
Supporting Conceptual Modelling in ORM
by Reasoning

Francesco Sportelli(B)

Free University of Bozen-Bolzano, Bolzano, Italy
fsportelli@unibz.it

Abstract. Object-Role Modelling (ORM) is a framework for modelling
and querying information at the conceptual level. It comes to support the
design of large-scale industrial applications allowing the users to easily
model the domain. The expressiveness of the ORM constraints may lead
to implicit consequences that can go undetected by the designer in com-
plex diagrams during the software development life cycle. To avoid these
issues we perform the reasoning on ORM diagrams in order to detect
relevant formal properties, such as inconsistencies or redundancies, that
cause a software quality degradation leading to an increment of develop-
ment times and costs.

In this paper we present an extension of ORM formalisation by Deriva-
tion Rules, which are additional ORM constructs that capture some rel-
evant information of the domain that cannot be expressed in standard
ORM.

Moreover, we provide a tool (UCM Framework) which enables reason-
ing on conceptual modelling software along with an implemented case of
study (ORMiE).

Keywords: ORM · Conceptual modelling · Reasoning · Rules

1 Overview

Conceptual modelling is a critical step during the development of a database sys-
tem. It is the detailed description of the universe of discourse in a language that is
understandable by users of the business domain. Object-Role modelling (ORM)
is a conceptual language for modelling, which includes a graphical and textual
language for specifying models, a textual language for formulating queries, as
well as procedures for constructing ORM models, and mapping to other kinds of
models like UML and ER. ORM is fact-oriented, i.e., it models the information
in a way that it can be verbalized using sentences that are easily understandable
by domain experts and even for those who are not familiar with IT in general.
Unlike ER and UML, fact-oriented models are attribute-free, treating all facts
(sentences) as relationships (unary, binary, ternary etc.) and this makes it more
stable and adaptable to changing business requirements. For example, instead of
using the attributes Person.isSmoker and Person.hiredate, fact-oriented models
use the fact types Person smokes and Person was hired on Date [1].
c© Springer International Publishing AG 2017
M. Kirikova et al. (Eds.): ADBIS 2017, CCIS 767, pp. 422–431, 2017.
DOI: 10.1007/978-3-319-67162-8 41



Supporting Conceptual Modelling in ORM by Reasoning 423

The ORM constraints expressiveness may lead to implicit consequences that
can go undetected by the designer in complex diagrams; this may also lead to
various forms of inconsistencies or redundancies in the diagram itself that give
rise to the degradation of the quality of the design and/or increased development
times and costs. The approach used to solve this issue involves the automated
reasoning in order to detect inconsistencies and redundancies. Moreover, ORM
diagrams can be equipped with Derivation Rules which are additional ORM
constructs which are able to express knowledge that is not expressible with
standard ORM. The usage of those rules brings to a further complexity so the
goal of this paper is to detect a decidable fragment in order to perform the
reasoning task even on those ORM diagrams equipped with those rules.

We also introduce the state of the art starting from the first ORM formal-
isation until the most recent one. Then we introduce an overview of the ORM
language, focusing on its main features like fact-oriented, the verbalisation and
the graphical notation, providing also the running example that will be shown in
the rest of the paper. The section concerning the research has three subsections:

1. UCM Framework, a tool designed to activate automated reasoning on con-
ceptual modelling software;

2. ORMiE, a tool which performs reasoning on ORM diagrams using UCM
Framework;

3. Derivation Rules, where we show the results achieved so far concerning the
formalisation.

We conclude the paper presenting the list of what is still to be done in the frame
of the PhD.

2 Motivation

The ORM formalisation has been treated in years of research and still today
it is a topic of interest. Formalising such language allows to activate reasoning
procedures, carried out by Description Logics reasoners. Since the reasoning is
able to detect relevant formal properties, such as inconsistencies or redundancies,
the purpose of the reasoning is to support the modeller during the modelling
which is a delicate process during the development of a software or a database.
Without this support such issues could lead to a degradation of the quality of
the design and an increase of development times and costs. Especially in large
diagrams those issues are hard to spot by naked eye, so the need of this approach
is crucial to prevent mistakes during the software or database development.

Although several papers presented their own ORM formalisation, no one has
taken into account the formalization of derivation rules so far. Derivation rules
are new ORM constraints which are able to express knowledge that is beyond
normal ORM capabilities, but this feature leads to an increase of expressiveness
of the diagrams. For this reason, the challenge is to identify a decidable fragment
in order to extend the reasoning even on those ORM diagrams equipped with
those rules.



