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Abstract. Dimensionality reduction (DR) lowers the dimensionality of
a high-dimensional data set by reducing the number of features for each
pattern. The importance of DR techniques for data analysis and visual-
ization led to the development of a large diversity of DR methods. The
lack of comprehensive comparative studies makes it difficult to choose
the best DR methods for a particular task based on known strengths
and weaknesses. To close the gap, this paper presents an extensive exper-
imental study comparing 29 DR methods on 13 artificial and real-world
data sets. The performance assessment of the study is based on six quan-
titative metrics. According to our benchmark and evaluation scheme, the
methods mMDS, GPLVM, and PCA turn out to outperform their com-
petitors, although exceptions are revealed for special cases.

Keywords: Dimensionality reduction · Manifold learning · Feature
extraction

1 Introduction

High-dimensional data appear in many applications, but are demanding in differ-
ent ways. High dimensionalities not only challenge storage and network through-
put technologies, but also complicate data analysis tasks. For humans, data with
a dimensionality larger than three are difficult to understand since no intuitive
visualization is possible. Even if machine learning techniques are employed to
extract important information from the data, e. g., by clustering or classification,
a high dimensionality is impeding as it requires a large training data set (curse
of dimensionality) and extends the runtime.

DR computes a mapping F : R
d → R

q from a d-dimensional data space to a
q-dimensional latent space with q < d. Each data point (pattern) from the orig-
inal data set is mapped to a latent point with only q features. In other words,
each pattern is embedded into latent space leading to an embedding (manifold)
of the whole data set. The dimensionality q of the latent space (intrinsic dimen-
sionality) is often not determined by the DR methods, but has to be estimated
with separate techniques, e. g., maximum likelihood [27]. Instead of an estima-
tion, the user can adapt the intrinsic dimensionality to his needs. For example,
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an intrinsic dimensionality less or equal three is often chosen if DR is used to
visualize data.

The way of computing mapping F significantly differs among the DR meth-
ods. Unlike feature selection, feature extraction methods generate completely
new dimensions, which are combinations of the old ones and are therefore not
directly interpretable. Our study exclusively concentrates on feature extraction
methods. We include parametric methods that explicitly learn F and its parame-
ters, and that are able to embed new unknown patterns. But we also concentrate
on non-parametric DR methods that directly map high-dimensional patterns to
latent points and thus modeling F. The study also comprises numerous convex
and non-convex techniques. Convex methods use convex objective functions that
guarantee to find the corresponding optimum, while non-convex methods might
yield better mappings, in particular for non-linear data, but do not guarantee
to find the best solution of their objective function. Furthermore, the methods
can be grouped into families which apply similar mathematical concepts.

Due to the fact that new DR methods are often compared only against older
established DR methods, like PCA [18,37], Isomap [47] or LLE [40], but not
against newer ones, overall quality differences are not transparent. In most exist-
ing studies only few data sets and few quantitative measures are used deterio-
rating the understanding, why methods have specific strengths and weaknesses.
These reasons hamper a reasonable performance evaluation of DR methods for
defined applications and motivate the comparative study this paper presents.

This work is structured as follows: We review existing comparative studies
in Sect. 2 and explain the setup of our experiments in Sect. 3. Afterwards, we
evaluate the outcomes of our experiments in Sect. 4. A summary concludes this
paper in Sect. 5.

2 Current Comparative Studies

In the current literature, various contributions giving an overview of DR tech-
niques exist, e. g., [10,25]. They describe method design and applied mathemat-
ical concepts, but do not include empirical comparisons. Therefore, they do not
give insights into differences between the methods regarding practical usage.

Other contributions, e. g., by Gisbrecht and Hammer [12], investigate the
suitability of DR methods for visualization tasks. They embed high-dimensional
data sets with different DR methods, visualize the resulting manifolds and assess
the embedding quality with one quantitative measure. Nevertheless, these com-
parisons are not satisfactory as data sets, method diversity and metrics run too
short.

