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Abstract. Writing effective analytical queries requires data scientists to
have in-depth knowledge of the existence, semantics, and usage context of
data sources. Once gathered, such knowledge is informally shared within
a specific team of data scientists, but usually is neither formalized nor
shared with other teams. Potential synergies remain unused. We intro-
duce our novel approach of Query-driven Knowledge-Sharing Systems
(QKSS). A QKSS extends a data management system with knowledge-
sharing capabilities to facilitate user collaboration without altering data
analysis workflows. Collective knowledge from the query log is extracted
to support data source discovery and data integration. Knowledge is for-
malized to enable its sharing across data scientist teams.

1 Introduction

Data scientists work according to their expert knowledge gained by solving pre-
vious data analysis challenges and maintain individual mental models of the
available data sources. These models encompass knowledge about when certain
data sources are useful, how they can be linked, how their content can be inter-
preted or what domain vocabulary is used. Within a team of data scientists,
this knowledge is shared through personal interaction. In most cases however,
it is not formally documented or shared between teams. Due to the complex-
ity of analytical questions, it is common that multiple teams of data scientists
work separately on data analysis challenges, especially in larger organizations.
When different teams do not directly interact with each other, they miss out on
opportunities to share their knowledge and to profit from experiences of others.

Contribution. To overcome the above deficiencies, we propose Query-driven
Knowledge-Sharing Systems (QKSS). A QKSS extends a data management sys-
tem by adding services that formalize knowledge implicitly contained in a cen-
tralized query log and make it available to other users. Parts of the underlying
mental model of each query are extracted. This model is mapped to actually
available data sources by using previously generated mappings of related queries.

c© Springer International Publishing AG 2017
M. Kirikova et al. (Eds.): ADBIS 2017, CCIS 767, pp. 63–72, 2017.
DOI: 10.1007/978-3-319-67162-8 8



64 A.M. Wahl et al.

Our contribution comprises multiple aspects: (1) We introduce shards of
knowledge as an abstraction for the concepts behind query-driven knowledge-
sharing. (2) We provide a formal model for building, evolving, and querying
shards. (3) We explain the integration of a QKSS with existing data analysis
tools and processes by suggesting a reference architecture.

2 Query-Driven Knowledge-Sharing Systems

We consider the term knowledge to denote domain knowledge about data sources
required to query them. Such knowledge contains, among others, the following
aspects:

(1) What data sources are available? (2) What parts of data sources can
be used for specific analytical purposes? (3) Which vocabulary and semantics
are used to describe data sources? (4) How can data sources be related to each
other? (5) Who is using which data sources in which temporal context?

2.1 Services of a QKSS

To explain the services a QKSS offers to data scientists and the benefits it
provides, we describe a user story from a clinical research scenario, including
simplified example queries.

Consider three teams of data scientists accessing a QKSS (Fig. 1). The QKSS
manages different data sources containing data from electronic health records.
Alice and Bob from team 1 use medication plans from data source D1 (JSON
format) and the relational database D2 for their main focus of drug dosage analy-
sis. Team 2 (Carol and Dan) also conduct drug dosage analysis, but rely on data
from the relational databases D2, D3 and data source D4 (CSV format). Erin
constitutes team 3 and specializes in time series analysis of patient monitoring
data. She uses two data sources D5 (Avro format) and D6 (Parquet format)
from a distributed file system.

Medica on QKSS

Pa ent Monitoring

Team 1 (Alice, Bob)

Medica on
Team 2 (Carol, Dan)

Pa ent Monitoring

Team 3 (Erin)

D1 D2
D3

D4
D5

D6

Fig. 1. Collaboration through a QKSS

Shared-Knowledge Support for Querying. Initially, none of the teams is
aware of the others. The QKSS provides a SQL interface for data access. While
Alice from team 1 is waiting for the completion of a query (Fig. 2), the QKSS
detects that both teams rely on D2 by analyzing previous queries (Fig. 3).

