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Abstract. In this work we take a first step towards the problem of inte-
grating the content and the spatio-temporal aspects of the evolution of
the (published) scientific knowledge. A lot of research has been invested
in developing tools and search engines that will enable more efficient
querying of relevant medical (and broader scientific) data from various
perspectives, spanning from retrieval of similar documents/images to
HCI-based flexible query-answering systems. Variety of methodologies
have been developed, founded on knowledge-bases, statistics, semantic
similarity, etc. and quite a few systems are available (e.g., Medline).
Parallel to this, another body of research works has emerged over the
past couple of decades, targeting the efficient management of mobility
and spatio-temporal data. What motivates this work is the observation
that fusing the data (and corresponding techniques) developed in these
two broad research fields could enable novel categories of queries that
can be used to investigate various evolving spatio-temporal relationships
between particular scientific topics.

We present a novel model and a formalization of this confluence, in
what we call Knowledge-Evolution Trajectories (KET). We also provide
a preliminary proof-of-concept implementation that enables answering
novel categories of queries pertaining to KET data with a few ini-
tial observations regarding the impact of different data-representation
approaches.

1 Introduction and Motivation

Shortly after the co-emerging of the fields of spatial [1,13,23] and temporal [8] data
management, the miniaturization of computing devices and advances in Global
Positioning Systems (GPS) technology have spurred a plethora of applications
that demanded some type of a Location-Awareness (LBS) [22]. This, originated the
fields of Spatio-Temporal Databases (STDb) [9] and Moving Objects Databases
(MOD) [10], addressing various aspects of managing such data – from modelling,
through indexing and query processing [7,9,18,20,28]. The peculiar feature of the
popular query-categories – e.g., range, (k) Nearest-Neighbor ((k-)NN) [26,29,30]
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in MOD settings is that they are typically: (1) continuous (i.e., their answers may
have to be re-evaluated based on the changes in the motion of the entities); and/or
(2) persistent (i.e., their answers may need to be re-evaluated based both on the
changes of the motion as well as the history of such changes) [7,18]. More recently,
researchers have turned their attention to modelling, representing, and querying
spatio-temporal trajectories which also have some kind of annotated information
associated with the location and/or time – bringing about the concept of semantic
(resp. symbolic, spatio-textual) trajectories [19].

Complementary to these developments, the need to reduce (or even eliminate)
labor-intensive process associated with retrieval of textual documents matching
particular criteria, along with the contemporary advances in information sys-
tems, have spurred the field of Information Retrieval (IR) [16,21,24] starting in
the middle of the XX century. To enable effective retrieval relevant documents
by various IR strategies, the documents are typically transformed into a suit-
able representation, often accompanied by preparation of suitable indexes [24].
In the subsequent decades, a plethora of research works1 followed, enabling liter-
ature searches [6,17], detection of various semantic correlations among (topics)
in existing publications [14], etc. In addition, several prototype systems and
publicly available search engines have been generated over the years (e.g., MED-
LARS [6], Medline (https://www.nlm.nih.gov/bsd/pmresources.html)).

At the heart of the motivation for this work is the observation that despite
the rather long co-existence of the two fields (IR and STDb/MOD) and their
respective rich histories, not much has been done in terms of exploiting the
possible confluence of the two – which, as we will discuss shortly, could enable
novel categories of queries of relevance for various entities, from researchers, to
government agencies. For example, most of the works related to spatio-temporal
aspects of medical phenomena pertain to: – modelling the temporal, spatial,
and evolutionary nature of subject’s conditions [4]; exploring the spreading of
different chemicals, or respondses/reactions to particular stimuli (e.g., [2,12].

Our goal in this work is to provide a foundation for addressing the problem
of modelling the spatio-temporal aspects of the evolution of scientific knowledge
and take a step towards enabling novel queries. Specifically, we aim at answering
queries such as:

Q1: Retrieve the authors and institutions located in Eastern Europe, who have
published results related to the topic of heterocyclic compounds between 2005 and
2010.
Q2: Retrieve all the topics that were published by an institution in Pennsylvania
between 2008 and 2012.

1 We do not aim at presenting a comprehensive overview of the vast body of works
from the well-established field of IR in this paper (cf. [6,21]. The purpose of this
section is to provide a motivation for the research presented here.

https://www.nlm.nih.gov/bsd/pmresources.html
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Our main contributions are two-fold:

1. We introduce the concept of Knowledge-Evolution Trajectory (KET) as a
model to formalize the fusion between the spatial, temporal, and content-
based aspects of scientific publications.

2. We provide a preliminary proof-of-concept implementation that demonstrates
the feasibility of the proposed model. Specifically, we created a SQL Server
database that: (a) contains the data pertaining to medical publications,
fetched from PubMed; (b) We generated the geospatial information about
each publication by using Google Map API to convert the institution name
into (Lat, Lon), and then used ArcGIS to generate the values to be used by
the Geometry type of SQL Server.