The most extensive quantitative study is presented by van der Maaten et al.
[33]. Newer methods like UNN [20], EE [5] or t-SNE [32] are not included. Mys-
ling et al. [35] conduct a quantitative comparison that examines the dependence
of four DR methods on data set properties, like data density and noise, in terms
of a classification and a regression error. Also Yeh et al. [52] present a limited
comparison with three DR methods on one data set with respect to one metric
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that assesses the methods’ suitability as pre-processing techniques before clus-
tering. Furthermore, some studies exist that compare DR methods solely for
specific applications, e. g., by Niskanen and Silvén [36].

3 Experimental Setup

Our experimental study comprises 29 DR methods, 13 data sets, and six metrics.
On each data set, each DR method is executed repeatedly, each time with a sep-
arate parameter setting like grid search. Due to the non-deterministic behavior
of some DR methods, each of these executions is run 25 times. Only for meth-
ods with an extensive runtime only 3 repetitions are conducted. The metrics are
computed for each run and are averaged over the 25 repetitions. For each DR
method we aggregate one value per data set and metric, i.e., the best one the
DR method has achieved among all parameter settings.

3.1 DR Methods

We selected the DR methods in our study with the objective to include at
least one method from each family of unsupervised feature extraction meth-
ods (Fig. 1). The convex DR methods are based on an eigenvalue (or spectral)
decomposition. They can be subdivided according to whether the eigenvalue
decomposition is performed for a sparse or full matrix. Within both categories
the DR methods employ different mathematical techniques. Kernels make DR
methods capture non-linear structures in the data. Neighborhood graphs are
used to set up a distance matrix containing the similarities of neighbored pat-
terns, which are often measured in terms of Euclidean distances. DR methods
use the distance matrix, but can only embed patterns belonging to the largest
sub-graph. Since our evaluation requires an embedding for all patterns we embed
the remaining patterns with a so called out-of-sample extension implemented by
van der Maaten [31].

Concepts used by non-convex methods are unsupervised regression, neural
networks, and probabilistic approaches. Regression methods optimize the latent
points so that the patterns reconstructed from the latent points by k-nearest
neighbors (kNN) regression differ as little as possible from the original patterns.
In case of so called autoencoders, neural networks for DR have an odd number
of layers and the middle layer of neurons represents the latent point belonging
to the input pattern. During the training procedure the weights are optimized
so that the output of the network, i. e., the reconstructed pattern, is similar to
the input, i. e., the original pattern.

Probabilistic DR methods can also be divided into different families: meth-
ods based on the latent variable model (LVM), techniques employing a mixture
model and methods that use probabilities as a measure for the similarity of pat-
terns and latent points. Methods based on the LVM assume that the features
of the observed patterns are random variables underlying a common probability
distribution, which actually is based on a smaller set of unobservable random



An Experimental Study of Dimensionality Reduction Methods 181

Fig. 1. A taxonomy of employed unsupervised DR methods, based on [33]

variables, so called latent variables. The values of the latent variables are the
latent points. They are optimized along with the parameters of the probability
distribution to maximize the likelihood for observing the patterns. A mixture
model is an aggregation of multiple density estimators to one larger estimator.
Its parameters and the latent points are optimized similar to the optimization
procedure of the LVM.

This experimental study is based on the following methods, which we also
arranged in a taxonomy (Fig. 1): CE (Conformal Eigenmaps) [44], DM (Diffu-
sion Maps) [6,7], EE (Elastic Embedding), FA (Factor Analysis) [45], GPLVM
(Gaussian Process LVM) [24], HLLE (Hessian LLE) [9], Isomap (Isometric
Feature Mapping), itUKR (iterative UKR) [29], KPCA (Kernel PCA) [43],
LE (Laplacian Eigenmaps) [3], LLC (Locally Linear Coordination) [46], LLE
(Locally Linear Embedding), LLTSA (Linear LTSA) [53], LPP (Locality Preserv-
ing Projections) [14], LTSA (Local Tangent Space Alignment) [54], MC (Mani-
fold Charting) [4], MDS (Multidimensional Scaling), MLLE (Modified LLE) [55],
mMDS (metric MDS) [48], MVU (Maximum Variance Unfolding) [50,51], nMDS
(nonmetric MDS) [23], NPE (Neighborhood Preserving Embedding) [13], PCA
(Principal Component Analysis), PPCA (Probabilistic PCA) [39], SM (Sammon
Mapping) [41], SNE (Stochastic Neighbor Embedding) [16], t-SNE (t-Distributed
SNE), UKR (Unsupervised Kernel Regression) [34], and UNN (Unsupervised
Nearest Neighbors). The autoencoder was proposed in [8,17].

