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Abstract. Analyzing large scale diagnosis histories of patients could
help to discover comorbidity or disease progression patterns. Recently,
open data initiatives make it possible to access statewide patient data at
individual level, such as New York State SPARCS data. The goal of this
study is to explore frequent disease co-occurrence and sequence patterns
of cancer patients in New York State using SPARCS data. Our collec-
tion includes 18,208,830 discharge records from 1,565,237 patients with
cancer-related diagnoses during 2011–2015. We use Apriori algorithm to
discover top disease co-occurrences for common cancer categories based
on support. We generate top frequent sequences of diagnoses with at least
one cancer related diagnosis from patients’ diagnosis histories using the
cSPADE algorithm. Our data driven approach provides essential knowl-
edge to support the investigation of disease co-occurrence and progres-
sion patterns for improving the management of multiple diseases.
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1 Introduction

Disease co-occurrence, which means that two or more diseases co-occur within
one patient [1], is a popular topic in public health studies. It sometimes repre-
sents comorbidity or multimorbidity and can suggest interactions between dif-
ferent risk factors like diagnoses, treatments and procedures [1,2]. Data mining
and machine learning techniques are widely applied to public health domain to
discover disease co-occurrences. For example, statistical methods can be used to
measure the association between two different diagnoses [3], and structure learn-
ing models like Bayesian Network are used to analyze interactions in disease
co-occurrence patterns [2]. Disease co-occurrences can also be identified by com-
puting diseases that co-occur most frequently using Apriori-like algorithms [4].
Patterns and features discovered from comorbidities could provide a foundation
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for creating predictive models [5]. For example, comorbidities are informative
features in predicting readmission risk of certain diseases [1].

Although disease co-occurrence is essential in studying correlations among
different diseases, it fails to suggest temporal trends of diagnoses as informa-
tion on the order in which diseases occur is not available. It therefore cannot
reveal disease progression. Sequential data mining, which considers the order of
data elements, has been used to detect temporal trends of various diseases. For
example, windowing, episode rules and inductive logic programming are used to
extract frequent sequential patterns of cardiovascular diseases [6]. Aggregate val-
ues and time intervals from health records are used as features to cluster patients
into different cohorts [7]. Wavelet functions can help to analyze time series in
healthcare data of patients with diabetes [8]. However, most of these methods
are value-based, they use values from laboratory tests or other healthcare records
to generate results. In our study, we adopt a sequence mining method that uses
diagnosis codes (class labels) to study disease progression from patients’ diag-
nosis histories.

Recently, open data initiatives from governments collect and make available
large amounts of healthcare data, and provide a unique opportunity to study
disease comorbidities and sequential patterns. They are attractive to researchers
working on public health studies because of their completeness and inexpensive
nature [9,10]. Such data are extensively used in healthcare research, such as
prevention and detection of diseases, studying comorbidity and mortality, and
advancing interventions, therapies and treatments [9]. They can also be com-
bined with multiple data sources to serve different purposes, such as studying
disease patterns and improving healthcare quality among different cohorts. For
instance, predicting asthma-related emergency department visits [11] and ana-
lyzing temporal patterns of in-hospital falls among elderly patients [12].

As part of New York State’s open data initiative, New York State Statewide
Planning and Research Cooperative System (SPARCS) collects patient-level
information on discharge records from hospitals, which contains patients’ diag-
nosis, procedure and demographic information for over 35 years [13]. SPARCS is
now widely applied to public health studies in New York State [14,15], such as
correlations between various factors and outcomes of patients who suffer from
different diseases [16–19], associations of different patient characteristics, dis-
eases and treatments [16,20]. SPARCS is also used to discover temporal or spa-
tial patterns of emergency department visits before, during and after Hurricane
Sandy [21,22]. Researchers can benefit from SPARCS data by leveraging the long
patient-level diagnosis histories, such as conducting population-based studies [23]
and assessing completeness of disease reporting [24]. Patient-level longitudinal
data can also embrace other data sources like drug exposure profiles and genetics
data to study patterns in different cohorts [5].

