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Abstract. In this article, we present the use of sparse representation of signal
and dictionary learning method for solving the problem of anomaly detection.
The analyzed signal was presented as a set of correct ECG structures and outliers
(characterizing different types of disorders). In the course of learning we used the
modified Method of Optimal Directions (MOD) to find a dictionary that would
reflect correct structures of an ECG signal. The dictionary found this way became
a basis for sparse representation of the analyzed ECG signal. In the process of
anomaly detection based on decomposition of the analyzed signal onto correct
values and outliers, there was used a modified Alternating Minimization Algo‐
rithm (AMA). Performance of the proposed method was tested using a widely
available database of ECG signals - MIT–BIH Arrhythmia Database. The
obtained experimental results confirmed the effectiveness of the method of
anomaly detection in the analysed ECG signals.
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1 Introduction

ECG signal analysis, for which the subject is a human, consists in replication of the
electrical activity of cardiac muscle cells. The ability of these cells to produce electrical
impulses determines functioning of heart as a mechanical pump stamping blood in the
circulatory system, due to which the remaining biological systems in a human organism
work. Electrocardiographic signals are usually registered as changes in electrical poten‐
tials in time, and are obtained from various characteristic points of a human body (these
points are directly connected to 3, 6 or 12-channel acquisition of ECG signals). Signals
acquired in this manner contain vast essential diagnostic information [1].

A standard record of ECG, which is a set of multi lead signal, presents in result a
series of repeated wave structures. Each of these structures consists of characteristic
waves (P, Q, R, S, T, U), segments (P-R, S-T) and intervals (P-R, R-R, S-T, Q-T), which
correspond to different stages of cardiac muscle electrical activity.
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Morphological changes in shape, or disturbances in the structure of the ECG signal
may have various reasons of morbid or physiological character. In an electrocardio‐
graphic record, these changes most often appear as distortions of shape or location of
waves P and T, and segments ST or PQ. Anomalies may also emerge in localization and
structure of the QRS complexes, which are basis for measuring the R-R interval. Distor‐
tion in the heart beat rhythm, directly connected to its irregular contractions, may be
symptomatic of a disease entity called arrhythmia. One of the most often appearing
factors of heart rhythm disturbance (especially in old people) are premature ventricular
complexes (PCVs). They arise as a result of ectopic hyperactivity of myocardium and they
cause disturbances in its synchronization [2].

In this article, we present the use of outlier dictionary learning method and sparse
representation of signal for specific time series describing the analysed ECG signals.
Anomaly detection is realized as a solution to the ECG signal’s sparse representation
issue on the base of the modified AMA method. As a result, we obtain the ECG signal
decomposition onto the correct values and outliers (anomalies).

This paper is organized as follows. After the introduction, in Sect. 2, the related work
is presented. Next, in Sect. 3 sparse representation of the ECG signal is described in
detail. Then, in Sect. 4 the outlier dictionary learning method based on modified MOD
algorithm estimation is shown. Next, Sect. 5 presents the details of the proposed solution
consisting of formulation the sparse representation problem with outliers, and the modi‐
fied AMA method for solving the problem of sparse representation. Implementation
details and experimental results are described in Sect. 6. Conclusion are given thereafter.

2 Related Work

Until now, there have been published numerous experimental works directly describing
different stages of processing, analysis and detection of given structures in an ECG signal
[3]. It was performed by means of: (i) classical methods of signal processing, (ii) artificial
neural networks, (iii) high-end classifiers (Support Vector Machine), (iv) genetic algo‐
rithms [4–8]. However, the current promising approach towards analysis and detection
of anomalies in an ECG signal are the machine learning methods, in particular, the sparse
representations of the signals realized with the use of dictionaries with redundancy
(which describe essential structures of the analyzed signal). These methods, however,
are most often used at the early stages of the ECG signal analysis, i.e. quality enhance‐
ment, or detection of the QRS complex [9]. The problem of anomaly detection for elec‐
trocardiography record should not be understood in the same manner as the traditional
anomaly detection solutions. This issue is discussed in detail in the existing literature
[10, 11]. For symbolic sequences, several anomaly detection methods were proposed
by Chandola et al. [12] survey. On the other hand, in the process of broadly understood
detection of anomalies (especially in a sparse representation) included in the ECG signal,
they are occasionally used [13]. This fact has become inspiration for the present work.
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3 Sparse Representation of ECG Signal