We also conducted some preliminary experiments which, in addition to
demonstrating the feasibility of our objectives, also point out some interesting
research challenges.

In the rest of this paper, Sect. 2 introduces the KET model, followed by Sect. 3
in which we describe the current case-study implementation and the experimen-
tal observations. We summarize and outline directions for future work in Sect. 4.

2 Modelling Spatio-Temporal Evolution of Scientific
Literature

We now present the main aspects of the KET model. We firstly introduce the
concept of symbolic trajectories.

Semantic (synonymously, Symbolic or Enriched or Spatio-textual) Trajecto-
ries [3,5,11,15,19] embed contextual and/or situational knowledge into location-
in-time data. In a MOD [10] setting, a trajectory is modelled as a structure of the
form Tri = [oID, (xi1, yi1, ti1), . . . , (xik, yik, tik)], where xij and yij (1 ≤ j ≤ k)
are the coordinates of the location (lij = (xij , yij)) of the object with a unique
oID, obtained at time instant tij . In-between two consecutive updates, the
object’s motion is approximated in accordance with some kind of an interpo-
lation. STs attempt also to describe the kinds of activities associated with a
particular location and time – e.g., “stop”, “move”, “walk”, “eat”, etc. For-
mally (cf. [5,19]), a semantic trajectory STi is a sequence of so-called, semantic
episodes sei,m as follows:

STi = [sei1, sei2, sei3, . . . seim], and each semantic episode is a tuple of the
form:

seij = (daij , spij , x
in
ij , yin

ij , tinij , xout
ij , yout

ij , toutij , tagListij)

where:

– daij = defining annotation; typically expressing an activity (verb) such as
stop or move.

– spij = semantic location/position of the activity, like a POI (e.g., a museum,
restaurant, zoo), home, work, etc.
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– tinij and toutij = entry/exit times of a semantic position.
– xin

ij , yin
ij , xout

ij , yout
ij = entry/exit coordinates of a semantic position.

– tagListij = any additional semantic information, like transportation mode,
additional activity description (e.g., eat), etc.

constitute the j-th semantic episode of the i-th semantic trajectory.

Fig. 1. Semantic trajectory and spatio-temporal range querying

Left portion of Fig. 1 illustrates the concept of a semantic trajectory (cf. [19]),
and the right portion (cf. [15]) illustrates yet another way of visualizing a seman-
tic trajectory (i.e., color-coded activity) along with the semantics of processing
the query Retrieve all the individuals who were running in the region R1, between
7:00 and 8:00 AM.

There are two fundamental observations when it comes to the existing model
of semantic trajectories, and the KET model that we are proposing:

1. There is no concept of a “motion”, as commonly perceived in MOD trajec-
tories (even when augmented with annotation). The scientific publications
are associated with spatial data – e.g., the locations of the institution of the
participating authors, and those are not mobile entities. However, there is an
evolution over the temporal dimension that, in part, is associated with spatial
values.

2. The scientific publications have a lot more contextual attributes, and those
attributes are composite/richer. Namely, considering a typical meta-data2,
they contain:

– Title;
– Category (in accordance with an established nomenclature of the correspond-

ing field; possibly a set of such categories, augmented with a set of keywords).
– A set of authors names and the corresponding institution of his affiliation.
2 Aside from the main body of the text of the respective publications, or other

attributes associated with, e.g., publishers, forum/venue, etc...
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It is precisely the elements of the institution that contain an implicit spatial
value, which we use for enabling the novel categories of queries.

Based on (1) and (2) above, we define the concept of Scientific Publication
Point (SPP) as follows:

SPPi =

(PID, T itle, category, [(author1i, inst1i, x1i, y1i), . . . , (authorki, instki, xki, yki)], Tpub)

We re-iterate that, in practice, most of the bibliographical data sources contain
the name of the institution (along with its postal-address) for each author –
however, not the actual coordinates for the corresponding address. This, in turn,
eliminates the possibility of asking any queries containing predicates ranging over
spatial domains. However, such queries may provide insight into data/trends
that could influence both government funding as well as institutional/individual
collaboration plans, as exemplified by the query: Retrieve all the institutions
within 100Km from the coastal line in China, which have received more than
10M renminbi research funding in the last 4 years for medical research, but have
published less than 20 articles on the topic of cytostatics.

