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Abstract. Task networks are a powerful tool for AI planning. Classi-
cal approaches like forward STN planning and SHOP typically devise
non-deterministic algorithms that can be operationalized using classical
graph search techniques such as A*. For two reasons, however, this strat-
egy is sometimes inefficient. First, identical tasks might be resolved sev-
eral times within the search process, i.e., the same subproblem is solved
repeatedly instead of being reused. Second, large parts of the search space
might be redundant if some of the objects in the planning domain are
substitutable.

In this paper, we present an extension of simple task networks that
avoid these problems and enable a much more efficient planning process.
Our main innovation is the creation of new constants during planning
combined with AND-OR-graph search. To demonstrate the advantages
of these techniques, we present a case study in the field of automated ser-
vice composition, in which search space reductions of several magnitudes
can be achieved.

1 Introduction

Hierarchical planning is an established and powerful technique for AI planning
[1,3,13]. One interesting application of hierarchical planning is automated service
composition, which is the task to compose a new software artifact from exist-
ing ones [8,15,19]. However, there are settings in which standard hierarchical
planning, even when looking like a natural approach, turns out to be infeasible.

As an illustration, we consider the example of nested dichotomies, a technique
for polychotomous classification in machine learning [5]. A nested dichotomy
(ND) is a binary tree, in which every node n is labeled with a set c(n) ⊆ Y
of classes Y, such that the root is labeled with Y, and c(n) = c(n1) ∪̇ c(n2)
for every inner node n with successors n1 and n2. Figure 1 shows two example
dichotomies for the case of four classes. An object to be classified is submitted
to the root and, at every inner node, sent to one of the successors by the binary
classifier associated with that node; the class assigned is then given by the leaf
node reached in the end. Since different NDs give rise to different sets of binary
classification problems, the overall performance is strongly influenced by the tree
topology. Considering an ND as a “classification service”, hierarchical planning
appears to be a natural approach for its configuration: starting at the root, the
splits are configured iteratively until every leaf node is labeled with exactly one
class.
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Fig. 1. A partial and a complete ND for four classes.

The first problem with classical hierarchical planning is that, when enumerat-
ing different NDs, the same subsolutions are computed several times. For exam-
ple, both NDs in Fig. 1 contain the node A,B, which is refined twice by a classi-
cal planner. The second problem is that each node of the ND is represented by
a planning constant, but the constants actually have no specific meaning. For
example, we need 7 constants, say v1, ..., v7, for the nodes of the right ND of
Fig. 1. It does not matter which of the nodes is represented by which constant,
but a classical planner tries all combinations, which yields an enormous and
unnecessary search space explosion.

We propose planning with independent task networks (ITN) to overcome
these problems (Sect. 2). The main novelties are the on-the-fly creation of plan-
ning constants and the reuse of subsolutions through the notion of AND-OR-
graph search. In a case study, we show that this can yield search space reductions
of several orders of magnitude (Sect. 3). The case study also sheds light onto a
class of planning problems rarely considered in the planning community, e.g., the
typical competitions, namely the one of automated service composition. While
most frequently considered planning problems may not exhibit the discussed
property of independent tasks, it is a common (sometimes essential) property in
every recursive program. Drawing attention to this class of planning problems
is, hence, another aim of the paper.

2 Independent Task Network Planning

We introduce our method in four steps. The first two subsections explain the
formal basis of planning in general and hierarchical planning, respectively. We
then describe the core elements of ITN planning and the ITN algorithm. Finally,
we address some important aspects of the ITN that enable additional search
space reductions.

2.1 Basic Elements of Planning

As for any planning formalism, our basis is a logic language L and planning
operators that are defined in terms of L. The language L has function-free first-
order logic capacities, i.e., it defines an infinite set of variable names, constant
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names, predicate names, and quantifiers and connectors to build formulas. An
operator is a tuple 〈nameo, preo, posto〉 where nameo is a name and preo and
posto are formulas from L that constitute preconditions and postconditions,
respectively.