The objective of this study is to find association rules (i.e., co-occurrences
of diseases) and frequent sequence patterns from diagnosis histories of cancer
patients in New York State using SPARCS data. Association rules learning of
multiple diseases could imply comorbidities, while sequence patterns of diseases
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could indicate disease progression. We extract all discharge records of patients
with at least one cancer-related diagnosis code, and convert the ninth and tenth
revision of International Classification of Diseases (ICD-9 and ICD-10) diagnosis
codes to single-level Clinical Classifications Software (CCS) diagnosis categories.
The CCS cancer categories are used as disease labels in our work. We use Apri-
ori algorithm for association rules learning to find potential comorbidities using
multiple diagnoses from individual visits and cSPADE algorithm for frequent
sequence mining to identify frequent disease sequence patterns from full dis-
charge histories of patients in each cohort. We perform the studies by using only
primary diagnoses and using all diagnoses (including secondary ones), to gener-
ate different patterns. We present the results based on several common cancer
types, and we believe that the results will provide essential data and knowledge
for clinical researchers to further investigate comorbidities and disease progres-
sion for improving the management of multiple diseases.

2 Methods

Using data mining and machine learning methods to study patients’ profiles can
help researchers to study comorbidities and disease progression [5]. Our objective
is to conduct a patient-level longitudinal study using SPARCS data to discover
frequent disease co-occurrence and sequence patterns. We first convert ICD-9

Table 1. Cancer-related CCS diagnosis categories and descriptions.

CCS Description CCS Description

11 Cancer of head and neck 29 Cancer of prostate

12 Cancer of esophagus 30 Cancer of testis

13 Cancer of stomach 31 Cancer of other male genital organs

14 Cancer of colon 32 Cancer of bladder

15 Cancer of rectum and anus 33 Cancer of kidney and renal pelvis

16 Cancer of liver and intrahepatic bile duct 34 Cancer of other urinary organs

17 Cancer of pancreas 35 Cancer of brain and nervous system

18 Cancer of other GI organs; peritoneum 36 Cancer of thyroid

19 Cancer of bronchus; lung 37 Hodgkin‘s disease

20 Cancer; other respiratory and intrathoracic 38 Non-Hodgkin‘s lymphoma

21 Cancer of bone and connective tissue 39 Leukemias

22 Melanomas of skin 40 Multiple myeloma

23 Other non-epithelial cancer of skin 41 Cancer; other and unspecified primary

24 Cancer of breast 42 Secondary malignancies

25 Cancer of uterus 43 Malignant neoplasm without

specification of site

26 Cancer of cervix 44 Neoplasms of unspecified nature or

uncertain behavior

27 Cancer of ovary 45 Maintenance chemotherapy;

radiotherapy

28 Cancer of other female genital organs
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and ICD-10 diagnosis codes to CCS diagnosis categories, and then use Apriori
and cSPADE algorithms to identify patterns using these high-level categories.
We only focus on histories of patients who have at least one of the cancer-related
CCS diagnosis categories (Table 1).

2.1 Data Sources

We use SPARCS data and obtain histories of 21,466,868 patients from 97,849,071
discharge records during 2011–2015. Discharge records with all four kinds
of claim types (i.e. inpatient, outpatient, ambulatory surgery and emergency
department) are used to get a full history of each patient. Table 2 shows patient
characteristics of our experiment data.

Table 2. Statistics of patient characteristics for selected cancer types.

Patient characteristics Cancer

Lung

and

bronchus

Rectum

and anus

Pancreas Livera Non-

Hodgkin’s

lymphoma

Prostate Breast

Total number of patients 121,108 40,865 25,424 28,244 75,824 198,067 300,929

Age <65 43,002 21,696 9,858 14,990 38,366 54,760 152,393

65–74 38,120 9,492 7,333 7,304 17,513 64,154 69,886

75–85 30,336 6,865 5,821 4,636 14,105 55,660 51,501

>85 9,650 2,812 2,412 1,314 5,840 23,493 27,149

Sex Male 58,320 20,818 12,694 17,348 39,102 198,067 3,919

Female 62,785 20,043 12,729 10,896 36,719 0 297,004

Unknown 3 4 1 0 3 0 6

Race White 88,718 27,342 17,107 16,224 54,247 133,541 207,660

Black or African

American

12,490 5,022 3,369 3,979 6,948 31,120 34,221

Native American or

Alaskan Native

237 110 40 77 153 416 606

Asian 3,713 1,428 800 2,062 1,647 3,000 8,483

Native Hawaiian or

Other Pacific Islander

224 64 35 50 101 375 532

Other Race 13,934 6,212 3,710 5,446 11,358 26,512 43,372

Unknown 1,792 687 363 406 1,370 3,103 6,055

Ethnicity Spanish/Hispanic

Origin

7,160 3,541 1,960 3,270 6,014 14,285 22,183

Not of

Spanish/Hispanic

Origin

108,808 35,437 22,467 23,879 66,534 175,028 264,771

Unknown 5,140 1,887 997 1,095 3,276 8,754 13,975
a Liver includes intrahepatic bile duct.