The QKSS subsequently presents Alice with information and hints for future
queries based on the collective knowledge of team 2. By analyzing queries of
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SELECT D2.id, D2.Department
FROM D1 JOIN D2 ON D2.id = D1.PatNr
WHERE D1.Agent LIKE ’Dexametha%’;

Fig. 2. Exemplary query by Alice

SELECT MIN(D2.Age)
FROM D4 JOIN D2 USING id
WHERE D4.ActiveAgent = ’Salbutamol’;

SELECT D2.id, D3.Substance, D3.Dose
FROM D3 JOIN D2 ON D2.id = D3.Patient

Fig. 3. Exemplary queries by Team 2

team 2, the QKSS finds that data sources D3 and D4 have already been linked to
D2. It therefore shows Alice a unified view of D2 and these sources. To help Alice
with exploring the newly discovered sources, the QKSS ranks them according to
frequency of use and temporal occurrence within query sessions of team 2.

Bob has recently received the order to investigate whether the ingestion of
certain active agent combinations correlates with the occurrence of critical vital
parameters. He is not aware of any data sources containing vital parameters
yet, but has a notion of the kind of data he is looking for. Bob imagines vital
parameter entries to have attributes such as HeartRate and BloodPressure. He
uses this mental model to formulate a query referencing the hypothetical data
source VitalParameters (Fig. 4).

SELECT HeartRate, BloodPressure
FROM VitalParemeters
WHERE HeartRate >= 130;

Fig. 4. Exemplary query by Bob

SELECT BloodPr AS BloodPressure
FROM D5
WHERE HeartRate < 90 AND Time > ’16-01-10’;

SELECT HRt AS HeartRate, BP AS
BloodPressure
FROM D6
WHERE PId = ’P41’ AND TStmp = ’1475693932’;

Fig. 5. Exemplary queries by Erin

The QKSS utilizes his assumptions about the structure and semantics of a
fictional data source named VitalParameters to suggest actual data sources.
Using the knowledge extracted from Erin’s queries (Fig. 5), the QKSS detects
similarities between VitalParameters and the data sources D5 and D6. These
have been queried before using similar structural assumptions and vocabulary.
Thus, the QKSS can recommend D5 and D6 as replacement for the fictional data
source in Bob’s query. Erin’s alias names for schema elements automatically
become part of an ontology. Bob can use this ontology for easier comprehen-
sion of the vocabulary used by other teams. He can provide feedback about the
suggestions through an interactive dialog. The QKSS remembers the mapping
between Bob’s expectations and the actually available data sources and offers to
automatically generate a view that corresponds to his mental model. Bob can
directly use this view in future queries.
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Management of Shared Knowledge. Whenever synergies between teams
are discovered, data scientists may decide to incorporate the shared knowledge
of others in the representation of their own mental models. The QKSS provides
mechanisms to subscribe to the knowledge contained in queries of others and
therefore enables collaborative pay-as-you-go data integration. As long as Bob
is involved in patient monitoring data analysis, he subscribes to Erin’s queries
and augments the formalized representation of his own mental model with hers.
He can automatically see the same unified view of the patient monitoring data
sources that she does. When he is no longer interested in this topic, he may
unsubscribe from her queries and return to his prior medication-centric view.

2.2 Shards of Knowledge

To implement this subscription process and other QKSS services, we introduce
shards of knowledge as an abstraction for knowledge from the query log. A shard
of knowledge captures the mental model of data sources a group of data scientists
forms over a period of time. We use the expression shard because single mental
models may be incomplete, while the combination of all mental models yields
the overall organizational knowledge inferable from the query log. As depicted in
Fig. 6, shards encapsulate knowledge models constructed from specific portions
of the query log. Subsequently, we formally describe the lifecycle of shards to
illustrate their usage by data scientists.

Fig. 6. From log entries to shards of knowledge

Instantiation. Shards are instantiated according to the preferences of data sci-
entists. They determine which knowledge, in form of queries, is to be considered
for each shard.

→ Example: An initial set of shards for a QKSS could encompass one shard
for each team, incorporating all previous queries of the team members. In our
example scenario, the QKSS manages an initial set of three shards.

