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Abstract. Finding clusters in high dimensional data is a challenging
research problem. Subspace clustering algorithms aim to find clusters
in all possible subspaces of the dataset where, a subspace is the sub-
set of dimensions of the data. But exponential increase in the number
of subspaces with the dimensionality of data renders most of the algo-
rithms inefficient as well as ineffective. Moreover, these algorithms have
ingrained data dependency in the clustering process, thus, parallelization
becomes difficult and inefficient. SUBSCALE is a recent subspace clus-
tering algorithm which is scalable with the dimensions and contains inde-
pendent processing steps which can be exploited through parallelism. In
this paper, we aim to leverage, firstly, the computational power of widely
available multi-core processors to improve the runtime performance of
the SUBSCALE algorithm. The experimental evaluation has shown lin-
ear speedup. Secondly, we are developing an approach using graphics
processing units (GPUs) for fine-grained data parallelism to accelerate
the computation further. First tests of the GPU implementation show
very promising results.

Keywords: Data mining - Subspace clustering - Multi-core architec-
tures - Many-core architectures - GPU computing

1 Introduction

The growing size and dimensions of data these days have set new challenges for
data mining research. Clustering is a data mining process of grouping similar
data points into clusters without any prior knowledge of the underlying data
distribution. Due to the curse of dimensionality, data group together differently
under different subsets of dimensions, called subspaces. Subspace clustering algo-
rithms attempt to find clusters in all possible subsets of dimensions of a given
data set [1,2].

The area of subspace clustering is of critical importance with diverse appli-
cations [1]. But due to the exponential search space with the increase in dimen-
sions, subspace clustering becomes computationally very expensive. With the
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wide availability of multi-core processors and the spread of many-core coproces-
sors such as GPUs, parallelization seems to be an obvious choice to reduce this
computational cost.

SUBSCALE is a recent subspace clustering algorithm to find the subspace
clusters without enumerating the data points or computing any redundant clus-
ters [3,4]. This algorithm combines the dense set of points across all single dimen-
sions of the data to find non-trivial subspace clusters. Although SUBSCALE
algorithm scales well with the dimensions and performs faster than other sub-
space clustering algorithms, it is still compute intensive due to the generation
of combinatorial 1-dimensional dense set of points. However, the compute time
can be reduced by parallelizing the computation of the dense units.

In this paper, we aim to parallelize the SUBSCALE algorithm in two ways
and investigate its runtime performance. First, we exploit current multi-core
architectures with up to 48 processing cores using OpenMP. The experimental
evaluation demonstrates the speedup of up to a factor of 27. This modified
algorithm is faster and scalable for high dimensional large data sets. Second, we
use many-core graphics processing units to exploit data parallelism on a fine-
granular level, with a significant speedup, especially for larger computations.
The latter work is ongoing and results are expected to further improve with
optimizations in the implementation.

In the next section we discuss the current related literature. Section 3 explains
subspace clustering and the algorithm we parallelize. In Sect. 4, we describe our
multi-core parallelization and analyse the performance of the parallel imple-
mentation. Section 5 describes our current work of massive parallelization using
GPUs with preliminary results. The paper is concluded in Sect. 6.

2 Related Work

Over the past few years, there has been extensive research on clustering algo-
rithms [2]. The underlying premise that data group together differently under
different subsets of dimensions opened the challenging domain of subspace clus-
tering algorithms [1,5].

However, the increase in the dimensions of data impedes the performance
of clustering algorithms which are known to perform very well with low dimen-
sions. Moreover, most of the subspace clustering algorithms have less obvious
parallel structures [6,7]. This is partially due to the data dependency during the
processing sequence [8].

SUBSCALE [3,4] is a recent subspace clustering algorithm and requires only
k database scans to process a k-dimensional dataset. Also, this algorithm is scal-
able with dimensions and its structure contains the computation of independent
tasks which can be parallelized. In the next section, we briefly discuss the SUB-
SCALE algorithm and our modifications for multi-core parallel implementation.
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3 Subspace Clustering

This section provides the basics and definitions of subspace slustering and a
brief description of SUBSCALE [4], the algorithm which we aim to make more
efficient through parallelization.