424 F. Sportelli

Another challenge has more a methodological flavour, which involves the
development of a system that is able to extend any conceptual modelling appli-
cations with reasoning services. The direct impact of this research involves the
modellers, the developers and those who need a support tool which easily checks
the consistency of conceptual schema in order to save time during the develop-
ment life cycle.

3 Related Work

The ORM formalisation started with Terry Halpin’s PhD Thesis [2]. In the con-
text of design conceptual and relational schemas, Halpin formalized the NIAM
language that is the ancestor of ORM. In his thesis there is the first attempt
to formalize a modelling language in order to perform the reasoning task, so
the main objective is to provide formal basis for reasoning about conceptual
schemas and for making decision choices. After the spreading of ORM and its
implementation in NORMA [3,4], ORM became more popular so the logicians’
community took into account the possibility to formalize this very expressive
language.

In 2007, Jarrar formalizes ORM using DLRifd [5], an extension of Descrip-
tion Logics introduced in [6]. The paper shows that a formalisation in OWL
SHOIN would be less efficient than DLRifd because some ORM constraints
cannot be translated (predicate uniqueness, external uniqueness, set-comparison
constraints between single roles and between not contiguous roles, objectification
n-ary relationships). In [7], Jarrar encodes ORM into OWL SHOIN . Another
formalisation of ORM in DLRifd was done by Keet in [8].

In 2009 OWL2 was recommended by W3C Consortium as a standard of ontol-
ogy representation on the Web bringing some benefits: it is the recommended
ontology web language; it is used to publish and share ontologies on the Web
semantically; it is used to construct a structure to share information standards
for both human and machine consumption; automatic reasoning can be done
against ontologies represented in OWL2 to check consistency and coherency of
these ontologies.

An ORM formalisation based on OWL2 is proposed by Franconi in [9], where
he introduces a new linear syntax and FOL semantics for a generalization of
ORM2, called ORM2plus, allowing the specification of join paths over an arbi-
trary number of relations. The paper also identifies a “core” fragment of ORM2,
called ORM2zero, that can be translated in a sound and complete way into the
ExpTime-complete Description Logic ALCQI. In [10] is provided a provably cor-
rect encoding of a fragment of ORM2zero into a decidable fragment of OWL2
and it is discussed how to extend ORM2zero in a maximal way by retaining at
the same time the nice computational properties of ORM2zero.

The most recent paper related to ORM formalisation is [11] where Artale
introduces a new extension of DLR, namely DLR+. This paper is strictly con-
nected with this work because the logic DLR+ it is meant to represent n-ary



Supporting Conceptual Modelling in ORM by Reasoning 425

relationships which are suitable for languages like ORM. The ORM implemen-
tation we use is an ongoing work based on DLR+. In particular, the decidable
fragment we use is DLR±, obtained by imposing a simple syntactic condition
on the appearance of projections and functional dependencies in DLR+. In the
paper is also provided an OWL encoding and it is proved that DLR± captures
a significant fragment of ORM2.

Since this work is also focused on the formalisation of derivation rules, we
need to mention OCL. OCL stands for Object Constraint Language, it is the
declarative language for describing rules that apply to UML diagrams for defining
constraints in order to support the conceptual modelling, like Derivation Rules
for ORM. In [12] has been provided a formalisation of a fragment of this language
and has been also proved the equivalence between relational algebra and the
fragment with only FOL features, namely OCLFO.

We conclude this section stating that, to best of our knowledge, we use DLR±

in order to build a decidable ORM mapping into OWL. In particular, we focus
on Derivation Rules formalisation.

4 ORM

ORM stands for Object-Role Modelling. It is a language that allows users to
model and query information at the conceptual level where the world is described
in terms of objects (things) playing roles (parts in relationships) [13]. The idea
behind ORM and its approach is that an object-role model avoids the need to
write long documents in ambiguous natural language prose. It’s easy for non-
technical sponsors to validate an object-role model because ORM tools can gen-
erate easy-to-understand sentences. After an object-role model has been vali-
dated by non-technical domain experts, the model can be used to generate a
class model or a fully normalised database schema. ORM main features are:

– fact-oriented, all facts and rules are modelled in terms of controlled natural
language (FORML) sentences easy to understand even for non-technical users;

– attribute-free, unlike ER and UML, makes it more stable and adaptable to
changing business requirements;

– graphical, it has a graphical notation implemented by the software NORMA;
– formalised, it has a clear syntax and semantics, so reasoning on an ORM

diagram is enabled.