The postconditions posto are often restricted to be literal sets, like in
STRIPS. We relax this assumption a bit and allow conditional postconditions,
i.e., posto is of the form

∧
α → β where α is a formula from L and β is a set of

literals.
A plan is a sequence of ground operations. As usual, we use the term ground

to say that all variables have been replaced by terms that only consist of con-
stants. That is, an operation is ground if all variables in the precondition and
postcondition have been substituted by terms from L that only contain con-
stants. Ground operators are also called actions; we write prea and posta for its
precondition and postcondition, respectively.

The semantic of actions is that they modify the state in which they are
applied. A state is a set of ground positive literals. Working under the closed
world assumption, we assume that every ground literal not explicitly contained
in a state is false. An action a is applicable in state s iff s |=cwa prea. The
successor state s′ induced by this application is s if a is not applicable in s and
(s ∪ add) \ del otherwise; here, add and del contain all the positive and negative
literals, respectively, that are in a conditional postcondition of a whose condition
is true in s.

2.2 Simple Task Networks

A simple task network (STN) is a partially ordered set T of tasks [7]. A task
t(v0, ..., vn) is a name together with a list of parameters, which are variables or
constants from L. A task named by an operator is called primitive, otherwise it
is complex. A task whose parameters are constants is ground.

We are interested in deriving a plan from a task network. Intuitively,
we can refine (and ground) complex tasks iteratively until we reach a task
network that only consists of ground primitive tasks, i.e., a set of partially
ordered actions. While primitive tasks can be realized canonically by a sin-
gle operation, complex tasks need to be decomposed by methods. A method
m = 〈namem, taskm, prem, Tm〉 consists of its name, the (non-primitive) task
taskm it refines, a logic formula prem ∈ L that constitutes a precondition, and
a task network Tm that realizes the decomposition. Replacing complex tasks
by the network specified in the methods we use to decompose them, we itera-
tively derive new task networks until we obtain one with ground primitive tasks
(actions) only.

The definition of a simple task network planning problem is then straight
forward. Given an initial state s0 and a task network T0, the planning problem
is to derive a plan from T0 that is applicable in s0. A simple task network
planning problem is then a tuple 〈s0, T0, O,M〉, where O and M are finite sets
of operators and methods, respectively.
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Fig. 2. The task network that refines node n of a partial nested dichotomy.

Note that the definition of a method usually contains more variables than
the task it refines. That is, it makes use of objects that are not directly relevant
for formulating the task, yet relevant to solve it in the spirit of the respective
method.

2.3 Independent Task Networks: General Idea

We propose independent task networks (ITNs), which are an extension of STNs,
with the purpose to enable an efficient decomposition of independent subprob-
lems. The core feature of ITNs is that tasks may be labeled as independent to
assert that each of its refinements is compatible with every refinement of non-
preceding tasks. More formally, let T be a task network with t ∈ T marked as
independent, and let T ′ ⊂ T \ {t} be the tasks in T that are no predecessors of
t. Then for every state s on which we decompose T , and for which plans π and
π′ can be derived from {t} and T ′, respectively, such that π.π′ is applicable in s,
every derivable plan π′′ of {t} applicable in s must be combinable with π′ such
that π′′.π′ is applicable in s. In other words, the choice of the first partial plan
π′′ does not affect the applicability of the second partial plan π′.

As an example, consider the task network in Fig. 2. This is the task network
belonging to the method that refines a non-terminal node of a partial dichotomy
by splitting it up into two new child nodes. The first two tasks in the network are
primitive, i.e., they can be realized by single actions, and the last three tasks are
complex. The tasks init(n, lc, rc, x ), shift(y , x , lc, rc), and config(lc, rc) create
the child nodes lc and rc of n and define their labels; the exact formalization is
given below in Sect. 3.2. The tasks refine(lc) and refine(rc) mark a refinement of
those child nodes, i.e., they are independent since their solutions are independent
of each other. Every plan derived for refine(lc) can be combined with every plan
derived for refine(rc).