Fig. 2. KET for Geo-constrained Query

Assuming that the temporal value in each SPPi (i.e., SPPi.Tpub) is repre-
sented at a uniform particular level of granularity (e.g., (month, year)), we now
present formally the model for a KET (Knowledge-Evolution Trajectory) defined
as follows:

Definition 1. A Knowledge-Evolution Trajectory is a sequence
[α1(SPP (1)), α2(SPP (2)), . . . , αn(SPP (n))] where:

– αi denotes an operator from relational algebra or a spatial predicate, applied
to SPPi

– For any pair SPP (i), SPP (j), (i < j) ⇒ SPP (i).Tpub < SPP (j).Tpub
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Given the definition of SPPi, the role of αi in Definition 1 is to extract the
proper content of interest, the evolution of which needs to be queried. Thus,
for example, we can focus on a particular author by applying (SPPi).author =
′Jones′. However, the main benefit of the proposed model is that we can also
apply spatial predicates such as: (SPPi). (xmi, ymi)IN ′Pennsylvania′.

Clearly, the KET model generalizes the traditional model of a trajectory used
in MOD literature and, for that matter, also generalizes the semantic trajectories.

Figure 2 shows an example of a KET corresponding to an answer of the query
Retrieve all the collaborative works between Midwest-based and California-based
institutions, between January 2009 and December 2010. As can be seen, instead
of a traditional (x, y) point, we now have collection of Geo-points that constitute
each one of the trajectories of the answer. Moreover, we can also see that a
particular Geo-point can participate in > 1 KET – for as long as the constraints of
the query are satisfied. Thus, we have a collaboration between an institution from
California and Illinois on a publication related to T-cell studies, in December of
2010.

Fig. 3. KET for participation constraint query

Figure 3 illustrates another example of a KET – which visually (and type-
wise) has a highest resemblance of a traditional moving point-object trajectory.
However, it shows an example of an actual answer from our implementation,
corresponding to the query Retrieve all the institutions that have published an
article on cytostatics in which all the authors were from a same institution,
between January, 2014 and July 2015.

We close this section with another example-query the answer of which, in
some sense, does resemble spatio-temporal trajectories, but yet it has its own
distinct semantics of the temporal evolution.

Figure 4 shows the answer to the query Retrieve which topics/categories had
most publications, for the researchers from the SouthWest University, as well as
for the ones from Arizona State University, between 2008 and 2012.
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Fig. 4. Following most popular topics per institution

3 Case-Study: Spatio-Temporal Evolution in PubMed

We now describe in detail the current implementation of our proof-of-concept
system for which the context is restricted to the PubMed data, pertaining to the
various medical publications available on MedLine. We used SQL Server 2014
and we wrote python scripts to extract the data from PubMed and populate
the tables3. As mentioned earlier, the PubMed data does not contain geo-spatial
information4 – whereas SQL Server provides two different geospatial data types:
Geometry type and Geography type. Thus, in our prototype system, we selected
[Publish ID], [Title], [Author] (including their names and institutions), [Publish
Date] from the returned XML records from PubMed – however, in addition,
we populated the entries for the corresponding Geometry type in which the
coordinate system is World Geodetic System (WGS) 1984. To populate the cor-
responding values for the geospatial information, we used a two-step procedure:

(1) Google Map API was used to convert the institution name into (Lat, Lon)
pair of values.

(2) Subsequently, ArcGIS was used to convert from (float Lat, float Lon) into
the corresponding Geometry type.

3 We note that all the data, code for the queries, as well as the scripts used to generate
the values for the spatial attributes, is publicly available at https://github.com/
ShailavTaneja/PubMedDerivedDataAndImplementation.

4 The description of the standard meta-data used in PubMed is available
at https://www.ncbi.nlm.nih.gov/books/NBK3828/#publisherhelp.Example of a
Standard XML.

https://github.com/ShailavTaneja/PubMedDerivedDataAndImplementation
https://github.com/ShailavTaneja/PubMedDerivedDataAndImplementation
https://www.ncbi.nlm.nih.gov/books/NBK3828/#publisherhelp.Example_of_a_Standard_XML
https://www.ncbi.nlm.nih.gov/books/NBK3828/#publisherhelp.Example_of_a_Standard_XML
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This is what enabled us to specify queries that can capture the spatio-
temporal evolution of the knowledge represented in scientific – in this case,
medical – publications.

In the first iteration, we had a “näıve” representation of the data residing in
a single table, with attributes:

- [Publish ID] varchar(50),
- [Title] varchar(500),
- [Publish Date] date,
- [Author Name] varchar(50),
- [Institution Name] varchar(150),
- [Geo Information] geometry,
- [Subcategory] varchar(150),
- [Category] varchar(150)

The table had 409702 rows in total.

Fig. 5. Normalized database schema

Subsequently, to eliminate the redundancy, we normalized the näıve table,
and the schemata that we used in the implementation is shown in Fig. 5, corre-
sponding to the following tables:

– Main – with three attributes: [Publish ID] varchar(50), [Title] varchar(500),
[Publish Date] date. 32768 row in total

– Author – with three attributes: [Publish ID] varchar(50), [Author Name] var-
char(50), [Institution] varchar(150). 188786 rows in total.