We use the following implementations: scikit-learn [38] for mMDS, nMDS,
MLLE and HLLE, Matlab code by Vladymyrov and Carreira-Perpiñán for EE
according to [49], Matlab toolbox by Klanke [19] for UKR, self-implementation
of UNN in Python in accordance with Kramer [21, Sect. 4.1], Python code for
itUKR from its author and the Matlab toolbox by van der Maaten [31] for all
other methods.



182 A. Meier and O. Kramer

Table 1. Parameter ranges of convex DR methods

Technique Parameter ranges

DM t ∈ {1, 10, 30, 50, 70, 90}, σ ∈ {0.2, 1.0, 5.0}
LE, LPP k ∈ {5, 9, 13, 50, 100}, σ ∈ {0.2, 1.0, 5.0}
KPCA i ∈ {100, 200, 300, 400, 500}
Isomap, MVU, LLE, MLLE, NPE,
CE, HLLE, LTSA, LLTSA

k ∈ {5, 7, 9, 11, 13, 15, 50, 100}

Table 2. Parameter ranges of non-convex DR methods

Technique Parameter ranges

PPCA i ∈ {100, 200, 300, 400, 500}
GPLVM σ ∈ {0.2, 0.5, 1.0, 2.5, 5.0}
LLC k ∈ {5, 13, 100}, a ∈ {2, 9, 20}, i ∈ {200, 400}
MC a ∈ {2, 7, 12, 20}, i ∈ {200, 400}
SNE, t-SNE p ∈ {5, 10, 15, 20, 25, 30, 35, 40, 45, 50}
EE h ∈ {0.01, 0.1, 0.0, 10.0, 100.0}, p ∈ {5, 25, 50}
UKR kernel ∈ {Gaussian, Quartic, Triweight}
UNN k ∈ {5, 10, 20, 40}, κ ∈ {10, 30, 50}
itUKR κ ∈ {30, 50, 70}, bandwidth ∈ {10, 20, 30, 40, 50}
Autoenc λ ∈ {0.0, 0.2, 0.5, 1.0, 1.5, 2.5, 5.0}

The parameter settings we employ are listed in Tables 1 and 2; methods
without parameters are not included. For a description of the parameters we
refer to the documentation of the respective implementation. We executed each
method for each parameter value combination except the autoencoder. Due to
an extensive runtime we ran the autoencoder on the data sets CNS and ORL
(Sect. 3.3) only with setting λ = 0.0. We chose value 0.0 since a larger λ often
led to NaN metric values on other data sets because latent points were mapped
nearly to the same point.

3.2 Metrics

No single criterion for DR methods exists, since the information to be preserved
depends on the data set and the purpose of the DR task. Therefore, we assess
the methods’ quality with different metrics. On the one hand, we measure the
topology preservation in terms of neighborhood preservation (ENX), distance
preservation (EKS) and structure preservation in general (DSRE, E1NN, CRR).
On the other hand, we measure the DR methods’ ability for preceding a classi-
fication or regression task in terms of information preservation (EKNN, CRR).
These metrics seem to be reasonable as it is assumed that most important
information of a data set is encoded in its spacial properties. We adapt some
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metrics so that all metrics are error measures, i. e., lower values represent better
qualities.

