
Asynchronous Graph Pattern Matching
on Multiprocessor Systems

Alexander Krause(B), Annett Ungethüm, Thomas Kissinger, Dirk Habich,
and Wolfgang Lehner

Database Systems Group, Technische Universität Dresden, Dresden, Germany
{Alexander.Krause,Annett.Ungethuem,Thomas.Kissinger,Dirk.Habich,

Wolfgang.Lehner}@tu-dresden.de

Abstract. Pattern matching on large graphs is the foundation for a vari-
ety of application domains. Strict latency requirements and continuously
increasing graph sizes demand the usage of highly parallel in-memory
graph processing engines that need to consider non-uniform memory
access (NUMA) and concurrency issues to scale up on modern multi-
processor systems. To tackle these aspects, graph partitioning becomes
increasingly important. Hence, we present a technique to process graph
pattern matching on NUMA systems in this paper. As a scalable pattern
matching processing infrastructure, we leverage a data-oriented archi-
tecture that preserves data locality and minimizes concurrency-related
bottlenecks on NUMA systems. We show in detail, how graph pattern
matching can be asynchronously processed on a multiprocessor system.

1 Introduction

Recognizing comprehensive patterns on large graph-structured data is a pre-
requisite for a variety of application domains such as biomolecular engineer-
ing [11], scientific computing [17], or social network analytics [12]. Due to the
ever-growing size and complexity of the patterns and underlying graphs, pattern
matching algorithms need to leverage an increasing amount of available compute
resources in parallel to deliver results with an acceptable latency. Since modern
hardware systems feature main memory capacities of several terabytes, state-of-
the-art graph processing systems (e.g., Ligra [16] or Galois [10]) store and process
graphs entirely in main memory, which significantly improves scalability, because
hardware threads are not limited by disk accesses anymore. To reach such high
memory capacities and to provide enough bandwidth for the compute cores,
modern servers contain an increasing number of memory domains resulting in a
non-uniform memory access (NUMA). To further scale up on those NUMA sys-
tems, pattern matching on graphs needs to carefully consider issues such as the
increased latency and the decreased bandwidth when accessing remote memory
domains, as well as the limited scalability of synchronization primitives such as
atomic instructions [21].

The widely employed bulk synchronous parallel (BSP) processing model [19],
which is often used for graph processing, does not naturally align with pattern
c© Springer International Publishing AG 2017
M. Kirikova et al. (Eds.): ADBIS 2017, CCIS 767, pp. 45–53, 2017.
DOI: 10.1007/978-3-319-67162-8 6



46 A. Krause et al.

matching algorithms [3]. That is because a high number of intermediate results
is generated and need to materialized and transferred within the communication
phase. Therefore we argue for an asynchronous processing model that neither
requires a full materialization nor limits the communication to a distinct global
phase. For efficient pattern matching on a single NUMA system, we employ a
fine-grained data-oriented architecture (DORA) in this paper, which turned out
to exhibit a superior scalability behavior on large-scale NUMA systems as shown
by Pandis et al. [13] and Kissinger et al. [6]. This architecture is characterized
by implicitly partitioning data into small partitions that are explicitly pinned to
a NUMA node to preserve a local memory access.
Contributions. Following to a discussion of the foundations of graph pattern
matching in Sect. 2, the contributions of the paper are as follows:

(1) We adapt the data-oriented architecture for scale-up graph pattern matching
and identify the partitioning strategy as well as the design of the routing table
as the most crucial components within such an infrastructure (Sect. 3).

(2) We describe an asynchronous query processing model for graph pattern
matching and present the individual operators a query is composed of. Based
on the operator characteristics, we identify redundancy in terms of partition-
ing as an additional critical issue for our approach (Sect. 4).

(3) We thoroughly evaluate our graph pattern matching approach on multiple
graph datasets and queries with regard to scalability on NUMA systems.
Within our evaluation, we focus on different options for the partitioning
strategy, routing table, and redundancy as our key challenges (Sect. 5).

Finally, we discuss the related work in Sect. 6 and conclude the paper in Sect. 7
including promising directions for future work.

2 Foundations of Graph Pattern Matching

Within this paper, we focus on pattern matching for edge-labeled multigraphs
as a general and widely employed graph data model [12,14]. An edge-labeled
multigraph G(V, E, ρ, Σ, λ) consists of a set of vertices V , a set of edges E,
an incidence function ρ : E → V × V , and a labeling function λ : E → Σ that
assigns a label to each edge, according to which edge-labeled multigraphs allow
any number of labeled edges between a pair of vertices. A prominent example
for edge-labeled multigraphs is RDF [2].