Given an n X k set of data points, a point P; is a k-dimensional vector
{P}!, P% ..., PF} such that, P{ is the projection of a point P; on the d*" dimen-
sion. A subspace is a subset of k dimensions. A subspace cluster C; = (P, S) is
a set of points P, such that the projections of these points in subspace S, are
dense.

According to the Apriori principle [6], a dense set of points in a subspace S
of dimensionality a, is dense in all of 2 projections of S. Thus, it is sufficient to
find a cluster in its maximal subspace. A cluster C; = (P, S) is called a maximal
subspace cluster, if there is no other cluster C; = (P, S’) such that S’ O S.
The SUBSCALE Algorithm finds such maximal subspace clusters by combining
the dense points from single dimensions and without computing the redundant
non-maximal clusters.

3.1 SUBSCALE Algorithm

The main idea behind the SUBSCALE algorithm is to find the dense sets of
points (also called density chunks) in all of the k single dimensions, generate the
relevant signatures from these density chunks, and collide them in a hash table
(hTable) to directly compute the maximal subspace clusters as explained below.

Density Chunks. Based on two user defined parameters € and 7, a data point
is dense if it has atleast T points within e distance. The neighbourhood N(P;)
of a point P; in a particular dimension d is a set of all the points P; such that
L, (P2, de) <€, P; # P;. L is the distance metric. Each dense point along with
its neighbours, forms a density chunk such that each member of this chunk is
within e distance from each other.

The smallest possible dense set of points is of size 7 + 1, called a dense unit.
In a particular dimension, a density chunk of size ¢t can have (Tfrl) possible
combinations to form the dense units. Some of these dense units may or may
not contain projections of the higher dimensional maximal subspace clusters.
Without any prior information of the underlying data distribution, it is not
possible to know the promising dense units in advance. Only viable solution is
to check which of these dense units from different dimensions contain identical
points.

Signatures. The SUBSCALE algorithm proposed a novel way to match the
dense units by assigning signatures to them. To create signatures, each of the n
data points is mapped to a random, unique and large integer key. The sum of
the mapped keys of the data points in each dense unit is termed as its signature.
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According to observations 2 and 3 in the SUBSCALE paper [3], two dense
units with equal signatures would have identical points in them with extremely
high probability. Thus, collisions of the signatures across dimensions d,,...,d;
implies that, the corresponding dense unit exists in the maximal subspace, S =
{d;,...,ds}. We refer our readers to the extended version of the original paper
[4] for the detailed explanation. Each single dimension may have zero or more
dense chunks, which in turn generate different number of signatures in each
dimension. Some of these signatures will collide with the signatures from the
other dimensions to give a set of dense points in the maximal subspace.

Hash Table. The SUBSCALE algorithm uses a hash table data structure
hTable to store collision information about each signature. An hTable has a
fixed number of slots and each slot can store one or more signatures, depend-
ing upon the implementation (Fig.1). When a signature Sig is generated in a
dimension d, it is mapped to a slot in the hT'able. In this paper, we used modulo
numdSlots for mapping of signatures to a slot. If a slot already contains a signa-
ture Sig’ such that Sig = Sig’, then d is appended to the dimension-list attached
to Sig.

Index

1 I Signature |—> Signature [x
2 I Signature |x

Fig. 1. hTable data structure.

Since the size of each dense unit is 7 4 1, the value of a signature generated
from a dense unit will lie in the range R = [(T+ 1) -ming, (1+1)-maz k], where
ming and maxrg are the smallest and the largest keys respectively. Also, if
numdSigy is the number of total signatures in a dimension d, then the total num-
ber of signatures in a k-dimensional data set will be totals;q = Zszl numsSigq.
If memory is no onstraint a hash table with |R| slots can easily accommodate
totalsig, as typically, totals;y < R. Since memory is a constraint, the range R can
be split into multiple slices and each slice can be processed independently using a
separate and smaller hash table. The computations for each slice is not dependent
of other slices. The split factor called sp determines the number of splits of R and
its value can be set according to the available working memory. Also, the clus-
ter quality is not affected by splitting of hash table computations. The clusters
are formed by combining the dense units in each maximal subspace. The total
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number of dense units are decided by the density chunks created through epsilon
neighbourhoods in single dimensions. As long as all dense units are processed,
same clusters will be generated through sequential or parallel methods.

