
CEUR Make GUI - A Usable Web Frontend
Supporting the Workflow of Publishing
Proceedings of Scientific Workshops

Muhammad Rohan Ali Asmat1,3(B) and Christoph Lange2,3

1 RWTH Aachen, Aachen, Germany
m.rohan.a.asmat@gmail.com

2 University of Bonn, Bonn, Germany
math.semantic.web@gmail.com

3 Fraunhofer IAIS, Sankt Augustin, Germany

Abstract. CEUR-WS.org is a widely used open access repository for
computer science workshop proceedings. To publish a proceedings vol-
ume there, workshop organisers have to follow a complex, error-prone
workflow, which mainly involves the creation and submission of an
HTML table of contents. With ceur-make we had previously provided
a command-line tool for partially automating this workflow. However,
in a recent usability evaluation we confirmed that the tool is difficult to
learn, highly dependent on other software, not portable and hard to use.
We sought to solve these issues with a web-based user interface, which
we present here. A usability evaluation of the latter proves significant
improvements.

Keywords: Scholarly publishing · Open access · User experience · User
interfaces

1 Introduction

Scientific social networks such as ResearchGate and free-of-charge open access
repositories such as the Computing Research Repository (CoRR1) have sig-
nificantly lowered the barrier for sharing research results in the form of indi-
vidual papers. Open access repositories for complete proceedings of scientific
events include the Proceedings of Machine Learning Research (PMLR) and
the Electronic Proceedings in Theoretical Computer Science (EPTCS), address-
ing specific fields of computer science, and the CEUR Workshop Proceedings
(CEUR-WS.org), addressing workshops from all over computer science.2 Each
of these employ an individual workflow for publishing, which proceedings editors
and/or authors need to follow strictly to keep the effort low for those who run
the service, usually volunteers. For example, PMLR requires editors to provide

1 http://arxiv.org.
2 http://proceedings.mlr.press/, http://www.eptcs.org/, http://ceur-ws.org.

c© Springer International Publishing AG 2017
M. Kirikova et al. (Eds.): ADBIS 2017, CCIS 767, pp. 146–157, 2017.
DOI: 10.1007/978-3-319-67162-8 16

http://CEUR-WS.org
http://arxiv.org
http://proceedings.mlr.press/
http://www.eptcs.org/
http://ceur-ws.org


CEUR Make GUI - A Usable Web Frontend Supporting the Workflow 147

a BibTeX metadata database following specific rules3, EPTCS acts as an over-
lay to CoRR, i.e. requires papers to be pre-published there, and CEUR-WS.org
requires editors to provide an HTML table of contents following a certain struc-
ture4. Here, we focus on facilitating the latter by adding a web-based graphical
user interface to a tool that auto-generates such tables of content, improving over
the usability issues of the previous standalone command-line version of that tool.

Section 2 provides a more precise problem statement. Section 3 discusses
related work. Section 4 presents the design and implementation of our web-based
user interface. Section 5 evaluates the usability of the frontend in comparison to
its command-line backend. Section 6 concludes with an outlook to future work.

2 Problem Statement

2.1 The Publishing Workflow

The HTML table of contents of a CEUR-WS.org workshop proceedings volume
includes metadata about the workshop (title, date, venue, proceedings editors,
etc.) and each of its papers (title, authors). This structure is prescribed5; around
once a year, it has so far evolved a bit, e.g., in the form of more explicit seman-
tic annotations to facilitate reuse of the metadata. Besides following the latest
template and producing syntactically valid HTML, requirements for proceed-
ings editors include following a consistent capitalisation scheme for paper titles,
providing full names of authors, and using relative links to the full texts of the
individual papers (typically PDF files). The HTML table of contents together
with the full texts has to be submitted to CEUR-WS.org as a ZIP archive.

2.2 Automation of the Workflow with Ceur-Make

Traditionally, proceedings editors had to prepare the submission ZIP file man-
ually. With ceur-make6, the second author, technical editor of CEUR-WS.org,
has provided a tool to automate part of this job – aiming at three objectives:

– Helping proceedings editors to learn more quickly how to create a table of
contents, reducing their effort, and helping recurrent editors to cope with
structural changes.

– Reducing the workload of the volunteers who carry out the subsequent pub-
lishing steps at CEUR-WS.org; so far, around one in ten submissions requires
further communication with its editors to resolve problems, mainly rooted in
the table of contents.

