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Abstract. Database schema elements such as tables, views, triggers and
functions are typically defined with many interrelationships. In order to
support database users in understanding a given schema, a rule-based
approach for analyzing the respective dependencies is proposed using
Datalog expressions. We show that many interesting properties of schema
elements can be systematically determined this way. The expressiveness
of the proposed analysis is exemplarily shown with the problem of com-
puting induced functional dependencies for derived relations.
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1 Introduction

The analysis of database schema elements such as tables, views, triggers, user-
defined functions and constraints provide valuable information for database users
for understanding, maintaining and managing a database application and its
evolution. In the literature, schema analysis has been investigated for improv-
ing the quality of SQL/program code or detecting program errors [3] and for
determining the consequences of schema changes [10], versioning [8], or match-
ing [11]. In addition, the analysis of schema objects plays an important role for
tuning resp. refactoring database applications [2]. All these approaches rely on
exploring dependencies between schema objects and an in-depth analysis of their
components and interactions. A comprehensive and flexible analysis of schema
elements, however, is not provided as these approaches are typically restricted
to some subparts of a given schema.

The same is true for analysis features provided by commercial systems where
approaches such as integrity checking, executing referential actions or query
change notification (as provided by Oracle) already use schema object depen-
dencies but in an implicit and nontransparent way, only. That is, no access to
the underlying meta-data is provided to the user nor can be freely analyzed by
means of user-defined queries. Even the meta-data about tables and SQL views
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which are sometimes provided by system tables cover only certain information
of the respective schema elements. In this paper, we propose a uniform app-
roach for analyzing schema elements in a comprehensive way. To this end, the
schema objects are compiled and their meta-data is stored into a Datalog pro-
gram which employs queries for deriving interesting properties of the schema.
This way, indirect dependencies between tables, views and user-defined func-
tions (UDFs) can be determined which is important for understanding follow-up
changes. In order to show the expressiveness of the proposed analysis, our rule-
based approach is applied to the problem of deducing functional dependencies
(FDs) for derived relations, i.e., views, based on FDs defined for base relations.
This so-called FD propagation or FD-FD implication problem has been studied
since the 80s [7,9,12] and has applications in data exchange [6], data integration
[4], data cleaning [7], data transformations [5], and semantic query optimization.
We show that our rule-based approach to schema analysis is well-suited for real-
izing all known techniques for FD propagation indicating the expressiveness of
the proposed analysis. In particular, our contributions are as follows:

– We propose an approach for analyzing the properties of views, tables, trigger
and functions in a uniform way.

– Our declarative approach can be easily extended for refining the analysis by
user-defined queries.

– The employed Datalog solution can be simply transfered into SQL systems.
– In order to show the expressiveness of our approach, the implication problem

for functional dependencies is investigated using our approach.

2 Rule-Based Schema Analysis

A database schema describes the structure of the data stored in a database
system but also contains views, triggers, integrity constraints and user defined
functions for data analysis. Functions and these different rule types, namely
deductive, active and normative rules, are typically defined with various inter-
dependencies. For example, views are defined with respect to base relations
and/or some other views inducing a hierarchy of derived queries. In particu-
lar, the expression CREATE VIEW q AS SELECT ... FROM p1, p2, ..., pn leads to
the set {p1 → q, . . . , pn → q} of direct dependencies between the derived rela-
tion q and derived or a base relations pi. which are typically represented by
means of a predicate dependency graph for analyzing indirect dependencies via
the transitive closure, too. This allows for understanding the consequences of
changes made to the instances of the given database schema (referred to as
update propagation in the literature) or to its structure. This is important when
a database user wants to know all view definitions potentially affected by these
changes. Various dependencies can occur in a database schema such as table-
to-table dependencies induced by triggers or view-to-table dependencies which
can be induced by functions. The analysis of such dependencies can be further
refined by structural details (e.g., negative vs. positive dependencies as needed
for update propagation) as well as by considering the syntactical components of
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schema objects such as column names (attributes) or operator types (sum, avg,
insert, delete, etc.). To this end, the definitions of schema objects need to be
parsed and the obtained tokens stored as queryable facts. This kind of analy-
sis is well-known from meta-programming in Prolog which led to the famous
vanilla interpreter. For readability reasons we use Datalog with facts such as
base(R,A) (base relation R with arity A), derived(V,A) (view V with arity A),
dep(To,From) (dependency between relations), call(V,I,O,F) (input I and
output O of function F in view V), attr(R,P,N) (position P of attribute named
N in relation R) for representing meta-information about a given view or user-
defined function. Based on these facts, schema analysis can be realized by queries
like