4 Multi-core Parallelization Using OpenMP

We used the OpenMP platform with C to parallelize the SUBSCALE algorithm.
OpenMP is a set of complier directives and callable runtime library routines to
facilitate shared-memory parallelism [9].

4.1 Processing Dimensions in Parallel

The generation of signatures from the density chunks in each single dimension
is independent of other dimensions. Thus, the dimensions can be divided among
the available processing cores to be run in parallel using threads. The hash table
hTable is shared among threads. However, the problem of thread contention
arises when multiple threads try to get mutually exclusive access of the same
slot of hTable to update or store the signature information. Without mutually
exclusive access, two threads with the same signatures generated from two differ-
ent dimensions, would overwrite the same slot of hT'able. The maximal subspace
of a dense unit can only be found by having the information about which of the
dimensions generated this dense unit. We discuss the results from this method
in Sect. 4.3.

4.2 Processing Slices in Parallel

The other approach to avoid thread contention is to utilise the splitting of the
range R of expected signature values as proposed by the SUBSCALE algorithm.
The slices created through the splitting can be processed in parallel as each slice
generates signatures from different range compared to other slices. Each slice
requires a separate hash table. Though this approach helps to achieve faster
clustering performance from the SUBSCALE algorithm, the memory required
to store all of the hash tables can still be a constraint. Since R denotes the whole
range of computation sums that are expected during the signature generation
process, we can bring these slices into the main working memory one by one.
Each slice is again split into sub-slices to be processed with multiple threads.
The total number of signatures can be pre-calculated from the dense chunks in
all dimensions. The results and their evaluation are discussed in the next section.

4.3 Results and Analysis

The experiments were carried out on the IBM Softlayer Server Quad Intel Xeon
ET7-4850, 2 GHz, with 48 cores, 128 GB RAM and Ubuntu 15.04 kernel. Hyper-
threading was disabled on the server so that each thread could run on a separate
physical core and parallel performance could be measured fairly. The parallel
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version of the SUBSCALE algorithm was implemented in C using OpenMP
directives. Also, we used 14-digit non-negative integers for the key database.

The two main datasets for this experiment: 4400 x 500 madelon dataset [10]
and 3661 x 6144 pedestrian dataset [11,12], are publicly available. These datasets
were also used by authors of the SUBSCALE algorithm.

Multiple Cores for Dimensions. We used the madelon data set with
€ = 0.000001, 7 = 3 and experimented with three different number of slots in the
shared hTable: 0.1 million, 0.5 million and 1 million. Figure 2a shows the runtime
performance of the madelon data set by using multiple threads for dimensions.
We observe that performance improves slightly by processing dimensions in par-
allel but as discussed before, thread contention due to mutually exclusive access
to the same slot in the shared hash table results in performance degradation.

Multiple Cores for Slices. To avoid this memory contention due to shared
hTable, we split the hash table computations into slices according to the SUB-
SCALE algorithm and distribute these slices among multiple cores. Figure 2b
shows the results of the runtime versus the number of threads used for process-
ing the slices of the madelon dataset. The hash computation was sliced with
different values of split factor sp ranging between 200 and 2000. We can see the
performance boost by using more threads. The speed up is shown in Fig. 2c,
which becomes linear as the number of slices increases.

Scalability with Dimensions. The 6144 dimensional pedestrian dataset is
used to study the speed up with the increase in dimensions. With ¢ = 0.000001
and 7 = 3, 19860542724 total signatures are expected which would require
~ 592 GB of working memory to store the hash tables. To overcome this huge
memory requirement, we can split these signature computations twice. We used
a split factor of 60 to bring down the memory requirement for total hash tables.
Each of these 60 slices were further split into 200 subslices to be run on 48 cores.