Pattern matching is a declarative topology-based querying mechanism where
the query is given as a graph-shaped pattern and the result is a set of matching
subgraphs [18]. For instance, the query pattern depicted in Fig. 1 searches for a
vertex V1, that has two outgoing edges targeting V2 and V3. Additionally, the
query pattern seeks a fourth vertex V4 which also has two outgoing edges to the
same target vertices. The query pattern forms a rectangle with four vertices and
four edges of which we search for all matching subgraphs in a graph. A well-
studied mechanism for expressing such query patterns are conjunctive queries



Asynchronous Graph Pattern Matching on Multiprocessor Systems 47

Fig. 1. Scalable graph pattern matching based on a data-oriented architecture [6,13].

(CQ) [20], which decompose the pattern into a set of edge predicates each con-
sisting of a pair of vertices and an edge label. Assuming a wildcard label, the
exemplary query pattern in Fig. 1 can be decomposed into the conjunctive query
{(V1V1V1, ∗, V2), (V1V1V1, ∗, V3), (V4V4V4, ∗, V3), (V4V4V4, ∗, V2)}, where the bold vertices represent
the source vertex of an edge. These four edge predicate requests form a sequence,
that is processed by starting at each vertex in the data graph, because the query
pattern does not specify a specific starting vertex.

3 Scalable Graph Pattern Matching Architecture

In this section, we briefly describe our target architecture and refer to the
extended version of our paper [7] for more details. Figure 1 illustrates a NUMA
system with N sockets which can run multiple worker threads concurrently, based
on the underlying hardware. A graph of the form described in Sect. 2 can be dis-
tributed among the main memory regions, which are attached to one of the
sockets. The distribution of the graph among these memory regions inherently
demands graph partitioning and an appropriate partitioning strategy.

Partitioning Strategy. However, partitioning a graph will most likely lead to
edges, which span over multiple partitions, like the edges A → B and D → B
on the left hand side of Fig. 1. For instance, if vertex A is considered as a
potential match for a query pattern, the system needs to lookup vertex B
in another partition. Moving to another partition requires that the complete
matching state needs to be transferred to another worker, which requires com-
municational efforts between the two responsible workers. Hence, the selection of
the partitioning strategy is crucial when adapting the data-oriented architecture
for graph pattern matching, because locality in terms of the graph topology is
important [8].

Routing Table. Because one partition can not always contain all the necessary
information for one query, it is inevitable to communicate intermediate results
between workers. The communication is handled by a high-throughput message
passing layer, which hides the latency of the communication network, as depicted



48 A. Krause et al.

in Fig. 1. The system stores the target socket and partition information in a
crucial data structure, the routing table. The routing table determines the target
partition as well as the target NUMA node per vertex. Thus, the routing table
needs to be carefully designed, because real world graphs often feature millions
of vertices and billions of edges.

Since routing table and partitioning strategy depend on each other, we con-
sider the following three design options for our discussion and evaluation:

Compute Design. This design uses a hash function to calculate the target
partition of a vertex based on its identifier on-the-fly and stores no data at
all. Nevertheless, due to the simplicity of the routing table, the partitioning
strategy can not take any topology-based locality information into account.

Lookup Design. The lookup design consists of a hash map, which stores a
precomputed graph partitioning, i.e. one partition entry per vertex in the
graph, thus this design doubles the memory footprint, since the graph is
stored once as graph data and once in the routing table as topology data. As
partitioning strategy, we use the well known multilevel k-Way partitioning to
create a disjoint set of partitions. This heuristical approach creates partitions
with high locality and tries to minimize the edge cut of the partitioning [5].

Hybrid Design. We created this design to combine the advantages of the two
previous approaches, i.e. a small and locality preserving routing table. To
enable this combination, we employ a dictionary as auxiliary data structure
that maps virtual vertex ids to the original vertex ids of the locality aware
graph partitioning. The dictionary is only used for converting the vertex ids
of final query results. This range-based routing table maps dense ranges of
virtual ids to the respective partition and has very low memory footprint such
that the routing table easily fits into the cache of the multiprocessors.

4 Graph Pattern Matching Processing Model

The architecture introduced in Sect. 3 needs specific operators for pattern match-
ing on NUMA systems. We identified three logical operators, which are necessary
to model conjunctive queries as described in Sect. 2:

Unbound Operator. The unbound operator performs a parallel vertex scan
over all partitions and returns edges matching the specified label. The
unbound operator is always the first operator in the pattern matching process.

Vertex-Bound Operator. The vertex-bound operator takes an intermediate
matching result as input and tries to match a new vertex in the query pattern.

Edge-Bound Operator. The edge-bound operator ensures the existence of
additional edge predicates between vertices which are matching candidates
for certain vertices of the query pattern. It performs a data lookup with a
given source and target vertex as well as a given edge label. If the lookup
fails, both vertices are eliminated from the matching candidates. Otherwise
the matching state is passed to the next operator or is returned as final result.



