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Abstract. This paper stems from previous works of the same authors in
which a declarative semantics for Peer-to-Peer (P2P) systems, defined in
terms of Preferred Weak Models, is proposed. Under this semantics only
facts not making the local databases inconsistent can be imported. As in
the general case a P2P system may admit many preferred weak models
whose computational complexity is prohibitive, the paper looks for a
more pragmatic solution. It assigns to a P2P system its Well Founded
Model, a partial deterministic model that captures the intuition that if
an atom is true in a preferred weak model, but it is false in another
one, then it is undefined in the well founded model. The paper presents
a distributed algorithm for the computation of the well founded model
and a system prototype.

1 Introduction

Several proposals considering the issue of managing the coordination, the inte-
gration of information [4–6,9,13,18,20] as well as the computation of queries in
a P2P system have been proposed in the literature [2,11]. This paper follows the
proposal in [6–10] in which a different interpretation of mapping rules has led
to the proposal of a semantics for a P2P system defined in terms of Preferred
Weak Models. Under this semantics only facts not making the local databases
inconsistent can be imported, and the preferred weak models are the consistent
scenarios in which peers import maximal sets of facts not violating constraints.

Example 1. Consider a P2P in which the peer: (i) P3 contains two atoms: r(a)
and r(b); (ii) P2 imports data from P3 using the (mapping) rule q(X) ←↩ r(X)1.
Moreover imported atoms must satisfy the constraint ← q(X), q(Y ),X �= Y
stating that the relation q may contain at most one tuple; (iii) P1 imports data
from P2, using the (mapping) rule p(X) ←↩ q(X). P1 also contains the rules
s ← p(X) stating that s is true if the relation p contains at least one tuple, and
t ← p(X), p(Y ),X �= Y , stating that t is true if the relation p contains at least
two distinct tuples.

The intuition is that, with r(a) and r(b) true in P3, either q(a) or q(b) could
be imported in P2 and, consequently, only one tuple is imported in the relation

1 Please, note the special syntax we use for mapping rules.
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p of the peer P1. Note that whatever is the derivation in P2, s is derived in P1

while t is not derived. Therefore, s and t are, respectively, true and false in P1. ��

A P2P system may admits many preferred weak models and the computa-
tional complexity is prohibitive. Therefore, a more pragmatic solution is needed.
The paper first introduces a rewriting technique that allows modeling a P2P
system PS as a unique logic program, Rewt(PS), that can be used as a com-
putational vehicle to calculate the semantics of the P2P system; then presents
the Well Founded Model Semantics, that allows obtaining a deterministic model
whose computation is polynomial time.

Moreover, the paper presents a distributed algorithm for the computation of
the well founded model and provides some details on the implementation of a
system prototype for query answering in P2P network based on the proposed
semantics.

2 P2P Systems: Syntax and Semantics

Familiarity is assumed with deductive database [1], logic programming, stable
models, head cycle free (HCF) program, well founded model and computational
complexity [3,12,16,17,19]. A (peer) predicate symbol is a pair i : p, where i is
a peer identifier and p is a predicate symbol. A (peer) atom is of the form i : A,
where i is a peer identifier and A is a standard atom. A (peer) literal is a peer
atom i : A or its negation not i : A. A conjunction i : A1, . . . , i : Am, not i :
Am+1, . . . , not i : An, φ, where φ is a conjunction of built-in atoms, will be also
denoted as i : B, with B equals to A1, . . . , Am, not Am+1, . . . , not An, φ.

A (peer) rule can be of one of the following three types:

– standard rule. It is of the form i : H ← i : B, where i : H is an atom and
i : B is a conjunction of atoms and built-in atoms.

– integrity constraint. It is of the form ← i : B, where i : B is a conjunc-
tion of literals and built-in atoms.