Unlike ER or UML, ORM makes no use of attributes in its base models;
although this often leads to larger diagrams, an attribute-free approach has
advantages for conceptual analysis, including simplicity, stability, and ease of
validation. Attribute-free models with a controlled natural language facilitate
model validation by verbalisation and population. Model validation should be
a collaborative process between the modeller and the business domain expert
who best understands the business domain. All facts, fact types, constraints and
derivation rules may be verbalised naturally in unambiguous language that is



426 F. Sportelli

Fig. 1. ORM diagram example

easily understood by domain experts who might not be experts in the software
systems ultimately used for the physical implementation.

The meaning of the diagram in Fig. 1 is the following: a person can be a
citizen or a visitor; each person is identified by one and only one document which
can only be either a visa or an id card. The entities are depicted by smooth
rectangles and the relationships by a sequence of tiny boxes according to the
cardinality relationship. The purple dot represents the mandatory constraint,
the dash on the tiny rectangle box is the uniqueness constraint, the equivalent
of the relational keys. The arrows among entities represents the ISA relationship.
Finally, the circle with the cross inside means disjointness; the one with another
circle inside means covering; the combination of this two is the circle we see
between Visa and IDCard. The notation (.Name) and (.Id) inside Person and
Document it is a graphical shortcut provided by NORMA for top level entities.
Intuitively, it means that each person has a name and each document has an id.
The corresponding FORML verbalization is the following:

Person is an entity type.

Citizen is an entity type.

Visitor is an entity type.

Document is an entity type.

VISA is an entity type.

IDCard is an entity type.

Person is identified by Document.

Each Citizen is an instance of Person.

Each Visitor is an instance of Person.

Each VISA is an instance of Document.

Each IDCard is an instance of Document.

Each VISA is an instance of Document.

Each IDCard is an instance of Document.

Each Person has exactly one Document.

For each Document, at most one Person has that Document.

For each Document, exactly one of the following holds: that Document is

some VISA; that Document is some IDCard.

This feature turns out to be helpful during the modelling phase especially when the
non-IT stakeholders interact with the software engineers in order to reach a mutual com-
prehension about the meaning of the diagram. For example, if the non-IT stakeholder



Supporting Conceptual Modelling in ORM by Reasoning 427

detects unexpected sentences which do not reflect the software specifications, it is easy
for the modeller to modify the interested part.

5 Contributions

The main goal of the research concerns to enrich the conceptual modelling by reasoning
in order to detect constraints which can lead to unexpected software behaviours, or to
infer new knowledge. This research is characterized by the synergy of the methodolog-
ical and the theoretical aspects. UCM Framework (Universal Conceptual Modelling
Framework) and ORMiE (ORM Inference Engine) are tools developed to implement
the ORM language in order to perform the reasoning over ORM schemas. Moreover,
the theoretical part is focused on the formalisation of ORM Derivation Rules which
has been also implemented in the aforementioned tools.

5.1 UCM Framework

Usually conceptual modelling tools do not take into account the problem of check-
ing whether the semantics of the conceptual schema is consistent or not. To tackle
this situation we developed UCM Framework which activates reasoning on concep-
tual modelling applications. UCM Framework has several features: it provides API for
developers, reasoning services, the import/export of ontologies and diagrams in dif-
ferent languages like ORM, UML and ER. In Fig. 2 is shown the architecture of the
framework. Each conceptual modelling application communicates with the core sys-
tem using a specific driver, both for input and for the output where the inferences
are encoded. The input schema is first encoded in a data structure (UCM Model) by
API services, then the reasoning is performed by Fact++ reasoner [14]. After that, the
inferences are stored into another data structure (UCM Inferred Model) by API and
inferences are delivered to the destination application by drivers. Using this approach
one can easily integrate this framework in order to enrich its conceptual modelling
application by reasoning. Currently, two applications use this framework: Menthor [15]
and ORMiE.

5.2 ORMiE

ORMiE (ORM Inference Engine) is an extension of NORMA, which is the official
ORM-based Microsoft Visual Studio conceptual modelling tool [3]. ORMiE uses UCM
Framework, so it is just one example how UCM Framework works on a target ORM-
based software. ORMiE activates automated reasoning over ORM diagrams providing
an interface where mistakes, redundancies or more in general new inferred knowledge
are shown. It takes advantage of all nice features from Visual Studio Framework being
such a powerful tool for those who need to model a domain following the ORM method-
ology. Moreover, ORMiE is able to perform the reasoning on those ORM diagrams
equipped with Derivation Rules.