attr dups(N) ← attr(R1, ,N),attr(R2, ,N),R1<>R2
idb func pred(V) ← derived(V, ),call(V, , , )
base changes(B) ← path(B,f1),base(B, ),func(f1, )
tbl dep(A,B) ← base(A, ),base(B, ),path(A,F),path(F,B),func(F, )

for determining reused attribute names, views calling a function, base tables
possibly changed by function f1, and cyclic dependencies between two base tables
through a function. This way, many interesting properties of schema elements
can be systematically determined which supports users in understanding the
interrelationships of schema elements. Most database systems already allow for
storing and querying meta-data about schema elements in a simple way but a
comprehensive (and in particular user-driven) analysis like this is still missing.

3 Functional Dependency Propagation

In order to show the expressiveness of our approach, we investigate the possi-
bility to compute induced FDs for derived relations using the deductive rules
introduced above. FDs form special constraints which are assumed to hold for
any possible valid database instance. The FD propagation problem is undecid-
able in the general setting for arbitrary relational expressions [9]. Even restricted
to SC views, i.e., relational expressions allowing selection and cross product only,
the propagation problem turns out to be coNP-complete (for an in-depth dis-
cussion on complexity see [7]). In favor of addressing the general setting, we
drop the ambition of achieving completeness by considering a special case, only.
Instead, we allow for arbitrary expressions over all relational operators, multiple
propagation steps and possibly finite domains1 in order to cover the majority of
practical cases.

3.1 Preliminaries

A functional dependency α = {A1, . . . , An} → B states that the attribute values
of α determine those of B. The restriction to univariate right sides can be done
1 Finite domains may introduce new FDs because of limited value combinations.
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without loss of generality as well as the representation of FDs satisfying B /∈ α,
only.2 We allow α = ∅ which means that the attribute values of B are constant.
For our FD propagation rules, we employ a Datalog variant with special data
types for finite, one-leveled sets and finite, possibly nested lists. In our approach
we use the extended transitivity axiom

α → B, γ → D, B ∈ γ, D /∈ α ⇒ α ∪ (γ −B) → D (1)

to derive transitive FDs. Note that if B /∈ α and D /∈ γ, then the derived FD
also satisfies D /∈ α ∪ (γ −B).

Rule Normalization. For our systematic FD propagation approach, we assume
the Datalog rules defining views to be in a normal form, where each rule cor-
responds to exactly one of the relational operators π, π′, σ, ×, ∪, ∩, −, or ��.3

Any set of Datalog rules can be transformed into an equivalent set of normalized
rules while preserving important properties like being stratifiable [1].

3.2 Representation of FDs and Normalized Rules

We assume that functional dependencies for EDB predicates are given in a rela-
tion edb fd(p, α, B, ID). Here α and B are (sets of) column numbers of the rela-
tion p. The fact represents the functional dependency α→B for the relation p.
The ID is of type list and used to identify the dependency in later steps, e.g.,
in case of union. The derived functional dependencies will be represented in the
same way in an IDB predicate fd(p, α, B, ID′). Here ID’ is related to the depen-
dency’s ID where the FD is derived from for propagated FDs or to a newly
created ID for FDs that arise during the propagation process.

As in normal form every rule corresponds to exactly one operator, we can
refine the above defined dependency relation dep/2 to rel/3 by adding the
respective operator. A fact rel(p,q,op) indicates that a relation p depends
(positively) on q via an operator op which is one of ’projection’, ’extension’,
’selection’ ’product’, ’join’, ’negation’, ’intersection’, and ’union’.
We further introduce an EDB predicate pos(head,body,pos head,pos body)
for storing information on how the positions of non position preserving operators
(cf. Table 1) transform from rule body to head (as FDs are represented via
column numbers). Remembering that each relation is defined via one operator
only and that we exclude self joins for simplicity (cf. Sect. 3.1), the above defined
relation pos/4 is non-ambiguous. Finally, we have two additional EDB predicates
eq(pred,pos1,pos2) and const(pred,pos,val) for information on equality
conditions (e.g., X = Y or X = const) in extension and selection rules.