Asynchronous Graph Pattern Matching on Multiprocessor Systems 49

To actually compose a query execution plan (QEP), the query compiler sequen-
tially iterates over the edge predicates of the conjunctive query. For each edge
predicate, the query compiler determines whether source and/or target vertex
are bound and selects the appropriate operator for the respective edge predicate.
For the example query pattern in Fig. 1, the resulting operator assignments of
the QEP are shown in Fig. 2(c).

Each operator is asynchronously processed in parallel and generates new
messages that invoke the next operator in the QEP. Hence, different worker
threads can process different operators of the same query at the same point in
time. Based on the operator and its parametrization, we distinguish two ways of
addressing a message that are related to the routing table:

Unicast. A unicast addresses a single graph partition and requires that the
source vertex is known respectively bound by the operator. This case occurs
for the vertex-bound operator if the source vertex is bound and for the edge-
bound operator.

Broadcast. A broadcast targets all partitions of a graph, which increases
the pressure on the message passing layer and requires the message to be
processed on all graph partitions and thus, negatively affects the scalability.
Additionally, vertex-bound operators that bound the target vertex require a
broadcast.

Broadcasts generated by vertex-bound operators significantly hurt the scalability
of our approach. The cause of this problem is inherently given by the data-
oriented architecture, because a graph can either be partitioned by the source
or the target vertex of the edges. Hence, we identify redundancy in terms of
partitioning as an additional challenge for our approach. To reduce the need for
broadcasts to the initial unbound operator, we need to redundantly store the
graph partitioned by source vertex and partitioned by target vertex. However,
the need for redundancy depends on the query pattern as well as on the graph
itself as we will show within our evaluation.

Fig. 2. Query patterns and example operators for the query from Fig. 1.



50 A. Krause et al.

5 Evaluation

In this section, we briefly describe our findings and refer to our extended version
for an in depth explanation of the individual results [7]. We used a bibliographical
like graph, which we call biblio for the remainder of this paper. The biblio graph
was generated using the graph benchmark framework gMark [1] and has 546 k
vertices, 780 k edges and an average out degree of 2.85 per vertex. Our NUMA
system consists of four sockets equipped with an Intel Xeon E7-4830 CPU and a
total of 128 GB of main memory. We defined two queries which are shaped like
shown in Figs. 2(a) and (b) and ran them on the biblio graph.

Routing Table and Partitioning Strategy. Based on Fig. 3 we examine the
infleunce of the routing table on the query performance. The figure shows the
query runtime for the V query on the biblio graph, which we scaled up from
factor 1 to factor 32. On the left hand side, we show the sole influence of
the routing table and on the right hand side of the figure we show the query
runtime per routing table design, if redundancy is used. In Fig. 3(a) we can see
that our hybrid design marginally outperforms the memory intensive lookup
design with a k-Way partitioning. The compute design and the lookup design
which uses a hash function perform equally in terms of query performance.
The advantage of our hybrid design and the k-Way based lookup design stems
from the better graph partitioning algorithm, because neighborhood locality
of adjacent vertices is considered. Our experiments showed, that the compute
design results in the lowest time spent in the routing table per worker, which
is not surprising. However, our hybrid design almost reaches the same routing
table time due its the small size.

Avoiding Broadcasts with Redundancy. In Sect. 4 we mentioned that
broadcasts hurt the scalability of a system. This issue is depicted in Fig. 4.
The figure shows the scalability of our systems for both query types from
Fig. 2. On the right hand side, we see that the Quad query suffers more from
broadcasts. The reason is, that many tuples are matched for predicate 2 (c.f.
Fig. 2(b)), which leads to a high number of broadcasts during the evaluation
of predicate 3. For the V query on the left hand side of the Figure, we can
see that the employment of redundancy still decreases the query runtime, but
not as much as for the Quad query, because the broadcasting predicates are
not dominant for this specific query instance.

Combining Redundancy and Routing Table Optimizations. Aside from
testing both optimization techniques individually, we combined them to exam-
ine their synergy. In Fig. 3(b), we demonstrate the query performance of the V
query on the biblio graph, again scaled up to factor 32. By adding redundancy to
the query execution, all routing table designs greatly benefit in terms of query
performance. However, we can now see a bigger advantage of our hybrid design,
compared to the lookup k-Way design.



Asynchronous Graph Pattern Matching on Multiprocessor Systems 51

(a) Query runtime without redundancy (b) Query runtime with redundancy

Fig. 3. V query on the biblio graph using different scale factors.

Fig. 4. Impact of redundancy, both queries on the biblio graph.