The ENX measure becomes better the more latent points belonging to neigh-
bored patterns are neighbors, i. e. the more neighborhoods are preserved. It is
based on the co-ranking matrix Q [26]. Following Lueks et al. [30], we adapt
ENX to

ENX (k) = 1 − 1
nk

k∑

i=1

k∑

j =1

qij , (1)

where qij is an entry of Q, variable n is the number of patterns or latent points
and k is the neighborhood size.

EKS [22] is the objective function of the MDS variants and is computed from
the squared Frobenius norm of the distance of the normalized distance matrices
of patterns (DP) and latent points (DL):

EKS = ‖DP − DL‖2F . (2)

The distance matrices are normalized by dividing each value by the largest value
of the respective matrix. A small EKS indicates similar distances between latent
points and their corresponding patterns.

The DSRE [20] measures how well the patterns can be reconstructed from
the latent points by applying the kNN regression model fL with

fL : R
q → R

d, fL (l) =
1
k

∑

i∈Nk(l,L)

pi. (3)

Let P ∈ R
n×d denote a pattern matrix, L ∈ R

n×q the corresponding matrix
of latent points, pi ∈ R

d the ith pattern and l ∈ R
q a latent point. The set

Nk (l,L) contains the indices of the k latent points from L that are most similar
to l. Then the DSRE is defined as

DSRE(L, k) = ‖P − fL(L)‖2F , (4)

where fL(L) ∈ R
n×d is a matrix containing the reconstructions of all patterns.

A good DSRE is attained if latent points of neighbored patterns are neighbored.
E1NN [42] measures the overlapping of points with labels from different

classes in the data and the latent space. In a w. r. t. E1NN optimal DR process
latent points from different classes are clearly separated. This could be desired
e. g. for visualization tasks. E1NN counts the number l− of latent points whose
next neighbor has a label from a different class and divides it by p−, which is
analogously defined for patterns:

E1NN =
l−

p− . (5)

An E1NN larger than one indicates a worse structure of the manifold compared
to the data space.
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CRR [36] calculates the ratio of the number of falsely classified latent points
and the number of falsely classified patterns. EKNN [22] is the counterpart of
CRR for regression. It is the ratio of the regression error of the latent space and
the regression error of the data space. CRR and EKNN use the kNN classifi-
cation and regression model, respectively. They are useful to examine whether
a classification or regression task, respectively, would be more successful on the
original or reduced data set.

CRR and E1NN are only applicable to data sets with discrete labels, EKNN
only to data sets with continuous labels, whereas ENX, DSRE and EKS are
suitable for all data sets. We set the metrics’ parameter k, representing the
neighborhood size, to 15. Based on the results of Lee and Verleysen [26] this
seems to be a reasonable compromise between fluctuating metric values for a
very small k and smooth values for a large k.

3.3 Data Sets

We apply the DR methods to five artificial and eight real-world data sets. The
artificial data sets come from the comparative study of van der Maaten et al. [33].
Swiss roll, Broken swiss roll, Helix and Twin peaks are shown in Fig. 2, HD is
a 10-dimensional data set with a 5-dimensional manifold. They have known
manifolds and are generated with the Matlab toolbox by van der Maaten [31].

The real-world data sets stem from different domains and employ different
dimensionalities. In Table 3, their properties are listed. The intrinsic dimension-
alities are estimated with the maximum likelihood estimator implementation by
van der Maaten [31]. For the MNIST data set, only the GMST estimator from
the same toolbox computed a reasonable dimensionality. For the experiments we
randomly select 300 patterns from each data set, except for Iris and CNS since
they contain less patterns.

Table 3. Properties of real-world data sets

Data set Dim. Intrins. dim. Label type #Classes Description

Iris [38] 4 3 Discrete 3 Plant properties of iris flowers

Boston [38] 13 2 Contin. - House properties

Digits [38] 64 17 Discrete 10 Pictures of handwritten digits

RCT [28] 386 28 Contin. - CT pictures of different persons

MNIST [28] 784 2 Discrete 10 Pictures of handwritten digits

HIVA [2] 1617 15 Discrete 2 Properties of drugs

CNS [15] 7130 30 Discrete 2 Gene data of tumor patients

ORL [1] 10304 7 Discrete 40 Faces of different persons
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(a) Swiss roll (2) (b) Broken swiss roll (2)

(c) Helix (1) (d) Twin peaks (2)

Fig. 2. Artificial data sets and intrinsic dimensionalities. Colors represent labels.