There are 25 data elements used to record ICD diagnosis codes of each hospi-
tal visit in SPARCS. The first diagnosis code is the primary diagnosis code that
represents a main reason for a patient’s hospital visit, the rest are secondary
diagnosis codes that represent conditions coexist during that hospital visit. All
ICD-9 and ICD-10 diagnosis codes are converted to their corresponding single-
level CCS diagnosis categories, i.e. primary diagnosis categories and secondary
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{Other aftercare (257), Pulmonary heart disease (103)}

{Fracture of upper limb (229), Spondylosis; intervertebral disc disorders; other back
problems (205), Diabetes mellitus without complication (49), Essential hypertension
(98), Superficial injury; contusion (239), Other upper respiratory infections(126),
Other and ill-defined heart disease (104)}

{Pneumonia (122), Deficiency and other anemia (59), Thyroid disorders (48),
Diabetes mellitus without complication (49), Cancer of bronchus; lung (19), Fluid
and electrolyte disorders (55), Osteoporosis (206), Secondary malignancies (42),
Congestive heart failure; nonhypertensive (108), Other lower respiratory disease
(133), Essential hypertension (98), Residual codes; unclassified (259), Chronic
obstructive pulmonary disease and bronchiectasis (127), Esophageal disorders
(138), Cardiac dysrhythmias (106), Phlebitis; thrombophlebitis and
thromboembolism (118)}

{Cardiac dysrhythmias (106), Pulmonary heart disease (103), Pneumonia (122),
Other aftercare (257)}

{Fever of unknown origin (246), Cancer of pancreas (17), Cancer of
bronchus; lung (19), Essential hypertension (98), Cardiac dysrhythmias (106)}

{Deficiency and other anemia (59)}

{Other injuries and conditions due to external causes (244), Immunizations and
screening for infectious disease (10), Superficial injury; contusion (239), Open
wounds of head; neck; and trunk (235), Open wounds of extremities (236)}

{Cancer of bronchus; lung (19), Aortic; peripheral; and visceral artery
aneurysms (115)}

{Cancer of bronchus; lung (19)}

{Cancer of bronchus; lung (19), Other lower respiratory disease (133)}
Admission Date: 07/19/2013

Admission Date: 08/02/2013

Admission Date: 09/16/2013

Admission Date: 09/24/2013

Admission Date: 01/28/2014

Admission Date: 01/21/2014

Admission Date: 01/17/2014

Admission Date: 01/14/2014

Admission Date: 12/17/2013

Admission Date: 12/13/2013

Fig. 1. Diagnoses sequence of a patient with lung and bronchus cancer.

diagnosis categories. These high-level diagnosis categories are used to represent
disease diagnoses to reduce dimensionality in data mining. We study patients
with cancer diagnosis categories only. For each cancer category, patients who-
ever have at least one discharge record containing the cancer-related diagnosis
information are selected into the cohort. There are 1,565,237 cancer patients and
18,208,830 history discharge records used in this study. Each patient’s discharge
records are grouped together using an encrypted unique patient identifier in
SPARCS. Due to the length limit of this paper, we select seven types of cancers
with high incident rates, which are consistent with the statistics by American
Cancer Society [25], to present our results.

For each patient, discharge records are ordered by admission dates such that
all CCS diagnosis categories on the same admission date form an element, and
all elements are ordered to constitute a sequence (Fig. 1). Discharge records
contain AIDS/HIV or abortion diagnoses are deleted from our experiment data
because the admission dates are redacted and we cannot decide their positions in
a sequence. An example of diagnoses sequence of a patient in cohort with lung
and bronchus cancer is shown in Fig. 1. CCS diagnosis category descriptions
reported on the same admission date are listed in brackets and form an element.
The corresponding CCS category labels are marked in the parentheses follow-
ing the descriptions. Admission dates are marked on top of each corresponding
element. The primary diagnosis category of each element is underlined. CCS
category that represents the targeted cancer (i.e., lung and bronchus cancer) is
highlighted in bold.