– mapping rule. It is of the form i : H ←↩ j : B, where i : H is an atom, j : B
is a conjunction of atoms and built-in atoms and i �= j.

i : H is called head while i : B (resp. j : B) is called body. Negation is allowed just
in the body of integrity constraints. The definition of a predicate i :p consists of
the set of rules in whose head the predicate symbol i :p occurs. A predicate can be
of three different kinds: base predicate, derived predicate and mapping predicate.
A base predicate is defined by a set of ground facts; a derived predicate is defined
by a set of standard rules and a mapping predicate is defined by a set of mapping
rules. An atom i : p(X) is a base atom (resp. derived atom, mapping atom) if
i : p is a base predicate (resp. standard predicate, mapping predicate). Given
an interpretation M , M [D] (resp. M [LP], M [MP]) denotes the subset of base
atoms (resp. derived atoms, mapping atoms) in M .
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Definition 1. P2P System. A peer Pi is a tuple 〈Di,LPi,MPi, ICi〉, where
(i) Di is a set of facts (local database); (ii) LPi is a set of standard rules; (iii)
MPi is a set of mapping rules and (iv) ICi is a set of constraints over predicates
defined by Di, LPi and MPi. A P2P system PS is a set of peers {P1, . . . ,Pn}. �

Given a P2P system PS = {P1, . . . ,Pn}, where Pi = 〈Di,LPi,MPi, ICi〉,
D,LP,MP and IC denote, respectively, the global sets of ground facts, stan-
dard rules, mapping rules and integrity constraints, i.e. D =

⋃
i∈[1..n] Di,

LP =
⋃

i∈[1..n] LPi, MP =
⋃

i∈[1..n] MPi and IC =
⋃

i∈[1..n] ICi. In the rest of
this paper, with a little abuse of notation, PS will be also denoted both with
the tuple 〈D,LP,MP, IC〉 and the set D ∪ LP ∪ MP ∪ IC.

We now review the Preferred Weak Model semantics in [6,7]. For each peer
Pi = 〈Di,LPi,MPi, ICi〉, the set Di ∪ LPi is a positive normal program, thus
it admits just one minimal model that represents the local knowledge of Pi. It is
assumed that each peer is locally consistent, i.e. its local knowledge satisfies ICi

(i.e. Di ∪ LPi |= ICi). Therefore, inconsistencies may be introduced just when
the peer imports data. The intuitive meaning of a mapping rule i : H ←↩ j : B ∈
MPi is that if the body conjunction j : B is true in the source peer Pj the atom
i : H can be imported in Pi only if it does not imply (directly or indirectly) the
violation of some constraint in ICi.

Given a mapping rule r = H ←↩ B, the corresponding standard logic rule
H ← B will be denoted as St(r). Analogously, given a set of mapping rules MP,
St(MP)= {St(r) | r ∈ MP} and given a P2P system PS = D∪LP ∪MP ∪IC,
St(PS) = D ∪ LP ∪ St(MP) ∪ IC.

Given an interpretation M , an atom H and a conjunction of atoms B:

– valM (H ← B) = valM (H) ≥ valM (B),
– valM (H ←↩ B) = valM (H) ≤ valM (B).

Therefore, if the body is true, the head of a standard rule must be true,
whereas the head of a mapping rule could be true. Intuitively, a weak model M is
an interpretation that satisfies all standard rules, mapping rules and constraints
of PS and such that each atom H ∈ M [MP] (i.e. each mapping atom) is
supported from a mapping rule H ←↩ B whose body B is satisfied by M . A
preferred weak model is a weak model containing a maximal subset of mapping
atoms.

Definition 2. (Preferred) Weak Model. Given a P2P system PS =
D ∪ LP ∪ MP ∪ IC, an interpretation M is a weak model for PS if {M} =
MM(St(PSM )), where PSM is the program obtained from ground(PS) by
removing all mapping rules whose head is false w.r.t. M . Given two weak models
M and N , M is said to preferable to N , and is denoted as M � N , if M [MP] ⊇
N [MP]. Moreover, if M � N and N �� M , then M � N . A weak model M is
said to be preferred if there is no weak model N such that N � M .

The set of weak models for a P2P system PS will be denoted by WM(PS),
whereas the set of preferred weak models will be denoted by PWM(PS). ��
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Theorem 1. For every consistent P2P system PS, PWM(PS) �= ∅.