– Reducing the implications that subsequent improvements to the structure of
the table of contents have on both proceedings editors and the CEUR-WS.org
team by reducing their exposure to manual editing.

3 http://proceedings.mlr.press/spec.html.
4 http://ceur-ws.org/HOWTOSUBMIT.html#PREPARE.
5 http://ceur-ws.org/Vol-XXX/.
6 https://github.com/ceurws/ceur-make.

http://CEUR-WS.org
http://proceedings.mlr.press/spec.html
http://ceur-ws.org/HOWTOSUBMIT.html#PREPARE
http://ceur-ws.org/Vol-XXX/
https://github.com/ceurws/ceur-make


148 M.R.A. Asmat and C. Lange

For ceur-make, the metadata about the workshop and its papers have to be pro-
vided in two XML files. ceur-make can auto-generate the latter XML file from
the metadata that the widely used EasyChair submission and review manage-
ment system exports in LNCS mode (cf. Sect. 3.1). From these two XML files,
ceur-make auto-generates an HTML table of contents and finally a ZIP archive
conforming with the CEUR-WS.org requirements. In addition, ceur-make can
generate a BibTeX database to facilitate the citation of the papers in a pro-
ceedings volume, as well as a copyright form by which the authors agree to the
publication of their papers with CEUR-WS.org.

2.3 Shortcomings of Ceur-Make

Shortcomings of ceur-make include that it depends on a Unix-style command line
environment and a number of software packages that typically only developers
have installed: the Make build automation tool7, the Saxon XSLT processor and
the Perl scripting language. Furthermore, it requires proceedings editors to edit
one or two XML files manually, without validating their content with regard
to all rules that editors should follow. It also requires them to follow certain
conventions for naming and arranging files and directories; most importantly,
the sources of ceur-make have to be downloaded to the same directory in which
the proceedings volume is being prepared. These reasons may explain why ceur-
make has so far only been used for less than one in ten proceedings volumes.

2.4 Research Objectives

The objectives of our research were 1. to assess the shortcomings of ceur-make
in a more systematic way, and 2. to overcome them by providing a user-friendly
web frontend to ceur-make.

3 Related Work

3.1 Conference Management Systems

The complex process of managing scientific events (conferences, workshops, etc.)
is facilitated by a broad range of systems, of which we briefly review three
representatives and their proceedings generation capabilities. Parra et al. have
reviewed further systems without providing details on proceedings generation [6].
In computer science, EasyChair8 enjoys particularly wide usage.9 EasyChair
features a special “proceedings manager” interface, which is initialised by adding
all accepted papers and then supports the collection of the final (“camera ready”)
versions, including a printable form (usually PDF), editable sources (LATEX,

7 https://www.gnu.org/software/make/.
8 http://www.easychair.org.
9 EasyChair has so far been used to manage 53,739 events and has had 1,954,080 users

(http://www.easychair.org/users.cgi, accessed 2017-04-18).

https://www.gnu.org/software/make/
http://www.easychair.org
http://www.easychair.org/users.cgi


CEUR Make GUI - A Usable Web Frontend Supporting the Workflow 149

Word, or anything else, e.g., HTML, in a ZIP archive), and a copyright transfer
form. Proceedings chairs can define an order of papers and add or edit addi-
tional documents such as a preface. Specific support for exporting all these files
and their metadata is provided for events that publish in Springer’s Lecture
Notes in Computer Science (LNCS) series. Microsoft’s Conference Manage-
ment Toolkit (CMT10) assists with publishing accepted papers to CoRR. With
a professional license, ConfTool11 supports the export of metadata in multiple
formats (Excel, XML and CSV) to facilitate proceedings generation.

3.2 Usability Evaluation of Command Line Vs. GUI

Comparing the usability of command-line (CLI) vs. graphical user interfaces
(GUI) has been a long-standing research topic. Hazari and Reaves have evaluated
the performance of students in technical writings tasks using a graphical word
processor vs. a command-line tool [3]. Starting from the same level of background
knowledge and given the same time for training, a significantly larger share of
users felt comfortable using the GUI rather than the command line; also, their
task-based performance was slightly higher with the GUI. Gracoli is an operating
system shell with a hybrid user interface that combines GUI and CLI [12]. Its
design is motivated by common drawbacks of CLIs, which are stated as follows: –
the user can interact with the application in a limited way; – the output is hard
to understand for the user;– the user does not easily get a clue of how to perform
a task.