5.3 Derivation Rules

Derivation Rules are special ORM constructs which express knowledge that would oth-
erwise not be expressible by standard ORM, so their expressibility is far reaching than



428 F. Sportelli

Fig. 2. UCM framework architecture

standard ORM. Their purpose is to derive new information from other information,
like triggers, stored procedures and views in SQL. The goal is to enable the reasoning
on those rules in order to extend the reasoning even on those ORM diagrams equipped
with Derivation Rules. There are two kind of Derivation Rules: the Subtype Deriva-
tion Rules and the Fact Type Derivation Rules. A Subtype Derivation Rule defines
all the instances which belongs to a subentity by a set of constraints defined in the
rule definition. The reason because those rules are applied on subentities is because
in some diagrams the is-a relationship between entities is too weak to capture the
entire desired semantics of the diagram; a FactType Derivation Rule is placed on the
predicates, namely the ORM roles.

The Derivation Rules we are focusing on are Subtype Derivation Rules. We want
to formalise those rules in order to activate the reasoning on those diagrams with
Subtype Derivation Rules. To achieve this goal it is important to take into account
that the reasoning lays on logic, so we need to find a way to encode derivation rules
into a logical language. First of all we need to understand how a derivation rule is
made from a structural point of view, in other words we need to detect a clear syntax.
Then, at the syntax is assigned a corresponding semantics and in the end an encoding
into a logical language is performed in order to made the reasoning possible. In [16]
is provided the full methodology used to formalise those rules and their mapping into
OWL.

We provide an example with the graphical notation implemented by NORMA. For
example, the diagram in Fig. 1 does not tell us which are exactly the people in the
entity Citizen and exactly the people in the entity Visitor. We only know that a person
can be a citizen or a visitor, but in the ORM standard notation there are no constraints
able to capture these sets. If we want to use this knowledge we have to use the ORM
Derivation Rules like in Fig. 3.

As we can see, a derivation rule is defined by an asterisk on entities and a text
which defines the meaning of the rule. We state that all the people which are identified
by an id card are citizens; all the people which are identified by a visa are visitors. It



Supporting Conceptual Modelling in ORM by Reasoning 429

Fig. 3. ORM diagram example with derivation rules

Fig. 4. Inferred disjoint and covering constraints

is important to observe that the text is not just a collections of words, instead it is in
controlled-natural language format that is to say it is well defined by a precise syntax.

What can be the outcome of the diagram in Fig. 3? The answers is in Fig. 4. We
obtained a disjunction and covering between the entities Citizen and Visitor. The
disjunction is inferred because there is no chance to find a common element between
the entity Visa and IDCard. Since the derivation rules capture separately the two sets,
visitors and citizens, even the corresponding entities have no element in common. What
about the covering? Since Visa and IDCard cover Document and since Person has the
mandatory constraint on the relationship is identified by, each person must participate
to this relation; in addition to this, the two derivation rules ensure that the sum of the
instances in Citizen and Visitor are exactly those who are in Person. So it is not possible
to find an instance which is not in Citizen of in Visitor. To prove this, now we add the
entity Illegal: people without documents, neither a visa nor id card. The outcome of the
reasoning is shown in Fig. 5. Illegal is red because it is an empty set. This means that
the only consistent world is given by the entity Illegal with no instances, because there
are no instances in Illegal which satisfy the rules of the diagram. Again, this is because
Person has the mandatory constraint on the is identified by relationship and because
the set of Person is already taken by the entities Citizen and Visitor. Therefore, there



430 F. Sportelli

Fig. 5. Illegal is inconsistent

is no way an instance in Illegal could be in Person. The counter-example is trivial: if
we remove the mandatory constraint on Person then Illegal would not be inconsistent
anymore.

6 Conclusion and Future Works

We have seen in this paper an extension of the current ORM formalisation introducing
ORM Derivation Rules. These rules express knowledge that is beyond ORM capabil-
ities, but they are far expressive than standard ORM. Therefore, we have formalised
a non-trivial decidable fragment in order to enable the reasoning over those ORM
diagrams equipped with these rules. The reasoning procedure detects relevant formal
properties as inconsistencies, redundancies or implicit constructs, helping the modeller
to prevent unexpected software behaviours.

We presented UCM Framework, a tool which is specifically designed to enrich with
reasoning any conceptual modelling software. It supports popular conceptual modelling
languages like ER, UML and even ORM. A tool which makes use of this framework is
ORMiE, a Microsoft Visual Studio plugin used to manage ORM diagrams.

The research and development of UCM Framework continues on two tracks: from
one side we plan to add the explanation feature in order to enhance the understanding of
the diagram by the user perspective, since this service explains why and how something
went wrong during the modelling; while on the other hand we plan to extend the
reasoning even on the instances of the conceptual schema.

Finally, an ongoing theoretical work concerns the formalisation of Fact Type Deriva-
tion Rules in order to capture a relevant decidable fragment that will be implemented
in the UCM Framework.