Representations of an ECG signal realized as linear extensions against a defined set of
base functions well localized in time and/ or frequency, in many cases, are not precise
and optimal enough. Therefore, a natural solution is introduction of more diverse,
numerous, and adjusted to the signal’s character sets of functions, called dictionaries
with redundancy [14]. In result, we obtain representations which are more universal and
flexible.

Sparse representation is searching for the sparse solution of decomposition coeffi‐
cients c representing the signal si over the redundant dictionary when the remainder is
smaller than the given constant 𝛿, which can be stated as [15]:

min‖‖C0
‖
‖ s.t.

‖
‖
‖
‖

si −
∑P−1

p=0
cpdp

‖
‖
‖
‖

< 𝛿, (1)

where ‖⋅‖0 is the 𝓁0 normcounting the nonzero entries of a vector, cp ∈ C representing a
set of projection coefficients, and dp ∈ D are the elements of the redundant dictionary D.

Optimal representation can be defined as such a subset of dictionary D elements,
whose linear combination explains the biggest percentage of the signal si energy among
all the subsets of the same count. The choice of such a representation is computationally
NP-hard [16].

3.1 The Proposed Data Model

We assume that S ∈ RQ×L is a set of signals (including L signals 
{

si ∈ Rn
}L

i=1) which are
well approximated by a sparse representation model, omitting the outliers (signals which
vary from the model ones). Such a set S is presented as

S = DC + O + N, (2)

where D is an assumed known, O is the matrix of outliers that have few non-zero columns
that equal to the deviation of each outlier from the sparse representations model, and N
is a low-energy noise component.

3.2 Sparse Representation Models with Outliers

Our aims are: detection of outliers in the set/collection S, and recovery of the sparse
representations. For the case of the Single Measurement Vector (SMV) [17], this aim
can be achieved by finding a solution to the problem below

{C, O} = argminC,O‖S − DC − O‖
2
F

s.t. ‖C‖0 ≤ LT0 and ‖O‖2,0 ≤ P0, (3)

where ‖O‖2,0 is a count of the number of non-zero columns in O, the constraints ensure
at most T0 is the maximum number of non-zero entries, and at most P0 non-zero columns
in the outlier matrix. The solution encouraged by problem (3) involves sparse C.
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However, it allows nonzero columns in O in case some outliers cannot be represented
solely by D.

For the case of Multiple Measurement Vector (MMV) [18], our aim can be achieved
by finding a solution to the problem below

{C, O} = argminC,O‖S − DC − O‖
2
F

s.t. ‖C‖0,2 ≤ T0 and ‖O‖2,0 ≤ P0, (4)

where ‖C‖0,2 is a count of the number of non-zero rows in C.
The basic difference between the models (3) and (4) consists in the fact that each

signal in SVM is assumed to be a single measurement associated with a unique non-zero
pattern of its sparse representation (i.e. a unique combination of atoms). In MMV,
however, we are dealing with joint-sparsity for the collection S.

4 Dictionary Learning Method of Resistant-to-Outlier

The question of dictionary learning in the scope of sparse representation has been a
common field of analysis over the last years [19]. What differentiates dictionary learning
algorithms is their attitude towards the dictionary update process, i.e. some update all
atoms at once (e.g. Method of Optimal Directions [20]), other update atoms one after
another (e.g. K-Singular Value Decomposition [21]).