4 Design and Implementation of CEUR Make GUI

4.1 Architecture

The CEUR Make GUI is a graphical layer built on top of ceur-make. Figure 1
shows its three-layer architecture (Interface, Middleware, and Storage).

The Interface Layer consists of all the presentation elements. It displays
visual elements, handles dependencies on external libraries for user interface
elements, styles the web pages, validates forms and manages user interaction the
web pages. It also initiates the communication with the Middleware Layer on
user’s request and displays the results from the Middleware. Technologies used
on Interface Layer include standard web technologies used for front end clients
(HTML 5, CSS, JavaScript), and the following libraries: Materialize CSS12 is
a JavaScript and CSS library based on Google’s Material Design principles13,
used here to incorporate standard design patterns into the GUI. jQuery Steps14

is used to create wizards for taking inputs.

10 https://cmt.research.microsoft.com/cmt/.
11 http://www.conftool.net/.
12 http://materializecss.com.
13 https://material.io/guidelines/.
14 http://www.jquery-steps.com.

https://cmt.research.microsoft.com/cmt/
http://www.conftool.net/
http://materializecss.com
https://material.io/guidelines/
http://www.jquery-steps.com


150 M.R.A. Asmat and C. Lange

Fig. 1. System architecture of CEUR make graphical user interface

The Middleware Layer generates artifacts required for publishing at
CEUR-WS.org. The Middleware Layer creates the files, as requested through
the Interface Layer, by running ceur-make. It returns links to the artifacts stored
at the Storage Layer to the Interface Layer, thus acting as a service provider.

The Storage Layer stores the files that are created temporarily on the
server. It separates the files based on the user’s identity and then also based on
the workflow that the user chooses to create the artifacts for publishing (manual
metadata input vs. EasyChair import).

4.2 Interface

We aim at providing an easy to use, task oriented interface. On the main screen,
we give users the option of switching between four tasks: viewing announcements,
viewing published proceedings, publishing a proceeding and reporting an issue
through a navigational menu (cf. Fig. 2). Further, we separate the site navigation
of the two proceedings publishing workflows using a Card design pattern [9],
representing each workflow as an independent card (cf. Fig. 3a). We follow the
Wizard design pattern [11] to collect workshop metadata input from users (cf.
Fig. 3b). For the list of all proceedings volumes15, we follow the style of the

Fig. 2. Navigational menu of CEUR make graphical user interface

15 For now, we only implemented the list of proceedings volumes as a hard-coded
mockup for the purpose of evaluating the usability of our user interface design.



CEUR Make GUI - A Usable Web Frontend Supporting the Workflow 151

(b) Workshop metadata input wizard
(a) Workflows for Publishing Proceedings

Fig. 3. Workflow screens

CEUR-WS.org user interface but make it more accessible by following standard
design patterns. We applied the Pagination design pattern [10] to address the
problem of the current CEUR-WS.org site that one has to scroll down a lot
because all content is displayed at once; secondly, we applied the Autocomplete
design pattern [8] to facilitate the task of finding proceedings volumes already
published at CEUR-WS.org easier.

Source code, documentation and a working installation of the CEUR Make
GUI are available at https://github.com/ceurws/ceur-make-ui.

5 Evaluation

5.1 Methodology

Participants. Twelve persons participated in the evaluation of the usability of
the ceur-make CLI vs. the GUI. We chose nine participants with previous CEUR-
WS.org publishing experience16 and three participants without. The latter were
trained to publish at CEUR-WS.org to avoid learning biases in our evaluation
results.

Procedure. The participants were divided into two groups based on their avail-
ability. Those who were physically available participated in a Thinking Aloud
test [7], and the other ones participated in a Question Asking test:

Thinking Aloud: Participants were provided with task definitions as explained
below. They were asked to think aloud about their plans and their interac-
tion with the system, particularly including problems they faced or unusual
mental models, while the evaluator took notes. The task completion time was
recorded for the purpose of comparison.

16 Among them we would have preferred to have some with ceur-make experience, but
this proved infeasible given the small number of people who had ever used it.

https://github.com/ceurws/ceur-make-ui


152 M.R.A. Asmat and C. Lange

Question Asking: In a video conferencing setting with screen sharing (using
Skype), the evaluator performed each task according to its definition. The
participants were allowed to ask questions during the usability test, where
the evaluator also asked questions to test the user’s understanding. From an
audio recording, the evaluator compiled a transcript of pain points afterwards.