Query Log. The query log L is a set of log entries of type L. Each entry contains
a user identifier u of type U, a timestamp t of type T and a query q of type Q

(Fig. 7(1)).
Only certain portions of the log L are relevant for the data scientists using

the QKSS. These portions are extracted using functions extr that apply a set of
filter predicates of type F on the log (Fig. 7(2)). We provide exemplary definitions
suitable for a QKSS (Fig. 7(3)/(4)): Each filter predicate denotes the user u
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whose queries are to be considered, as well as the time period of relevant log
entries using the timestamps tstart and tend. Using a set of filter predicates F of
type F, we can extract log entries from a log L using the function extr.

→ Example: For our scenario of three initial shards we would create the filter
predicates F1, F2 and F3 (Fig. 8). tα and tω indicate that log entries from the
whole lifespan of the QKSS are included and the QKSS considers future updates
to the log. Fixed time spans could also be specified.

L : Set L with L = (u : U, t : T, q : Q) (1)

extr : Set F × Set L → Set L (2)

F = (u : U, tstart : T, tend : T) (3)

extr(F,L) = {l ∈ L|f ∈ F.((l.u = f.u) (4)

∧(f.tstart ≤ l.t ≤ f.tend))}

Fig. 7. Extracting relevant queries

F1 = {(Alice, tα, tω), (Bob, tα, tω)}
F2 = {(Carol, tα, tω), (Dan, tα, tω)}

F3 = {(Erin, tα, tω)}

Fig. 8. Exemplary filter predicates

Knowledge Models. Query log extracts are used by log mining algorithms to cre-
ate knowledge models (Fig. 6). The algorithms ai create individual data struc-
tures Ki from a subset of the query log to represent the extracted knowledge
(Fig. 9(5)). The indices i are elements of an index set I that can be used to label
all algorithms provided by the QKSS.

Each knowledge model of type K consists of the product of the different
knowledge aspects extracted by the log mining algorithms (Fig. 9(6)). The func-
tion createModelL,extr,I instantiates a model by applying the algorithms ai on
an extracted portion of the query log (Fig. 9(7)).

→ Example: For our example scenario, the QKSS provides a variety of log
mining algorithms. An algorithm alinks extracts join edges between data sources
from the query log to form a graph of data sources to reason over. Another
algorithm asession partitions the query log into explorative sessions. An algo-
rithm astruct tracks how referenced portions of data sources are structured. To
detect synonyms between the vocabularies of different teams, aonto maintains an
ontology. By using the resulting index set I (Fig. 10(a)), the knowledge model
for team 1 is created (Fig. 10(b)), for example.

Shards. A shard of type S formalizes the mental model shared by multiple data
scientists (Fig. 11(8)). A set F of filter predicates is used to instantiate the shard
with the relevant portions of the query log. These are used to create a knowledge
model K of type K which contains all knowledge of the shard.

The function createShardL,extr,I takes a set of filter predicates F of type F

to create a shard for a given Log L, a given extraction function extr and a given
index set I of log mining algorithms (Fig. 11(9)). L, extr and I are identical for
all shards of a specific QKSS instance.
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ai : Set L → Ki rüf i ∈ I (5)

K =
∏

i∈I

Ki = (Ki1 , ..., Kin ) (6)

createModelL,extr,I : Set F → K (7)

createModelL,extr,I(F ) =
∏

i∈I

ai (extr(F,L))

Fig. 9. Creating knowledge models

I = {links, session, struct, onto} (a)

K1 = createModelL,extr,I(F1) = (b)

= (alinks (extr(F1, L)), asession (extr(F1, L)),

astruct (extr(F1, L)), aonto (extr(F1, L))) =

= (Klinks, Ksession, Kstruct, Konto)

Fig. 10. Exemplary knowledge model

S = (F : Set F, K : K) (8)

createShardL,extr,I : Set F → S (9)

createShardL,extr,I(F ) = (F, createModelL,extr,I(F ))

Fig. 11. Creating shards

s1 = createShardL,extr,I(F1)

s2 = createShardL,extr,I(F2)

s3 = createShardL,extr,I(F3)

Fig. 12. Exemplary shards

→ Example: In our scenario, each team might create a shard using the filter
predicates F1–F3 (Fig. 12).

