction dominates random
guessing in the long run is one. For a state-uniform prior the probability of
world-states in which meta-induction dominates random guessing in the long
run is zero. Nevertheless there are (uncountably) many such world-states and
we should certainly not exclude these induction-friendly world-states from the
start by assigning a probability of zero to them. This consideration gives us
the following minimal acceptance criterion for prior distributions: They should
assign a positive (even if small) probability to those world-states in which access-
dominant prediction methods enjoy their free lunches.

5 Meta-Induction and NFL: The Short-Run Perspective

For finite sequences, the strict dominance of RW fails since the advantage of RW
meta-induction comes at a certain regret. Is meta-induction still advantageous
over the space of all short-run sequences? This question is addressed in this
section.

Table 1 presents the result of a simulation of all possible binary prediction
games with a length of 20 rounds. The considered independent methods are

– majority-induction “M-I”, predicting the event that so far has been in the
majority, or formally, pn+1(M-I) = 1/0.5/0 iff freqn(1) > / = / < 0.5,

– majority anti-induction “M-AI”, predicting the opposite of M-I, i.e.,
pn+1(M-AI) = 1/0.5/0 iff freqn(1) < / = / > 0.5, and

– averaging “Av”, which always predicts the average of all possible event values,
which is 0.5 in binary games.

The considered meta-inductive strategies are RW and, for sake of comparison,
ITB.
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Table 1 displays the frequencies of sequences for which the absolute success
of a prediction method (based on the natural loss function) lies in a particular
interval, as specified at the left margin. Success intervals are arranged symmetri-
cally around the average value 10. As expected, the weak NFL theorem applies:
in accordance with it one sees on the bottom line that the state-uniform average
success is the same for all five methods. Nevertheless the frequencies of sequences
for which these methods reach certain success levels are remarkably different.

The success frequencies of M-I and M-AI are different for different success
intervals, because M-I has its highest success in very regular sequences (e.g.,
1111. . .) with high frequencies of 1s or of 0s, in which ties of so far observed
frequencies are rare, while M-AI has its highest success in oscillating sequences
(e.g., 1010. . .) in which ties of so far observed frequencies are frequent. This
brings a score of 0.5 more often to M-AI than M-I. As a result, M-I’s success can
climb higher than M-AI’s success, though the frequency of such cases is small.
In compensation, the number of sequences in which M-AI does only little better
than average is higher than the corresponding number of sequences for M-I.
Observe the mirror-symmetric distribution of sequences over M-I’s and M-AI’s
success intervals, following from the fact that for any given sequence abs20(M-I)
= 1− abs20(M-AI).

In contrast, Av always predicts 0.5 and earns a sum-of-scores of 10 in all
possible worlds. The meta-inductive methods ITB and RW reach the top suc-
cesses that object-induction (M-I) achieves in highly regular worlds, although in
a diminished way due to their short run regrets. The advantage of RW is that
it manages to avoid low success rates: following from its near access-optimality
RW’s success is in every possible sequence close to the maximal success in this
sequence; so RW cannot fall much behind Av’s success rate which is 0.5 (10 of
20 points) in all sequences. In contrast, M-I has a poor performance, and ITB
and M-AI an even worse performance, in some sequences.

Similar tendencies can also be observed in other settings. Increasing the num-
ber of rounds has the effect that the frequency of sequences with high or low
success rates steadily decreases, as explained in the previous section.

Based on these results we obtain a justification of object-induction and meta-
induction even within the induction-hostile perspective of a state-uniform prior
distribution for binary short-run sequences. What counts are two things: (a)
To reach high success in those environments which allow for non-accidentally
high success by their intrinsic regularities. This is what independent inductive
methods do. (b) To protect oneself against high losses (compared to average
success) in induction-hostile environments. This is what cautious methods such
as Av do. The advantage of RW meta-induction is that it combines both: reaching
high success rates where it is possible and avoiding high losses. Thus RW achieves
‘the best of both worlds’. This, however, comes at the cost of a certain short-run
regret.

The preceding version of a justification of meta-induction works within
the most induction-hostile prior distribution – a SUPD. If one switches to a
frequency-uniform prior distribution, one thereby adopts an induction-friendly
perspective. This result is displayed in Table 2 for a simulation of all possible
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Table 1. Meta-induction and no-free-lunch for binary-event games. Cells show percent-
age of possible binary sequences with 20 rounds, for which the five methods M-I, M-AI,
Av, ITB and RW have reached certain intervals of absolute successes (left margin).