2.2 Apriori Algorithm: Identifying Disease Co-occurrence Patterns

Association rule learning is a rule-based machine learning approach and is usu-
ally used to identify co-occurrences or temporal patterns between diseases in
clinical domain [4]. In this study, we adopt Apriori algorithm [26] to identify
disease co-occurrence patterns among each cohort. Only elements with targeted
cancer CCS diagnosis categories are selected, and both primary and secondary
diagnosis categories are used in our experiment. For instance, for the sequence
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illustrated in Fig. 1, elements where the targeted cancer CCS diagnosis categories
are highlighted in bold are used.

Apriori algorithm discovers frequent disease co-occurrences by comparing
their supports with a user-specified minimum support threshold. In Fig. 1, for
example, if the support of pattern “{Cancer of bronchus; lung (19), Other lower
respiratory disease (133)}” is 15%, it means that 15% of the elements in this
cohort have this disease co-occurrence pattern. If the minimum support threshold
is greater than 15%, this pattern will not be identified. However, if the minimum
support threshold is set smaller than 15%, the pattern will be detected.

2.3 cSPADE Algorithm: Discovering Frequent Sequence Patterns

Because ICD diagnosis codes are the only data elements available in SPARCS
that contain patient-level disease information, we can use frequent sequence
mining [27] technique to find frequent disease sequence patterns among differ-
ent cohorts. Since diagnosis codes are strictly ordered in sequences, the results
might reveal disease progression. We use cSPADE algorithm [27] to discover fre-
quent disease sequence patterns in different cohorts. We experiment on complete
patient sequences with two settings: one is using only primary diagnosis cate-
gories, the other one is using both primary and secondary diagnosis categories.
Figure 1 is an example of a complete patient sequence consists of both primary
and secondary diagnosis categories. The length of a sequence pattern is the total
number of elements in this sequence. There are 10 elements in the sequence in
Fig. 1, thus it is a length-10 sequence.

cSPADE algorithm also works by comparing the support of a sequence pat-
tern with the minimum support threshold. Multiple occurrences of a pattern in
the same sequence is counted only once. For example, length-2 sequence pat-
tern “{Cancer of bronchus; lung (19), Other lower respiratory disease (133)} →
{Cardiac dysrhythmias (106)}” appears twice in Fig. 1, but this pattern will be
counted only once in this sequence when calculating the support of this pattern.
If the support of this sequence pattern is 15%, it means that the fraction of
sequences containing this pattern in the targeted cohort is 15%. If the mini-
mum support threshold is smaller than 15%, this sequence pattern is selected;
otherwise the pattern is pruned in the searching results.

3 Results

We present the top five frequent disease co-occurrence and sequence patterns
ranked by their supports in each cohort. Some meaningless results, such as pat-
terns containing identical diagnosis categories, CCS diagnosis categories that
represent unspecific disease groups or serve administrative purposes, patterns
with length one and patterns irrelevant to targeted cancers, are filtered out when
refining experiment results. We choose to present length-2 disease sequences in
our experiment results, because longer disease sequence patterns obtained in our
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experiments usually contain repeated diagnosis categories that represent follow-
up visits rather than disease progression.

Frequent disease co-occurrence patterns are presented in Table 3, and the
results are generated using both primary and secondary diagnosis categories.
Table 4 presents frequent disease sequence patterns discovered using only pri-
mary diagnosis categories. Table 5 demonstrates frequent disease sequence pat-
terns identified using both primary and secondary diagnosis categories.

4 Discussion

4.1 Common CCS Categories in Different Cohorts

We can learn from Tables 3 and 5 that essential hypertension is the most fre-
quent CCS diagnosis category among all results of either frequent disease co-
occurrence or sequence patterns. However, essential hypertension appears in
only three sequences in Table 4. This might because of the difference between pri-
mary diagnosis codes and secondary diagnosis codes in SPARCS data. Results in
Tables 3 and 5 are generated using both primary and secondary diagnosis cat-
egories, but patterns in Table 4 are discovered using primary diagnosis cate-
gories only. Since primary diagnosis codes usually represent one major reason
for a hospital visit and secondary diagnosis codes imply conditions that coex-
ist during this visit, a combination of primary and secondary diagnosis codes
usually contain richer diagnosis information. Perhaps cancers are more likely to
be diagnosed with in the elderly and essential hypertension tend to be popular
among old people, thus patients with cancer diagnoses could usually have essen-
tial hypertension. Combining primary and secondary diagnosis codes can help
us easily detect this pattern. Disorders of lipid metabolism is another diagnosis
category that is frequent in both Tables 3 and 5, while unseen in Table 4. The
underlying theory might be similar.