4 Experimental Results

Before the actual evaluation, we examine the statistical significance of the dif-
ferences between the DR methods. We conduct one Friedman test per metric
leading to statistically significant p values (ENX: 4.25e−28, EKS: 1.65e−43,
DSRE: 4.57e−66, E1NN: 1.94e−36, CRR: 7.58e−36). For EKNN, no test can
be conducted since EKNN requires data sets with continuous labels but only
two such data sets are included in our study. For the analysis of the metric val-
ues we perform two steps. First, we rank the methods and analyze their rank
differences. Second, we compute quality differences that give better insight into
the methods’ performance. In both steps we compare the methods’ performance
with respect to both the metrics and the data sets.

4.1 Analysis of Rank Differences

Each DR technique is separately assigned to a rank so that each technique
T employs a rank RT (D,M) for each data set D and metric M . For a more
manageable comparison, we average the ranks of each technique in two ways,
i. e., over all data sets resulting in one average rank per metric ∅RT

(M) and over
all metrics resulting in one average rank per data set ∅RT

(D). Figures 3 and 4
show the average ranks for the convex and non-convex methods with the best
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Fig. 3. Average ranks per metric for best-ranked convex (at the top) and non-convex
methods (at the bottom). Column ∅ contains the row averages. The color gradient
visualizes the differences of values within columns: small (yellow) values are better
than large (red) ones. (Color figure online)

Fig. 4. Average ranks per data set for best-ranked convex (at the top) and non-convex
methods (at the bottom). Data sets are separated into artificial (left) and real-world
ones (right). Columns ∅(a.) and ∅(r.) contain the row averages for artificial and real-
world data sets, respectively. The differences between both are listed in the last column.

average rank among all methods (i. e. with best value in column ∅ of Fig. 3),
which were able to embed all data sets.1

Considering the average ranks per metric (Fig. 3), in particular EE, t-SNE
and UKR achieve promising results, while no method performs best w. r. t. all
metrics. Taking into account the average ranks per data set (Fig. 4), it can
be observed that the presented methods (except Isomap and MLLE) perform
better on real-world data sets, due to lower values in column ∅(r.) than in
∅(a.). Furthermore, on real-world data sets clearly better results of non-convex
methods in contrast to convex methods can be observed. However, PCA is nearly
as good as other non-convex methods.

1 MVU, CE, NPE, LPP, HLLE, LLTSA (convex) and SM, FA, MC (non-convex)
were not able to embed up to six real-world data sets due to, e. g., not computable
eigenvalue problems, extensive runtime (more than four weeks) or too few patterns.
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4.2 Analysis of Quality Differences

To compare the methods’ quality differences, based on the percentage of the
maximum accuracy employed by Fernández-Delgado et al. [11] we compute for
each DR technique T the percentage of the minimum error (PME) per metric
M with

PMET (M) =
1
13

∑

D∈{Swiss roll,...,ORL}

value for M achieved by T on D

M∗ on D

and equivalently per data set D with

PMET (D) =
1
6

∑

M∈{ENX,...,EKNN}

value for M achieved by T on D

M∗ on D
,

where M∗ is the best (minimum) value for metric M that any DR technique has
achieved on data set D. For example, PMEPCA (ENX) = 2.0 denotes that the
ENX values of PCA are on average two times worse than the best ENX value of
any DR method. For each DR method only the data sets are included into the
average for the PME measure, which the method was able to embed. This may
unfairly improve the PME values of failing methods since their missing metric
values for the respective data sets do not influence their PME values, whereas
the possibly poor metric values of other methods deteriorate their PME values.