1000 80 2
<+sp=200 —sp=200
800}, .- . sp=500 $p=500
i _ 600) —ep=100 15| —sp=100
z ++-100000 slots in hTable = =150 o ol
o 600 500000 slots in hTable ° a0 g | sp=tooo
£ +++1000000 slots in hTable E 400] 3 10]=sp
S 400 € a
S € &
x 4
200 5

48 14 8 48

16 32 16 32 16 32
No. of threads No. of threads No. of threads

Dimensions in parallel Slices in parallel Speed up

Fig. 2. madelon dataset: ¢ = 0.000001 and 7 = 3. In (a), the total dimensions are
divided among available cores using threads. Due to thread contention, the runtime
fails to improve. In (b), the slices of hash computation (sp denotes the split factor) are
distributed among multiple cores and runtime improves with number of threads.
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The number of slots in each hTable are fixed using fotal=signatures ‘e eyecy-

tion time decreases drastically with increase in the numberpof threads. It took
around 26 h to finish processing all of the 60 x 200 slices. The sequential version
of SUBSCALE clustering algorithm takes about ~ 720 h.

5 Fine-Grained Parallelization Using GPUs

In this section, we describe an alternative way of parallelization with a much
finer-grained task structure, suitable for parallelization on graphics processing
units (GPUs). This work is ongoing, the results are preliminary.

5.1 Levels of Granularity

Finer-grained parallelism than the one described so far can be achieved on two
levels of granularity. First, we observe that within a dimension all density chunks
can be processed independently, since they are necessarily disjoint. Hence, if a
dimension contains k dense chunks, k independent tasks can be executed in
parallel by k threads. The downside of this approach is that the number and
sizes of density chunks in a dimension is not known a priori, thus resulting in
a vastly varying number of active threads with varying workloads during the
process, which is not efficient and not very suitable for GPU parallelization.
However, we note that the processing within a single density chunk can also
be parallelized. Recall that this computation consists of computing the signa-
tures of all dense units, i.e. all possible combinations of 7 4+ 1 elements, in that
chunk. Signature computation only requires read access to the points in the
respective dense unit, so even for non-disjoint units there are no thread con-
flicts. Furthermore, since all the dense units of the same dimension result in
different signatures (with very high probability, cf. Sect.3.1), hash collisions are
very unlikely during the parallel computation within one dimension. Hence, one
notable advantage of this task structure is that there will be no thread contention
for accessing the hash table, if different dimensions are processed sequentially.
(Note, however, that this does not preclude parallel computation of dimensions.)

5.2 Parallel Task Structure

In this parallel approach, a task consists of computing the signature value for
one single dense unit and hashing it. All such tasks can be executed in parallel.

1 for each dense unit dul[i] of length tau in parallel
2 signature := 0

3 for j = 0 to tau

4 signature := signature + key(duli].point([j])
5 htable.insert(signature)

Algorithm 1. Code for parallel computation of signatures
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Since a density chunk of ¢ elements has (Til) dense units, this approach
results in a large number of small and almost identical tasks. As 7 is constant
within one execution of the algorithm and since there are no branches, all tasks
execute the same sequence of instructions, but on different data. This type of
data parallelism is well-suited for implementation using GPUs. We have devel-
oped an implementation using Nvidia's CUDA architecture and programming
model [13]. This model enables data parallelism by allowing scalable grids of
threads, depending on the size of the data to be processed. Each thread is iden-
tified by its ID and can use this ID, e.g. to determine memory locations for
reading input and writing output data. In our case, the ID is required to iden-
tify the dense unit to process.

5.3 Computing Subsets Efficiently

Algorithm 1 presupposes that the thread with ID ¢ knows how to retrieve the
i-th dense unit, i.e. the subset {P;,,, P;_} of projected points whose signature
it computes. In a sequential scenario, this is not a problem, as the subsets of
size 7 + 1 can be enumerated one after another, using an ordering in which it
is computationally cheap to calculate the lexicographically next subset from a
given one [14]. In our parallel scenario, however, each thread needs to identify
its relevant subset independently, without reference to other results, i.e., the
i-th thread must find the i-th subset without access to the (i — 1)-th subset.
Calculating directly the i-th subset is significantly more complex than advancing
to the next subset from a given one. Using the combinatorial representation
(or, combinadics) of index i allows for a relatively efficient computation of the
corresponding subset [15], but still involves O(7 - logt) calculations of binomial
coefficients. Using a table of pre-calculated binomial coefficients can improve
efficiency at the cost of extra memory usage.