4.2 Disparities Between Primary and Secondary Diagnosis Codes

Tables 4 and 5 both present frequent disease sequence patterns among different
cohorts, while Table 4 shows the results produced using primary diagnosis cate-
gories only and Table 5 demonstrates results using both primary and secondary
diagnosis categories. Frequent disease sequence patterns among same cohorts in
these two tables are quite different. Disparities between Tables 4 and 5 could
imply that either primary diagnosis codes or secondary diagnosis codes may be
or may not be useful in finding potentially meaningful disease sequence patterns.
Since primary diagnosis codes usually represent the main reason of a hospital
visit, these codes are supposed to be good indicators of a patient’s condition at
admission. However, secondary diagnosis codes simply represent conditions that
coexist in the same hospital visit, they might not be able to accurately represent
a patient’s condition responsible for that hospital visit. Thus, secondary diagno-
sis codes could be less meaningful information in this study. This can be justified
by comparing results in Tables 4 and 5.
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Table 3. Frequent disease co-occurrences for selected cancers, using both primary and
secondary diagnosis categories.

Lung and bronchus cancer

Top five frequent disease co-occurrences Support

1 Essential hypertension 0.2496

2 Screening and history of mental health and substance abuse codes 0.2271

3 Chronic obstructive pulmonary disease and bronchiectasis 0.1948

4 Disorders of lipid metabolism 0.1595

5 Coronary atherosclerosis and other heart disease 0.1136

Rectum and anus cancer

Top five frequent disease co-occurrences Support

1 Essential hypertension 0.1908

2 Disorders of lipid metabolism 0.1088

3 Screening and history of mental health and substance abuse codes 0.0994

4 Deficiency and other anemia 0.0896

5 Diabetes mellitus without complication 0.0796

Pancreas cancer

Top five frequent disease co-occurrences Support

1 Essential hypertension 0.2216

2 Diabetes mellitus without complication 0.1456

3 Fluid and electrolyte disorders 0.1260

4 Disorders of lipid metabolism 0.1234

5 Deficiency and other anemia 0.1065

Liver and intrahepatic bile duct cancer

Top five frequent disease co-occurrences Support

1 Essential hypertension 0.2435

2 Hepatitis 0.2275

3 Diabetes mellitus without complication 0.1494

4 Screening and history of mental health and substance abuse codes 0.1340

5 Fluid and electrolyte disorders 0.1247

Non-Hodgkin’s lymphoma

Top five frequent disease co-occurrences Support

1 Essential hypertension 0.1874

2 Deficiency and other anemia 0.1224

3 Disorders of lipid metabolism 0.1213

4 Screening and history of mental health and substance abuse codes 0.0910

5 Diabetes mellitus without complication 0.0835

Prostate cancer

Top five frequent disease co-occurrences Support

1 Essential hypertension 0.3292

2 Disorders of lipid metabolism 0.2384

3 Coronary atherosclerosis and other heart disease 0.1739

4 Disorders of lipid metabolism, Essential hypertension 0.1521

5 Screening and history of mental health and substance abuse codes 0.1392

Breast cancer

Top five frequent disease co-occurrences Support

1 Essential hypertension 0.2159

2 Disorders of lipid metabolism 0.1302

3 Disorders of lipid metabolism, Essential hypertension 0.0851

4 Diabetes mellitus without complication 0.0829

5 Screening and history of mental health and substance abuse codes 0.0792
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Table 4. Frequent sequence patterns for selected cancers, using primary diagnosis
categories only.