The need to manually define whether or not a task is independent of the oth-
ers has its root in the difficulty to define complete conditions of independence
that can be checked automatically. Indeed, it is easy to specify sufficient con-
ditions, e.g., based on the task names. For example, we can syntactically check
whether two tasks must be independent if all methods and operators reachable
from them have disjoint preconditions and effects respectively. However, this
specific rule is too strict in general, and we expect that deciding independence
in general is undecidable. On the other hand, in particular when the planning
algorithm simulates a recursive execution tree—like in our nested dichotomy
problem but also, the expert easily sees that the tasks are independent.
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Algorithm 1. IFD(s, T,O,M)
1 if T = ∅ then return the emply plan U ← {t | t ∈ T, t has no non-recursive

predecessor in T}
2 if U = ∅ then
3 choose any u ∈ T that has no predecessor in T
4 if u is a primitive task then
5 active ← {(a, σ) | a is a ground instance of an
6 operator in O, σ is a substitution such that
7 namea = σ(tu), and a is applicable to s}
8 if active = ∅ then return failure choose any (a, σ) ∈ active

π ← IFD(γ(s, a), σ(T \ {u}), O, M)
9 if π = failure then return failure else return a.π

10 else
11 active ← {(m, σ) | a is a ground instance of a
12 method in M , σ is a substitution such that
13 namem = σ(tu), and m is applicable to s}
14 if active = ∅ then return failure choose any (m, σ) ∈ active
15 return IFD(s, σ(Tm), O, M)

16 end

17 else
18 ∀u ∈ U : πu = IFD(s, {u}, O, M)}
19 πT−U ← IFD(s, T \ U, O, M)
20 return πu1 ...πun .πT−U

21 end

The non-deterministic independent forward decomposition (IFD) algorithm
is shown in Algorithm 1. In fact, the part for U = ∅ is equal to the partial
forward decomposition algorithm (PFD) [7, p. 243] except that the recursive
call is IFD and not PFD. So the important points are the computation of the
relevant recursive tasks U in the beginning (line 1), and the final else-branch
where those tasks are resolved (lines 16–19). Note that there is no choice point in
the last branch, because all of the tasks must be solved—no decision is required.
The independent tasks are solved in isolation and the solution of the remaining
problem is appended to the concatenation of subsolutions of the independent
tasks. It is easy to show that the routine is sound and complete; we omit the
proofs of these formal properties due to space limitations.

A deterministic implementation of the above algorithm can be devised by an
AND-OR-graph search such as general best first (GBF). As usual, the choice
points (non-deterministic choices) constitute OR-nodes in such a graph. While
PFD induces a simple OR-graph, the last branch of RFD induces an AND-node
with one successor for each u ∈ U and one for T \ U . Note that the child nodes
here are partially ordered: there is no order among the child nodes for u ∈ U ,
but all of them are ordered previously to the node for T \ U .
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Fig. 3. Context functions help identify search graph nodes.

2.4 A Look at the Details

While the RFD algorithm is already sufficient to solve subproblems indepen-
dently, we allow for three more features that are important to actually achieve
an efficiency improvement in the planning process. These features are constant
creation, context functions, and lonely methods.

First, we allow operators (and methods) to introduce new constants. Intu-
itively, the connection to independent tasks is that those tasks constitute sub-
problems, which are derived from the current one. In Fig. 2, for example, refining
the child nodes lc and rc are subproblems we derived from n. Since lc and rc
are only relevant for this specific task, it is reasonable that they are created
only for this purpose and known only within this method instead of being taken
from a previously defined object storage. In the algorithm, this becomes rele-
vant when active methods and actions are determined. Here, substitutions map
output parameters not to constants of the state s but to globally unique new
constants from L.

Second, ITNs allow one to equip tasks with context functions that enable the
identification of equal subproblems during the search process. We face the prob-
lem that we may create independently solvable identical tasks that cannot be
recognized as such. For example, the nested dichotomies in Fig. 1 both contain
the node labeled A,B. Covering both dichotomies in the course of plan deriva-
tion, we would encounter a task refine(v1 ) for some state s1 and refine(v2 ) for
some state s2, where v1 and v2 are different constants both encoding the refine-
ment of A,B. That is, the subproblems refine(v1 ) and refine(v2 ) are identical,
but s1 
= s2 and v1 
= v2 prevent us from detecting this equality. A context
function φt : S → S × Λ overcomes this problem by assigning a state s a pair
(s′, λ), where s′ ⊆ s is a reduction of the state s, such that a plan derived from
{t} is applicable in s′ iff it is applicable in s, and λ ∈ Λ is a bijective mapping
of constants in s′ to constants in L, i.e., a renaming of constants. In the above
example, we would have λ(v1) = AB = λ(v2), where AB is a constant, and the
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states are reduced to the literals really relevant to the subproblems such that
φrefine(v1 )(s1) = φrefine(v2 )(s2).