The main function of these solutions is finding the best dictionary D (resistant-to-
outlier) which would represent the signal S as sparse composition, by solving

minD,C
[

‖S − DC − O‖
2
F
+ 𝜆‖‖oi

‖
‖2,1

]

, (5)

where ‖⋅‖2
F
 is the Frobenius norm and O =

[

o1,… , oL

]

 is the matrix of outliers, ‖o‖j2,1 is
the mixed 𝓁2,1 norm of vector o =

[

‖o‖12,… , ‖o‖L2
]T, in which is defined as the 𝓁1 norm

of matrix of outliers, 𝜆 is a threshold parameter.
For solving the resultant optimization problem (5), the MOD (Method of Optimal

Directions) is used. This process is conducted by means of minimizing the objective
function iteratively over one variable, whilst the remaining two are fixed. Firstly, D and
O are initialized, then minimization over C is performed – the iterative optimization
starts. The regular course of initializing D implies the use of a predefined dictionary, for
instance Gabor’s [22], or the dictionary is composed of atoms randomly chosen from
the training signals. The second option does not apply to our solution-finding process
because some outliers might be taken as atoms, and as a result, they could possibly affect
the whole process (in the sequel iterations). O is initialized by using the zero matrix. By
way of explanation, all the training signals are accepted as not “outliers” at first iteration.
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The modified MOD algorithm is divided into three stages:

• Sparse Coding Stage: In this phase, the coefficients ci are set on the basis of the
redundant dictionary D and signal si. In every step, we seek the minimum number of
coefficients allowing to satisfy the Eq. (6). The given D is fixed. The Orthogonal
Matching Pursuit algorithm [23] is used to calculate M sparse coefficients ci for every
sample of signal si, by approximating the solution of

ci ← arg min
ci

s‖‖i − Dci − oi
‖
‖

2
2 s.t ‖

‖ci
‖
‖0 ≤ T i = 1, 2,… , M. (6)

• Outlier Update Stages: In this phase, we update the o outlier vector (in every step
we seek the minimum number of outliers) to satisfy the Eq. (7).

oi ← argminoi

[

‖
‖si − Dci − oi

‖
‖

2
2 + λ‖‖oi

‖
‖2

]

i = 1, 2,… , M. (7)

For making an update of an outlier vector, it is necessary to solve

mino

[

‖r − o‖
2
2 + 𝜆‖o‖2

]

, (8)

where r = s − Dc is the residual vector. When the derivative of the objective function
is set to be equal to zero, at the optimal point ô, the result is

ô =

⎧

⎪

⎨

⎪
⎩

(
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𝜆

2‖r‖2

)

r, if‖
‖r2

‖
‖ >

𝜆

2
0, otherwise

⎫

⎪

⎬

⎪
⎭

. (9)

The conclusion from the above is that when the sparse representation error (the
residual) norm of the training data exceeds the threshold λ, this point is identified as an
outlier. In other case, it is perceived as a relevant data vector. Another inference that can
be drawn about the importance of the trade-off parameter λ is that the smaller values it
has, the more points are recognized as outliers.

• Dictionary Update Stages: In this phase, we update the D dictionary atoms. The
alternative values of an atom and coefficients are computed in order to lower the
possibility of an error between the signal S and the sparse representation D ∗ C with
outliers.

D ← arg minD

∑L

i=1
‖
‖si − Dci − oi

‖
‖

2
2 (10)

In the dictionary update stage, the following problem has to be solved

minD ‖F − DC‖2
F, (11)

where F = S − DC. We chose the MOD algorithm to solve the above problem (for its
simplicity) [20], however, any dictionary update algorithm may be used here.
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All dictionary atoms are updated in this manner. Iterating according to the three
above steps will create a dictionary (without outliers) that approximates the provided
signal S in a sparse and accurate way. The outcome of the MOD algorithm will be a
dictionary D (resistant-to-outlier used in the modified AMA method) containing often
correlated atoms that best represent the analyzed signal S regarding its sparse represen‐
tation D ∗ C.