Evolution. Shards are dynamic and evolve over time. New log entries matching
the filter predicates of a shard can become part of the underlying knowledge
models. To provide data scientists with additional flexibility, the QKSS supports
several operations to manage shards. While we consider shards to be immutable
in our functional model, implementations may destroy or recycle shards.

Lifecycle Operations. Two shards can be merged into a single shard, to reflect
in-depth collaboration between data scientist teams (Fig. 13(10)). Shards can
also be expanded or narrowed (Fig. 13(11)/(12)). Thereby, specific parts of the
query log can be added to or excluded from a shard.

mergeL,extr,I : S × S → S mergeL,extr,I(s1, s2) = createShardL,extr,I (s1.F ∪ s2.F ) (10)

expandL,extr,I : S × F → S expandL,extr,I(s, F ) = createShardL,extr,I (s.F ∪ F ) (11)

narrowL,extr,I : S × F → S narrowL,extr,I(s, F ) = createShardL,extr,I (s.F − F ) (12)

Fig. 13. Basic operations on shards

Shard Comparison. Two shards are considered similar if their knowledge mod-
els are similar. The knowledge extracted by log mining algorithms ai can be
compared by using algorithm-specific functions simKi (Fig. 14(13)). Two knowl-
edge models of type K can be compared to each other using a function simK
(Fig. 14(14)). A weight function w allows to determine the influence of specific
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simKi : Ki × Ki → )31(]1;0[

simK : (I → [0; 1]) × K × K → )41(]1;0[

simK(w,K1,K2)=
∑

i∈I

(w(i) · simKi(K1.Ki,K2.Ki)) with
∑

i∈I

w(i)=1

simS : (I → [0; 1]) × S × S → )51(]1;0[

simS(w, s1, s2) = simK(w, s1.K, s2.K)

Fig. 14. Similarity functions

algorithms from the index set I on model similarity. The function simS derives a
numerical value for shard similarity by comparing the knowledge models of two
shards (Fig. 14(15)). Data scientists can manually compare shards or rely on
automatic comparisons by the QKSS. The system suggests evolution operations
based on these comparisons, which can be reviewed by the data scientists.

→ Example: Assume that all algorithms except astruct are assigned a weight
factor of 0. Because of the structural similarity of s1 and s2 determined by
simKstruct (s2 incorporates exactly half of the sources of s1), the QKSS auto-
matically suggests team 1 to merge s2 into s1.

Query Processing. The knowledge model of a shard represents the mental
model of the data scientists. Queries can be written against this mental model
and do not have to reference actually available data sources. Before they can
be evaluated against these data sources, the QKSS reasons over the knowledge
model (Fig. 15). After logging a query, the QKSS determines if the query is fully
specified, which means it only contains schema elements that belong to actually
available data sources. If this is the case, the query is processed normally. The
knowledge model belonging to the shard of the querying user is evaluated in
parallel to generate recommendations. These may include hints about similar
data sources, similar users, or synonyms for schema elements.

We also allow queries to be underspecified, as data scientists should be able
to express queries using their mental models of the data sources. Whenever the
QKSS encounters an underspecified query, it evaluates the knowledge model in
order to modify the query to be processable using the actually available data
sources. If it cannot decide about relevant data sources, it collects feedback from
the user through an interactive dialog. Otherwise, the knowledge model is used
to rewrite the query to be consistent with the mental model of the user while
using actual data sources.

[yes]

[no]

[yes]

Query
fully spec.?

Interac on
req.?

[no]Query query
Log

Evaluate
know. model

Collect
feedback

Rewritequery

Evaluate
know. model

Process
query

Show
recomm.