Incorporating context functions in the search algorithm simply means to
change the recursive call for the tasks u ∈ U in the lower else-branch to
RFD(φ(s), {λ(u)}, O,M). Figure 3 shows how this allows for the identification
of nodes in the search space.

Third, methods may be declared as lonely in order to denote that the possible
derivations of the resulting task network do not depend on the choices of the
parameters. This is important for methods that only check some property while
not affecting the state. For example, we may want to check that a node n is
labeled with exactly one class. We achieve this by (i) choosing one class in the
label of n, removing it, and (ii) checking whether the node label is then empty.
If n would be labeled with several classes, the emptiness check (ii) would fail
independently of which class we chose. Hence, we only need one representative
of the labels of n to check the condition, i.e., only one instance of that method
is required.

Just like simple task networks, ITNs induce a specific planning routine. It is
common sense that simple task networks can only be reasonably solved through
forward planning [7]. For ITNs, this is particularly true due to the context func-
tions, which can not be evaluated until the state of invocation is known. Typi-
cally, this is only the case if the task network is resolved in a forward fashion.

3 Case Study: Configuration of Dichotomies

The improvements that can be achieved by ITN planning (in the settings where
it applies) obviously depend on the concrete problem at hand. Here, we focus on
the problem of ND configuration already presented in the introduction. For this
example, we demonstrate a tremendous reduction of the search space (fully effec-
tive if AND-OR-graph search can reasonably be applied). Prior to proceeding,
let us again emphasize that the approach is by no means restricted to this prob-
lem, but applies to other configuration problems (e.g., the configuration of deep
neural networks) in very much the same way. All implementations are available
for public1.

3.1 Nested Dichotomies

As already explained, nested dichotomies reduce a polychotomous classification
problem to a set of binary problems (that are presumably easier to solve). To this
end, the set of classes is recursively partitioned into subsets, and for each such
partition, a classifier is trained on a given set of training data. The criterion to
be optimized is the overall prediction accuracy (percentage of correctly classified
items), which depends on the quality of the binary classifiers, and therefore on
the topology of the ND. Given a dichotomy, the accuracy can be estimated by
training the required binary classifiers and applying the ND to suitable test data.
1 Sources are available at http://www.felixmohr.de/en/research/crc901/itn.

http://www.felixmohr.de/en/research/crc901/itn
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Since training and evaluation are not relevant here, we ignore these steps in
our case study; instead, we focus on searching the space of nested dichotomies
(topologies). This already constitutes a challenging planning problem. It has
been shown that for n classes, there are (2n − 3)!! nested dichotomies [5], where
!! is the double factorial (and not taking the factorial twice). Hence, for 10 classes,
there are 34,459,425 many nested dichotomies—certainly too many for picking
one by hand.

3.2 Problem Formalization

We now explain how the configuration of such NDs can be encoded as a hierarchi-
cal planning problem. The formalization makes sure that each ND is constructed
exactly once. Besides the standard elements, it requires universal quantifiers,
conditional postconditions whose conditions may be 2-CNFs, and outputs, which
are separated by a semicolon. We need five operators, which will correspond to
primitive tasks:

1. init(n, x ; lc, rc)
Pre: in(x ,n)
Post:

∧

true → in(x , rc) ∧ bst(x , rc) ∧ sst(x , rc)
∀xn : in(xn ,n) ∧ xn 
= x → in(xn , lc)
∀x2, xo : x 
= x2 ∧ in(x2, n)∧

sst(x ,n) ∧ (¬in(xo ,n) ∨ xo > x2 ) → sst(x2 , lc)
∀xs : sst(xs ,n) ∧ xs 
= x → sst(x , lc)