Following a within-subject design setup17, each participant first had to test
the CLI and then the GUI. The participants were given four tasks to be per-
formed in each system, designed to cover all major use cases of the system in a
comparable way: 1. Initiate generation of a proceedings volume, 2. Generating
workshop metadata, 3. Generating table of contents metadata, and 4. Search
a proceedings volume. Each tasks were subdivided into smaller steps, e.g., as
follows for Task 4:

Task 4 − Search a Proceedings Volume

1. Go to the proceedings page at http://ceur-ws.org (or in the GUI, respec-
tively).

2. Search the proceedings volume that has the name “Cultures of Partici-
pation in the Digital Age 2015”.

For the full list of task definitions, please see Appendix A and B of [1].
Usability tests were followed by a post study questionnaire for each user,

which was created and filled using Google Forms18. The questionnaire was
divided into following sections:

System Usability Scale (SUS [4]), a ten point heuristic questionnaire to
evaluate general usability of the system on a Likert scale from 1 (strongly
agree) to 5 (strongly disagree).

Question for User Interaction Satisfaction (QUIS [5]), a 27 point ques-
tionnaire to evaluate specific usability aspects of the system, covering overall
reaction to the software, screen layout, terminology and system information,
as well as learning and system capabilities, from a scale from 0 (lowest) to 9
(highest). The mean score was calculated for every user.

Dataset. All users used the same input data for both systems to ensure unbiased
comparability of the content created and of completion times across users and
systems. A full record of the data is provided in Appendix A and B of [1].

5.2 Results

This section summarizes the evaluation results; for full details see Appendix C
and D of [1].
17 https://web.mst.edu/∼psyworld/within subjects.htm.
18 https://www.google.com/forms/about/.

https://web.mst.edu/~psyworld/within_subjects.htm
https://www.google.com/forms/about/


CEUR Make GUI - A Usable Web Frontend Supporting the Workflow 153

Table 1. Quantitative usability evaluation results using thinking aloud

Tasks CEUR Make (Min) CEUR Make GUI (Min)

Task 1 0.13 0.10

Task 2 4.77 2.88

Task 3 2.40 1.46

Task 4 0.76 0.10

Quantitative Results (Completion Times). Table 1 shows the completion
times per system and task - in detail:

1. Task 1 (Initiate generation of a proceedings volume): This required
entering a terminal command for the CLI and pressing a button in the GUI.
On average, this took less time in the CLI, but the difference is too marginal
to be significant.

2. Task 2 (Generating Workshop Metadata): This required entering work-
shop metadata into the GUI input wizard, and using a text editor and the
command line in the CLI. The difference in completion time is significant:
completing the task using the GUI took only 60% of the time taken using the
CLI, which emphasizes the user-friendliness of the GUI.

3. Task 3 (Generating Table of Contents Metadata): This required enter-
ing metadata of two papers similarly as for Task 2, with similar results.

4. Task 4 (Search a proceedings volume): This task took 7.6 times as long
on the CEUR-WS.org homepage compared to the GUI. This result highlights
the importance of using the autocomplete design pattern for searching in the
graphical user interface, compared to just the “find in page” search built into
browsers.

Overall, users took significantly less time to complete tasks with the GUI, which
proves the usability improvement it provides over the CLI.

Qualitative Results. Notes recorded while performing the usability test were
categorized in ten heuristics, i.e.: Speed in performing a task, Documenta-
tion of the software, Ease in performing a Task , Learnability of the software,
clear Navigation structure of the system, Portability of the system, Error
correction chances, easy to use Interface , Dependency on other systems and
Features to be added. Table 2 shows the number of responses of the twelve par-
ticipants for each qualitative heuristic, where “bad” means they were not com-
fortable using it, “good” means they liked the software, and “excited” means that
the user is interested but would like to see more features to be implemented.

The total number of qualitative responses was 36 for the CLI and 34 for
the GUI. 15 good responses were recorded for the CLI, regarding the heuris-
tics Speed, Documentation and Task, whereas 21 bad responses were recorded