2 Multivariate right sides and omitted FDs are retrievable via Armstrong’s axioms.
3 In order to simplify the FD propagation process we limit w.l.o.g. a union rule to two

relations and do not allow self joins or cross products.
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Table 1. Properties of FD propagation categorized by operator

Properties π π′ σ × ∪ ∩ − ��

FDs are preserved ×a × × × – × ×b ×
Positions are preserved – × × –c × × × –

Transitive FDs can appear – × × – – – – ×
Additional FDs from equality conditions (variables
and constants)

– × × – – – – –

Additional FDs caused by instance reduction may
appear

– – × – – × × ×

× =̂ yes, – =̂ no
aThose where all contained variables are maintained
bThose of the minuend
cPositions of the first factor are preserved, positions of the second factor get an offset

3.3 Propagation Rules

In this section, we present three different types of propagation rules for (a) propa-
gating FDs to the next step, (b) introducing additional FDs arising from equality
constraints, and (c) calculating transitive FDs.

Example 1. Consider the following rule set given in normal form together with
two FDs fd(s, {1}, 2, ID1) and fd(t, {1, 2}, 3, ID2) for the base relations s and t:

p(W,Z) ← q(W,X,Y,Z)
q(W,X,Y,Z) ← r(W,X,Y,Z), Y=2
r(W,X,Y,Z) ← s(W,X), t(X,Y,Z)

Omitting IDs, we obtain the following propagation process: First, both FDs
are propagated to r resulting in fd(r,{1},2,-) and fd(r,{2,3},4,-) (with
the appropriate column renaming for the latter FD). By transitivity we have
fd(r,{1,3},4,-) as a combination of the two. All three FDs are propagated
to q together with fd(q,∅,3,-) resulting from the equality constraint Y = 2.
Applying transitivity results in three more FDs for q, but only fd(q,{1},4,-)
is propagated further to p as fd(p,{1},2,-). The complete list of propagated
FDs including IDs is given in Example 2.

Table 1 summarizes the properties of how FDs are propagated via the different
relational operators which form the basis for the propagation rules. In most cases,
the FDs are propagated as they are (with adjustments on the positions for π,
×, and ��). If there is a single rule defining a derived relation, the source FDs
transform to FDs for the new relation (restricted to the attributes in use). Union
forms an exception where even common FDs are only propagated in special cases
(cf. Sect. 3.4). For extensions π′ and selections σ where additional FDs can occur
due to equality conditions as well as for joins �� transitive FDs may appear so
that taking the transitive closure becomes necessary. In cases where the number
of tuples is reduced (i.e., σ, ∩, ��, and −) it is possible that new FDs appear as
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pos pres

’selection’

’extension’

’negation’

’intersection’

non pos pres

’projection’

’product’

’join’

trans(R) ← base(R, ).

trans(R) ← rel(R, ,’join’).

trans(R) ← eq(R, , ).

trans(R) ← const(R, , ).

Fig. 1. Position preserving (left) and non position preserving (middle) operators, and
relations where transitive FDs may occur (right).

there are less tuples for which the FD constraint must be satisfied. The different
propagation rules for all relational operators except union are specified in the
following.

(a) Induced FDs. For direct propagation of FDs from one level to the next, we
distinguish between position preserving and non position preserving operators.
In the first case FDs can be directly propagated (2), whereas in the latter adjust-
ments on the column numbers are necessary (3). The EDB predicates pos pres
and non pos pres comprise the respective operators as listed in Fig. 1.

fd(P, α, B, -) ← fd(Q, α, B, -), rel(P, Q, op), pos pres(op). (2)

fd(P, {X1, . . . , Xn}, Y, -) ← fd(Q, {A1, . . . , An}, B, -), (3)

pos(P, Q, X1, A1), . . . , pos(P, Q, Xn, An), pos(P, Q, Y, B),
rel(P, Q, op), non pos pres(op).

(b) Additional FDs. For any equality constraint X = Y we can deduce the
dependencies X → Y and Y → X. Similar, a constant constraint X = c
induces the dependency ∅ → X. That is for any fact eq(R,pos1,pos2) and
const(R,pos,val) respectively we derive the following FDs:

fd(R, pos1, pos2, -) ← eq(R, pos1, pos2). (4)

fd(R, pos2, pos1, -) ← eq(R, pos1, pos2). (5)

fd(R, ∅, pos, -) ← const(R, pos, val). (6)

(c) Transitive FDs. Since transitive FDs can only occur for certain operators
it is sufficient to deduce them for those cases, only (cf. Table 1):

fd(P, ε, D, -) ← fd(P, α, B, -), fd(X, γ, D, -), (7)
B ∈ γ, D /∈ α, ε = α ∪ (γ −{B}), trans(P).