2. shift(y , x , lc, rc)
Pre: in(x , l) ∧ bst(y , r)
Post: in(x, r) ∧ bst(x, r) ∧ ¬in(x, l) ∧ ¬bst(y, r)

3. close(l , lw , r , rw)
Pre: in(lw , l) ∧ in(rw , r)
Post: ∅
Intuitively, the idea behind these operators is to split up the labels of a node

until every leaf node is labeled with a single class. A node is refined by creating
two child nodes (via the init operator), where initially all classes except one (x)
of the parent are in the left child. Then, we can use the shift operator to move
single classes from the left to the right child. The predicates bst and smt are
used to memorize the biggest and smallest elements of nodes, which is necessary
to avoid mirroring NDs, i.e. one separating A,B from C,D and the other C,D
from A,B The close operator is used to guarantee the existence of at least one
class in each of the children, which are the “witnesses” lw an rw.

We need two tasks with five methods to complete the specification. The
first task is refine(n), which means that the classes of node n shall be split up
somehow. The second task is config(l , r), which means that classes are to be
moved from the left to the right child of some node. In the following, lonely
methods are annotated with an asterisk, and independent tasks are underlined.
There are three methods for refine(n):
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1. finalSplit∗(n, x , y ; lc, rc)
Pre: in(x ,n) ∧ in(y ,n) ∧ y > x ∧ ∀z : in(z ,n) → z = x ∨ z = y
Task Network:
init(n, lc, rc, y)

2. isolatingSplit(n, x ; lc, rc)
Pre: in(x ,n)
Task Network:
init(n, lc, rc, y) → refine(lc)

3. doubleSplit(n, x , y ; lc, rc)
Pre: in(x ,n) ∧ in(y ,n) ∧ y > x ∧ ¬sst(x ,n)
Task Network:
init(n, lc, rc, y) → shift(y , x , lc, rc) → config(lc, rc) → refine(lc) → refine(rc)

There are two methods for config(l , r), which are

1. shiftElementAndConfigure(l , r , x , y)
Pre: in(x , l) ∧ bst(y , r) ∧ x > y
Task Network: shift(x, y, l, r) → config(l, r)

2. closeSetup∗(l , lw , r , rw)
Pre: in(lw , l) ∧ in(rw , r)
Task Network: close(l, lw, r, rw)

The initial task network is then simply {refine(root)} where the initial state s0
defines root and the ordering of classes. That is, s0 = ϕ(C) ∧ ∧

x∈C in(x, root)
where C is the set of classes and ϕ maps C to an arbitrary explicit total order
of items of C, e.g., the lexicographical order. The latter one is important to
maintain the bst and sst predicates.

3.3 Results

The evaluation is a mixture of experiments and rough bound estimates. On the
one hand, it is non-trivial to calculate the exact search space sizes for a problem.
Moreover, since the results cannot be immediately generalized, this calculation is
not worth the effort. On the other hand, since we only want to demonstrate the
general effects, namely orders of magnitudes of search space reduction, accurate
values only distract from the key message. For the same reason we omit the
proofs for the bounds. In fact, we determined better bounds than the ones we
report here, but these are complicated to compute, which is not justified in light
of the limitations imposed by the setup and space.

The results are summarized in Fig. 4. In cases where the number could not
be computed algorithmically, values with an asterisk were estimated based on
expansion models. We now discuss the results in detail.

The Baseline: Standard STN/PFD Planning. We can easily modify the
above encoding to make it fit to standard STN planning. Since standard planning
cannot create new objects, we must define a set of objects for the nodes of the
dichotomy already in the initial state. Every nested dichotomy for k classes
has 2k − 1 many nodes, one of which is the root, so the initial state of the
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problem must define the root node object and 2k − 2 additional node objects.
The methods and operators that create objects are redefined in the sense that
the outputs are now inputs. An auxiliary predicate inuse(x ), which is initially
true for the root node and false for the other node objects, is required to be false
in the preconditions of the “creating” methods and operator, and it is set to true
in the postcondition of the creating operators. In addition, we add lc 
= rc to the
preconditions in order to make sure that the two “created” objects are distinct.
Such a problem can then be fed to an implementation of PFD [7]; since we are
interested in the total search space size, we used a simple breadth first search.