Lung and bronchus cancer

Top five frequent sequence patterns Support

1 {Chronic obstructive pulmonary disease and bronchiectasis}→{Lung and bronchus

cancer}
0.0700

2 {Pneumonia}→{Lung and bronchus cancer} 0.0578

3 {Lung and bronchus cancer}→{Pneumonia} 0.0567

4 {Lung and bronchus cancer}→{Chronic obstructive pulmonary disease and

bronchiectasis}
0.0524

5 {Lung and bronchus cancer}→{Septicemia} 0.0520

Rectum and anus cancer

Top five frequent sequence patterns Support

1 {Rectum and anus cancer}→{Colon cancer} 0.1323

2 {Colon cancer}→{Rectum and anus cancer} 0.1206

3 {Rectum and anus cancer}→{Complications of surgical procedures or medical care} 0.0521

4 {Gastrointestinal hemorrhage}→{Rectum and anus cancer} 0.0509

5 {Abdominal pain}→{Rectum and anus cancer} 0.0479

Pancreas cancer

Top five frequent sequence patterns Support

1 {Pancreatic disorders}→{Pancreas cancer} 0.1256

2 {Abdominal pain}→{Pancreas cancer} 0.0994

3 {Biliary tract disease}→{Pancreas cancer} 0.0914

4 {Pancreas cancer}→{Septicemia} 0.0794

5 {Pancreas cancer}→{Abdominal pain} 0.0618

Liver and intrahepatic bile duct cancer

Top five frequent sequence patterns Support

1 {Hepatitis}→{Liver and intrahepatic bile duct cancer} 0.0711

2 {Abdominal pain}→{Liver and intrahepatic bile duct cancer} 0.0688

3 {Liver and intrahepatic bile duct cancer}→{Hepatitis} 0.0586

4 {Liver and intrahepatic bile duct cancer}→{Septicemia (except in labor)} 0.0528

5 {Biliary tract disease}→{Liver and intrahepatic bile duct cancer} 0.0458

Non-Hodgkin’s lymphoma

Top five frequent sequence patterns Support

1 {Lymphadenitis}→{Non-Hodgkin’s lymphoma} 0.0458

2 {Non-Hodgkin’s lymphoma}→{Septicemia (except in labor)} 0.0458

3 {Non-Hodgkin’s lymphoma}→{Deficiency and other anemia} 0.0433

4 {Deficiency and other anemia}→{Non-Hodgkin’s lymphoma} 0.0415

5 {Non-Hodgkin’s lymphoma}→{Diseases of white blood cells} 0.0368

Prostate cancer

Top five frequent sequence patterns Support

1 {Prostate cancer}→{Genitourinary symptoms and ill-defined conditions} 0.0424

2 {Genitourinary symptoms and ill-defined conditions}→{Prostate cancer} 0.0401

3 {Essential hypertension}→{Prostate cancer} 0.0323

4 {Prostate cancer}→{Essential hypertension} 0.0292

5 {Spondylosis; intervertebral disc disorders; other back problems}→{Prostate cancer} 0.0283

Breast cancer

Top five frequent sequence patterns Support

1 {Nonmalignant breast conditions}→{Breast cancer} 0.0965

2 {Breast cancer}→{Nonmalignant breast conditions} 0.0796

3 {Spondylosis; intervertebral disc disorders; other back problems}→{Breast cancer} 0.0353

4 {Breast cancer}→{Spondylosis; intervertebral disc disorders; other back problems} 0.0331

5 {Essential hypertension}→{Breast cancer} 0.0295
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Table 5. Frequent sequence patterns for selected cancers, using both primary and
secondary diagnosis categories.

Lung and bronchus cancer

Top five frequent sequence patterns Support

1 {Essential hypertension}→{Lung and bronchus cancer} 0.5377

2 {Screening and history of mental health and substance abuse codes}→{Lung and

bronchus cancer}
0.5240

3 {Lung and bronchus cancer}→{Essential hypertension} 0.4508

4 {Lung and bronchus cancer}→{Screening and history of mental health and substance