– Category is a table capturing the hierarchy of the categories. It has three
attributes: [Index] hierarchyid, [Information] varchar(150), [Node Level] var-
char(50). 68652 rows in total. Hierarchyid is a special data type and works
as the key of Category table. / represents root, /*/ represents the first level
and so on

– Geospatial – with two attributes: [Institution] varchar(150), [Location]
geometry. 1316 rows in total.
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In the sequel, we describe an example of the difference between evaluating
queries in the näıve representation and the normalized one. Consider the follow-
ing:
Qtopic: Retrieve the KET for publications addressing the topic of diagnosis, in
the period of October 1, 2012 – September 1, 2016.

The query returns a set of temporally annotated points (geo locations) for
the topic, during that period.

The corresponding SQL statement for the näıve implementation is:

SELECT DISTINCT [Publish ID], [Publish Date], Location.STX, Location.STY

FROM NativeTable

WHERE ([Publish Date] between ’2012-10-01’ and ’2016-09-01’) and

([Subcategory] = ’diagnosis’)

ORDER BY [Publish Date]

The SQL implementation for the same query in the normalized version is:

DECLARE @catLevel hierarchyid;

SET @catLevel = (SELECT Index

FROM Category

WHERE Information = ’diagnosis’)

SELECT DISTINCT MainTable.[Publish ID], MainTable.[Publish Date],

Location.STX, Location.STY

FROM MainTable, Author, Geospatial

WHERE (MainTable.[Publish Date] between ’2012-10-01’ and ’2016-09-01’) and

(MainTable.[Publish ID] in

(SELECT Information

FROM Category

WHERE Index.IsDescendantOf(@catLevel) = 1 and [Node Level] = ’Publish ID’))

and

(MainTable.[Publish ID] = Author.[Publish ID]) and

(Author.Institution = Geospatial.Institution)

ORDER BY MainTable.[Publish Date]

To illustrate the impact of the different database representation, we first
illustrate the benefits in terms of eliminating the redundancy via the normalized
representation:

As shown in Fig. 6, the näıve implementation requires approximately five
times more space than the normalized one.

When it comes to the efficiency of the execution with each implementation we
report the corresponding measurements observed when executing Qtopic (labeled
Q1 in Fig. 7) and the query
Q2: Retrieve the works jointly co-authored by Masaki Mori and Yuichiro Doki,
between 2009–2010 and 2012–2013
on a Windows 10 machine, with Intel(R) Core(TM) i5-5257U CPU (2.70 GHz,

2701 Mhz), with 2 Cores (4 Logical Processors) and 8 GB of RAM.
As shown in Fig. 7, the normalized implementation also yields a much more

efficient execution than the näıve one.
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Fig. 6. Space requirements

Fig. 7. Efficiency of execution (in milliseconds)

4 Conclusions and Future Work

We addressed the problem of modelling and querying the spatio-temporal evolu-
tion of the knowledge recorded in scientific publications, and took the first steps
towards providing a formalism to capture such evolution across the (geo)spatial
domain, as well as other contextual attributes. We proposed the concept of KET
(Knowledge-Evolving Trajectories) as a possible unification between two fields
(Information Retrieval and Spatio-Temporal/Moving Objects Databases). This
type of unification provides opportunities for novel query categories which, to
our knowledge, have not been formally treated in the literature. In addition, we
provided a proof-of-concept implementation of our approach for the data avail-
able in PubMed, and compared the impacts of a näıve design of the database vs.
a normalized one – albeit for limited set of queries. Our initial evaluations have
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demonstrated that in addition to reducing the space requirements, the normal-
ized approach also enables faster execution of the KET-based queries.

Related Works: There are plethora of works in each of the fields of IR [6,
14,17,21] and STDb/MOD [7,9,10,18,20,23,28] – to mention but a few. The
novelty of our proposed approach is to provide a formalism for fusing these works,
along with the integration of the respective existing datasets, enabling novel
query-categories. The closest formalism to our proposed approach is the one of
semantic/symbolic trajectories [19]. However, as we argued, this approach: (1)
has too simplistic model of the spatio-temporal evolution; and (2) is lacking the -
dimensionality of the contexts typically associated with scientific publications.

We believe to have scratched the surface of a direction that may be of interest
in many applications of societal relevance and, moreover, can pose interesting
challenges. As part of our future work, we are planning to extend the KET model,
and augment the current implementation so that it can incorporate different
publications’ data sources. In addition, although we have provided some prelim-
inary discussions related to the efficiency, a challenging problem is to address
the efficient processing different types of KET-based queries.

Last, but not the least, it seems rather intuitive that investigations along
the direction of warehousing spatio-temporal evolution of scientific publications
along with further semantic similarity searches [25,27] data may yield novel
categories of analytical queries.
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