In principle, a more efficient encoding is possible for STN planning. When
using alternative effects with universal quantifiers, we could simulate the con-
stant generation process. However, these are not supported by common hierar-
chical planners, and such an encoding would also require a neat implementation
of the planner in order to avoid an explosion of the node expansion time. Besides,
this option is limited to cases where we already know the number of required
constants, which is not the case in many scenarios, e.g., the configuration of a
deep neural network.

The search space growth under this encoding renders the search process hope-
less. One can show that the number of nodes induced for an OR-graph by PFD
planning is at least (2k − 3)!!k, where k is the number of classes.

The extreme search space explosion is caused by an unnecessary redundancy
in the set of found solutions. This is because different node objects are used
to carry out the same operation. For example, a node ni is split into children
(ni+1, ni+2), (ni+1, ni+3), . . ., (ni+1, nl), . . ., (nl−1, nl), even though only one
of those would be sufficient. This is avoided by creating new constants, which
are built exactly for that single refinement purpose. This problem was discussed
previously in the context of automated service composition [9]. As a consequence,
PFD produces 2, 72, and 17 280 solution nodes for k = 2, 3, and 4, respectively,
although there are actually only 1, 3, and 15 distinct solutions.

Improvement by Creating Constants. Now consider the case that we still
stick to an OR-graph search like PFD but allow the creation of new objects.
That is, the encoding is as specified above, except that we apply PFD instead of
the RFD algorithm introduced in Sect. 2.3. In the following, we call this strategy
PFD + OC.

In comparison to the naive approach of a standard STN encoding, the search
space size already looks much more feasible. For values of k = 2, ..., 10, the values
are contained in the second column of the table in Fig. 4. Clearly, the search space
is still quite huge, i.e., still grows exponentially in the number of classes, but the
order of magnitude is much less. More precisely, we can safely upper bound the
search space size by c · k · (2k − 3)!!, where k is the number of classes and c is a
small constant. By the above lower bound for naive search, this implies that the
search space size is smaller by a factor of at least ( 2k−3!!

c·k )k−1 > (2k − 3!!)k−2.
This enormous gap can be observed in Fig. 4 between the green and the red line.
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# classes PFD PFD + OC RFD
2 1 15 18
3 27 59 64
4 56 625 349 202
5 1.3E+10* 2 694 625
6 7.1E+17* 26 000 1 935
7 1.3E+28* 301 833 5 988
8 1.1E+41* 4 094 241 18 456
9 5.8E+56* 42 788 697* 56 563
10 2.4E+75* 660 099 747* 172 381
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Fig. 4. Search space sizes for the three models measured in terms of the number of
edges, which corresponds to the number of nodes for STN. Values with asterisk were
obtained by estimates, since the model exceeded the machine resources. (Color figure
online)

Improvement by ITN Planning. Let us now consider the savings achieved by
ITN planning. That is, we apply the RFD algorithm to the problem description
as given above.

The result is again a dramatic search space reduction. The search space
growth is still exponential but significantly less than in the case of STN planning
with object creation. We can lower bound the search space size of PFD + OC by
k · (2k − 3)!! � 10k−2 and upper bound the search space size of ITN planning
by 3k+1. These bounds imply that the search space size of PFD + OC is at least
3k−2 times higher than the search space size induced by running an AND-OR-
graph search on the graph imposed by the RFD algorithm. In other words, for
deriving NDs, the search space of PFD + OC is exponentially larger than the
one of ITN planning.

Another important (though maybe typical) observation one can make by
comparing the two blue lines in Fig. 4 is that the number of edges in ITN plan-
ning grows slower than the number of solutions. This is because the solutions
are implicitly stored in the sub-graphs of the search space, so we actually need
less nodes and edges to cover all solutions than in the other approaches. The
impact of such an efficient representation can be quite paramount. For example,
for the case of NDs it is often said that one cannot consider all NDs [5], which is
a reasonable assertion at first sight given their tremendous number. Of course,
there are limits. However, with an admissible and sufficiently informative heuris-
tic for solution bases, we can actually (implicitly) consider all NDs even for sizes
that significantly exceed the possibilities of OR-graphs.