In the left part of Fig. 5 the nine best PME values per metric and the cor-
responding DR techniques are listed. It is notable that the differences of the
PME values are approximately equal among the metrics except for EKS. This
has two reasons. First, SM and mMDS are unfairly preferred since the EKS
is their objective function. Second, the methods’ absolute values for EKS dif-
fer stronger than their values for other metrics, in particular on real-word data
sets. Hence, the PME values of DR techniques with failed embedding attempts
are improved especially regarding the EKS. Averaging the PME values over all
metrics and ignoring the failing methods, e. g., SM, CE and MVU (Sect. 4.1),
shows that mMDS, GPLVM and PCA are by far the best DR methods (Fig. 5,
middle part). This is surprising since mMDS and PCA belong to the earliest DR
methods.

Comparing the results of the rank and the PME analysis regarding the met-
rics it can be observed that the methods with best ranks (EE, t-SNE, UKR)
surprisingly do not always have best PME values. This is mainly caused by
the poor quality of their embeddings regarding the EKS. Averaging the PME
values without EKS (Fig. 5, right part) again leads to t-SNE, EE and UKR as
best methods. Interestingly Isomap, MLLE and LE are among the best-ranked
methods despite their poor average PME values (Fig. 5, middle part).

At last we analyze the PME values per data set. Figure 6 contains the PME
values for the best convex and non-convex methods according to their average
PME values listed in the middle part of Fig. 5. The symbols ### signify a
failed embedding attempt; reasons for them are given in Sect. 4.1. We observe
that all best convex and non-convex methods have a better average PME value
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Fig. 5. PME values per metric in ascending order (left part), average PME per method
(middle part), and average PME without values for EKS (right part). Smaller (yellow)
values are better, convex methods are highlighted blue. (Color figure online)

Fig. 6. PME values per data set for methods with best average PME (Fig. 5, middle
part)

on real-world than on artificial data sets (Fig. 6, columns ∅(r.) and ∅(a.)). This
observation is consistent with the results from the rank analysis, albeit no differ-
ences between convex and non-convex methods can be observed. The suitability
for practical usage of the methods listed in Fig. 6 is emphasized by the finding
that all other methods except LLTSA perform much worse on real-world than
on artificial data sets. In general, the PME values per data set have to be inter-
preted critically because they are strongly influenced by the EKS due to the
large differences between best and worse EKS values among the DR methods.
This strong influence not necessarily reflects the actual importance of the EKS
as quality measure, which may depend on the application purpose.

In summary, mMDS, GPLVM and PCA score well in both evaluation parts.
EE, t-SNE and UKR only perform well regarding the ranks, but do not have
satisfying PME values due to their poor EKS values. In contrast, there are some
methods (SM, CE, MVU) that seem to be quite good but fail on some real-world
data sets.

5 Summary

In this paper we present a quantitative experimental study that assesses the
quality of 29 DR methods on 13 artificial and real-world data sets with six
metrics. It goes beyond previous comparisons by employing more and newer
methods from all families of unsupervised feature extraction methods using a
larger number of data sets and examining a variety of quality properties.
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Based on our analysis mMDS, GPLVM and PCA are the overall best DR
methods. However, depending on which metrics actually are reasonable quality
measures for a specific application, other methods may be better choices, like
e. g., EE, t-SNE, and UKR if distance preservation is negligible. Depending on
the data set the experimental results of this paper may guide the choice of
methods in real applications.

Of course, our findings can only be generalized to a certain extend due to
the no free lunch theorem. But as an extensive experimental analysis is often
impossible due to time and cost constraints, we recommend to choose a reason-
able subset of DR methods based on our results, to perform an own evaluation
and to select the best among these methods for performing the final DR task.
According to the application, suitable metrics should be chosen for the analysis.
For example, in a pipeline with classification, CRR and EKNN are appropriate
test candidates as they assess information preservation.

Future work may concentrate on an extension and update of the experimental
analysis w. r. t. the set of benchmark methods, problems, and test metrics.
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