abuse codes}
0.4350

5 {Disorders of lipid metabolism}→{Lung and bronchus cancer} 0.4044

Rectum and anus cancer

Top five frequent sequence patterns Support

1 {Essential hypertension}→{Rectum and anus cancer} 0.4338

2 {Rectum and anus cancer}→{Colon cancer} 0.4273

3 {Rectum and anus cancer}→{Essential hypertension} 0.4218

4 {Colon cancer}→{Rectum and anus cancer} 0.3863

5 {Disorders of lipid metabolism}→{Rectum and anus cancer} 0.2931

Pancreas cancer

Top five frequent sequence patterns Support

1 {Essential hypertension}→{Pancreas cancer} 0.5440

2 {Pancreas cancer}→{Essential hypertension} 0.4156

3 {Disorders of lipid metabolism}→{Pancreas cancer} 0.3857

4 {Essential hypertension}→{Essential hypertension, Pancreas cancer} 0.3767

5 {Fluid and electrolyte disorders}→{Pancreas cancer} 0.3718

Liver and intrahepatic bile duct cancer

Top five frequent sequence patterns Support

1 {Essential hypertension}→{Liver and intrahepatic bile duct cancer} 0.5116

2 {Liver and intrahepatic bile duct cancer}→{Essential hypertension} 0.4205

3 {Liver and intrahepatic bile duct cancer}→{Fluid and electrolyte disorders} 0.3510

4 {Screening and history of mental health and substance abuse codes}→{Liver and

intrahepatic bile duct cancer}
0.3439

5 {Fluid and electrolyte disorders}→{Liver and intrahepatic bile duct cancer} 0.3271

Non-Hodgkin’s lymphoma

Top five frequent sequence patterns Support

1 {Essential hypertension}→{Non-Hodgkin’s lymphoma} 0.4237

2 {Non-Hodgkin’s lymphoma}→{Essential hypertension} 0.3911

3 {Disorders of lipid metabolism}→{Non-Hodgkin’s lymphoma} 0.3128

4 {Deficiency and other anemia}→{Non-Hodgkin’s lymphoma} 0.2925

5 {Non-Hodgkin’s lymphoma}→{Deficiency and other anemia} 0.2920

Prostate cancer

Top five frequent sequence patterns Support

1 {Essential hypertension}→{Prostate cancer} 0.4849

2 {Prostate cancer}→{Essential hypertension} 0.4667

3 {Disorders of lipid metabolism}→{Prostate cancer} 0.3707

4 {Prostate cancer}→{Disorders of lipid metabolism} 0.3654

5 {Genitourinary symptoms and ill-defined conditions}→{Prostate cancer} 0.2156

Breast cancer

Top five frequent sequence patterns Support

1 {Essential hypertension}→{Breast cancer} 0.3958

2 {Breast cancer}→{Essential hypertension} 0.3887

3 {Disorders of lipid metabolism}→{Breast cancer} 0.2804

4 {Breast cancer}→{Disorders of lipid metabolism} 0.2779

5 {Nonmalignant breast conditions}→{Breast cancer} 0.2177
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For patients with lung and bronchus cancer in Table 4, the most frequent
sequences mainly consist of respiratory system diseases, such as pneumonia and
chronic obstructive pulmonary disease and bronchiectasis. But there is no respi-
ratory system disease in the top five frequent disease sequence patterns among
the same patient cohort in Table 5. Another typical cohort is patients with liver
and intrahepatic bile duct cancer. We can learn from Table 4 that patients in
this cohort sometimes expose themselves to hepatitis or biliary tract disease.
However, such patterns are not available in Table 5. Also for patients with Non-
Hodgkin’s lymphoma, frequent sequence patterns shown in Tables 4 and 5 are
quite different. Only results in Table 4 capture the existence of lymphadenitis and
disease of white blood cells. Also, the most frequent disease sequence patterns
among this cohort in Table 4 all consist of immune system diseases.

4.3 Frequent Disease Co-occurrence Patterns Versus Frequent
Disease Sequence Patterns

One major difference between disease sequence and co-occurrence patterns is
that the orders of diagnoses are taken into consideration in a disease sequence,
while disease co-occurrences simply represent different diagnoses that occur
simultaneously. Disease sequence pattern can therefore be a potential indica-
tor of disease progression. Since the order of two different diagnosis categories
is the major factor to consider when tracking disease progression, we retain a
frequent disease sequence pattern in the results, if its elements are reversed in
another top frequent disease sequence pattern.

For instance, sequence patterns “{Rectum and anus cancer} → {Colon can-
cer}” and “{Colon cancer} → {Rectum and anus cancer}” are both kept in
Table 4. The former has support 0.1323, which is slightly greater than the latter
(0.1206). Perhaps it is because that rectum and anus cancer are more likely to
develop into colon cancer, but fewer patients suffer from colon cancer can even-
tually have rectum and anus cancer. There could be causal relationships between
the two diseases, or perhaps it is simply a result of the different mechanisms of
these two types of cancers.