154 M.R.A. Asmat and C. Lange

Table 2. Qualitative results for ceur-make and the CEUR make GUI

Heuristics ceur-make # of responses
from users

CEUR make GUI # of responses
from users

Speed Good 3 Neutral –

Documentation Good 4 Neutral –

Task Good 8 Neutral –

Learnability Bad 5 Good 5

Navigation Bad 4 Good/Bad 5/2

Portability Bad 2 Good 2

Error Bad 2 Good 3

Interface Bad 4 Good 8

Dependency Bad 4 Good 3

Feature Neutral – Excited 6

Total responses 36 34

regarding the heuristics Learnability, Portability, Navigation, Error, Interface
and Dependency. For the GUI no response was recorded against the heuristics
Speed, Documentation and Task, which were reported as good for the CLI. This
was the case because users did not require documentation to operate the GUI
as they never requested for it from the evaluator, speed was not an issue while
using it as they never complained about it, and it enabled them to perform
their respective tasks. 26 good responses were recorded for the GUI against the
heuristics Learnability, Portability, Navigation, Error, Interface and Dependency,
which were all recorded as bad in case of the CLI. This highlights the usability
improvement provided by the GUI over the CLI. Only two bad responses were
recorded for the GUI, against the heuristic Navigation, which means a slight
improvement in navigation is required − as quoted by a user: “ceur-make make
things easier but has a complex setup, whereas the GUI is straightforward and
requires no prior learning. With little improvement in the flow of screens it could
be even better.”

Moreover, for the GUI, 6 responses were recorded as excited, against the
heuristic Feature, which means users would like to use the software and would
like additional features to be integrated.

Post Evaluation Questionnaire. The overall usability of the two systems was
evaluated using System Usability Scale19. The SUS score for ceur-make was
41.25, which is below grade F (x-axis) as shown in Fig. 4. This rating demands
immediate usability improvements. On the other hand, the SUS score of the GUI
was 87.08, which is above grade A (x-axis). This means that the GUI has a good
usability and its users would recommend it to others.

19 http://www.userfocus.co.uk/articles/measuring-usability-with-the-SUS.html.

http://www.userfocus.co.uk/articles/measuring-usability-with-the-SUS.html


CEUR Make GUI - A Usable Web Frontend Supporting the Workflow 155

Fig. 4. SUS score: ceur-make vs CEUR make graphical user interface

Results of the Questionnaire for User Interaction Satisfaction reflect
a high usability improvement of the GUI over the CLI. For the questions related
to the learnability of the system, a visible difference in mean scores was recorded
for easy to remember the commands, learning to operate the system and trying
new features by trial and error. For these three questions, mean scores of the CLI
were 3.75, 3.25, and 4.25 (all below average) and for the GUI they were 8.5, 8.25,
and 8.0 (all above average). Likewise, mean scores for the GUI for the questions
related to information representation, including information organization, posi-
tioning of messages, highlighting of information to simplify task, prompts and
progress were 7.75, 8.0, 6, 6, and 6.25 (above average), whereas for the CLI they
were 4, 4, 2.25, 4, and 3.25 − i.e.a notable difference. Another highlight was that
users appreciated that the GUI was considered to be designed for all levels of
users as backed by a mean score of 7.75, whereas the CLI was considered not to
be designed for all levels of users as its mean score was just 3.

6 Conclusion

We aimed at automating a workflow for publishing scientific results with open
access, focused on the CEUR-WS.org workshop proceedings repository. We
developed a graphical user interface on top of the ceur-make command line tool
and systematically evaluated the usability of both. Quantitative results on task
completion time prove that the GUI is more efficient in performing common
tasks. Qualitative evaluation suggests that on all heuristics where ceur-make
performed badly, i.e., learnability, navigation, portability, error, interface and
dependency, the GUI yielded good responses. In the post-evaluation question-
naires, a notable difference was recorded in the SUS scores of the two systems:



156 M.R.A. Asmat and C. Lange

grade F for ceur-make vs. grade A for the GUI. 11 out of 27 QUIS questions of
ceur-make had responses below average, and others were satisfactory, whereas
for the GUI all responses were above average. Overall, results indicate that the
usability of the GUI has noticeably improved over the command line. As our
evaluation setup covered most typical tasks of proceedings editors, the results
suggest that the GUI makes the overall process of publishing with CEUR-WS.org
more effective and efficient and thus will attract a broad range of users. Thanks to
the input validation of the metadata wizard and to the detailed explicit semantic
RDFa annotations of tables of contents that ceur-make outputs, broad usage of
the GUI will improve the quality of CEUR-WS.org metadata, largely eliminating
the need for reverse-engineering data quality by information extraction (cf. [2]).