An alternative solution — which is used in our current implementation — is
precomputing an array containing the lexicographic enumeration of all (Til)
dense units within a density chunk of size ¢, i.e. the i-th position of the array
contains a representation of the i-th dense unit. A straightforward and space-
efficient encoding of subsets of size 7 + 1 of a set with ¢ elements is a bit string
of length t with exactly 7 + 1 bits set to 1. The precomputation of the array
is sequential but uses a very efficient implementation to compute the lexico-
graphically next bit permutation [16]. Calculating the dense unit array of length
~ 500000 for a density chunk of size ¢ = 60 and dense units of size 7+ 1 = 4
takes about 12ms on an Intel Core i7-4720HQ @2.6 GHz. Computing an array
of ~ 50 million permutations (¢t = 60,7 + 1 = 6) takes 1252 ms.

We are also working on a possible parallelization of this precomputation,
similar to the idea of parallel prefix calculation [17].

5.4 GPU-Based Hashing

Hashing the calculated signatures into htable can also be carried out on the GPU.
GPU-based hashing has been extensively studied by Alcantara, who proposed
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several efficient hashing schemes [18]. Our approach, based on the implemen-
tation used in [19], is currently being implemented and hence, not part of the
evaluation presented here. Note that GPU memory is a limiting factor for the
hash table size. State of the art GPUs come with up to 16 GB of RAM, which
is sufficient to accommodate each partial table of the slicing approach described
in Sect. 4.2.

5.5 Performance Evaluation

Our current implementation of the GPU approach is a first step. It has not
been optimized regarding the GPU's memory hierarchy and hence does not
benefit from caching effects. Also, it does currently not use more intricate CUDA
functions such as, for instance, the SHFL (shuffle) command, which might be
interesting for combinatoric tasks like subset enumeration.

The performance of the GPU algorithm was tested on an Intel Core i7-
4720HQ @2.6 GHz machine equipped with an Nvidia GeForce GTX 950M GPU
hosting 640 processing units (CUDA cores) and 4 GB of GPU RAM, against the
sequential CPU algorithm for computing signatures, run on the same machine.
The results are shown in Table 1. They do not include the time for precompu-
tation of subsets and for hashing the signatures, but include all transfer times
between GPU and host memory required for the GPU computations.

Table 1. Performance of CPU and GPU algorithms for computing signatures.

#Signatures computed | Time CPU (ms) | Time GPU (ms) | Speedup factor
1,770 0.4 1.0 0.4
34,220 11.5 1.9 6.1
487,635 148.8 13.8 10.8
5,461,512 1770.0 135.8 13.0
50,063,860 17692.5 1162.2 15.2

For smaller numbers of signatures, GPU is slower than CPU. This was to
be expected as there is always a small but non-negligible ramp-up cost for GPU
kernels Note that the speedup factor increases with the amount of calculations.
Note that the GPU used for this preliminary evaluation is a relatively small
model; high-performance Tesla GPUs contain thousands of CUDA cores and
achieve significantly higher processing power.

6 Conclusion

In this paper, we have presented two independent ways of parallelizing the SUB-
SCALE algorithm. First, we have described the use of a common shared memory
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multi-core architecture. Achieving the parallelization by assigning CPU cores to
slices of the hash table for store signatures and finding larger-dimensional dense
units, the results have shown linear speedup with the number of cores.

The second approach uses finer-granular data parallelism and can be imple-
mented efficiently on graphics processing units (GPUSs). First performance tests
show very promising results, especially for larger data sets. This part of the
work is ongoing; we are currently implementing the full functionality including
GPU-based parallel hashing of the signatures.

The two approaches do not exclude each other. In fact, they can complement
each other, using multi-core parallelism for coarse-grained tasks (processing of
dimensions or has table slices) and many-core data parallelism for finer-grained
subtasks (such as individual signature computation). Future work includes this
combination of both approaches, making the best possible use of the different
processing resources.
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