3.4 Discussion

The case study of ND configuration impressively shows the potential benefits of
ITN planning with respect to the search space size. In fact, the improvements
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are so obvious that no further discussion is needed. Instead, we dedicate the
remaining space to the discussion of some more subtle aspects.

For example, a reduction of the search space does not immediately imply
better solutions. First, in spite of all savings, we usually cannot construct the
complete search graph. Instead, we still need to rely on heuristic search to explore
promising parts of the search space. If these heuristics are good enough, it may
happen that we find comparable solutions, or even the optimal ones, within a
given time bound.

Second, an important requirement for successful AND-OR-graph search is
that the quality of a solution can be aggregated from its partial solutions. If this
is not directly possible, AND-OR-graph search may even deliver worse results
than a simple best-first search, which has a complete solution base available in
every node, no matter the search space size. However, at least for the shift from
classical STN planning to STN planning with object creation, we can be certain
that solution qualities will be at least as good and often better. Any heuristic
we can apply for the classical STN planning version, we can also apply for the
one with object creation. More precisely, for each node n of the search space of
the object creation version, there is a set N(n) of actually equivalent nodes in
the search space of the classical problem formulation that are very likely to be
all expanded before any solution is found.

To summarize, an ITN planning encoding does significantly decrease the
search space size regardless of whether the search takes place in an OR-graph or
an AND-OR-graph. Compared to the use of a classical encoding, this enables a
much more efficient search. In this regard, AND-OR-graph search is even better
than OR-graph search, but this approach assumes that solution quality can be
aggregated from partial solutions.

4 Related Work

We are not the first in pointing out the necessity to create new constants during
planning. In particular, for web service composition [10], the positive effect of
allowing the introduction of new objects on the search space size was already
discussed in [9]. In fact, such a technique was even incorporated earlier into a
forward planning, [17], backward planning [12], and partial ordered planning [11].
However, we are not aware that constant creation has been used in hierarchical
planning.

Constant creation can be simulated with effects that allow for negation, uni-
versal quantifiers, and implications. However, the only planners allowing univer-
sal quantifiers we are aware of, which are SIPE-2 [18], SHOP2 [13], and SIADEX
[2], have no support for conditional effects; SHOP2 and SIADEX do not even
support negations in the effects [6]. But in many cases, we have no canonical
upper bound for these constants anyway. While we do have one in our example,
in others, like configuring a deep neural network, there is no such bound for the
number of layers.
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A recent survey [6] categorizes HTN planning methods and discusses expres-
siveness of HTN planning languages and their impact on parallelizability. Cur-
rently, the most popular approach to implement HTN planning is depth first
search in an OR-graph, which is adopted for instance by SIPE-2 [18], UCMP
[3], SHOP2 [13], and SIADEX [2]. We are not aware of any other hierarchical
planning algorithm that applies AND-OR-graph search.

The idea of reusing subsolutions has been addressed through the notion of
“task sharing”. Task sharing identifies common sub-tasks for sharing within a
plan [16]. In [1] the HTN formalism is compared to a unified version of Hierar-
chical Goal Network (HGN) [14] and task sharing. However, task sharing only
reuses subsolutions within a plan but does not use this knowledge within plan
search, e.g., by organizing the search space like ITN.

5 Conclusion

We have introduced independent network planning as an alternative to classical
hierarchical planning methods such as STN planning. While we do not claim
that the required property of independent tasks is satisfied in planning problems
frequently considered in the competitions (which it is probably not), we have
shown at the example of nested dichotomy configuration that there are relevant
practical problems where the conditions apply and where the search space size is
decreased by several orders of magnitude. Nested dichotomies are not a patho-
logical case: Since the core idea is to reuse computation results, we assume that
ITN planning plays a role similar to dynamic programming, which makes it a
key technology in automated service composition problem.

Our current work is focused on the use of ITN planning for automated
machine learning [4], i.e., the automated configuration of data processing and
model induction pipelines for learning predictive models from data. While our
example of nested dichotomies originates from this domain, it constitutes only
a first step and small share in this endeavor.
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