M-I M-AI Av ITB RW
A

b
so

lu
te

su
cc

es
s

in
te

rv
a
ls

[0,1) 0 0.0002 0 0 0

[1,2) 0 0.003 0 0.0004 0

[2,3) 0 0.029 0 0.008 0

[3,4) 0 0.159 0 0.077 0

[4,5) 0 0.618 0 0.394 0

[5,6) 0.537 1.824 0 1.412 0

[6,7) 3.540 4.254 0 3.708 0

[7,8) 9.579 8.035 0 7.555 0

[8,9) 15.622 12.476 0 12.966 36.491

[9,10) 18.346 16.065 0 18.238 23.472

10 8.910 8.910 100 9.848 0

(10,11] 16.065 18.346 0 17.642 14.835

(11,12] 12.476 15.622 0 14.213 11.880

(12,13] 8.035 9.579 0 8.155 7.469

(13,14] 4.254 3.540 0 3.558 3.595

(14,15] 1.824 0.537 0 1.486 1.513

(15,16] 0.618 0 0 0.555 0.560

(16,17] 0.159 0 0 0.152 0.153

(17,18] 0.029 0 0 0.029 0.029

(18,19] 0.003 0 0 0.003 0.003

(19,20] 0.0002 0 0 0.0002 0.0002

State-uniform
average success

10 10 10 10 10

sequences of length 20 applied to the methods of Table 1. In Table 2 the left mar-
gin displays intervals for the possible frequencies of 1s in the 20-round sequences
and the cells display the achieved (average) absolute successes of the methods
for sequences whose frequencies lie in these intervals.

Note that the more decentered a frequency interval, the lower is its cor-
responding entropy. M-I is most successful in all frequency intervals that are
not close to the center. It is only in the interval [0.4,0.6] – which, of course,
contains many more individual sequences than the other intervals – that Av
performs better than M-I. However, Av’s mean success in this interval is worse
than the mean success of the anti-inductive method M-AI, which performs badly
in the decentral intervals. Again, the meta-inductive methods combine both fea-
tures: in the central interval they don’t lose much compared to Av, while in the
decentral intervals their mean success rate comes close to that of M-I and beats
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Table 2. Meta-induction for binary events from the perspective of frequency-uniform
distributions. Cells show (average) absolute successes of the five methods M-I, M-AI,
Av, ITB and RW, for binary sequences with 20 rounds, in dependence of their event-
frequencies (left margin).

M-I M-AI Av ITB RW
F
re
q
u
en

cy
in
te
rv
a
ls

[0,0.1] 17,5 2,5 10 17,12 17,14

[0.1,0.2] 15,4898 4,5102 10 14,7254 14,7103

[0.2,0.3] 13,4314 6,56857 10 12,2263 12,1212

[0.3,0.4] 11,2313 8,76873 10 9,81723 9,90422

[0.4,0.5] 8,82824 11,1718 10 9,80868 9,77248

[0.5,0.6] 8,82824 11,1718 10 9,80868 9,77248

[0.6,0.7] 11,2313 8,76873 10 9,81723 9,90422

[0.7,0.8] 13,4314 6,56857 10 12,2263 12,1212

[0.8,0.9] 15,4898 4,5102 10 14,7254 14,7103

[0.9,1] 17,5 2,5 10 17,12 17,14

Average for
frequency uniform
distribution

13.30 6.70 10 12.74 12.73

that of Av and M-AI. As expected, the frequency-uniform expectation values of
the absolute success is much higher for inductive than for non-inductive methods;
M-I has the lead, closely followed by ITB and RW.

6 Conclusion

In this paper we applied the (weak) no free lunch (NFL) theorem to regret-based
meta-induction (RW) in the framework of prediction games. The challenge of the
NFL theorem cannot be ‘solved’ by arguing that expected successes should be
computed relative to the ‘actual’ (instead of some prior) distribution, because
this idea is viciously circular. A more robust defense is possible based on an
a priori result concerning the access-dominance of RW. Since this dominance
result implies the existence of free lunches for RW it seems to contradict the
NFL theorem. This conflict was dissolved based on four core result:

(1) A weak NFL theorem can be proved for prediction games (with binary events
and natural loss function) under the assumption of a SUPD (a state-uniform
probability distribution). A SUPD is maximally induction-hostile. In con-
trast, a frequency-uniform distribution is induction-friendly. Either sort of
prior distribution is subjective and biased.

(2) Concerning success in the long run, the meta-inductive prediction strategy
RW enjoys free lunches compared to all prediction methods that are not
access-optimal (and most prediction methods aren’t). However, the SUPD
underlying the NFL theorem assigns a probability of zero to the class of all
event sequences in which RW dominates other methods. This dissolves the
apparent conflict with the NFL within the long-run perspective.
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(3) Concerning success in the short run, the following short-run advantage of
RW can be demonstrated even under the induction-hostile perspective of an
SUPD: What counts is (a) to reach high success rates in regular (low-entropy)
environments, which is what independent inductive methods do, and (b) to
protect against high losses, compared to average success, in irregular (high-
entropy) environments, which is what cautious “averaging” methods do. RW
meta-induction combines both advantages, at the cost of a small short-run
regret.

(4) If one assumes a frequency-uniform prior, then (meta-) inductive prediction
strategies outperform non-inductive methods for all event sequences whose
entropy is not close-to-maximal.
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