Example 2. Consider a P2P system PS in which the peer: P2 contains the
facts q(a) and q(b), whereas P1 contains the mapping rule p(X) ←↩ q(X)
and the constraint ← p(X), p(Y ),X �= Y . WM(PS) are: M0 = {q(a), q(b)},
M1 = {q(a), q(b), p(a)} and M2 = {q(a), q(b), p(b)}, whereas PWM(PS) are
M1 and M2 as they import maximal sets of atoms from P2. ��

3 Computing the Preferred Weak Model Semantics

This section presents an alternative characterization of the preferred weak model
semantics, that allows to model a P2P system PS with a single logic program
Rewt(PS). Let’s firstly introduce some preliminaries. Given an atom A = i :
p(x), At denotes the atom i : pt(x) and Av denotes the atom i : pv(x). At will
be called the testing atom, whereas Av will be called the violating atom.

Definition 3. Given a conjunction

B = A1, . . . , Ah, not Ah+1, . . . , not An, B1, . . . , Bk, not Bk+1, . . . , not Bm, φ (1)

where Ai (i ∈ [1.. n]) is a mapping atom or a derived atom, Bi (i ∈ [1.. m]) is a
base atom and φ is a conjunction of built in atoms, we define

Bt = At
1, . . . , A

t
h, not At

h+1, . . . , not At
n, B1, . . . , Bk, not Bk+1, . . . , not Bm, φ (2)

Therefore, given a negation free conjunction B = A1, . . . , Ah, B1, . . . ,
Bk, . . . , φ, then Bt = At

1, . . . , A
t
h, B1, . . . , Bk, φ. In the following, the rewriting of

a P2P system is reported.

Definition 4. Rewriting of an integrity constraint. Given an integrity
constraint i = ← B (that is of the form (1)) its rewriting is defined as
Rewt(i) = {Av

1 ∨ · · · ∨ Av
h ← Bt}. ��

If Bt (of the form (2)), is true, at least one of the violating atoms Av
1, . . . , A

v
h

is true. Therefore, at least one of the atoms A1, . . . , Ah cannot be inferred.

Definition 5. Rewriting of a standard rule. Given a standard rule s =
H ← B, its rewriting is defined as Rewt(s) = {H ← B; Ht ← Bt; Av

1∨· · ·∨Av
h ←

Bt,Hv }. ��

In order to find the mapping atoms that, if imported, generate some inconsis-
tencies (i.e. in order to find their corresponding violating atoms), all possible
mapping testing atoms are imported and the derived testing atoms are inferred.
In the previous definition, if Bt is true and the violating atom Hv is true, then the
body of the disjunctive rule is true and therefore it can be deduced that at least
one of the violating atoms Av

1, . . . , A
v
h is true (i.e. to avoid such inconsistencies

at least one of atoms A1, . . . , Ah cannot be inferred).



P2P Deductive Databases 95

Definition 6. Rewriting of a mapping rule.Given a mapping rule m =
H ←↩ B, its rewriting is defined as Rewt(m) = {Ht ← B; H ← Ht, not Hv }. ��

Intuitively, to check whether a mapping atom H generates some inconsisten-
cies, if imported in its target peer, a testing atom Ht is imported in the same
peer. Rather than violating some integrity constraint, it (eventually) generates,
by rules obtained from the rewriting of standard rules and integrity constraints,
the atom Hv. In this case H, cannot be inferred and inconsistencies are pre-
vented.

Definition 7. Rewriting of a P2P system. Given a P2P system PS =
D ∪ LP ∪ MP ∪ IC, then: Rewt(MP) =

⋃
m∈MP Rewt(m), Rewt(LP) =⋃

s∈LP Rewt(s), Rewt(IC) =
⋃

i∈IC Rewt(i) and Rewt(PS) = D∪Rewt(LP)∪
Rewt(MP) ∪ Rewt(IC) ��

Definition 8. Total Stable Model. Given a P2P system PS and a stable
model M for Rewt(PS), the interpretation obtained by deleting from M its
violating and testing atoms, denoted as T (M), is a total stable model of PS.
The set of total stable models of PS is denoted as T SM(PS). ��

Example 3. Consider the P2P system PS in Example 2. From Definition (7) we
obtain:

Rewt(PS) ={q(a); q(b); pt(X) ← q(X); p(X) ← pt(X), not pv(X);
pv(X) ∨ pv(Y ) ← pt(X), pt(Y ),X �= Y }

The stable models of Rewt(PS) are: M1 = {q(a), q(b), pt(a), pt(b), pv(a), p(b)},
M2 = {q(a), q(b), pt(a), pt(b), p(a), pv(b)}. Then, the total stable models of PS
are T SM(PS) = {{q(a), q(b), p(b)}, {q(a), q(b), p(a)}}. ��

Theorem 2. For every P2P system PS, T SM(PS) = PWM(PS). ��

4 Well Founded Semantics and Distributed Computation

A P2P system may admit many preferred weak models whose computational
complexity has been shown to be prohibitive [6,7]. Therefore, a deterministic
model whose computation is guaranteed to be polynomial time is needed. In
more details, the rewriting presented in Sect. 3 allows modeling a P2P system by
a single disjunctive logic program. By assuming that this program is HCF, it can
be rewritten into an equivalent normal program for which a Well Founded Model
Semantics can be adopted. Such a semantics allows to compute in polynomial
time a deterministic model describing the P2P system, by capturing the intuition
that if an atom is true in a total stable (or preferred weak) model of PS and is
false in another one, then it is undefined in the well founded model.

Theorem 3. Let PS = D ∪ LP ∪ MP ∪ IC be a P2P system, then Rewt(PS)
is HCF iff there are not two distinct atoms occurring in the body of a rule in
ground(LP ∪ IC) mutually dependent by positive recursion. ��

we assume each P2P system PS is s.t. Rewt(PS) is HCF. PS will be called as
HCF P2P system. From previous hypothesis, it follows that Rewt(PS) can be
normalized as SM(Rewt(PS)) = SM(Normalized(Rewt (PS))).
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Definition 9. Rewriting of an HCF P2P system. Given an HCF P2P
system PS, Reww(PS) = Normalized(Rewt(PS)). ��

Therefore, the preferred weak models of an HCF P2P system PS corresponds to
the stable models of the normal program Reww(PS). Next step is to adopt for
Reww(PS) a three-valued semantics that allows computing deterministic models
and in particular the well founded model.

Definition 10. Well Founded Semantics. Given an HCF P2P system PS
and the well founded model of Reww(PS), say 〈T, F 〉, the well founded model
semantics of PS is given by 〈T (T ), T (F )〉. ��

Example 4. The rewriting of the HCF P2P system PS in Example 3 is:

Reww(PS) ={q(a); q(b); pt(X) ← q(X); p(X) ← pt(X), not pv(X);
pv(X) ← pt(X), pt(Y ),X �= Y, not pv(Y );
pv(Y ) ← pt(X), pt(Y ),X �= Y, not pv(X)}

The well founded model of Reww(PS) is 〈{q(a), q(b), pt(a), pt(b)}, ∅〉 and the
well founded semantics of PS is given by 〈{q(a), q(b)}, ∅〉. The atoms q(a) and
q(b) are true, while the atoms p(a) and p(b) are undefined. ��

Theorem 4. Let PS be a HCF P2P system, then deciding: (i) whether an inter-
pretation M is a preferred weak model of PS is P -time; (ii) whether an atom
A is true in some preferred weak model of PS is NP-complete; (iii) whether
an atom A is true in every preferred weak model of PS is coNP-complete; (iv)
whether an atom A is true in the well founded model of PS is P -time. ��

Reww(PS) allows to compute the well founded semantics of PS in polyno-
mial time. In this section we present a technique allowing to compute the well
founded model in a distributed way. The basic idea is that each peer computes
its own portion of the “unique logic program”, sending to the other peers the
result.

Definition 11. Let PS= be an HCF P2P system, where Pi = 〈Di,LPi,MPi,
ICi〉, for i ∈ [1..n]. Then, Reww(Pi) = Reww(Di ∪ LPi ∪ MPi ∪ ICi).

Previous definition allows to derive a single normal logic program for each
peer. Observe that, Reww(PS) =

⋃
i∈[1..n] Reww(Pi).