Return
results

Fig. 15. QKSS query processing workflow
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3 Reference Architecture

To demonstrate the feasibility of our approach, we are developing a reference
QKSS [7]. This implementation adheres to our QKSS architecture (Fig. 16).

Users pose queries via the SQL API which is a wrapper for the native query
interface of an existing data management system (DMS). Established analysis
workflows remain intact, as analysis tools simply connect to the QKSS instead
of a DMS. The GUI acts as a companion to present relevant knowledge and
suggests modifications to the queries and shard lifecycle operations.

Incoming queries are stored in the centralized query log by the query inter-
ception component. Intercepted queries can be rewritten or extended and sub-
sequently forwarded to the DMS. Result retrieval is handled by the DMS. The
shard management oversees the lifecycle of all shards in the QKSS and generates
knowledge models from the query log to be stored in the model repository. It
also monitors the query log to update models if necessary. The knowledge sharing
component provides relevant knowledge to rewrite or extend intercepted queries
by evaluating the models from the model repository using the inference engine.
It adjusts models according to the queries of the data scientists. Additionally, it
monitors all shards of the QKSS to provide suggestions for lifecycle operations,
such as merging similar shards.

Data 
Sources

Query 
Intercep on

Query 
Log

Inference
Engine

SQL API GUI

Knowledge 
SharingManagement Sys.

Data

Analysis Tool

Model 
Repository

Shard 
Management

A        B:   A uses B

Fig. 16. QKSS reference architecture

4 Evaluation Methods

We assess the overall usefulness of our approach by analyzing how a QKSS
supports data scientists with their data analysis tasks. Additionally, we examine
if the performance of our reference implementation is sufficient for analytical
ad-hoc queries and interactive usage.

Usefulness: The usefulness of our approach is evaluated during a user study.
Knowledge models are created from queries of the participating users. The mod-
els are presented to the users to judge to what extent their intentions are cor-
rectly captured. By using logs of varying size, the number of queries required to
create meaningful models can be assessed. To assess the result quality of shard
comparisons, participating users validate if knowledge models that are marked
similar by the QKSS are actually built from similar log portions. Subsequently,
two groups of users are formed. Both groups get the task to answer specific
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analytical questions using a given set of unfamiliar data sources. While both
groups use the QKSS to access the data sources through a single interface, only
one group receives recommendations based on prepared knowledge models from
the QKSS. We analyze how a QKSS can support the users by comparing the
working speed and the result quality of both groups.

Performance: We measure the computational effort required for initial knowl-
edge model creation, model maintenance when new queries are added to the log,
model evaluation during query processing, and model comparison. To simulate
different application environments, query logs of varying size and complexity are
processed by the log mining algorithms. We also measure the overall response
time of the system during the processing of ad-hoc queries.

5 Related Work

Dataspace systems [4] rely on user feedback to incrementally adapt the managed
data to the expectations of their users. However, existing implementations of
dataspace systems do not sufficiently consider scenarios where different groups of
users with heterogeneous expectations work with a common set of data sources.

Mental models of data scientists may differ from the actual schema and con-
tent of data sources. Some approaches allow queries with references to unknown
schema elements [2,6]. However, they do not consider advanced temporal and
social connections inferable from the query log.

Our approach differs from query recommendation [3] and completion [5], as
we want to enable the users to specify complete queries using individual mental
models. We aim to adjust the actually available data sources to the mental
models of the users and not to force users to adjust to the data sources. Thus,
we minimize bias caused by anchoring and adjustment, psychological phenomena
that have been found to have adverse effects on query and result quality [1].

6 Summary

We introduce Query-driven Knowledge-Sharing Systems (QKSS) to support data
scientists in integrating these data sources and querying them for data analysis
tasks. Using a QKSS, data scientists can externalize tacit knowledge about data
sources without manual documentation effort, explore how others interact with
data sources, and discover relevant data sources. Shards of knowledge provide an
intuitive abstraction for the user-facing concepts of a QKSS. They encapsulate
knowledge models derived from relevant portions of the query log.
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