5 The Proposed Solution

Representation of the signal S, described by dependency (2) requires solving the prob‐
lems of sparse representations of SVM and MMV types (see Subsect. 3.2), which are
presented by the examples (3) and (4), and also finding a resistant-to-outlier dictionary
D (see Sect. 4). To realize so stated task, the alternating minimization algorithm was
modified so as to achieve a set of outliers O describing anomalies in the signal S.

5.1 Problem Formulation of Sparse Representation with Outlier

The solutions to problems described by Eqs. (3) and (4) can be approximated by solving
the following unconstrained convex problem:

minC,O

[1
2
‖S − DC − O‖

2
F
+ 𝛼‖C‖1,d + β‖O‖2,1

]

, (12)

where d characterized the norm ‖∗‖2,d (i.e. d = 1 for SMV, and d = 2 for MMV), 𝛼, 𝛽
are small positive parameters.

We propose to solve problem (12) by the modified Alternating Minimization Algo‐
rithm [24] because this algorithm is simpler than Alternating Direction Method of
Multipliers.

5.2 Modified AMA Algorithm for Anomaly Detection

The classical alternating minimization algorithm was designed to solve the following
structured optimization problem [24]:

minx,y f (X, Y) s.t. AX + BY = Z, (13)

where X, Y , Z, A, B are matrices and the objective function is either separable
f (X, Y) = 𝜃1(X) + 𝜃2(Y), and 𝜃1(⋅), 𝜃2(⋅) are two real-valued functions.

To use AMA for solving the case of Eq. (12), an auxiliary variable V  and equality
constraint are added

minC,O,V
1
2
‖S − DC − O‖

2
F
+ 𝛼‖V‖1,d + β‖O‖2,1 s.t. V = C. (14)
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It is necessary to notice that changing (12) into a constrained issue, the first and
second terms of (12) have been decoupled. Such action allowed for evasion of necessity
of an iterated-shrinkage solution for C [25]. By adding the auxiliary variable C, we
obtained a close-form solution for C, and a one-shot shrinkage solution for V. The
Lagrangian function and the augmented-Lagrangian function for (14) are respectively:

(C, V , O, 𝜆) = 1
2
‖S − DC − O‖

2
F
+ 𝛼‖V‖1,d + 𝛽‖O‖2,1 − ⟨𝜆, V − C⟩ (15)

and

𝜇(C, V , O, 𝜆) = 1
2
‖S − DC − O‖

2
F
+ 𝛼‖V‖1,d + 𝛽‖O‖2,1 − ⟨𝜆, V − C⟩ +

𝜇

2
‖V − C‖

2
F
, (16)

where 𝜆 is a Lagrange multiplier and 𝜇 is a penalty parameter that controls the penalty
level of deviation from the equality constraint.

Then, the framework of the AMA (with anomaly detection) for solving (14) can be
expressed as follows:

⎧

⎪

⎨

⎪
⎩

Ck+1 = argminC 
(

C, Vk, Ok, 𝜆k
)

Vk+1 = argminV 𝜇

(

Ck+1, V , Ok, 𝜆k
)

Ok+1 = argminO 𝜇

(

Ck+1, Vk+1, O, 𝜆k
)

𝜆k+1 = 𝜆k + 𝛿𝜇k
(

Vk+1 − Ck+1
)

, (17)

where 𝛿 ∈ (0, 2), there is a guarantee of convergence of the above on condition that the
sub-problem is solved ensuring high precision at every iteration [24]. Algorithm stop
criterion is given by

‖V − C‖
2
F

‖C‖
2
F

< 𝜀, (18)

where 𝜀 is the threshold parameter.
As a result of the AMA algorithm performance, we achieve: (i) a set of coefficients

C, which together with the dictionary D (obtained by means of the MOD algorithm)
represent the correct structure of the signal S, (ii) outliers (anomalies included in the
signal S) reflected by the matrix O. The whole represents the proposed model of data
described by dependency (2).