Another typical pattern is in disease sequences containing essential hyper-
tension. In Table 5, for example, sequence pattern “{Essential hypertension}
→ {Pancreas cancer}” has support 0.5440, which is higher than the reversed
sequence “{Pancreas cancer} → {Essential hypertension}” with support 0.4156.
It is evident that all the sequences where essential hypertension is at the first
position have higher supports than their reversed sequences. It is an interesting
phenomenon that perhaps imply the progression of pancreas cancer. However, we
cannot obtain any information on disease progression from disease co-occurrence
patterns. For example, Table 3 shows that pattern “{Pancreas cancer, Essential
hypertension}” is with the highest support among patients with pancreas cancer.
It simply suggests that these two diagnoses co-occur frequently, but no informa-
tion on the order in which they occur is available.
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4.4 Validation of Results

Many public health studies use data from only one or a few hospitals collected
in a short period of time [3,4,10]. However, SPARCS has been collecting more
representative and comprehensive data for over 35 years, as all Article 28 facilities
(i.e. hospitals, nursing homes, and diagnostic treatment centers) certified for
inpatient care and all facilities providing ambulatory surgery services in New
York State are required to submit inpatient or outpatient data to SPARCS [13].
We therefore have a large-scale dataset with longer patient histories that could
help generate potentially meaningful results.

For disease co-occurrences (Table 3), patients with lung and bronchus cancer
usually have chronic obstructive pulmonary disease and bronchiectasis observed
at the same time. Since these two diseases are both respiratory system diseases,
they are reasonably correlated with each other. The same applies for patients
with pancreas cancer. Patients in this cohort have a risk of suffering from dia-
betes, as pancreas cancer and diabetes are clinically correlated [28]. Moreover,
patients with liver and intrahepatic bile duct cancer also have chance to be
diagnosed with hepatitis at the same time, because these two diseases are also
associated with each other [28].

As for disease sequences (Table 4), many patients have pancreatic disorders
(not diabetes) or biliary tract disease before being diagnosed with pancreas
cancer. This might be a typical disease progression pattern in clinical studies
and could help domain experts to identify pancreas cancer in the early stages.
Another representative result is about Non-Hodgkin’s lymphoma, because the
result sequences usually consist of immune system diseases. The top sequence
patterns suggest that lymphadenitis is likely to happen before Non-Hodgkin’s
lymphoma and disease of white blood cells is usually diagnosed after Non-
Hodgkin’s lymphoma.

Although secondary diagnosis codes could be redundant information on
patient conditions, they are also able to produce some potentially interesting
and meaningful patterns on disease progression when combined with primary
diagnosis codes. For example, prostate cancer is more likely to be diagnosed after
genitourinary symptoms and ill-defined conditions are identified, and breast can-
cer usually happens after nonmalignant breast conditions (Table 5). Since these
two patterns have comparatively higher supports than other sequence patterns
in the same cohorts, they could be typical patterns in clinical studies.

5 Conclusion

We employ association rule learning (Apriori algorithm) and frequent sequence
mining (cSPADE algorithm) to identify frequent disease co-occurrence and
sequence patterns among cancer patients using SPARCS data. Different types
of diagnosis codes are utilized in our experiments. Seven cohorts where cancers
are with high incident rates are selected to present the results. Our results sug-
gest that the methods adopted can generate potentially interesting and clinically
meaningful disease co-occurrence and sequence patterns. These patterns might
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be able to imply comorbidities and disease progression. However, due to the lim-
itation of information that diagnosis codes can convey in SPARCS, our results
contain some redundant or less meaningful patterns irrelevant to the targeted
cancers. Since SPARCS is designed to serve administrative purpose to moni-
tor and improve qualities of hospital services and data reporting, we believe
our study could not only help to improve healthcare qualities provided to serve
cancer patients, but also throw light upon researches using diagnosis codes in
SPARCS.

Since high-level diagnosis categories contain richer but less specific diagnoses
information than diagnosis codes, we can use low-level ICD-9 and ICD-10 diag-
nosis codes in our future researches to see if more specific and useful patterns
can be extracted. We can also experiment on a cohort with one certain disease to
narrow down the scope of our study and gain a deeper insight into that specific
cohort.
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