Future Work The next immediate step is to officially invite all CEUR-WS.org
users to use the GUI for preparing their proceedings volumes. Partly inspired
by feedback from the evaluation participants, we are planning to enhance the
GUI with functionality addressing the following use cases (all filed as issues at
https://github.com/ceurws/ceur-make-ui/issues/): User Profiles would help
to automatically suggest information related to the editors while working on
that section of the workshop metadata (Issue #1). Even without user profiles,
building and accessing a database of previously published workshops’ metadata
would facilitate input, e.g., by auto-completing author names, and by reusing
metadata of a workshop’s previous edition. The RDF linked open data embed-
ded into ceur-make generated tables of contents or extracted from old tables of
contents (cf. [2]) can serve as such a database once collected in a central place
(#5). A Collaborative Space for Editors would support multiple editors to
work in parallel on a proceedings volume (#2). Saving System State would
improve user experience and give users more control (#4). Currently, there is
no way to restore the state of the interface, where one left in case the browser
is accidentally closed or users want to complete the task later. Extraction of
Author Names, Titles and Page Numbers from the full texts of the papers
would further lower task completion time, as the system would automatically
suggest most metadata (#3).

References

1. Asmat, M.R.A.: A Usable Web Frontend for Supporting the Workflow of Publishing
Proceedings of Scientific Workshops. MA thesis. RWTH Aachen (2016). http://
eis-bonn.github.io/Theses/2016/Rohan Asmat/thesis.pdf

2. Dimou, A., et al.: Challenges as enablers for high quality linked data: insights
from the semantic publishing challenge. In: PeerJ Computer Science: Semantics,
Analytics, Visualisation: Enhancing Scholarly Data (2017)

3. Hazari, S.I., Reaves, R.R.: Student preferences toward microcomputer user inter-
faces. Comput. Educ. 22, 225–229 (1994)

4. Measuring Usability with the System Usability Scale (SUS). MeasuringU (2017).
https://measuringu.com/sus/. Accessed 17 Apr 2017

5. Norman, K.L., Shneiderman, B.: Questionnaire for User Interaction Satisfaction
QUIS. http://www.lap.umd.edu/quis/. Accessed 25 Sep 2016

https://github.com/ceurws/ceur-make-ui/issues/
http://eis-bonn.github.io/Theses/2016/Rohan_Asmat/thesis.pdf
http://eis-bonn.github.io/Theses/2016/Rohan_Asmat/thesis.pdf
https://measuringu.com/sus/
http://www.lap.umd.edu/quis/


CEUR Make GUI - A Usable Web Frontend Supporting the Workflow 157

6. Parra, L., et al.: Comparison of Online Platforms for the Review Process of Con-
ference Papers. In: CONTENT (2013)

7. Thinking Aloud: The Number 1 Usability Tool. Nielsen Norman Group
(2017). https://www.nngroup.com/articles/thinking-aloud-the-1-usability-tool/.
Accessed 10 Apr 2017

8. User Interaction Design Pattern Library: Autocomplete. UIPatterns (2017).
http://ui-patterns.com/patterns/Autocomplete. Accessed 17 Apr 2017

9. User Interaction Design Pattern Library: Card. UIPatterns (2017). http://
ui-patterns.com/patterns/cards. Accessed 17 Apr 2017

10. User Interaction Design Pattern Library: Pagination. UIPatterns (2017). http://
ui-patterns.com/patterns/Pagination. Accessed 17 Apr 2017

11. User Interaction Design Pattern Library: Wizard. UIPatterns (2017). http://
ui-patterns.com/patterns/Wizard. Accessed 17 Apr 2017

12. Verma, P.: Gracoli : a graphical command line user interface. In: CSCW (2013)

https://www.nngroup.com/articles/thinking-aloud-the-1-usability-tool/
http://ui-patterns.com/patterns/Autocomplete
http://ui-patterns.com/patterns/cards
http://ui-patterns.com/patterns/cards
http://ui-patterns.com/patterns/Pagination
http://ui-patterns.com/patterns/Pagination
http://ui-patterns.com/patterns/Wizard
http://ui-patterns.com/patterns/Wizard

	CEUR Make GUI - A Usable Web Frontend Supporting the Workflow of Publishing Proceedings of Scientific Workshops
	1 Introduction
	2 Problem Statement
	2.1 The Publishing Workflow
	2.2 Automation of the Workflow with Ceur-Make
	2.3 Shortcomings of Ceur-Make
	2.4 Research Objectives

	3 Related Work
	3.1 Conference Management Systems
	3.2 Usability Evaluation of Command Line Vs. GUI

	4 Design and Implementation of CEUR Make GUI
	4.1 Architecture
	4.2 Interface

	5 Evaluation
	5.1 Methodology
	5.2 Results

	6 Conclusion
	References