fd(P, X, Y, -) ← fd(P, α, X, ID), fd(P, α, Y, ID), trans(P). (8)

The first rule implements the extended transitivity axiom (1) and the second
equates the right sides of two identical FDs (identified by matching IDs). The
IDB predicate trans/1 comprises all relations where transitive FDs may occur.
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3.4 Union

In case of union p = p1 ∪ p2 even common FDs are only propagated in special
cases. Consider the following example of post codes. In each country, the post
code uniquely identify the city associated with it. But the same post code can be
used in different countries for different cities. So although we have the FD post
code → city in the relations german post codes and us post codes, it is not a
valid FD in the union of both. A common FD of p1 and p2 is only propagated to p
if the domains of the FD are disjoint, or if they match on common instances. The
first case can only be handled safely on schema level if constants are involved.
The latter is the case if the FDs have the same origin and are propagated in a
similar way. Whether two FDs have the same origin can be easily checked (e.g.
using path from Sect. 2). This criteria is not yet enough as the FDs might have
been manipulated during the propagation process (e.g., changes in the ordering,
equality constraints, etc.). We employ identifiers to track changes made to certain
FDs using a list structure that adopts the tree structure of [9] who represents
FDs as trees with source domains as leaves and the target domain as the tree’s
root. As the target is already handled in the FD itself, we keep track of the
source domains and transitively composed FDs, only.

At the beginning, each base FD α → B gets a unique identifier IDi. The
idea is to propagate this ID together with the FD and to keep track of the
modifications made to the FD. For this purpose we attach an ordered tuple,
a (possibly nested) list, to the ID, i.e., IDi[A1, . . . An] for α = {A1, . . . An}.
For the position preserving operators (that in particular do not change the FD’s
structure) the ID is identically propagated in (2). For the non position preserving
operators the positions are updated (using a UDF) similarly to the position
adjustments of the FD itself in (3). The difference is that the ID maintains an
ordering and the cardinality stays invariant. For constant constraints, we set
the constant value as ID in (6), equality constraints in (4), (5) and (8) get the
(column number of the) left side as ID. In (7) we replace the occurrences of the
column number B in the ID of fd(X, γ, D, -) by the ID of fd(X, α, B, -).

Example 2. For the FD propagation in Example 1 we have the following IDs:

fd(s, {1}, 2, ID1[1]). fd(q, {1}, 2, ID1[1]).

fd(t, {1,2}, 3, ID2[1,2]). fd(q, {2,3}, 4, ID2[2,3]).

fd(q, {1,3}, 4, ID2[ID1[1],3]).

fd(r, {1}, 2, ID1[1]). fd(q, ∅, 3, ’3’).

fd(r, {2,3}, 4, ID2[2,3]). fd(q, {2}, 4, ID2[2,’3’]).

fd(r, {1,3}, 4, ID2[ID1[1],3]). fd(q, {1}, 4, ID2[ID1[1],’3’]).

fd(p, {1}, 2, ID2[ID1[1],’3’]).

A common ID implies that the same modifications have been made to a common
base FD. This means that the FD is preserved in the case of union:

fd(P, α, B, ID) ← fd(P1, α, B, ID), fd(P2, α, B, ID), (9)
rel(P, P1, ’union’), rel(P, P2, ’union’), path(P1, X), path(P2, X).
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4 Conclusion

In Sect. 3.3 we introduced our propagation rules for propagating functional
dependencies. To compute the set of propagated FDs these rules are simulta-
neously applied to the input Datalog program in normal form. The rules are
based on the observations in Table 1 which can be easily verified. The propa-
gated functional dependencies of our approach are not complete as the problem
is undecidable in general. Also limited to a less expressive subset of the rela-
tional operators (e.g., restricted operator order SPC views) one has to assume
the absence of finite domains to achieve completeness. Nevertheless, we are able
to deal with many cases appearing in real world applications. Our FD propaga-
tion approach can be flexible extended to allow for user-defined functions in the
extension operator and even recursion can be covered with some modifications.

In [9] the FD implication problem was addressed first. We provided a full
declarative approach covering most cases stated in this work. In addition, we are
able to cover linear recursion in a similar way as proposed by [12]. Other related
approaches like the work of [7] for conditional FDs can be incorporated into
our approach, too. Besides these rule-based approaches, a detailed comparison
with the chase, an established algorithm for FD implication, is object for future
research.
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