6 Related Work

Graph analytics is a widely studied field, as the survey from McCune et al. [9]
shows. Many systems leverage the increased compute performance of scale-up or
scale-out systems to compute graph metrics like PageRank and the counting of
triangles [15], Single Source Shortest Path [15] or Connected Components [15].
Many of the available systems are inspired by the Bulk Synchrones Processing
Model [19], which features local processing phases which are synchronized by a
global superstep. A general implementation is the Gather-Apply-Scatter para-
digm, as described in [4]. Despite working on NUMA systems, these processing
engines are globally synchronized and lack the scalability of a lock-free archi-
tecture. We improve this issue by leveraging a high throughput message passing
layer for asynchronous communication between the worker threads. However,
in contrast to the systems mentioned above, we are calculating graph pattern
matching and not graph metrics, like for instance GraphLab which is the only
asynchronous graph processing engine according to [9].

7 Conclusions

In this paper, we showed that the performance of graph pattern matching
on a multiprocessor system is determined by the communication behavior,



52 A. Krause et al.

the employed routing table design and the partitioning strategy. Our Hybrid
routing table design implementation allows the system to leverage both the
advantages from a Compute design and a Lookup design. Because of an inter-
mediate step, the underlying graph partitioning algorithm is interchangable and
can thus be adapted to specific partitioning requirements. Furthermore we could
show that avoiding broadcasts is equally important. This issue was mitigated
by introducing redundancy in the system. The added memory footprint can be
mitigated with the positive influence of our Hybrid design, since it scales directly
with the number of data partitions in the system.

Acknowledgments. This work is partly funded within the DFG-CRC 912 (HAEC).

References

1. Bagan, G., et al.: Generating flexible workloads for graph databases. PVLDB 9,
1457–1460 (2016)

2. Decker, S., et al.: The semantic web: the roles of xml and rdf. IEEE 4, 63–73 (2000)
3. Fard, A., et al.: A distributed vertex-centric approach for pattern matching in

massive graphs. In: 2013 IEEE International Conference on Big Data (Oct 2013)
4. Gonzalez, J.E., et al.: Powergraph: Distributed graph-parallel computation on nat-

ural graphs. In: OSDI (2012)
5. Karypis, G., et al.: A fast and high quality multilevel scheme for partitioning

irregular graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1998)
6. Kissinger, T., et al.: ERIS: A numa-aware in-memory storage engine for analytical

workload. In: ADMS (2014)
7. Krause, A., et al.: Asynchronous graph pattern matching on multiprocessor systems

(2017). https://arxiv.org/abs/1706.03968
8. Krause, A., et al.: Partitioning Strategy Selection for In-Memory Graph Pat-

tern Matching on Multiprocessor Systems (2017). http://wwwdb.inf.tu-dresden.
de/europar2017/. Accepted at Euro-Par 2017

9. McCune, R.R., et al.: Thinking like a vertex: A survey of vertex-centric frameworks
for large-scale distributed graph processing. ACM Comput. Surv. 48(2), 25:1–25:39
(2015)

10. Nguyen, D., et al.: A lightweight infrastructure for graph analytics. In: SIGOPS
(2013)

11. Ogata, H., et al.: A heuristic graph comparison algorithm and its application
to detect functionally related enzyme clusters. Nucleic Acids Res. 28, 4021–4028
(2000)

12. Otte, E., et al.: Social network analysis: a powerful strategy, also for the information
sciences. J. Inf. Sci. 28, 441–453 (2002)

13. Pandis, I., et al.: Data-oriented transaction execution. PVLDB 2, 928–939 (2010)
14. Pandit, S., et al.: Netprobe: A fast and scalable system for fraud detection in online

auction networks. In: WWW (2007)
15. Seo, J., et al.: Distributed socialite: A datalog-based language for large-scale graph

analysis. PVLDB 6, 1906–1917 (2013)
16. Shun, J., et al.: Ligra: a lightweight graph processing framework for shared memory.

IN: SIGPLAN (2013)
17. Tas, M.K., et al.: Greed is good: Optimistic algorithms for bipartite-graph partial

coloring on multicore architectures. CoRR (2017)

https://arxiv.org/abs/1706.03968
http://wwwdb.inf.tu-dresden.de/europar2017/
http://wwwdb.inf.tu-dresden.de/europar2017/


Asynchronous Graph Pattern Matching on Multiprocessor Systems 53

18. Tran, T., et al.: Top-k exploration of query candidates for efficient keyword search
on graph-shaped (RDF) data. In: ICDE (2009)

19. Valiant, L.G.: A bridging model for parallel computation. Commun. ACM 33,
103–111 (1990)

20. Wood, P.T.: Query languages for graph databases. SIGMOD 41, 50–60 (2012)
21. Yasui, Y., et al.: Numa-aware scalable graph traversal on SGI UV systems. IN:

HPGP (2016)


	Asynchronous Graph Pattern Matching on Multiprocessor Systems
	1 Introduction
	2 Foundations of Graph Pattern Matching
	3 Scalable Graph Pattern Matching Architecture
	4 Graph Pattern Matching Processing Model
	5 Evaluation
	6 Related Work
	7 Conclusions
	References