6 Experimental Results

In the conducted research, there was used the Massachusetts Institute of Technology –
Beth Izrael Hospital Arrhythmia Database (MIT–BIH) consisting of eight sets of data
burdened with various disorders, which can be detected with the use of the Holter’s
method. Forty-eight records from the MIT–BIH were tested, in which there are: a file
with the subject signal, a header file (containing data about the patient), and a file with
diagnostic data (including the signal’s description in the binary form). The sampling
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frequency of the signal equaled 360 Hz, and the resolution was set to 12 bits. The detailed
outcomes, however, were presented exclusively for three selected signals. The
mentioned signals have consecutive numbers, and are characterized by (respectively):
#108 – high P wave amplitude (often mistakenly detected as R), #203 – high T wave
amplitude (often mistakenly detected as R), #109 – contains a lot of PVC events. Exem‐
plary fragments of those signals are presented in Fig. 1, as follows: (a) signal #105, (b)
signal #203, (c) signal #109.

(c)

(a)

(b)

Fig. 1. The fragments of electrocardiographic signals’ records from the MIT–BIH base (a) signal
#108, (b) signal #203, (c) signal #109.

(a) (b)

Fig. 2. Exemplary atomic dictionaries: (a) Gabor dictionary for the MOD initialization, (b) MOD
dictionary for 20 atoms of the #203 signal.
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The simulations were performed on a dual-processor Dell work station composed of
eight core i7 processors and 32 GB of RAM.

For the proposed data model (2), and for solving the problem of sparse representation
with separated outliers (12), a proper dictionary composed of 200 atoms was sought.
Figure 2b presents chosen atoms of a dictionary obtained for the signal #203 by means
of methodology described in Sect. 4. For initialization of the initial dictionary of the
MOD algorithm, the Gabor’s dictionary proposed by Mallat and Zhang in [22] was used.
The parameters of the atoms were chosen from dyadic sequences of integers. Chosen
Gabor’s dictionary atoms are presented in Fig. 2a.

To solve the problem (14) we used the modified AMA method for the following
parameters: 𝜇0 = 1.0, 𝛿 = 1.5, 𝛼 = 1.0, 𝛽 = 2.5, 𝜀 = 0.005, d = 1. Occurrences of
arrhythmia (anomalies in the analyzed signal) were detected as columns in the matrix
O, with the use of norm 𝓁2, and the threshold value 0.1. The obtained results for the
analyzed signals #105, #203 and #109 are presented in Table 1. (DR stands for a detec‐
tion rate, and FP – a false positive rate).

Table 1. Results of anomaly detection in ECG signals.

Signal DR [%] FP [%]
#105 95,57 2,89
#203 94,46 3,75
#109 96,71 2,90

7 Conclusions

Contemporary medicine offers a series of myocardium diagnostic methods, ranging from
physical examinations, through biochemical, and ending with diagnostic imaging. It is
worth noticing that in the process of diagnosing it is often necessary to use a quick and
noninvasive diagnostic method. In such a case, an electrocardiograph is the most often
used equipment (in a hospital or a surgery). It is easy to imagine that if such diagnostics
were common and possible to utilize remotely (where the patient can perform the survey
themselves and obtain an automatically generated and understandable result, or connect
with the cardiological monitoring center to evaluate the ECG record more precisely), it
would certainly create new quality to the widely understood medical care. In terms of
automatic analysis of ECG, the question of detection and identification of selected ECG
parameters determines the need to use complex methods in the field of processing, anal‐
ysis and recognition of signals.

In this article, we present the use of sparse representation of signal and outlier
dictionary learning method for the analysed electrocardiography records. To find appro‐
priate structure of the dictionary, there was used the modified MOD algorithm. The
dictionary obtained this way constituted basis for the sparse representation of the
analyzed ECG signal. The process of anomaly detection was realized as a solution of
the task of sparse representation of the ECG signal described by means of correct values
and outliers. To realize this task, there was used the modified ADA algorithm. Efficiency
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of our method was examined using a widely available database of ECG signals - MIT–
BIH Arrhythmia Database. The received experimental results confirm the efficiency of
the presented method.
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