Supporting Conceptual Modelling in ORM by Reasoning 431

References

1. Halpin, T.A.: Object-role modeling: Principles and benefits. IJISMD 1(1), 33–57
(2010)

2. Halpin, T.: A Logical Analysis of Information Systems: static aspects of the data-
oriented perspective. PhD thesis (July 1989)

3. Curland, M., Halpin, T.: The NORMA software tool for ORM 2. In: Soffer, P.,
Proper, E. (eds.) CAiSE Forum 2010. LNBIP, vol. 72, pp. 190–204. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-17722-4 14

4. Sportelli, F.: NORMA: A software for intelligent conceptual modeling. In: Pro-
ceedings of the Joint Ontology Workshops 2016 Episode 2: The French Summer of
Ontology co-located with the 9th International Conference on Formal Ontology in
Information Systems (FOIS 2016), Annecy, France, 6–9 July 2016 (2016)

5. Jarrar, M.: Towards automated reasoning on ORM schemes. In: 26th International
Conference on Conceptual Modeling, ER 2007, pp. 181–197 (2007)

6. Calvanese, D., De Giacomo, G., Lenzerini, M.: Identification constraints and
functional dependencies in description logics. In: Proceedings of the Seventeenth
International Joint Conference on Artificial Intelligence, IJCAI 2001, Seattle,
Washington, USA, 4–10 August 2001, pp. 155–160 (2001)

7. Jarrar, M.: Mapping ORM into the SHOIN/OWL description logic. In: On the
Move to Meaningful Internet Systems 2007: OTM 2007 Workshops, OTM Con-
federated International Workshops and Posters, AWeSOMe, CAMS, OTM Acad-
emy Doctoral Consortium, MONET, OnToContent, ORM, PerSys, PPN, RDDS,
SSWS, and SWWS 2007, Proceedings, Vilamoura, Portugal, 25–30 November 2007,
Part I, pp. 729–741 (2007)

8. Keet, C.M.: Mapping the object-role modeling language ORM2 into description
logic language dlrifd. CoRR, abs/cs/0702089 (2007)

9. Franconi, E., Mosca, A., Solomakhin, D.: The formalization of ORM2 and its
encoding in OWL2. In: International Workshop on Fact-Oriented Modeling (ORM
2012) (2012)

10. Franconi, E., Mosca, A.: Towards a Core ORM2 language (Research Note). In:
Demey, Y.T., Panetto, H. (eds.) OTM 2013. LNCS, vol. 8186, pp. 448–456.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-41033-8 58

11. Artale, A., Franconi, E.: Extending DLR with labelled tuples, projections, func-
tional dependencies and objectification. In: Proceedings of the 29th International
Workshop on Description Logics (2016)

12. Franconi, E., Mosca, A., Oriol, X., Rull, G., Teniente, E.: Logic foundations of the
OCL modelling language. In: Fermé, E., Leite, J. (eds.) JELIA 2014. LNCS, vol.
8761, pp. 657–664. Springer, Cham (2014). doi:10.1007/978-3-319-11558-0 49

13. Halpin, T.A., Morgan, T.: Information Modeling and Relational Databases, 2nd
edn. Morgan Kaufmann, San Francisco (2008)

14. Fact++ reasoner. http://owl.man.ac.uk/factplusplus/
15. Moreira, J.L.R., Sales, T.P., Guerson, J., Braga, B.F.B., Brasileiro, F., Sobral, V.,

Menthor editor: An ontology-driven conceptual modeling platform. In: Proceed-
ings of the Joint Ontology Workshops 2016 Episode 2: The French Summer of
Ontology co-located with the 9th International Conference on Formal Ontology in
Information Systems (FOIS 2016), Annecy, France, 6–9 July 2016 (2016)

16. Sportelli, F., Franconi, E.: Formalisation of ORM derivation rules and their map-
ping into OWL,” in On the Move to Meaningful Internet Systems: OTM 2016 Con-
ferences - Confederated International Conferences: CoopIS, C&TC, and ODBASE
2016, Proceedings, Rhodes, Greece, 24–28 October 2016, pp. 827–843 (2016)

http://dx.doi.org/10.1007/978-3-642-17722-4_14
http://dx.doi.org/10.1007/978-3-642-41033-8_58
http://dx.doi.org/10.1007/978-3-319-11558-0_49
http://owl.man.ac.uk/factplusplus/

	Supporting Conceptual Modelling in ORM by Reasoning
	1 Overview
	2 Motivation
	3 Related Work
	4 ORM
	5 Contributions
	5.1 UCM Framework
	5.2 ORMiE
	5.3 Derivation Rules

	6 Conclusion and Future Works
	References