Example 5. The rewritings located on peers P1 and P2 of Example 2 are:

Reww(P1) = {pt(X) ← q(X); p(X) ← pt(X), not pv(X);
pv(X) ← pt(X), pt(Y ), not pv(Y ),X �= Y ;
pv(Y ) ← pt(X), pt(Y ), not pv(X),X �= Y }.

Reww(P2) = {q(a); q(b)}.

��

The idea is the following: if a peer receives a query, then it will recursively
query the peer to which it is connected through mapping rules, before being able
to calculate its answer. Formally, a local query submitted by a user to a peer does
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not differ from a remote query submitted by another peer. Once retrieved the
necessary data from neighbor peers, the peer computes its well founded model
and evaluates the query (either local or remote) on that model; then if the query
is a remote query, the answer is sent to the requesting peer. For the sake of
presentation, a partial model reports, using the syntax [T,U ], the sets of true
and undefined atoms, instead of the sets of true and false atoms.

Example 6. Consider the P2P system in Example 2. If P1 receives the query
p(X), it submits the query p(X) to the peer P2. Once P2 receives the query
q(X), it computes its well founded model W2 = [{q(a), q(b)}, ∅]. P1 receives
the data, populates its local database and computes its well founded model
W1 = [{pt(a), pt(b)}, {pv(a), pv(b), p(a), p(b)}] and finally, evaluates the query
p(X) over W1. The answer will be [∅, {p(a), p(b)}]. Observe that, the peer replies
providing two undefined atoms: p(a) and p(b). ��

Algorithm: ComputeAnsweri

input: 1) i : q(X) - a query
2) s - a sender which is a peer Pk (remote query) or null (local query)

output: [T, U ] where T (resp. U) is the set of true (resp. undefined) atoms
begin

while true
wait for an input i : q(X) and s;
P = Reww(Pi);
for each (i : h(X) ←↩ j : b(X)) ∈ MPi

[T, U ] = ComputeAnswerj(j : b(X), Pi);
P = P ∪ T ∪ {a ← not a | a ∈ U};

end for
[Tw, Uw] = ComputeWellFoundedModel(P );
answer = [{i : q(x) | i : q(x) ∈ Tw}, {i : q(x) | i : q(x) ∈ Uw}];
if isNull(s) then show(answer);
else send(answer, Pk);
end if

end while
end

We associate to a P2P system, PS, a graph g(PS) whose nodes are the peers
of PS and whose edges are the pairs (Pi,Pj) s.t. (i : H ←↩ j : B) ∈ PS. We
say that PS is acyclic if g(PC) is acyclic. In order to guarantee the termination
of the computation, from now on we assume that our P2P systems are acyclic.
Without loss of generality, we assume that each mapping rule is of the form
i : p(X) ←↩ j : q(X). The behavior of the peer Pi = 〈Di,LPi,MPi, ICi〉 within
the P2P system can be modeled by the algorithm ComputeAnsweri, running on
the peer Pi. It receives in input a query i : q(X) submitted by a sender s which
can be another peer or a user. For each mapping rule i : h(X) ←↩ j : b(X), the
peer Pi queries the peer Pj asking for j : b(X). Pi will receive true and undefined
tuples that will enrich the local knowledge. Observe that, true atoms will be
simply inserted into P while for each undefined atom a, a rule a ← not a allowing
to infer the correct truth value for a (undefined) in the well founded model, is
inserted. Once the local knowledge has been updated, the local well founded
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model is computed by means of the function ComputeWellFoundedModel and
the answer for the query is extracted. If the sender is a user then the answer is
simply shown, otherwise (if it is a peer) it is sent back to it.

A system prototype for query answering in a P2P network based on the
proposed semantics has benn implemented. The system has been developed using
Java.

The communication among peers is performed by using JXTA libraries [15].
A peer is a node in the JXTA network. JXTA defines a set of protocols providing
implementation for basic and complex P2P functionalities allowing each device
in the network to communicate and interact as a peer and guarantees some
advantages in the development of P2P applications (e.g. it can be run on different
digital devices (PCs, PDAs)). XSB [21] is a logic programming and deductive
database system used for computing the answer to a given query using the well
founded semantics. InterProlog [14] is an open source front-end that provides
Java with the ability to interact with XSB engine.
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